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ABSTRACT

Unification of the three Standard Model (SM) gauge couplings at the scale
from 5.5×1015 GeV to 2.4×1018 GeV (reduced Planck scale) has been achieved
in the models where the matter part of SM is extended by postulating the
existence of new vector-like particles. The new vector-like particles carry the
same quantum numbers as the SM particles do and so they are called as the
standard vector-like particles. Masses of these particles are of the order of 1

TeV. The vacuum stability of the SM Higgs boson up to the Planck scale is
also achieved by this simple extension of SM. Two models have been consid-
ered in this dissertation to achieve gauge coupling unification and vacuum
stability, in the first model only vector-like fermions are added in the SM,
where in the second model a potentially successful Dark Matter candidate is
also considered along with the vector-like fermions. For describing the tiny
neutrino masses, type I seesaw has also been included in the analysis and
the impact of type I seesaw physics on the predictions of vacuum stability is
also discussed.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics which was developed in
1970s is a remarkably successful theory to describe the fundamental particles
and their interactions. SM has survived more than two decades of almost
all the precision tests at high energy particle accelerators and is regarded as
the “Science’s most experimental successful theory”. Even though the SM
is currently the best description there is for the subatomic world, it does
not explain the complete picture and still consider to be incomplete. The
reason being that SM does not address many problems and there are rea-
sons to believe in physics beyond the SM, both theoretical and experimental
[1]. The unification of the three gauge couplings, and the reason why there
is a huge difference between the electroweak and Planck scale or what pre-
vents the mass of Higgs boson to receive the quadratic corrections (Hierarchy
problem) [2] are amongst the theoretical reasons. In the SM, neutrinos are
assumed to have zero mass. But now there is a strong evidence from the
observation of neutrino oscillation experiments that neutrinos do have very
tiny masses. We can not even generate these tiny neutrino masses within the
mathematical framework of SM. Neutrinos with non zero mass is the only
direct experiment evidence to believe that the SM is not complete. There
are indirect evidence as well and among them is Dark matter (DM), which
makes up most of the universe but can only be detect through gravitational
effects. There is no explanation of the nature of DM in the SM. After the
discovery of Higgs boson in 2012, the collider experiments have now discov-
ered every particle in the SM. Properties of these particles were gradually
revealed, among these properties masses of the Higgs boson and top quark
are important to determine the behavior of Higgs quartic coupling. The
measurement of the Higgs boson mass has recently found to be 125.3± 0.21
GeV [3] , and a combined analysis of collider experiments reported the mass
of top quark as 173.34± 0.76 GeV [4]. A running of Higgs quartic coupling
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CHAPTER 1. INTRODUCTION

becomes negative around 1010 GeV using the central values of Higgs and top
quark masses. This behavior implies that our vacuum is not stable at that
moment [5].

To address the above mentioned problems, many extensions of SM were
proposed. Among these extensions Supersymmetry (SUSY) is the most pop-
ular one, which treats the fermionic and bosonic degree of freedom on equal
footing. SUSY offers solution to many problems of SM for example, the
hierarchy problem. The quadratic divergences coming from the fermionic
loop exactly cancels the loop contribution coming from the bosonic part.
The unification of the three gauge couplings is another feature of SUSY and
the lightest supersymmetric particle (LSP) can be a good candidate of dark
matter.

Another extension of SM is the grand unified theory (GUT) which extends
the gauge sector of SM. GUT unifies the three gauge couplings of SM at a
scale around 1016 GeV, this scale is also known as GUT scale. Above the
GUT scale the three gauge groups of SM are unified in a single gauge group,
and with just one gauge coupling. Popular choices of GUT groups are SU(5)
and SO(10), with both supersymmetric and non supersymmetric versions.
However the simplest choice of non supersymmetric SU(5) has already been
ruled out by proton decay constraint.

There are various other extensions of SM present for example Extra di-
mensions, Effective field theory, String theory and so on. All these physics
beyond the SM theories aims to fill the deficiencies of SM, but there are still
no signs of any of these theories in the experiments.

In this dissertation we will consider the simplest extension of SM in which
we extend only the matter part of it by adding vector like particles which are
SM like. These particles are called standard vector like because they carry
the same quantum numbers as the standard model particle carry. Similar
extension have been already proposed before which also includes the non
standard vector like particles. We can add as many number of vector like
particles as we want and also the scalars because they do not contribute to the
gauge anomaly. The only restriction we have on adding new particles is that
the gauge couplings should remain perturbative up to the Planck scale (∼
1019 GeV). We will derive the perturbative conditions on the gauge couplings
in chapter 4. The main motivation of our work is that we can achieve the
unification of the three SM gauge coupling. Another motivation is that we
can simultaneously achieve the vacuum stability with this simple extension.
Here we will consider two scenarios for unification. In the first scenario we
will consider only the vector-like fermions with the SM particles and in the
second scenario we will also consider Minimal Dark Matter (MDM) candidate
[6] with these vector like fermions to unify the three gauge couplings. The
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CHAPTER 1. INTRODUCTION

scale we will consider for the gauge coupling unification is between 5× 1015

GeV to the reduced Planck scale 2.4 × 1018 GeV. The reason to choose the
upper limit is obvious that at that scale gravity became important and we
can not simply ignore it, while the lower scale is chosen to avoid the proton
decay arising from the dimension six effective operator1 [7].

To describe the tiny neutrino masses we have included type-I seesaw in
our analysis. Type-I seesaw includes a right handed sterile neutrino (per
generation of fermions) in the Standard model [8]. As the right handed
neutrino do not carry any gauge charge so it will not effect the running of
gauge couplings, but it will effect the evolution of top Yukawa and Higgs
quartic coupling which in turns effect the vacuum stability bound. The
seesaw mechanism and its impact on the prediction of vacuum stability will
be discussed in detail latter.

1Proton has a measured life time of ∼ 1033 years [9]. It is automatically stable in
SM because of the accidental symmetry known as baryon number conservation, but this
symmetry explicitly breaks when we includes higher order terms and use the effective
description of SM theories, allowing the proton to decay through operators which are
suppressed by 1/ΛGUT . To be consistent with experimental value of proton life time
ΛGUT should be greater that 5× 1015GeV [10].
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Chapter 2

Standard Model A Brief
Introduction

2.1 Motivation of Standard Model

The objective of Particle Physics is to understand the basic structure and
laws of nature all the way from the largest dimensions in the universe that
is to say the formation of Galaxies, Stars etc, to all the way down to the
smallest dimensions of the microworld. Historically we knew about what are
the different elements in nature, we knew about Hydrogen, Helium, Oxygen,
Gold, Lead and so on, which are all made of different atoms. But a great
simplification was made when we realize that all atoms are just made of three
particles the Proton, Neutron and the Electron. In principle we can build
a very simple universe from just three particles. But it became much more
complicated in the beginning of 20th century when we found many many
new particles from cosmic rays. There was not really a system established
to organize the zoo of particles, so we started calling these new particles
things like Pie(π), Sigma(σ), Delta(∆) so on, and soon we found ourselves
running out of symbols to name these particles, so we started organizing
these particles according to there properties, like spin, electric charge, mass
of the particle and life time of the particles. To simplify the picture new
fundamental particles called Quarks were predicted and the whole zoo of
particles could be described by combinations of these quarks, and this was
the birth of Standard Model [11][20][21].
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CHAPTER 2. STANDARD MODEL A BRIEF INTRODUCTION

2.2 Standard Model

The Standard Model of Particle Physics was developed in early 1970’s and
has been tested many times through experiments[19]. The Standard Model
(SM) is based on the idea that everything in the universe is made up of few
basic building blocks, known as the Fundamental Particles, and they inter-
act with each others through three Fundamental Forces (Gravity is treated
Classically in SM). The SM at the time of its development has tested many
times through experiments and has successfully explained almost all the ex-
perimental results. Hence it has been established as a well tested theory.
In the beginning of the development of SM, there were only three quarks
up(u), down(d) and strange(s). The Charm(c), bottom(b) and top(t) were
predicted and were discovered afterwards which gave us great confidence on
the model. In addition to these quarks there is another set of fundamental
building blocks of matter so called Leptons, these are electron(e), muon(µ),
tau(τ) and their neutrino partners electron neutrino(νe), muon neutrino(νµ)
and tau neutrino(ντ ).

The three Fundamental forces include in the SM are the Weak force,
explains the energy production of sun and is responsible for the radioactive
Beta decay. The mediators of weak force are W’s and Z bosons. The Electro
Magnetic(EM) Force acts on the charge particles and is responsible for the
propagation of light or for the fact that the magnet can pick up paper clips,
the corresponding force carrier is Photon. Finally the Strong force acts on
Quarks mediated by Gluon’s, the gluon literally glues together the quarks in
the neutrons and protons and holds the nucleus together.

Last but not the least is the Higgs boson which is responsible for giving
mass to the elementary particles, The idea was put forward about 40 years
ago simultaneously in three now famous papers; written by Robert Brout and
Francois Englert, Peter Higgs and Gerald Guralnik, Richard Hagen and Tom
Kibble was that all fundamental particles get there mass by interacting with
Higgs field, which spread across everywhere and the fluctuation of this field
give rise to Higgs particle, which was later discovered in 2012 and Peter Higgs
along with another scientist Francois Englert were awarded Nobel Prize in
Physics for the prediction of this particle.

2.3 Mathematical Description of SM

The Standard Model is based on the gauge group SU(3)C×SU(2)L×U(1)Y ,
where C,L and Y denotes color, Left and hypercharge respectively. The
Matter fields in the SM are given in the table below
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CHAPTER 2. STANDARD MODEL A BRIEF INTRODUCTION

Name Spin Generations (U(1)Y × SU(2)L × SU(3)C)
φ 0 1 (1

2
,2,1)

QL
1
2

3 (1
6
,2,3)

LL
1
2

3 (−1
2
,2,1)

dR
1
2

3 (1
3
,1,3)

uR
1
2

3 (−2
3
,1,3)

eR
1
2

3 (1,1,1)

Table 2.1: Standard Model matter contents.

Where in the Last column the transformations of fields under SM gauge
group are shown, the hypercharge of fields are assigned from the Gell-Mann–Nishijima
relation Q = I3 + Y , with I3 being the isospin. In addition to these Matter
fields there are the gauge fields corresponding to every gauge group shown
in the table below

Name Gauge Group Coupling Name
B U(1)Y g1 Hypercharge
W SU(2)L gw Isospin
G SU(3)C gs Color

Table 2.2: Gauge fields in Standard model.

In the Standard Model Quantum Chromodynamics (QCD) is the theory
describes the strong interactions. It is a non abelian gauge theory which
is based on the gauge group SU(3)C , Quarks belongs to the fundamental
representation and transforms as triplet under this group, gluons which are
the mediator of strong interactions belong to the adjoint representation of
SU(3)C . All other fundamental particles transforms as singlet under this
group and do not experience any strong interaction.

The Lagrangian of QCD can be written as [22]

LS = −1

4
Ga
µνG

µν
a + ψ̄i(ι̇γ

µDµ −m)ψi , (2.1)

where Ga
µν is the field strength tensor and is given by

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGbµGcν . (2.2)

Dµ is the covariant derivative and is defined as

Dµ = ∂µδ − ι̇gsTaGa
µ , (2.3)
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CHAPTER 2. STANDARD MODEL A BRIEF INTRODUCTION

where gs is the strong coupling constant, the indice a runs over color and has
values from 1 to 8. Ta are the generator of the gauge group which satisfy
the relation [Ta,Tb] = ι̇fabcTc. Where fabc are the structure constant of the
group. In case of SU(3) these generators Ta are related to 3 × 3 Gell-Mann
matrices [11] by

Ta =
λa
2

(2.4)

the corresponding Lagrangian is invariant under SU(3)C infinitesimal local
gauge transformations.

The Electroweak part of SM describes the weak and electromagnetic in-
teractions. The corresponding Lagrangian is given by

LEW = −1

4
W i
µνW

µν
i −

1

4
BµνB

µν − ι̇ψ̄jγµDµψj + (Dµφ)(Dµφ)†

+ YLL̄LφeR + YuQ̄Lφ̄UR + YdQ̄LφdR − µ2φ†φ− λ(φ†φ)2 , (2.5)

where Wµν and Bµν are the field strengths of the non-abelian gauge fields
of SU(2)L and the only abelian gauge field of U(1)Y respectively and are
defined as

W i
µν = ∂µW

i
ν − ∂νW i

µ + gwε
ijkWjµWkν , (2.6)

Bµν = ∂µBν − ∂νBµ . (2.7)

The covariant derivative here is defined as

Dµ = ∂µ − ι̇gwTiBi
µ − ι̇g1

Y

2
Wµ . (2.8)

The generators of SU(2) obeys the relation [Ti,Tj] = ι̇εijkTk and related to
Pauli spin matrices [11] by the relation

Ti =
τi
2
. (2.9)

The above Lagrangian is invariant under SU(2)L and U(1)Y infinitesimal
local gauge transformations. The massless gauge fields belong to the adjoint
representation of SU(2)L and transforms as triplet with the charge fields
defined by

W±
µ =

(W1 ∓ ι̇W2)µ√
2

, (2.10)

and neutral component of Wi mixes with the U(1) gauge field to form physical
states Zµ and Aµ

Zµ = W 3
µ cos θw +Bµ sin θw , (2.11)
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CHAPTER 2. STANDARD MODEL A BRIEF INTRODUCTION

Aµ = Bµ cos θw −W 3
µ sin θw , (2.12)

here θw is the weak mixing angle or Weinberg angle related to g1 and gw by

tan θw =
g1

gw
. (2.13)

Ll and Ql in eqn.2.5 are the left handed leptons and quark doublet defined
as

LL =
1

2
(1− γ5)

(
ν
e

)
, QL =

1

2
(1− γ5)

(
u
d

)
.

eR , uR and dR are the lepton,up-type quark and down-type quark singlets
respectively defined as

eR =
1

2
(1 + γ5)e , uR =

1

2
(1 + γ5)u , dR =

1

2
(1 + γ5)d .

Where LL , QL , eR , uR and dR also have an implicit 3-component generation
indices for three generations of quarks and leptons in the SM. Yl, Yu and Yd are
the Yukawa couplings of lepton, up-type and down-type quarks respectively.

The masses of fermions and non-abelian gauge fields can be generated
by the Higgs mechanism [25], in which the SU(2)L × U(1)Y symmetry is
spontaneously broken. The Higgs field which is a complex scalar iso-spin
doublet (φ†, φ0) gets a non zero vacuum expectation value (vev), in fact only
neutral component of φ is allowed to acquire vev, and the reason behind this
is, if the charged component is allowed to acquire vev, the Electromagnetic
(EM) symmetry will break. Which is not realized in nature.

〈φ〉 =

(
0
v√
2

)
(2.14)

with v2 = −µ2/Yi, the mass terms of physical gauge bosons are then given
by

Mw =
1

2
gwv , Mz =

v

2

√
g2
w + g2

1 , MA = 0 .

The photon still remains massless. Higgs field also generates masses of
fermions through Yukawa couplings mf = Yfv/

√
2. Now if we consider all

the three families we need to Diagonalize the mass matrix which give rise
to Cabibbo-Maskawa-Kobayashi (CKM) matrix [26]. Note that we can not
generate the masses of neutrino through spontaneous symmetry breaking as
we have done it for other fermions because of the absence of right handed
neutrino in the SM.
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CHAPTER 2. STANDARD MODEL A BRIEF INTRODUCTION

2.4 Salient features of SM

The SM is highly successful theory and its beauty as a theory can be listed
in the following points

• Renormalizability

A model is said to be renormalizable if it entails all infinities may be ab-
sorbed by a finite number of counter-terms [14], expressing all quantities in
terms of the renormalized physical parameters. SM certainly has this feature
embedded in it, because all the terms in the SM Lagrangian are of Mass
dimension four or less, which is essential for the theory to be renormalizable.

• Unitarity

Unitarity says that the probabilities of an event can be at maximum ap-
proach one but not greater then that and this is an obvious and essential
requirement for a Quantum field theory(QFT), if the theory is not unitary
then it can not describe the Nature completely, and it is necessarily missing
some information. SM as a QFT and is consistent with unitarity constraint.

• Unification of EM and Weak force

Before the SM there was no gauge theory for weak force and to describe the
beta decay which is caused by the weak force, Fermi had given the theory
which describe beta decay as a four fermion interaction at a single point
[27]. However this theory was immediately in trouble because it was non-
renormalizable. The only way to fix this problem is to regulate the theory at
high energies and the only consistent way to regulate the contact interaction
is to explain it as an exchange of another particle. The right particle that can
be exchanged to match basic experimental test is a vector boson, proposed
by Glashow, Weinberg and Salam. The discovery of the W and Z particles
in 1983 brought experimental verification of particles whose prediction had
already contributed to the Nobel Prize in 1979, The Photon, particle involved
in the Electromagnetic(EM) interaction, along with W and Z provide the
necessary pieces to unify the Weak and EM interactions.

• Prediction of relationship between W and Z boson Masses

The Weinberg angle(θW ) or some time known as weak mixing angle is a
parameter of Electroweak interaction. It is the angle by which the unphysical
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W 0 and B0 states are related to the physical vector bosons Z0 and the
photon(γ) [28]

mZ =
mW

cos θw
(2.15)

it also gives the relation between W and Z boson masses

mZ =
mW

cos θw
(2.16)

and can also be expressed in terms of coupling constants of SU(2) and U(1)

sin θw =
g1√

g2
w + g2

1

(2.17)

the value of Weinberg angle varies with the momentum transfer, at which it
is measured. This running of θw with momentum was the key prediction of
Electroweak theory and is in great agreement with the experiments. Along
with this the weak charged and neutral current structure of SM agrees with
the experiments as well.

• Anomaly Cancellation

Anomaly cancellation within each generation is another key feature of SM
[29][30]. Anomaly is the breaking down of symmetry when we include Quan-
tum effects in the theory. The anomaly cancellation is required in any gauge
theory for its quantum consistency . And in order to identify the anomaly
one need to only worry about the calculation of triangular diagram of the
form AVV (A=Axial Vector, V=Vector currents)

Figure 2.1: Triangular Anomaly.

For a given representation of fermion D of gauge group G the triangular
anomaly fig.2.1 can then be written as [31]

A(D)dabc ≡ Tr[T a{T b, T c}] (2.18)

12



CHAPTER 2. STANDARD MODEL A BRIEF INTRODUCTION

Where dabc denotes the anomaly coefficient associated with the fundamental
representation and T a denotes the generators of G. The anomaly coefficient
for real and pseudo real representations is zero A(D) = 0 [14], while the
anomaly coefficient for common representations of SU(N) is given in [32]

For the case of SM which is based on the gauge group SU(3)× SU(2)×
U(1) we encounter cubic anomalies and also mixed anomalies in case when
the three generators in the triangle comes from different factors. But we only
need to check one generation for anomaly as the generations simply repeats
itself. Now the possible anomalies are given by

• SU(3)× SU(3)× SU(3) : From table.2.3 we can see that there are as
many Quarks belongs to 3 as 3̄ so the theory is vector-like with respect
to SU(3) (A(3) = −A(3)), so the SU(3)3 anomaly cancels.

• SU(2)×SU(2)×SU(2) : All the representations of SU(2) are only real
or pseudo-real, so are automatically anomaly free. We can also check
this explicitly

dabc = tr(τa{τ b, τ c})
where τ ’s are the Pauli spin matrices, but

{τ b, τ c} = 2δbcI

and so
dabc = 2tr(τaδbc) = 0

as τ ’s are traceless.

• SU(2) × SU(2) × SU(3) : These anomalies vanishes because of the
traceless property of generators

tr(λa{τ b, τ c}) = tr(λa)tr{τ b, τ c} = 0

similarly SU(3)× SU(3)× SU(2) also vanishes.

• SU(2)×U(1)×U(1) & SU(3)×U(1)×U(1) : Also Vanishes because
of the same argument as above.

• SU(2)× SU(2)× U(1) : Only left handed particles contribute to this
anomaly because only they carry both SU(2)L and U(1) charge (right
handed particles are singlet under SU(2)L)

tr(Y {τ b, τ c}) = 2δbctr(Y )

tr(Y ) = 2× 3×
(

1

6

)
+ 2× 1×

(
− 1

2

)
= 0

13
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• SU(3) × SU(3) × U(1) : Here all particles carrying SU(3) and U(1)
charge contributes to this anomaly

tr(Y {λb, λc}) = 2δbctr(Y )

tr(Y ) = 3× 2×
(

1

6

)
+ 3× 1×

(
1

3

)
+ 3× 1×

(
− 2

3

)
= 0

• U(1) × U(1) × U(1) : As the Generators of U(1) are just numbers so
for this anomaly we need to just sum cube of hypercharge of all the
particles

6

(
1

6

)3

+ 2

(
− 1

2

)3

+ 3

(
1

3

)3

+ 3

(
− 2

3

)3

+ 1(1)3 = 0

So we see that all the anomalies are accidentally canceled in the SM and
we can conclude from here that SM is anomaly free. Note here that the
assignment of hypercharge is essential for the cancellation of anomaly
so instead of the Gell-Mann Nishijima relation this is another way to
check for the hypercharge assignment and we can find that instead
of this assignment there is yet another possibility for the hypercharge
assignment if we require the SM to be anomaly free [33].

• Higgs

The Discovery of Higgs boson is itself a great triumph of SM, it was the last
missing piece of SM and after its discovery on 4rth of July 2012 at ATLAS
and CMS experiments at CERN’s Large Hadron Collider (LHC) completes
the SM [3]. The Higgs boson as proposed within the SM, is the simplest
manifestation of the Brout-Englert-Higgs Mechanism [25]. Nobel prize in
Physics was awarded to Peter Higgs and Francois Englert jointly for the
theoretical discovery of the mechanism that describe the very origin of mass
of subatomic particles.

2.5 Unanswered Questions in SM

Despite the fact that Standard Model answers many of the question regarding
the structure and stability of matter and its interaction, it is still incomplete.
There are still many question which SM do not answer, which can be listed
as follows
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Hierarchy Problem

Why is there a desert between the Electro-Weak scale (∼ 100 GeV) and Plank
scale (∼ 1019 GeV), or in other words why is gravity so weak as compared
to other three forces ? What prevent quantities (like Higgs boson mass) at
the Electro-Weak Scale, from getting loop corrections (quantum correction)
on the order of Plank scale [34].

Neutrino Mass

Neutrinos are massless in SM because the SM incorporate only left-handed
neutrino (and right-handed anti-neutrino) and so they can not have mass
from the Higgs mechanism [25][34]. But there are strong evidence from ex-
periments, that neutrino do have mass. So giving mass to neutrino in SM is
also a problem.

Matter-Antimatter Asymmetry

Why do we only observe matter in the universe and almost no antimatter
[35]? What is te reason for this asymmetry between matter and antimatter.

Three Generations

Why are there only three generations of leptons and quarks in SM ? Is there
any possibility of 4rth generation in the SM, which is yet to be discovered ?

Fundamental particles

Are Leptons and Quarks fundamental or they themselves are made up of
even more fundamental particles ?

So many Parameters

Why are there some twenty a-priori parameters (couplings and masses of par-
ticles)in the SM for which their values are only determined from experiments
without any theoretical understanding of these values ?

Dark Matter

What is Dark matter made up of ? that we can not see and that has visible
gravitational effects in the cosmos.

15
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Dark Energy

What is the cause of accelerated expansion of the universe we observed ? if
gravity is the only force acting on the large scale in the cosmos.

Gravity

The SM describe only three of the four fundamental forces at the quantum
level, gravity is only treated classically, which is also a question mark on the
completion of SM [1].
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Chapter 3

The Renormalization Group
Equations

In this chapter we will introduce some of the terminologies used in the work
presented in this dissertation. We will first of all consider a simple theory
and calculate its beta function. Then at the end we will derive the beta
function of Standard Model gauge couplings. The detailed calculation will
not be included here because this is just to give a qualitative understanding
of beta function. Detailed calculation can be seen from any text book of
quantum field theory for example [13][14].

We will start by considering a theory of a pseudo-scalar field φ and a
Dirac field ψ. This theory was proposed by Yukawa in 1934 to explain the
nature of nuclear force, he proposed that the massive bosons (φ in our case)
mediate the interaction between nucleons (ψ in our case) [11]. Now to write
the Lagrangian of this theory we need to consider all possible terms ( no
gauge interaction will be considered here) whose coefficient have zero or pos-
itive mass dimension (necessary for the theory to be renormalizable [12])
and which respect the symmetries of the original Lagrangian, for example
Lorentz symmetry, Parity, time reversal and so on. Therefore the only al-
lowed Yukawa interaction term in the Lagrangian is

LY = ι̇yφψγ5ψ ,

where y is the Yukawa coupling constant and γ5 = ι̇γ0γ1γ2γ3 are the well
know Dirac matrices. Note here that as φ is a pseudo-scalar (P−1φ(x, t)P =
−φ(−x, t)) this term conserve parity as it should be because we are talking
about strong force which conserves parity. Now the complete Lagrangian of
this theory can be written as the sum of free Lagrangian and the interaction
Lagrangian

17
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L = L0 + LI , (3.1)

where

L0 = ι̇ψ��∂ψ −mψψ −
1

2
∂µφ∂µφ−

1

2
M2φ2 , (3.2)

and

LI = ι̇Zyyφψγ5ψ −
1

24
Zλλφ

4 + Lct (3.3)

where terms with only φ and φ3 are forbidden due to parity and λ is the
scalar quartic coupling. The field introduced in the above Lagrangian are the
renormalized field, Lct is the counter term Lagrangian which is introduced
to remove the infinites coming from quantum corrections.

Lct = ι̇(Zψ − 1)ψ��∂ψ − (Zm − 1)mψψ − 1

2
(Zφ − 1)∂µφ∂µφ

− 1

2
(ZM − 1)M2φ2

(3.4)

3.0.1 Loop correction to Scalar propagator

Lets start our calculation from scalar propagator, the full scalar propagator
Π(k2) up to one-loop level and its counter term correction is given below

=

k + l

l

k k

+

l

k k
+ .

The amplitude of the diagram with fermion loop using Feynman rules [13] is
given by

ι̇Πψ−loop(k
2) = (−1)(−y2)

(
1

ι̇

)2 ∫
d4l

(2π)4
Tr

[
S(��l +��k)γ5S(��l)γ5

]
, (3.5)

where

S(�p) =
−�p+m

p2 +m2 + ι̇ε
.
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After solving the above amplitude using dimensional regularization [13] in d
= 4− ε space-time dimensions, we finally get

Πψ−loop(k
2) = − y

2

4π

[
1

ε
(k2 + 2m2) +

1

6
k2 +m2 + ...

]
. (3.6)

Similarly the other two diagrams gives

Πφ−loop(k
2) =

λ

(4π)2

[
1

ε
+

1

2
− 1

2

(
M2/µ2

)]
M2 , (3.7)

and
Πct(k

2) = −(Zφ − 1)k2 − (ZM − 1)M2 . (3.8)

Note that the amplitude diverges in the limit ε→ 0, we will set Zφ and ZM
so that they cancel the divergences. we get

Zφ = 1− y2

4π2

(
1

ε
+ finite

)
, (3.9)

and

ZM = 1 +

(
λ

16π2
− y2

2π2

m2

M2

)(
1

ε
+ finite

)
. (3.10)

3.0.2 Loop correction to Fermionic propagator

Now turning our attention to fermionic propagator,the only diagram from
which ψ receive the one-loop correction with the counter-term is shown in
fig. below

Figure 3.1: One loop correction to scalar propagator and the counter term
correction.

we have

ι̇Σ1−loop(�p) = (−y)2

(
1

ι̇

)2 ∫
d4l

(2π)4

[
γ5S(�p+ ��l)γ5

]
∆(l2) , (3.11)
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where

S(�p) =
−�p+m

p2 +m2 + ι̇ε
and ∆(l2) =

1

l2 +M2 − ι̇ε
.

By solving eqn.3.11 we finally get

Σ1−loop(�p) = − y2

16π2

[
1

ε
(�p+ 2m) + ...

]
. (3.12)

And the counter-term gives

Σct(�p) = −(Zψ − 1)�p− (Zm − 1)m . (3.13)

Again the finiteness of Σ(�p) requires

Zψ = 1− y2

16π2

(
1

ε
+ finite

)
(3.14)

Zm = 1− y2

8π2

(
1

ε
+ finite

)
. (3.15)

3.0.3 Loop correction to Yukawa vertex

Next we turn to the one-loop correction to the Yukawa vertex. The vertex
function ι̇Vy is defined as the sum of one-particle irreducible diagrams with
one incoming and one outgoing fermion having momenta p and ′p, and one
incoming scalar having momentum k = ′p − p. where the original vertex
−Zyyγ5 is the first term in the sum and the diagram of fig.3.2 is the second.
The total sum can be written as

ι̇Vy(p
′, p) = −Zyyγ5 + ι̇Vy−1loop(p

′, p) +O(y5), (3.16)

where the one loop diagram is shown below

Figure 3.2: One-loop correction to the Yukawa vertex.
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And its amplitude is given by

ι̇Vy−1loop(p
′, p) = (−y3)

(
1

ι̇

)3 ∫
d4l

(2π)4

[
γ5S(�p

′+ ��l)γ5S(�p+ ��l)γ5

]
∆(l2), (3.17)

where

S(�p) =
−�p+m

p2 +m2 + ι̇ε
and ∆(l2) =

1

l2 +M2 − ι̇ε
.

We proceed in the usual way and get

ι̇Vy−1loop(p
′, p) =

y3

8π

[
1

ε
+ ...

]
. (3.18)

From eq.3.16 we can see that the finiteness of ι̇Vy requires

ZY = 1 +
y2

8π2

(
1

ε
+ finite

)
. (3.19)

3.0.4 4-Point Vertex

Finally we will turn to the correction of φ4 vertex ι̇V4(k1, k2, k3, k4), the tree
level contribution is −ι̇Zλλ. Now the Feynman diagram of tree level and the
one loop correction is shown in the figure below.

Figure 3.3: Corrections to the 4-point vertex up to one loop, there are other
diagrams which can be obtained by the permutation of external momenta in
all possible inequivalent ways.

The diagram with closed fermionic loop gives

V4,ψ loop = −3y4

π2

(
1

ε
+ finite

)
, (3.20)

and the close scalar loop diagram gives

V4,φ loop =
3λ2

16π2

(
1

ε
+ finite

)
. (3.21)
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Now the complete 4-Point function can be written as

V4 = −Zλλ+ V4,ψ loop + V4,φ loop + ... . (3.22)

From here we can see that the finiteness of V4 requires

Zλ = 1 +

(
3λ2

16π2
− 3y4

λπ2

)(
1

ε
+ finite

)
, (3.23)

and the higher order corrections.

3.0.5 Calculation of Beta Function

Now we have everything in hand to calculate the beta function of the Yukawa
theory we have discussed above. The Lagrangian written at the start was
in terms of renormalized parameters and it can also be written in terms of
bare parameters(y0, λ0, φ0, and so on), and we can find a relation between
the bare couplings and renormalized couplings [14]

y0 = Z
− 1

2
φ Z−1

ψ Zyµ̃
ε
2 y , (3.24)

and
λ0 = Z−2

φ Zλµ̃
ε λ . (3.25)

We define

ln(Z
− 1

2
φ Z−1

ψ Zy) =
∞∑
n=1

Gn(y, λ)

εn
, (3.26)

and

ln(Z−2
φ Zλ) =

∞∑
n=1

Ln(y, λ)

εn
. (3.27)

Now taking the logarithm of eqn.3.24 and eqn.3.25 we get

ln y0 =
∞∑
n=1

Gn(y, λ)

εn
+ ln y +

1

2
ε ln µ̃ . (3.28)

lnλ0 =
∞∑
n=1

Ln(y, λ)

εn
+ lnλ+ ε ln µ̃ . (3.29)

As we are only interested in one loop corrections here so we need to expand
Gn(y, λ) and Ln(y, λ) up to first order. Now using the results from the last
sections we finally obtain
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G1(y, λ) =
5y2

16π2
+ ... , (3.30)

L1(y, λ) =
3λ

16π2
+

y2

2π2
− 3g4

π2λ
+ ... . (3.31)

Now here we use the fact that the bare couplings should be independent
of the fake parameter µ,then by differentiating eqn.3.28 and eqn.3.29 with
respect to lnµ we get

0 =
∞∑
n=1

(
y
∂Gn

∂y

dy

d lnµ
+ y

∂Gn

∂λ

dλ

d lnµ

)
1

εn
+

dy

d lnµ
+

1

2
εy , (3.32)

0 =
∞∑
n=1

(
λ
∂Ln
∂y

dy

d lnµ
+ λ

∂Ln
∂λ

dλ

d lnµ

)
1

εn
+

dλ

d lnµ
+

1

2
ελ . (3.33)

In any renormalizable theory, dy
d lnµ

and dλ
d lnµ

must remain finite in the limit
ε→ 0.Therefore we can write

dy

d lnµ
= −1

2
εy + βy(y, λ) , (3.34)

dλ

d lnµ
= −ελ+ βλ(y, λ) . (3.35)

The above two equations are known as the renormalization group equations
for Yukawa and lambda respectively. Now substituting them in eqns.3.32,3.33
and matching the power of ε we find

βg(y, λ) = y

(
1

2
y
∂

∂y
+ λ

∂

∂λ

)
G1 , (3.36)

βλ(y, λ) = λ

(
1

2
y
∂

∂y
+ λ

∂

∂λ

)
L1 . (3.37)

Using the values of eqn.3.30 and eqn.3.31 in the above equations we get
the final expressions of beta function

βy(y, λ) =
5y3

16π2
+ ..., (3.38)

and

23



CHAPTER 3. THE RENORMALIZATION GROUP EQUATIONS

βλ(y, λ) =
1

16π2

(
3λ2 + 8λy2 − 48y4

)
+ ... . (3.39)

This is the general way to derive the beta function of any theory. In our
previous discussions we have not considered the gauge couplings, which arises
when we require local gauge invariance of the theory under certain gauge
group. Now in the next example we will also consider the gauge couplings in
the theory and derive their beta functions.

3.1 Beta function of SM gauge couplings

In this section we will use the general result of [15][16], to calculate the beta
function of SM gauge couplings. where the procedure to derive the result is
the same as discussed in the above the sections.

The general result for the two loop beta function of gauge couplings is
given by

βi =
bi

(4π2)
g3
i +

3∑
j=1

bij
(4π4)

g3
i g

2
j (3.40)

Now for the case of SM (which is the product group of U(1), SU(2)
and SU(3), see Chapter 2) i, j take values 1,2,3 which refer to U(1), SU(2)
and SU(3) respectively. In eqn.3.40, gi are the gauge couplings constant
associated to each group. bi and bij are defined as follows

bi =
2

3
T (Fi)d(Fī) +

1

3
T (Si)d(Sī)−

11

3
C2(Gi) , (3.41)

bij =

(
10

3
C2(Gi) + 2C2(Fi)

)
T (Fi)d(Fī) +

(
2

3
C2(Gi) + 4C2(Si)

)
T (Si)d(Sī)

−
(

34

3

)
(C2(Gi))

2 .

(3.42)

Where the meanings of the notation used are as follows. The fermion
multiplets are assumed to transform according to the irreducible representa-
tion Fi with respect to the group Gi (here Gi are U(1), SU(2) and SU(3) for
i = 1, 2, 3 respectively). Similarly for bosons F is replaced by S. ī means
other than i (for example 1̄ = 2 × 3 ). For the irreducible representation R
we have the relation [17]

RaRa = C2(R)I , (3.43)
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and
Tr[RaRb] = T (R)δab . (3.44)

Ra here is the matrix representation of the generators of the group. C2(R)
and T (R) are related by the identity

C2(R)d(R) = T (R)d(G) . (3.45)

Where d(G) is the number of generators of the group and d(R) is defined as
the dimension of the representation. C2(R) is the quadratic Casimir operator
(which commutes with every operator of the group) of the representation
and C2(G) is defined as the quadratic Casimir for the adjoint representation.
Now for the case of representation of U(1) we have C2(R) = T (R) = y2,
where T (R) is known as dynkin index and y is the hypercharge (normalized
appropriately) [18]. The Scalar representation in the SM is complex, and
the fermion representation is complex and chiral. Thus for the fundamental
representation of SU(N) (for scalar or fermion) we have T = 1

2
and d = N

and T = 0 for singlet representation [23][24]. Now to calculate bi we need
the representations of SM particles under the SM gauge group and are given
in table 2.3. Now from eqn.3.41

b1 =
2

3
nG

[
T (q1)d(q3×2) + T (uc1)d(uc3×2) + T (dc1)d(dc3×2) + T (l1)d(l3×2)

+ T (ec1)d(ec3×2)

]
+
nH
3
T (H1)d(H3×2)− 11

3
C2(G1) ,

now by using the canonical normalization of hypercharge (y =
√

3
5
Y ) where

Y can be read from table 2.3) we get

b1 =
2

3
nG

(
3

5

)[(
1

6

)2

(3× 2) +

(
−2

3

)2

(3× 1) +

(
1

3

)2

(3× 1) +

(
1

2

)2

(1× 2)

+ (−1)2(1× 1)

]
+
nH
3

(
3

5

)(
−1

2

)2

(1× 2)− 11

3
(0) ,

where nG is the no of generations of fermions and nH is the no of generation
for scalars.

b1 =
4

3
nG +

1

10
nH . (3.46)

Similarly for b2 corresponding to SU(2) we get
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b2 =
2

3
nG

[
T (q2)d(q3×1) + T (uc2)d(uc3×1) + T (dc2)d(dc3×1) + T (l2)d(l3×1)

+ T (ec2)d(ec3×1)

]
+
nH
3
T (H2)d(H3×1)− 11

3
C2(G2) ,

as u, d and e transform as singlet under SU(2) so T = 0 for all of them and
we get

b2 =
4

3
nG +

1

6
nH −

22

3
. (3.47)

Finally for b3 corresponding to SU(3) we have

b3 =
2

3
nG

[
T (q3)d(q1×2) + T (uc3)d(uc1×2) + T (dc3)d(dc1×2) + T (l3)d(l1×2)

+ T (ec3)d(ec1×2)

]
+
nH
3
T (H3)d(H1×2)− 11

3
C2(G3) ,

l and e are singlet under SU(3) so T = 0 for them and we get

b3 =
4

3
nG − 11 . (3.48)

Now we have three generations of fermions and one generation of scalar(Higgs)
in case of SM, so using nG = 3 and nH = 1 in eqns. 3.46, 3.47, 3.48 we get

bi =

(
41

10
,−19

6
,−7

)
. (3.49)

On the same footing we can calculate bij and is given by

Bij =

199
50

27
10

44
5

9
10

35
6

12
11
10

9
2
−26

 . (3.50)

Eqns.3.49 and 3.50 are known as one and two loop beta coefficients of
SM gauge couplings respectively. We will use these results in Chapter4 for
the running of SM gauge couplings.
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Chapter 4

Extended Standard Model

After briefly discussing the SM in the 2nd chapter and defining the termi-
nologies is the last chapter, we will discuss in detail some of the problems of
SM which are relevant to our work at the start of this chapter and after that
we will discuss a particular solution to these problems.

4.1 Status Of Standard Model

4.1.1 Gauge Coupling Evolution

As mentioned in the previous chapter that there are three gauge groups in
SM with there corresponding gauge couplings, from now on we will call these
couplings g1 (for U(1)) , g2 (for SU(2)) and g3 (for SU(3)). At scale Mz
(Mass of Z boson) these couplings are very different to each other in terms of
strength, and are independent to each other. Due to higher order correction
or loop corrections we see that each of these couplings is actually function
of some energy scale (µ). So the three couplings evolves with energy and
the evolution of these couplings is described by the Renormalization Group
Equations (RGE) [15], which at the two loop are given below.

dgi
dlnµ

=
bi

16π2
g3
i +

g3
i

(16π2)2

( 3∑
j=1

Bijg
2
j − Ct

iy
2
t

)
, (4.1)

where i runs from 1 to 3 for the three couplings, bi and Bij are the one and
two loop beta coefficients of gauge couplings we have derived in Chapter 3.

bi =

(
41

10
,−19

6
,−7

)
, Bij =

199
50

27
10

44
5

9
10

35
6

12
11
10

9
2
−26

 (4.2)
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Ct
i are the coefficients for the top Yukawa couplings (we are not consider-

ing the contribution of other quarks because these contributions are negligibly
small) and is given by

Ct
i =

(
17

10
,
3

2
, 2

)
. (4.3)

The gauge couplings at Mz has been determined very precisely by around
1990, and people use these values as initial conditions for the running of these
couplings, but now the values of these couplings are also known at Mt (Top
mass Scale) with high precision, and we will use these values as our initial
conditions [36].

g1(Mt) =

√
5

3

(
0.35761 + 0.00011

(
Mt

GeV
− 173.10

))
, (4.4)

g2(Mt) = 0.64822 + 0.00004

(
Mt

GeV
− 173.10

)
, (4.5)

g3(Mt) = 1.1666− 0.00046

(
Mt

GeV
− 173.10

))
, (4.6)

Now if we Plot these couplings from Mt to Plank scale, the coupling would
look like the one shown below.

Figure 4.1: Gauge coupling evolution in SM.

As can be seen in Fig above, the three couplings seems to come close to
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each other when extrapolated using the SM expression, but are not unified
at a single point on the energy scale.

4.1.2 Vacuum Stability

The potential for Higgs is given by

V = −µ2φ2 + λφ4 .

The stability of SM-vacuum depends on the sign of Higgs quartic coupling(λ)
in the last term of the above equation. The potential will be unbounded from
below for negative λ and therefore unstable [34]. For the Higgs mass (125
GeV) we know precisely the value of λ at weak scale from the tree level
relation m2

H = 2λv2, which is around 0.13 for vacuum expectation value v
equals 246 GeV. which is positive definitely. But this is not the compete
story, at large values of φ the Higgs potential is (to the good approximation)
given by V ≈ λ(φ)φ4 , where λ(φ) is the running quartic coupling evaluated
at scale φ. The running of λ is obtained by solving the RGE given by

dλ

dlnµ
=

1

16π2
β1
λ +

1

(16π2)2
β2
λ , (4.7)

where β1
λ and β2

λ are the one and two loop beta functions for λ defined as

β1
λ = 12λ2−

(
9

5
g2

1 + 9g2
2

)
λ+

9

4

(
3

25
g4

1 +
2

5
g2

1g
2
2 + g4

2

)
+ 12y2

t − 12y4
t , (4.8)

and

β2
λ = − 78λ3 + 18

(
3

5
g2

1 + 3g2
2

)
λ2 −

(
73

8
g4

2 −
117

20
g2

1g
2
2 −

1887

200
g4

1

)
λ

− 3λy4
t +

305

8
g6

2 −
867

120
g2

1g
4
2 −

3411

1000
g6

1 − 64g2
3y

4
t −

16

5
g2

1y
4
t

− 9

2
g4

2y
2
t + 10λ

(
17

20
g2

1 +
9

4
g2

2 + 8g2
3

)
y2
t −

3

5
g2

1

(
57

10
g2

1 − 21g2
2

)
y2
t

− 72λ2y2
t + 60y6

t .

(4.9)

Where g′s are the gauge couplings whose running are define by eq 4.1, yt is
the top Yukawa couplings whose RGE is given by

dyt
dlnµ

= yt

(
1

16π2
β1
t +

1

(16π2)2
β2
t

)
. (4.10)
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Here the one-loop beta function is defined as

β1
t =

9

2
y2
t −

(
17

20
g2

1 +
9

4
g2

2 + 8g2
3

)
(4.11)

While the two-loop is given by

β2
t = − 12y4

t +

(
393

80
g2

1 +
225

16
g2

2 + 36g2
3

)
y2
t +

1187

600
g4

1 −
9

20
g2

1g
2
2

+
19

15
g2

1g
2
3 −

23

4
g4

2 + 9g2
2g

2
3 − 108g4

3 +
3

2
λ2 − 6λy2

t .

(4.12)

Now by looking at the above equations, it can be seen that if Higgs were
decoupled from the rest of matter then with the increase in energy λ would
grow and would eventually explode into a Landau Pole (The Landau pole
is the energy scale at which the coupling constant of quantum field theory
becomes infinite). However the top Yukawa coupling provides a negative
contribution to the evolution equation that works towards decreasing λ at
large energies. Within SM the top Yukawa coupling is large as compared to
Higgs self coupling, so Yukawa wins. This behavior can also be seen from
the plot shown below

Figure 4.2: Evolution of Higgs quartic coupling in SM.

Where λ is evaluated using the central value of top quark mass Mt =
173.2 GeV and αs (strong coupling constant) = 0.1184 [36] at MZ . We have
evaluated these couplings from the top pole mass to the Plank scale, where
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the boundary conditions at top mass scale [36] are given below

yt(Mt) = 0.93558 + 0.00550

(
Mt

GeV
− 173.1

)
(4.13)

and for λ

λ(Mt) = 0.1271− 0.00004

(
Mt

GeV
− 173.1

)
+ 0.00206

(
Mh

GeV
− 125.66

)
(4.14)

One can see from the graph shown above that λ becomes negative at the
scale around 1010 GeV which naively means that the Higgs potential is not
bounded from below or we can say that the SM vacuum is not stable up to
the Planck scale.

4.1.3 Dark Matter

Dark Matter(DM) is called dark because it is not made up of ordinary matter
which we see. It is not in the form of planets and stars, nor it emits any type
of radiation which we can see. We can say at this point that we are much
more certain what DM is not, then we are about what it is. Observation
shows that there is much more dark matter than the normal matter in the
universe. Scientist believes that there is about ∼ 27% dark matter ∼ 68%
dark energy(which is the reason why our universe expands with accelera-
tion rather then deceleration) and only ∼ 5% ordinary matter in the whole
universe[35].

There are many theories in the past to explain dark matter, but most of
them are ruled out now, still at this point a few dark matter possibilities are
viable, one of them is that dark matter may be made up of baryonic matter
tied up in brown dwarfs or in dense small chunks of heavy elements, these
are known as massive compact halo objects or ”MACHOs”. But the most
profound theory is that dark matter is made up of Non baryonic matter, like
exotic particles(Axions) or Weakly Interacting Massive Particles (WIMPs)
[35]. But the truth is yet to e revealed about what actually is this Dark
matter.

4.1.4 Massless Neutrinos

Neutrino are spin half particle and are electrically neutral cousins of charged
lepton (e, µ, τ), due to this property they are drastically different from other
spin half particles. They also do not carry color charge like their cousins
leptons so they do not take part in strong interactions as well. For a long
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time it was thought that neutrinos do not have mass at all, but during the
past decade, from the experimental observations involving neutrino emission
from solar burning, from the cosmic-ray experiments and also the production
of neutrino from terrestrial source like accelerators and reactors, it is now a
very strong believe of physicist that neutrinos do have a tiny mass like other
leptons and quarks, leading to neutrino oscillation phenomenon [35]. But
there is no other experimental prove to believe about the nature of neutrinos,
whether they are Dirac like or Majorana like, or exactly how much mass do
these neutrinos have. But still for the tiny mass of neutrino, it is impossible
to generate this mass within the SM, and to generate neutrino mass we need
to go beyond the SM.

4.2 Extension Of SM

There are many extension of SM present in the literature like super-symmetry,
which consider the symmetry between fermions and bosons and its minimal
model (MSSM), which considers only minimum number of new particles with
the SM particles, Extra Dimensions, Grand Unified theories (GUT), String
theory and so on. But none of these theories are proved experimentally. So
there is still open window for theorist to make new models.

The one extension of SM, we will be discussing there is to add Vector-like
particles in the SM, the addition of Vector-like particles is motivated by the
fact that we can avoid the gauge anomalies here, as the anomaly cancels
within themselves. specifically we will consider only Standard Vector-like
particles. why are we calling them Standard ? It is because the vector-like
particles transforms the same way as that of SM fermions with their hermitian
conjugate. All the possible Standard vector-like particles with their quantum
numbers under SM gauge group are given in the table below [37].
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Standard Model like Irreducible representation
Vector Particles (SU(3)3, SU(2)L, U(1)y)

Q+Q (3, 2, 1
6
) + (3, 2,−1

6
)

U + U (3, 1, 2
3
) + (3, 1,−2

3
)

D +D (3, 1,−1
3
) + (3, 1, 1

3
)

L+ L (1, 2, 1
2
) + (1, 2,−1

2
)

E + E (1, 1, 1) + (1, 1,−1)
G (8, 1, 0)
W (1, 3, 0)

Table 4.1: Possible Standard Vector-like Particles with their quantum num-
bers under SM Gauge group.

For extra particles which belong to real representation or adjoint repre-
sentation do not need to be vector-like because they do not contribute to the
anomalies [33], so note from the above table that G and W do not need to
be vector-like as they belong to adjoint representation of SU(3) and SU(2)
respectively.

The contribution to one loop β-coefficient (b1, b2, b3) by these extra Par-
ticles are given in the table below.

Standard Model like Contribution to (b1, b2, b3)
Vector Particles (4b1,4b2,4b3)

Q+Q (1
5
, 3, 2)

U + U (8
5
, 0, 1)

D +D (2
5
, 0, 1)

L+ L (3
5
, 1, 0)

E + E (6
5
, 0, 0)

G (0, 0, 3)
W (0, 2, 0)

Table 4.2: Standard Vector-like Particles and their contributions to one-loop
beta functions.

Where these contribution need to multiply with (2
3
) when considering

them as fermions and (1
3
) when considering as scalars.

4.3 Gauge Coupling Unification Condition

In this section we will derive the condition on the one loop beta function
(b1, b2, b3) which is necessary for the gauge coupling unification. we will start
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with the one loop gauge coupling RGEs

dgi
dlnµ

=
bi

16π2
g3
i , (4.15)

where g′s are related to α′s by the relation given by

αi =
g2
i

4π
, or gi =

√
4πα

1
2 . (4.16)

So we can write eqn. 4.15 in terms of α as

√
4π
d(α

1
2
i )

dlnµ
=

bi
16π2

(4π)
3
2α

3
2
i .

Simplifying this we get
1

α2
i

dαi
dlnµ

=
bi
2π

. (4.17)

Now as we know that

d

dlnµ

(
1

α

)
= − 1

α2

dα

dlnµ
,

using this in above eq we get

d

dlnµ
(α−1

i ) = − bi
2π

. (4.18)

Integrating the above equation from Mf to MG∫ MG

Mf

dα−1
i = − bi

2π

∫ MG

Mf

dlnµ ,

where Mf is the mass scale at which the new particles contribute to the
RGEs and MG is the GUT scale, where all the three couplings unifies.The
solution of above equation is

α−1
i (MG) = α−1

i (Mf )−
bi
2π
ln

(
MG

Mf

)
. (4.19)

Now at GUT scale all these couplings have same value (GCU condition)
α−1
i (MG) = α−1

j (MG) = α−1(MG) for i, j = 1, 2 and 3. Then by using this
the above eq can be written as(

bi

2π
− bj

2π

)
ln

(
MG

Mf

)
= α−1

i (Mf )− α−1
j (Mf ) ,
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or

bi − bj =
2π

ln

(
MG

Mf

)(α−1
i (Mf )− α−1

j (Mf )

)
.

Where bi = b′i + bSMi , in which bSMi is the contribution of SM particles and b′i
is the contribution coming from the new particles. So finally we have

b′i − b′j =
2π

ln

(
MG

Mf

)(α−1
i (Mf )− α−1

j (Mf )

)
− (bSMi − bSMj ) . (4.20)

Which are the required conditions for realization of gauge coupling unifica-
tion.

In addition to the unification condition we need to also take care of the
perturbative bound on the couplings i.e the coupling should remain perturba-
tive up-to the Planck scale(to avoid Landau Pole), and for this the condition
on the b′is can be derived as follows. We require (α−1

i (MG) > 0) so eqn.4.19
gives

α−1
i (Mf )−

bi
2π
ln

(
MG

Mf

)
≥ 0 ,

or

bi ≤
2π

ln

(
MG

Mf

)α−1
i (Mf ) .

Again bi = b′i + bSMi , so finally we get

b′i ≤
2π

ln

(
MG

Mf

)α−1
i (Mf )− bSMi . (4.21)

Which are the conditions for the perturbativity of gauge couplings.

4.4 Specific Example

In this section we will discuss a specific example to achieve gauge coupling
unification and vacuum stability. We add just a pair of vector-like particles
amongst those described in section 4.2, with SM particles. The particles we
have chosen with there Quantum numbers under SM gauge group are given
below [38].
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Q+ Q̄ =

(
3, 2,

1

6

)
+

(
3̄, 2,−1

6

)
,

D + D̄ =

(
3, 1,−1

3

)
+

(
3̄, 1,

1

3

)
.

(4.22)

The SM Lagrangian will receive extra contributions from these new particles.
The relevant terms in the Lagrangian is given by

L′ = − yi1φQdci − yi2φDqi − yi3φcQuci − κ1φ
cQ̄D̄ − κ2φQD

−Mf (D̄D + Q̄Q) + h.c .
(4.23)

Where φ is the SM Higgs doublet and φc is its charge conjugate defined
as φc ≡ ι̇σ2φ

∗, ui, di and qi are the SM quarks where i = 1, 2, 3 being the
generation index. κ’s and yi’s are the dimensionless couplings called Yukawa
couplings for new particles. For the simplest case we assume these couplings
to be very small and will not contribute significantly in the RGE analysis
so we can simply ignore these contributions [38]. Mf is the mass of these
vector like particles and is a free parameter and can have any value from
few hundred GeV to several TeV. We can constraint the lower limit on their
masses from experimental observations, but we have no bound on the upper
limit of their masses, and also these masses do not need to be degenerate.
But for the easiest case we can take their masses to be degenerate and equal
to 1 TeV.

4.4.1 Gauge Coupling Unification

The first advantage of adding new vector like particles is that we can now
achieve gauge coupling unification in the SM. For the evolution of gauge
couplings we will again use the two loop RGE

dgi
dlnµ

=
bi

16π2
g3
i +

g3
i

(16π2)2

( 3∑
j=1

Bijg
2
j − Ct

iy
2
t

)
,

where bi, Bij and Ct
i are given in eqns.4.2 and 4.3. Now when the renor-

malization scale reaches the mass scale of new fermions (µ ≥ Mf ), the beta
function of gauge couplings receive extra contribution from them, which to
the one loop is given by

4bi =

(
2

5
, 2, 2

)
,
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and the two loop contribution is given by

4Bij =

 3
50

3
10

8
5

1
10

49
2

8
1
5

3 114
3

 .

The new contribution alter the sloop of the gauge couplings in such a way
that all the three couplings unifies at a single point, as can also be seen in
the graph below.

Figure 4.3: Evolution of Gauge coupling in SM(solid lines) and ESM(doted
lines).Two vertical lines represent the Scale at which new fermions con-
tribute to the RGE’s (1TeV) and where all the three coupling unify(∼
3× 1017GeV),respectively.

We can see that all the couplings are unified at a single point at the scale
around 3 × 1016GeV . The unification may not be precise but this is not
a big issue for because it depends on where we alter the sloop of couplings
or consequently it depends on mass of new fermions (Mf ), which is a free
parameter in our case. We have taken their mass for simplicity equals 1 TeV,
but there is no restriction that it may be around 900 GeV or 1.1 TeV and
also it is not necessary that each fermions we added have same (degenerate)
mass. For instance if they have different mass then they will change the sloop
of the couplings at different point and the story will be different all-together.
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4.4.2 Vacuum Stability

As discussed earlier that the SM vacuum stability depends on the positivity
of Higgs quartic coupling λ, but in case of only SM particles we have seen
that λ goes to negative values from ∼ 1010 GeV see fig.4.2, which implies
that SM vacuum is not stable up to the Planck scale. Now we can achieve the
stability of vacuum by adding the particles discusses in the earlier section.
How can this be done.? lets look at the RGE of λ

dλ

dlnµ
=

1

16π2
(12λ2 − 12y4

t + ...) . (4.24)

Where the complete form of RGEs are given in section 4.1.2. Now from the
above eq it can be seen that the strongest contribution is coming from the
top Yukawa coupling (yt) so we need to look for its RGE as well

dyt
dlnµ

=
yt

16π2

(
9

2
y2
t − 8g2

3 + ...

)
. (4.25)

Where again the complete form of RGEs are given in section 4.1.2. Now if
we look at th above equation it can be seen that by adding new fermions,
top Yukawa coupling will decrease because of the negative contribution from
gauge couplings and consequently the Higgs quartic coupling will increase,
making the potential stable up-till Planck scale. This behavior can also be
seen from the graph below.

Figure 4.4: Evolution of top Yukawa and Higgs quartic coupling in SM(solid
lines) and ESM(doted lines).
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Where the solid lines represents the evolution of top Yukawa coupling
and Higgs quartic coupling in SM and the dotted lines are the evolution in
ESM. Note that λ is now positive up to the Planck scale which implies that
our vacuum is now stable up-to the Planck scale.

4.5 SeeSaw Mechanism

Neutrino physics is currently the most interesting topic in physics as neutrino
oscillation is the only experimental evidence to believe in the physics beyond
the Standard Model [39]. Since a description to describe the tiny masses of
neutrino is impossible in the frame work of SM, a possible explanation is
so-called seesaw mechanism.

To understand the principle of seesaw mechanism let us assume right
handed (RH) neutrino νR, beside the usual left handed (LH) neutrino (which
are already present in the SM). This addition of only RH neutrino is known
as type-I seesaw [40]. There are two other types present in the literature,
type-II (which includes a Higgs triplet) and type-III (which includes a triplet
fermion) [41]. Now focusing on type-I, we can now construct a Dirac mass
term for neutrino

LDmass = mDνRνL + h.c ,

=
1

2
(mDνRνL +mDνcLν

c
R) + h.c .

(4.26)

Since neutrinos are electrically neutral, we can in general write the Majorana
mass term for them as well

LLmass =
1

2
mLνcLνL + h.c , (4.27)

which is for the LH neutrinos and similarly for the RH neutrinos we can write

LRmass =
1

2
mRνcRνR + h.c =

1

2
mRνRν

c
R + h.c . (4.28)

Now if we define

nL =

(
νL
νcR

)
and ncL =

(
νcL νR .

)
(4.29)

Then we can write the mass matrix M so that

Lmass = LDmass + LLmass + LRmass =
1

2
ncLMnL , (4.30)

39



CHAPTER 4. EXTENDED STANDARD MODEL

where

M =

(
mL mD

mT
D mR

)
. (4.31)

The positive mass eigenstate for this mass matrix would then be given by

m1,2 =

∣∣∣∣12
(
mL +mR ±

√
(mL −mR)2 + 4m2

D

) ∣∣∣∣ . (4.32)

In the seesaw limit the RH neutrino fields νR = NR are assumed to be much
heavier, whereas mD is of the electroweak scale. Therefore mD � mR. Since
νL possesses non-zero hypercharge and isospin, the LH Majorana term is
forbidden by SM gauge symmetries, hence mL = 0. So in the fundamen-
tal theory which respect the SM symmetries we obtain the following mass
eigenstates.

m1 u
m2
D

mR

,

m2 u mR .

(4.33)

As a consequence, we have a very heavy neutrino at a mass scale ΛN = mR of
new physics, and a very light neutrino, whose mass is suppressed by mD/ΛN .
To explain the low experimental upper limit for the neutrino mass, the new
scale has to be close to the GUT scale.
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Chapter 5

Exploring More Possibilities
For GCU

In this chapter we will explore some more possibilities regarding the gauge
unification and vacuum stability with vector like particles given in Table.4.1
in the last chapter. We have divided the possibilities of GCU in to two
sections. In the first section we will consider only new vector like fermions and
in the second section we will also include potentially successful Dark Matter
candidate with these new particles and look for their possible combination
where gauge unification can be realized.

5.1 Adding Only New Fermions

To achieve gauge coupling unification at two loop level, we first introduce
the vector like particles, considering them as fermions. All possible standard
vector-like fermions with their contribution to one loop beta functions are
given in the table below
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SM Vector like Contribution to (b1, b2, b3)
Fermions (4b1,4b2,4b3)

Q+Q ( 2
15
, 2, 4

3
)

U + U (16
15
, 0, 2

3
)

D +D ( 4
15
, 0, 2

3
)

L+ L (2
5
, 2

3
, 0)

E + E (4
5
, 0, 0)

G (0, 0, 2)
W (0, 4

3
, 0)

Table 5.1: Vector-like Fermions and their contributions to one-loop beta
functions

and the 2-loop contributions are given in the appendix A.
Now if we consider only one family of these new vector-like fermions

with the SM particles, we have the following combinations which gives gauge
coupling unification.

1. (Q+Q) + (D +D) ,

2. (L+ L) +G+W ,

3. (Q+Q) + (U + U) + (L+ L) + (E + E) +G+W .

Where the first possibility was discussed in last chapter. The masses for
all the new fermions are taken to be equal to 1 TeV. The unification scale
for each of the above possibility and value of three gauge couplings at the
unification scale is given in the table below

Combinations for GCU Unification Scale α−1
i

(Q+Q) + (D +D) ∼ 3× 1016 ∼ 35.5

(L+ L) +G+W ∼ 5× 1016 ∼ 35.9

(Q+Q) + (U + U) + (L+ L) + (E + E) +G+W ∼ 1× 1017 ∼ 25.1

Table 5.2: Examples of combinations of vector-like fermions which realize
GCU, where in the right most column the values of couplings are shown at
the unification Scale.

This is the case where we have only allowed one family of these extra
fermions, but we have the freedom to allow more then one family of new
fermions for the realization of GCU, as there is no restriction in the SM
on these vector-like particles, we need to just take care of the perturbative

42



CHAPTER 5. EXPLORING MORE POSSIBILITIES FOR GCU

bounds derived in eqn.4.19. And if we allow more that one family we have
enormous numbers of combinations which realizes GCU. But in order to
restrict the possibilities we have only allowed one or three family of new
fermions to have an analogy with the Standard Model (which has either one
or 3 families of particles). Now if we apply this restriction, following are the
combinations which realizes GCU.

Combinations for GCU Uni. Scale α−1
i

3(Q+Q) + 3(U + U) + (D +D) + (L+ L) + (E + E) ∼ 4× 1017 ∼ 8.3

(Q+Q) + 3(U + U) + (D +D) + (E + E) +G+ 3W ∼ 4× 1017 ∼ 12.9

(Q+Q) + (U + U) + 3(D +D) + 3(E + E) +G+ 3W ∼ 4× 1017 ∼ 12.9

3(Q+Q) + (U + U) + 3(D +D) + (L+ L) + 3(E + E) ∼ 4× 1017 ∼ 8.3

(Q+Q) + (D +D) + 3(L+ L) + (E + E) +G ∼ 1× 1017 ∼ 25.1

3(Q+Q) + 3(U + U) + (E + E) ∼ 2× 1017 ∼ 13.1

(Q+Q) + (U + U) + 3(L+ L) +G ∼ 1× 1017 ∼ 25.1

(Q+Q) + (U + U) + 3(D +D) + (L+ L) +W ∼ 7× 1016 ∼ 25.1

(Q+Q) + 3(D +D) + (E + E) +W ∼ 5× 1016 ∼ 28.7

Table 5.3: Examples of combinations of vector-like fermions if we allow only
one or three generations of new fermions which realize GCU, where in the
right most column the values of three gauge couplings are shown at the
unification Scale.

It can be seen from the tables above that values of couplings are posi-
tive(within the perturbative bounds) up to the Planck scale, and also the
unification scale is around 1016 GeV and 1017 GeV, which is what we have
required from the start.

Figure 5.1: GCU with SM + Extra Fermions (one family), corresponds to
third one of Table.5.2 (left-panel); SM + Extra Fermions (one or three fam-
ilies), corresponds to sixth one of Table.5.3 (right-panel).
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5.2 Minimal Dark Matter

The Dark matter(DM) has been the main focus of physicist for many decades
and it calls for the physics beyond the Standard model, because there is no
explanation in the Standard model of the nature of DM or what it is made
up of [35]. There are many attempts to address this problem which typically
includes a rich amount of physics at the electroweak scale including DM
candidates. Amongst them supersymmetry is the most promising theory
which naturally em-band a DM candidate in it [35]. However no new physics
appeared at the collider experiments so far, and the quest for identification
of missing mass of the universe is still on.

We will here focus on the Minimal Dark Matter(MDM) approach (it
is called MDM because it is described by the minimal gauge-covariant La-
grangian or adding the minimal amount of new physics in the Standard
model) focusing on the Dark Matter problem. We will add just one extra
ElectroWeak(EW) multiplet χ and assign minimal quantum numbers (spin,
isospin and hypercharge) to it that make it a good DM candidate, without
ruining the positive features of SM. No ad hoc extra symmetry will be in-
troduced for the stability of DM candidate and this stability will be ensured
by the SM gauge symmetry and renormalizibality. Moreover the theory is
remarkably predictive because of its minimality [6].

For construction of MDM model we add on top of the Standard Model
a single multiplet χ(fermionic or scalar) charged under SM SU(2)L × U(1)Y
electroweak interaction, that is a Weakly Interacting Massive Particle (WIMP)
not charged under SU(3)C strong interactions. χ̄ which is the conjugate of χ
belongs to the same representation and the theory is vector-like with respect
to SU(2) and anomaly free. The minimal Lagrangian for χ would then be
written as

LDM =
1

2
χ(ι̇��D +M)χ , (5.1)

for fermionic χ. and for scalar χ the Lagrangian is given by

LDM =
1

2
|Dµχ|2 −M2|χ|2 . (5.2)

Where Dµ is the gauge-covariant derivative and contains the electroweak
couplings to the vector bosons (Z,W± and γ) of SM.In the above equations
M is the tree level mass of χ and is the only free parameter of the theory.
Other terms such as Yukawa couplings with SM fields would in principle
come in the Lagrangian, but for the successful DM candidate these terms
would be forbidden by Lorentz or gauge invariance as detailed below.
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Quantum numbers DM can Stable?
SU(2)L U(1)Y Spin decay into

2 1/2 S EL ×
2 1/2 F EH ×
3 0 S HH∗ ×
3 0 F LH ×
3 1 S HH,LL ×
3 1 F LH ×
4 1/2 S HHH∗ ×
4 1/2 F (LHH∗) ×
4 3/2 S HHH ×
4 3/2 F (LHH) ×
5 0 S (HHH∗H∗) ×
5 0 F −

√

5 1 S (HH∗H∗H∗) ×
5 1 F −

√

5 2 S (H∗H∗H∗H∗) ×
5 2 F −

√

Table 5.4: The possible Minimal DM candidates. Quantum numbers of can-
didates are listed in the first 3 columns. The 4th column indicates some
decay modes of these candidates into SM particles; modes listed in parenthe-
sis correspond to dimension 5 operators.

The assignment of quantum numbers under the gauge group (SU(2)L ×
U(1)Y ) will fully determine χ (the number of its SU(2)L components n =
{2, 3, 4, 5..} and the hypercharge Y ). For a given n (first column of Table.
5.4) there are few possibilities of hypercharge assignment, such that one of
the component of χ multiplet has electric charge Q = I3 + Y = 0 (where I3

is the usual diagonal generator of SU(2)L), which is the requirement for DM
candidate. For example for the doublet (n = 2) has I3 = ±1

2
so Y needs to

be = ∓1
2

so that Q = 0. For n = 3 one can have Y = {0,±1}, and so on.
Note from the Table.5.4 that the list of possible candidates stops at n ≤ 5

for fermions (for scalars the list can be extended up to n = 7 but we are not
interested in these possibilities here) because larger multiplets would spoil the
perturbativity of SU(2)L coupling g2 and leads to the Landau pole. In the
list of candidates, those having Y 6= 0 are excluded by the direct detection
searches as discussed in [6], so we will focus only on those candidates having
y = 0 and amongst those we need to inspect which are stable against decay in
to SM particles. Some possible decay operators are shown in the 4th column
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of Table.5.4 for each case. For instance the triplet fermion with y = 0 would
couple with a SM leptonic doublet L and Higgs field H through a Yukawa
operator χLH and decay in a very short time and so the fermionic triplet
can not be a viable DM candidate, unless some ad hoc symmetry eliminate
this operator which we will discuss in the latter section. For another instance
the 5-plet scalar with hypercharge y = 0 would couple through dimension 5
operator χHHH∗H∗ with four Higgs fields, suppressed by one power of the
Planck scale (which is the cut-off scale of the theory), and if we calculate the
life time of the operator τ ∼M2

PLTeV
−3 it turns out to be shorter than the

age of the universe, so this also is not a viable candidate for DM. Now given
the known SM particle contents the larger multiplet (having large value of n)
can not couple to SM fields so they are automatically stable and are therefore
good candidates of DM. This is the same reason why known massive particles
like proton are stable: decay modes do not exist at the renormalizable level.
So we can say that the stability of these DM candidates are explained by an
accidental symmetry like proton stability. Amongst all the candidates only
two possibilities then emerges that survived all the previous constraints and
the possibilities are n=5 fermion and n=7 scalar. But for our analysis we
will not consider n=7 scalar as it may have non-minimal quartic couplings
with the Higgs field [6]. So we will first of all focus on the fermionic 5-plet
as the DM candidate, later we will include other possibilities as well.

5.3 Fermionic Dark Matter and GCU

We will consider a 5-plet fermionic Dark Matter (discussed in the last section)
with the other Standard Model vector-like particles and look for their possible
combinations which realizes gauge coupling unification. The mass of the
fermionic DM multiplet will be taken to be 9.6 TeV as mentioned in [6],
while the mass of other vector-like fermions will again be takes as 1 TeV.
The one and two loop change in beta coefficient of SM because of this 5-plet
fermionic DM is given by

4bDM =

(
0,

20

3
, 0

)
; 4BDM

ij =

0 0 0
0 560

3
0

0 0 0

 .

Now it is noticed that the gauge coupling unification can not be realized
up-to the reduced Planck scale with only new fermions and 5-plet fermionic
DM and can only be realized above the reduced Planck scale as mentioned
in the table below.
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Combinations Unification Scale α−1
i

2(U + U) + 8(D +D) +DM ∼ 4× 1018 ∼ 7.8

2(U + U) + 5(D +D) + (E + E) +G+DM ∼ 5× 1018 ∼ 7.6

3(U + U) + 4(D +D) +G+DM ∼ 5× 1018 ∼ 7.6

2(U + U) + 2(D +D) + 2(E + E) + 2G+DM ∼ 1× 1019 ∼ 6.8

3(U + U) + (D +D) + (E + E) + 2G+DM ∼ 1× 1019 ∼ 6.8

4(U + U) + 2G+DM ∼ 1× 1019 ∼ 6.8

(U + U) + 3(D +D) + 3(E + E) + 2G+DM ∼ 1× 1019 ∼ 6.8

4(D +D) + 4(E + E) + 2G+DM ∼ 1× 1019 ∼ 6.8

3(U + U) + (D +D) + (E + E) + 2G+DM ∼ 1× 1019 ∼ 6.8

Table 5.5: Combinations of vector-like fermions with 5-plet Dark matter
where GCU can be realized.

As can be seen from the table the unification scale is above the reduced
Planck scale (2.4 × 1018 GeV) for each case, which is not an interesting
scenario. However fortunately the GCU can be realize within the Planck
scale if we allow one of the SM like new particles (for instance E(1,1,1)) to
be a scalar and also varying the mass of vector-like fermions (We can do that
as mass is a free parameter in our analysis). Below are some of the examples
where GCU can be realized within the Planck scale with the fermionic DM
and extra particles.

Combinations for GCU{Masses of Particles} Uni. Scale α−1
i

2(UU) + 8(DD) +DM + 2E(S) {2TeV} ∼ 5× 1017 ∼ 9.8

3(UU) + 4(DD) +G+DM + 2E(S){2TeV} ∼ 9× 1017 ∼ 9.2

2(UU) + 5(DD) + (EE) +G+DM + 2E(S){2TeV} ∼ 9× 1017 ∼ 9.2

4(UU) + 2G+DM + 2E(S){3TeV} ∼ 7× 1017 ∼ 9.6

4(UU) + 4(EE) + 2G+DM + 2E(S){2TeV} ∼ 2× 1018 ∼ 8.7

Table 5.6: Combination of vector-like fermions and a scalar(E) with 5-plet
Dark matter where GCU can be realized within the Planck scale. The mass
of fermionic DM is 9.6 TeV.

Note from the 2nd last column of the table.5.6 that now the gauge cou-
pling unification scale is within the Plank scale. the scalar(E), we have added
do not need to be vector like because scalar do not contribute to the anoma-
lies. Also the fermionic 5-plet DM has the same mass as before (9.6 TeV).
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Figure 5.2: GCU with SM + Extra Fermions + fermionic DM, corresponds to
first one of Table.5.5 (left-panel); SM + Extra Fermions + Scalar + fermionic
DM , corresponds to forth one of Table.5.6 (right-panel).

5.4 Scalar Dark Matter and GCU

Now in the last step we will consider a Scalar SU(2)L 5-plet Dark Matter
and standard vector like particles along with the SM particles and look for
there possible combinations for gauge coupling unification. As discussed in
sec.5.2 the scalar 5-plet DM is not stable and has non vanishing dimension five
coupling with four Higgs with the life time of less then the age of universe, but
we can some-how suppress this operator by introducing ad-hoc symmetry for
example Z-2 symmetry (φ(x) → −φ(x)), and imposing that the Lagrangian
is even under this symmetry, in this way we can suppress the couplings of
Scalar DM and make it stable.

Now for gauge unification we will consider the mass of scalar DM equals
to 9.6 TeV [6] and 1 TeV for standard vector like fermions. The one and two
loop contribution to the beta coefficients by the scalar DM is given below

4bDM =

(
0,

20

3
, 0

)
; 4BDM

ij =

0 0 0
0 560

3
0

0 0 0

 .

Again many combination can be found where good gauge coupling unifi-
cation can be achieved and some of them are shown in the table below.
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Combinations for GCU{Masses of Particles} Uni. Scale α−1
i

(QQ) + (UU) + 6(DD) + (EE) + SDM ∼ 2× 1018 ∼ 13.6

9(DD) + 3(LL) + SDM {1.5 TeV } ∼ 1× 1018 ∼ 14.1

(UU) + 8(DD) + (LL) +W + SDM {1.5 TeV } ∼ 1× 1018 ∼ 14.1

(UU) + 9(DD) + 2(LL) +W + SDM {1.5 TeV } ∼ 1× 1018 ∼ 9.2

(QQ) + 2(UU) + 5(DD) + SDM ∼ 2× 1018 ∼ 13.5

Table 5.7: Combination of vector-like fermions and a scalar(E) with 5-plet
Dark matter where GCU can be realized within the Planck scale.

Figure 5.3: GCU with SM + Extra Fermions + Scalar DM, corresponds to
last one of Table.5.7.

5.5 Type-I Seesaw and Vacuum Stability

The vacuum stability for all the other cases discussed above is ensured by the
fact that by adding the new particles we always enlarge the gauge couplings
which in turns make the vacuum stable up to the Planck scale. This behavior
is also discussed in detail in the section 4.4.2.

We will here consider the impact of type-I seesaw on the Vacuum stability.
The relevant terms in the Lagrangian for neutrino oscillation through type-I
seesaw are given by

Lν = −yijDliν
c
jφ

c − 1

2
M ij

R (νc)T iνj + h.c , (5.3)
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with i, j = 1, 2, 3. Here li is the lepton doublet, νci is the right handed neu-
trino, yijD is the Yukawa coupling of neutrino and M ij

R denotes the mass matrix
for the right handed neutrino [38].

Above the scale of the right handed neutrino (MR) we have the following
renormalization group equation for Yν ≡ yijD,

dYν
dlnµ

=
Yν

16π2

(
3y2

t + tr
[
Y †ν Yν

]
+

3

2
Y †ν Yν −

(
9

20
g2

1 +
9

4
g2

2

))
. (5.4)

As the right handed neutrinos do not carry any gauge charge, so they will not
affect the running of gauge couplings. The running of top Yukawa coupling
and the Higgs quartic coupling will be modified as follows:

β
(1)
t → β

(1)
t + tr

[
Y †ν Yν

]
,

β
(1)
λ → β

(1)
λ + 4λ tr

[
Y †ν Yν

]
− 4 tr

[(
Y †ν Yν

)2
]
.

(5.5)

The mixing matrix UMNS is used to diagonalized the light neutrino mass
matrix such that

Mν =
v2

2M
Y TY = UMNSDνU

T
MNCS , (5.6)

where Dν = diag(m1,m2,m3), and for simplicity, we have assumed Yν to be
real. The mixing matrix has the following tri-bimaximal form [42]

UMNS =


√

2
3

√
1
3

0

−
√

1
6

√
1
3

√
1
2

−
√

1
6

√
1
3
−
√

1
2

 . (5.7)

The diagonal neutrino mass matrix for the hierarchical case is give by

Dν ' diag

(
0,
√

∆m2
12,
√

∆m2
23

)
. (5.8)

The input values of ∆m2
12 and ∆m2

23 are fixed from neutrino oscillation data
[43] as

∆m2
12 = 8.2× 10−5eV2 ,

∆m2
23 = 2.4× 10−3eV2 .

(5.9)
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Figure 5.4: Vacuum stability in the extended SM (considered in section.4.4),
including type-I seesaw physics. We have considered three different type-I
seesaw scales MR = 1013GeV (solid), 1014GeV (dotted), 1015GeV (dashed).

Our findings are presented in fig.5.4 where we have plotted the Higgs
quartic coupling for the case discussed in section.4.4, including type-I seesaw
physics. Three distinct mass scales for heavy right handed neutrinos are
considered here namely, MR = 1013 GeV (solid), 1014 GeV (dotted) and
1015 GeV (dashed). There is no change in the Higgs quartic coupling (λ)
until right handed neutrino mass scale and the behavior is the same as in
fig.4.4.2. After the type-I seesaw scale, there is a significant change in λ for
the case MR = 1015 only. From eqn.5.5, it can be observed that the Dirac
neutrino Yukawa coupling Yν gives an additional contribution to the Higgs
quartic coupling RGE with the same sign as the top quark contribution. It
is natural to expect that λ will decrease with the increase in the Yν coupling.
For MR = 1013 GeV there is almost no change in the running of λ. For
MR = 1014 GeV there is only slight change in λ, since Yν is still not large at
that scale in comparison to the top Yukawa coupling. For MR = 1015 GeV
we see a significant change in λ. In fact λ goes to the negative values for
this particular case since now the coupling Yν is larger than the top Yukawa
coupling, and the two of then together force the Higgs quartic coupling to
the negative values.
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Summary and Conclusion

In this dissertation we have explored the possibilities of gauge coupling uni-
fication (GCU) at the scale from 5 × 1015 GeV to the reduced Planck scale
(2.4 × 1018 GeV) in the extended standard model. These extended mod-
els includes extra fermions around the TeV scale and minimal dark matter
having mass 9.6 TeV. To avoid gauge anomalies, extra fermions are consid-
ered as vector-like. In addition, we restrict ourselves to the standard model
like vector fermions (that is, these fermions carry standard model quantum
numbers). We have considered various cases for GCU. In the first case we
have only considered one family of extra vector-like fermions with SM parti-
cles and found that there are only three cases where GCU can be realized.
Afterwards we have extended the families of extra fermions and observed
that there are enormous number of combinations for GCU. So to restrict the
number of possibilities we have allowed only one or three families of extra
fermions (to have an analogy with the SM) with the SM particles and the
possible combinations where GCU can be realized are listed in Table.5.3.

In the next case we have also considered potentially successful minimal
dark matter candidates proposed by Alessandro Strumia in his paper [6],
with the extra fermions to achieve GCU. Among the many candidates we
have chosen the 5-plet fermion and the 5-plet Scalar for our purpose. The 5-
plet fermion is automatically stable against decay in to SM particles and has
no free parameter. We have found that if we only consider extra fermions and
5-plet fermionic DM with the SM particle the GCU can only be realized above
the reduced Planck scale, which is not a best scenario. Fortunately GCU can
be realized within the reduced Planck if we also add a scalar (E(1,1,1)) with
these fermions and some of the possibilities are listed in Table.5.6. The scalar
5-plet DM can decay through dimension-5 operator with a life time less the
age of universe, but this operator can be suppressed using Z2 symmetry.
Some of the possible combinations where GCU can be realized in this case
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are listed in Table.5.7
The stability of SM vacuum has also been achieved in these models by

ensuring the positivity of Higgs quartic coupling up to the Planck scale.
We have assumed the couplings of extra particles to the SM particles are
very small and can be neglected. Therefore the only way through which the
extra particles affect the Higgs quartic coupling is through the top Yukawa
coupling which itself depends strongly on the gauge coupling as can be seen
from eqn.4.24 and eqn.4.24, the smaller yt and the larger gi makes the Higgs
quartic coupling positive up to the Planck scale.

Type-I seesaw (which includes a right-handed neutrino per generation in
the SM) has been introduced in the analysis to describe the tiny neutrino
masses, and there impact on the predictions of vacuum stability has also been
discussed. The right-handed neutrino do not carry any SM gauge charge
and therefore do not effect the running the gauge couplings, but they do
alter the running of Higgs quartic coupling through Yukawa interaction and
therefore effect the vacuum stability bond. The behavior has been discussed
in section.5.5.

The vector-like particles, because of their moderate masses, should be
accessible at the LHC, and these models will be tested in the ongoing run of
LHC.
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Appendix A

Two-loop Beta function

In the Appendix, we present the two-loop contribution to the beta function
of SM gauge couplings, coming from extra vector-like particles which were
introduced in Chapter.4

∆BQ+Q =

 1
150

3
10

8
15

1
10

49
2

8
1
15

3 76
3

 , ∆BU+U =

64
75

0 64
15

0 0 0
8
15

0 38
3

 (A.1)

∆BD+D =

 4
75

0 16
15

0 0 0
2
15

0 38
3

 , ∆BL+L =

 9
50

9
10

0
3
10

49
6

0
0 0 0

 (A.2)

∆BE+E =

36
25

0 0
0 0 0
0 0 0

 , ∆BG =

0 0 0
0 0 0
0 0 48

 (A.3)

∆BW =

0 0 0
0 64

3
0

0 0

 (A.4)
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