
  

STUDY OF ENTANGLEMENT IN A MOVING  

FIVE-LEVEL ATOM  

 

 

 

 

 

 

 

MUHAMMAD AZEEM 

 

 

Department of Physics 

Quaid-i-Azam University 

Islamabad, Pakistan 

2015 



  

 

Study of entanglement in a moving five level atom 

 

A dissertation submitted to the department of physics, Quaid-i-Azam University, 

Islamabad, in the partial fulfillment of the requirement for the degree of 

 

Master of Philosophy 

in 

Physics 

by 

MUHAMMAD AZEEM 

 

 
 

 

Department of Physics 

Quaid-i-Azam University 

Islamabad, Pakistan 

2015 



  

 

 

 

 

 

 

Beginning with the name of ALLAH ALMIGHTY, the most beneficent 

and merciful, and the most sovereign among all of us. 

 

 

 

 

 

 



  

 

 

 

 

 

 

Read in the name of your Lord, who has created (all that exists) 

 

 

 

 

 

 

 



  

 

Certificate 

This is to certify that Mr. Muhammad Azeem has carried out research work for this 

dissertation under my supervision in Department of Physics, Quaid-i-Azam University, 

Islamabad. 

 

 

 

 

Supervisor 

(Dr. M. Khalid Khan) 

Associate Professor 

 

 

 

  

 

 

 

 

 

Chairman  

 

Prof. Dr. Arshad M. Mirza 

Department of Physics  

Quaid-i-Azam University  

Islamabad, Pakistan. 

 

 

 

 



  

 

 

 

DEDICATED TO 

DEAR 

AMI, ABU 

 

 

 
 
 
 
 
 
 
 



  

 
 
 
 
 

ACKNOWLEDGEMENTS 
 

All the praises to Almighty ALLAH, the most merciful and the sovereign 

power, who made me able to accomplish this research work successfully. I offer my 

humble and sincere words of thanks to his Holy Prophet Muhammad (S.A.W) who 

is forever a source of guidance and knowledge for humanity. 

This work would have not been possible without the invaluable contributions 

of many individuals. First and foremost, I wish to thank my respectable supervisor 

Dr. M. Khalid Khan for all of his support, advice, inspiration, kind and invaluable 

guidance during the whole period of my study. 

I am heartedly thankful to Muhammad Usman (PhD Scholar) without whom 

I would never be able to finish this dissertation. I have no proper words to 

appreciate the effort, hard work and continuously encouragement during my 

M.Phil research. He spared time from his busy schedule to help me in 

Mathematica and gave me a valuable suggestion, so he has a major contribution in 

my achievement. I must offer my profoundest gratitude to him. 

I am thankful to chairman, department of physics, for the provision of all 

possible facilities and cooperation. I am also thankful to World Federation of 

Scientists Scholarship (WFS) who supported me a lot financially. I am very 

thankful to staff especially Mr. Khadim Hussain. I would like to pay lots of 



  

appreciation to my teachers from University of The Punjab who blessed me with 

knowledge and guidance. 

My sincere regards and thanks are overdue to Saba Maqsood, Aqsa Anjum, 

Tariq Butt, Shahid Butt, Junaid Gulfam, Rana Asif, Hafiz Usman, Zaid Islam, 

Fahad Aziz, Rashid Ali, Ahsan, Aamir Hayat, M. Waqas, M. Usman Muzaffar, 

Munsif Jan, M. Hussnain Akmal, Khuram Tariq, M. Zubair, M. Ibrahim, Iskhar 

Ali, Niaz Ali Khan, Umar Ijaz, Badar Ali and all other friends and fellows for their 

moral support. 

I am thankful to my beloved uncles and aunts Mr. & Mrs. Riaz Butt, Mr. & 

Mrs. M. Bilal Butt, Mr. & Mrs. Khawaja Tanveer Ahmad, Mr. & Mrs. Khawaja M. 

Akram, Mr & Mrs Sheikh M. Shafiq and Mr. & Mrs. Maqsood Ahmad. Last but not 

the least my humble and heartfelt gratitude is reserved for my beloved Parents, 

sisters and brothers. Without their prayers, support and encouragement the 

completion of this study task would have been a dream. 

 

 

 

 Muhammad Azeem 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

Abstract 
 

 

In this dissertation we study the dynamics of entanglement for a cascade type five level atom 

interacting with cavity field. We investigate time evolution of the von Neumann entropy and the 

atomic populations numerically on the degree of entanglement for the pure resonant case 

whether the atom is at rest or in a motion. We show that the influence of atomic motion plays an 

important role in the creation and destruction of entanglement and it is correlated with the atomic 

populations. We also determine the effect of decoherence on the system. Moreover we discuss 

these phenomena in terms of entanglement and disentanglement. 
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Chapter 1

Introduction

The branch of optics, in which quantum aspects of light and matter are studied is known as

quantum optics. This �eld is used to investigate the phenomenon in which light interacts with

matter by using semiclassical and quantum mechanical approach.

Light plays an important role to understand nature both classically and quantum mechan-

ically. Since radiations are emitted and absorbed by atoms, the interaction of quantized elec-

tromagnetic radiation �eld with atoms acts as the most basic and central problem in quantum

optics. In experiments the interaction between light and atoms provide an interesting window

into the quantum world. One of the techniques, which is used in experiments is called laser

spectroscopy.

Whereas, the systems are very complicated due to real atoms. Thus it is often mandatory

to approximate the behavior of real atoms with simple quantum systems. For many purposes,

the interaction of electromagnetic �eld plays a signi�cant role with two atomic energy levels,

so that in many theoretical analysis only two eigenstates of energy are required to represent an

atom by quantum system.

Most of the existing atom-�eld interaction theories based on the models in which only a

single two-level atom interacts with �eld. The Jaynes-Cummings model [1] is a particular model

which shows how a single two-level atom interacts with a single-mode of quantized �eld.

In the present work we study the decoherence and entanglement via von Neumann entropy

in a moving �ve-level atom interacting with cavity �elds. We consider a closed system which

consists of two sub-systems, i.e. �ve-level atom and single mode �eld. In this work we are
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interested in the interaction of these two sub-systems, atom and �eld. Due to the interaction of

these two sub-systems, the order of the whole system changes. Since entropy [2] is the measure

of the disorder of a system, therefore we are more interested in time evolution of entropy. Thus

we discuss the e¤ect of interaction on entropy and have shown that how this entropy can tell

us interesting things about the sub-system�s dynamical behavior. Moreover, we investigate

the populations of the atomic system which is under consideration. We compute both the

von Neumann entropy and populations when initially the atom is in its excited state and �eld

is in the coherent state. We also observe that the properties of the von Neumann entropy

and the populations had an important e¤ect due to atomic motion. Finally, we introduce the

decoherence e¤ect in all above cases and get some fascinating results.

In our work we used the density matrix approach [3] which provides computational con-

venience while stressing the statistical aspects of the problem. Since our treatment involves

entire system, and we are interested only atomic part of the entire system, so �eld variables are

eliminated by using reduced density matrix method.

In the present chapter we brie�y describe the state of atom and �eld. We use the density

matrix approach. The basic de�nition of entropy in quantum systems has also been introduced

in this chapter.

In chapter two we introduce the Hamiltonian of the two-level atomic system. The Hamil-

tonian for interaction of the two-level atom with single-mode �eld is given in the dipole and

rotating wave approximations in the interaction picture. Using this Hamiltonian, we solve the

Jaynes Cummings model and �nd the unitary time evolution operator as well as the reduced

density matrix operator for atom and �eld.

In chapter three we introduce the mathematical model of the system. As we are solving

numerically the system so all the expressions given their are in general form.

In chapter four we show the time evolution of von Neumann entropy and the populations

both for atom at rest and in motion. We also determine the e¤ect of decoherence on the similar

system. Results are plotted for a given system and at the end we discuss the results and give

a conclusion.
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1.1 Two-level atomic system

A quantum mechanical system is described by its wave function. Let jai and jbi represents

the upper- and lower-level of an atom respectively. The linear superposition of the upper- and

lower-states for a two-level atom can be written in the form of state vector as

j	i = Ca jai+ Cb jbi , (1.1)

where Ca and Cb are the coe¢ cients and �nd the probability amplitudes of an atom in states

jai and jbi, respectively.

1.2 Three-level atomic system

For a three-level atomic system jai, jbi and jci represents the upper-level, medium-level and

lower-level respectively. The linear superposition of the three-level atom may be written as

j	i = Ca jai+ Cb jbi+ Cc jci , (1.2)

where the coe¢ cients Ca, Cb and Cc are helpful to �nd out the probability of an atom in the

states jai, jbi and jci, respectively.

1.3 Types of atomic system

There are various types of atomic system. For the sake of understanding here we are discussing

some of them.

1.3.1 Cascade-type con�guration

Fig.(1-1) shows the three-level atom con�guration which is known as cascade-type con�guration

where levels jai, jbi and jci represent the upper, medium and lower levels and each lower-level

is coupled to its next upper-level with one �eld of resonance frequency, i.e. !bc related to levels

jci and jbi and !ab related to levels jbi and jai.
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Figure 1-1: Diagram of a three-level atom in the Cascade-type con�guration with �elds of
frequencies !ab and !bc.
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Figure 1-2: Diagram of a three-level atom in V-type con�guration with �elds of frequencies !bc
and !ac.

1.3.2 V-type con�guration

V-type con�guration for a three-level atom is shown in Fig.(1-2), where a ground-level jci is

coupled to the medium-level jbi and the upper-level jai with �elds of resonance frequencies !bc
and !ac.

1.4 Radiation �eld

Radiation �eld states can be explained in di¤erent ways.
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1.4.1 Number state

A number state is also known as a Fock state. In quantum mechanics this is a quantum state

which corresponds to a Fock space. The states of total radiation �eld in the cavity can be

represented by the number of photons nk1 , nk2 , nk3 , nk4 , .... in the complete set of cavity

modes k1, k2, k3, k4, .... A state of the total �eld can be denoted as

jnk1 , nk2 , nk3 , nk4 , ....i . (1.3)

In cavity the modes do not depend on each other so that the state of the total �eld is product

of the individual modes

jnk1 , nk2 , nk3 , nk4 , ....i = jnk1i jnk2i jnk3i jnk4i .... (1.4)

A single mode number state or a Fock state [4] is represented by jni where exactly n photons

are excited. The vacuum state of the �eld is actually the state of the electromagnetic �eld in

which no photons are excited. Number states are infact the eigenstates of number operator

N̂ = âyâ, i.e.

N̂ jni = âyâ jni = n jni . (1.5)

Physical properties of the single mode number state

� The uncertainty in the photon number is zero for the state jni

4n = 0. (1.6)

� Number states are complete

1X
n=0

jni hnj = 1, (1.7)

and orthogonal
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hm jni = �mn. (1.8)

1.4.2 Coherent state

The coherent state [5] is denoted by j�i and is de�ned as

j�i = e�
1
2
j�j2

1X
n=0

�np
n!
jni . (1.9)

The coherent state is the eigenstate of the destruction operator â with an eigenvalue �, i.e.

â j�i = � j�i . (1.10)

In general, � is a complex number because â is not a Hermitian operator.

Physical properties of the single mode coherent state

� The coherent state has minimum uncertainty, so that

4p4q = ~
2
. (1.11)

� Two coherent state corresponding to di¤erent eigenstates j�i and j�0i are not orthogonal

to each other, i.e.

h�
���0� = exp��1

2
j�j2 + �0�� � 1

2

���0��2� . (1.12)

� In the coherent state j�i mean number of photons can be calculated by the following

expression

h�j âyâ
���0� = j�j2 . (1.13)

� The set of all coherent state j�i is a complete set
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�

Z
j�i h�j = 1. (1.14)

1.5 Density matrix operator

The states of physical systems can be represented by parameters which describe a phenomenon

correctly and conveniently. These parameters are logically consistent and also have a familiar,

operational signi�cance. Quantum mechanics deals usually with such a phenomena in which

maximum information is available about the system under consideration. The state of the

physical system with maximum information is referred as �pure state�. Note that these systems

are totally uncoupled from any external source. In quantum mechanics, the wave function of a

pure state is represented by the coe¢ cients ci of the expansions of its state j	i into eigenvectors

j'ii of a complete set of operators,

j	i = ci j'ii . (1.15)

Consider an observable O that is represented by a quantum-mechanical operator Ô. For a pure

state j	i, one can obtain the expectation value of an observable by the following expression i.e.

D
Ô
E
=
D
	
���Ô���	E . (1.16)

While in many situations the wave function for the system is not known, but probabilities for

having various di¤erent wave functions are known. Such a state is a statistical mixture or mixed

state. So in that case where one have incomplete information of a state, it is then advantageous

to introduce the density matrix operator �̂. If B̂ is an observable of the system, the average

value of B̂ is driven by the density matrix operator by the following relation

D
B̂
E
= Tr

�
�̂B̂
�
. (1.17)

Where the trace of an operator is the sum of its diagonal matrix elements. If 	 is the wave

function of the system and let fjnig span the Hilbert space containing the wave function 	,

then,
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D
B̂
E
= h	j B̂ j	i . (1.18)

j	i may expand into its basis to obtain,

j	i =
X
n

jni hn j	i , (1.19)

substitute Eq.(1.19) into Eq.(1.18),

D
B̂
E
=
X
p

X
n

�npBpn = Tr
�
�̂B̂
�
. (1.20)

Here, �np = hp j	i� hn j	i = b�pbn, projection of wave function on the basis vector jni is denoted

by the coe¢ cient bn. �nn = jh	 jnij2 = b�nbn = Pn, shows the diagonal elements of �̂. Also

Pn is the probability of �nding the system in the state jni. From Eq.(1.18) and Eq.(1.20) the

density operator of state j	i is given by [6, 7]

�̂ = j	i h	j . (1.21)

1.5.1 Properties of the density matrix operator

� �̂ is Hermitian,

�nm = �
�
mn. (1.22)

� �̂ is positive de�nite,

ha j�̂j ai � 0. (1.23)

� Trace of the density matrix operator is always 1, i.e.

Tr (�̂) = 1. (1.24)
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1.5.2 Temporal evolution of density matrix operator

Evolution of density matrix operator within time is governed by the Shrodinger equation. The

time dependent Shrodinger equation is given by

@ j	i
@t

= � i
~
Ĥ j	i . (1.25)

The solution of the above equation gives the wave function at time t in terms of the wave

function at time t = 0 describe as

j	(t)i = Û (t) j	(0)i , (1.26)

where Û (t) is the Unitary time-evolution operator. The corresponding formula for the density

matrix is

@�̂

@t
= � i

~

h
Ĥ�̂� �̂Ĥ

i
, (1.27)

and its solution is

�̂ (t) = Û (t) �̂ (0) Û y (t) . (1.28)

Eq.(1.27) is the Schrödinger equation for the density operator �̂ [8].

1.5.3 Density matrix operator for two-level atom

For the two-level atomic system where the state of the system is given by j	i = Ca jai+Cb jbi,

the density matrix operator can be written as

�̂Atom = j	i h	j

= [Ca jai+ Cb jbi] [C�a haj+ C�b hbj]

= jCaj2 jai haj+ CaC�b jai hbj+ CbC�a jbi haj+ jCbj
2 jbi hbj . (1.29)
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The matrix elements are,

�aa = ha j�̂j ai = jCaj2 , probability of being in upper level (1.30a)

�ab = ha j�̂j bi = CaC�b , proportional to the complex dipole moment (1.30b)

�ab = ��ba (1.30c)

�bb = hb j�̂j bi = jCbj2 , probability of being in lower level (1.30d)

Therefore in matrix notation the density matrix operator for two-level system can be written

as

�̂ =

24 �aa �ab

�ba �bb

35 . (1.31)

1.5.4 Density matrix operator for radiation �eld

Number state

For a �eld in one of the number state jni, where m photons are present, the density matrix

operator is simply given by

�̂ = jni hnj . (1.32)

Coherent state

The density matrix operator for one of the coherent state j�i can be similarly constructed as

�̂ = j�i h�j . (1.33)

1.5.5 Reduced density matrix operator

The density matrix operator of the whole system (atom-�eld) obviously contains too much

information and has little to tell us directly about particular sub-systems behavior. Therefore

to characterize a given sub-system we need a statistical operator. Such an operator is called

the reduced density matrix operator.
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Let us take a density matrix operator �̂ which describes the interaction between atom and

single mode electromagnetic �eld. By tracing the total density matrix operator �̂ over the �eld

we get the reduced density matrix operator which describes the properties of the atomic system.

�̂Atom = TrField(�̂). (1.34)

Similarly we can get the reduced density matrix operator which describes the behavior of the

�eld system by tracing the total density matrix operator �̂ over the atom.

�̂Field = TrAtom(�̂). (1.35)

1.6 Entropy

In general entropy is measure of the disorder of the system. According to the 2nd law of

thermodynamics if the energy in the form of heat dQ is added to a system held at a constant

temperature T , the change in entropy dS is given by

dS = dQ=T . (1.36)

In statistical mechanics entropy is de�ned as

S = kB lnW , (1.37)

where W is the number of accessible states of the system and kB is the Boltzmann constant.

1.6.1 Von Neumann entropy

The von Neumann entropy is infact the quantum mechanical entropy [9]. To describe entropy

quantum mechanically, one has to distinguish between observables and states. Observables,

like position, momentum, energy, etc. are mathematically described by self-adjoint operators

in Hilbert space. In the same way states of the system are characterized by a density matrix

�̂. The expectation value of an observable Ô in the state �̂ is
D
Ô
E
= Tr

�
�̂Ô
�
.

Entropy is di¤erent from most physical quantities. It is not an observable; it means that

14



there does not exist an operator with the property that its expectation value in some state

would be its entropy. It is rather than a function of state. If a quantum state is described by

the density matrix operator �̂, its entropy is de�ned by

S (�) = �Tr (� ln �) . (1.38)

If �̂ describes a pure state then S = 0 and if �̂ describes a mixed state then S 6= 0. In this

sense entropy measures deviations from pure state behavior. Since we are dealing with the

interaction of atomic system, the von Neumann entropy of atom is de�ned as [10, 11]

S (�̂Atom) = �TrAtom (�̂Atom ln �̂Atom) , (1.39)

where the reduced density matrix operator is given by

�̂Atom = TrField(�̂). (1.40)

1.6.2 Shannon entropy

As the entropy of �eld can be given by the following relation

S (�̂Field) = �TrField (�̂Field ln �̂Field) . (1.41)

But it may be di¢ cult to evaluate �eld system�s entropy by Eq.(1.41) since this requires diago-

nalization of the reduced density matrix operator for the �eld. Therefore we use entropy called

Shannon entropy [12] which measures the �uctuations in the observable Ô through the relation

S (�̂Field) = ~S
�
�̂Field; ÔField

�
= �

X
�

(�Field)�� ln (�Field)�� , (1.42)

where we have
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ÔField j�i = � j�i , (1.43)

(�Field)�� = h�j �̂Field j�i . (1.44)

If our observable is Ô = âyâ then

S (�̂Field) = ~S
�
�̂Field; â

yâ
�

= �
X
n

(�Field)nn ln (�Field)nn . (1.45)

1.7 Population of the state

Population of the state represents the physical meaning of the matrix elements of the density

matrix operator.

�nn (t) =
X
j

pj�
j
nn (t) =

X
j

pj
��cjn (t)��2 . (1.46)

Where
���cjn (t)���2 is the probability that for a system in the state j	ji a measurement of the

observable whose eigenbasis is fjunig will leave the system in the state juni. Therefore, �nn (t)

represents the average probability of �nding the system in the state juni. �nn (t) is known as

the population of the state juni. The population depends upon the chosen basis.

1.8 Entanglement

In many applications of quantum information processing the most famous and fundamental

quantity is quantum-mechanical entanglement [13, 14, 15] between the subsystems which are

spatially separated. Entanglement is a purely quantum-mechanical e¤ect which has no classical

counterpart. In quantum mechanics we can de�ne the entanglement as a correlation of the

properties of two particles, no matter how they are far apart. For the sake of understanding

consider two quantum mechanical systems B and C respectively. If the systems are entangled
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with each other, we can say that the values of certain properties of the system B are correlated

with system C. The properties are interlinked even that the two systems are spatially separated

leading to the phrase "spooky action at a distance".

1.9 Decoherence in quantum mechanics

One of the most fundamental property of quantum mechanics is the quantum superposition.

The principle of quantum mechanics which provides more fascinating window of quantum world

is given by Pauli Dirac in his book [16]

"....any two or more states may be superposed to give a new state". But when Dirac

gave the basic quantum mechanics principles, some famous scientists cause odd situation which

did create challenge for quantum mechanics. In 1935 Shrodinger and Einstein put their the-

oretical experiments [17] which was a real problem for quantum-mechanical basic postulates.

Quantum-mechanical basic principles are going to be used to build a quantum computer, for

this it is an important thing to get a close box system where one can easily apply the basic

quantum-mechanical laws. But real systems can�t be detached from extraneous interactions

and such type of interactions with systems are called decoherence [18, 19, 20]. The decoherence

in quantum-mechanical systems ruin the superposition of quantum states and change the quan-

tum superposition into statistical mixture of states. Hence one can conclude that decoherence

vanishes the quantum-mechanical phenomenon in systems.
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Chapter 2

Atom-�eld interaction

In this chapter the reduced density matrix operators for atom and �eld from the density matrix

operator for the entire interacting system of atom and �eld at time t are calculated. To obtain

this we �rst calculate the density matrix operator for the whole interacting system at time t

using the Eq.(1.28). We use the simplest and important quantum optical model called Jaynes

Cummings model [1].

2.1 Jaynes Cummings model

The Jaynes Cummings model consists of two energy levels atom with upper-level jai and lower-

level jbi separated in energy by ~!o interacting with quantized electromagnetic �eld with fre-

quency ! as shown in Figure(2-1). The matrix representation of upper- and lower-level is

jai =

24 1
0

35 and jbi =

24 0
1

35 . (2.1)

The quantum states jai and jbi are the eigenstates of non-interacting atomic Hamiltonian ĤA
with energy eigenvalues Ea and Eb i.e.

ĤA jai = Ea jai ,

ĤA jbi = Eb jbi , (2.2)
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Figure 2-1: Interaction of a two-level atom with the single mode electromagnetic wave.

with

Ea � Eb = ~!o. (2.3)

Since the total atomic energy eigenstate is complete, i.e. jai haj+ jbi hbj = 1. Thus multiplying

the atomic Hamiltonian from right with unity and using the Eq.(2.2)

ĤA = ĤA (jai haj+ jbi hbj)

= Ea jai haj+ Eb jbi hbj

= Ea�̂aa + Eb�̂bb, (2.4)

where �̂aa = jai haj and �̂bb = jbi hbj. In matrix form

�̂aa =

24 1 0

0 0

35 and �̂bb =

24 0 0

0 1

35 . (2.5)

The right side of Eq.(2.4) can also be written as
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Ea�̂aa + Eb�̂bb =
1

2
(Ea � Eb) (�̂aa � �̂bb) +

1

2
(Ea + Eb) (�̂aa + �̂bb)

=
1

2
~!o (�̂aa � �̂bb) =

1

2
~!o�̂z, (2.6)

where �̂z = �̂aa � �̂bb is the Pauli spin operator and �̂aa + �̂bb = I. Also 1
2 (Ea + Eb) is a

constant energy term, we therefore can neglect it. In matrix form

�̂z =

24 1 0

0 �1

35 . (2.7)

Hence Eq.(2.4) becomes

ĤA =
1

2
~!o�̂z. (2.8)

In treating the quantized electromagnetic �eld [21] it is suitable to introduce non-Hermitian

operators ây and â known as creation and annihilation operators. These operators play the role

of lowering and raising the excitation of the �eld by ~!. The Hamiltonian of the quantized

radiation �eld is

ĤF = ~!
�
âyâ+

1

2

�
, (2.9)

where ! is the frequency of the radiation �eld and 1
2~! is the zero point energy. Since it is the

constant term, thus for convenience we neglect it. Therefore, we can write

ĤF = ~!âyâ. (2.10)

In the atom-�eld interaction we suppose that the atom is located at a �xed point in an electro-

magnetic �eld. If we remark the atom as an electric dipole with moment �̂, then the interaction

energy ĤI may be taken as

ĤI = ��̂ . Ê, (2.11)
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where Ê is the electric �eld operator given by

Ê =�̂"
�
â+ ây

�
. (2.12)

We make a representation of �̂ in terms of operators by multiplying it with unity on the left

and on the right using the relation jai haj+ jbi hbj = 1, we get

�̂ = �aa jai haj+ �ab jai hbj+ �ba jbi haj+ �bb jbi hbj , (2.13)

where �ab = haj �̂ jbi, the electric dipole transition matrix element. Here �aa and �bb, which

shows the expectation values of the dipole moment �̂ in the upper and lower states, must vanish

from considerations of symmetry for states of de�nite parity, because the dipole moment has

odd parity. Hence the Eq.(2.13) becomes

�̂ = �ab jai hbj+ �ba jbi haj

= �ab�̂ab + �ba�̂ba, (2.14)

substitute the values of �̂ and Ê in Eq.(2.11) from Eq.(2.12) and Eq.(2.14), we get

ĤI = ��ab�̂ab .̂�"
�
â+ ây

�
� �ba�̂ba .̂�"

�
â+ ây

�
= ~pab�̂ab

�
â+ ây

�
+ ~pba�̂ba

�
â+ ây

�
. (2.15)

where we have

pab =
��ab .̂�"
~

. (2.16)

Since the transition take place between two levels and it corresponds a 4n = 0 transition of a

real atom, we may take �ab to be real vector. For �ab = �ba,

p = pab = pba. (2.17)
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Now the Eq.(2.15) becomes

ĤI = ~p (�̂ab + �̂ba)
�
â+ ây

�
. (2.18)

We establish two atomic operators �̂+ and �̂� given by

�̂+ = �̂ab =

24 0 1

0 0

35 , (2.19)

and

�̂� = �̂ba =

24 0 0

1 0

35 . (2.20)

The operators �̂+ and �̂� are the Pauli spin-�ip operators which raise and lower the excitation

of the atom by ~!o, i.e. �̂+ operator takes an atom in the lower state into the upper state,

whereas �̂� takes an atom in the upper state into the lower state. Since we consider two states,

�̂+ jbi = jai , �̂� jbi = 0.

�̂+ jai = 0, �̂� jai = jbi . (2.21)

Hence Eq.(2.18) becomes

ĤI = ~p (�̂+ + �̂�)
�
â+ ây

�
= ~p

�
�̂+â+ �̂+â

y + �̂�â+ �̂�â
y
�
. (2.22)

The interaction energy in above equation consists of four terms. The term �̂+â describes the

process in which the atom is making transition from the lower state into the upper state and

a photon is absorbed. Similarly the term �̂�ây describes the process in which the atom is

taken from upper state to the lower state and a photon is created. The energy is conserved

in both process. The term �̂+â
y describes the process in which the atom makes the transition
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from the lower state into the upper state and a photon is created resulting in the gain of 2~!.

The term �̂�â describes the process in which the atom makes transition from upper-level into

the lower-level and a photon is absorbed resulting in the loss of approximately 2~! in energy.

Dropping the energy non-conserving terms corresponds to the rotating wave approximation,

the Hamiltonian in Eq.(2.22) can be written as

ĤI = ~p
�
�̂+â+ �̂�â

y
�
. (2.23)

The total energy of the interacted system in the two-level atom and the single-mode �eld is

Ĥ = ĤA + ĤF + ĤI . (2.24)

By putting the Eq.(2.8) for ĤA, Eq.(2.10) for ĤF , Eq.(2.23) for ĤI in Eq.(2.24), we reach at

Ĥ =
1

2
~!o�̂z + ~!âyâ+ ~p

�
�̂+â+ �̂�â

y
�

= Ĥo + ĤI . (2.25)

Where we have,

Ĥo =
1

2
~!o�̂z + ~!âyâ, (2.26)

and

ĤI = ~p
�
�̂+â+ �̂�â

y
�
. (2.27)

As we work in Interaction Picture. The Hamiltonian in the interaction picture is given by

ĤI = exp

 
iĤot

~

!
ĤI exp

 
� iĤot

~

!
. (2.28)

Substituting the values of Ĥo from Eq.(2.26) and ĤI from Eq.(2.27) in above Equation, we

have
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ĤI = ~p exp
�
i
1

2
!ot�̂z + i!â

yât

�h
�̂+â+ �̂�â

y
i
exp

�
�i1
2
!ot�̂z � i!âyât

�
= ~p exp

�
i
1

2
!ot�̂z

�
�̂+ exp

�
�i1
2
!ot�̂z

�
exp

�
i!âyât

�
â exp

�
�i!âyât

�
+

~p exp
�
i
1

2
!ot�̂z

�
�̂� exp

�
�i1
2
!ot�̂z

�
exp

�
i!âyât

�
ây exp

�
�i!âyât

�
. (2.29)

Using the Baker-Hausdorf identity

exp
�
�Â
�
B̂ exp

�
��Â

�
= B̂ + �

h
Â; B̂

i
+
�2

2!

h
Â;
h
Â; B̂

ii
+ ...... (2.30)

We calculate

exp

�
i
1

2
!ot�̂z

�
�̂+ exp

�
�i1
2
!ot�̂z

�
= �̂+ exp (i!ot) (2.31a)

exp

�
i
1

2
!ot�̂z

�
�̂� exp

�
�i1
2
!ot�̂z

�
= �̂� exp (�i!ot) (2.31b)

exp
�
i!âyât

�
â exp

�
�i!âyât

�
= â exp (�i!t) (2.31c)

exp
�
i!âyât

�
ây exp

�
�i!âyât

�
= ây exp (i!t) . (2.31d)

Substituting the above Equations in Eq.(2.29), we get

ĤI = ~p
�
�̂+âe

i(!o�!)t + �̂�â
ye�i(!o�!)t

�
= ~p

�
�̂+âe

i(�)t + �̂�â
ye�i(�)t

�
, (2.32)

where � = !o � !. At exact resonance, i.e. ! = !o

ĤI = ~p
�
�̂+â+ �̂�â

y
�

= ~p

24 0 â

ây 0

35 . (2.33)
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The unitary time evolution operator is de�ned as

Û (t) = exp
�
�iĤIt=~

�
= 1� 1

1!

�
it

~
ĤI

�
+
1

2!

�
it

~
ĤI

�2
� 1

3!

�
it

~
ĤI

�3
+ ....., (2.34)

where ĤI is the complete Hamiltonian in the interaction picture. Substitute the value of ĤI

from Eq.(2.33) into Eq.(2.34) and after some calculation we get

Û (t) =

2664 cos
�
pt
p
âyâ+ 1

�
�i

sin
�
pt
p
âyâ+1

�
p
âyâ+1

â

�iây
sin
�
pt
p
âyâ+1

�
p
âyâ+1

cos
�
pt
p
âyâ
�

3775 . (2.35)

2.1.1 Reduced density matrix operator of �eld

For the interacting system, the density matrix operator of atom and �eld at time t is given by

�̂Atom
Field (t) = Û (t) �̂Atom
Field (t) Û
y (t) . (2.36)

If initially the atom and �eld are decoupled, we can write

�̂Atom
Field (0) = �̂Atom (0)
 �̂Field (0) . (2.37)

And if the initial atomic state is represented by Eq.(1.31), then

�̂Atom
Field (0) =

24 �aa� (0) �ab� (0)

�ba� (0) �bb� (0)

35 . (2.38)

To get reduced density matrix operator for �eld we trace �̂Atom
Field (t) over atom [11]

�̂Field (t) = TrAtom

�
Û (t) �̂Atom
Field (0) Û

y (t)
�
, (2.39)

putting the values from Eq.(2.38) and Eq.(2.35) in Eq.(2.39), we have
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�̂Field (t) = TrAtom

0BB@
2664 cos

�
pt
p
âyâ+ 1

�
�i

sin
�
pt
p
âyâ+1

�
p
âyâ+1

â

�iây
sin
�
pt
p
âyâ+1

�
p
âyâ+1

cos
�
pt
p
âyâ
�

3775�
24 �aa� (0) �ab� (0)

�ba� (0) �bb� (0)

35
2664 cos

�
pt
p
âyâ+ 1

�
i
sin
�
pt
p
âyâ+1

�
p
âyâ+1

â

iây
sin
�
pt
p
âyâ+1

�
p
âyâ+1

cos
�
pt
p
âyâ
�
3775
1CCA (2.40)

�̂Field (t) = �aa

h
cos
�
pt
p
âyâ+ 1

�
� (0) cos

�
pt
p
âyâ+ 1

�
+ây

sin
�
pt
p
âyâ+ 1

�
p
âyâ+ 1

� (0)
sin
�
pt
p
âyâ+ 1

�
p
âyâ+ 1

â

35
+�bb

h
cos
�
pt
p
âyâ+ 1

�
� (0) cos

�
pt
p
âyâ
�

+
sin
�
pt
p
âyâ+ 1

�
p
âyâ+ 1

â� (0) ây
sin
�
pt
p
âyâ+ 1

�
p
âyâ+ 1

35
+i�ab

24cos�ptpâyâ+ 1� � (0) ây sin
�
pt
p
âyâ+ 1

�
p
âyâ+ 1

�ây
sin
�
pt
p
âyâ+ 1

�
p
âyâ+ 1

� (0) cos
�
pt
p
âyâ
�35

+i�ba

24cos�ptpâyâ+ 1� � (0) sin
�
pt
p
âyâ+ 1

�
p
âyâ+ 1

â

�
sin
�
pt
p
âyâ+ 1

�
p
âyâ+ 1

â� (0) cos
�
pt
p
âyâ+ 1

�35 (2.41)

2.1.2 Reduced density matrix operator for atom

Similarly to get reduced density matrix operator for atom we trace �̂Atom
Field (t) over �eld

[22]
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�̂Atom (t) = TrField

�
Û (t) �̂Atom
Field (0) Û

y (t)
�

=
X
n

hnj Û (t) �̂Atom
Field (0) Û y (t) jni . (2.42)

Again substituting the values from Eq.(2.38) and Eq.(2.35), we get

�̂Atom (t) =

24 � (t)  (t)

� (t) � (t)

35 , (2.43)

where

� (t) =
X
n

�
�aa cos

2
�
pt
p
n+ 1

�
+ �bb sin

2
�
pt
p
n
��
�nn (0)

+i
X
n

�
�ab cos

�
pt
p
n+ 1

�
sin
�
pt
p
n+ 1

�
�nn+1 (0)

��ba sin
�
pt
p
n+ 1

�
cos
�
pt
p
n+ 1

�
�n+1n (0)

�
(2.44)

� (t) =
X
n

�
�aa sin

2
�
pt
p
n+ 1

�
+ �bb cos

2
�
pt
p
n
��
�nn (0)

+i
X
n

�
�ba cos

�
pt
p
n+ 1

�
sin
�
pt
p
n+ 1

�
�n+1n (0)

��ab sin
�
pt
p
n+ 1

�
cos
�
pt
p
n+ 1

�
�nn+1 (0)

�
(2.45)

 (t) =
X
n

�
�ab cos

�
pt
p
n+ 1

�
cos
�
pt
p
n
�
�nn (0)

+�ba sin
�
pt
p
n+ 1

�
sin
�
pt
p
n
�
�n+1n�1 (0)

�
+i
X
n

�
�aa cos

�
pt
p
n+ 1

�
sin
�
pt
p
n
�
�nn�1 (0)

��bb sin
�
pt
p
n+ 1

�
cos
�
pt
p
n
�
�n+1n (0)

�
(2.46)
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� (t) =
X
n

�
�ba cos

�
pt
p
n+ 1

�
cos
�
pt
p
n
�
�nn (0)

+�ab sin
�
pt
p
n+ 1

�
sin
�
pt
p
n
�
�n+1n�1 (0)

�
+i
X
n

�
�bb cos

�
pt
p
n
�
sin
�
pt
p
n+ 1

�
�nn+1 (0)

��aa sin
�
pt
p
n
�
cos
�
pt
p
n+ 1

�
�n�1n (0)

�
(2.47)
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Chapter 3

Study of entanglement in a moving

�ve-level atom

In the previous chapter we have calculated the reduced density operator for two-level atom and

�eld. Now in this chapter we will consider the cascade-type single �ve-level atomic system and

one mode cavity �eld. As we are solving the system numerically so all of the expressions given

below are in general form.

3.1 Mathematical modeling

We are taking into consideration cascade-type single �ve-level atom having transition energies

!p (p = 1,....,5), between the levels. Where !5 < !4 < !3 < !2 < !1. The atom is interacting

with a single-mode �eld. This �eld mode can be described by the non-Hermitian operators ây

and â known as creation and annihilation operators and frequency 
.

3.1.1 Hamiltonian of the system

The total Hamiltonian ĤT in the rotating wave approximation for the given system is

ĤT = ĤAtom�Field + ĤInt. (3.1)
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Where ĤAtom�Field is the Hamiltonian for the non-interacting atom and �eld, and the interac-

tion part is ĤInt. We can de�ne ĤAtom�Field as

ĤAtom�Field =
X
p

!p�̂p,p +
â
yâ, (3.2)

where ~ = 1 and �̂p,p = jpi hpj are known as population operators. And the interaction Hamil-

tonian for the non-resonant case is given as

ĤInt =

4X
p=1

�ph (z)
h
âe�i�pt�̂p,p+1 +

�
âe�i�pt�̂p,p+1

�yi
. (3.3)

We can de�ne detuning parameter as

�p = 
+ !p+1 � !p, (3.4)

and the coupling constant for atom and �eld is �p, where h (z) represents the shape function of

the �eld mode and atomic motion is along the z-axis. Now consider Eq.(3.3) and perform the

operation we get

ĤInt = h (z)
h�
e�i�1tâ j0i h1j+ ei�1t j1i h0j ây

�
�1 +

�
e�i�2tâ j1i h2j+ ei�2t j2i h1j ây

�
�2

+
�
e�i�3tâ j2i h3j+ ei�3t j3i h2j ây

�
�3 +

�
e�i�4tâ j3i h4j+ ei�4t j4i h3j ây

�
�4

i
. (3.5)

Since detuning can not be negative it may be zero or positive so here we are taking t > 0,

�1 � 0, �2 � 0, �3 � 0, �4 � 0.

3.1.2 Wave function for the system

For the construction of wave function we assume that initially at time t = 0 the atom was in

its upper-state j0i and the �eld was in coherent state. Thus the wave function can be written

into its �eld and atomic parts as follows

j	(t = 0)i =
X
n

qn j0; ni . (3.6)
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Where coherent state is de�ned as

qn = exp
�
� �n
2

� �np
n!
, (3.7)

and �n = j�j2 known as initial mean photon number. To construct wave function at time t we

may proceed as follows

j	(t)i = Û (t) j	(t = 0)i . (3.8)

Where Û (t) is the unitary time-evolution operator given by

Û (t) = exp
�
�iĤIntt=~

�
. (3.9)

It should be noted that in our calculations we are taking ~ = 1 also �nd eigenvalues and

eigenvectors of interaction Hamiltonian. By placing these values in Eq.(3.9) we get that form of

unitary operator which can apply on wave function at time t = 0 and then we construct wave

function at any time t.

3.1.3 Density matrix formation

Once a wave function has been establish at time t one can develop density matrix by the

following expression

�̂ (t) = j	(t)i h	(t)j . (3.10)

Hence a given quantum state is described by the density operator �̂ (t).

3.1.4 Von Neumann entropy

The quantum mechanical entropy is also known as von Neumann entropy i.e.

SvN = �Tr (� ln �) . (3.11)

For all the pure states which ful�l the condition �̂2 = �̂, it gives zero i.e. SvN = 0. As the

�̂ is the given quantum state that�s why various pure states can not be distinguished by this
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entropy. So that to �nd the von Neumann entropy we take trace of the total density matrix

operator over the �eld and get a reduced density matrix operator given below

�̂Atom (t) = TrField (�̂ (t)) . (3.12)

Then the von Neumann entropy becomes

SAtom = �TrAtom f�̂Atom (t) ln �̂Atom (t)g . (3.13)

3.1.5 Decoherence e¤ect

To study the decoherence e¤ect we introduce a factor 2 in the unitary time-evolution operator

as given below

Û (t) = exp

�
�
2

�
ĤInt

�2
t=~� iĤIntt=~

�
. (3.14)

Then we use this unitary operator and make calculations same as above pattern and �nd some

useful results which shows that how system is going from quantum-mechanical to classical.
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Chapter 4

Results and discussion

In this dissertation we study the dynamics of entanglement via von Neumann entropy for a

�ve-level atom in a pure resonant case interacting with cavity �eld both for atom at rest and

in motion. We also determine the e¤ect of decoherence on the similar system. Further more,

we explore the atomic population dynamics of the system and relate it with entanglement.

We consider cascade type �ve-level atom interacting with �eld which is in the coherent state

with mean photon number j�j2 = 25. The plots of von Neumann entropy with and without

atomic motion along with atomic population are given in Fig.(4-1) to Fig.(4-8). For the case

of atom at rest von Neumann entropy shows non periodic oscillatory behavior with range of

oscillations between 1 and ln 5. The entanglement remained non-zero throughout the scaled

time. Whereas, atomic population shows oscillatory behavior with non-zero positive values

without reaching its maximum value of 1 indicating that system remains entangled.

We also consider atom in a motion. A periodic oscillatory behavior is observed with en-

tanglement value between 1 and zero showing maximum entanglement and disentanglement

of the system. Correspondingly, we can see that atomic population �11 approaches value 1

at disentanglement point of von Neumann entropy and also at �11 = 1. Other populations

(�33 and �55) are zero. So we can see that the atomic motion play a role of entanglement and

disentanglement generator for such type of models.
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Figure 4-1: The time evolution of the von Neumann entropy for the pure resonant case. The

atomic motion is neglected.
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Figure 4-2: The time evolution of the atomic population �11 for the pure resonant case. The

atomic motion is neglected.
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Figure 4-3: The time evolution of the atomic population �33 for the pure resonant case. The

atomic motion is neglected.
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Figure 4-4: The time evolution of the atomic population �55 for the pure resonant case. The

atomic motion is neglected.
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Figure 4-5: The time evolution of the von Neumann entropy for the pure resonant case. The

atomic motion is considered.
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Figure 4-6: The time evolution of the atomic population �11 for the pure resonant case. The

atomic motion is considered.
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Figure 4-7: The time evolution of the atomic population �33 for the pure resonant case. The

atomic motion is considered.
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Figure 4-8: The time evolution of the atomic population �55 for the pure resonant case. The

atomic motion is considered.
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Figure 4-9: The e¤ect of decoherence on the time evolution of the von Neumann entropy with

decoherence parameter  = 0. The atomic motion is neglected.
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Figure 4-10: The e¤ect of decoherence on the time evolution of the von Neumann entropy

with decoherence parameter  = 0:001. The atomic motion is neglected.
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Figure 4-11: The e¤ect of decoherence on the time evolution of the von Neumann entropy

with decoherence parameter  = 0:01. The atomic motion is neglected.
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Figure 4-12: The e¤ect of decoherence on the time evolution of the von Neumann entropy

with decoherence parameter  = 0:1. The atomic motion is neglected.

We also explore the e¤ect of decoherence by introducing decoherence parameter  in the dy-

namics of the atom-�eld interaction. It can be seen in Fig.(4-9) to Fig.(4-12) that by increasing

decoherence in the system, the entanglement reduces with non-oscillatory constant behavior in
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the static case and it reduces with periodic oscillatory behavior for the case of atom in motion

as shown in Fig.(4-13) to Fig.(4-16).
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Figure 4-13: The e¤ect of decoherence on the time evolution of the von Neumann entropy

with decoherence parameter  = 0. The atomic motion is considered.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

SCALED TIME

EN
TR

O
PY

t

Figure 4-14: The e¤ect of decoherence on the time evolution of the von Neumann entropy

with decoherence parameter  = 0:001. The atomic motion is considered.
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Figure 4-15: The e¤ect of decoherence on the time evolution of the von Neumann entropy

with decoherence parameter  = 0:01. The atomic motion is considered.
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Figure 4-16: The e¤ect of decoherence on the time evolution of the von Neumann entropy

with decoherence parameter  = 0:1. The atomic motion is considered.
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Figure 4-17: The e¤ect of decoherence on the time evolution of the atomic population �11

with decoherence parameter  = 0. The atomic motion is neglected.

In the static case the population continues to attain constant non-zero value due to decoherence

e¤ect while for the atomic motion case, its value also reduces except for the case of disentan-

glement where it attains maximum value of 1 even in the presence of decoherence. The results

are shown in given Fig.(4-17) to Fig.(4-40).
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Figure 4-18: The e¤ect of decoherence on the time evolution of the atomic population �11

with decoherence parameter  = 0:001. The atomic motion is neglected.
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Figure 4-19: The e¤ect of decoherence on the time evolution of the atomic population �11

with decoherence parameter  = 0:01. The atomic motion is neglected.
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Figure 4-20: The e¤ect of decoherence on the time evolution of the atomic population �11

with decoherence parameter  = 0:1. The atomic motion is neglected.
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Figure 4-21: The e¤ect of decoherence on the time evolution of the atomic population �11

with decoherence parameter  = 0. The atomic motion is considered.
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Figure 4-22: The e¤ect of decoherence on the time evolution of the atomic population �11

with decoherence parameter  = 0:001. The atomic motion is considered.
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Figure 4-23: The e¤ect of decoherence on the time evolution of the atomic population �11

with decoherence parameter  = 0:01. The atomic motion is considered.
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Figure 4-24: The e¤ect of decoherence on the time evolution of the atomic population �11

with decoherence parameter  = 0:1. The atomic motion is considered.
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Figure 4-25: The e¤ect of decoherence on the time evolution of the atomic population �33

with decoherence parameter  = 0. The atomic motion is neglected.
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Figure 4-26: The e¤ect of decoherence on the time evolution of the atomic population �33

with decoherence parameter  = 0:001. The atomic motion is neglected.
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Figure 4-27: The e¤ect of decoherence on the time evolution of the atomic population �33

with decoherence parameter  = 0:01. The atomic motion is neglected.
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Figure 4-28: The e¤ect of decoherence on the time evolution of the atomic population �33

with decoherence parameter  = 0:1. The atomic motion is neglected.
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Figure 4-29: The e¤ect of decoherence on the time evolution of the atomic population �33

with decoherence parameter  = 0. The atomic motion is considered.
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Figure 4-30: The e¤ect of decoherence on the time evolution of the atomic population �33

with decoherence parameter  = 0:001. The atomic motion is considered.
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Figure 4-31: The e¤ect of decoherence on the time evolution of the atomic population �33

with decoherence parameter  = 0:01. The atomic motion is considered.
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Figure 4-32: The e¤ect of decoherence on the time evolution of the atomic population �33

with decoherence parameter  = 0:1. The atomic motion is considered.
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Figure 4-33: The e¤ect of decoherence on the time evolution of the atomic population �55

with decoherence parameter  = 0. The atomic motion is neglected.
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Figure 4-34: The e¤ect of decoherence on the time evolution of the atomic population �55

with decoherence parameter  = 0:001. The atomic motion is neglected.
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Figure 4-35: The e¤ect of decoherence on the time evolution of the atomic population �55

with decoherence parameter  = 0:01. The atomic motion is neglected.
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Figure 4-36: The e¤ect of decoherence on the time evolution of the atomic population �55

with decoherence parameter  = 0:1. The atomic motion is neglected.
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Figure 4-37: The e¤ect of decoherence on the time evolution of the atomic population �55

with decoherence parameter  = 0. The atomic motion is considered.
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Figure 4-38: The e¤ect of decoherence on the time evolution of the atomic population �55

with decoherence parameter  = 0:001. The atomic motion is considered.
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Figure 4-39: The e¤ect of decoherence on the time evolution of the atomic population �55

with decoherence parameter  = 0:01. The atomic motion is considered.
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Figure 4-40: The e¤ect of decoherence on the time evolution of the atomic population �55

with decoherence parameter  = 0:1. The atomic motion is considered.

In the end, we can conclude that this research will lead us to explore the behavior of

entanglement via di¤erent entanglement scenario for various atom-�eld interaction models which

will be helpful to increase our understanding in the �eld of quantum information.
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