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Chapter 1

Introduction

The unavailability of a solitary stress tensor that can be used to model all the non-Newtonian

�uids diversi�es the �eld of �uid mechanics from other disciplines. For �ow problems allied with

diverse �uid models the attained mathematical formalisms consists of a set of coupled highly

non-linear partial di¤erential equations. In numerous situations, the exact solution for such

system, for a wide range of the involved physical parameters is yet a dream for the researchers

even after putting enormous labor. The concept of boundary layers has overcome this exertion

in various circumstances. The idea was �rst socialized by Ludwig Prandtl when he presented

his paper at the 3rd International Congress of Mathematicians in Heidelberg, Germany in

1904 [1]. Since then, the theory is applied to virtually all the available non-Newtonian �uid

models for diverse problems of �uid �owing under di¤erent physical constraints and the highly

nonlinear coupled system of partial di¤erential equations is abridged into a much simple one by

systematically negating the less contributing slice. Mathematically, the role of the boundary

layer is often to reduce the original elliptic nature scheme of partial di¤erential equations into a

more simple parabolic nature. The sensitivity of boundary layer theory is exceedingly enhanced

by Blasius by adding the essence of transformed domain similarity solutions for the problem

of viscous �uid �ow past a �at plate [2]. Together, the boundary layer approximations and

the similarity transformations has become a strong tool for the researchers and have been

successfully applied on almost every available �uid model. Abel et al. [3] inspected the boundary

layer �ow of a second grade �uid past a stretched surface. Sahoo and Do [4] have probed into

the e¤ects of magnetic �eld and the partial slip on the �ow and heat transfer of an electrically
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conducting third grade �uid �ow due to a linearly stretched surface. In another work, Sahoo

and Poncet [5] have inspected the e¤ects of slip and magnetic �eld on the �ow and heat transfer

of an incompressible, electrically conducting fourth grade �uid, �owing past an in�nite porous

plate. Nadeem et al. [6] have studied the magnetohydrodynamic e¤ects over the boundary

layer �ow of a Casson �uid, for the case when the �uid is �owing in two lateral directions past

a porous linearly stretched surface. Khan and Khan [7] have presented the solutions of the

steady boundary layer �ow of Williamson �uid, �owing under four di¤erent situations, namely

the Blasius �ow, the Sakiadis �ow, the stretching and the stagnation point �ows. Tonekaboni et

al. [8] have presented the similarity solutions for three di¤erent cases of the boundary layer �ow

of non-Newtonian viscoelastic Walters�B �uid �ow, namely stagnation-point �ow problem, the

Blasius �ow problem and the Sakiadis �ow problem. Hayat et al. [9] have presented the solutions

for the problem of boundary layer �ow and heat transfer for the Eyring Powell �uid �owing over

a moving surface with convective boundary conditions by means of homotopy analysis method.

Rehman and Nadeem [10] have discussed the problem of nanoparticles e¤ects over the boundary

layer �ow of a micropolar �uid �owing over a vertical slender cylinder. Wang and Chen [11]

have discussed the problem of steady laminar boundary layer �ow of a non-Newtonian power-

law �uid �owing past a semi-in�nite symmetric structure with a wavy surface and a uniform

wall temperature such that the axis of symmetry is aligned with the oncoming uniform stream.

Khan et al. [12] have examine the in�uence of magnetic �eld and chemical reaction over the

boundary layer �ow of an electrically conducting non-Newtonian couple stress �uid �owing over

sheet that is stretched along its surface with a non-linear surface stretching velocity. Nadeem et

al. [13] have discussed the e¤ects of magnetohydrodynamics and nanoparticles for the boundary

layer �ow of non-Newtonian Maxwell �uid �owing past a stretching sheet. Akber et al. [14] have

analyzed the problem of boundary layer �ow of tangent hyperbolic �uid towards a stretching

sheet. Malik et al. [15] have studied the boundary layer �ow and heat transfer in Sisko �uid

�owing over a nonisothermal nonlinearly stretching surface with convective boundary condition

under the in�uence of a uniform transverse magnetic �eld. Hayat et al. [16] have presented

the analysis for momentum and thermal boundary layers arising from the motion of Carreau

�uid �owing above a stretching sheet with convective boundary conditions. Hamad et al. [17]

have studied the dynamics of the thermal boundary layer �ow of a steady, incompressible non-
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Newtonian Je¤rey �uid near the stagnation point on a stretching sheet taking into account the

thermal jump condition at the surface of the sheet. Hayat and Mumtaz [18] have presented an

analysis for the hydromagnetic boundary layer �ow of a non-Newtonian Johnson-Segalman �uid

�owing over a semi-in�nite expanse of electrically conducting rotating plate in the presence of

a transverse magnetic �eld. Phan-Thien [19] has obtained the solutions for the boundary layer

stagnation point �ows of an Oldroyd-B �uid �ow for the case of plane stagnation point and

axi-symmetric stagnation �ows. Ravindran et al. [20] analyzed the occurrence of boundary

layers due to the �ow of a Burgers��uid �ow in an orthogonal rheometer. Pai and Kandasamy

[21] have studied the momentum boundary layer pro�le due to the entrance region �ow of a

Herschel-Bulkley �uid �owing through an annular cylinder. Nirmalkar et al. [22] have studied

the boundary layer creeping �ow of a Bingham plastic �uid �owing past a two dimensional

cylinder of square cross-section.

The study of stretching sheet was initiated by Crane [23]. Since then, the study of �uid

past a stretching surface has become a problem of concentration for researchers due to its

inclusive usage in wire drawing, polymer processing, glass blowing, metal spinning, manufac-

turing, cooling of metallic plates, extrusion of polymers, puri�cation of lique�ed metal from

non-metallic inclusion, manufacturing process of arti�cial �lms and �bers, polymeric sheets,

crystal growing and hot rolling. It is also used to assemble car body works in automobiles

and to manufacture aircraft fuselages in aeronautics. It is experimentally validated that at high

temperature; material passes through extrusion in lique�ed state. This elongation of material is

approximately proportional to the distance from the stagnation point. Particularly, for the �ow

problem over an exponentially stretching surface, the annealing and thinning of copper wires,

the �nal product depends on the heat transfer rate at the surface of the stretching continuous

object with exponential variations of stretching velocity and temperature distribution. During

such practices, the kinematics of stretching and the heating/cooling have a crucial impact on

the quality of the �nal products [24]. Mahapatra and Gupta [25] have debated the stagnation

point �ow of viscous �uid over a �at deformed sheet. They perceived a boundary layer imme-

diate to the stretching surface and also observed that the con�guration of this boundary layer

rests on the ratio of the velocity of the stretching surface to that of the frictionless potential

�ow in the neighborhood of the stagnation point. Bachok et al. [26] explained the problem
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of stagnation point �ow over a stretching/shrinking sheet which is placed inside a nano �uid.

The solution was carried for three speci�c water-based nano particles that are copper, alumina

and titania. According to their results skin-friction coe¢ cient has the largest magnitude for

copper while the least for alumina while the local Nusselt numbers have the largest values for

copper while the least for titania. Chiam [27] studied the problem of boundary layer �ow and

heat transfer of an electrically conducting �uid over a non-isothermal stretching sheet under

the in�uence of a transverse magnetic �eld. Salleh et al. [28] have provided numerical solutions

using Keller-box technique for the problem of boundary layer �ow and heat transfer over a

stretching sheet with Newtonian heating. They examined the in�uence of Prandtl number over

the temperature pro�les and the heat transfer coe¢ cient. They were of the view that the ther-

mal boundary layer thickness has a strong dependence upon the Prandtl number and that the

temperature pro�le decreases with an increase in the Prandtl number. Mukhopadhyay [29] has

numerically analyzed the problem of boundary layer �ow and heat transfer towards a porous

exponentially stretched sheet in presence of a magnetic �eld with partial slip conditions for the

velocity and temperature functions at the surface of the sheet. She concluded that the surface

shear stress is an increasing function of the magnetic �eld parameter and that the thermal

boundary layer thickness is an increasing function of both the magnetic �eld parameter and the

non-dimensional radiation parameter. In another e¤ort, Mukhopadhyay [30] has presented the

numerical results for the problem of steady, incompressible magnetohydrodynamic boundary

layer �ow and heat transfer of a viscous �uid �owing over a porous surface that is stretched

with some exponential velocity along the surface of the object and is embedded in a thermally

strati�ed medium. She obtained the result that the velocity �eld is suppressed by both the

magnetic �eld parameter and the suction parameter. She also commented that the rate of

heat transfer is a decreasing function of the non-dimensional strati�cation parameter. Fang

and Zhong [31] have presented closed form analytic solutions for the boundary layer �ow over

a stretching/shrinking sheet with di¤erent stretching/shrinking velocity distributions assumed

at the surface of the cylinder. They considered the surface stretching velocities to be linear,

bilinear, nonlinear exponential, quadratic, power-law and periodic functions of the distance over

the points on the surface of the cylinder from that of the stagnation point.

They commented that solution for such a problem is important for the case when mass
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transfer at the wall is a function of the surface stretching velocity of the wall. Bhargava et

al. [32] have studied the problem of steady incompressible boundary layer �ow of the non-

Newtonian micropolar �uid �ow, heat and mass transfer over a nonlinear stretching Sheet. The

problem was solved numerically with the help of �nite di¤erence and the �nite element methods.

Their work showed that the solutions obtained with both the methods were in contract. They

concluded that the convective parameter can adeptively be used for stability of the temperature

distribution. In another work, Fang et al. [33] analyzed the slip �ow of viscous �uid �owing

over a stretching/shrinking surface. They solved the problem for Wu�s second order slip �ow

model. Merkin and Kumaran in their work [34] have examined the problem of unsteady, 2D

laminar, incompressible, boundary layer �ow of a viscous �uid �owing over an impulsively

stretching/shrinking sheet. The �uid was assumed to be under the in�uence of a constant

transverse magnetic �eld. Di¤erent solutions were obtained depending upon distinct values

of the magnetic parameter, that is, the strength of the imposed magnetic �eld relative to the

stretching velocity of the surface. In [35], Yacob et al. have commented over the melting

e¤ects over the boundary layer �ow and heat transfer of a non-Newtonian micropolar �uid

�owing over a stretching/shrinking sheet. They observed that the presence of melting route

has decreased the friction and the heat transfer rate at the solid-liquid interface. Zheng et

al. [36] have analyzed the problem of boundary layer for the �ow and radiative heat transfer

of an incompressible non-Newtonian micropolar �uid �owing over a stretching/shrinking sheet

with nonlinear power-law surface stretching velocity and temperature functions. They applied

the homotopy analysis method to obtain the dual solutions associated with the problem and

included a detailed analysis of the e¤ects of power-law index on the velocity and radiative

temperature �elds. Ishak et al. [37] have obtained numerical solutions through the Keller-box

technique for the problem of �ow and heat transfer of steady, incompressible boundary layer

viscous �uid �owing outside a stretching permeable hollow cylinder with suction/injection.

Their important observation was that the skin friction coe¢ cient remains unchanged with

varying Prandtl numbers and that skin friction reduces when the �uid �ow is in�uenced by

injection. They also predicted that in case of feeble injection, water is a healthier cooling

mediator than air.

Ishak [38] has also numerically analyzed the e¤ects of thermal radiation and magnetohydro-

8



dynamic on the two dimensional boundary layer �ow and heat transfer of a steady, incompress-

ible viscous �uid �owing over an exponentially stretching sheet. His conclusion was that both

the magnetic and the radiation parameters have an inverse behavior on the temperature func-

tion. Govardhan and Kishan [39] have investigated the magnetohydrodynamic e¤ects on the

problem of boundary layer �ow and heat transfer of unsteady, incompressible non-Newtonian

micropolar �uid �owing over a stretching surface, when the sheet is stretched in its own plane

linearly with the distance along the surface of the sheet. The problem was solved numeri-

cally with the help of Adams-Predictor Corrector technique for both the transient and the

steady state �ow outlines. They commented that the microrotation in�uence is more evident

for n = 1=2 as compared with n = 0. The microrotation function has a parabolic distribution

for n = 0, while for n = 1=2; the distribution is always decreasing. Due to impulsive motion,

they found the skin friction coe¢ cient having large magnitude values for small time at start

of the motion. The skin friction coe¢ cient magnitude values have a monotonic decrease till

they reached the steady state values. Ahmad and Asghar [40] have obtained the exact analytic

solutions for the �ow and heat transfer of non-Newtonian second grade �uid �owing over a

stretching surface with arbitrary velocity and appropriate wall transpiration. They considered

the surface stretching velocities at the surface of the sheet to be linear, quadratic and polynomial

functions of the length of the surface from the stagnation point. Weidman and Magyari [41]

have obtained an exact solution of the Crane-type boundary layer partial di¤erential equations

arising from the problem of steady, incompressible viscous �uid �ow encouraged by a planar

stretching surface having an appropriate distribution of wall transpiration. They concluded

that for any type of surface stretching velocity, the Crane-type boundary layer equations can

be generated if the stretching sheet is permeable and an appropriate dissection of the wall

transpiration subsists. Phakirappa et al. [42] have debated on the �ow pattern of boundary

layer viscous �uid and heat transfer in presence of a porous medium when the �ow happens due

to a non-isothermal stretching sheet with free convection and a temperature gradient reliant

heat sink along with internal heat generation and suction/injection beneath the in�uence of

a transverse magnetic �eld. Their attained exact solutions for the velocity and temperature

pro�les were in terms of the Kummer�s function. Mahmoud et al. [43] have studied the impact

of radiation and a uniform magnetic �eld on the hydromagnetic boundary layer �ow and heat
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transfer of an electrically conducting non-Newtonian micropolar �uid �ows over a continuously

moving stretching surface embedded in a non-Darcian porous medium. On the basis of the

numerical solutions that were obtained, they were of the view that both the linear and angular

velocity functions were in inverse proportion to the magnetic parameter and the Darcy number

and that the radiation parameter increase the rate of heat transfer at the surface of the sheet.

Gang et al. [44] have presented the exact solutions of the Navier-Stokes equations appearing

from the boundary layer �ow of a viscous �uid on an expending cylinder, where the surface

stretching velocity of the cylinder was assumed to be proportional to the axial distance from

the origin and a decreasing function of time. The radius of the cylinder was taken as a time

dependent entity that fetched the impact of unsteady expansion of the cylinder in the analysis.

Attia [45] has discussed the steady, laminar incompressible �uid �ow problem of stagnation

point boundary layer �ow of micropolar �uid �owing over a permeable stretching surface with

heat generation/ absorption with constant wall and steam temperatures. His numerical solu-

tion based on the �nite di¤erence approximation indicated that the velocity boundary layer

thickness is a decreasing function of the stretching velocity of the surface of the sheet. Bidin

and Nazar [46] have carried an analysis for the problem of steady laminar incompressible two

dimensional boundary layer �ow and heat transfer of a viscous �uid �ow over a stretching sheet

with thermal radiation. The surface stretching velocity is assumed to be an exponential func-

tion of the distance on the surface from the stagnation point. Their analysis was based on the

implicit �nite di¤erence scheme, the Keller-box technique. Rosali et al. [47] have numerically

analyzed the boundary layer �ow of non-Newtonian micropolar �uid �ow towards a permeable

stretching/shrinking sheet in a porous medium with suction/injection. They showed that by

increasing the permeability parameter, the skin friction coe¢ cient enhances. Turkyilmazoglu

[48] has studied the magnetohydrodynamic, steady laminar boundary layer �ow of a viscous

�uid �owing through a radially stretchable rotating disk in presence of a uniform vertical mag-

netic �eld with viscous dissipation and Joule heating. The problem is a generalization of the

classical von Karman pump problem. Their analysis showed a strong dependence of the viscous

and thermal boundary layer thicknesses over the rotation strength of the disk and the magnetic

�eld strength. They concluded that the role of Joule heating is that to enhance the tempera-

ture distribution near the wall. Seddeek [49] has studied the magnetohydrodynamic hall and
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ion-slip current e¤ects over the steady boundary layer �ow of a non-Newtonian �uid �ow and

heat transfer of a stretching sheet with suction and blowing. They included an interesting com-

ment in their conclusion that unclean �uids may be preferable over the clean �uids in industrial

applications where control of convective heat transfer is important. Kameswaran et al. [50]

have analyzed the homogeneous-heterogeneous e¤ects over the �ow of boundary layer viscous

nano �uid �owing over a stretching or shrinking sheet in a porous medium. The analysis was

carried for the copper-water and the silver-water nano �uids such that the di¤usion coe¢ cients

of the reactant and the auto catalyst are equal. They concluded that the nano particle volume

fraction decreases the velocity pro�le and that the nano particle concentration at the surface

is a decreasing function of the strength of the heterogeneous reaction for both copper-water

and silver-water nano �uids. It was also mentioned that for the shrinking sheet problem, the

velocity pro�le is a decreasing function of the increasing values of the nano particle volume

friction for both the copper-water and silver-water nano �uids. Ibrahim and Shankar [51] have

investigated the problem of boundary layer �ow and heat transfer of a viscous nano �uid �ow-

ing over a permeable stretching sheet with slip boundary condition and thermal radiation. The

�ow was also assumed to be under the in�uence of a uniform magnetic �eld. They included

a detailed analysis for the e¤ects of radiation, Brownian motion, thermophoresis parameter

and nanoparticle fraction on the boundary layer �ow and heat transfer due to nano �uids.

They concluded that the boundary layer thickness is a decreasing function of the magnetic �eld

strength, the thermal boundary layer thickness is a decreasing function of the slip parameter

while an increasing function of the radiation parameter, the magnetic �eld parameter and the

thermophoresis parameter. Bachok and Ishak [52] have analyzed the problem of boundary layer

�ow and heat transfer of steady, laminar incompressible viscous �uid �ow due to a stretching

cylinder with prescribed surface heat �ux. They commented that both the shear stress at the

surface and the heat transfer rate at the surface are increasing functions of the curvature pa-

rameter. Makinde et al. [53] analyzed the combined e¤ects of the buoyancy force, convective

heating, Brownian motion, thermophoresis and magnetic �eld over the stagnation point bound-

ary layer �ow and heat transfer due to nano �uid �owing towards a stretching sheet. Ibrahim

et al. [54] have discussed the e¤ect of magnetic �eld on stagnation point �ow and heat transfer

of nano �uid �owing towards a stretching sheet. Two important works about �uid �ow over
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stretching surfaces are cited in [55-58].

The present dissertation is centered mainly for the boundary layer �ow of non-Newtonian

�uid and heat transfer analysis by a stretching cylinder. Flow caused is by an exponentially

stretching cylinder. The structure of thesis is arranged in eight chapters. The chapter wise

arrangement is given below:

Literature review is presented in chapter 1. Chapter 2 describes �ow of Casson �uid past

an exponentially stretching cylinder. Nano �uid is considered. Numerical solution by Runge-

Kutta Fehlberg technique is developed. Contents of this chapter are published in �Applied

NanoScience�

Chapter 3 contains a study of heat transfer in boundary layer �ow power law �uid past a ver-

tical stretching cylinder. Further, the solution of the problem is obtained using the Runge-Kutta

Fehlberg technique. Contents of this chapter are published in �Applied and Computational

Mathematics�

Chapter 4 presents an analysis for boundary layer �ow and heat transfer for hyperbolic

tangent �uid. Stretching cylinder is examined. This problem is solved with the help of Runge�

Kutta�Fehlberg method. Contents of the chapter are published in �Alexandria Engineering

Journal�

The steady boundary layer �ow of Williamson �uid past a stretching cylinder is examined in

chapter 5. The obtained modeled equations are solved numerically with the help of Keller box

method. Chapter 6 addresses Williamson material with Brownian motion and thermophoresis.

Chapter 7 is developed to study the e¤ects of double strati�cation e¤ect in mixed convec-

tion boundary layer �ow of Eyring-Powell �uid by an inclined stretching cylinder. Numerical

solutions of resulting intricate non-linear boundary value problem are computed successfully by

utilizing �fth order Runge-Kutta algorithm with shooting technique. Contents of this chapter

are published in �AIP Advances�.

Finally, chapter 8 gives the solution for steady boundary layer �ow of a second grade �uid

past a vertical stretching cylinder. Heat transfer is discussed. The obtained system of equa-

tions subject to the boundary conditions are solved with the help homotopy analysis method

(HAM). The e¤ects of di¤erent parameters, like Reynolds numbers, Prandtl numbers and the

natural convection parameter are studied. The skin friction coe¢ cient and Nusselt numbers
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are presented for di¤erent parameters.
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Chapter 2

Boundary layer �ow of a Casson

nano�uid over a vertical

exponentially stretching cylinder

2.1 Introduction

The e¤ects of Casson nano�uid due to a vertically exponential cylinder are studied in this

chapter. Similarity solution of the boundary layer �ow is computed by choosing suitable trans-

formation. The governing partial di¤erential equations and boundary conditions are reduced

to a system of nonlinear ordinary di¤erential equations. The solutions of the problems are ob-

tained by using the numerical technique known as Runge Kutta Fehlberg method. Velocity and

temperature pro�les are presented through graphs. The important physical quantities such as

the skin friction coe¢ cient and the local Nusselt number are computed to examine the behavior

of di¤erent parameters.

2.2 Mathematical formulation

Consider the problem of natural convection boundary layer �ow of Casson nano�uid induced by

a vertical circular cylinder of radius a. The cylinder is assumed to be stretched exponentially

along the axial direction with velocity Uw. The temperature at the surface of cylinder is assumed
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Tw and the uniform ambient temperature is taken as T1 such that the quantity Tw � T1 > 0

in case of the assisting �ow while Tw�T1 < 0 in case of the opposing �ow, respectively. Under

these assumptions, the boundary layer equations of motion, heat transfer and nanoparticle

concentration are

ur +
u

r
+ wz = 0; (2.1)

uwr + wwz = �(1 +
1

�
)(wrr +

1

r
wr) + g�(T � T1)(1� �1)

+
1

�
(�� � �)(�� �1); (2.2)

uTr + wTz = �(Trr +
1

r
Tr) +

��c�p
�cp

(DTTr�r +
DT
T1

T 2r ); (2.3)

w�1 + u�r = DB(�rr +
1

r
�r) +

DT
T1

(Trr +
1

r
Tr); (2.4)

where the velocity components along r and z directions are u and w respectively. � is the

density, � is the kinematic viscosity, p is the pressure, g is the gravitational acceleration along

z � axis, � is the coe¢ cient of thermal expansion, T is the temperature and � is the thermal

di¤usivity. The corresponding boundary conditions for the problem are

u(a; z) = 0; w(a; z) = Uw w(r; z) �! 0 as r �!1; (2.5)

T (a; z) = Tw (z) ; T (r; z) �! T1 as r �!1; (2.6)

�(a; z) = �w (z) ; �(r; z) �! �1 as r �!1; (2.7)

where Uw = 2akez=a is the �uid velocity at the surface of the cylinder.

2.3 Solution of the problem

We have the following similarity transformations:

u = �1
2
Uw

f(�)
p
�
; w = Uwf

0 (�) ; (2.8)

� =
T � T1
Tw � T1

; � =
r2

a2
; h =

�� �1
�w � �1

(2.9)
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where the characteristic temperature and nanoparticles concentration di¤erence is calculated

from the relations Tw � T1 = cez=a and �w � �1 = ez=a: With the help of transformations

(2:8) and (2:9), Eqs: (2:1) to (2:4) take the form

(1 +
1

�
)(�f 000 + f 00) + Re(ff 00 � f 02) + Re�(1� �1)(� +Nrh) = 0 (2.10)

��00 + �0 +RePr(f�0 � f 0�) + ��0(Nbh0 +Nt�0) = 0 (2.11)

�h00 + h0 +
Nt
Nb
(��00 + �0) + ReLe(fh0 � f 0h) = 0 (2.12)

in which � = g�a(Tw � T1)=U2w is the natural convection parameter, Pr = v=� is the Prandtl

number, Le = �=DB is the Lewis number, Nr = (�� � �)(�w � �1)=��(Tw � T1)(1 � �1)

is the buoyancy ratio, Nb = ��C�pDB(�w � �1)=�Cp� is the Brownian motion parameter,

Nt = ��C�pDT (�w � �1)=�Cp�T1 is the thermophoresis parameter and Re = aUw=4� is the

local Reynolds number. The boundary conditions in nondimensional form become

f (1) = 0; f 0 (1) = 1; � (1) = 1; h (1) = 1, (2.13)

f 0 �! 0; � �! 0; h �! 0; as � �!1: (2.14)

The important physical quantities such as the shear stress at the surface �w; the skinfriction

coe¢ cient cf ; the heat �ux at the surface of the cylinder qw and the local Nusselt number Nu

are

�w = � rz jr=a; qw = �k� r jr=a; (2.15)

cf =
�w
�U2w

; Nuz =
aez=aqw

k(Tw � T1)
(2.16)

The numerical solution of the present problem is computed by using Runge-Kutta-Fehlberg

method.

2.4 Results and discussion

Here, the e¤ect of the various parameters such as the Reynolds number Re; the Casson �uid

parameter �, the Brownian motion parameter Nb, the thermophoresis parameter Nt, the buoy-
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ancy ratio parameter Nr, the Prandtl number Pr and the natural convection parameter � on the

nondimensional velocity, temperature and concentration pro�les are presented graphically and

through tabular values. Fig:2:1 shows the e¤ect of Casson �uid parameter � on the velocity

pro�le f 0. From Fig:2:1; it is observed that for increasing the value of �; the velocity pro�le

decreases. Fig:2:2 shows the in�uence of mixed convection parameter � on the velocity pro�le

f 0. It is noticed that the velocity increases for large mixed convection parameter. That is, the

mixed convection parameter � is directly proportionally to the velocity pro�le f 0 for constant

values of other parameters. Similar pattern is observed for the buoyancy ratio Nr in Fig:2:3. In

Fig:2:4 by increasing the value of Reynolds number Re; the velocity pro�le decreases. Figs:2:5

and 2:6 show a very slow increase in temperature pro�le by increasing the values of Brownian

motion parameter Nb and the thermophoresis parameter Nt. Figs:2:7 and 2:8 re�ect similar

behaviour of temperature pro�le, i.e. by increasing the value of Reynolds number Re and the

Prandtl number Pr, the temperature pro�le decreases rapidly. In Fig: 2:9; it is clear that by

increasing the value of Lewis number Le; the nano concentration pro�le decreases instantly.

Fig:2:10 shows slow e¤ect of Reynolds number Re on nano concentration pro�le by increasing

Reynolds number Re. Table 2:1 shows the boundary derivatives for the velocity pro�le at the

surface of the cylinder that corresponds to the skin friction coe¢ cient for di¤erent values of �

and �. Tabulated values indicate that the magnitude of the boundary derivative increases with

the increase in � and it decreases by increasing the values of �. Table 2:2 illustrates the values

for local Nusselt numbers for di¤erent values of Re and Pr. It is noticed that local Nusselt

number increases when Re and Pr are increased.
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Fig.2.1 In�uence of Casson �uid

parameter on velocity pro�le

Fig. 2.2 In�uence of natural convection

parameter on velocity pro�le

Fig.2.3 In�uence of buoyancy ratio

parameter on velocity pro�le

Fig.2.4 In�uence of Reynold numbers on

velocity pro�le

18



Fig.2.5 In�uence of Brownian motion

parameter on temperature pro�le

Fig.2.6 Thermophoresis parameter on

temperature pro�le

Fig.2.7 In�uence of Prantdle numbers on

temperature pro�le

Fig.2.8 In�uence of Reynold numbers on

temperature pro�le
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Fig.2.9 In�uence of Lewis number on

concentration pro�le

Fig.2.10 E¤ect of variation of Reynolds

number on concentration pro�le.

Table 2:1 Skin friction coe¢ cient at

the surface of the cylinder for �n�

�n� 0.1 0.3 0.5 0.7 1.0

0.2 0.5333 0.6479 0.7154 0.7608 0.8071

0.4 0.5141 0.6021 0.6516 0.6840 0.7161

0.6 0.4950 0.5572 0.5895 0.6095 0.6283

0.8 0.4761 0.5130 0.5288 0.5369 0.5431
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Table 2:2 Local Nusselt number.

Pr nRe 0.1 0.2 0.3 0.4 0.5

1 0.2442 0.3094 0.3700 0.4260 0.4776

3 0.3826 0.5627 0.7173 0.8505 0.9668

5 0.5118 0.7844 1.0058 1.1904 1.3489

7 0.6327 0.9814 1.2546 1.4790 1.6714

15 1.0499 1.6121 2.0318 2.3762 2.6739

2.5 Conclusions

This study was focused on natural convection boundary layer �ow of a Casson nano�uid. Nu-

merical solution of the problem is obtained with the help of Runge-Kutta-Fehlberg method.

Main �ndings of present analysis are listed below:

� Velocity pro�le increases by increasing buoyancy ratio parameter Nr and natural convec-

tion parameter � but it decreases when Casson �uid parameter � and Reynold number

Re are enhanced.

� Temperature pro�le increases for larger Brownian motion parameter Nb whereas ther-

mophoresis parameterNt decreases by increasing Reynold number Re and Prandtl number

Pr :

� Nano concentration pro�le increases on increasing Reynold number Re and it decreases

by increasing Lewis number Le.

� Skin friction coe¢ cient decreases on increasing natural convection parameter � and it

increases for increasing Casson �uid parameter �.

� Local Nusselt number increases for larger Reynold number Re and Prandtl number Pr :
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Chapter 3

Numerical study of convective heat

transfer in �ow of power law �uid by

an exponentially stretching cylinder

3.1 Introduction

This chapter focuses on �ow of power law �uid model due to vertical exponentially stretching

cylinder with heat transfer. The governing partial di¤erential equations are transformed to

a system of ordinary di¤erential equations. For numerical solution, Runge-Kutta-Fehlberg

method is used. The e¤ects of variation in physical parameters on velocity and temperature

are highlighted through graphs. The important physical quantities, such as the skin friction

coe¢ cient and the local Nusselt number are computed.

3.2 Formulation

Here, the problem of natural convective boundary layer �ow of a power law �uid �owing by

a vertical circular cylinder of radius a is under consideration. The cylinder is assumed by an

exponentially stretching sheet. The sheet stretches with velocity Uw: The temperature at the

surface of the cylinder is assumed to be Tw and the uniform ambient temperature is taken as

T1 such that the quantity Tw � T1 > 0 for assisting �ow whereas Tw � T1 < 0 for opposing
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�ow, respectively. Under these assumptions the boundary layer equations of motion and heat

transfer are

ur +
u

r
+ wz = 0; (3.1)

uwr + wwz =
k

�
(
wnr
r
+ nwn�1r wrr) + g�(T � T1); (3.2)

uTr + wTz = �(Trr +
1

r
Tr); (3.3)

In above equations, the velocity components along the (r; z) axes are (u;w), � is �uid density,

k is the consistency coe¢ cient, p is pressure, g is the gravitational acceleration along the z�

direction, � is the coe¢ cient of thermal expansion, T is the temperature and � is the thermal

di¤usibility. The corresponding boundary conditions are expressed as follows:

u(a; z) = 0; w(a; z) = Uw w(r; z) �! 0 as r �!1; (3.4)

T (a; z) = Tw (z) ; T (r; z) �! T1 as r �!1: (3.5)

Here, Uw = 2akez=a denotes the �uid velocity at the surface of cylinder.

3.3 Solutions

We write

u = �1
2
Uw

f(�)
p
�
; w = Uwf

0 (�) ; (3.6)

� =
T � T1
Tw � T1

; � =
r2

a2
; (3.7)

where the characteristic temperature di¤erence is calculated from the relations Tw � T1 =

cez=a:With the help of transformations (3:6) and (3:7), Eqs: (3:1) to (3:3) become

(n+ 1)�
n�1
2 ( f 00)n + 2n�

n+1
2 f 000( f 00)n�1 +Rea(ff

00 � f 02) + Rea �� = 0 (3.8)

��00 + �0 +
1

2
RePr(f�0 � f 0�) = 0; (3.9)
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in which � = g�a(Tw � T1)=U2w is the natural convection parameter, Pr = k=�� is the Prandtl

number, Rea = �anU2�nw =k is the local Reynolds number and Re = a�Uw=4k is the Reynolds

number. The boundary conditions are reduced to

f (1) = 0; f 0 (1) = 1; � (1) = 1; (3.10)

f 0 �! 0; � �! 0; as � �!1: (3.11)

The skin friction coe¢ cient cf and the local Nusselt number Nuz are

�w = � rz jr=a; qw = �k� r jr=a; (3.12)

cf =
�w
�U2w

; Nuz =
aez=aqw

k(Tw � T1)
(3.13)

3.4 Discussion

Our intrest in this section is to investigate the e¤ects of the Reynolds number Re;the local

Reynolds number Rea; the power law index n, the Prandtl number Pr and the natural convection

parameter � over the nondimensional velocity and temperature pro�les. For this purpose, the

graphs and tables will be prepared. Fig: 3:1 shows the e¤ects of natural convection parameter �

on the velocity pro�le f 0 when n = 1. From Fig: 3:1 it is observed that by increasing the values

of natural convection parameter � the velocity pro�le increases. Fig: 3:2 shows the in�uence

of local Reynolds number Rea over the velocity pro�le f 0 when n = 1. It is observed that for

larger local Reynolds number Rea the velocity pro�le f 0 decreases. Figs: 3:3 and 3:4 show the

e¤ects of variation in Prandtl number Pr and Reynolds number Re on temperature pro�le when

n = 1. Here, the temperature pro�le decreases when Prandtl number Pr and Reynolds number

Re are increased. The e¤ects of natural convection parameter � on the velocity pro�le f 0 are

shown in Fig: 3:5 when n = 2: The velocity pro�le f 0 decreases by increasing the values of

natural convection parameter �. Fig: 3:6 shows opposite behavior of velocity pro�le f 0 when

n = 2, that is, the velocity pro�le increases by increasing the local Reynolds number Rea. The

temprerature pro�les presented in Figs: 3:7 and 3:8 have similar behavior both for n = 1 and

n = 2. The values of skin friction coe¢ cient and local Nusselt number at the surface of the
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cylinder are presented in Tables 3:1 and 3:2. Table 3:1; indicates that skin friction coe¢ cient

increases upon increasing local Reynolds number Rea but for �xed value of Prandtl number Pr :

the local Nusselt number decreases for larger Reynolds number Re.

Fig. 3.1. Plots of velocity pro�le f 0 for

natural convection parameter �:

Fig.3.2 Plots of velocity pro�le f 0 for local

Reynolds number Rea.
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Fig.3.3 In�uence of Prandtl number on

temperature pro�le

Fig.3.4 In�uence of Reynolds number on

temperature pro�le

Fig.3.5 In�uence of natural convection

parameter on velocity pro�le

Fig.3.6 In�uence of local Reynolds

number on velocity pro�le
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Fig.3.7 In�uence of Prandtl number on

temperature pro�le

Fig.3.8 In�uence of Reynolds number on

temperature pro�le

Table 3:1 Skin friction coe¢ cient at the surface.

�nRea 0 0.1 0.2 0.3 0.4

1 0.9859 0.9903 0.9953 1.0011 1.0078

3 1.2212 1.2366 1.2544 1.2754 1.3012

5 1.4494 1.4755 1.5065 1.5452 1.5972

10 1.9274 1.9809 2.0499 2.1505 2.3941

15 2.3145 2.3968 2.5121 2.7246 2.9537
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Table 3:2 Local Nusselt number.

Pr nRe 0.0 0.1 0.2 0.3 0.4

1 1.1971 1.1967 1.1962 1.1957 1.1952

7 1.7912 1.7890 1.7866 1.7838 1.7808

10 3.5901 3.5808 3.5699 3.5566 3.5396

15 5.5503 5.5360 5.5182 5.4944 5.4580

25 6.6652 6.6491 6.6285 6.5999 6.5508

3.5 Conclusions

This study is proposed just to address the �ow of power law �uid model past a vertical expo-

nentially stretching cylinder with heat transfer. Main results are mentioned below:

� The velocity pro�le gives opposite behavior for n = 1 and 2. That is, the �uid velocity

increases for n = 1 and it decreases for n = 2 when natural convection parameter �

enhances.

� On increasing local Reynolds number Rea the �uid velocity decreases for n = 1 but it

increase when n = 2.

� The temperature pro�le decreases both for n = 1 and 2 when Reynold number Re and

Prandtl number Pr are increased.

� Skin friction coe¢ cient enhances on increasing natural convection parameter � and local

Reynold number Rea.

� Local Nusselt number increases on increasing Prandtl number Pr but it decreases for

larger Reynold number Re :
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Chapter 4

Boundary layer �ow of an

incompressible tangent hyperbolic

�uid past a stretching cylinder

4.1 Introduction

The tangent hyperbolic �uid is a four constant pseudoplastic �uid model capable of relating

the shear thinning phanomenon. It is a material which measures the �uid resistance when �ow

decreases with an increasing rate of shear stress. Modelled partial di¤erential equations are

transformed to system of ordinary di¤erential equations by applying transformations. Numeri-

cal solution has been computed by using Runge-Kutta-Fehlberg method. The �uid velocity and

temperature pro�les are presented for di¤erent values of physical parameters. Furthermore, the

skin friction coe¢ cient and Nusselt number are described for the in�uential variables.

4.2 Fluid model

The continuity and momentum equations are

divV = 0;
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�
dV

dt
= div �+�b;

where � is the density, V is the velocity, � is the Cauchy stress tensor, b represents the speci�c

body force and d=dt represents the material time derivative. The constitutive equations of

hyperbolic tangent �uid model [8] are given as

� = �pI+ S;

S = [�1 + (�0 + �1)tanh(�
�
_
)n]A

in which p is the pressure, I is the identity tensor, � is the extra stress tensor, A is second

invariant strain tensor, �0 and �1 are the limiting viscosities at zero and at in�nite shear rate,

� > 0 is the time constant and
�
_
 is de�ned as

�
_
 =

s
1

2

X
i

X
_
ij

j

_
ji =

r
1

2
�;

where

� =
X
i

X
_
ij

j

_
ji = tr[(gradV ) + (gradV )t]2

V = [u(r; z); 0; w(r; z)]

and
�
_
 =

r
(u2r + w

2
z) +

1

2
(uz + wr)2 +

2u2

r2

We consider the case for which �1 = 0 and �
�
_
 < 1. Therefore, the component of extra

stress tensor can be written as

S = �0 (�
�
_
)nA = �0 [1 + n [�

�
_
 � 1]A
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4.3 Formulation

Consider the problem of natural convection boundary layer �ow of a hyperbolic tangent �uid

�ow caused by a vertical circular cylinder of radius a. The cylinder is assumed exponentially

stretching with velocity Uw: The temperature at the surface of the cylinder is assumed to be

Tw and the uniform ambient temperature is taken as T1 such that the quantity Tw � T1 > 0

in case of the assisting �ow while Tw � T1 < 0 for opposing �ow respectively. Under these

assumptions the boundary layer equations of motion and heat transfer are

ur +
u

r
+ wz = 0; (4.1)

uwr + wwz = g�(T � T1)

+�[(1� n)(wrr +
1

r
wr) +

n� wr
2

(2wrr +
1

r
wr)] (4.2)

uTr + wTz = �(Trr +
1

r
Tr); (4.3)

where the velocity components along the r�; z�axes are u and w, � is density, � is the kinematic

viscosity, p is pressure, g is the gravitational acceleration along z� direction, � is the coe¢ cient

of thermal expansion, T is the temperature, �1 is the in�nite shear rate viscosity, �0 is the

viscosity at zero shear rate, � is the time constant, n is the power law index and � is the thermal

di¤usivity. The corresponding boundary conditions for the problem are

u(a; z) = 0; w(a; z) = Uw w(r; z) �! 0 as r �!1; (4.4)

T (a; z) = Tw (z) ; T (r; z) �! T1 when r �!1; (4.5)

in which Uw = 2akez=a (k is dimensional constant) is the �uid velocity at the surface of the

cylinder.
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4.4 Solution

We write

u = �1
2
Uw

f(�)
p
�
; w = Uwf

0 (�) ; (4.6)

� =
T � T1
Tw � T1

; � =
r2

a2
; (4.7)

where the characteristic temperature di¤erence is calculated from the relations Tw � T1 =

T0e
z=a: With the help of transformations (4:6) and (4:7), Eqs: (4:1) to (4:3) are reduced to

2(1� n)(�f 000 + f 00) + nWe
p
�f 00(4�f 000 + 3f 00) + Re(ff 00 � f 02) + Re�� = 0; (4.8)

��00 + �0 +RePr(f�0 � f 0�) = 0; (4.9)

in which � = g�a(Tw � T1)=U2w is the natural convection parameter, Pr = v=� is the Prandtl

number, We = 4�Uw=a is the Weissenberg number and Re = aUw=4� is the local Reynolds

number. The boundary conditions in nondimensional form become

f (1) = 0; f 0 (1) = 1; � (1) = 1; (4.10)

f 0 �! 0; � �! 0; as � �!1: (4.11)

The important physical quantities such as the shear stress at the surface �w; the skin friction

coe¢ cient cf ; the heat �ux at the surface of the cylinder qw and the local Nusselt number Nuz

are

�w = � rz jr=a; qw = �k� r jr=a; (4.12)

cf =
�w
�U2w

; Nuz =
aez=aqw

k(Tw � T1)
(4.13)

The solution of the present problem is obtained numerically by using the Runge Kutta Fehlberg

method.
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4.5 Results and discussion

In this chapter, an analysis is carried out for natural convection boundary layer �ow of a

hyperbolic tangent �uid due to an exponentially stretched cylinder. It is assumed that the

cylinder is stretched exponentially along its radial direction. Here, Uw = 2akez=a is the as-

sumed exponential stretching velocity at the surface of cylinder. For the solution of problem,

the Runge-Kutta-Fehlberg method is used. The impact of di¤erent parameters, such as the

Reynolds number Re; the Prandtl number Pr; the Weissenberg number We and the natural

convection parameter � on the non-dimensional velocity and temperature pro�les are presented

graphically (see Figs:4:1 � 4:5). Here, Fig: 4:1 shows the in�uence of Weissenberg number

We on the velocity function f 0. From the graph it is clear that velocity pro�le decreases by in-

creasing the values of Weissenberg number We. Fig: 4:2 shows the e¤ects of Reynolds number

Re on the velocity f 0. The velocity pro�le increases by increasing the values of Re. Fig: 4:3

shows the in�uence of natural convection parameter � on velocity pro�le when n = 1 . From

the graph, it is clear that by increasing the values of � the velocity pro�le decreases. Fig: 4:4

describes the impact of Prandtl number Pr on temperature pro�le. The temperature pro�le

increases for larger values of Pr . Fig: 4:5 shows the in�uence of Reynolds number Re on the

temperature pro�le. The temperature pro�le increases when Re is enhanced. Table: 4:1 shows

the behavior of heat �ux at the surface of the stretching cylinder for di¤erent values of Pr and

Re when n = 0:3. Entries in Table: 4:1 show that increase in both Pr and Re increases the heat

�ux at the surface. Table: 4:2 shows magnitude of the velocity pro�le when n = 0:3. Entries

in Table: 4:2 depict that the magnitude of boundary derivative increases by increasing both the

Weissenberg and the Reynolds numbers.
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Fig.4.1 In�uence of Wesonburg number

on velocity pro�le

Fig.4.2 In�uence of Reynolds number on

velocity pro�le

Fig.4.3 In�uence of natural convection

parameter on velocity pro�le
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Fig.4.4 In�uence of Prantdle number on

temperature pro�le

Fig.4.5 In�uence of Reynolds number on

temperature pro�le

Table 4:1 Local Nusselt number

PrnRe 0.1 0.2 0.3 0.4 0.5 1.0

1 0.9613 0.9786 0.9963 1.0141 1.0323 1.1263

3 1.0610 1.0617 1.0624 1.0632 1.0639 1.0667

5 1.1578 1.1589 1.1601 1.1612 1.1624 1.1684

7 1.2517 1.2533 1.2548 1.2563 1.2579 1.2658

15 1.6018 1.6045 1.6071 1.6098 1.6125 1.6264

Table 4:2 Skin friction coe¢ cient at the surface

WenRe 0.1 0.2 0.3 0.4 0.5 1.0

0.1 0.9621 1.0041 1.0450 1.0850 1.1240 1.3082

0.2 0.9767 1.0231 1.0687 1.1136 1.1580 1.3741

0.3 0.9943 1.0464 1.0982 1.1499 1.2017 1.4666

0.4 1.0163 1.0761 1.1366 1.1982 1.2612 1.6159
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4.6 Conclusions

The following points are worth mentioning.

� Increase in natural convection parameter, Weissenberg number and Reynolds number

reduces the �uid velocity.

� Increase in Prandtl and Reynolds numbers reduces the �uid temperature.

� Larger Prandtl and Reynolds numbers, give rise to heat �ux at the surface.

� The magnitude of boundary derivative increases by increasing both the Weissenberg and

the Reynolds numbers.
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Chapter 5

Flow of Williamson �uid past a

vertical exponentially stretching

cylinder

5.1 Introduction

This chapter addresses the boundary layer �ow of Williamson �uid occured in many industrial

processes and natural phenomena. Most of the interest in this subject is due to its applications.

Flow caused is because of an exponentially stretching cylinder.The governing partial di¤erential

equations systems are reduced to nonlinear ordinary di¤erential equations systems. Keller

box technique is implemented for the numerical solution. The e¤ects of di¤erent physical

parameters (e.g. Reynold number Re, Prandtl number Pr, the natural convection parameter

� and Weissenberg number We) are presented through graphs. The skin friction coe¢ cient is

computed to see the e¤ects of di¤erent parameters.

5.2 Mathematical formulation

Consider the problem of natural convection boundary layer �ow of Williamson �uid due to a

vertical circular cylinder of radius a. The cylinder is assumed stretched exponentially along the

axial direction with velocity Uw: The temperature at the surface of the cylinder is assumed Tw
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and the uniform ambient temperature is taken as T1 such that the quantity Tw � T1 > 0 in

case of the assisting �ow, while Tw � T1 < 0 in case of the opposing �ow, respectively. The

boundary layer �ow under consideration are governed by

ur +
u

r
+ wz = 0; (5.1)

uwr + wwz =
�

r
(� w2r + wr) + �[wrr + 2� wrrwr] + g�(T � T1); (5.2)

uTr + wTz = �(Trr +
1

r
Tr); (5.3)

where the velocity components along the (r; z) axes are (u;w), � is density, � is the kinematic

viscosity, p is pressure, g is the gravitational acceleration along the z� direction, � is the

coe¢ cient of thermal expansion, T is the temperature and � is the thermal di¤usibility. The

corresponding boundary conditions for the problem are

u(a; z) = 0; w(a; z) = Uw w(r; z) �! 0 as r �!1; (5.4)

T (a; z) = Tw (z) ; T (r; z) �! T1 as r �!1; (5.5)

where Uw = 2akez=a is the �uid velocity at the surface of the cylinder.

5.3 Solution of the problem

We consider

u = �1
2
Uw

f(�)
p
�
; w = Uwf

0 (�) ; (5.6)

� =
T � T1
Tw � T1

; � =
r2

a2
; (5.7)

where the characteristic temperature di¤erence is calculated from the relations Tw � T1 =

cez=a:With the help of transformations (5:6) and (5:7), Eqs: (5:1) to (5:3) are reduced to

�f 000 + f 00 +Re(ff 00 � f 02) +We
p
�f 00(�f 000 + f 00) + Re�� = 0 (5.8)

��00 + �0 +
1

2
RePr(f�0 � f 0�) = 0; (5.9)
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in which � = g�a(Tw � T1)=U2w is the natural convection parameter, Pr = v=� is the Prandtl

number,We = 4�Uw=a is the local Weissenberg number and Re = aUw=4� is the local Reynolds

number. The boundary conditions now reduce to

f (1) = 0; f 0 (1) = 1; � (1) = 1; (5.10)

f 0 �! 0; � �! 0; as � �!1: (5.11)

The important physical quantities, such as the shear stress at the surface �w; the skin friction

coe¢ cient cf ; the heat �ux at the surface of the cylinder qw and the local Nusselt number Nuz

are

�w = � rz jr=a; qw = �k � r jr=a; (5.12)

cf =
�w
�U2w

; Nuz =
aez=aqw

k(Tw � T1)
(5.13)

Keller box Method is employed for the numerical solution.

5.4 Outcomes

In this section, the results are analyzed for the Reynolds number Re; the Weissenberg number

We, the Prandtl number Pr and the natural convection parameter � for the nondimensional

velocity and temperature pro�les. This objective is achieved through Figs:(5:1� 5:8) and Ta-

bles 5:1 and 5:2. Fig:5:1 shows the e¤ect of Prandtl number Pr on the velocity pro�le f 0.

It is observed that by increasing Prandtl number Pr the velocity pro�le decreases. Fig:5:2

indecates the in�uence of natural convection parameter � over the velocity pro�le f 0: When

natural convection parameter � increases the velocity pro�le also increases, that is, the nat-

ural convection parameter � is directly proportionally to the velocity pro�le f 0. Similarly by

increasing the value of Weissenberg number We and Reynold number Re the velocity pro�le

decreases (see Figs:5:3 and 5:4): Response of temperature pro�le due to variation in Prandtl

number, natural convection parameter, Renold number and Weissenberg number can be seen

in the Figs:(5:5 � 5:8): F ig:5:5 shows that after increasing the value of Prandtl number Pr;

temperature pro�le decreases. Fig:5:6 depicts similar behaviour of temperature pro�le by in-

creasing �, that is, the temperature pro�le also decreases. In Fig:5:7 by increasing the value
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of Reynold number Re; the temperature pro�le decreases. In Fig:5:8 there is slight e¤ect of

Weissenberg number We on temperature pro�le.

Table 5:1 shows the boundary derivatives for the velocity pro�le at the surface of cylinder

that corresponds to the skin friction coe¢ cient at the surface tabulated for di¤erent values of

We and Re. From table 5:1 it is observed that the magnitude of boundary derivative increases

with the increase in both We and Re. Table 5:2 shows the values for local Nusselt numbers

when di¤erent values of We and Pr are used. Table 5:2 witnesses that with increase in We

(for �xed Pr), local Nusselt number increases whereas with increase in Pr (for �xed We), Nuz

decreases.

Fig.5.1 In�uence of Prantdl number on

velocity pro�le

Fig.5.2 In�uence of natural convection

parameter on velocity pro�le
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Fig.5.3 In�uence of Weissenberg number

on velocity pro�le

Fig.5.4 In�uence of Reynold number on

velocity pro�le

Fig.5.5 In�uence of Prantdl number on

temperature pro�le

Fig.5.6 In�uence of natural convection

parameter on temperature pro�le
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Fig.5.7 In�uence of Reynold number on

temperature pro�le

Fig.5.8 In�uence of Weissenberg number

on temperature pro�le

Table 5:1 Skin friction at the surface of the cylinder

Re nWe 0 0.1 0.2 0.3 0.4

1 0.9859 0.9903 0.9953 1.0011 1.0078

3 1.2212 1.2366 1.2544 1.2754 1.3012

5 1.4494 1.4755 1.5065 1.5452 1.5972

10 1.9274 1.9809 2.0499 2.1505 2.3941

15 2.3145 2.3968 2.5121 2.7246 2.9537
Table 5:2 Local Nusselt number

Pr nWe 0.0 0.1 0.2 0.3 0.4

0.2 1.1971 1.1967 1.1962 1.1957 1.1952

0.7 1.7912 1.7890 1.7866 1.7838 1.7808

3.0 3.5901 3.5808 3.5699 3.5566 3.5396

7.0 5.5503 5.5360 5.5182 5.4944 5.4580

10.0 6.6652 6.6491 6.6285 6.5999 6.5508
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5.5 Conclusions

The following are the main �ndings of this chapter:

� Velocity decays upon increasing the Weissenberg, Prandtl and Reynold numbers.

� Larger convection parameter enhances the velocity.

� The temperature pro�le decreases by increasing Prandtl, Reynold, natural, Weissenberg

numbers and convection parameter.

� The skin friction decreases by increasing Weissenberg and Renold numbers.

� The local Nusselt number increases when Prandtl number (�xed Weissenberg number)

enhances or it decreases on increasing Weissenberg number (�xed Prandtl number).
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Chapter 6

Boundary layer �ow of Williamson

nano�uid past a vertical

exponentially stretching cylinder

6.1 Introduction

The boundary layer �ow of Williamson nano�uid past an exponentially stretching surface is

explored. The governing partial di¤erential equations and the associated boundary conditions

are reduced to nonlinear ordinary di¤erential equations after using the boundary layer approx-

imation and similarity transformation. The obtained system of nonlinear ordinary di¤erential

equations subject to the boundary conditions are solved numerically by employing Keller box

method. The e¤ects of di¤erent physical parameters (e.g. Reynold number Re, Schmidt number

Sc, Prandtl number Pr, the natural convection parameter � and Weissenberg number We, the

buoyancy ratio Nr, the Brownian motion parameter Nb, the thermophoresis parameter Nt) on

velocity, temperature and nano concentration pro�les are presented through graphs. The skin

friction coe¢ cient and Nusselt number are also computed for di¤erent parameters.
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6.2 Formulation

Consider the problem of natural convection and heat transfer of a Williamson nano�uid �owing

past a vertical circular cylinder of radius a. Brownian motion thermophoresis are considered.

The cylinder is stretched exponentially with velocity Uw: The temperature at the surface of the

cylinder is assumed Tw and the uniform ambient temperature is taken as T1:The �ow under

consideration is governed by

ur +
u

r
+ wz = 0; (6.1)

uwr + wwz =
�

r
(� w2r + wr) + �[wrr + 2� wrrwr] + g�(T � T1)(1� �1)

+
1

�
(�� � �)(�� �1); (6.2)

uTr + wTz = �(Trr +
1

r
Tr) +

��c�p
�cp

(DTTr�r +
DT
T1

T 2r ); (6.3)

u�r + w�z = DB(�rr +
1

r
�r) +

DT
T1

(Trr +
1

r
Tr): (6.4)

In above expression, the velocity components along the (r; z) axes are (u;w), � and �� are

the densities of the base �uid and the nanoparticle material respectively, k is the consistency

coe¢ cient, ��c�p is the e¤ective heat capacity of the nanoparticle material and �cp is the e¤ective

heat capacity of the base �uid, g is the gravitational acceleration along the z� direction, DB

is Brownian di¤usion coe¢ cient, DT is thermophoretic di¤usion coe¢ cient, � is the coe¢ cient

of thermal expansion, T is the temperature and � is the thermal di¤usibility of base �uid. The

corresponding boundary conditions can be written as

u(a; z) = 0; w(a; z) = Uw w(r; z) �! 0 as r �!1; (6.5)

T (a; z) = Tw (z) ; T (r; z) �! T1 as r �!1; (6.6)

�(a; z) = �w (z) ; �(r; z) �! �1 as r �!1; (6.7)

in which Uw = 2akez=a represents the �uid velocity at the surface of the cylinder.
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6.3 Solution of the problem

Writing

u = �1
2
Uw

f(�)
p
�
; w = Uwf

0 (�) ; (6.8)

� =
T � T1
Tw � T1

; � =
r2

a2
; h =

�� �1
�w � �1

(6.9)

we have from Eqs: (6:1) to (6:4) as follows:

�f 000(4We
p
�f 00+1)+ f 00(5We

p
�f 00+1)+Re(ff 00� f 02)+Re�(1��1)(�+Nrh) = 0; (6.10)

��00 + �0 +RePr(f�0 � f 0�) + ��0(Nbh0 +Nt�0) = 0; (6.11)

�h00 + h0 +
Nt
Nb
(��00 + �0) + ReSc(fh0 � f 0h) = 0: (6.12)

in which � = g�a(Tw � T1)=U2w is the natural convection parameter, Pr = v=� is the Prandtl

number, Sc = �=DB is the Schmidt number, We = 4�Uw=a is the local Weissenberg number,

Nr = (�� � �)(�w � �1)=��(Tw � T1)(1 � �1) is the buoyancy ratio, Nb = ��C�pDB(�w �

�1)=�Cp� is the Brownian motion parameter, Nt = ��C�pDT (�w � �1)=�Cp�T1 is the ther-

mophoresis parameter and Re = aUw=4� is the local Reynolds number. The boundary condi-

tions can be expressed as

f (1) = 0; f 0 (1) = 1; � (1) = 1; h (1) = 1, (6.13)

f 0 �! 0; � �! 0; h �! 0; as � �!1: (6.14)

Flow quantities of interests are

�w = � rz jr=a; qw = �k � r jr=a; (6.15)

cf =
�w
�U2w

; Nuz =
aez=aqw

k(Tw � T1)
(6.16)
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The solutions of the resulting problems are obtained by using Keller box method.

6.4 Results and discussion

The problem of natural convection boundary layer �ow of Williamson nano�uid past an expo-

nentially stretched cylinder is studied. The solution of the problem is obtained numerically with

the help of Keller box method. E¤ect of the various parameters such as the Reynolds number

Re; the Weissenberg number We, the Schmidt number Sc, the Brownian motion parameter Nb,

the thermophoresis parameter Nt, the buoyancy ratio parameter Nr, the Prandtl number Pr

and the natural convection parameter � on the nondimensional velocity, temperature and con-

centration pro�les are presented graphically in Figs:6:1 � 6:10 and in Tables 6:1 � 6:4. From

Figs:6:1 to 6:4 the velocity pro�les are presented for di¤erent physical parameters. Fig:6:1

shows the e¤ect of the buoyancy ratio parameter Nr on the velocity pro�le. It is observed that

larger buoyancy ratio parameter Nr increases the velocity pro�le. Fig:6:2 re�ects the in�u-

ence of natural convection parameter � on the velocity pro�le. It is noticed that when natural

convection parameter � increases then velocity pro�le rapidly increases. That is the natural

convection parameter � is directly proportional to the velocity. In Fig:6:3 the e¤ects of the

Weissenberg number We on the velocity pro�le are presented. Slight decrease in velocity pro-

�le is seen by increasinng the values of Weissenberg number We. In Fig:6:4, with the increase

of Reynold number Re; the velocity pro�le decreases. Figs:6:5 to 6:8 re�ect the behavior of

temperature pro�les for di¤erent physical parameters. Fig:6:5 shows the in�uence of Prandtl

number Pr on the temperature pro�le. By increasing the values of Prandtl number Pr, the tem-

perature pro�le decreases. Fig:6:6 describes the in�uence of Brownian motion parameter Nb on

the temperature pro�le. The temperature pro�le increases by increasing the values of Brownian

motion parameter Nb. Fig:6:7 shows the e¤ects of the Reynold number Re on the temperature

pro�le. The temperature pro�le rapidly decreases by increasing the values of Reynold number

Re. Fig:6:8 shows the in�uence of the thermophoresis parameter Nt over the temperature

pro�le. By increasing the values of the thermophoresis parameter Nt, the temperature pro�le

increases. Figs:6:9 and 6:10 highlight the nano concentration pro�le. In Fig:6:9; it is clear that

by increasing the value of Schmidt number Sc the nano concentration pro�le decreases instantly.
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In Fig:6:10; rising e¤ect of Reynold number Re can be seen on nano concentration pro�le. By

increasing the value of Reynolds number Re the nano concentration pro�le increases. Table

6:1 shows the boundary derivatives for the velocity pro�le at the surface of the cylinder that

corresponds to the skin friction coe¢ cient at the surface tabulated for di¤erent values of Re

and �. From table 6:1 it is observed that the magnitude of the boundary derivative increases

with the increase in Re and it decreases by increasing the values of �. Table 6:2 shows the

boundary derivatives for the velocity pro�le at the surface of cylinder which corresponds to the

skin friction coe¢ cient at the surface tabulated for di¤erent values of Nr and �. From table

6:2 it is observed that the magnitude of boundary derivative decreases by increasing both Nr

and �. Table 6:3 shows the values for local Nusselt numbers calculated for di¤erent values of

Nb and Pr. From entries in the table it is noticed that with the increase in Pr; the local Nusselt

number increases and it decreases by increasing Nb. Table 6:4 shows the values for local Nusselt

numbers calculated for di¤erent values of Nt and Re. Tabulated values indecate that with the

increase in Re the local Nusselt number increases and it decreases by increasing Nt.

Fig.6.1 In�uence of buoyancy ratio on

velocity pro�le

Fig.6.2 In�uence of natural convection

parameter on velocity pro�le
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Fig.6.3 In�uence of Weissenberg number

on velocity pro�le

Fig.6.4 In�uence of Reynolds number on

velocity pro�le

Fig.6.5 In�uence of Prantdl number on

temperature pro�le

Fig 6.6 In�uence of Brownian motion

parameter on temperature pro�le
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Fig.6.7 In�uence of Reynold number on

temperature pro�le

Fig.6.8 In�uence of thermophoresis

parameter on temperature pro�le

Fig.6.9 In�uence of Schmidt number on

concentration pro�le

Fig.6.10 In�uence of Reynold number on

concentration pro�le
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Table 6:1 : Skin friction coe¢ cient at surface of the cylinder for �nRe .

�nRe 0.1 0.2 0.3 0.4 0.5 1.0

0.1 0.5417665 0.6472440 0.7405385 0.8256308 0.9048707 1.1877323

0.3 0.5047508 0.5878888 0.6638048 0.7338210 0.7991701 1.0823029

0.5 0.4685034 0.5308771 0.5911608 0.6478879 0.7011902 0.9304973

0.7 0.4329826 0.4759543 0.5220001 0.5667934 0.6093992 0.7926674

1.0 0.3809803 0.3970323 0.4237953 0.4526199 0.4810536 0.6052925

Table 6:2 : Skin friction coe¢ cient at surface of the cylinder for �nNr.

�nNr 0.1 0.2 0.3 0.4 0.5 1.0

0.1 0.9225412 0.9170612 0.9115928 0.9061359 0.9006905 0.8736364

0.3 0.8274242 0.8119717 0.7966064 0.7813283 0.7661372 0.6914783

0.5 0.7389129 0.7145075 0.6903109 0.6663227 0.6425421 0.5267080

0.7 0.6557539 0.6231766 0.5909584 0.5590979 0.5275932 0.3752816

1.0 0.5391606 0.4954539 0.4523649 0.4098899 0.3680230 0.1674808

Table 6:3 : Local Nusselt numbers for di¤erent values of Pr nNb:

Pr nNb 0.1 0.2 0.3 0.4 0.5 1.0

1 0.3670232 0.3512651 0.3351202 0.3194159 0.3042953 0.2379131

3 0.5673555 0.5428482 0.5222006 0.5029387 0.4845972 0.4032442

5 0.7501875 0.7145851 0.6891727 0.6666279 0.6455541 0.5525502

10 1.1218606 1.0693323 1.0361168 1.0082439 0.9828072 0.8714786

15 1.4103439 1.3511575 1.3143805 1.2839238 1.2563011 1.1353196

Table 6:4 : Local Nusselt numbers for di¤erent values of NtnRe :

NtnRe 0.1 0.2 0.3 0.4 0.7 1.0

0.1 0.4577478 0.5829143 0.6903830 0.7851347 1.0196609 1.2079586

0.3 0.4197439 0.5424134 0.6478759 0.7408885 0.9709497 1.1553141

0.5 0.3846766 0.5047382 0.6081510 0.6994234 0.9251340 1.1057320

0.7 0.3524091 0.4697585 0.5710763 0.6606027 0.8820635 1.0590535

1.0 0.3089417 0.4220501 0.5201416 0.6070311 0.8222791 0.9941360
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6.5 Conclusions

Keller box method is employed to �nd the numerical solution for �ow of Williamson nano�uid

past a vertical exponentially stretching cylinder. The main �ndings of the study are summarized

below:

� The velocity pro�le increases upon increasing buoyancy ratio parameter and natural con-

vection parameter but it decreases by increasing Weissenberg and Reynold numbers.

� The temperature pro�le increases for larger Brownian motion parameter Nb and ther-

mophoresis parameter Nt.

� The nano concentration pro�le decreases upon increasing Schmidt number Sc and it

increases by increasing Reynold number Re.

� Skin friction coe¢ cient decreases upon increasing natural convection parameter � and

buoyancy ratio parameter Nr but it increases for increasing Reynold number Re.

� Local Nusselt number increases for larger Reynold and Prandtl numbers but it decreases

when Brownian motion and thermophoresis parameters are increased.

52



Chapter 7

Dual strati�ed mixed convection

�ow of Eyring-Powell �uid past an

inclined stretching cylinder with

heat generation/absorption e¤ect

7.1 Introduction

This chapter is proposed to study the e¤ects of double strati�ed medium in the mixed convec-

tion boundary layer �ow of Eyring-Powell �uid �ow induced by an inclined stretching cylinder.

Flow analysis is studied in the presence of heat generation/absorption. Temperature and con-

centration are assumed higher than ambient �uid across the surface of cylinder. The arising

�ow system of partial di¤erential equations is primarily transformed into coupled non-linear

ordinary di¤erential equations with the aid of suitable transformations. Numerical solutions of

resulting non-linear boundary value problem are computed successfully by utilizing �fth order

Runge-Kutta algorithm with shooting technique. The velocity, temperature and concentration

pro�les are examined graphically. Further, the numerical �ndings are obtained for two distinct

cases namely, zero (plate) and non-zero (cylinder) values of curvature parameter and the behav-

iour are presented through graphs for skin-friction coe¢ cient, Nusselt number and Sherwood
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Figure 7-1: Fig. 7:1. Physical con�guration and coordinate system.

number. The current analysis is validated by comparative analysis with previously published

work.

7.2 Formulation

7.2.1 Flow analysis

Consider two dimensional and steady incompressible boundary layer �ow of Eyring-Powell �uid

by an inclined stretching cylinder. Flow analysis is taken with double strati�cation in the

presence of mixed convection and heat generation/absorption. Temperature and concentration

at the surface of cylinder are assumed at higher than the ambient �uid. The boundary layer

approximation give rise to following expression:

@ (ru)

@x
+
@ (rv)

@r
= 0; (7.1)
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=
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�
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�
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@r

�3
+g�T (T � T1) + g�c(C � C1) cos�: (7.2)

The axial direction of cylinder is supposed as x � axis and r � axis is perpendicular to

it. In the above expressions, the velocity components u and v are in the x and r direction

respectively.Here � is the �uid density, � is the kinematic viscosity, �T is the coe¢ cient of

thermal expansion, �c is the coe¢ cient of concentration expansion and � is the inclination of

cylinder with x� axis respectively. Note that � and c are the Eyring-Powell �uid parameters.

The corresponding boundary conditions are

u (x; r) = U(x) =
Uo
L
x ; v(x; r) = 0 ; at r = R; and u (x; r)! 0; as r !1; (7.3)

Stream function satisfying continuity Eq. (7:1) is de�ned by the equations:

u =
1

r

�
@ 

@r

�
; v =

�1
r

�
@ 

@x

�
: (7.4)

To trace out the solution of Eq. (7:2) under boundary conditions Eq. (7:3), we used following

transformations:

� =
r2 �R2
2R

�
U

�L

� 1
2

;  =

�
U0 �

L
x2
� 1

2

R f(�); u =
U0 xf

0(�)

L
; v = �R

r

r
U0 �

L
f(�);

(7.5)

where U0 is the free stream velocity, L is the reference length, f 0(�) represents dimensionless

variable and prime denotes di¤erentiation with respect to � (similarity variable) that is the

velocity of �uid past an inclined stretching cylinder having radius R. Incorporating Eqs. (7:4)�

(7:5) into Eq. (7:2), we get

(1 + 2K�) (1 +M) f 000 + ff 00 �
�
f 0
�2
+ 2K(1 +M)f 00 � 4

3
�MK (1 + 2K�)

�
f 00
�3
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�M� (1 + 2K�)2
�
f 00
�2
f 000 + �m(� +N�) cos� = 0; (7.6)

with

f
0
(0) = 1 , f(0) = 0 , f

0
(1)! 0 (7.7)

Here, K, M , �, �m, and N denote curvature parameter, �uid parameters, mixed convection

parameter and ratio of thermal to concentration buoyancy forces respectively. These de�nitions

are

K =
1

R

r
�

a
; M =

1

��c
, � =

ax3

2c2�
, �m =

Gr

Re2x
, N =

Gr

Gr�
and a =

U0
L
(7.8)

where Gr and Gr�denotes Grashof number due to temperature and concentration respec-

tively as

Gr� =
g�T (Tw � T0)x3

�2
, Gr =

g�C(Cw � C0)x3
�2

(7.9)

The skin friction coe¢ cient at the surface of cylinder is considered as

Cf =
�w

�U
2

2

; (7.10)

�w =

"
�

�
@u

@r

�
+
1

�c

@u

@r
� 1

6�c3

�
@u

@r

�3#
r=R

; (7.11)

where � denotes dynamic viscosity of �uid and � is the shear stress. The dimensionless form

of skin friction coe¢ cient is given by

Cf Re
1=2
x = 2(1 +M)f 00 (0)� 2M�

3
[f 00 (0)]3; (7.12)

with Rex = U20x=�L is local Reynolds number.
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7.2.2 Heat and mass transfer analysis

Heat transfer analysis is carried out in the presence of heat generation/absorption. The de-

struction of �uctuation velocity gradients by action of viscous stresses in a laminar boundary

layer �ow of Eyring-Powell �uid is assumed small so the viscous dissipation is neglected. Thun

under boundary layer approximation, the energy and concentration equations take the forms

u
@T

@x
+ v

@T

@r
=

K

�CP

@

r@r

�
r
@T

@r

�
+
Q0(T � T1)

�CP
; (7.13)

u
@C

@x
+ v

@C

@r
=
D

r

@

@r

�
r
@C

@r

�
; (7.14)

where K denotes thermal conductivity, CP is speci�c heat at constant pressure, D the mass

di¤usivity and Q0 the heat generation and absorption coe¢ cient. Temperature and concentra-

tion boundary conditions for the �uid �ow problem are

T (x; r) = Tw(x) = T0 +
b x

L
; C (x; r) = Cw(x) = C0 + d

x

L
at r = R;

T (x; r) ! T1(x) = T0 +
c x

L
; C (x; r)! C1(x) = C0 + e

x

L
, as r !1; (7.15)

where Tw(x), Cw(x), T1(x), C1(x), T0, C0 denotes prescribed surface temperature, surface

concentration, variable ambient temperature, variable ambient concentration, reference tem-

perature and reference concentration respectively. Here b, c, d and e are positive constants. To

�nd out the dimensionless forms of Eqs. (7:13) and Eq. (7:14) under boundary conditions, i:e

Eq. (7:15), we de�ne

� =
r2 �R2
2R

�
U0
�L

� 1
2

; � (�) =
T � T1
Tw � T0

; � (�) =
C � C1
Cw � C0

; (7.16)

After substituting Eq. (7:16) in Eqs. (7:13)� (7:14), the dimensionless form of energy and

concentration equations is given by
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(1 + 2K�) �
00
+ 2K�

0
+ Pr

�
f �

0 � f 0� � f 0�1 + �H�
�
= 0: (7.17)

(1 + 2K�)�
00
+ 2K�

0
+ Sc

�
f �

0 � f 0�� f �2
�
= 0; (7.18)

subject to the transformed boundary conditions

� = 1� �1; � = 1� �2 at � = 0; � ! 0; �! 0; as � !1; (7.19)

where Pr, �1; �H ; Sc and �2 denote Prandtl number, thermal strati�cation parameter,

heat generation/absorption parameter, Schmidt number and solutal strati�cation parameter

respectively. These have de�nitions

Pr =
�CP
K

; �1 =
c

b
; �H =

LQ0
U0�CP

; Sc =
�

D
; �2 =

e

d
(7.20)

The local Nusselt and Sherwood numbers are de�ned as

Nux =
xqw

k(Tw � T1)
; qw = �k

�
@T

@r

�
r=R

(7.21)

Sh =
�xjw

D(Cw � C0)
jw = �D

�
@C

@r

�
r=R

(7.22)

in dimensionless form, these quantities are

NuxRe
�1=2
x = ��0 (0) ; ShRe�1=2x = ��0 (0) ; (7.23)

7.3 Results and discussion

7.3.1 Numerical solution

The systems of governing coupled non-linear ordinary di¤erential equations, i:e Eqs. (7:6); (7:17)

and (7:18) subject to boundary conditions (7:7) and (7:19) are solved by employing shooting

method with the aid of �fth order Runge-Kutta scheme. Firstly, reduction has been done in a
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system of seven �rst order simultaneous equations by letting

Z2 = f
0
;

Z3 = Z
0
2 = f

00
;

Z5 = �
0
;

Z6 = �
0
:

Then, the equivalent form of Eqs. (7:6); (7:17) and (7:18) under new variables is given by:

Z
0
1 = Z2;

Z
0
2 = Z3;

Z
0
3 =

(Z2)
2 � Z1Z3 � 2K(1 +M)Z3 + 4

3�MK(1 + 2K�)Z 3
3 � �m(Z4 +NZ6) cos�

(1 + 2K�)(1 +M)�M�(1 + 2K�)2Z 2
3

;

Z
0
4 = Z5;

Z
0
5 =

Pr(Z2Z4 + �1Z2 � Z1Z5 � �HZ4)� 2KZ5
1 + 2K�

; (7.24)

Z
0
6 = Z7;

Z
0
7 =

Sc(Z2Z6 + �2Z1 � Z1Z7)� 2KZ7
1 + 2K�

:

The corresponding boundary conditions in new variables are given as follows:

Z1(0) = 0;

Z2(0) = 1;

Z3(0) = unknown;

Z4(0) = 1� �1; (7.25)

Z5(0) = unknown;

Z6(0) = 1� �2;

Z7(0) = unknown:
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In order to integrate Eq. (7:25) as an initial value problem, we required values for Z3(0) i.e.

f
00
(0) , Z5(0) i.e. �

0
(0) and Z7(0) implies �

0
(0). The initial conditions Z3(0) , Z5(0), Z7(0) are

not given but we have additional boundary conditions

Z2(1) = 0;

Z4(1) = 0; (7.26)

Z6(1) = 0:

Table� 7:1 : Numerical values of skin friction coe¢ cient for K, Pr and M .

K Pr M 1
2Cf Re

1=2
x = (1 +M)f 00 (0)� M�

3 [f
00 (0)]3

0.1 1.1 0.1 -0.9809

0.2 - - -1.0254

0.3 - - -1.0694

0.1 1.1 0.1 -0.9809

- 1.2 - -0.9825

- 1.3 - -0.9839

0.1 1.1 0.1 -0.9809

- - 0.2 -1.0268

- - 0.3 -1.0779

By choosing favourable guessed values of f
00
(0), �

0
(0) and , �

0
(0); the integration of system

of �rst order di¤erential equations are carried out in such a way that the boundary conditions

given in Eq. (7:27) holds absolutely. The step size �� = 0:05 is used to obtain the numerical

solution with four decimal accuracy as convergence criteria.

Tables 7:1 and 7:2 are constructed to indicate the in�uence of embedded physical parameters

symbolically, K, Pr, M , �, Sc, �1, �2 on skin friction coe¢ cient. Adopted parametric values

are mixed convection parameter �m = 0:1, ratio of buoyancy forces N = 0:1, inclination angle

� = 30�and heat generation/absorption parameter �H = 0:1. It is revealed that skin friction

coe¢ cient increases (in absolute sense) for higher values of curvature parameter K, thermal

strati�cation parameter �1, solutal strati�cation parameter �2 �uid parameter M , Prandtl
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number Pr and Schmidt number Sc. Skin friction coe¢ cient shows declined e¤ect on �uid

parameters �.

Table� 7:2 : Numerical values of skin friction coe¢ cient for �, Sc, �1and �2.

� Sc �1 �2
1
2Cf Re

1=2
x = (1 +M)f 00 (0)� M�

3 [f
00 (0)]3

0.1 1.1 0.1 0.1 -0.9809

0.2 - - - -0.9760

0.3 - - � -0.9738

0.1 1.1 0.1 0.1 -0.9809

- 1.2 - - -0.9850

- 1.3 - - -0.9893

0.1 1.1 0.1 0.1 -0.9809

- - 0.2 - -0.9868

- - 0.3 - -0.9937

0.1 0.2 0.1 0.1 -0.9809

- - - 0.2 -0.9887

- - - 0.3 -0.9995
Tables 7:3�7:4 show the in�uence of di¤erent physical parameters on heat and mass transfer

rate for �uid parameters � = 0:1 and M = 0:1, mixed convection parameter �m = 0:1, ratio of

buoyancy forces N = 0:1, inclination angle � = 30� and heat generation/absorption parameter

�H = 0:1. Particularly, Table 7:3 shows the variation of heat transfer rate against frequent

values of curvature parameter K, Prandtl number Pr and thermal strati�cation parameter �1.

Table 7:4 shows the rate variation of mass transfer for di¤erent values of curvature parameter

K, Schmidt number Sc and solutal strati�cation parameter �2. It is examined that the heat

and mass transfer rate increases for larger values of curvature parameter , Prandtl number Pr

and Schmidt number Sc, respectively. Heat and mass transfer rates exhibit decreasing behavior

towards thermal strati�cation parameter and solutal strati�cation parameter respectively. By

having Eqs. (7:6) and (7:17) the �ow problem can be identi�ed by Ishak and Nazar [55].

Furthermore, in the absence of curvature parameter (i-e K = 0)
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Table� 7:3 : Temperature gradient at the surface of cylinder

for various values of K, Pr and �1.

K Pr �1 ��0 (0)

0.1 1.1 0.1 1.0983

0.2 - - 1.1306

0.3 - - 1.1632

0.1 1.1 0.1 1.0983

- 1.2 - 1.1553

- 1.3 - 1.2101

0.1 1.1 0.1 1.0983

- - 0.2 1.0567

- - 0.3 1.0144

Table� 7:4 : Mass transfer rate at outer surface of cylinder

for di¤erent values of K, Sc and �2.

K Sc �2 ��0 (0)

0.1 0.2 0.1 0.4500

0.2 - - 0.5020

0.3 - - 0.5512

0.1 0.2 0.1 0.4500

- 0.3 - 0.5220

- 0.4 - 0.6068

0.1 0.2 0.1 0.4500

- - 0.2 0.4013

- - 0.3 0.3711

For M = 0, � = 0, �m = 0, � = 0�, �1 = 0, and �H = 0, Eqs. (7:6) and (7:17) reduce

to the �ow problem given by Grubka and Bobba [56] . Table 7:5 is constructed to compare

the heat transfer rate for various values of Prandtl number Pr in a limited sense. An excellent

agreement has been found which leads to conformity of present work.
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Table� 7:5 : Comparision of heat transfer rate for di¤erent values of Prandtl number Pr

Pr Grubka and Bobba [56] Ishak and Nazar [55] Present study

0.72 0.8086 0.8086313 0.8089

1.00 1.0000 1.0000000 1.0000

3.00 1.9237 1.9236825 1.9239

10.0 3.7207 3.7206739 3.7208

7.3.2 Velocity pro�les

Figs. 7:2� 7:8 illustrate the e¤ects of �ow controlling parameters on non-dimensional velocity

pro�les. Fig. 7:2 shows that an increase in thermal strati�cation parameter �1 leads to decrease

in velocity pro�le. This e¤ect is due to drop of convective potential between surface of cylinder

and ambient temperature. Fig. 7:3 identi�es that an increase in mixed convection parameter �m

yields an increase in �uid velocity. Physically, this is due to enhancement of thermal buoyancy

force. Higher values of mixed convection parameter �m lead to an increase in velocity within

a boundary layer. The behaviour of an inclination � on velocity is depicted in Fig. 7:4. It

is noticed that for higher values of an inclination � the velocity pro�le declines. Because by

increasing an inclination � relative to x-axis the in�uence of gravity is reduced which results

decline in velocity within a boundary layer. Fig. 7:5 illustrates that for larger values of curvature

parameter K the radius of cylinder decreases and �uids motion accelerates. This is due to

reduction of contact surface area of cylinder with �uid which o¤ers less resistance to �uid �ow.

So increase in curvature parameter K causes increase in velocity pro�le within the boundary

layer. The e¤ect of solutal strati�cation parameter �2 on velocity is displayed in Fig. 7:6. It

is observed that the �uid velocity decreases within boundary layer for the increasing values of

solutal strati�cation parameter �2 . Fig. 7:7 evidents that the velocity pro�le increases against

increasing value of �uid parameter M . Because �uid parameter M has inverse relation with

viscosity so higher values of �uid parameter M brings �uid to be less viscous which results

increase in rate of deformation. Fig. 7:8 is sketched to examine the e¤ects of ratio of buoyancy

forces N on velocity pro�le. As N is the ratio of concentration to the thermal buoyancy forces,

so larger values of buoyancy forces N re�ects dominancy in concentration buoyancy force which

yield an increase in velocity distribution within a boundary layer.
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Fig. 7.2. E¤ect of thermal strati�cation

parameter �1 on velocity pro�le.

Fig. 7.3. E¤ect of mixed convection

parameter on velocity pro�le.

Fig. 7.4. E¤ect of an inclination on

velocity pro�le.

Fig. 7.5. E¤ect of curvature parameter K

on velocity pro�le.
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Fig. 7.6. E¤ect of solutal strati�cation

parameter on velocity pro�le.

Fig. 7.7. E¤ect of �uid parameter M on

velocity pro�le.

Fig. 7.8. E¤ect of ratio of buoyancy forces

N on velocity pro�le.

Fig. 7.9. E¤ect of thermal strati�cation

parameter on temperature pro�le.
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7.3.3 Temperature pro�le

Figs. 7:9�7:14 re�ect the impacts of di¤erent physical �ow parameters on temperature pro�les.

In�uence of thermal strati�cation parameter �1 on temperature pro�le is given by Fig. 7:9. It

is prominent from �gure that the temperature distribution decreases for increasing values of

thermal strati�cation parameter �1. This outcome is due to declined in temperature di¤erence

between surface of cylinder and ambient �uid. Hence temperature pro�le decreases within ther-

mal boundary layer. Fig. 7:10 provides the in�uence of an inclination � against temperature

distribution. It is noticed that an increase in inclination � shows enhancement in temperature

within a boundary layer. This fact is due to gravity e¤ect. For larger values of an inclination

� the gravity e¤ect reduces. It shows decrease in rate of heat transfer. Therefore temperature

distribution increases. Fig. 7:11 elaborates the in�uence of heat generation/heat absorption

parameter �H on temperature distribution. It is explored that increase in heat generation/heat

absorption parameter �H causes increase in temperature of �uid. Here signi�cant heat is pro-

duced during heat generation phenomena which results an increase in temperature distribution.

Fig. 7:12 illustrates that the temperature distribution increases due to larger curvature para-

meter K . Temperature is stated as an average kinetic energy so, when we increase curvature

parameter K of cylinder, velocity of the �uid increases which results increase in kinetic energy

and due to which temperature increases. Note that temperature pro�le decreases adjacent to

the surface of cylinder and it increases away from it. It is clearly seen that an increase in

intensity of buoyancy forces shows an increase in temperature of �uid. Fig. 7:13 indicates

that the temperature distribution increases for higher values of solutal strati�cation parameter

�2 . Fig. 7:14 presents the in�uence of Prandtl number Pr on temperature pro�le. Prandtl

number Pr has inverse relation towards thermal conductivity, �uid with higher Prandtl number

Pr. Hence an increase in Prandtl number Pr causes a strong reduction in temperature of the

�uid which results thinner thermal boundary layer. Sometimes we may have overshoot in the

thermal boundary layer due to higher thermal conductivity. That e¤ect can be controlled by

introducing heat sink which helps to moderate the temperature.
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Fig. 7.10. E¤ect of an inclination on

temperature pro�le.

Fig. 7.11. E¤ect of heat

generation/absorption parameter on

temperature pro�le

Fig. 7.12. E¤ect of curvature parameter

K on temperature pro�le.

Fig. 7.13. E¤ect of solutal strati�cation

parameter on temperature pro�le.
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Fig. 7.14. E¤ect of Prandtl number Pr on

temperature pro�le.

Fig. 7.15. E¤ect of thermal strati�cation

parameter on concentration pro�le.

7.3.4 Concentration pro�le

Figs. 7:15 � 7:20 include the e¤ects of several involved parameters over concentration pro�le.

Fig. 7:15 demonstrates the impact of thermal strati�cation parameter �1 on concentration

pro�le. An increase in thermal parameter �1 brings inciting in �uid concentration across the

surface of cylinder. From Fig. 7:16, it is witnessed that the concentration boundary layer

decreases by increasing Schmidt number Sc. Since this e¤ect is similar to Pr verses thermal

boundary layer. As Sc has inverse proportional behavior towards mass di¤usivity. Thus higher

values of Schmidt number Sc bring thinning in the concentration boundary layer. As a result

concentration distribution decreases. In�uence of solutal strati�cation parameter �2 is described

through Fig. 7:17 over concentration pro�le. It is clear that concentration, the boundary layer

thickness decreases for higher values of solutal strati�cation coe¢ cient �2. In�uence of an

inclination � and mixed convection parameter �m on skin friction coe¢ cient for both plate and

cylinder is sketched in Fig. 7:18. It is acknowledged that for increasing values of an inclination

� the skin friction coe¢ cient increases whereas it shows opposite e¤ect for mixed convection

parameter �m. Further, the magnitude of skin friction coe¢ cient is higher for cylinder when

compared with plate. Fig. 7:19 witnesses that mass transfer rate decreases for larger values
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of an inclination � and heat generation/absorption parameter �H . It is also noticed that the

strength of mass transfer rate is slightly larger for cylinder than plate. Fig. 7:20 is constructed to

examine the behaviour of mixed convection �m and ratio of thermal to concentration buoyancy

forces N on mass transfer rate. It is analyzed that for larger values of both mixed convection

parameter �m and ratio of buoyancy forces N; the mass transfer rate increases. The magnitude

of mass transfer rate for cylinder is more when compared to plate.

Fig. 7.16. E¤ect of Schmidt number Sc on

concentration pro�le.

Fig. 7.17. E¤ect of solutal strati�cation

parameter on concentration pro�le.
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Fig. 7.18. E¤ect of an inclination and

mixed convection on skin friction.

Fig. 7.19. E¤ect of an inclination and

heat generation parameter on local

Nusselt number.

Fig. 7.20. E¤ect of mixed convection and

ratio of buoyancy forces N on local

Sherwood number.

70



7.4 Conclusions

Double strati�ed mixed convection boundary layer �ow of Eyring-Powell �uid induced by an

inclined stretching cylinder is reported. Flow analysis is carried out with heat generation

process. The �ndings of present study are listed as follows:

� The �uid velocity increases signi�cantly for larger values of curvature parameter K, �uid

parameter M , mixed convection parameter �m and ratio of buoyancy forces N . However

velocity pro�le shows opposite variation for thermal strati�cation parameter �1, solutal

strati�cation parameter �2 and an inclination �.

� The �uid temperature is increasing function of solutal strati�cation parameter �2, cur-

vature parameter K, an inclination � and heat generation/absorption parameter �H .

Temperature decays for thermal strati�cation parameter �1 and Prandtl number Pr.

� The concentration pro�le increases for increasing values of thermal strati�cation para-

meter �1 while it decreases for solutal strati�cation parameter �2 and Schmidt number

Sc.

� Skin friction coe¢ cient expressively enriches for cylinder in comparison to plate regarding

an inclination � and it reduces for mixed convection parameter �m .

� Higher values of an inclination � and heat generation/absorption parameter �H shows

reduction in heat transfer rate.

� Mass transfer rate considerably increases for both mixed convection parameter �m and

ratio of buoyancy forces N .
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Chapter 8

Boundary layer �ow of second grade

�uid past a vertical exponentially

stretching cylinder

8.1 Introduction

In this chapter, we obtained the similarity solution for the boundary layer �ow of a second grade

�uid past a vertical cylinder stretching exponentially along its radial direction.Heat transfer is

also analyzed. The resulting boundary layer problems are solved. The obtained system of

equations subject to the boundary conditions are solved with the help of homotopy analysis

method (HAM). The e¤ects of the di¤erent parameters including Reynolds numbers, Prandtl

numbers and the natural convection parameter are presented through graphs. The skin friction

coe¢ cient and Nusselt numbers are studied for di¤erent parameters.

8.2 Mathematical formulation

Consider the problem of natural convection boundary layer �ow of a second grade �uid �owing

over a vertical circular cylinder of radius a. The cylinder is assumed to be stretched exponen-

tially with velocity Uw: The temperature at the surface of the cylinder is Tw and the uniform

ambient temperature is taken as T1 such that Tw � T1 > 0 in case of the assisting �ow, while
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Tw � T1 < 0 for opposing �ow, respectively. Under these assumptions the boundary layer

equations of motion and heat transfer are

ur +
u

r
+ wz = 0; (8.1)

uwr + wwz = �(wrr +
1

r
wr) +

�1
�
[uwrrr + wwrrz + wrrwz � wrurr

+
1

r
(uwrr + wwrz + wrwz � wruz)] + g�(T � T1); (8.2)

uTr + wTx = �(Trr +
1

r
Tr); (8.3)

where the velocity components along the (r; z) axes are (u;w), � is density, � is the kinematic

viscosity, p is pressure, g is the gravitational acceleration along the z� direction, � is the

coe¢ cient of thermal expansion, T is the temperature and � is the thermal di¤usivity. The

corresponding boundary conditions for the problem are

u(a; z) = 0; w(a; z) = Uw w(r; z) �! 0 as r �!1; (8.4)

T (a; z) = Tw (z) ; T (r; z) �! T1 as r �!1; (8.5)

where Uw = 2akez=a is the �uid velocity at the surface of the cylinder.

8.3 Solution of the problem

By considering the following similarity transformations:

u = �1
2
Uw

f(�)
p
�
; w = Uwf

0 (�) ; (8.6)

� =
T � T1
Tw � T1

; � =
r2

a2
; (8.7)

The Eqs: (8:1) to (8:3) take the form

�f 000 + f 00 +Re(ff 00 � f 02)� 2A(�ff iv + 2ff 000

�2�f 0f 000 � �f 002 � 2f 0f 00) + Re�� = 0; (8.8)
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��00 + �0 +
1

2
RePr(f�0 � f 0�) = 0; (8.9)

in which � = g�a(Tw � T1)=U2w is the natural convection parameter, Pr = v=� is the Prandtl

number,A = �1Uw=2a�� is second grade �uid parameter and Re = aUw=4� is the local Reynolds

number. The boundary conditions in nondimensional form become

f (1) = 0; f 0 (1) = 1; � (1) = 1; (8.10)

f 0 �! 0; � �! 0; as � �!1: (8.11)

The important physical quantities such as the shear stress at the surface �w; the skin friction

coe¢ cient cf ; the heat �ux at the surface of the cylinder qw and the local Nusselt number Nuz

are

�w = � rz jr=a; qw = �k� r jr=a; (8.12)

cf =
�w
�U2w

; Nuz =
aez=aqw

k(Tw � T1)
(8.13)

8.4 Homotopy solution

In order to develop solutions, we employ the homotopic technique suggested by Liao [58]. The

HAM is preferred due to the following facts. (i) The HAM does not require any small/large

parameters in the problem. (ii) It gives us a way to verify the convergence of the developed

series solutions. (iii) It is useful in providing incredible �exibility in the developing equation

type of linear functions of solutions.

The initial guesses and linear operator are:

f0(�) =
�
1� e1��

�
; �0(�) = exp(1� �); (8.14)

and linear operators satisfying the properties

Lf =
d3

d�3
� d

d�
; L� =

d2

d�2
+

d

d�
; (8.15)

Lf (C1 + C2e� + C3e��) = 0; Lg(C4 + C5e��) = 0; (8.16)
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where Ci (i = 1� 5) indicate the arbitrary constants.

8.4.1 Zeroth-order deformation problems

The corresponding problems at the zeroth order are presented in the following forms:

(1� q)Lf
h
f̂(�; q)� f0(�)

i
= q~fNf

h
f̂(�; q)

i
; (8.17)

(1� q)L�
h
�̂(�; q)� �0(�)

i
= q~�N�

h
f̂(�; q); �̂(�; q)

i
; (8.18)

f̂(1; q) = 0; f̂ 0(1; q) = 1; �̂(0; q) = 1;

�̂(1; q) = 0; f̂ 0(1; q) = 0: (8.19)

Nf [f̂(�; q); �̂(�; q)] =
� @

3f̂(�;q)
@�3

+ @2f̂(�;q)
@�2

+Re

0@ f̂(�; q)@
2f̂(�;q)
@�2

�
�
@f̂(�;q)
@�

�2
1A� 2A

0@ �f̂(�; q)@
4f̂(�;q)
@�4

+2f̂(�; q)@
3f̂(�;q)
@�3

1A
�2� @f̂(�;q)@�

@3f̂(�;q)
@�3

� �
�
@2f̂(�;q)
@�2

�2
� 2@f̂(�;q)@�

@2f̂(�;q)
@�2

+Re��̂(�; q)

;

(8.20)

N�[f̂(�; q); �̂(�; q)] = �
@2�̂(�; q)

@�2
+
@�̂(�; q)

@�
+
1

2
RePr

 
f̂(�; q)

@�̂(�; q)

@�
� @f̂(�; q)

@�
�̂(�; q)

!
:

(8.21)

Here q is an embedding parameter, ~f and ~� the non-zero auxiliary parameters and Nf and

N� indicate the nonlinear operators.

8.4.2 mth-order deformation problems

Lf [fm (�)� �mfm�1 (�)] = ~fRfm (�) ; (8.22)

L� [�m (�)� �m�m�1 (�)] = ~�R�m (�) ; (8.23)

f 0m(1) = 0; fm(1) = 0; �m(1) = 0;

f 0m(1) = 0; �m(1) = 0; (8.24)
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Rfm (�) = �f
000
m�1 + f

00
m�1 +Re

m�1P
k=0

�
fm�1�kf

00
k � f 0m�1�kf 0k

�
� 2A

m�1P
k=0

�
�fm�1�kf

0000
k + 2fm�1�kf

000
k

�
�2�

m�1P
k=0

�
f 0m�1�kf

000
k

�
� �

m�1P
k=0

�
f 00m�1�kf

00
k

�
� 2

m�1P
k=0

�
f 0m�1�kf

00
k

�
+Re��

0
m�1; (8.25)

R�j (�) = ��00j�1 + �
0
j�1 +

1

2
RePr

m�1P
k=0

�
fm�1�k�

0
k � f 0m�1�k�k

�
: (8.26)

�m =

24 0; m � 1;

1; m > 1:
(8.27)

The general solutions (fm; �m) consisting of special solutions (f�m; �
�
m) are

fm(�) = f�m(�) + C1 + C2e
� + C3e

��; (8.28)

�m(�) = ��m(�) + C4 + C5e
��; (8.29)

in which the values of Ci(i = 1� 5) are

C1 =

�
�@f

�
m(�)

@�
� f�m(�)

�
�=0

; C2 = 0; C3 =
@f�m(�)

@�
; C4 = � ��m(�);

C5 = 0: (8.30)

8.5 Discussion

In this section, the homotopic solutions are analyzed for the e¤ect of various parameters such

as the Reynolds number Re; the second grade parameter A, the Prandtl number Pr and the

natural convection parameter � on the nondimensional velocity and temperature.Here Fig:8:1

shows the e¤ect of Prandtl number Pr on the velocity pro�le f 0. From Fig:8:1 it is observed that

by increasing Prandtl number Pr the velocity pro�le decreases. Fig:8:2 shows the in�uence of

the natural convection parameter � on the velocity pro�le f 0. Clearly when natural convection

parameter � increases then velocity pro�le also increases.That is, the natural convection para-

meter � is directly proportional to the velocity pro�le f 0. Similar characteristics are observed

for second grade �uid parameter A in the Figs: 8:3 and 8:4: By increasing the value of Reynold

number Re the velocity pro�le decreases. In Fig:8:5 the h-curves of velocity pro�le for di¤erent
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values of Reynold number are displayed when Pr = 10; � = 1; A = 0:5. Fig:8:6 shows that after

increasing Prandtl number Pr the temperature pro�le decreases. Fig:8:7 shows opposite behav-

iour of temperature pro�le upon increasing natural convection parameter �. The temperature

pro�le rapidly decreases by increasing the value of second grade parameter A (see Fig:8:8) and

similar behaviour of temperature pro�le is examined by increasing the values of Reynold num-

ber Re (see Fig:8:9). Fig:8:10 shows the convergence region for temperature pro�le through

h-curves for di¤erent values of Prandtl number Pr when � = 1;Re = 2; A = 0:5.

Fig.8.1 In�uence of Prandtl number on

velocity pro�le

Fig.8.2 In�uence of natural convection

parameter on velocity pro�le
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Fig.8.3 In�uence of second grade

parameter on velocity pro�le Fig.8.4 In�uence of Reynold number on

velocity pro�le

Fig.8.5 h-curve for velocity pro�le
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Fig.8.6 In�uence of Prandtl number on

temperature pro�le Fig.8.7 In�uence of natural convection on

temperature pro�le
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Fig.8.8 In�uence of second grade

parameter on temperature pro�le Fig.8.9 In�uence of Reynold number on

temperature pro�le

Fig.8.10 h-curve for temperature pro�le
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Table 8:1 : Skin friction coe¢ cient at the surface of the cylinder.

RenPr 0.7 1.0 7.0 10.0 15.0

0.5 0.331799 0.362456 0.843729 1.01324 1.1986

1.0 0.398152 0.457414 1.20143 1.4362 1.76274

1.5 0.459415 0.537164 1.4491 1.73577 2.13661

2.0 0.516379 0.612262 1.67114 2.0068 2.46585

2.5 0.568956 0.679781 1.86795 2.243470 2.689060

Table 8:2 : Local Nusselt numbers.

Ren� 0.0 0.5 1.0 1.5 2.0

0.5 0.853004 0.823586 0.794351 0.765297 0.736421

1.0 1.00715 0.95683 0.907285 0.858489 0.810423

3.0 1.47889 1.38199 1.28968 1.20125 1.11607

5.0 1.83133 1.70796 1.59150 1.48009 1.37257

10.0 2.47349 2.32467 2.16570 2.01174 1.86475

8.6 Conclusions

The homotopy analysis method is employed to study the natural convection boundary layer

�ow of second grade �uid past an exponentially stretched cylinder. The main �ndings of the

study are summarized as below:

� The velocity pro�le increases for larger Prandtl number; natural convection parameter

and second grade parameter but it decreases by increasing Reynold number.

� The temperature pro�le increases on increasing Reynold number, natural convection pa-

rameter and Prandtl number but it decreases by increasing second grade parameter.

� Skin friction coe¢ cient is an increasing function of Reynold and Prandtl numbers.

� Local Nusselt number enhances upon increasing natural convection parameter but it de-

creases by increasing Reynold number.
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