
Peristaltic activity in frames of hydromagnetics 
and rotation 

 
 

 
 

 

By 
 

 
Maimona Rafiq 

 
 

 
 

Department of Mathematics 
Quaid-i-Azam University 

Islamabad, Pakistan 
2017 

 

 



Peristaltic activity in frames of hydromagnetics 

and rotation 
 
 

 
 
 
 

By 
 

Maimona Rafiq 
 

Supervised By 
 

Prof. Dr. Tasawar Hayat  
 

 
 

Department of Mathematics 
Quaid-i-Azam University 

Islamabad, Pakistan 
2017 



Peristaltic activity in frames of hydromagnetics 

and rotation 
 

 
 

By 
 

Maimona Rafiq 
 

A THESIS SUBMITTED IN THE PARTIAL FULFILLMENT OF THE REQUIREMENT FOR 

THE DEGREE OF 

DOCTOR OF PHILOSOPHY  

IN 

MATHEMATICS 
 

Supervised By 
 

Prof. Dr. Tasawar Hayat 
Department of Mathematics 

Quaid-i-Azam University 
Islamabad, Pakistan 



2017 



 



 

 

 

 

In the name of Allah, the most Merciful, the most Gracious. All praise is due to Allah; we praise 
Him, seek His help, and ask for His forgiveness. I am thankful to Allah, who supplied me with 
the courage, the guidance and the love to complete this research. Also, I cannot forget the ideal 
man of the world and most respectable personality for whom Allah created the whole universe, 
Prophet Mohammed (Peace Be Upon Him). 
 
This thesis would not have been possible without the inspiration and support of a number of 
wonderful individuals — my thanks and appreciation to all of them for being part of this journey 
and making this thesis possible.Acknowledgement is due to Quad-I-Azam university for 
providing support to carry out this work. 
 
Special appreciation goes to my supervisor, Prof. Dr. Tasawar Hayat, for his supervision and 
constant support. His invaluable help of constructive comments and suggestions throughout the 
research work have contributed to the success of this thesis. I am very grateful for him since he 
gave me the chance to work on an interesting and practical topic. In short, his tireless work, 
unique personality and dedication to profession cannot be expressed in words. 
 
I would like to thank Higher Education Commission (HEC) of Pakistan for the scholarship 
granted through 5000 Indigenous Ph.D. Scholarship Program Phase II Batch II. 
 
I would like to express my special thanks of gratitude to my teachers Prof. Dr. Muhammad 
Yousaf Malik (Chairman), Prof. Dr. Muhammad Ayub, Prof. Dr. Sohail Nadeem and Dr. 
Masood Khan
 

for their valuable and constructive suggestions in all aspects. 

I would also like to thank Zahoorbhae, Sajidbhae, Safdarbhae, Sheraz sahib and all other 
office staff of the department for their administrative support throughout the completion of Ph.D. 

My highest and special thanks go to my seniors and friends Dr.Humaira Yasmin, Dr. Sadia 
Asad and Dr. Maria Imtiaz for their strong support during the work of the thesis and their great 
advice to me. I would also like to express my gratitude to Dr. M. Farooq for his guidance, 
enthusiastic encouragement and useful critiques of this research work. I would also like to thank 
my other reasearch fellows AnumTanveer, HinaZahir, Sadia Ayub, Shahid Farooq, M. 
Waqas, Sajid, SumairaQayyum, SumairaJabeen for their valuable and polite discussions.  
 
Sincere thanks to my friendsMahwishManzoor, Rehana Rahim and SapnaMakhdoomfor the 
wonderful times we shared at Quaid-I-Azam University. I would like to thank my hostel 
friendsSidra-tul-Muntaha and Fehmi Azizwho gave me the necessary distractions from my 
research. 
 

Acknowledgments 



Finally, my deep and sincere gratitude to my family for their continuous and unparalleled love, 
help and support. I am especially grateful to my parents, who supported me emotionally and 
financially. I always knew that you believed in me and wanted the best for me. Thank you for 
teaching me that my job in life was to learn, to be happy, and to know and understand myself; 
only then could I know and understand others. I am nothing without you my Jannat(Amee Gee) 
and Abu Gee. May Allah give you healthy long life (Ameen).I am grateful to my sisterAamna 
for always being there for me as a friend. Special thanks to my elder brothers M. Bilal, M. Talal 
and bhabi (Hiba) for the love and affection they gave me. They selflessly encouraged me to 
explore new directions in life and seek my own destiny. How can I forget to thank little angels 
Maheen, Abdul Hadi and Maleeha for the love and care they gave me.This journey would not 
have been possible without my family and I dedicate this milestone to them. 
 
May Allah bless health and wealth to all those who pray for me (Ameen). 
 

 
Maimona Rafiq 





 
 

 

 

 

DEDICATED TO 
 

 

MY BELOVED PARENTS 

 

 

 

 

 

 







Preface 
Peristalsis has pivotal role due to its applications in both industry and 
physiology under different conditions. Especially in mechanical 
discipline it has motivated engineers to construct pumps where fluid 
does not come in direct contact with any part of the machine. 
Applications include dialysis machines, open-heart bypass pump 
machines and infusion pumps. In addition, the study of hydro-magnetic 
peristaltic flow under the effect of magnetic field has played vital role in 
many engineering problems such as meteorology, biomedical 
engineering, solar physics, motion of earth's core and chemical 
engineering etc. Particularly the treatment of pathologies like gastroenric 
pathologies, rheumatisms, constipation, hypertension, targeted transport 
of drugs using magnetic particles as drug carriers are some applications. 
Blood is also known as the bio-magnetic fluid. It is because of complex 
interaction of the intercellular protein, cell membrane and the 
hemoglobin. The study of fluid flow in rotating frame of reference has 
promising applications in cosmic and geophysical flows. In such 
situation, Coriolis and Centrifugal forces are significant in relevant 
equations. The earth's liquid is strongly affected by the Coriolis force 
produced due to earth's rotation. Therefore, it is of great interest to study 
the flow of Newtonian/non-Newtonian fluids in rotating frame. Keeping 
this in mind the present thesis focus on the flow problems under 
different situation. Complex nonlinear differential systems for peristalsis 
of fluids under the aforementioned aspects are simplified through 
appropriate transformations. Suitable methods are employed to solve the 
nonlinear mathematical problems. Effects of rotation and heat/mass 
transfer are given due attention. 
Keeping all such facts in mind we structure the present thesis as follows: 



The review of some existing literature relevant to peristaltic transport 
and some fundamental equations is given in chapter one. 

Chapter two addresses the peristaltic flow Jeffrey fluid in a symmetric 
rotating channel. Channel walls are considered compliant in nature. 
Fluid is electrically conducting. Thermal radiation and Joule heating 
effects are employed in energy equation.  Long wavelength and low 
Reynolds number approximation is applied for problem simplification. 
Analysis has been carried out for axial and secondary velocity. 
Moreover, heat transfer analysis is also discussed. Several graphs of 
physical interest are displayed and discussed. The results of this chapter 
are published inInternational Journal of 
Biomathematics8(2015)1550061(21 pages) DOI: 
10.1142/S1793524515500618. 

Chapter three dealswith the peristaltic transport of Jeffrey fluid in a 
rotating channel. The channel walls satisfy the dynamic boundary 
conditions. This chapter is generalized work of previous chapter forSoret 
and Dufour and porous medium. The relevant flow analysis is first 
modeled and then computed for the exact solutions of velocities, 
temperature and concentration fields. Closed form expression of stream 
function is constructed. Plots are prepared for a parametric study 
reflecting the effects of Taylors, Soret, Dufour, Prandtl, Eckert and 
permeabilityparameters. The findings of this chapter have been 
published inPLoS ONE11 (2016) e0145525DOI: 
10.1371/journal.pone.0145525. 

Chapter four has been organized for the impacts of thermophoresis, 
chemical reaction and heat source/sink. Thermal radiation is also 
present.Computations of solutions are made for the velocity, temperature 
and concentration fields. Closed form expression of streamfunction is 
obtained. Results displayed and discussed for the effects ofTaylors, 



Hartman, Brinkman, Biot, Schmidt numbers, chemical reaction, 
radiation, thermophoretic and non-uniform heat source/sink parameters. 
The research presented in this chapter is published inJournal of 
Magnetism and Magnetic Materials410 (2016) pp. 89-99. 

Heat transfer enhancement in industry and drug delivery in biomedical 
engineering increases the use of nanofluid. Therefore,chapter five is 
written to study heat transfer effects in peristaltic flow when the whole 
system is rotating ferrofluid. An incompressible fluid is considered in a 
channel with convective boundary conditions. This study is motivated 
towards investigating the physiological flows in rotating frame. Long 
wavelength and low Reynolds number approach is adopted. Effects of 
various physical parameters on the velocity profile, streamlines pattern, 
temperature profile and trapping are studied. Computational results are 
presented in graphical form. The contents of this chapter have been 
submitted for publication inInternational Journal of Heat and Mass 
Transfer(2017). 

Chapter six is the extension of chapter five by considering the peristaltic 
transport of Cu-water nanofluid in a symmetric channel with slip 
boundary conditions. Mathematical modelling is based upon the 
conservation laws of mass, linear momentum and energy. Influence of 
Hall currents and porous medium on velocities and temperature is given 
consideration. Resulting equations have been solved after using long 
wavelength and low Reynolds number approximation. Results for the 
axial and secondary velocities and temperature profile are obtained. 
Expressions of the velocities, temperature and effective heat transfer are 
analyzed for various embedded parameters. The observations of 
conducted analysis are published inInternational Journal of Thermal 
Sciences112 (2017) pp. 129-141. 



The current researches inthermal engineering have shown that the 
second law of thermodynamics is more efficient in optimizing the 
system when compared with first law since it does not determine the 
variations in energy and only manipulates the accounting of energy. 
Therefore, entropy generation analysis is helpful in studying the 
peristaltic flow of nanoparticles in a symmetric rotating channel that is 
discussed in chapter seven. The flow is generated because of peristaltic 
waves propagating along the channel walls. Heat transfer is examined in 
the presence of thermal radiations. Mathematical model is presented 
employing lubrication approach. The effects of Taylors, Hartman, 
Prandtl, Eckert, Brinkman numbers, radiation and wall parameters on 
the longitudinal and secondary velocities, temperature and entropy 
generation are studied in detail. Important conclusions have been 
pointed out. The contents of this chapter are published inInternational 
Journal of Heat and Mass Transfer108(2017) pp. 1775-1786. 
 
Chapter eight is the extension of chapter six with consideration of an 
incompressible Ree-Eyring fluid in a symmetric channel with Hall 
effects and slip boundary conditions. Mathematical formulation is 
completed by adopting Long wavelength and low Reynolds number 
approach. The solutions for velocities and temperatureare obtained. Heat 
transfer rate for different embedding parameters is analyzed. Velocity 
and temperature distributions are analyzed for different parameters of 
interest. The findings of this chapter aresubmitted forpublication 
inComputers in Biology and Medicine (2017). 
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Chapter 1

Literature review and basic laws

1.1 Peristalsis

Mathematical modeling is utilized as a part of biomechanics to study issues of the medical

science. Biofluid mechanics is portion of biomechanics which portrays the kinematics and dy-

namics of body liquids in living creatures. Advanced biofluid mechanics measures and examines

the liquid stream in the blood vessels, the respiratory tract, the lymphatic system, the gastro-

intestinal tract, the urinary tract and numerous other physiological systems. Recent findings are

essential for clinical applications like artificial organs, vascular vessel advancement, designing

medical instruments, creation of material membranes for orthopedics, among others. Similar

mechanisms of bioliquids transport can be seen in wide range of situations within human body

and the one that is prominent is peristalsis which provide basis for the present study. The main

purpose of peristalsis is to drive the fluids through the tube without requiring an overall pres-

sure difference. The term peristalsis originates from the Greek word peristaltikos, which means

"compressing and clasping". A definition of peristalsis by Merriam-Webster’s [1] is “Successive

waves of involuntary contraction passing along the walls of a hollow muscular structure and

forcing the contents onward”.

The mechanism of peristalsis in human body initiated after food is chewed into a swallowed

bolus and travelled through esophagus. Smooth muscles behind the bolus contract to prevent

it moving back towards the mouth. After this, successive unidirectional waves work to push

the food quickly into stomach. This process occurs in one direction only and its main purpose
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is to move the food from mouth to stomach. It was first presented by Bayliss and Starling [2]

as a type of motility in which there is contraction above and relaxation below a transported.

Peristalsis is entirely unaffected by vagotomy or sympathetectomy, describing its mediation by

the intestine’s local, intrinsic nervous system.

Peristalsis is a explanation of two particular reflexes within the enteric nervous system

that are stimulated by a bolus of food stuff in the lumen. Mechanical distension and perhaps

mucosal irritation induce afferent enteric neurons. These sensory neurons coincide with two

sets of cholinergic interneurons, which exhibit two peculiar symptoms:

(i) One group of interneurons activates excitatory motor neurons above the bolus. These

neurons, which contain acetylcholine and substance, stimulate contraction of smooth muscle

above the bolus.

(ii) Another group of interneurons activates inhibitory motor neurons that stimulate relax-

ation of smooth muscle below the bolus. These inhibitor neurons appear to use nitric oxide,

vasoactive intestinal peptide and ATP as neurotransmitters.

In industry, the peristaltic pumping is utilized in different applications as exchange of sterile

fluids, blood pump in heart lung machines, transportation of internecine and dangerous liquids

to prevent their involvement in surrounding environment etc. A noteworthy modern use of

peristaltic pumping can be seen in designing the roller pumps which are used to avoid the contact

of fluid with the pumping equipment. Pumps are designed in such a manner that they prevent

the reverse flow and syphoning without the valves. Isolationistic design of pumps made them

ideal for a variety of industries and applications like aseptic filling, biopharmaceutical, brewing,

ceramics, chemical, food and beverage, industrial process, mining, print and packaging, pulp

and paper, paint and pigments, science and research, water and waste applications. Peristaltic

tube pumps provide accurate dosing of medication and chemical in printing and packaging

industry. Incorporating exact dosage allows the tube pump to account the proficient addition

to the manufacturing plant or laboratory. Only a little amount of panel mounted peristaltic hose

and tube pumps are used in Original Equipment Manufacture (OEM). These are manufactured

to suffice fairly inside the machinery and find variety of applications in print presses, dish

washes and chemical dosing systems. Many biomedical devices are engineered on the principle

of peristalsis like dialysis machine, heart-lung machine, infusion and blood pumps which are

6



used during heart surgery.

1.2 Literature survey

Investigations on peristalsis with respect to human physiological systems have received the at-

tention of researchers earlier than the engineers. Main focus of engineers is to develop new

devices for the technological advancements. Such requirements forced the investigators to dig

the underlying phenomena of peristalsis. Peristaltic pumping was initially investigated in hu-

man ureter system by Engelmann [3] in his classical paper on the ureter. After his initial

attempt, several other researchers put their efforts to elaborate the study particularly Lapides

[4], Kiil [5] and Boyarsky [6]. This kind of pumping is easy to understand when observed by

keeping viewpoint fluid mechanics but difficult to observe from pathological viewpoint ([7 8]).

The problem arises due to some kind of hindrance in ureter which dilates the upstream ureter.

In such condition, peristalsis occurs due to the wave travelling with small amplitude over a cylin-

drical tube which effects the pumping efficiency negatively. Shapiro [9] studied the peristaltic

pumping by considering inertia free flow in a tube with flexible boundaries by considering small

wave number (wavelength of peristaltic wave is large in comparison with width of the tube).

Experimental work presented by Shapiro showed the same results as observed by Latham [10]

in his initial experimental investigation. The theory of long wavelength and low Reynolds num-

ber was further confirmed through the studies of Eckstein [11] and Weinberg [12]. Afterwards,

Weinberg et al. [13] and Lykoudis [14] further discussed the ureteral system as peristaltic pump

by proposing more models for the ureteral waves. Relation between the biomechanical forces

and uretal muscles was presented by Fung [15 16]  Peristaltic motion of Newtonian fluid in

symmetric and asymmetric geometries is investigated by Burns and Parkes [17]. They made

the small Reynolds number assumption to analyze Stokes flow situation. Barton and Reynor

[18] analyzed the peristaltic flow for two different cases. The first analysis was presented for

large wavelength when compared with average radius of the tube and same analysis was done

by assuming small wavelength. Hanin [19] invoked the assumption of long wavelength with

large Reynolds number while considering small amplitude ratio. Peristaltic flow of viscous fluid

in a two-dimensional channel with reflux was investigated by Fung and Yih [20]. They found

7



that the reflux occurs in the centre of the channel. Shapiro et al. [21] presented the analysis by

ignoring inertia effects (i.e. at low Reynolds number). They considered the flow both in planar

and axisymmetric channels and investigated the problem by taking the range of amplitude ratio

from zero to full occlusion. Reflux phenomena is found true for urinary and gastrointestinal

systems. Peristaltic flow of viscous fluid through circular tube is studied by Yin and Fung [22].

They applied perturbation technique about small amplitude ratio and discussed the classical

Poiseuille flow and Sommerfeld-Orr equation at zeroth and first order terms respectively. Zein

and Ostrach [23] looked at the incompressible flow of viscous fluid in a two-dimensional geom-

etry. Their analysis was aimed to find the possible application of peristalsis to human ureteral

system. The work of Zein and Ostrach was extended by Li [24] for axisymmetric case. Chow

[25] studied the flow of an incompressible Newtonian fluid through circular cylindrical tube for

an axisymmetric case. The initial motion of flow was taken as Hagen-Poiseuille. Meginniss

[26] addressed the inertial free lubrication theory to peristaltic flow in a tube of a roller pump.

Lykoudis and Roos [27] developed a fluid-mechanical model for studying the functioning of

human ureter. They presented the analysis by adopting the lubrication theory and found good

agreement between theoretical and experimental pressure distribution. Jaffrin and Shapiro [28]

worked on inertia-free peristaltic motion of viscous fluid and presented the physical picture of

peristaltic pump. Lew et al. [29] discussed two different solutions for the peristaltic activity

in small intestine, one for peristaltic carrying in which fluid flow is generated in the absence

of net pressure gradient and the other one is a peristaltic compression in which net motion of

the fluid is not considered. Axisymmetric motion of viscous fluid in a cylindrical tube with

small Reynolds number is studied by Lew and Fung [30]. Their analysis provides physical sig-

nificance of studying the fluid motion inside vessels (i.e. veins and lymphatic ducts) of living

bodies. Weinberg et al. [31] conducted the experimental analysis of peristaltic pumping The

results of experiment confirmed the analysis of Shapiro et al. (ref. [21]) when Reynolds number

was extended upto 1. Tong and Vawter [32] adopted finite-element method to discuss peristaltic

pumping in a tube. They concluded that in the absence of net flow reflux occur on the axis

when wavelength is short whereas for large wavelength reflux occurs off the axis. Jaffrin [33]

considered the peristaltic motion of viscous fluid in a circular tube in the presence of inertial and

streamline curvature effects. He presented the analysis by taking small wave number. Theoret-
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ical investigation revealed that two-dimensional peristaltic motion with inertia and streamline

effects physically presents the gastrointestinal tract and the roller pumps. Semleser et al. [34]

presented a mathematical model for the swimming mechanism of spermatozoa in the cervix.

The influence of Poiseuille flow on peristaltic flow in a two dimensional channel is studied by

Mitra and Prasad [35]  Nergin et al. [36] extended the work of Tong and Vawter (ref. [32])

by discussing pressure rise per wavelength ∆. Manton [37] discussed peristaltic flow in an

axisymmetric tube for small Reynolds number when the wavelength of arbitrary shaped waves

is large. Hung and Brown [38] discussed the mechanism of solid-particle transport through peri-

staltic motion in a two-dimensional geometry. He concluded that the bolus moves forward by a

particle which results in oscillatory motion of the particle. Liron [39] discussed the peristaltic

flow both in pipe and channel and developed the solution expression by double expansion for

the square of wave number and Reynolds number. He analyzed the efficiency and performance

of biological functions in terms of peristaltic flow. Brown and Hung [40] presented analytical so-

lutions for peristaltic flow in a channel. Srivastava and Srivastava [41] addressed the peristaltic

flow of a two-fluid, peripheral and core fluid, in a non-uniform channel and tube. The results

of the study were in good agreement with the experimental results obtained by Weinberg et al.

(ref. [31]). The influence of pulsatile flow in connection with peristalsis in circular cylindrical

tube is studied by Srivastava and Srivastava [42]. A numerical solution of peristaltic pumping

in a tube is found by using upwind finite-difference scheme by Takabatake et al. [43]  Li and

Brasseur [44] presented the analysis for peristalsis in a finite length tubes with arbitrary wave

shape and wavenumber whereas the flow is non-steady. Eytan and Elad [45] have discussed

the peristaltic flow of Newtonian fluid in an asymmetric channel. Lubrication theory has been

employed to obtain the solution in a fixed frame where as flow is taken to be time dependent.

Investigation of an incompressible fluid in an asymmetric channel with inertia and streamline

curvature effects has been done by Rao and Mishra [46]. Makheimer [47] gives detailed analysis

of peristaltic flow of an incompressible viscous fluid through uniform and non-uniform annulus.

So far, we have focused our attention to discuss the behavior of Newtonian fluid in peristaltic

flows. In reality, not all fluids exhibit the properties of Newtonian fluid. Therefore, we extend

our discussion to non-Newtonian fluids. Most of the physiological fluids like blood, chyme,

hydrocarbons, polymer melts, bubbly fluids and some industrial oils show the more complex
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stress-strain relation than Newtonian fluid. There is no single constitutive relation which can

determine the properties of all fluids. Due to this problem several constitutive models have

been offered to determine characteristics of non-Newtonian fluids. Casson [48] extended the

equations for flow of pigment oil suspensions used in printing ink type fluid. Eringen [49]

discussed the theory of micropolar fluid and studied the properties like couple stresses, body

couples, microrotation and microinertial effects in detail. Eringen [50] introduced the theory

of microfluids of which micropolar is a special case. Raju and Devanathan [51] were the first

to describe the peristaltic flow of power-law fluid in a tube with small wave amplitude. Devi

and Devanathan [52] studied the peristaltic motion of micropolar fluid under the assumption

of low Reynolds number. Johnson and Segalman [53] developed the theory for viscoelastic

fluids exhibiting the property of non-affine deformation. Radhakrishnamacharya [54] observed

the peristaltic motion of non-Newtonian fluid in two-dimensional channel with long wavelength

consideration. Bohme and Friedrich [55] performed the analysis of an incompressible viscoelastic

fluid in a planar channel with no inertia effects. Srivastava and Srivastava [56] modeled the

peristaltic motion of blood as two layered fluid and give comparison of uniform and non-uniform

tube. Peristaltic motion of blood through stenosed artery has been investigated by Chaturani

and Samy [57]  The non-Newtonian fluids considered to satisfy Herschel-Bulkley equation.

Moreover, they discussed some arterial diseases briefly. Siddiqui and Schwarz [58 59] determined

the flow characteristics of third and second order fluids in channel and duct. They employed

perturbation technique for the solution of problem. Srivastava and Saxena [60] scrutinized

the peristaltic flow of blood in a uniform diameter tube. They have used constitutive relation

of Casson fluid for blood. Usha and Rao [61] modeled two-layered power law fluids within

axisymmetric tubes. Elshehawey et al. [62] discussed the peristaltic motion of Carreau fluid

adopting lubrication approach. They applied perturbation technique for small Weissenberg

number. Eytan and Elad [63] looked intrauterine fluid motion due to myometric contractions

as a peristaltic flow. Transport of food bolus through digestive tract is inspected by Misra and

Pandey [64]  Theoretical investigation of peristaltic motion of Casson fluid in axisymmetric

channel is done by Mernone and Mazumdar [65]. Hayat et al. [66] examined the influence of

Oldroyd-B fluid on peristaltic transport in a two-dimensional channel assuming long wavelength

approximation. Vajravelu et al. [67] studied the peristaltic flow of Herschel-Bulkley fluid in
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contact with Newtonian fluid. They applied the study to blood flow in small vessels. Hariharan

et al. [68] reported a study dealing with peristaltic flow of non-Newtonian fluids i.e. power

law and Bingham, in a diverging tube and discussed different wave forms. Nadeem and Akram

[69] have modeled the flow of hyperbolic tangent fluid in a two-dimensional channel undergoing

peristaltic motion and adopted lubrication approach for problem simplification.

Significance of heat transfer cannot be ignored in industrial and medical applications. Par-

ticularly, heat transfer in human body is an important area of research. Bio-heat transfer in

tissues has attracted the attention of biomedical engineers for thermotherapy [70] and the hu-

man thermoregulation system [71]. The heat transfer in humans takes place as conduction in

tissues, perfusion of the arterial-venous blood through the pores of the tissue, metabolic heat

generation etc. The other applications are destruction of undesirable cancer tissues, dilution

technique in examining blood flow and vasodilation. In connection with peristalsis heat trans-

fer become significant in oxygenation and hemodialysis. Several researchers investigated about

heat transfer in peristaltically induced flows (c.f. Heat transfer- a review of 2003 literature by

Goldstein et al. [72]).

Generally, viscous dissipation effect is ignored while performing theoretical analysis of fluid

flow problems. However, considering this assumption may lead to some serious problems in cer-

tain flow situations. The need of considering viscous dissipation effects is felt while dealing with

strong temperature-dependent viscosity, high viscosity fluids and high speed gas dynamics. Heat

produced due to viscous dissipation may increase the temperature of tube wall consequently

decreasing viscosity which results in increased velocity and temperature. Rheological behavior

of silicate melts in polymer industry involves viscous dissipation effects [73]. Moreover, it play

vital role in rarefied gasses flow by altering the value of Brinkman number [74].

Significance of bio-magnetic fluid dynamics attained a valuable place due to extensive appli-

cations which include materials processing, Magneto Hydro Dynamic (MHD) energy generators,

cancer therapy [75] and biomedical flow control and separation devices [76]. Its application

in biomedical engineering includes hyperthermia regulation in the cardiovascular system by

magnetic induction [77], MHD drug targeting [78], magnetofluid rotary blood pumps, MHD

bio-micro-fluidic device design and micro-circulation flows [79 80] etc. Giant Magneto Resis-

tive (GMR) technology is a device which applies magnetic field with very sensitive sensor and
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detect small movements of an object in the domain of magnetic field. This technology has

improved the research on peristaltic activity inside the tubular structures like bowel, fallopian

tube and even in the vas deferens.

It is noticed that when we consider fluid as an ionized gas or conducting when strong

magnetic field is applied, it experiences decreased conductivity in the direction transverse to

magnetic field. Hence producing an induced current perpendicular to both electric and mag-

netic fields termed as Hall current. In addition, both electric and magnetic fields can influence

the motion of ions and electrons to create drift between them and neutral particles. This drift is

called ion slip. For weak magnetic field Hall and ion-slip effects are ignored but become promi-

nent in the presence of strong magnetic field [81]. Therefore, several investigations regarding

theses effects in peristalsis are performed.

Magnetic field effect for blood flow is investigated by Sud et al. [82]  Agrawal and Anwarud-

din [83] studies blood flow through equally branched channel undergoing peristaltic activity.

They adopted lubrication approach for their analysis. They concluded that magnetic field may

be used as a blood pump during cardiac surgeries. Radhakrishnamacharya and Murty [84] have

analyzed heat transfer effects on the flow of Newtonian fluid through a non-uniform channel.

Mekheimer [85] presented the study of MHD viscous fluid in a non-uniform channel. Tzirtzi-

lakis [86] presented numerical analysis for flow of viscous fluid through duct under the influence

of magnetic field. Elshahed and Haroun [87] discussed MHD peristalsis of Johnson-Segalman

fluid in a planar channel. Magnetohydrodynamic peristaltic transport of fourth grade fluid in a

wave frame is investigated by Hayat et al. [88]  They concluded that pressure rise and frictional

force per wavelength is higher for non-Newtonain fluid than that of Newtonian. Wang et al.

[89] explored the numerical solution for peristaltic transport of Sisko fluid under the influence

of uniform magnetic field. Mekheimer and Elmaboud [90] canvassed the flow of viscous fluid in

a vertical annulus with heat source/sink. Srinivas and Kothandapani [91] observed peristaltic

flow of MHD Newtonian fluid in an asymmetric channel. Nadeem and Akbar [92] examined

the peristalsis of viscous fluid in a planar channel. Required solution is obtained by employing

Adomian Decomposition method. Nadeem and Akbar [93] also discussed the peristaltic flow of

non-Newtonain fluid in a non-uniform geometry under long wavelength assumption. Sobh et al.

[94] presented investigation for peristaltic activity of Oldroyd fluid in an asymmetric channel
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with viscous dissipation effects. Heat transfer analysis of fourth grade fluid in a symmetric

channel with induced magnetic field is observed by Hayat and Noreen [95]. Ali et al. [96] con-

sidered heat transfer effect on peristaltic motion of viscous fluid in curved channel. Solution for

temperature field is calculated numerically. Influence of heat source/sink on electrically con-

ducting hyperbolic tangent fluid in a vertical channel was deliberated by Nadeem and Akram

[97]. Hayat et al. [98] considered effect of heat transfer on peristaltic mechanism with variable

viscosity. Tripathi [99] modeled and analyzed the swallowing mechanism through esophagus

and discussed the heat transfer effect reflux and trapping phenomena.

Investigations regarding fluid flow through porous medium gained considerable importance

due to its applications engineering, geo-fluid dynamics and biomechanics. In human physio-

logical systems such flows can be observed in kidneys, lungs, movement of small blood vessels,

cartilage and bones etc. Inside human body the tissues can be regarded as deformable porous

media. Their work depends on the transport of blood and different nutrients through them.

The concept of porous medium in peristalsis was first introduced by Aarts and Ooms [100]. Af-

terwards, Afifi and Gad [101] presented the study for peristaltic flow of pulsatile magneto-fluid

saturating porous space. Mekheimer [102] considered the nonlinear peristaltic motion of New-

tonian fluid filling an inclined channel with porous medium by making analysis about small wave

number. Rao and Mishra [103] looked at peristalsis of power-law fluid through porous tube.

They made the analysis in axisymmetric geometry and concluded that the results obtained can

best describe the chyme motion in small intestine. Mishra and Rao [104] also examined the

peristaltic flow through planar channel with porous medium in the peripheral region whereas

viscous fluid fills the core region. A study regarding effect of porous medium on peristaltic

flow in axisymmetric channel is presented by Elshehawey et al. [105]  Hall effects on peristaltic

flow of Maxwell fluid in a planar channel with uniform porous medium are noticed by Hayat et

al. [106]  Kothandapani and Srinivas [107] presented the study regarding peristaltic flow in an

inclined channel with porous medium. Reasonable agreement between this and study [105] is

noticed. Srinivas and Gayarhri [108] have analyzed peristaltic activity in asymmetric vertical

channel with heat transfer and porous space. Mekheimer et al. [109] addressed the influence of

heat transfer on peristaltic motion of viscous fluid in a vertical channel with asymmetry in the

presence of porous medium. Pandey and Chaube [110] presented out effect of external mag-
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netic field on channel filled with micropolar fluid with porous medium by considering sinusoidal

waves travelling down the walls of channel.

Mass transfer alludes to the movement of mass from one position to another. Regular oc-

currence of mass transfer can be observed in many engineering processes. Particularly, study

of mass transfer has vital position in chemical engineering and more specifically in heat trans-

fer, separation process and reaction engineering. Combined heat and mass transfer has many

applications as drying, energy transfer in wet cooling tower, evaporation at the surface of a

water body and the flow in dessert cooler. Simultaneous occurrence of heat and mass transfer

develops complex relation between the fluxes and the driving potentials. Energy flux due to

concentration gradient is termed as thermal diffusion or Dufour effect whereas mass flux gen-

erated by temperature gradient is known as Soret effect. Although the diffusion-thermo and

thermal-diffusion are regarded small order of magnitude when compared with the influences

due to Fouriers or Ficks law but there are conditions when such effects cannot be ignored.

For example, the thermal diffusion effect is employed for isotope separation and in mixtures

between gases with high molecular weight (H2, He) and of medium molecular weight (H2, air)

[111], the diffusion-thermo effect cannot be omitted. Moreover, blood flow within human body

involves heat and mass transfer simultaneously when nutrients diffuse out from blood vessels

to the neighboring tissues. Ogulu [112] analyzed the effects of heat generation on the fluid flow

with small Reynolds number and mass transport in a lymphatic vessel under the influence of

uniform magnetic field. Eldabe et al. [113] considered unsteady peristaltic flow with mixed

convection and temperature dependent viscosity. They discussed the situation where one wall

is flat while other executing peristaltic activity. Nadeem and Akbar [114] studied the peristaltic

motion in an annulus filled with Jeffrey-six constant in the presence of heat and mass trans-

fer. Srinivas et al. [115] focused the attention on peristaltic flow of viscous fluid in vertical

asymmetric channel with Soret and Dufour effects. Mixed convective flow of Jeffrey fluid in

vertical channel undergoing peristaltic motion is addressed by Safia et al. [116]  Hayat et al.

[117] documented influence of heat and mass transfer on peristaltic flow of pseudoplastic fluid

where the walls are non-conductive and induced magnetic field is taken. Eldabe et al. [118]

reported peristalsis of micropolar fluid by considering heat absorption and chemical reaction.

They concluded that the micropolar parameter have deep effect on the convection in porous
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medium. MHD peristaltic flow of Powell-Eyring fluid between two coaxial cylinders is examined

by Shaaban and Abou-zeid [119].

Convection is a kind of heat transfer where it occurs due to mass transfer. Bulk motion of

fluid causes enhancement in heat transfer that can be observed in various physical processes

as between the fluid and a solid boundary. The process of conduction occurs due to heat

transfer between a solid boundary and static fluid. Boundary conditions in such situation

can be calculated through Fourier law of heat conduction. However, when the fluid is moving

boundary conditions in such case involve both the conduction and convection. The boundary

condition now are because of Fourier law of heat conduction and the Newton law of cooling.

Such boundary conditions are termed as convective type [120 121]. Literature witness less

attention towards the use of convective conditions in peristalsis (see refs. [122− 126]).
Viscous theory of fluid satisfies the no-slip boundary condition for the flow analysis. How-

ever, when dealing with polymeric fluids, flows that occurs in capillary vessel [127] and rarefied

fluid problems [128] no-slip boundary condition does not remain valid. There are devices where

no-slip boundary condition is proved inappropriate for momentum and temperature such as

flows in microdevices. Thus fluids showing boundary slip behavior can be used in many techno-

logical applications like polishing of artificial heart. Mandiwala and Archer [129] investigated

the effect of slip conditions on inside wall of rectangular channel. Hayat et al. [130] explored the

impact of partial slip on peristaltic motion of viscous liquid by adopting lubrication approach.

Adomian Decomposition method is employed for the solution of stream function and velocity.

Ali et al. [131] considered the flow of third grade fluid in a circular cylinder with peristaltic

activity. They analyzed the problem for slip conditions and presented the comparison of series

and numerical solutions. Nadeem and Akram [132] focused the attention on studying slip ef-

fects on peristaltic motion of Jeffrey liquid in a channel. A mathematical model for observing

simultaneous influence of slip and heat source/sink parameter is studied by Hayat et al. [133] 

Homotopy perturbation technique was employed by Yildirim and Sezer [134] to discuss partial

slip effects on peristaltic motion of viscous fluid. Kumar et al. [135] discussed the peristal-

sis in an asymmetric channel with slip effect. Das [136] examined the peristaltic motion of

Johnson-Segalman fluid with slip effects when asymmetric channel is inclined. Saravana et al.

[137] talked about slip conditions on peristaltic motion of non-Newtonain fluid in an inclined
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channel with heat and mass transfer effects. Jyothi and Rao [138] discussed the effect of slip in

flow of electrically conducting Williamson fluid. Perturbation technique was adopted to solve

nonlinear system of equations. Abbasi et al. [139] reported the influence of mixed convection

on peristaltic flow of nanofluid under consideration of slip at the boundaries.

Existing literature indicates that peristaltic flows in different geometries are also discussed

for the Newtonian and non-Newtonian fluids in compliant walls channel. The use of compli-

ant coatings has fascinated scientists and engineers by its drag reduction ability. In human

physiological systems compliance is defined as the ability of tubular organs to resist recoil to

its original position. Some interesting studies may be mentioned to the peristaltic flows of

Newtonian and non-Newtonian fluids in channel/tube with compliant boundaries. Mitra and

Prasad [140] examined the influence of wall properties on peristaltic motion in a channel. They

concluded that mean flow reversal exists both at the center and boundaries of channel. Camen-

schi [141] and Camenschi and Sandru [142] discussed the viscous fluid flow in thin pipes with

elastic wall. Carew and Pedley [143] proposed a mathematical model to study wall deformation

and fluid flow in human ureter. Davies and Carpenter [144] presented the stability analysis

of channel flow between compliant boundaries. Muthu et al. [145] reported the viscoelastic

behavior of circular cylindrical walls on peristaltic motion of flowing fluid. Mean flow reversal

in a compliant wall asymmetric channel is addressed by Haroun [146]  Heat transfer charac-

teristics of Newtonian fluid in a two dimensional channel with wall properties are investigated

by Radhakrishnamacharya and Srinivasulu [147]  The characteristics of free pumping on peri-

staltic activity of micropolar fluid in circular cylinder with compliant boundaries are revealed

by Muthu et al. [148]  Kothandapani and Srinivas [149] considered heat transfer and porous

boundaries effects on magnetohydrodynamic peristaltic flow of viscous fluid in a flexible wall

channel. Elnaby and Haroun [150] studied the flow of viscous fluid through a channel with

flexible boundaries. Hayat et al. [151 152] explored the influence of compliant boundaries on

peristaltic activity of Jhonson-Segalman and Maxwell fluids. MHD peristaltic motion of viscous

fluid in a heated channel with flexible boundaries was examined by Srinivas et al. [153] (ex-

tension of ref. [149]) The theoretical investigation on the peristaltic flow in a compliant wall

channel with heat and mass transfer effects were also looked by Srinivas and Kothandapani

[154]  Mustafa et al. [155 156] discussed the analytical and numerical results by considering
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nanofluid flow through a compliant wall channel with slip conditions and heat/mass transfer.

Eldabe et al. [157] discussed peristalsis of power-law fluid in an asymmetric channel with wall

properties. Carreau fluid in a symmetric channel with wall properties and porous space is ana-

lyzed by Salih and Abdulhadi [158]. Hayat et al. [159] noticed the effects of thermal radiation

and Joule heating in flow of dusty fluid with simultaneous effects of heat and mass transfer.

1.3 Basic equations

It is appropriate to consider the physical laws of conservation while dealing with real flows.

These are related with laws of conservation of mass, momentum and energy equations, respec-

tively. Moreover, assumption of conservation of containment allows one to consider an equation

additionally which is termed as concentration equation. These are explained as follows:

1.3.1 Mass conservation

The differential equation for law of conservation of mass is known as the continuity equation

i.e.




+∇ (V) = 0 (1.1)

in which  shows the density, ∇ is the gradient operator and V stands for velocity. For

incompressible fluid

∇V = 0 (1.2)

The analysis presented in this study will revolve around incompressible flows.

1.3.2 Momentum conservation

Basic equations of fluid flow describe the "flow field" in terms of velocity profile. These equations

contain the velocity components derivative, pressure gradient of fluid and term describing the

body force. In vectorial form, the equation can be written as


V


=∇τ+f  (1.3)
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whereV defines the velocity field, τ (= −I+ S) presents Cauchy-stress tensor,  is the pressure,
I the identity tensor, S the extra stress tensor and last term i.e. f describes the body force.

The momentum equation in the the presence of rotation can be modified as under:


V


+  [Ω× (Ω× r) + 2 (Ω×V)] =∇τ+f  (1.4)

where second and third terms on the left hand side present the centrifugal and Coriolis force

respectively.

1.3.3 Energy conservation

The equation representing conservation of energy is based on first law of thermodynamics ap-

plied on control volume. The transient form of energy equation obeying the ideal gas conditions

along with subsonic velocity field can be written as:





= −∇q+ (1.5)

In above equation (=  ) shows internal energy where  is the specific heat, q(= − grad )
stands for heat flux,  is the thermal conductivity of fluid and  is the source term related to

transport of energy. This term is also responsible for the modification of heat transport char-

acteristics when velocity components, surface heating cooling, radiative heat flux and viscous

dissipation are considered. Moreover, it also stands for Dufour and Joule heating effects.

1.3.4 Concentration equation

Movement of mass in fluid flows is involved in many engineering processes. Transport of mass

can be referred to the movement of polluting chemical to particular matter. For driving concen-

tration equation one has to assume conservation of mass within the fluid flow. Two mechanisms

responsible for movement of mass are convection and molecular diffusion. Suppose  to be the

mass concentration of fluid per unit volume, then the mass equation in vector form can be

represented as:




= ∇2 + 


∇2 (1.6)
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In above equation  stands for mass diffusion coefficient,  presents the thermal-diffusion

ratio and  is the mean temperature.

1.3.5 Maxwells equations

Equations describing the behavior of electric and magnetic fields by discussing basic laws of

electromagnetism are termed as Maxwells equations. These are:

Guass’ law of electricity

∇E = 
0
 (1.7)

Guass’ law of magnetism

∇B =0 (1.8)

Faradays law

∇×E = −B


 (1.9)

Ampere-Maxwell law

∇×B =0J+ 00
E


 (1.10)

In the above equations  shows the charge density, 0 the permittivity of free space, 0 the

electric constant, B(= B0+B1) the total magnetic field where B0 is the applied magnetic field

and B1 is the induced magnetic field, E the electric field and J the current density.

1.3.6 Compliant wall

Compliance is a measure of tendency of an organ to turn back towards its original pattern upon

removal of compressing source. Thus a wall with flexible, stretchable, damping and elastic

nature is called compliant wall. It is also capable of keeping fluid in it. In most of the physical

phenomena rigid wall assumption remains valid if the disturbance of pressure in the fluid is

small so that the deformation of the wall is negligible. But if the channel/duct/tube wall is
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assumed to be thin (i.e. ∼ 005 of the radius or less), or the wall is made of deformable, then

the compliant wall approach gives good results.

The governing equation of motion for flexible wall can be written as

() = − 0

 =

∙
− 2

2
+

2

2
+ 1




+

4

4
+

¸
 (1.11)

where  is the operator that is used to represent the motions of stretched membrane,  the

elastic tension,  the mass per unit area,  the flexural rigidity of the plate, 1 the coefficient

of viscous damping and  the spring stiffness and 0 is the pressure outside of the wall due to

tension in the muscles. It is also assumed that 0 = 0 and walls of the channel are inextensible.
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Chapter 2

Peristaltic motion of Jeffrey fluid

with simultaneous effects of rotation

and radiation

2.1 Introduction

The objective of this chapter is to examine the influence of rotation on the peristaltic motion of

non-Newtonian fluid. Constitutive relationship of Jeffrey fluid are employed in the mathematical

formulation and related analysis. The thermal radiation and Joule heating are also considered.

An electrically conducting fluid in a channel with compliant boundaries is taken. Solution ex-

pressions are established through assumptions of large wavelength and small Reynolds number.

Impact of sundry variables on velocities (axial  and secondary ), temperature () and heat

transfer coefficient () are analyzed. Streamline pattern is also discussed.

2.2 Physical model

We have considered an infinite channel of width 2 formed by two walls at  = ± The channel
is filled with an incompressible Jeffrey fluid. An infinite sinusoidal wave of wavelength  and

speed  travels along the flexible walls of channel. The fluid and channel are assumed in a

state of rigid body rotation with a constant angular speed Ω about the −  (see Fig. 21).
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Mathematically, the equation of wall surface is given by

 =  ( ) = +

∙
+  sin

2


(− )

¸
at upper wall, (2.1)

 =  ( ) = −
∙
+  sin

2


(− )

¸
at lower wall. (2.2)

where  and  are the wave amplitude and time respectively. A magnetic field of strength B0

is applied in positive -direction i.e. normal to the channel walls. The magnetic Reynolds

number is taken sufficiently small and thus the induced magnetic field is negligible. Velocity

for corresponding flow problem is defined as

V = ((  )(  )(  )) (2.3)

where the velocity components in the fixed frame of reference in corresponding directions are

designated by (  ), (  ) and (  ) respectively.

Fig. 2.1: Problem sketch

2.3 Problem formulation

The constitutive equations for the flow of an incompressible Jeffrey fluid are [132]

 = −̄I+ S (2.4)

S =


1 + 1

µ
1 + 2





¶
A1 (2.5)
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where ̄ is the pressure, I the identity tensor,  the dynamic viscosity, 1 the ratio of relaxation

to retardation times, 2 the retardation time and A1 the first Rivilin-Ericksen tensor defined

as

A1 = (gradV) + (gradV)
◦ 

where ◦ indicates the matrix transpose.
The fundamental equations for an incompressible fluid in non-inertial frame are

divV = 0 (2.6)


V


+  [Ω× (Ω× r) + 2 (Ω×V)] = ∇τ + J×B (2.7)





= ∇2 + τ L+

1


JJ−∇ (2.8)

J =  (V ×B) 

in which V is the velocity,  density of the fluid, Ω =Ω̂ ̂ the unit vector parallel to z-axis,

the angular velocity, τ the Cauchy stress tensor,  the specific heat at constant volume,  the

thermal conductivity,  denotes the temperature,  the electrical conductivity,  the radiative

heat flux and



the material time derivative given by




=




+ 




+ 






The radiative heat flux through Rosselands’ approximation can be reduced in the form [160] :

 u
−4∗
3∗

 4


 (2.9)

where ∗ and ∗ denote the Stefan-Boltzman and Rosseland mean absorption coefficients re-

spectively. Using Taylor series one gets

 4 u 4
03
1  − 3 04

1  (2.10)

where  01 is the mean temperature of fluid.

Substituting Eq. (29) after using Eq. (210)  the continuity, momentum and energy equa-

23



tions in the presence of body force become




+




= 0 (2.11)



∙




¸
− 2Ω = −


+




+




+




− 20 (2.12)



∙




¸
+ 2Ω = −


+




+




+




− 20 (2.13)



∙




¸
= −


+




+




+




 (2.14)





= 

∙
2

2
+

2

2
+

2

2

¸
+ 




+ 

µ



+





¶
+




+ 20

¡
2 + 2

¢
+
16∗ 3
3∗

2

2
 (2.15)

where  is secondary velocity due to rotation and modified pressure  is defined as

 = ̄− 1
2
Ω2

¡
2 + 2

¢


The boundary conditions are

 = 0  = 0  =

½
1

0

¾
at  = ± (2.16)

where 1 and 0 are the temperatures of the upper and lower walls respectively. The related

equation of motion for the compliant walls is

 () = − 0

where  is an an operator used to represents the motion of compliant walls with viscous damping

forces as follows [140 144]:

 = − 0 
2

2
+1

2

2
+ 

0 


+ 

4

4
+ 2 (2.17)

In above equation 
0
is the elastic tension in the membrane,  the mass per unit area, 0 the

coefficient of viscous damping forces,  the flexural rigidity, 2 the constant spring stiffness and

0 the pressure on the outer side of the wall due to the muscles tension. It is assumed that
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0 = 0 The stress continuity condition implies that at the fluid and walls interfaces the pressure

must be same as that which acts on the fluid at  = ± Using − momentum equation and

continuity of stress at  = ± the dynamic boundary condition can be expressed as follows:




 () =




=




+




+




− 20+ 2Ω − 




at ( = ±)  (2.18)

2.3.1 Non-dimensionalization

If  (  ) is the stream function then

 =    = −

Now continuity equation is identically satisfied. We introduce the following non-dimensional

variables as follow:

∗ =



 ∗ =




 ∗ =




 ∗ =

2


 ∗ =






∗ =



 ∗ =




 ∗ =




 S∗=

S


 ∗ =






∗2 =



2  =

 − 0

1 − 0

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Using the above transformations and dropping asteriks we get non-dimensional form of Eqs.

(212)− (218)

Re 

∙
2


+





2


− 



2

2

¸
− 2 0

 = −

+ 




 + 




 +






−2 (2.19)

Re 

∙



+








− 







¸
+ 2

0 


= −


+ 




 + 




 +






−2 (2.20)

Re 2
∙
− 2


− 



2

2
+





2



¸
= −


+ 




 + 




 +




 (2.21)

PrRe

∙



+








+ 




− 







¸
=

∙
2
2

2
+ 2

2

2
+

2

2

¸
+

2

2
+Pr2

×
µ




2

+ 2
¶
+

Pr

(1 + 1)

µ
1 + 2





¶
×
h
42 ()

2 +
¡
 − 2

¢2i
 (2.22)

 = 0  = 0  =

½
1

0

¾
at  = ± (2.23)

∙
1

3

3
+2

3

2
+3

2


+4

5

5
+5





¸
 = 




 + 




 +






−2


+ 2

0
 − Re




at  = ± (2.24)

The dimensionless form of  is

() = (1 +  sin 2 (− )) 

In above expressions Re (= ) is the Reynolds number,  (= ) the wave number, 
0
(=

ReΩ) the Taylors number, 2(= 20
2 

) the Hartman number, Pr (= ) the Prandtl

number, 
³
=

16∗ 31
3∗

´
the radiation parameter, 

¡
= 2 (1 − 0)

¢
the Eckert number,  (= )

the amplitude ratio and 1
¡
= −33¢, 2 ¡= 1

33
¢
, 3

¡
= 032

¢
 4

¡
= 35

¢
and 5

¡
= 2

3
¢
are the non-dimensional elasticity parameters.

It should be pointed out that the theory of long wavelength and zero Reynolds number

remains applicable for case of chyme transport in small intestine [161]. In this case  = 2
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,  = 125  and  = 801 . Here half width of intestine is small in comparison to

wavelength i.e.  = 0156. It is also declared by Lew et al. [29] that Reynolds number in

small intestine was small. Further, the situation of intrauterine fluid flow due to myomaterial

contractions is a peristaltic type fluid motion in a cavity. The sagittal cross section of the

uterus reveals a narrow channel enclosed by two fairly parallel walls [45]. The 1 − 3 

width of this channel is very small compared with its 50 mm length [162], defining an opening

angle from cervix to fundus of about 004 . Analysis of dynamics parameters of the uterus

revealed frequency, wavelength, amplitude and velocity of the fluid-wall interface during a

typical contractile wave were found to be 001 − 0057 , 10 − 30 , 005 − 02  and

05 − 19  respectively. Therefore, applying long wavelength and low Reynolds number

approximation [21]  Eqs. (21− 26) take the form

−2 0
 = −


+

1

(1 + 1)
 −2 (2.25)

2
0
 = −


+

1

(1 + 1)
 −2 (2.26)




= 0 (2.27)

 = −Pr
2

(1 +)

¡
2 + 2

¢
+

Pr

(1 +) (1 + 1)
2 (2.28)

 = 0  = 0  =

½
1

0

¾
at  = ± (2.29)

∙
1

3

3
+2

3

2
+3

2


+4

5

5
+5





¸
 =

1

(1 + 1)


−2 + 2
0
 at  = ± (2.30)

Equation (227) shows that pressure is not the function of . By using this fact, the pressure

can be eliminated from Eq. (225). Further, pressure term in Eq. (226) can be neglected, as

the secondary flow is resulted by the rotation. In view of these facts, we can write Eqs. (225)
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and (226) in the forms

−2 0
 =

1

(1 + 1)
 −2 (2.31)

2
0
 =

1

(1 + 1)
 −2 (2.32)

2.4 Exact solutions

Exact solutions of Eqs. (228), (231) and (232) subject to boundary conditions are

 = 13 +14 sinh
hp

1
i
+15 sinh

hp
2

i
 (2.33)

 =
³
21 +22 cosh

hp
1

i
+23 cosh

hp
2

i´
×
³
cosh2

h³p
1 +

p
2

´

i
− sinh2

h³p
1 +

p
2

´

i´

 (2.34)

 = 4 +5
2 +6 cosh

hp
1

i
+7 cosh

2
hp

2
i
+8 cosh

h
2
p
1

i
+9 cosh

h
2
p
2

i
+10 cosh

hp
2 ( − )

i
+11 cosh

hp
2 ( + )

i
+12 cosh

hp
1

i
cosh

hp
2

i
+13 sinh

hp
1

i
sinh

hp
2

i
+14 sinh

2
hp

1
i
+15 sinh

2
hp

2
i
+16 (2.35)

The heat transfer coefficient at the wall is given below

 =  () 

= 4 + 25 +6
p
1 sinh

hp
1

i
+ 27

p
2 cosh

hp
2

i
sinh

hp
2

i
+28

p
1 sinh

h
2
p
1

i
+ 29

p
2 sinh

h
2
p
2

i
+10

p
2 sinh

hp
2 ( − )

i
+11

p
2 sinh

hp
2 ( + )

i
+12

³p
1 sinh

hp
1

i
cosh

hp
2

i
+
p
2 cosh

hp
1

i
sinh

hp
2

i´
+13

³p
1 cosh

hp
1

i
sinh

hp
2

i
+
p
2 sinh

hp
1

i
cosh

hp
2

i´
+214

p
1 sinh

hp
1

i
cosh

hp
1

i
+ 215

p
2 sinh

hp
2

i
cosh

hp
2

i
(2.36)
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where the values of constants   0 0( = 1−16) and 0( = 1−23) are given as follows:

 = 2(1 + 1)  = 
0
(1 + 1)

0 = 83
µ
3

2
sin[2(− )]− (1 +2) cos[2(− )] + (424 +

5

42
) cos[2(− )]

¶


1 =
2

(1 +)
 2 =



(1 +)(1 + 1)
 3 = 21(

3 + 202 − 4222 − 1642)

4 =
1

2


5 =
1

6423
20 sec

2[
p
1](−42122 − 41(21 +1(2 + 2+ 4))− 212(21

+(41 +2− 22) cosh[2
p
1] + 21(cosh[2(

p
1 −

p
2)]

+ cosh[2(
p
1 +

p
2)])) sec

2[
p
2])

6 =
12

2
0 sec[

√
1]

23
 7 =

2
2
2

2
0 sec

2[
√
1]

3223
 8 =

2
2
2

2
0 sec

2[
√
1]

12823


9 =
32

2
1

2
0 sec

2[
√
2]

12823
 10 =

11
2
0 sec

2[
√
2]

223
 11 =

11
2
0 sec

2[
√
2]

223


12 =
12

2
0 sec[

√
1] sec[

√
2]

83
2

µ
1

22
+

2

3

¶


13 = −
√
1
√
2

2
0 sec[

√
1] sec[

√
2]

83
2

µ
2 +

1

2

¶


14 =
2

2
2

2
0 sec

2[
√
1]

6423
 15 =

2
2
1

2
0 sec

2[
√
2]

6423


16 =
1

25623
2
(−4320 + 32232 −2

2
0(

2((−1 +2)+ 2(1 +2)) + 43(3

−422)) + (−4320 + 32232 +2
2
0(1

2 + 42(−3 + 22 − 52 + 63

+221
22)))× cosh[2

p
1]− 2(−8232 +2

2
0(
p
1
p
23+ 4 + 1022 + 84)

+21
2
0(
p
1
p
23 + 3 + 202 − 42(2 + 42)2)) cosh[2(

p
1 −

p
2)]

+2(823
2 +2

2
0(
p
1
p
23− 4 − 1022 − 84) + 2120

×(
p
1
p
23 − (2 + 202) + 42(2 + 42)2) cosh[2(

p
1 −

p
2)]

−(4320 − 32232 +2
2
0(

2
2

2 + 41(
3 + 22 + 52 + 63

−22222))) cosh[2
p
2)]) sec

2[
p
1] sec

2[
p
2]
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1 = (− 2)  2 = (+ 2)  3 =
¡
2 + 42

¢
 4 = (−− 2) 

5 = (−+ 2)  6 = (+ 2)  7 =
50(4 + 2 sec[

√
1] +4 sec[

√
2])

23


8 =
60(4 + 2 sec[

√
1] +4 sec[

√
2])

23


9 =
0

8
√
1

32
2 34

(4 + 2 sec[
p
1] +4 sec[

p
2])

10 = (2 cosh[
p
2] + cosh[

p
1])(1+ 8

2 cosh[
p
2])

11 =
1

4
32
1 10

32
2

(20
2 +2(8 − 20) cosh[

p
2] +1(7 + 20) cosh[

p
2])

12 =
1

2
32
1 10

32
2

(20+ (7 −10) cosh[
p
2] + cosh[

p
1](8 −20

−20 cosh[
√
2](4 + 2 sec[

√
1] +4 cosh[

√
2])

3
))

13 = 2
p
12(−211+12

2 + 49) 14 = 2
32
2 (11 −9 − 12)

15 = 2
32
1 (11 +9 + 12) 16 = (−38 +230 + 240 + 80

2

× cosh[
p
2]

17 = (2(8 + 20) cosh[
p
1] + (202 +1(7 + 20) cosh[

p
2]))

18 = (2 cosh[
p
2] + cosh[

p
1](4 + 4 cosh[

p
2])) sec[

p
1] sec[

p
2]

19 = (−230+16 cosh[
p
1] + (−37 +130 + 220) cosh[

p
2])

20 = (2 cosh[
p
2] + cosh[

p
1](1+ 8

2 cosh[
p
2]))

21 =
1

42
(−817

204
+
819

1203
+
8180

2

13
)

22 =
1

42
(
2175

204
+

1820

13
− 4192

1203
)

23 =
1

42
(
2176

204
+

180

3
− 419

203
)

2.5 Discussion

This section is prepared to study the impact of embedded parameters on different flow quan-

tities. Plots for axial and secondary velocities and temperature are displayed and analyzed

through Figs. (22− 227) 
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2.5.1 Analysis of axial velocity

Here Figs. (22− 25) are prepared to analyze the influence of pertinent parameter on axial
velocity. These Figs. show that velocity traces a parabolic path with maximum value at

the center of the channel. Fig. (22) shows decrease in velocity when 1 is increased. As

1 represents the ratio of relaxation to retardation time and increase in its value enhances the

relaxation time. It means fluid takes more time to regain its original position and hence velocity

decreases. Velocity reduces when the value of  is increased. This is due to the fact that an

applied magnetic field exerts a retarding force on the flow (see Fig. 23). From Fig. (24) it can

be seen that increasing 
0
reduces the velocity of the fluid in axial direction. It is due to the

fact that rotation produces flow in perpendicular direction. It shows decrease in the velocity in

axial direction. It is also seen from the Fig. that in the absence of rotation velocity is greater.

Fig. (25) shows that velocity enhances when elasticity parameters 1 and 2 are increased.

There is decrease in velocity through larger 3 4 and 5 For larger 1 and 2 there is an

increase in the flow whereas damping 3 4 and 5 reduce the velocity when increased.

2.5.2 Analysis of secondary velocity

Figs. (26− 29) are prepared for outcome of 1  
0
and wall properties on the secondary

velocity . The rotation of channel induces a velocity component in the − direction which in
turn produces a fluid flow called secondary flow. Fig. (26) shows that the secondary velocity 

increases when 1 is enhanced. Similar effect is observed for  (see Fig. 27). In the absence

of rotation there is no secondary velocity but velocity in − direction increases in presence

of rotation (see Fig. 28). We can observe the effect of wall properties on secondary flow 

through Fig. (29)  Decrease in  is observed by increasing 1 and 2 while it enhances with

the increase of 3 4 and 5

2.5.3 Analysis of temperature profile

To study the effect of pertinent parameter on temperature, Figs. (210− 216) have been
plotted. It can be noticed from Fig. (210) that temperature decreases when we increase the

value of 1 As fluid relaxation time increases due to the increment in the value of 1 causing

decrease in fluid motion. As a result less energy is transferred and hence temperature decreases.
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Fig. (211) displays that temperature is an increasing function of . Effect of  on  is shown

in Fig. (212)  It is clear from Fig. that temperature enhances by increasing . Such rise

in  is resulted from the heat generation due to friction caused by shear in the flow. Similar

behavior is noticed for Prandtl number (  213)  Since it is also related with the viscous

effects produced in the flow. Effect of  on  is depicted in Fig. (214). It is observed that

temperature decreases by increasing . Fig. (215) reveals that increase in 
0
causes decrease

in  The rotation of channel forces the fluid to move fast which in turn makes particles collision

strong. Due to this energy transfer enhances causing temperature to decrease. The effects of

compliant wall parameters (1 2 3 4 and 5) on  are sketched in the Fig. (216). It is

shown that temperature increases via 1 and 2 but it decreases with the increase of 3 4

and 5

2.5.4 Heat transfer coefficient

Figs. (217− 223) disclose the influence of various parameters on heat transfer coefficient .
Effects of 1 and  on  can be observed through Figs. (217) and (218) respectively. By

increasing these parameters the absolute value of  increases. The results show that larger

 and  enhance the rate of heat transfer coefficient ( 219 and 220)  The effects of

radiation () and rotation (
0
) parameters are shown in the Figs. (221) and (222). These

Figs. depict that increase in  and 
0
results in the increase of . It is clear from Fig. (223)

that larger 1 and 2 increase the rate of heat transfer whereas decrease in heat transfer rate

is observed for 3 4 and 5

2.5.5 Trapping phenomenon

Figs. (224− 227) illustrate the phenomenon of trapped bolus (internally circulating closed
streamlines). Fig. (224) indicates that size of streamlines decreases with the increase of rotation

parameter 
0
. The increase in the value of  causes decrease in size of streamlines which can

be seen through Fig. (225)  The effects for increasing value of 1 on the size and number of

streamlines can be observed through Fig. (226). Here the size of streamlines decreases whereas

number increases through 1. Fig. (227) analyzes the effect of wall parameters on streamlines.

Here size of streamlines decreases for increasing values of 1 2 and 5 whereas it increases
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for 3 The size and number of streamlines decrease for increasing values of 4
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2.2 2.3

 22 : Variation of 1 on  when 1 = 30 2 = 30 3 = 001 4 = 01 5 = 01


0
= 05  = 05  = 02  = 01  = 02

  23 : Variation of  on  when 1 = 30 2 = 30 3 = 001 4 = 01 5 = 01


0
= 01 1 = 05  = 02  = 01  = 02

2.4 2.5

 24 : Variation of 
0
on  when 1 = 30 2 = 30 3 = 001 4 = 01 5 = 01

 = 05 1 = 05  = 02  = 01  = 02

  25 : Variation of wall properties on  when 
0
= 01 1 = 05  = 05  = 02  = 01

 = 02
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2.6 2.7

 26 : Variation of 1 on  when 1 = 05 2 = 05 3 = 001 4 = 01 5 = 06

 = 05 
0
= 01  = 02  = 01  = 02

  27 : Variation of  on  when 1 = 05 2 = 05 3 = 001 4 = 01 5 = 06

1 = 05 
0
= 01  = 02  = 01  = 02

2.8 2.9

 28 : Variation of 
0
on  when 1 = 05 2 = 05 3 = 001 4 = 01 5 = 06

 = 05 1 = 05  = 02  = 01  = 02

  29 : Variation of wall properties on  when  = 05 
0
= 05 1 = 05  = 02  = 01

 = 02
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2.10 2.11

 210 : Variation of 1 on  when 1 = 01 2 = 001 3 = 001 4 = 001 5 = 01

 = 08 
0
= 50  = 10  = 08  = 20  = 02  = 01  = 02

  211 : Variation of  on  when 1 = 01 2 = 001 3 = 001 4 = 001 5 = 01

1 = 05 
0
= 50  = 10  = 08  = 20  = 02  = 01  = 02

2.12 2.13

 212 : Variation of  on  when 1 = 01 2 = 001 3 = 001 4 = 001 5 = 01

1 = 05 
0
= 50  = 10  = 08  = 08  = 02  = 01  = 02

  213 : Variation of Pr on  when 1 = 01 2 = 001 3 = 001 4 = 001 5 = 01

1 = 05 
0
= 50  = 20  = 08  = 08  = 02  = 01  = 02
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2.14 2.15

 214 : Variation of  on  when 1 = 01 2 = 001 3 = 001 4 = 001 5 = 01

1 = 05 
0
= 50  = 10  = 20  = 08  = 02  = 01  = 02

  215 : Variation of 
0
on  when 1 = 01 2 = 001 3 = 001 4 = 001 5 = 01

1 = 05  = 08  = 10  = 20  = 08  = 02  = 01  = 02

  216 Variation of wall properties on  when 1 = 05  = 08  = 10  = 20

 = 08 
0
= 50  = 02  = 01  = 02
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2.17 2.18

 217 : Variation of 1 on  when 1 = 003 2 = 003 3 = 001 4 = 01 5 = 01


0
= 50  = 08  = 10  = 20  = 10  = 01  = 02

  218 : Variation of  on  when 1 = 003 2 = 003 3 = 001 4 = 01 5 = 01


0
= 50  = 08  = 10  = 20 1 = 08  = 01  = 02

2.19 2.20

 219 : Variation of  on  when 1 = 003 2 = 003 3 = 001 4 = 01 5 = 01


0
= 50  = 08  = 10  = 10 1 = 08  = 01  = 02

  220 Variation of Pr on  when 1 = 003 2 = 003 3 = 001 4 = 01 5 = 01


0
= 50  = 08  = 20  = 10 1 = 08  = 01  = 02
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2.21 2.22

 221 : Variation of  on  when 1 = 003 2 = 003 3 = 001 4 = 01 5 = 01


0
= 50 Pr = 10  = 20  = 10 1 = 08  = 01  = 02

  222 : Variation of 
0
on  when 1 = 003 2 = 003 3 = 001 4 = 01 5 = 01

 = 08 Pr = 10  = 20  = 10 1 = 08  = 01  = 02

  223 : Variation of wall properties on  when 
0
= 50  = 08 Pr = 10  = 20

 = 10 1 = 08  = 01  = 02
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(a) (b)

 224 : Streamlines for 
0
when 1 = 01 2 = 001 3 = 001 4 = 01 5 = 01

 = 08 1 = 08  = 01  = 02 () 
0
= 01 () 

0
= 02

(a) (b)

 225 : Streamlines for  when 1 = 01 2 = 001 3 = 001 4 = 01 5 = 01


0
= 01 1 = 08  = 01  = 02 ()  = 01 ()  = 03
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(a) (b)

 226 : Streamlines for 1 when 1 = 01 2 = 001 3 = 001 4 = 01 5 = 01


0
= 01  = 08  = 01  = 02 () 1 = 01 () 1 = 03

(a) (b)
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(c) (d)

(e) (f)

 227 : Streamlines for wall properties when 
0
= 01  = 08  = 01  = 02 1 = 08

() 1 = 01 2 = 001 3 = 001 4 = 01 5 = 01 () 1 = 03 () 2 = 003 ()

3 = 003 () 4 = 03 () 5 = 03
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2.6 Closing remarks

The peristaltic flow of Jeffrey fluid in a channel with heat transfer is discussed. Both the fluid

and channel are in rigid body rotation. Main findings of the study are:

• Axial velocity is decreasing function of 1  and 
0


• Similar behaviors on axial velocity are observed for 1 and 2 However opposite behavior
is seen for 3 4 and 5

• Secondary velocity shows opposite effect to axial velocity for 1  0
and wall properties

except for  .

• Temperature decreases for 1  and 
0
whereas it increases for  and .

• Temperature and axial velocity show similar behavior for the wall parameters.

• Size of streamlines decreases for  0
  and 1

• Decrease in the size of trapped bolus is seen when we increase wall parameters except 3
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Chapter 3

MHD peristaltic rotating flow of

Jeffrey fluid in presence of porous

medium and Soret and Dufour

effects

3.1 Introduction

This chapter addresses influence of rotation on peristaltic motion of an incompressible Jeffrey

fluid in a channel with flexible walls. Analysis is presented by taking Soret and Dufour effects.

Fluid saturates the porous medium. Modified Darcys law is employed. Modified Darcys law

is employed. A uniform magnetic field is applied. Magnetic Reynolds number is taken small.

Large wavelength and low Reynolds number is considered. Exact solutions for stream function,

temperature and concentration profile are constructed. The impact of relevant parameters is

graphically sketched.

3.2 Problem development

We examine peristaltic motion of Jeffrey liquid in a compliant wall channel. An incompressible

liquid saturates the porous space between the flexible walls of channel. Fluid is electrically
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conducting due to uniform applied magnetic field of strength 0 Induced magnetic field subject

to low magnetic Reynolds number is neglected. Electric field contribution is not taken into

account. Effects of Soret and Dufour and thermal radiation are retained. The whole system is

in a rotating frame with constant angular velocity Ω. The channel walls are taken at  = ±
Shapes of the travelling waves are described by the following expression:

 = ± ( ) = ±
∙
+  sin

2


(− )

¸
 (3.1)

where  depicts the wave amplitude,  the time,  the half width of channel,  the wavelength

and  the wave speed. The fundamental equations governing the present flow and heat/mass

transfer are represented by

∇V = 0 (3.2)


V


+  [Ω× (Ω× r) + 2 (Ω×V)] = ∇τ + J×B+R (3.3)





= ∇2 + τ L+




∇2−∇ (3.4)




= ∇2+


∇2 (3.5)

in which  shows the fluid density, τ the Cauchy stress tensor, Ω = Ω̂ the angular velocity,

 the specific heat at constant volume,  the thermal conductivity,  the temperature of

fluid,  the coefficient of mass diffusivity,  the thermal diffusion ratio,  the concentration

susceptibility,  the concentration of fluid,  the mean temperature of fluid and  the dynamic

viscosity.

On the basis of Jeffrey fluid model the expression of Darcys resistance is [174]:

R = − Φ

(1 + 1)
(1 + 2




)V (3.6)

where Φ (0  Φ  1) and  ( 0) are respectively the (constant) porosity and permeability of
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the porous medium. Eqs. (32− 35) after using Eq. (36) yield




+




= 0 (3.7)



∙




¸
− 2Ω = −


+




+




+




− 20

− Φ

(1 + 1)
(1 + 2




) (3.8)



∙




¸
+ 2Ω = −


+




+




+




− 20

− Φ

(1 + 1)
(1 + 2




) (3.9)



∙




¸
= −


+




+




+




− Φ

(1 + 1)

×(1 + 2



) (3.10)

in which the modified pressure ̂ = − 1
2
Ω2

¡
2 + 2

¢
 Employing Rosselands approximation

for radiative heat flux [160] and considering Soret and Dufour [122] effects one can have energy

and concentration Eqs. as follows:





= 

∙
2

2
+

2

2
+

2

2

¸
+ 




+ 

µ



+





¶
+ 





+




∙
2

2
+

2

2
+

2

2

¸
+
16∗ 3
3∗

2

2
 (3.11)




= 

∙
2

2
+

2

2
+

2

2

¸
+





∙
2

2
+

2

2
+

2

2

¸
 (3.12)

Compliant wall condition is




 () =




=




+




+




− 20+ 2Ω − 





− Φ

(1 + 1)
(1 + 2




) at ( = ±)  (3.13)
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Non-dimensional variables can be put into the following forms:

∗ =



 ∗ =




 ∗ =




 ∗ =

2̂


 ∗ =






∗ =



 ∗ =




 ∗ =




 S∗=

S


 ∗ =






∗2 =



2  =

 − 0

1 − 0
  =

 − 0

1 − 0


Using above mentioned variables and defining stream function by

 =    = −

Eqs. (38− 312) give

Re 

∙
2


+





2


− 



2

2

¸
− 2 0

 = −

+ 




 + 




 +




 −2

− 1

1(1 + 1)

∙
1 + 2





¸
 (3.14)

Re 

∙



+








− 







¸
+ 2

0 


= −


+ 




 + 




 +




 −2

− 1

1(1 + 1)

∙
1 + 2





¸
 (3.15)

Re 2
∙
− 2


− 



2

2
+





2



¸
= −


+ 




 + 




 +






+


1(1 + 1)

∙
1 + 2





¸
 (3.16)

PrRe

∙



+








+ 




− 







¸
=

∙
2
2

2
+ 2

2

2
+

2

2

¸
+

2

2

+Pr

∙
2
2

2
+ 2

2

2
+

2

2

¸
+

Pr

(1 + 1)

×
µ
1 + 2





¶⎡⎣ 42 ()
2

+
¡
 − 2

¢2
⎤⎦ (3.17)

Re 

∙



+








+ 




− 







¸
=

1



∙
2
2

2
+ 2

2

2
+

2

2

¸
+

∙
2
2

2
+ 2

2

2
+

2

2

¸
 (3.18)

where continuity equation (37) is identically satisfied. The boundary conditions are now re-
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duced as follows:

 = 0  = 0  =

½
1

0

¾
at  = ± (3.19)

∙
1

3

3
+2

3

2
+3

2


+4

5

5
+5





¸
 = 




 + 




 +






−2


+ 2

0
 − Re





− 1

1(1 + 1)

∙
1 + 2





¸
 at  = ± (3.20)

where the dimensionless form of  is written as

 = (1 +  sin 2 (− )) 

where Re (= ) is the Reynolds number,  (= ) the wave number, 
0
(= ReΩ) the

Taylor number, 2(= 20
2 

) the Hartman number, 1(=


Φ2
) the permeability parameter,

Pr (= ) the Prandtl number, (=
16∗31
3∗ ) the radiation parameter, 

¡
= 2 (1 − 0)

¢
the Eckert number,(=

 (1−0)
(1−0)) the Dufour number, (

 (1−0)
(1−0) ) the Soret number, (=



) the Schmidt number  (= ) the amplitude ratio and1(= − 033), 2(= 1

33),

3
¡
= 032

¢
 4

¡
= 35

¢
and 5

¡
= 2

3
¢
are the non-dimensional elasticity pa-

rameters. Invoking long wavelength and low Reynolds number approximations we obtain

−2 0
 = −


+

1

(1 + 1)
 − (2 +

1

1 (1 + 1)
) (3.22)

2
0
 = −


+

1

(1 + 1)
 − (2 +

1

1 (1 + 1)
) (3.23)




= 0 (3.24)

 = − Pr

(1 +) (1 + 1)
2 −

Pr

(1 +)
 (3.25)

 +  = 0 (3.26)

 = 0  = 0  =

½
1

0

¾
  =

½
1

0

¾
at  = ± (3.27)

0 =
1

(1 + 1)
 −

µ
2 +

1

1(1 + 1)

¶
 + 2

0
 at  = ± (3.28)
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where

0 = 8
3

µ
3

2
sin[2(− )]− (1 +2) cos[2(− )] + (424 +

5

42
) cos[2(− )]

¶


Equation (324) shows that pressure is not a function of . Hence, the pressure can be eliminated

from Eq. (322). Further, pressure term in Eq. (323) can be neglected, the secondary flow

is resulted by the rotation. In view of these facts, we can write Eqs. (322) and (323) in the

forms

−2 0
 =

1

(1 + 1)
 −

µ
2 +

1

1(1 + 1)

¶
 (3.29)

2
0
 =

1

(1 + 1)
 −

µ
2 +

1

1(1 + 1)

¶
 (3.30)

3.3 Solution

Solving Eqs. (329) and (330) we have the following relations of stream function and secondary

velocity

 = 13 +14 sinh
hp

1
i
+15 sinh

hp
2

i
 (3.31)

 =
³
21 +22 cosh

hp
1

i
+23 cosh

hp
2

i´
×
³
cosh2

h³p
1 +

p
2

´

i
− sinh2

h³p
1 +

p
2

´

i´

 (3.32)

Making use of Eqs. (331) and (332) into Eqs. (325) and (326) and solving the resulting

expressions through lubrication approach we have

 = 3 +4 +5
2 +6 cosh

h
2
p
1

i
+7 cosh

h
2
p
2

i
+8 cosh[2

p
2 − 2

p
1]

+9 cosh[2
p
2 + 2

p
1] +10 cosh[2

p
1 − 2

p
2] +11 cosh[2

p
1 + 2

p
2]

−12 cosh[
³p

1 +
p
2

´
 −

³p
1 +

p
2

´
] +13 cosh[

³p
1 −

p
2

´
]

+14 cosh[
³p

1 +
p
2

´
]−15 sinh[

³p
1 +

p
2

´
] (3.33)
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 = 1 + 2
2 + 3 cosh

h
2
p
1

i
+ 4 cosh

h
2
p
2

i
+ 5 cosh

h
2
p
1

i2
+6 cosh

hp
1

i
cosh

hp
2

i
+ 7 sinh

hp
1

i2
+ 8 sinh

hp
2

i2
+9 sinh

hp
1

i
sinh

hp
2

i
+ 10 (3.34)

The heat transfer coefficients at the walls are given by

 =  () 

 = 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 + 25 + 2
√
16 sinh

£
2
√
1

¤
+ 2
√
27 sinh

£
2
√
2

¤
+2
√
28 sinh[2(

√
2 −

√
1)] + 2

√
29 sinh[2(

√
2 +

√
1)]

+2
√
110 sinh[2(

√
1 −

√
2)] + 2

√
111 sinh[2(

√
1 +

√
2)]

+
¡√

1 −
√
2
¢
13 sinh[

¡√
1 −

√
2
¢
]

+
¡√

1 +
√
2
¢
14 sinh[

¡√
1 +

√
2
¢
]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.35)

in which   1 → 15 1 → 23 and 1 → 10 are given below:

∗ =

µ
2 +

1

1(1 + 1)

¶
(1 + 1) ∗ = 

0
(1 + 1) 1 =

Pr

(1 +)(1 + 1)


2 = 1− Pr

(1 +)
 3 = 21(

∗3 + 20∗∗2 − 4∗2∗22 − 16∗42) 4 =
1

2


5 =
1

6423
20 sec

2[
p
1](−42122 − 41(12 +1(2 + 2

∗ + 4∗))− 212

×(21 + (41 +2
∗ − 22∗) cosh[2

p
1] + 21(cosh[2(

p
1 −

p
2)]

+ cosh[2(
p
1 +

p
2)])) sec

2[
p
2])

6 =
12

2
0 sec[

√
1]

23
 7 =

2
2
2

2
0 sec

2[
√
1]

3223
 8 =

2
2
2

2
0 sec

2[
√
1]

12823


9 =
32

2
1

2
0 sec

2[
√
2]

12823
 10 =

1
2
1

2
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2[
√
2]

223
 11 =

11
2
0 sec

2[
√
2]

223


12 =
212

2
0 sec[

√
1] sec[

√
2]

163
∗2 +

212
2
0 sec[

√
1] sec[

√
2]

823
∗2 

13 = −2
√
1
√
2

2
0 sec[

√
1] sec[

√
2]

83
∗2 − 2

√
1
√
2

2
0
∗ sec[

√
1] sec[

√
2]

163
∗2 

14 =
2

2
2

2
0 sec

2[
√
1]

6423
 15 =

2
2
1

2
0 sec

2[
√
2]
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
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16 =
1

25623
∗2 (−4320 + 3223∗2 −2

2
0(

∗2((−1 +2)
∗ + 2(1 +2)

∗)

+43(3 − 4∗∗22)) + (−4320 + 3223∗2 +2
2
0(

2
1
∗2 + 42(−∗3

+2∗2∗ − 5∗∗2 + 6∗3 + 221∗22))) cosh[
p
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p
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p
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p
2)] + 2((8

2
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∗2 +2

2
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1
p
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∗
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p
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p
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2
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2
2
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p
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p
1] sec

2[
p
2]

1 = (∗ − 2∗)  2 = (
∗ + 2∗)  3 =

¡
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¢
 4 = (−∗ − 2∗) 

5 = (−∗ + 2∗)  6 = (
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7 =
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√
1] +4 sec[

√
2])

23

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
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∗

8
√
1
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2] + cosh[

p
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∗ + 8∗2 cosh[
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11 =
1
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2
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∗)

× cosh[
p
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2
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∗ + (7 −10) cosh[

p
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p
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√
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√
1] +4 cosh[

√
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3
))

13 = 2
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∗2 + 49∗) 14 = 2
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∗)

15 = 2
32
1 (11 +9 + 12
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∗∗ + 80∗∗2

× cosh[
p
2]

17 = (2(8 + 20
∗) cosh[

p
1] + (20

∗2 +1(7 + 20
∗) cosh[

p
2]))

18 = (2 cosh[
p
2] + cosh[

p
1](4 + 4

∗ cosh[
p
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2]
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p
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p
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20 = (2
∗ cosh[

p
2] + cosh[

p
1](1

∗ + 8∗2 cosh[
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+
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∗
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1
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∗
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1
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
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0

642
2
3
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√
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2
3

 8 =
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2
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2
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2[
√
2]

642
2
3


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√
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√
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√
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
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1
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2
3

(642
2
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1
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2
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2
1
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p
1]

−2(
p
1
p
23
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p
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p
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p
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p
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p
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p
2)]
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p
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2[
p
2])

3.4 Graphical results and discussion

The main objective here is to predict the impact of sundry parameters on the velocity, tem-

perature and concentration profiles. The theme of present study is to analyze the influence of

rotation in the presence of Soret and Dufour effects. Here Figs. (31− 318) are prepared for the
velocity and temperature whereas the Figs. (319− 334) show the variations of concentration
and heat transfer rate respectively.

Here Figs. (31− 34) are prepared to analyze the axial velocity. These Figures show that
velocity traces a parabolic path with maximum value at the center of channel. Fig. (31)
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shows that velocity enhances when elasticity parameters 1 and 2 are increased. There is

decrease in velocity for larger 3 4 and 5 Since 1 and 2 represent the elastic parameters

therefore increasing elasticity offers less resistance to the flow and hence velocity enhances.

On the contrary the wall damping creates a resistive type force and so the velocity decreases

when 3 increases. Similar behavior is noticed for 4 and 5 in the presence of damping. Fig.

(32) illustrates that increasing 
0
reduces the velocity of the fluid in axial direction. This

Figure also provides a comparison for axial velocity for rotating and non-rotating channels. It

is found that axial velocity is greater in non-rotating channel i.e. (
0
= 0). Fig. (33) shows

decrease in velocity when 1 is increased. Velocity enhances when the value of 1 is increased

(see Fig. 34). Porosity parameter depends on the permeability parameter . Increase in 1

leads to the higher permeability parameter. Ultimately the velocity thus increases through

larger 1.

Figs. (35− 38) highlight the effects of wall properties,  0
 1 and 1 on the secondary

velocity. The rotation of channel induces a velocity component in the - direction which in

turn produces a fluid flow in - direction which is termed as secondary flow. We can observe

the effect of wall properties on secondary flow  through Fig. (35). Decrease in  is observed

by increasing 1 and 2 while it enhances through 3, 4 and 5. In the absence of rotation

there is no secondary velocity but velocity in - direction increases in presence of rotation (

 36). Fig. (37) shows that the secondary velocity  increases for larger 1. Similar effect

is shown by 1 which is observed in Fig. (38).

Impact of different parameters on temperature profile can be seen from Figs. (39− 318). It
is a known fact that temperature is the average kinetic energy of particles which in turn depends

on the velocity. Therefore an increase in temperature  is noticed for increasing values of 1

and 2 On the contrary decrease in temperature is noticed for increasing values of 3, 4 and

5 (see Fig. 39). Fig. (310) reveals that an increase in 
0
causes decrease in . It is noticed

that temperature enhances when we increase  and  (see Figs. 311 and 312). In fact

for increasing  and  the thermal diffusion is increased and consequently the temperature

enhances. Physically the diffusion-thermo or Dufour effect defines a heat flux produced when

a chemical system undergoes a concentration gradient. These effects depend upon thermal

diffusion which is though very small, but sometimes become substantial when the partaking
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species differ by molecular weights. Mass diffusion follows by the uneven distribution of species

creating a concentration gradient. A temperature gradient can also work as a driving force for

mass diffusion called thermo-diffusion or Soret effect. Therefore the higher the temperature

gradient, the larger the Soret effect. Fig. (313) reveals that temperature decreases when

the value of 1 is increased. In fact higher 1 corresponds to larger relaxation time which

provides more resistance to the fluid motion and thus the temperature profile enhances. As by

increasing the value of porosity parameter 1 the permeability of the medium increases which

accelerates the fluid and thus temperature enhances (Fig. 314). Figs (315) and (316) display

that temperature is decreasing function of  and . Influence of Eckert number  on  is

displayed in Fig. (317). It is depicted from this Fig. that temperature enhances by increasing

. The heat generation due to internal friction caused by the shear in the flow is the reason

behind such increase. Similar behavior is observed for Prandtl number Pr (Fig. 318).

Figs. (319− 326) disclose the effect of various parameters on concentration  Fig. (319)

displays the role of wall properties on  Decrease in concentration is noticed for increasing

values of 1 and 2 but it increases for larger 3 4 and 5 Fig. (320) examines the

behavior of  for Taylor number 
0
 It is revealed that  is increasing function of Taylor

number. Concentration distribution for different  and  is shown in Figs (321) and (322).

Here concentration decreases with the increase of these parameters. Figs. (323) and (324) are

displayed against values of 1 and 1. These Figures witness that  decreases by increasing

1 and 1. Fig. (325) depicts that the concentration profile decreases when  increases. As

Schmidt number is defined as the ratio of momentum diffusivity (viscosity) to mass diffusivity.

Therefore increasing  decreases the mass diffusion which in turn reduces the concentration.

For larger  concentration increases (see Fig. 326). It can be observed through the graphical

results that concentration field has opposite effect when compared with temperature.

Behavior of heat transfer coefficient  for various parameters is shown in the Figs. (327− 334).
The heat transfer coefficient is represented by  () =  () which defines the rate of heat

transfer or heat flux at the walls. As expected  shows an oscillatory behavior which is because

of the propagation of sinusoidal waves along the channel walls. Figs. (327) and (328) explore

the effect of 
0
and wall properties on  It can be noticed that there is an increase in rate of

heat transfer for 1 2 and 
0
whereas decrease in the heat transfer rate is observed for 3
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4 and 5 Effects of   1 and 1 on  can be observed through Figs. (329− 332)
respectively. By increasing these parameters the absolute value of  increases. Effect of radi-

ation parameter  can be seen in Fig. (333)  Here increase in  enhances . It is clear from

Fig. (334) that rate of heat transfer is increasing function of Schmidt number .

3.1 3.2

 31 : Impact of wall properties on  when 
0
= 1 = = 1 = 05  =  = 02  = 01

  32 : Impact of 
0
on  when 1 = 2 = 30 3 = 001 4 = 5 = 01

 = 1 = 1 = 05  =  = 02  = 01
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3.3 3.4

 33 : Impact of 1 on  when 1 = 2 = 30 3 = 001 4 = 5 = 01


0
= 1 = = 05  =  = 02  = 01

  34 : Impact of 1 on  when 1 = 2 = 30 3 = 001 4 = 5 = 01


0
= 1 = = 05  =  = 02  = 01

3.5 3.6

 35 : Impact of wall properties on  when 
0
= 1 = = 1 = 05  =  = 02  = 01

  36 : Impact of 
0
on  when 1 = 2 = 30 3 = 001 4 = 5 = 01

 = 1 = 1 = 05  =  = 02  = 01
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3.7 3.8

 37 : Impact of 1 on  when 1 = 2 = 30 3 = 001 4 = 5 = 01


0
= 1 = = 05  =  = 02  = 01

  38 : Impact of 1 on  when 1 = 2 = 30 3 = 001 4 = 5 = 01


0
= 1 = = 05  =  = 02  = 01

3.9 3.10

 39 : Variation of wall properties on  when  =  =  =  = = 1 = 08


0
= Pr = 10 1 = 01  = 20  =  = 02  = 01

  310 : Variation of 
0
on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  =  = = 1 = 08 1 = 01  = 10  = 20  =  = 02  = 01
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3.11 3.12

 311 : Variation of  on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  = = 1 = 08 
0
= 10 1 = 01  = 10  = 20  =  = 02  = 01

  312 : Variation of  on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  = = 1 = 08 
0
= 10 1 = 01  = 10  = 20  =  = 02  = 01

3.13 3.14

 313 : Variation of 1 on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  =  = = 08 
0
= 10 1 = 01  = 10  = 20  =  = 02  = 01

  314 : Variation of 1 on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  =  = = 1 = 08 
0
= 10  = 10  = 20  =  = 02  = 01
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3.15 3.16

 315 : Variation of  on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  = = 1 = 08 
0
= 10 1 = 01  = 10  = 20  =  = 02  = 01

  316 : Variation of  on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  = = 1 = 08 
0
= 10 1 = 01  = 10  = 20  =  = 02  = 01

3.17 3.18

 317 : Variation of  on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  = = 1 = 08 
0
= 10 1 = 01  = 10  = 20  =  = 02  = 01

  318 : Variation of Pr on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  = =  = 1 = 08 
0
= 10 1 = 01  = 20  =  = 02  = 01
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3.19 3.20

 319 : Influence of wall properties on  when  =  =  = = 1 = 08

Pr = 
0
= 10 1 = 01  = 20  =  = 02  = 01

  320 : Influence of 
0
on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  =  = = 1 = 08 1 = 01  = 10  = 20  =  = 02  = 01

3.21 3.22

 321 : Influence of  on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  = =  = 1 = 08 Pr = 
0
= 10 1 = 01  = 20  =  = 02  = 01

  322 : Influence of  on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  = =  = 1 = 08 Pr = 
0
= 10 1 = 01  = 20  =  = 02  = 01
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3.23 3.24

 323 : Influence of 1 on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  = =  = 08 Pr = 
0
= 10 1 = 01  = 20  =  = 02  = 01

  324 : Influence of 1 on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  = =  = 1 = 08 Pr = 
0
= 10  = 20  =  = 02  = 01

3.25 3.26

 325 : Influence of  on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  = =  = 1 = 08 Pr = 
0
= 10 1 = 01  = 20  =  = 02  = 01

  326 : Influence of  on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  = = 1 = 08 Pr = 
0
= 10 1 = 01  = 20  =  = 02  = 01
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3.27 3.28

 327 : Effect of 
0
on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  =  = = 1 = 08 1 = 01  = 10  = 20  = 01  = 02

  328 : Effect of wall properties on  when  =  =  =  = = 1 = 08


0
= Pr = 10 1 = 01  = 20  = 01  = 02

3.29 3.30

 329 : Effect of  on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  = = 1 = 08 Pr = 
0
= 10 1 = 01  = 20  = 01  = 02

  330 : Effect of  on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  = = 1 = 08 Pr = 
0
= 10 1 = 01  = 20  = 01  = 02
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3.31 3.32

 331 : Effect of 1 on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  =  = = 08 Pr = 
0
= 10 1 = 01  = 20  = 01  = 02

  332 : Effect of 1 on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  =  = = 1 = 08 Pr = 
0
= 10  = 20  = 01  = 02

3.33 3.34

 333 : Effect of  on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  = = 1 = 08 Pr = 
0
= 10 1 = 01  = 20  = 01  = 02

  334 : Effect of  on  when 1 = 02 2 = 3 = 4 = 001 5 = 01

 =  =  = = 1 = 08 Pr = 
0
= 10 1 = 01  = 20  = 01  = 02
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3.5 Conclusions

Soret and Dufour effects on peristaltic transport of Jeffrey liquid in a channel with thermal

radiation and porous medium are discussed in a rotating frame. It is observed in the present

analysis that influence of wall parameters and Taylors number on both the velocities i.e. axial

and secondary, are opposite. Moreover it is noticed that wall elastance parameters 1 and 2

show different behavior than  ( = 3− 5) , due to viscous damping, on temperature. Soret,
Dufour and Schmidt numbers behave in similar manner for temperature i.e. show increasing

behavior for enhancing values of ,  and . Moreover, it is noted that concentration shows

opposite behavior when compared with temperature profile. Heat transfer coefficient increases

for ,  and 1 but it decrease for 
0
.
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Chapter 4

Influence of rotation and

thermophoresis on MHD peristaltic

transport of Jeffrey fluid with

convective conditions and wall

properties

4.1 Introduction

This chapter aims to predict the effects of convective condition and particle deposition on

peristaltic transport of Jeffrey fluid in a channel. The whole system is in a rotating frame of

reference. The walls of channel are taken flexible. The fluid is electrically conducting in the

presence of uniform magnetic field. Non-uniform heat source/sink is also considered. Mass

transfer with chemical reaction is considered. Relevant equations for the problems under con-

sideration are first modeled and then simplified using lubrication approach. Resulting equations

for stream function and temperature are solved exactly whereas mass transfer equation is solved

numerically. Impacts of various involved parameters appearing in the solutions are carefully

analyzed.
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4.2 Mathematical formulation

Here we investigate the problem for two-dimensional peristaltic flow of Jeffrey liquid in a sym-

metric channel of width 2 The channel walls are convectively heated. A uniform magnetic

field of strength 0 is applied. Electric field effects are taken zero and induced magnetic field

is neglected due to small magnetic Reynolds number. Thermal radiation and non-uniform heat

source/sink effects are present. The whole system is in a rotating frame of reference with con-

stant angular velocity Ω. Flow inside the channel is induced due to propagation of sinusoidal

waves of wavelength  along the flexible walls of channel with constant speed . The geometries

of the wall surfaces are described by

 = ± ( ) = ±
∙
+  sin

2


(− )

¸
 (4.1)

where  and  represent the time and wave amplitude respectively. Here + and − signs designate
the upper and lower wall of channel. In rotating frame the set of pertinent field equations

governing the flow are




+




= 0 (4.2)



∙




¸
− 2Ω = −̂


+




+




+




− 20 (4.3)



∙




¸
+ 2Ω = −̂


+




+




+




− 20 (4.4)



∙




¸
= −̂


+




+




+




 (4.5)





= 

∙
2

2
+

2

2

¸
+ 




+ 

µ



+





¶
+ 





−


+0( − ) (4.6)




= 

∙
2

2
+

2

2

¸
− ( ( − 0))


− 1( − 0) (4.7)

in which ̂ = − 1
2
Ω2

¡
2 + 2

¢
represents the modified pressure. Here  is the fluid density, Ω

the angular velocity,  the specific heat at constant volume,  the thermal conductivity,  the

temperature of fluid,  the ambient temperature, 0 the non-uniform heat source/sink para-

meter,  the coefficient of mass diffusivity,  the concentration of fluid, 0 the concentration
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at lower wall and  the material time differentiation.

Thermophoretic velocity  can be defined in the form [163] :

 = ∗∗
∇


= −
∗∗





 (4.8)

in which  is the reference temperature,  is the fluid kinematic viscosity and ∗∗ is the

thermophoretic coefficient. Invoking Eq. (48) into Eq. (47) we get




= 

∙
2

2
+

2

2
+

2

2

¸
+

∗


∙




µ



( − 0)

¶¸
− 1( − 0) (4.9)

Governing equation for flexible wall satisfies

 () = − 0 (4.10)

with

 = − 0 
2

2
+1

2

2
+ 

0 


+ 

4

4
+ 2

In above equation 
0
is the elastic tension in the membrane,  the mass per unit area, 0 the

coefficient of viscous damping forces,  the flexural rigidity, 2 the constant spring stiffness and

0 the pressure on the outer side of the wall due to the muscles tension. It is assumed that

0 = 0 The stress continuity condition implies that at the fluid and walls interfaces the pressure

must be same as that which acts on the fluid at  = ± Using − momentum equation and

continuity of stress at  = ± the dynamic boundary condition can be expressed as follows




 () =




=




+




+




− 20+ 2Ω − 




at ( = ±)  (4.11)
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Boundary conditions for the flow under consideration are defined as follows:

 = 0  = 0   = ± (4.12)





= −1 ( − ) at  = +





= −1 ( −  ) at  = − (4.13)

 =

½
1

0

¾
at  = ± (4.14)

Here 1 stands for heat transfer coefficient and 10 are the concentration at the upper/lower

walls respectively. We consider the non-dimensional variables as follows:

∗ =



 ∗ =




 ∗ =




 ∗ =

2


 ∗ =






∗ =



 ∗ =




 ∗ =




 S∗=

S


 ∗ =






∗2 =



2  =

 − 


  =

 − 0

1 − 0
  =






Re =



  =   = −

Utilizing the above mentioned variables and applying lubrication approach [21], Eqs. (43)− (46)
and (49)− (414) give

−2 0
 = −


+




 −2 (4.15)

2
0 


= −


+




 −2 (4.16)

−

+




 = 0 (4.17)

(1 +)
2

2
+  +

µ
2

2

¶2
= 0 (4.18)

1



2

2
− 

∙
2

2
+









¸
−  = 0 (4.19)

 =
1

(1 + 1)

2

2
 (4.20)

 =
1

(1 + 1)




 (4.21)

 = 0 (4.22)
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where continuity equation (42) is identically satisfied. The boundary conditions in non-

dimensionalized form are as follows:

 = 0  = 0 at  = ± (4.23)

∙
1

3

3
+2

3

2
+3

2


+4

5

5
+5





¸
 =




 −2



+2
0
 at  = ± (4.24)




± = 0 at  = ± (4.25)

 =

½
1

0

¾
at  = ± (4.26)

where the dimensionless form of  is written as

 = (1 +  sin 2 (− )) 

In above expressions 
0
(= ReΩ) is the Taylor number,2(= 20

2 

) the Hartman number,


³
= 2



´
the Brinkman number, 

³
=

16∗ 31
3∗

´
the radiation parameter, 

³
= 0

2



´
the

non-uniform heat source/sink parameter, (= 

) the Schmidt number, 

³
= −∗∗



´
the

thermophoretic parameter, 
³
= 1

2



´
the chemical reaction parameter (here  ≺ 0 shows

the generative chemical reaction and  Â 0 for destructive chemical reaction), 
³
=

1


´
the Biot number,  (= ) the amplitude ratio and 1

¡
= −33¢, 2 ¡= 1

33
¢
,

3
¡
= 032

¢
 4

¡
= 35

¢
and 5

¡
= 2

3
¢
the non-dimensional elasticity para-

meters.

Equations (417) and (422) show that pressure is not a function of . Further we can neglect

the pressure term in Eq. (416) as secondary flow is the result of rotation. In view of these

facts, we can write Eqs. (415) and (416) in the forms

1

(1 + 1)
 −2 + 2

0
 = 0 (4.27)

1

(1 + 1)
 −2 − 2 0

 = 0 (4.28)
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4.3 Solutions

The Eqs. (418)  (427) and (428) are solved exactly with corresponding boundary conditions

(423− 425)  The exact solutions are given as

 = 13 +14 sinh[
p
1] +15 sinh[

p
2] (4.29)

 = (21 +22 cosh[
p
1] +23 cosh[

p
2])

×
³
cosh[(

p
1 +

p
2)]− sinh[(

p
1 +

p
2)]

´
×
³
cosh[(

p
1 +

p
2)] + sinh[(

p
1 +

p
2)]

´
 (4.30)

 = 1 cos[
p
1] +2 cos[2

p
1] +3 cosh[

p
1] cosh[

p
2]

+4 cosh[
p
2]

2 +5 sinh[
p
1] sinh[

p
2] +6 sinh[

p
2]

2 +7 (4.31)

The concentration equation (419) is solved numerically using NDSolve in MATHEMATICA

where  ( = 1− 23) and  ( = 1− 7) are give below:

1 = (− 2)  2 = (+ 2)  3 =
¡
2 + 42

¢
 4 = (−− 2)  5 = (−+ 2) 

6 = (+ 2)  7 =
50(4 + 2 sec[

√
1] +4 sec[

√
2])

23


8 =
60(4 + 2 sec[

√
1] +4 sec[

√
2])

23


9 =
0

8
√
1

32
2 34

(4 + 2 sec[
p
1] +4 sec[

p
2])

10 = (2 cosh[
p
2] + cosh[

p
1])(1+ 8

2 cosh[
p
2])

11 =
1

4
32
1 10

32
2

(20
2 +2(8 − 20) cosh[

p
2] +1(7 + 20) cosh[

p
2])

12 =
1

2
32
1 10

32
2

(20+ (7 −10) cosh[
p
2] + cosh[

p
1](8 −20

−20 cosh[
√
2](4 + 2 sec[

√
1] +4 cosh[

√
2])

3
))

13 = 2
p
12(−211+12

2 + 49) 14 = 2
32
2 (11 −9 − 12)
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15 = 2
32
1 (11 +9 + 12) 16 = (−38 +230 + 240 + 80

2 cosh[
p
2]

17 = (2(8 + 20) cosh[
p
1] + (202 +1(7 + 20) cosh[

p
2]))

18 = (2 cosh[
p
2] + cosh[

p
1](4 + 4 cosh[

p
2])) sec[

p
1] sec[

p
2]

19 = (−230+16 cosh[
p
1] + (−37 +130 + 220) cosh[

p
2])

20 = (2 cosh[
p
2] + cosh[

p
1](1+ 8

2 cosh[
p
2]))

21 =
8

42
(− 17

204
+

19

1203
+

180

13
) 22 =

1

42
(
2175

204
+

1820

13
− 4192

1203
)

23 =
1

42
(
2176

204
+

180

3
− 419

203
)

1 = 1 = (2(−1(1 + 41)21522(21 + (1 −2)
2 + 21(1 +2))1 cosh[

p
2]

−411(1 + 41)1415322 (1 + 42) cosh[
p
2](−2

p
11 cosh[

p
1]

+(1 −1 +2) sinh[
p
1] + (1 + 42)(

2
1 + (1 −2)

2 + 21(1 +2))

((1 + 41)(
2
1

2
14 +215

2
2)1 −1

2
1

2
14(1 cosh[2

p
1] + 2

p
1 sinh[2

p
1])

−411(1 + 41)14152(1 + 42)(
p
1(1 +1 −2) cosh[

p
1]

+(1 +1 +2)1 sinh[
p
1]) sinh[

p
2]− 21(1 + 41)215522 (21

+(1 −2)
2 + 21(1 +2)) sinh[2

p
2]))

2 = − 2
2
1

2
14

2(1 + 41)
 3 =

42
32
1 1415

32
2

21 + (1 −2)2 + 21(1 +2)
 4 = − 2

2
15

2
2

2(1 + 41)


5 = − 22114152(1 +1 +2)

21 + (1 −2)2 + 21(1 +2)
 6 = − 2

2
15

2
2

2(1 + 41)
 7 =

2(
2
1

2
14 +215

2
2)

21


The heat transfer coefficient at the walls is written as under:

 =  () 

 = (−
p
11 sin[

p
1] + (

p
13 +

p
25) cosh[

p
2] sinh[

p
1]

+2
p
12 sinh[

p
1] + (

p
23 +

p
15) cosh[

p
1] sinh[

p
2]

+
p
2 (4 +6) sinh[2

p
2]) (4.32)
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4.4 Results and discussion

Note that Figs. (41− 48) depict the behavior of axial () and secondary () velocities whereas
Figs. (49− 424) show the results for temperature () and concentration . The heat transfer

coefficient  and streamlines  are displayed in the Figs. (425− 431).

4.4.1 Axial and secondary velocities

Fig. (41) studies the influence of wall parameters on axial velocity. The parameters 1 and 2

show elastic nature of the walls whereas 3 represents dissipative property. Here 4 and 5 are

rigidity and stiffness parameters respectively. It is noteworthy that for 3 = 0 the wall moves

up and down with no damping force on it. The velocity enhances for increasing the values of

elastance parameters (i.e. 1 and 2) and it shows opposite behavior for 3 4 and 5 In

fact wall damping is a kind of resistive force which decreases the velocity. This damping force

has similar effect on velocity in the presence of rigidity and stiffness. We notice from Fig. (42)

that by increasing rotation parameter  0 the velocity decreases in axial direction. It can also

be observed that axial velocity is greater in the absence of rotation. Decrease in velocity is seen

for increasing values of 1 (  43)  Imposing magnetic field in normal direction to flow

produces drag or resistive force that has tendency to suppress the movement of fluid which in

turn reduces the axial velocity ( 44).

The rotation of channel about z-axis induces a secondary flow  in y-direction. Figs.

(45− 48) are prepared to analyze the effects of involved parameters on . Fig. (45) explains

the influence of wall parameters on . It is revealed that there is a decrease in 2 However

secondary velocity enhances for larger values of 3 4 and 5 Effect of Taylor number 
0 on

 is presented through Fig. (46)  It is pertinent to mention here that secondary velocity en-

hances when rotation parameter increases. There is no secondary velocity for  0 = 0 Increasing

behavior is noticed for velocity for larger values of 1 (   47)  It is depicted from Fig.

(48) that secondary velocity shows similar behavior for increasing Hartman number  as we

observed for an axial velocity.
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4.4.2 Temperature profile

Figs. (49− 416) are displayed in order to study the behavior of temperature for the involved
parameters. Fig. (49) is prepared to study wall properties. These results indicate that tem-

perature starts increasing as we increase the values of 1 and 2 On the other hand the

temperature shows decreasing behavior for 3 4 and 5 Temperature is defined as an aver-

age kinetic energy of particles. Therefore as velocity increases for 1 and 2 then temperature

rises. Similar behavior is noticed for 3 4 and 5 corresponding to velocity. We noticed

from Fig. (410) that  decreases as we increase the rotation parameter  0 According to Fig.

(411)   decreases for larger radiation parameter . The internal friction produced by shear

in the flow generates the heat which in turn rises the temperature of fluid. Hence there is an

enhancement of temperature for increasing values of  (412)  We have observed from

Fig. (413) that temperature is greater for Jeffrey fluid when compared with the viscous case

i.e. 1 = 0 Effect of Biot number is shown in Fig. (414)  The Biot number is taken larger

than one due to non-uniform temperature fields inside the fluid. However problems dealing with

small Biot number are thermally simple due to uniform temperature distribution within the

fluid. The obtained result shows decrease in temperature. Decreased thermal conductivity with

an increase in Biot number justifies the temperature drop. Fig. (415) studies the influence of

Hartman number on temperature. Rise of temperature is noticed for increasing values of .

Effect of heat generation/absorption coefficient  is shown in Fig. (416). This Fig. indicates

that for   0 (heat generation) the temperature increases whereas it decreases for   0 (heat

absorption).

4.4.3 Concentration profile

Effect of several controlling parameters on dimensionless concentration  is discussed in this

subsection through Figs. (417− 424)  It is depicted from Fig. (417) that concentration field

decreases for the increasing values of 1 and 2 whereas it increases for 3 4 and 5 Fig.

(418) illustrates the influence of Taylor number  0 on . It is noticed that concentration is

decreased when we increase the value of  0. Here it can be seen that for increased Schmidt

number  the concentration get decreased ( 419). Since  is defined as the ratio of

momentum diffusivity (viscosity) and mass diffusivity therefore it is used to characterize the
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fluid flows in which there are simultaneous momentum and mass diffusion convection processes.

Influence of chemical reaction parameter  on concentration field cannot be ignored when

discussing mass transfer. Chemical reaction increases the rate of interfacial mass transfer.

Due to which local concentration is decreased thus increasing its concentration gradient and

flux when we have constructive chemical reaction. That is why  decreases for constructive

chemical reaction (  0) and it increases for destructive chemical reaction(  0) ( 420).

Effects of 1 and on concentration field are displayed through Figs. (421) and (422). Effect

of heat generation/absorption coefficient on  is demonstrated in Fig. (423). It is observed

that concentration is increased when we consider heat generation. We have sketched Fig. 424

to analyze the effect of thermophoresis parameter  on  It can be seen that concentration is

decreased upon increasing the value of thermophoretic parameter.

4.4.4 Heat transfer coefficient

The effects of wall properties,  0, ,  and  on the rate of heat transfer are plotted in Figs.

(425− 429)  The heat transfer coefficient at the wall is denoted by () = () It is

noticed from Fig (425) that rate of heat transfer enhances for increasing values of 1 and 2

but it has opposite behavior for 3 4 and 5 Fig. (426) indicates a decrease in heat transfer

between wall and fluid when rotation increases. Similar effect of heat transfer is observed for

Biot number  ( 427). Fig. (428) illustrates the influence of heat generation/absorption

 on heat transfer coefficient. This Fig. shows that the rate of heat transfer is higher for heat

generation (  0)  The behavior of heat transfer coefficient for different values of  can be

observed through Fig. (429). Decrease in the heat transfer rate is seen for increasing values of

radiation parameter.

4.4.5 Trapping

In general the shape of streamlines is same as that of a boundary wall in the wave frame.

Nevertheless some of streamlines split and enclose a bolus under certain conditions and this

bolus moves as a whole with the waves. This phenomenon is known as trapping. Figs.

(430()− 430()) are plotted to study the influence of wall parameters on streamlines. It
is noticed that size of trapped bolus decreases for larger 1 2 and 5 (see Figs. 4.30(b),
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4.30(c) and 4.30(f)). From Fig. (430()) it is seen that by increasing the values of 3 the size

of bolus decreases. The size and number of streamlines decrease as we increase 4 ( 430()) 

The streamlines for larger rotation parameter  0 are shown in the Figs. (431()) and (431()).

It is depicted from Fig. that size of streamlines are decreased for increasing values of  0

4.1 4.2

 41 : Variation of wall properties on  when 
0
= 01 1 = 05  = 05  =  = 02

 = 01

  42 : Variation of 
0
on  when 1 = 2 = 30 3 = 001 4 = 01 5 = 01  = 05

1 = 05  =  = 02  = 01
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4.3 4.4

 43 : Variation of 1 on  when 1 = 2 = 30 3 = 001 4 = 01 5 = 01 
0
= 05

 = 05  =  = 02  = 01

  44 : Variation of  on  when 1 = 2 = 30 3 = 001 4 = 01 5 = 01 
0
= 05

1 = 05  =  = 02  = 01

4.5 4.6

 45 : Variation of wall properties on  when  = 05 1 = 05  =  = 02  = 01

  46 : Variation 
0
on  when 1 = 2 = 05 3 = 001 4 = 5 = 01  = 1 = 05

 =  = 02  = 01

76



4.7 4.8

 47 : Variation of 1 on  when 1 = 2 = 05 3 = 001 4 = 01 5 = 06  = 05


0
= 01  =  = 02  = 01

  48 : Variation of  on  when 1 = 2 = 05 3 = 001 4 = 01 5 = 06 1 = 05


0
= 01  =  = 02  = 01

4.9 4.10

 49 : Variation of wall properties on  when  = = 1 = 08 
0
=  = 20

 = 100  = 05  =  = 02  = 01

  410 : Variation of 
0
on  when 1 = 2 = 01 3 = 4 = 001 5 = 06

 = = 1 = 08  = 20  = 100  = 05  =  = 02  = 01
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4.11 4.12

 411 : Variation of  on  when 1 = 2 = 01 3 = 4 = 001 5 = 06  = 1 = 08

 0 =  = 20  = 100  = 05  =  = 02  = 01

  412 : Variation of  on  when 1 = 2 = 01 3 = 4 = 001 5 = 06

 = = 1 = 08  0 = 20  = 100  = 05  =  = 02  = 01

4.13 4.14

 413 : Variation of 1 on  when 1 = 2 = 01 3 = 4 = 001 5 = 06  = = 08

 0 =  = 20  = 100  = 05  =  = 02  = 01

  414 : Variation of  on  when 1 = 2 = 01 3 = 4 = 001 5 = 06

 = = 1 = 08  0 =  = 20  = 05  =  = 02  = 01
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4.15 4.16

 415 : Variation of  on  when 1 = 2 = 01 3 = 4 = 001 5 = 06  = 1 = 08

 0 =  = 20  = 100  = 05  =  = 02  = 01

  416 : Variation of  on  when 1 = 2 = 01 3 = 4 = 001 5 = 06

 = = 1 = 08  0 =  = 20  = 100  =  = 02  = 01

4.17 4.18

 417 : Variation of wall properties on  when  = 01  = = 1 = 08  = 20

 = 100  = 05  =  = 10  =  = 02  = 01

  418 : Variation of 
0
on  when  = 1 = 2 = 01 3 = 4 = 001 5 = 06

 = = 1 = 08  = 20  = 100  = 05  =  = 10  =  = 02  = 01
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4.19 4.20

 419 : Variation of  on  when  = 1 = 2 = 01 3 = 4 = 001 5 = 06

 = = 1 = 08 
0 =  = 20  = 100  = 05  = 10  =  = 02  = 01

  420 : Variation of  on  when  = 1 = 2 = 01 3 = 4 = 001 5 = 06

 = = 1 = 08 
0 =  = 20  = 100  = 05  = 10  =  = 02  = 01

4.21 4.22

 421 : Variation of 1 on  when  = 1 = 2 = 01 3 = 4 = 001 5 = 06

 = = 08  0 =  = 20  = 100  = 05  =  = 10  =  = 02  = 01

  422 : Variation of  on  when  = 1 = 2 = 01 3 = 4 = 001 5 = 06

 = 1 = 08 
0 =  = 20  = 100  = 05  =  = 10  =  = 02  = 01
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4.23 4.24

 423 : Variation of  on  when  = 1 = 2 = 01 3 = 4 = 001 5 = 06

 = = 1 = 08 
0 =  = 20  = 100  =  = 10  =  = 02  = 01

  424 : Variation of  on  when 1 = 2 = 01 3 = 4 = 001 5 = 06

 = = 1 = 08 
0 =  = 20  = 100  = 05  =  = 10  =  = 02  = 01

4.25 4.26

 425 : Effect of wall properties on  when  = = 1 = 08  = 20 
0 =  = 100

 = 05  = 02  = 01

  426 : Effect of 
0
on  when 1 = 2 = 01 3 = 4 = 001 5 = 06

 = = 1 = 08  = 20  = 100  = 05  = 02  = 01
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4.27 4.28

 427 : Effect of  on  when 1 = 2 = 01 3 = 4 = 001 5 = 06

 = = 1 = 08 
0 = 100  = 20  = 05  = 02  = 01

  428 : Effect of  on  when 1 = 2 = 01 3 = 4 = 001 5 = 06

 = = 1 = 08  = 20 
0
=  = 100  = 02  = 01

4.29

 429 : Effect of  on  when 1 = 2 = 01 3 = 4 = 001 5 = 06  = 1 = 08

 = 20  0 =  = 100  = 05  = 02  = 01
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(a) (b)

(c) (d)
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(e) (f)

 430 : Streamlines for wall properties when 
0
= 01  = 08  = 00  = 02 1 = 08

() 1 = 01 2 = 001 3 = 001 4 = 01 5 = 01 () 1 = 03 () 2 = 003 () 3 =

003 () 4 = 03 () 5 = 03

(a) (b)

 431 : Streamlines for 
0
when 1 = 01 2 = 001 3 = 001 4 = 01 5 = 01

 = 08 1 = 08  = 00  = 02 () 
0
= 01 () 

0
= 02
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4.5 Conclusions

Here a mathematical model to study the peristaltic transport of an electrically conducting

Jeffrey fluid in a convectively heated channel is developed in presence of thermal deposition of

particles and chemical reaction. The key findings of the presented attempt are as follows:

• Axial velocity decreases when we increase the rotation whereas secondary velocity shows
opposite behavior.

• Wall parameters (1 2 3 4 and 5) show opposite behavior for the axial and sec-

ondary velocities.

• Temperature enhances by increasing the rotation parameter  0 and Biot number 

• Temperature is higher for heat generation coefficient (  0) when compared with case

of absorption (  0).

• Concentration is decreasing function of rotation parameter  0 and Schmidt number .

• Generative chemical reaction (  0) results in decreased concentration whereas for de-

structive chemical reaction (  0) the concentration shows reverse behavior.

• Impact of particle deposition is decreasing on concentration.

• Rate of heat transfer is less in case of absorption (  0) than generation (  0).

• Decrease in rate of heat transfer is noticed for ,  and  0

• Upon increasing rotation the size of streamlines is decreased.
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Chapter 5

Influence of convective conditions on

peristalsis of ferrofluid in a rotating

frame

5.1 Introduction

This chapter addresses effect of convective heat transfer on peristaltic flow of ferrofluid in com-

pliant wall channel. Magnetic field effect is also given consideration due to electrical conducting

properties of the fluid. Energy equation is modelled by considering viscous dissipation and Joule

heating effects. The whole system is taken in a rotating frame. The modeled problem is re-

duced by adopting lubrication approach. The computed results for velocity and temperature

are shown graphically for various embedded physical parameters. Effective heat transfer at the

walls and trapping phenomenon are also discussed in detail.

5.2 Mathematical formulation

Here our intention is to investigate peristalsis of ferrofluid (Magnetite, 34) in a flexible walls

channel of width 2d. A magnetic field of constant strength acts in a transverse direction to flow.

Induced magnetic field under low magnetic Reynolds number is neglected. Coordinate system is

chosen in such a way that x-axis lies along the center of channel and z-axis perpendicular to it.
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The whole system rotates about z-axis with constant angular speed Ω. Wave train propagating

along the walls with speed  generates the flow in channel.

Mathematical form of walls is

 = ± ( ) = ±
∙
+  sin

2


(− )

¸
 (5.1)

where  defines wave amplitude,  wavelength and  for time. The velocity is

V = [ (  )   (  )  (  )]  (5.2)

Lorentz force is considered in the form

F = J×B (5.3)

where B = [0 0 0] defines the applied magnetic field and J shows current density given by

J = [E+ (V ×B)]  (5.4)

In above expression  stands for effective electric conductivity of nanofluid. We get from

Eqs. (53) and (54) the following expression:

F =
£−20−20 0¤  (5.5)

For the two phase flow model the effective electric conductivity of considered magnetite particles

is [164] :




= 1 +

3
³


− 1
´
³



+ 2
´
−
³


− 1
´

 (5.6)

where  shows the electric conductivity of magneto-nanoparticles and  corresponds to that

of base fluid ( water) whereas  is the volume fraction of nanoparticles. Effective electric

conductivity of nanoparticles equals to the base fluid in their absence ( = 0). Taking  = 1

we get the electric conductivity of magnetite. Using (54) in (53) we get the Lorentz force in
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the form:

F =
£−20−20 0¤  (5.7)

where

 = 1 +
3
³


− 1
´
³



+ 2
´
−
³


− 1
´



The Ohmic heating term is represented by [165] :

1


JJ = 

2
0

¡
2 + 2

¢
 (5.8)

Now the relevant equations for the flow analysis take the form:

Conservation of mass:




+




= 0 (5.9)

Conservation of momentum equation:



∙



− 2Ω

¸
= −̂


+ 

µ
2

2
+

2

2

¶
−

2
0 (5.10)



∙



+ 2Ω

¸
= −̂


+ 

µ
2

2
+

2

2

¶
−

2
0 (5.11)





= −̂


+ 

µ
2

2
+

2

2

¶
 (5.12)

where modified pressure is defined as:

̂ = − 1
2
Ω2

¡
2 + 2

¢


Conservation of energy equation:

()



= 

µ
2

2
+

2

2

¶
+ 

"
2

(µ




¶2
+

µ




¶2)
+

µ



+





¶2#
+

2
0

¡
2 + 2

¢
 (5.13)

where      and  are the effective density, viscosity, specific heat and thermal

conductivity of nanofluid. Here  is the temperature.
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Boundary conditions are

 = 0  = 0 at  = ± (5.14)

 ()


=




= 

µ
2

2
+

2

2

¶
−

2
0 (5.15)

−
∙



− 2Ω

¸
at  = ±





= −1 ( − 1) at  = +





= −2 (0 −  ) at  = − (5.16)

where

 = − 0 
2

2
+1

2

2
+ 

0 




In above Eqs. 1 and 2 are the heat transfer coefficients at the walls. Here 1 and 0 define

the temperature at upper and lower walls respectively, 
0
is the tension, 1 the mass and 

0

defines the viscous damping coefficient.

The effective density, effective specific heat and effective viscosity of nanofluid are

 = (1− )  + 

() = (1− ) () + ()

 =


(1− )25
 (5.17)

The effective thermal conductivity of nanofluid according to Maxwell-Garnet model is [166]:





=
 + 2 − 2( −)

 + 2 + ( −)
 (5.18)

In above Eqs.      and  describe the density, viscosity, specific heat capacity and

thermal conductivity of base fluid i.e. water respectively whereas  is the density,  the

viscosity,  the specific heat capacity and  show the thermal conductivity of magneto-

nanofluid. Numerical values of thermophysical properties of magnetite and water can be seen

through Table 1.
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Table 1

Numerical values of thermophysical properties of magnetite and water [179 180].

Phase (3) () () ()

Water 9971 0613 4179 005

Magnetite 5180 97 671 25000

Now Eqs. (59)− (516) after using Eqs. (57)  (58)  (517) and (518) take the form:




+




= 0 (5.19)£

(1− )  + 
¤ ∙


− 2Ω

¸
= −


+



(1− )25

µ
2

2
+

2

2

¶
−

2
0 (5.20)

£
(1− )  + 

¤ ∙

+ 2Ω

¸
= −


+



(1− )25

µ
2

2
+

2

2

¶
−

2
0 (5.21)

£
(1− )  + 

¤ 


= −

+



(1− )25

µ
2

2
+

2

2

¶
 (5.22)

£
(1− )  + 

¤ 


= 

µ
 + 2 − 2( −)

 + 2 + ( −)

¶µ
2

2
+

2

2

¶
+

2
0

¡
2 + 2

¢
+



(1− )25

×
"
2

(µ




¶2
+

µ




¶2)
+

µ



+





¶2#
 (5.23)

 = 0  = 0 at  = ± (5.24)

 ()


=




=



(1− )25

µ
2

2
+

2

2

¶
−

2
0−

¡
(1− )  + 

¢
∙



− 2Ω

¸
at  = ± (5.25)



µ
 + 2 − 2( −)

 + 2 + ( −)

¶



= −1 ( − 1) at  = +



µ
 + 2 − 2( −)

 + 2 + ( −)

¶



= −2 (0 −  ) at  = − (5.26)
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Writing the following non-dimensional parameters:

∗ =



 ∗ =




 ∗ =




 ∗ =

2


 ∗ =




 ∗ =






∗ =



 ∗ =




 ∗ =




  =

 − 0

1 − 0
 Re =






 =



 

0
=
ReΩ


 2 = 20

2


 Pr =




  =






 =
2

 (1 − 0)
  = Pr 1 =

−3
3

 2 =
1

3

3


3 =
03

2
 1 =

1



 2 =
2



  =



  = −


 (5.27)

and applying long wavelength and low Reynolds number approximation [21] one can write

−

+1

3

3
−2


+ 2

0
3 = 0 (5.28)

−

+1

2

2
−2 − 2 0

3



= 0 (5.29)




= 0 (5.30)

2
2

2
+1

2

"µ




¶2
+ 2

#
+

2

(1− )25

µ
2

2

¶2
= 0 (5.31)

where

1 =
1

(1− )25


2 =
 + 2 − 2( −)

 + 2 + ( −)


3 =

∙
(1− ) + 





¸
 (5.32)

It is noticed from Eq. (530) that pressure is not a function of . Also the pressure term in

Eq. (529) is ignored. It is due to the fact that secondary flow is not caused by the pressure
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gradient but due to rotation. Solving Eqs. (528) and (530) we get

1
4

4
−2

2

2
+ 2

0
3




= 0 (5.33)

1
2

2
−2 − 2 0

3



= 0 (5.34)

Boundary conditions for the flow analysis now become




= 0  = 0 at  = ± (5.35)

∙
1

3

3
+2

3

2
+3

2



¸
 = 1

3

3
−2


+3 at  = ± (5.36)




+

1

2
 = 0 at  = +




− 2

2
 = 0 at  = − (5.37)

The non-dimensional form of  is written as

 = (1 +  sin 2 (− )) 

where 
0
is the Taylor’s number, 2 the Hartman number,  the Brinkman number, 1 2

and 3 define the wall elastance parameters,  the amplitude ratio whereas 1 and 2 the

Biot numbers at upper and lower walls respectively.

5.3 Solutions

Solving Eqs. (531) (533) and (534) we have the following relations of stream function,

secondary velocity and temperature

 =
1

2
0

⎡⎢⎣−22


0

0 +

p
1

⎛⎜⎝sec[
√

0
√

1
] sin[

√

0
√

1
]


0 3
2

+
sec[

√

0
√

1
] sin[

√

0
√

1
]


0 3
2

⎞⎟⎠
⎤⎥⎦ (5.38)

 = − 0

2
0

0

"
−43 0

+  cos[

√

0
√

1
] sec[

√

0
√

1
] +  cos[

√

0
√

1
] sec[

√

0
√

1
]

#
 (5.39)
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whereas

0 = 8
3

µ
3

2
sin[2(− )]− (1 +2) cos[2(− )]

¶


 = 0 +1(cosh[( − )

s

0

1
] + cosh[( + )

s

0

1
]) +2(cosh[( − )

s

0

1
− 2

s

0

1
]

+ cosh[( + )

s

0

1
− 2

s

0

1
] + cosh[( − )

s

0

1
+ 2

s

0

1
] + cosh[( + )

s

0

1

+2

s

0

1
]) +3(cosh[( − )

s

0

1
] + cosh[( + )

s

0

1
]) +4(cosh[( − )

s

0

1

−2
s


0

1
] + cosh[( − )

s

0

1
+ 2

s

0

1
] + cosh[( + )

s

0

1
− 2

s

0

1
]

+ cosh[( + )

s

0

1
+ 2

s

0

1
)− (5 −6) cosh[

√
1
(
√

0 −

q

0
)

+
√
1
(
√

0 −

q

0
)] +7(cosh[

2√
1
(
√

0 −

q

0
)] + cosh[

2√
1
(
√

0
+

q

0
)])

+8 cosh[2

s

0

1
] +9(cosh[

2√
1
(

q

0 −
√

0
)] + cosh[

2√
1
(

q

0
+
√

0
)])

+10 cosh[2

s

0

1
] +11(cosh[

√
1
(
√

0 −

q

0
)− √

1
(
√

0
+

q

0
)]

+ cosh[
√
1
(
√

0 −

q

0
)− √

1
(
√

0 −

q

0
)] + cosh[

√
1
(
√

0 −

q

0
)

+
√
1
(
√

0
+

q

0
)]) +12 cosh[

√
1
(
√

0
+

q

0
)− √

1
(
√

0
+

q

0
)]

+13(cosh[
√
1
(
√

0
+

q

0
) +

√
1
(
√

0 −

q

0
)] + cosh[

√
1
(
√

0
+

q

0
)

− √
1
(
√

0 −

q

0
)] + cosh[

√
1
(
√

0
+

q

0
) +

√
1
(
√

0
+

q

0
)])

+14
2 +15 −16 (5.40)

in which


0
= 2 − 23 0




0
= 2 + 23

0


 = −2 + 23
0

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
0
= 2 + 23

0


where 0 → 16 are given below:

0 =
2(

24 + 423
2)2(2 +2)

0202(2(1 +2) + 212)


1 =
1

2
0

2 sec2[
p
01] sec2[

p
01]

42240 + 16223 20


2 =
1

2
1 3 =

1
2
0

2 sec2[
p
01] sec2[

p
01]

42240 + 16223 2
0  4 =

1

2
3

5 =
1

2
0

2 sec2[
p
01] sec2[

p
01]

82(24 + 423
2)(
√
−√)2 

6 =
1

2
0

√

√
 sec2[

p
01] sec2[

p
01]

82(24 + 423
2)(
√
−√)2 

7 = −1
2
0

2 sec2[
p
01] sec2[

p
01]

6420(2 − 223 )  8 = 27

9 = −1
2
0

2 sec2[
p
01] sec2[

p
01]

6420(2 + 223 )
 10 = 29

11 =
1

2
0(
√

√
 −2) sec2[

p
01] sec2[

p
01]

82(24 + 423
2)(
√
−√)2  12 = −11

13 = −1
2
0(
√

√
 +2) sec2[

p
01] sec2[

p
01]

82(24 + 423
2)(
√
+
√
)2



14 = − 1

(162(24 + 423
2))
(20((

2 + 23 ) cosh[2
p
01]

+2(cosh[
2√
1
(
√
0 −

p
0)] + cosh[

2√
1
(
√
0 +

p
0)])

+(2 − 23 ) cosh[2
q
01]) sec2[

p
01] sec2[

q
01])

15 = sec2[
p
01] sec2[

q
01](1 + 2 cosh[2

p
01] + 3(cosh[

2√
1
(
√
0

−
p
0)] + cosh[

2√
1
(
√
0 +

p
0)]) + 4 cosh[2

q
01] + 5 sec

2[
p
01]

+7 sinh[
2√
1
(
√
0 −

p
0)] + 8 sinh[

2√
1
(
√
0 +

p
0)] + 9 sinh[2

q
01])
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0 = (2(1 +2) + 212) 1 =
22(

24 + 423
2)

40


2 =
(2222

4 + 82
2
32

2 + (−1 +2)
2
0)

80


3 =
(22(

24 + 423
2) +(−1 +2)

2
0

2)

80


4 =
(2222

4 + 82
2
32

2 + (−1 +2)
2
0)

80


5 =

√
1(1 −2)

2
0(

2 + 23 )

16
√
0



6 = −
√
1(1 −2)

2
0(

2(
√
−√)− 23 (

√
+
√
))

32
√

√
0



7 =

√
1(1 −2)

2
0(

2(
√
+
√
)− 23 (

√
−√))

32
√

√
0



8 =

√
1(1 −2)

2
0(

2 − 23 )
16
√
0



where 16 can be evaluated using MATHEMATICA.

5.4 Graphical results and discussion

Effect of various parameters on streamlines (), velocities ( (axial) and  (secondary)) and

temperature () are conferred in this section through Figs. (51− 521). Effective heat transfer
at the walls are also the part of discussion.

5.4.1 Axial velocity

Figs. (51− 54) display the influence of wall parameters (1 2 and 3), nanoparticle volume

fraction (), rotation parameter
³

0
´
and Hartman number

¡
2

¢
on axial velocity. It is

inferred from the Fig. 51 that large values of elastance parameters (1 and 2) enhance the

velocity while velocity has decreasing behavior for damping parameter (3). Reason behind

this result lies in the fact that wall elasticity creates less hindrance for the fluid flow and hence

velocity enhances. On the contrary damping is resistive force that cause velocity to reduce.

Enhancing nanoparticle volume fraction shows decreasing effect for velocity. As the addition

of nanoparticles creates more resistance for fluid to flow (see Fig. 52). It is also depicted

from Fig. (53) that velocity in axial direction decreases as the rotation increases. Moreover
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axial velocity is greater for non-rotating frame
³

0
= 0

´
. The Fig. (54) exhibits the effect of

Hartman number 2. Resistive nature of Lorentz force decreases the velocity.

5.4.2 Secondary velocity

Secondary velocity  in y-direction is generated when the channel is rotated with constant

angular velocity Ω. The present subsection addresses the influence of pertinent parameters on

. From Fig. (55) we noticed that secondary velocity decreases as we increase 1 and 2

whereas it is increased for higher values of damping parameter 3. It is shown by the Fig.

(56) that increasing nanoparticle volume fraction  velocity in y-direction also decreases due

to the increased resistance offered by nanoparticles. Fig. (57) illustrates the effect of Taylor’s

number on . Noticeable increase in velocity is seen as the value of rotation parameter  0 is

increased. It is also noteworthy that there is no secondary velocity in the absence of rotation.

Notably secondary velocity decays with the consideration of large values of Hartman number

2 (see Fig. 58).

5.4.3 Heat transfer analysis

Basic reason behind the use of nanofluids is their fast heat transfer ability. To study this aspect

Figs. (59− 515) are plotted. It is clearly visible from Fig (59) that  enhances for increasing

values of 1 and 2 while showing decrease for 3. Since temperature defines the average

kinetic energy of particles which greatly effect the velocity. Therefore we get same behavior for

temperature as observed for velocity. Thermal conductivity of nanofluid is improved when the

volume fraction  of nanoparticles is increased. This causes increase in rate of heat transfer

hence resulting in temperature decrease (see Fig. 510). As we increase the rotation more

particles collide with eachother and transfer energy which results in decreased temperature (see

Fig. 511). It is evident from from Fig. (512) that temperature  rises due to heat generation

with magnetic field. This behavior results due to consideration of Joule heating effect. This

observation is in good agreement with Reddy and Reddy [168]. Fig. (513) also discloses the

influence of Biot number on temperature profile  It is noticed from the Fig that temperature

decays near the upper wall while there is no significant effect near the lower wall for 1 On

the other hand there is noticeable decrease in temperature near the lower wall but no significant
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effect on  near upper wall for 2 (see Fig. 514) Consideration of Biot number greater than

one is justified because of the non-uniformity of temperature fields inside the fluid. Whereas

uniform temperature field inside the fluid are thermally simple. Therefore Biot number  is

taken less than one in this case. Energy production inside the fluid due to friction between

fluid layers is represented through Brinkman number . Larger  increase the temperature

(Fig. 515). To study the effective thermal conductivity of nanofluid defined as (−(


)0()),

the Figs. (516− 518) are plotted. It is noticed from Fig. 516 that heat transfer enhances as

we increase the nanoparticles volume fraction . The fact behind this behavior is the increased

thermal conductivity of nanoparticles. For increasing Hartman number 2 the rate of heat

transfer get enhanced at the walls (see Fig. 517). Fig. (518) is just sketched to study

the influence of Brinkman number  on effective heat transfer. Increasing  leads to an

enhancement of temperature. Figs. (519) and (520) are sketched to analyze the influence

of Biot numbers on the rate of effective heat transfer. It can be seen through the Figs. that

increase in the values of 0 enhance the convective heat transfer.

5.4.4 Streamlines and Trapping

Streamline patterns for various values of wall parameters (1 2 3), Taylor and Hartman

numbers
³

0
 2

´
are shown in the  (519− 521)  Effect of wall parameters on

the size of streamlines is found increasing (see  519). To study the influence of rotation

parameter 
0
on trapping bolus  (520) is sketched. Noticeable decrease in size of trapped

bolus is seen when the value of 
0
is increased. Effect of Hartman number2 on trapped bolus

can be seen through  (521). Size of streamlines decreases when we make increment in the

value of 2
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5.1 5.2

 51 :  via change in wall properties when 
0
= 10  = 20  = 001  =  = 02

 = 01

  52 :  change in  when 1 = 2 = 03 3 = 001 
0
= 10  = 20  =  = 02

 = 01

5.3 5.4

 53 :  via change in 
0
when 1 = 2 = 03 3 = 001  = 20  = 001  =  = 02

 = 01

  54 :  via change in  when 1 = 2 = 03 3 = 001 
0
= 10  = 20  = 001

 =  = 02  = 01
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5.5 5.6

 55 :  via change in wall properties when 
0
= 10  = 20  = 001  =  = 02

 = 01

  56 :  via change in  when 1 = 2 = 0003 3 = 01 
0
= 10  = 20  =  = 02

 = 01

5.7 5.8

 57 :  via change in 
0
when 1 = 2 = 00003 3 = 01  = 20  = 001

 =  = 02  = 01

  58 :  via change in  when 1 = 2 = 00003 3 = 01 
0
= 10  = 20  = 001

 =  = 02  = 01
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5.9 5.10

 59 :  via change in wall properties when  = 05 
0
= 10  = 20

1 = 2 = 100  = 001  =  = 02  = 01

  510 :  via change in  when 1 = 2 = 03 3 = 001  = 20  = 05 
0
= 10

1 = 2 = 100  =  = 02  = 01

5.11 5.12

 511 :  via change in 
0
when 1 = 2 = 03 3 = 001  = 20  = 05

1 = 2 = 100  = 001  =  = 02  = 01

  512 :  via change in  when 1 = 2 = 03 3 = 001  = 05 
0
= 10  = 001

1 = 2 = 100  =  = 02  = 01
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5.13 5.14

 513 :  via change in 1 when 1 = 2 = 03 3 = 001  = 20  = 05 
0
= 10

 = 001 2 = 100  =  = 02  = 01

  514 :  via change in 2 when 1 = 2 = 03 3 = 001  = 20 
0
= 10  = 05

1 = 100  = 001  =  = 02  = 01

5.15

 515 :  via change in  when 1 = 2 = 03 3 = 001  = 20 
0
= 10  = 001

1 = 2 = 100  =  = 02  = 01
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5.16 5.17

 516 : Impact of  on heat transfer rate at the wall (−(


)0()) when 1 = 2 = 003

3 = 01  = 20  = 08 1 = 2 = 100 
0
= 100  = 02  = 01

  517 : Impact of 2 on heat transfer rate at the wall (−(


)0()) when

1 = 2 = 001 3 = 01  = 08 
0
= 100  = 001 1 = 2 = 100  = 02  = 01

5.18 5.19

 518 : Impact of  on heat transfer rate at the wall (−(


)0()) when

1 = 2 = 001 3 = 01  = 20 
0
= 100 1 = 2 = 100  = 001  = 02  = 01

  519 : Impact of 1 on heat transfer rate at the wall (−(


)0()) when

1 = 2 = 001 3 = 01  = 20  = 08 
0
= 100 2 = 100  = 001  = 02

 = 01
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5.20

 520 : Impact of 2 on heat transfer rate at the wall (−(


)0()) when

1 = 2 = 001 3 = 01  = 20  = 08 
0
= 100 1 = 100  = 001  = 02

 = 01

(a) (b)
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(c) (d)

 521 : Streamlines for wall properties when 
0
= 10  = 08  = 01  = 02  = 001

() 1 = 003 2 = 003 3 = 001 () 1 = 005 () 2 = 005 () 3 = 005

(a) (b)

 522 : Streamlines for 
0
when 1 = 2 = 03 3 = 001  = 08  = 01  = 02

 = 001 () 
0
= 01 () 

0
= 03
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(a) (b)

 523 : Streamlines for  when 1 = 2 = 03 3 = 001 
0
= 10  = 01  = 02

 = 001 ()  = 01 ()  = 06

5.5 Conclusions

Peristalsis of magnetite in a channel with rigid body rotation is addressed in this chapter.

Analysis is done in the presence of magnetic field and Joule heating. Temperature distribution at

walls is studied through convective heat transfer. Main observation of the analysis is presented

through following points:

• Axial velocity is increasing for wall elastance parameters (1 2) whereas it decreases for
damping parameter 3.

• No secondary velocity is noticed in the case of non-rotating channel.

• Both velocity components (axial and secondary) and temperature show decreasing behav-
ior as nanoparticle volume fraction  is increased.

• Temperature shows decreasing behavior for Biot numbers (1 2).

• Effective thermal conductivity of nanofluid increases through enhancing nanoparticle vol-
ume fraction .
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• Size of trapped bolus decreases for both Taylor  0
and Hartman 2 numbers.
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Chapter 6

Investigation of Hall current and slip

conditions on peristaltic transport of

Cu-water nanofluid in a rotating

frame

6.1 Introduction

Main objective of this chapter is to analyze the effect of rotation on peristaltic transport of

copper-water nanofluid. Two phase nanofluid is employed. The fluid fills the porous space.

The channel walls are taken flexible. Hall current and viscous dissipation effects are also given

consideration in the modeling. Analysis also studies the slip conditions in presence of heat gener-

ation/absorption. Resulting coupled system of equations is simplified by employing lubrication

approach. Exact solutions are presented for the stream function whereas energy equation is

solved numerically. Impact of sundry parameters on flow quantities are discussed and displayed

via graphs.
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6.2 Mathematical formulation

We consider the flow of an incompressible copper-water nanofluid through channel of width

2. The channel walls are taken compliant in nature. The channel is filled with homogeneous

porous medium having permeability 1. Both the base fluid and copper nanoparticles are taken

to be thermally consistent with respect to each other. The fluid and channel are in state of

rigid body rotation with constant angular speed Ω about z-axis (see Fig. 21). The flow in a

channel is generated due to propagation of the waves with amplitude  and wavelength  along

the walls located at  = ± The shapes of travelling waves are expressed by the following
relations:

 = ± ( ) = ±
∙
+  sin

2


(− )

¸
 (6.1)

in which  shows the time,  the half width of channel and  stands for wave speed.

A strong uniform magnetic field of strength 0 is applied along z-axis. The effects of induced

magnetic field are neglected by taking small magnetic Reynolds number. Generalized Ohms

law with Hall current is represented by [165] :

J =

∙
E+V ×B− 1


[J×B]

¸
 (6.2)

In above equation J is the current density,  shows the effective electric conductivity of

copper water nanofluid, E stands for electric field, V =[ (  )   (  )   (  )] defines

the velocity field,  the electron charge and  the number density of free electrons. In the

absence of electric field E, Lorentz force takes the form

J×B = [


2
0

1 + (0)2
(−+ (0) ) 

−20
1 + (0)2

( + (0))  0] (6.3)

The effective electric conductivity of Cu-water nanofluid considering two phase flow model is

defined as follows [169]:




= 1 +

3
³


− 1
´
³



+ 2
´
−
³


− 1
´

 (6.4)
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in which  and  are the electric conductivities of copper nanoparticles and water respectively.

Here  shows the nanoparticles volume fraction. We noticed that for  = 0 (in the absence of

nanoparticles) the effective electric conductivity becomes equal to that of water. For  = 1 the

effective electric conductivity corresponds to the case of copper. Using (64) in (63) we get

J×B = [ 1
2
0

1 + (1)2
(−+1) 

−120
1 + (1)2

( +1)  0] (6.5)

where 1 and  (Hall parameter) are defined below in the forms

1 = 1 +
3
³


− 1
´
³



+ 2
´
−
³


− 1
´

  =

0




For the flow under consideration the continuity equation is




+




= 0 (6.6)

Components of momentum equation for the flow of nanofluid in a channel undergoing rigid

body rotation are:



∙



− 2Ω

¸
= −̂


+ 

µ
2

2
+

2

2

¶
+

1
2
0

1 + (1)2
(−+1)− 

1
(6.7)



∙



+ 2Ω

¸
= −̂


+ 

µ
2

2
+

2

2

¶
− 1

2
0

1 + (1)2
( +1)− 

1
 (6.8)





= −̂


+ 

µ
2

2
+

2

2

¶
 (6.9)

where modified pressure ̂ is

̂ = − 1
2
Ω2

¡
2 + 2

¢


The energy equation under the effects of viscous dissipation and heat generation/absorption

(Φ) takes the form

()



= 

µ
2

2
+

2

2
+

2

2

¶
+


2

1
+Φ+

⎡⎣ 2n¡¢2 + ¡ ¢2o
+
¡


+ 



¢2
⎤⎦  (6.10)
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The effective density  , specific heat  , thermal conductivity  and effective viscosity

for the two-phase flow model of nanofluid are [170]:

 = (1− )  + 

() = (1− ) () + ()





=
 + 2 − 2( −)

 + 2 + ( −)


 =


(1− )25


where subscripts  and  denote the nanoparticle and fluid phase respectively. Numerical values

of thermophysical properties of water and copper are given in  1

Table 1

Numerical values of thermophysical properties of copper and water [171].

Phase (3) () () (1)× 10−6 ()

Water 9971 0613 4179 210 005

Copper 8933 401 385 1665 596× 107

After using above mentioned quantities in Eqs. (67− 610) one can write

£
(1− )  + 

¤ ∙

− 2Ω

¸
= −


+



(1− )25

µ
2

2
+

2

2

¶
+

1
2
0

1 + (1)2

× (−+1)− 

(1− )25 1
 (6.11)

£
(1− )  + 

¤ ∙

+ 2Ω

¸
= −


+



(1− )25

µ
2

2
+

2

2

¶
− 1

2
0

1 + (1)2

× ( +1)− 

(1− )25 1
 (6.12)

£
(1− )  + 

¤ 


= −

+



(1− )25

µ
2

2
+

2

2

¶
 (6.13)

£
(1− )  + 

¤ 


= 

µ
2

2
+

2

2
+

2

2

¶
+


2

(1− )25 1
+Φ+



(1− )25

×
"
2

(µ




¶2
+

µ




¶2)
+

µ



+





¶2#
 (6.14)
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Equation of motion for the compliant walls can be expressed as

 () = − 0 (6.15)

with

 = − 0 
2

2
+1

2

2
+ 

0 


 (6.16)




 () =




=



(1− )25

µ
2

2
+

2

2

¶
+

1
2
0

1 + (1)2
(−+1)− 

(1− )25 1

− £(1− )  + 
¤ ∙


− 2Ω

¸
 (6.17)

Non-dimensional quantities used in the above Eqs. are

∗ =



 ∗ =




 ∗ =




 ∗ =

2


 ∗ =




 ∗ =






∗ =



 ∗ =




 ∗ =




  =

 − 

1 − 0
  =

0 + 1

2


Re =



  =




 ∗1 =

1


 

∗
2 =

2


 ∗3 =

3




0
=

ReΩ


  = 0

r



 1 =

1

2
 Pr =






 =
2

 (1 − 0)
  = Pr 1 =

2Φ

 (1 − 0)


1 =
−3
3

 2 =
1

3

3
 3 =

03

2


where  is the mean temperature of nanofluid and 10 are the temperatures at upper/lower

wall. Using above mentioned variables and defining stream function by

 =    = −
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equations (611− 617) give

Re 

∙
(1− ) + 





¸




µ




¶
− 2 0

∙
(1− ) + 





¸
 = −


+

1

(1− )25
(2

3

2

+
3

3
)− 1

2

1 + (1)2
(




−1)− 

(1− )251

(6.18)

Re 

∙
(1− ) + 





¸



+ 2

0
∙
(1− ) + 





¸
 = −


+

1

(1− )25
(2

2

2

+
2

2
)− 1

2

1 + (1)2
(

+1



)− 

(1− )251

(6.19)

−Re 2
∙
(1− ) + 





¸




µ




¶
= −


+

1

(1− )25µ
3
3

3
− 

3

2

¶
 (6.20)

PrRe

∙
(1− ) + 





¸ ∙



+








+ 




− 







¸
= 2

∙
2
2

2
+ 2

2

2
+

2

2

¸
+



1(1− )25

µ




¶2
+ 1

+


(1− )25
[42(

2


)2

+2(
2

2
− 2

2

2
)2] (6.21)

where continuity equation (66) is identically satisfied.

In above expressions Re is the Reynolds number,  the wave number, 
0
the Taylor number,

 the Hartman number, 1 the permeability parameter, Pr the Prandtl number,  the Eckert

number, 1 the heat generation/absorption parameter,  the Brinkman number and 1, 2

and 3 the non-dimensional elasticity parameters. The term 2 in Eq.(621) is

2 =
 + 2 − 2( −)

 + 2 + ( −)
 (6.22)

After employing long wavelength and low Reynold assumptions, Eqs. (618− 621) are reduced
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to

−

+

1

(1− )25
3

3
− 1

2

1 + (1)2

µ



−1

¶
− 

(1− )251

+2
0
∙
(1− ) + 





¸
 = 0

(6.23)

−

+

1

(1− )25
2

2
− 1

2

1 + (1)2

µ
 +1





¶
− 

(1− )251

−2 0
∙
(1− ) + 





¸



= 0

(6.24)




= 0 (6.25)

2
2

2
+



1(1− )25

µ




¶2
+ 1 +

2

(1− )25

µ
2

2

¶2
= 0 (6.26)

The non-dimensionalized boundary conditions are [172]:




± 1

2

2
= 0 at  = ± (6.27)

∙
1

3

3
+2

3

2
+3

2



¸
 =

1

(1− )25
3

3
−
µ

1
2

1 + (1)2
+

1

(1− )25

¶




+

½
2

0
∙
(1− ) + 





¸
+

12

1 + (1)2

¾
 at  = ±(6.28)

 ± 2
(1− )25




= 0 at  = ± (6.29)

 + 3



=

1

2
 at  = +

 − 3



= −1

2
 at  = − (6.30)

Here 1 and 2 are velocity slip parameters and 3 symbolizes the thermal slip parameter. It

is clear from Eq. (625) that pressure is not a function of . Hence pressure can be eliminated

from Eq. (623). Further pressure term in Eq. (624) can be neglected since the secondary flow

is resulted by the rotation. In view of these facts, we can write Eq. (623) in the form

1

(1− )25
4

4
− 1

2

1 + (1)2

µ
2

2
−1





¶
− 1

(1− )25

2

2
+ 2

0
∙
(1− ) + 





¸





(6.31)
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6.3 Solution

Solving Eqs. (624) and (631) with boundary conditions (627 − 629) we have the following
exact relations of stream function and secondary velocity:

 = 2 − 
− (

√
1+

√
1)√

1 (3(cosh[

r
1
1

] + sinh[

r
1
1

])

+(4 cosh[
(2
√
1 +

p
1)√

1
] + sinh[

(2
√
1 +

p
1)√

1
])

+5(cosh[
(
√
1 + 2

p
1)√

1
] + sinh[

(
√
1 + 2

p
1)√

1
])

+6(cosh[

r
1
1
+ sinh[

r
1
1
)) (6.32)

 = −7 + 
− (

√
1+

√
1)√

1 (8(cosh[

r
1
1

] + sinh[

r
1
1

] cosh[
(
√
1 + 2

p
1)√

1
]

+ sinh[
(
√
1 + 2

p
1)√

1
]) +9(cosh[

(2
√
1 +

p
1)√

1
] + sinh[

(2
√
1 +

p
1)√

1
]

+ cosh[

r
1
1

] + sinh[

r
1
1

])) (6.33)

where

3 =

µ
1

2

1 +21
2
+

1

1

¶
 4 =

µ
2

0
(1− + 




) +

21
22

1 +21
2

¶


1 =
1

(1− )25
 1 = 3 − 4 1 = 3 + 4

and  ( = 1− 19) are given as

1 =
√
11 2 =

µ
341

(−3 −4)1
+

234

11
− 361

11

¶


3 =
(23 +24)1(−44 + 6) +3(−3 +4)111

4(3 − 4)
32
1 

32
1



4 = −
√
1((3 +4)(44 − 61) + 311)

4
32
1 1



5 =
1((

2
3 +24)(44 + 61) +3(3 + 4)11)

4(3 − 4)
32
1 

32
1

 6 = −4

7 =
4

1
(− 6

3 − 4
+ (
−41 +34

1
)
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8 =
(23 +24)(31 +44) + (3 + 4)611

4(3 − 4)11


9 =
(3 − 4)(31 +44)−611

411


The Eq. (626) is solved numerically using NDSolve in MATHEMATICA by employing bound-

ary condition defined in Eq. (630). This technique is based on the standard shooting method

with fourth order Runge-Kutta integration procedure. Graphical interpretation is presented in

the next section.

6.4 Discussion

Results obtained are discussed via graphs in this section. Impact of involved parameters on

axial  and secondary  velocities, temperature  and rate of heat transfer at the boundary are

examined by plotting graphs.

6.4.1 Axial velocity

Figures (61− 68) show the behavior of axial velocity under the variation of wall elastance

parameters (1 2 3)  nanoparticles volume fraction , rotation parameter 
0
, Hartman

number , Hall parameter, permeability parameter 1 and velocities slip parameters 12.

It is noticed from Fig. (61) that velocity increases for elasticity parameters (1 2) but it

decreases for wall damping parameter 3. The fact behind this behavior is that the elasticity

of walls offer less resistance to the flow and as a result the velocity increases. On the contrary,

damping force is resistive in nature and it causes reduction in velocity. Velocity profile is found

to decrease with the increase of nanoparticle volume fraction  (see Fig. 62)  In fact addition

of copper nanoparticles offer more resistance to the flow and hence velocity decreases. Fig. (63)

illustrates the behavior of rotation parameter 
0
on velocity. It can be seen from the Fig. that

velocity in axial direction decreases as the rotation parameter is increased. It is noteworthy

to mention that velocity is greater in non-rotating frame when compared with rotating case.

Impact of Hartman number on velocity is shown through Fig. (64). Decrease in velocity is

noticed for  due to resistive nature of Lorentz force. Fig. (65) studies the influence of Hall

parameter on velocity. It is observed that increasing value of reduces effective conductivity
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of copper nanoparticles which results in decreased magnetic damping force and thus velocity

increases. High permeability of porous medium decreases the resistive force and thus causes

increase in velocity (see Fig. 66)  Figs. (67) and (68) show that increase in slip parameters

(in both directions) results in the increase of axial velocity. Velocity is directly related to slip

parameter. Enhancing slip effects causes reduction in the resistance offered by walls of the

channel which in turn accelerates the velocity of the flow.

6.4.2 Secondary velocity

Effect of angular velocity induces a velocity component in y-direction which give rise to velocity

which is termed as secondary velocity . In this section the Figs. (69− 616) are prepared to
study the effects of pertinent parameters on secondary velocity. In Fig. (69) decrease in velocity

profile is noticed for 1 and 2 but opposite behavior is seen for 3 i.e. velocity is increasing.

For increasing copper nanoparticles volume fraction the secondary velocity also decreases due to

resistance offered by the particles (see Fig. 610)  Fig. (611) elucidates the influence of rotation

parameter 
0
and Hartman number  on . The results indicate that there is no secondary

velocity in absence of rotation i.e., (
0
= 0) However higher values of secondary velocity are

obtained in case of  0 6= 0 (see Fig. 7). It is clearly indicated by Fig. (612) that velocity

 decreases in view of Lorentz force for larger values of Hartman number  . Since magnetic

field creates resistance for fluid to flow resulting in decreased velocity. Fig. (613) depicts

the effect of Hall parameter  on  This Fig. indicates that secondary velocity  is greater

in the presence of Hall effects. Velocity is increasing function of permeability parameter as

shown through Fig. (614). To study the influence of slip parameters (1 and 2) in secondary

velocity the Figs. (615) and (616) are plotted. Increase in slip parameters enhances velocity

in y-direction. The results show that both axial and secondary velocities have similar behavior

for most of the parameters involved.

6.4.3 Heat transfer analysis

Main objective of using nanofluid is the enhancement of heat transfer process. Therefore we

have plotted Figs. (617− 629) to analyze the heat transfer process in present flow situation.
Behavior of involved parameters on temperature  is discussed through Figs. (617− 625).
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Influences of wall parameters (1 2 3) on temperature  have been illustrated in Fig.

(617). We know that temperature is defined as the average kinetic energy of particles which

effects the fluid velocity. Thus increase in values of 1 and 2 results in rise of temperature

and opposite behavior is noticed for increasing values of 3. It is observed from Fig. (618)

that copper free fluid have higher temperature. It is noteworthy to mention here that addition

of nanoparticles and increasing their volume fraction has considerable effects on temperature of

fluid. It is found that temperature decreases when volume fraction of nanoparticles is increased.

In fact thermal conductivity of nanofluid is enhanced with the increase of nanoparticle volume

fraction which facilitates the heat transfer thus, reducing the temperature. By increasing the

value of rotation parameter the temperature  decreases (see Fig. 619)  Large rotation of the

channel causes fluid to move faster which in turn accelerates the heat transfer rate. Therefore

the temperature decreases. Increasing the impact of magnetic field reduces the fluid temperature

 As Lorentz force resist the motion of fluid and hence effecting the temperature. Fig. (620)

is sketched to describe this fact. Figs. (621) and (622) are prepared to study the impact

of Hall parameter  and permeability of porous medium 1 on temperature. It is noticed

from the Figs. that temperature enhances when the values of these parameters are increased.

Increase in the value of Hall parameter enhances electrical conductivity of fluid i.e. more

free electrons are available to conduct electric current. Increase in conduction rate enhances

the temperature. Moreover increasing permeability enhances the velocity of fluid. This in

turn increases the average kinetic energy of molecules and thus temperature enhancement is

ensured. Fig. (623) elucidates the effect of heat generation/absorption coefficient 1 on 

For 1  0 (heat generation) temperature increases whereas it decreases for 1  0 (heat

absorption). Presence of heat source (1  0) generates more heat in the fluid which results in

the enhancement of temperature. On the other hand heat sink (1  0) absorbs excess heat

generated in the fluid which results in decline of temperature. Fig. (624) studies the effect of

heat generation due to internal friction caused by shear in the flow. This effect is characterized

by . Fig. (625) is prepared to analyze the effect of thermal slip on  Increase in temperature

is noticed for higher values of 3 As temperature difference between walls and fluid increases

more heat transfer takes place from one point to another. This results in rise of temperature. In

absence of slip the temperature is less when compared with slip condition. Fig. (626) is plotted
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to study rate of heat transfer when volume fraction  of copper nanoparticles is increased. As

expected the heat transfer rate enhances because of the increased thermal conductivity. Fig.

(627) shows that by increasing permeability 1 of porous medium the heat transfer rate at the

boundary is increased. Heat transfer rate decays by increasing Hartman number. Ultimate the

temperature decreases when  is increased. (see Fig. 628). Influence of Hall parameter  on

the rate of heat transfer is also similar to  (see  629). To analyze the effect of thermal

slip parameter 3 on heat transfer rate Fig. 6.30 is drawn. It is observed from the Fig. that

rate of heat transfer enhances as the temperature difference between wall and fluid is increased.

6.1 6.2

 61 : Variation of wall properties on  when 1 = 2 = 1 = 08 
0
= 10  =  = 20

 = 001  =  = 02  = 01

  62 : Variation of  on  when 1 = 2 = 1 = 2 = 1 = 08 3 = 05 
0
= 10

 =  = 20  =  = 02  = 01
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6.3 6.4

 63 : Variation of 
0
on  when 1 = 2 = 1 = 2 = 1 = 08 3 = 05  =  = 20

 = 001  =  = 02  = 01

 64 : Variation of  on  when 1 = 2 = 1 = 2 = 1 = 08 3 = 05 
0
= 10

 =  = 20  = 001  =  = 02  = 01

6.5 6.6

 65 : Variation of  on  when 1 = 2 = 1 = 2 = 1 = 08 3 = 05 
0
= 10

 = 001  = 20  =  = 02  = 01

  66 : Variation of 1 on  when 1 = 2 = 1 = 2 = 08 3 = 05 
0
= 10

 =  = 20  = 001  =  = 02  = 01

119



6.7 6.8

 67 : Variation of 1 on  when 1 = 2 = 2 = 1 = 08 3 = 05 
0
= 10

 =  = 20  = 001  =  = 02  = 01

  68 : Variation of 2 on  when 1 = 2 = 1 = 1 = 08 3 = 05 
0
= 10

 =  = 20  = 001  =  = 02  = 01

6.9 6.10

 69 : Variation of wall properties on  when 1 = 2 = 1 = 08 
0
= 10  =  = 20

 = 001  =  = 02  = 01

  610 : Variation of  on  when 1 = 2 = 0001 1 = 2 = 1 = 08 3 = 01


0
= 10  =  = 20  =  = 02  = 01
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6.11 6.12

 611 : Variation of 
0
on  when 1 = 2 = 00001 1 = 2 = 1 = 08 3 = 01

 =  = 20  = 001  =  = 02  = 01

  612 : Variation of  on  when 1 = 2 = 00001 1 = 2 = 1 = 08 3 = 01


0
= 10  =  = 20  = 001  =  = 02  = 01

6.13 6.14

 613 : Variation of  on  when 1 = 2 = 00001 1 = 2 = 1 = 08 3 = 01


0
= 10  = 20  = 001  =  = 02  = 01

  614 : Variation of 1 on  when 1 = 2 = 00001 1 = 2 = 08 3 = 01 
0
= 10

 =  = 20  = 001  =  = 02  = 01
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6.15 6.16

 615 : Variation of 1 on  when 1 = 2 = 00001 2 = 1 = 08 3 = 01 
0
= 10

 =  = 20  = 001  =  = 02  = 01

  616 : Variation of 2 on  when 1 = 2 = 00001 1 = 1 = 08 3 = 01 
0
= 10

 =  = 20  = 001  =  = 02  = 01

6.17 6.18

 617 : Variation of wall properties on  when 1 = 2 = 3 = 1 = 08 1 = 20

 = 
0
= 10  =  = 20  = 001  =  = 02  = 01

  618 : Variation of  on  when 1 = 2 = 1 = 2 = 3 = 1 = 08 3 = 05

1 = =  = 20  = 
0
= 10  =  = 02  = 01
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6.19 6.20

 619 : Variation of 
0
on  when 1 = 2 = 1 = 2 = 3 = 1 = 08 3 = 05

 =  = 1 = 20  = 10  = 001  =  = 02  = 01

  620 : Variation of  on  when 1 = 2 = 1 = 2 = 3 = 1 = 08 3 = 05

 = 1 = 20  = 
0
= 10  = 001  =  = 02  = 01

6.21 6.22

 621 : Variation of  on  when 1 = 2 = 1 = 2 = 3 = 1 = 08 3 = 05

 = 1 = 20  = 
0
= 10  = 001  =  = 02  = 01

  622 : Variation of 1 on  when 1 = 2 = 1 = 2 = 3 = 08 3 = 05

 =  = 1 = 20  = 
0
= 10  = 001  =  = 02  = 01
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6.23 6.24

 623 : Variation of 1 on  when 1 = 2 = 1 = 2 = 3 = 1 = 08 3 = 05

 =  = 20  = 
0
= 10  = 001  =  = 02  = 01

  624 : Variation of  on  when 1 = 2 = 1 = 2 = 3 = 1 = 08 3 = 05

 =  = 1 = 20 
0
= 10  = 001  =  = 02  = 01

6.25

 625 : Variation of 3 on  when 1 = 2 = 1 = 2 = 1 = 08 3 = 05

 =  = 1 = 20  = 
0
= 10  = 001  =  = 02  = 01
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6.26 6.27

 626 : Effect of  on heat transfer rate at the wall (−(


)0()) when 1 = 2 = 001

3 = 003 1 = 2 = 3 = 1 = 08  =  = 1 =  = 
0
= 20  = 02,  = 01

  627 : Effect of 1 on heat transfer rate at the wall (−(


)0()) when 1 = 2 = 001

3 = 003 1 = 2 = 3 = 08  =  = 1 =  = 
0
= 20  = 001  = 02  = 01

6.28 6.29

 628 : Effect of  on heat transfer rate at the wall (−(


)0()) when 1 = 2 = 001

3 = 003 1 = 2 = 3 = 1 = 08  = 1 =  = 
0
= 20  = 001  = 02  = 01

  629 : Effect of  on heat transfer rate at the wall (−(


)0()) when 1 = 2 = 001

3 = 003 1 = 2 = 3 = 08  = 1 =  = 
0
= 20  = 001  = 02  = 01
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6.30

 630 : Effect of 3 on heat transfer rate at the wall (−(


)0()) when 1 = 2 = 001

3 = 003 1 = 2 = 08  =  = 1 =  = 
0
= 20  = 001  = 02  = 01

6.5 Conclusions

Peristaltic flow of copper-water nanofluid with Hall effect and heat generation/absorption is

analyzed in a rotating frame. Velocity slips and temperature jump are also applied to model

the problem. The key findings of present study are listed below.

• Increasing nanoparticles volume fraction  reduces both axial  and secondary  velocities.

• Both axial  and secondary  velocities increase for larger velocity slip parameters.

• No secondary velocity is induced in the absence of rotation.

• Hartman number and Hall parameter  show similar behavior for velocities (, ) and

temperature .

• Temperature is greater in case of heat generation 1  0 than absorption 1  0.

• Higher rate of heat transfer occurs at boundary for larger values of nanoparticle volume
fraction  and permeability 1.
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Chapter 7

Entropy generation analysis for

peristaltic flow of nanoparticles in a

rotating frame

7.1 Introduction

The present chapter is intended to examine entropy generation on peristaltic flow of nanoparti-

cles in a rotating frame. The flow is subject to an external magnetic field. Viscous dissipation

and thermal radiation effects are considered for modeling energy equation. The nonlinearity of

resulting problem is simplified by adopting lubrication approach. Exact solutions for stream-

lines, velocity and temperature are calculated. Effective heat transfer is also studied via graphs.

Moreover, the effect of pertinent parameters on entropy generation is also a part of discussion.

7.2 Modeling

The peristaltic flow of nanofluid comprising of nanoparticles (23 and ) in a symmetric

channel of width 2d is studied. Water is used as a base fluid. Both the fluid and nanoparticles

are in thermodynamical equilibrium. Thermophysical properties of nanofluid are mentioned in

 1. A magnetic field of strength 0 acts in transverse direction to flow. Coordinates are

selected in such a manner that x-axis is along the flow direction and z-axis is at right angle
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to it. The channel is rotating about z-axis with angular velocity Ω. Wall properties make the

channel walls flexible. The fluid motion is caused by sinusoidal waves along the channel walls

(see sketch in Fig. 1). Therefore, wall geometry can be expressed mathematically as

 = ± ( ) = ±
∙
+  sin

2


(− )

¸
 (7.1)

where  stands for amplitude,  the wavelength,  wave speed and  the time. Here + and

− are the upper and lower position of channel boundaries respectively. Velocity field for the
considered flow analysis is taken in the form

V = [ (  )   (  )  (  )] 

The heat transfer analysis of nanofluid with considered nanoparticles is carried out by taking

temperature 1 and 0 at the upper and lower walls respectively. Viscous dissipation and

radiation effects are also employed in energy equation. The radiative heat flux  is defined as:

 = −4
∗

3∗
 4


 (7.2)

where ∗ denotes the Stefan-Boltzman constant and ∗ the Rosseland mean absorption co-

efficient. Temperature difference within the flow field is considered small which allows the

expansion of  4 as linear function of  . Hence expanding Taylors series of  4 about  and

ignoring higher-order terms we can write  as

 4 u 4 3 − 3 4 (7.3)

The Maxwell-Garnet model for effective thermal conductivity ( ) used in the present flow

problem is defined as:





=
 + 2 − 2( −)

 + 2 + ( −)
 (7.4)
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The effective density ( ), effective heat capacity () and effective electric conductivity

( ) of considered nanoparticles for two phase flow model are:

 = (1− )  +  () = (1− ) () + ()




= 1 +

3
³


− 1
´
³



+ 2
´
−
³


− 1
´

 (7.5)

The effective viscosity due Brinkman is mathematically written as

 =


(1− )25
 (7.6)

In the above expressions    and  define the density, specific heat, electric conductivity

and nanoparticle volume fraction, respectively. The subscripts  and  denote the nanoparticle

and fluid phases, respectively.

The relevant flow equations are




+




= 0 (7.7)



∙



− 2Ω

¸
= −̂


+ 

µ
2

2
+

2

2

¶
− 

2
0 (7.8)



∙



+ 2Ω

¸
= −̂


+ 

µ
2

2
+

2

2

¶
− 

2
0 (7.9)





= −̂


+ 

µ
2

2
+

2

2

¶
 (7.10)

()



= 

µ
2

2
+

2

2

¶
+ 

"
2

(µ




¶2
+

µ




¶2)
+

µ



+





¶2#

−


 (7.11)

where modified pressure is defined as:

̂ = − 1
2
Ω2

¡
2 + 2

¢

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The equation of motion for compliant walls can be expressed as

 = − 0 
2

2
+

0 2

2
+ 

0 


 (7.12)

Here 
0
is the tension,

0
the mass and 

0
defines the viscous damping coefficient. The associated

boundary conditions for the problem are

 = 0  = 0 at  = ± (7.13)

 =

½
1

0

¾
at  = ± (7.14)

The dynamic boundary conditions at the walls is given by

 ()


=




= 

µ
2

2
+

2

2

¶
− 

2
0

−
∙



− 2Ω

¸
at  = ± (7.15)

Table 1:

Numerical values of thermophysical properties of nanoparticles and water.

Phase (3) () () ()

Water (H2O) 9971 0613 4179 005

Aluminium oxide (Al2O3) 3970 40 765 1× 10−10

Copper oxide (CuO) 6320 765 5318 27× 10−8

Incorporating Eqs. (72− 76) into Eqs. (77− 711) and (713− 715) we get:




+




= 0 (7.16)£

(1− )  + 
¤ ∙


− 2Ω

¸
= −


+



(1− )25

µ
2

2
+

2

2

¶

−(1 +
3
³


− 1
´
³



+ 2
´
−
³


− 1
´

)

2
0 (7.17)
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£
(1− )  + 

¤ ∙

+ 2Ω

¸
= −


+



(1− )25

µ
2

2
+

2

2

¶

−(1 +
3
³


− 1
´
³



+ 2
´
−
³


− 1
´

)

2
0 (7.18)

£
(1− )  + 

¤ 


= −

+



(1− )25

µ
2

2
+

2

2

¶
 (7.19)

£
(1− )  + 

¤ 


= 

µ
 + 2 − 2( −)

 + 2 + ( −)

¶µ
2

2
+

2

2

¶

+
16∗ 3
3∗

2

2
+



(1− )25

⎡⎣ 2n¡¢2 + ¡ ¢2o
+
¡


+ 



¢2
⎤⎦ (7.20)

The boundary conditions become

 = 0  = 0 at  = ± (7.21)

 ()


=




=



(1− )25

µ
2

2
+

2

2

¶
− (1 +

3
³


− 1
´
³



+ 2
´
−
³


− 1
´

)

2
0

− ¡(1− )  + 
¢ ∙


− 2Ω

¸
at  = ± (7.22)

 =

½
1

0

¾
at  = ± (7.23)

∗ =



 ∗ =




 ∗ =




 ∗ =

2


 ∗ =




 ∗ =






∗ =



 ∗ =




 ∗ =




  =

 − 0

1 − 0
 Re =






 =



 

0
=
ReΩ


 2 = 20

2


 Pr =






 =
2

 (1 − 0)
  = Pr  =

16∗ 3
3∗

 1 =
− 03
3



2 =
1

3

3
 3 =

03

2
  =




  = −


 (7.24)
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Using the above mentioned set of non-dimensional variables and parameters one obtains

Re 3

∙
2


+





2


− 



2

2

¸
− 2 0

3 = −

+2

∙
2

3

2
+

3

3

¸
−12


 (7.25)

Re 3

∙



+








− 







¸
+ 2

0
3




= −


+2

∙
2
2

2
+

2

2

¸
−12 (7.26)

−Re 23
∙
2


+





2

2
− 



2

2

¸
= −


+2

µ
3
3

3
− 

3

2

¶
 (7.27)

PrRe3

∙



+








+ 




− 







¸
= 4

∙
2
2

2
+

2

2

¸
+

2

2
+2

×
⎛⎝ 42

³
2


´2
+2
³
2
2
− 2 

2
2

´2
⎞⎠  (7.28)

Here Re  
0
  Pr   and  are the Reynolds number, the dimensionless wave number,

the Taylors number, the Hartman number, the Prandtl number, the radiation parameter, the

Brinkman number and the stream function, respectively. The  ( = 1−4) are defined below:

1 = (1 +
3
³


− 1
´
³



+ 2
´
−
³


− 1
´

)

2 =
1

(1− )25


3 =

∙
(1− ) + 





¸


4 =
 + 2 − 2( −)

 + 2 + ( −)


5 = 4 + (7.29)

Invoking long wavelength and low Reynolds number analysis, Eqs. (725− 728) give

−2 0
3 = −


+2

∙
2

3

2
+

3

3

¸
−1

2


 (7.30)

2
0
3




= −


+2

∙
2
2

2
+

2

2

¸
−1

2 (7.31)
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


= 0 (7.32)

(4 +)
2

2
+ 22

µ
2

2

¶2
= 0 (7.33)

It is evident from Eq. (732) that pressure does not depend on . Moreover, the pressure term

in Eq. (731) can be neglected due to the fact that pressure gradient is not generating the

secondary flow. Eliminating pressure from Eqs. (730) and (731), we obtain

2
4

4
−1

2
2

2
+ 2

0
3




= 0 (7.34)

Dimensionless form of boundary conditions are




= 0  = 0 at  = ± (7.35)

∙
1

3

3
+2

3

2
+3

2



¸
 = 2

3

3
−1

2


+ 2

0
3 at  = ± (7.36)

 = 1 at  = +

 = 0 at  = − (7.37)

7.2.1 Entropy generation and viscous dissipation

The volumetric entropy generation of nanofluid in dimensional form is given as [176− 178] :


00
 =



20

"(µ




¶2
+

µ




¶2)
+
16∗ 3
3∗

µ




¶2#
+
∆

0
 (7.38)

The viscous dissipation term ∆ in above Eq. is

∆ =


(1− )25

"
2

(µ




¶2
+

µ




¶2)
+

µ



+





¶2#
 (7.39)

Dimensionless form of entropy generation becomes:

 =

00



00


= 4 (1 +)

µ




¶2
+ 2Λ2

µ
2

2

¶2
 (7.40)
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In above expression 
00
 and Λ show the entropy generation characteristic and temperature

difference parameter defined by


00
 =

 (1 − 0)
2

20
2

 Λ =
0

(1 − 0)


Entropy generation defined above comprises of two effects: (a) conduction effect (also known as

heat transfer irreversibility) () and (b) fluid friction irreversibility (). Now we define

Bejan number by [175] :

 =


 + 
 (7.41)

It is worth mentioning here that the range of Bejan number varies from 0 to 1. For  = 0

the irreversibility is dominated by fluid friction effects whereas  = 1 defines the limit where

irreversibility dominates due to heat transfer. The contribution of both heat transfer and fluid

friction to entropy generation are equal when  = 12.

7.2.2 Solutions

The expressions for stream function, velocity and temperature are obtained in the forms:

 = 0 +1 sinh[

r


2
] +2 sinh[

r


2
] (7.42)

 = 0 + 1 cosh[

r


2
] + 2 cosh[

r


2
] (7.43)

 = 3 +4
2 +5 cosh[2

r


2
] +6 cosh[

¡√
−√¢√
2

]

+7 cosh[

¡√
+
√

¢

√
2

] +8 cosh[2

r


2
] +9 (7.44)

in which


0
= 1

2 − 23 0
 

0
= 1

2 + 23
0


 = −2 + 23
0
 

0
= 2 + 23

0

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0 = −10
2


 1 =

√
20 sec

∙q

0

2


¸
232

 2 =

√
20 sec

∙q

0

2


¸
2

032 

3 =
1

2
 4 =

(21
2 +22

2)

225
 5 = −

2
1

45


6 =
212(

√
+
√
)2

5(− )2
 7 = −212(

√
−√)2

5(− )2
 8 = −

2
2

45


9 =
1

45
(25 − (2(

2
1

2 +22
2)2)

2
+21 cosh[

2
√
√
2

]

−
3212

3232 cosh[
√
√
2
] cosh[

√
√
2
]

(− )2
+22 cosh[

2
√
√
2

]

+
1612 (+ ) sinh[

√
√
2
] sinh[

√
√
2
]

(− )2
)

0 =
230


 1 = −

0 sec[
√
√
2
]

2
 2 = −

0
0
sec[

√
√
2
]

2


The numerical values of effective heat transfer
³
−






´
at the walls can be evaluated by

using built in NDSolve command of MATHEMATICA. Also the constants ( = 1− 9) and
( = 1− 2) can also be calculated through MATHEMATICA.

7.3 Discussion

The behaviors of obtained solutions for various values of wall parameters (1 2 3), Taylors

number
³

0
´
, Hartman number (), volume fraction (), radiation parameter (), Eckert

number () and Brinkman group parameter (Λ) are discussed through Figs (71− 728).

7.3.1 Axial velocity

Here we studied effects of pertinent parameters on axial velocity by plotting Figs. (71− 74).
The influence of Hartman number  on  is illustrated through Fig. (71). It is noticed

that velocity decreases as we make increment for  . This is due to the increased strength of

magnetic field that shows damping in velocity as magnetic field is resistive in nature. Fig. (72)

shows the effect of Taylors number 
0
on . It is clearly noticed that velocity in axial direction

decreases as we increase the rotation. Here rotation causes fluid to flow in secondary direction.
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It is revealed by Fig. (73) that increasing volume fraction  causes decrease in axial velocity .

Larger nanoparticles volume fraction results an increase in effective viscosity of nanofluid which

consequently reduces the ability of fluid to move freely and hence the velocity decays. Large

values of wall elastance parameters (1 and 2) enhance the velocity whereas wall damping

parameter 3 reduces the velocity (see Fig. 74). The fact behind this behavior is that the

elastance of wall creates less obstruction for fluid flow causing an increase in velocity. On the

contrary, damping, resistive nature force, causes hindrance for fluid to flow and so the velocity

decays. It is observed that magnitude of velocity for 23 nanoparticles is greater than that

of .

7.3.2 Secondary velocity

The angular velocity Ω induces a velocity component in −direction i.e. termed as secondary
velocity (). The present subsection deals with the effect of different parameters on  Fig.

(75) implies that an increase in the strength of magnetic field makes fluid to move slowly and

so decrease in velocity is noticed. Fig. (76) depicts that an increase in rotation of the channel

draws more fluid in −direction which in turn increases the velocity. Moreover it can be noticed
from the Fig. that there is no secondary velocity in the absence of rotation

³

0
= 0

´
. Fig.

(77) is prepared to study the behavior of nanoparticle volume  fraction on . Decrease in  is

noticed due to increased resistivity offered by nanoparticles. When analyzing the effect of wall

parameters we observed opposite behavior of  to that of  (axial velocity). Increasing wall

elastance (1 2) decreases the secondary velocity whereas damping parameter 3 enhances

the velocity (see Fig. 78). The graphical results show that magnitude of secondary velocity is

higher for  nanoparticles when compared with 23 nanoparticles.

7.3.3 Heat transfer analysis

This subsection aims to study the behavior of sundry parameters while dealing with temperature

profile . Figs. (79− 714) have been displayed for such purpose. Impact of Hartman number
 on  is studied through Fig. (79). The Fig. elucidates that temperature decreases as

the magnetic field strength enhances. This behavior can be linked to the velocity. Since

temperature  is defined as the average kinetic energy of molecules and velocity is decreasing
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function for . Therefore, temperature also reduces. Fig. (710) reveals the behavior of Taylors

number 
0
on . It can be seen through Fig. that temperature decreases as the value of 

0
is

increased. Fast rotation causes the fluid to move with greater speed. The nanofluid transfers

heat more rapidly. Therefore temperature reduces for greater 
0
. Fig. (711) depicts the effect

of nanoparticle volume fraction  on . It is noticed from the Fig. that temperature decreases

as we enhance nanoparticle volume fraction. The nanoparticles (23 ) addition enhance

the effective thermal conductivity of nanofluid. This results in rapid heat transfer from fluid

to ambient and hence temperature decays. It can be visualized from Fig. (712) that when the

value of wall rigidity parameter (1) is increased  decreases. Similar behavior is shown by wall

tension parameter (2)  It is then further noticed that an enhancement of mass characterizing

parameter (3) decreases the temperature of fluid. It can be examined through Fig. (713) that

temperature decays when radiation parameter  attains higher values. Decrease in temperature

is by rotation. The viscosity of fluid is responsible for the conversion of kinetic energy to heat

energy. This heat generation due to viscous dissipation effect enhances temperature. Eckert

number  is responsible for this behavior (see Fig. (714). It is observed from these Figs. that

temperature is greater in magnitude for 23 nanoparticles in comparison to .

The effective thermal conductivity of nanofluid at the walls
³
−



0
[]
´
is studied though

Figs. (715 − 718). Fig. (715) is plotted to study the influence of Hartman number  on

heat transfer rate. The influence of nanoparticle volume fraction  on heat transfer rate is

elucidated in Fig. (716). It is clear from this Fig. that the rate increases when nanoparticle

volume fraction is increased for both particles. Moreover, it is observed from the results that

heat transfer rate of nanofluid is higher than that of water (   = 0)  Impact of Taylor

number 
0
on heat transfer rate is sketched in Fig. (717). Greater rotation enhances the

velocity which in turn increases heat transfer rate for both nanoparticles. Fig. (718) is prepared

to study the impact of radiation parameter  on rate of heat transfer. It is interpreted from

the Fig. that heat transfer increases as we make increment in the value of . It is noticed from

the Figs. that heat transfer rate increases for both nanoparticles i.e. 23 and  but it

is greater for  (represented by back row). It is inferred from the results that ability to

transfer heat rapidly makes the  more effective in practical applications.
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7.3.4 Entropy generation analysis

Entropy () in the fluid is induced due to thermal diffusion and viscosity. Therefore it is

essential to study irreversibility or entropy generation in the system to determine its efficiency.

To study the behavior of different parameters on  Figs. (719− 724) are plotted. Increase
in the strength of magnetic field obstructs the fluid velocity which in turn reduces the shear in

flow resulting in decreased temperature (see Fig. 719). Since entropy is directly related with

temperature, therefore, it also decreases. Fig. (720) portrays the effect of Taylors number on

  When the channel is rotated at higher speed, velocity of fluid also increases. This results

in rapid heat transfer as expected. Thus heat produced due to shearing forces transfer at

increased rate. It causes entropy to decrease. It is evident from Fig. (721) that an increase in

nanoparticle volume fraction  reduces entropy generation. Blending of nanoparticles in base

fluid enhances efficient heat transfer which particularly produces the smoother temperature

distribution. Hence it leads to decrease in entropy generation. Fig. (722) depicts effect of

wall parameters on  . It is revealed from the Fig. that with the increase of 1 and 2 the

entropy generation  increases but it shows decrease for higher values of 3 Fig. (723) shows

the variation in entropy generation due to radiation parameter . It is observed from the Fig.

that  increases when we enhance the value of . The Brinkman parameter Λ studies

the viscous effects and it is also related to nanofluid viscosity term mentioned in Eq. (40).

The Brinkman parameter Λ directly effects the square of velocity. Therefore an increase in

Λ enhances the flow which results in increased entropy (Fig. 724). The value of entropy

generation is higher for 23 than .

Figs. (725−729) demonstrate the influence of various thermophysical parameters on Bejan
number . We have observed that heat transfer irreversibility dominates the flow in central

region of the channel with  very close to 1 whereas fluid friction irreversibility near the

channel walls is small. Fig. (725) reveals that an increase in nanofluid volume fraction 

increases Bejan number . It is depicted through Fig. (726) that the value of Bejan number

enhances as rotation parameter 
0
increases. It is noticed from the Figs. (727) and (728) that

Bejan number shows similar behavior for both radiation parameter  and Hartman number

 . To study the influence of Brinkman group Λ parameter, Fig. (729) is drawn. This

Fig. depicts that increasing group parameter decreases  and it enhances the influence of
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fluid friction irreversibility. It is worthmentioning here that an increase in the value of  for

increasing values of involved parameters enhances the heat transfer irreversibility in comparison

to total irreversibility due to heat transfer and fluid friction.

7.1 7.2

 71 : Variation of  on  when 1 = 2 = 30 3 = 01 
0
= 05  = 001  =  = 02

 = 01

  72 : Variation of 
0
on  when 1 = 2 = 30 3 = 01  = 08  = 001  =  = 02

 = 01
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7.3 7.4

 73 : Variation of  on  when 1 = 2 = 30 3 = 01  = 08 
0
= 05  =  = 02

 = 01

  74 : Variation of wall properties on  when 
0
= 05  = 08  = 001  =  = 02

 = 01

7.5 7.6

 75 : Variation of  on  when 1 = 2 = 0001 3 = 01 
0
= 05  = 001

 =  = 02  = 01

  76 : Variation of 
0
on  when 1 = 2 = 0001 3 = 01  = 08  = 001

 =  = 02  = 01
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7.7 7.8

 77 : Variation of  on  when 1 = 2 = 0001 3 = 01  = 08 
0
= 05

 =  = 02  = 01

  78 : Variation of wall properties on  when 
0
= 05  = 08  = 001  =  = 02 and

 = 01

7.9 7.10

 79 : Variation of  on  when 1 = 2 = 30 3 = 01  = 
0
= 05

 = 08  = 001  =  = 02  = 01

  710 : Variation of 
0
on  when 1 = 2 = 30 3 = 01  = 05

 =  = 08  = 001  =  = 02  = 01
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7.11 7.12

 711 : Variation of  on  when 1 = 2 = 30 3 = 01  = 
0
= 05  =  = 08

 =  = 02  = 01

  712 : Variation of wall properties on  when  = 
0
= 05  =  = 08  = 001

 =  = 02  = 01

7.13 7.14

 713 : Variation of  on  when 1 = 2 = 30 3 = 01  = 
0
= 05

 = 08  = 001  =  = 02  = 01

  714 : Variation of  on  when 1 = 2 = 30 3 = 01 
0
= 05

 =  = 08  = 001  =  = 02  = 01
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7.15 7.16

 715 : Impact of  on heat transfer rate at the wall (−(


)0()) when

1 = 2 = 003 3 = 01  = 05  = 08 
0
= 05  = 001  = 02  = 01

  716 : Impact of  on heat transfer rate at the wall (−(


)0()) when 1 = 2 = 003

3 = 01  = 05  =  = 08 
0
= 05  = 02  = 01

7.17 7.18

 717 : Impact of 
0
on heat transfer rate at the wall (−(


)0()) when

1 = 2 = 003 3 = 01  = 05  =  = 08  = 001  = 02  = 01

  718 : Impact of  on heat transfer rate at the wall (−(


)0()) when 1 = 2 = 003

3 = 01 
0
=  = 05  = 08  = 001  = 02  = 01
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7.19 7.20

 719 : Variation of  on  when 1 = 2 = 03 3 = 01  = 
0
= 05

 = 08  = 001 Λ = 10  =  = 02 and  = 01

  720 : Variation of 
0
on  when 1 = 2 = 30 3 = 01  = 05

 =  = 08  = 001 Λ = 10  =  = 02 and  = 01

7.21 7.22

 721 : Variation of  on  when 1 = 2 = 30 3 = 01  = 
0
= 05  =  = 08

Λ = 10  =  = 02  = 01

  722 : Variation of wall properties on  when  = 
0
= 05  =  = 08  = 001

Λ = 10  =  = 02  = 01
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7.23 7.24

 723 : Variation of  on  when 1 = 2 = 30 3 = 01  = 
0
= 05

 = 08  = 001 Λ = 10  =  = 02  = 01

  724 : Variation of Λ on  when 1 = 2 = 30 3 = 01  = 
0
= 05

 =  = 08  = 001  =  = 02  = 01

7.25 7.26

 725 : Variation of  on  when 1 = 2 = 001 3 = 01  = 05


0
= =  = 08 Λ = 10  =  = 02  = 01

  726 : Variation of 
0
on  when 1 = 2 = 001 3 = 01  = 05  =  = 08

 = 001 Λ = 10  =  = 02  = 01
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7.27 7.28

 727 : Variation of  on  when 1 = 2 = 001 3 = 01  = 05  = 
0
= 08

 = 001 Λ = 10  =  = 02  = 01

  728 : Variation of  on  when 1 = 2 = 001 3 = 01  = 05


0
=  = 08  = 001 Λ = 10  =  = 02  = 01

7.29

 729 : Variation of Λ on  when 1 = 2 = 001 3 = 01  = 05


0
=  = = 08  = 001  =  = 02  = 01

146



7.4 Conclusions

MHD peristaltic flow via nanoparticles 23 and  is studied in a rotating frame. The

channel is considered compliant in nature. Thermal analysis is done in the presence of radiation.

Moreover entropy generation is also studied for the present situation. Main outcomes of the

study are mentioned below:

• Axial and secondary velocities show similar behavior for and  i.e. these decrease with

the enhancement in  and .

• Secondary velocity  vanishes in the absence of rotation ( 0
= 0).

• Temperature due to shearing effects for nanofluid is greater when compared with that of
water.

• Rate of heat transfer for both nanoparticles enhances by increasing rotation but it is
higher for .

• The value of axial velocity , temperature , heat transfer
³
−



0
[]
´
and entropy

generation  for 23 is greater than  . However, this is not the case of secondary

velocity .

• Bejan number is higher for heat transfer irreversibility when compared with total irre-
versibility.
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Chapter 8

Heat transfer in peristaltic flow of

Ree-Eyring fluid with Hall and slip

effects in a rotating frame

8.1 Introduction

The present chapter addresses the peristaltic motion of Ree-Eyring fluid in a channel with flex-

ible walls. The whole system is rotating with constant angular velocity. Problem is formulated

under the consideration of both Hall current and slip conditions. Thermal radiation effects

are also taken. The resulting nonlinear system is simplified by adopting the lubrication ap-

proach. Solution expressions for stream function, axial and secondary velocities, temperature

and heat transfer coefficient are developed. Influence of pertinent parameters on flow quantities

are studied via plotting graphs.

8.2 Flow description

Consider the flow of an incompressible non-Newtonian fluid in a channel with flexible walls.

The whole system is undergoing rigid body rotation. An unvarying magnetic field of strength

0 is applied in transverse direction to the flow. The fluid is conducting and magnetic Reynolds

number being small. This assumption helps in neglecting induced magnetic field in comparison
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to applied magnetic field. Coordinate system is chosen in such a way that −  lies along

the channel and  −  is normal to it. Temeratures of top and bottom walls are defined

by 1 and 0. An infinite wave train is propagating along the channel walls with velocity 

Mathematically

 =  ( ) =

∙
+  sin

2


(− )

¸
at top wall,

 = − ( ) = −
∙
+  sin

2


(− )

¸
 at bottom wall, (8.1)

where   and  define the wave amplitude, wavelength and time respectively.

8.3 Mathematical modeling

The balance laws of mass, momentum and energy equations in a rotating frame are

divV= 0 (8.2)


V


+  [Ω× (Ω× r) + 2Ω×V] = div τ + J×B (8.3)





= ∇2 + τ L−∇q (8.4)

where V is the velocity field defined by

V = [ (  )   (  )  (  )]  (8.5)

In above Eqs.  is the density, Ω =Ω̂ the angular velocity, ̂ the unit vector, τ the Cauchy

stress tensor, J the current density, B the applied magnetic field,  the specific heat,  the

temperature of the fluid,  the thermal conductivity and L = gradV. The radiative heat flux

q :

q = −4
∗

3∗
 4


 (8.6)
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Here ∗ and ∗ in the above relation are the Stefan-Boltzman and Rosseland mean absorption

coefficients respectively. Generalized Ohms law in the presence of Hall current takes the form:

J =

∙
E+V×B− 1


[J×B]

¸
 (8.7)

In the above Eq.  is the electrical conductivity,  the electric field,  and  the electron

charge and number density of free electrons respectively.

Lorentz force in the absence of electric field becomes

J×B = [ 20
1 +2

(−+) 
−20
1 +2

( +)  0] (8.8)

where  (= 0) is the Hall parameter. The constitutive relation for Ree-Eyring liquid is

defined as

τ = −I+ S

where component form of extra stress tensor S is written as [173] :

S = 



+
1


sinh−1

µ
1







¶
 (8.9)

Since sinh−1  ≈ || with  ≤ 1, then

S = 



+
1



µ
1







¶
 (8.10)

where  defines the dynamic viscosity,  and  are the fluid parameters respectively.

Eqs. (82− 84) after using Eqs. (85− 810) take the form:




+




= 0 (8.11)



∙



− 2Ω

¸
= −̂


+




+




+




− 20
1 +2

(−) (8.12)



∙



+ 2Ω

¸
= −̂


+




+




+




− 20
1 +2

( +) (8.13)





= −̂


+




+




+




 (8.14)
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where modified pressure is defined as:

̂ = − 1
2
Ω2

¡
2 + 2

¢


The thermal expression is





= 

µ
2

2
+

2

2

¶
+ 




+ 

µ



+





¶
+ 




+
16∗ 3
3∗

2

2
 (8.15)

where  is the mean temperature of fluid.

The movement of flexible wall is defined as

 = − 0

where 0 is the pressure on the outer surface of wall. The motion of stretched membrane in the

presence of viscous damping forces is expressed by an operator  defined as

 = − 0 
2

2
+1

2

2
+ 

0 


 (8.16)

In above Eq. 
0
 1 and 

0
show elastic tension, mass/area and viscous damping coefficient

respectively. For making problem simple we take 0 equal to zero.

The continuity of stress at  = ± ensures that pressure exerted by walls on the fluid is equal
and opposite to the pressure exerted by fluid on the walls. Moreover transverse displacements

shown by the walls are same as z-displacements exhibited by the fluid at the interfacial positions.

Combining the continuity of stress and deformation condition we have




 () =




=




+




+




− 20
1 +2

(−)

−
∙



− 2Ω

¸
at  = ± (8.17)

The slip conditions at the walls are represented as:

± 1 = 0 at  = ± (8.18)
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 ± 2 = 0 at  = ± (8.19)

 ± 3



=

½
1

0

¾
at  = ± (8.20)

We define the non-dimensional parameters as:

∗ =



 ∗ =




 ∗ =




 ∗ =

2


 ∗ =




 ∗ =






∗ =



 ∗ =




 ∗ =




  =

 − 0

1 − 0
 Re =






 =



 

0
=
ReΩ


 2 = 20

2


 Pr =




 ̄ =

1




 =
2

 (1 − 0)
  = Pr 1 =

−3
3

 2 =
1

3

3


3 =
03

2
 ∗0 =



  =




  = −


 (8.21)

Omitting the asteriks and adopting lubrication approach one can write

−2 0
 = −


+




− 2

1 +2

µ



−

¶
 (8.22)

2
0 


= −


+




− 2

1 +2

µ
 +





¶
 (8.23)




= 0 (8.24)

(1 +)
2

2
+ 2

µ
2

2

¶
 = 0 (8.25)

where

 = (1 + ̄)
2

2
 (8.26)

 = (1 + ̄)



 (8.27)

 = 0 (8.28)

It is noticed from Eq. (824) that pressure does not depend on . Also the pressure term in

Eq. (823) can be ignored as secondary flow is not caused by the pressure gradient but due to
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rotation. Solving Eqs. (822) and (824) along with Eqs. (826− 828) we get

(1 + ̄)
4

4
− 2

1 +2

µ
2

2
−





¶
+ 2

0 


= 0 (8.29)

whereas Eqs. (823) and (825) take the form as under:

(1 + ̄)
2

2
− 2

1 +2

µ
 +





¶
− 2 0 


= 0 (8.30)

(1 +)
2

2
+ 2(1 + ̄)

µ
2

2

¶2
= 0 (8.31)

Boundary conditions for the flow analysis now become




± (1 + ̄)1

2

2
= 0 at  = ± (8.32)

 ± (1 + ̄)2



= 0 at  = ± (8.33)

∙
1

3

3
+2

3

2
+3

2



¸
 = (1 + ̄)

3

3
− 2

1 +2

µ



−

¶
+2

0
 at  = ± (8.34)

 ± 3



=

½
1

0

¾
at  = ± (8.35)

where 
0
is the Taylors number, 2 the Hartman number,  the Brinkman number, 1 2

and 3 define the wall elastance parameters, ̄ the non-Newtonian fluid parameter whereas 0

are the slip parameters at upper and lower walls respectively.
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8.4 Exact solutions

The exact solutions for the Eqs. (829− 831) subject to the boundary conditions (832− 835)
are expressed as

 = 1 + 2 sinh[1] + 3 sinh[2] (8.36)

 = 4 + 5 cosh[1] + 6 cosh[2] (8.37)

 = 1 +2 +3
2 +4(cosh[(1 − 2) ] + cosh[(1 + 2) ]) +6 cosh[21]

+7 cosh[22] (8.38)

where

1 =

q
2 − 

√
13 2 =

q
2 + 

√
13 1 =

1

(1 + ̄)

µ
2

0
+

2

1 +2

¶


2 =
1

(1 + ̄)

2

(1 +2)
 3 =

1

(1 + ̄)

µ
2

0 − 2

1 +2

¶
 4 =

(1 + ̄)

(1 +)


Heat transfer coefficient defined at the walls is

() =  ()  (8.39)

The constant 0 ( = 1− 6) and 0 ( = 1− 7) are defined as follows:

1 =
2(−11 + 24 −6)

(22 + 13)
 2 =

(−√1(21 + 34) +
√
36)

2(2 − 
√
1
√
3)32

√
3



3 =
(2 +

√
1
√
3)(
√
1(21 + 34)− 

√
36)

2(2 − 
√
13)(2 + 

√
13)32

√
3



4 =
3(11 − 24 + 6)

22 + 13
 5 =

(2 + 
√
13)(

√
1(21 + 34) + 

√
36)

2
√
1(

2
2 + 13)



6 =
(2 − 

√
13)(

√
1(21 + 34)− 

√
36)

2
√
1(

2
2 + 13)


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1 =
1

2
−3(23 + )−6 cosh[21]−4 cosh[(1 − 2)]−7 cosh[22]

−5 cosh[(1 + 2)]− 3(4(1 − 2) sinh[(1 − 2)] + 2(61 sinh[21]

+72 sinh[22]) +5(1 + 2) sinh[(1 + 2)])

2 =
1

2(3 + )
 3 =

4(23
2
6 − 1(21 + 34)(

2
21 + 234 − 236))

43(
2
2 + 13)



4 =
124(1(21 + 34)

2 + 3
2
6)

2(1 − 2)23(
2
2 + 13)

 5 = −4

6 = −4(
√
1(21 + 34) + 

√
36)

2

16(2 +
√
13)23

 7 = −6

8.5 Discussion

This section studies the effect of sundry variables on axial () and secondary () velocities,

temperature () and heat transfer coefficient () via graphs (see Figs. 81− 823).

8.5.1 Axial velocity

Figs. (81− 85) show the impact of different physical parameters against the axial velocity

(). In particular the effect of wall parameters (1 2 3), Taylors number
³

0
´
, Hall,

slip and fluid parameters ( 1 ̄) on axial velocity is studied. Velocity is found increasing

function for wall rigidity (1) and tension (2) parameters respectively. Since these parameters

represent the elastic nature of walls therefore increasing wall elastance lowers the resistance to

the flow and velocity enhances. Viscous damping (3) is the oscillatory resistance which is

inversely related to velocity. Therefore decrease in velocity is noticed for higher values of

3 (see  81). Influence of rotation on axial velocity is depicted through  82. The Fig.

shows that velocity decreases as we keep on increasing the rotation. Furthermore it is noticed

that velocity is higher in the absence of rotation
³

0
= 0

´
.  83 illustrates the effect of

Hall parameter  on . Less values of  decrease magnetic damping which causes velocity

to increase. Thin inhomogeneous layer of film along the walls assists the motion of fluid. The

slip effect enhances when this film becomes less viscous and there is fluid velocity enhancement

(see  84). The impact of fluid parameter (̄) on velocity can be seen through  85.

As the value of fluid parameter increases the viscosity decreases which enhances the velocity of

fluid.
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8.5.2 Secondary Flow

Channel rotation generates a velocity in y-direction which is termed as secondary velocity.

This subsection studies the influence of pertinent parameters
³
1 2 3 

0
  1

´
on

secondary velocity  by plotting  86− 810. Increasing behavior of secondary velocity 

is noticed for higher values of damping parameter (3)  On contrary velocity increases for the

elastance parameters (1 2) (see  86). It is revealed by  87 that secondary velocity

increases as we rotate the channel rapidly. It is also noteworthy to mention that there is no

secondary velocity when the channel is non-rotating
³

0
= 0

´
.  88 displays the influence

of Hall parameter  on . This  illustrates that the secondary velocity accelerates as the

Hall effects get stronger. To study the effect of slip parameter 2 on   89 is plotted. It

is revealed from the  that velocity enhances as we increase the slip effects. The results

obtained for fluid parameter ̄ shows that secondary velocity increases for higher values of ̄

(see  810)  The reason behind this fact is the low viscosity of fluid.

8.5.3 Heat transfer analysis

This subsection is organized to show variation of different emerging parameters on temperature

 and heat transfer mechanism .  811 displays the significance of wall parameters on .

It is revealed from the Fig. that increasing values of elastance parameters (1 2) enhances

the temperature whereas it decreases as viscous damping (3) is increased. As velocity of fluid

increases for higher values of rotation which results in decrease of temperature. This result is

clearly visible from  812. Influence of Hall parameter  on  is revealed through  813.

It is observed that temperature rises for higher values of  It is the result of strong magnetic

field.  814 elucidates the influence of thermal slip parameter 3 on  It is seen from the

 that temperature attains a higher value as we increase the thermal slip parameter. To

discuss the effect of fluid parameter  on   815 is sketched. Less resistance is offered

to the flow due to decreased viscosity larger ̄ Hence causing increased velocity enhances the

temperature. It is also noticed from the  that temperature is higher for non-Newtonian

case. For larger radiation parameter  temperature of the fluid decreases ( 816). The

internal friction generated in the fluid by shearing forces produces energy in the form of heat

which further enhances the temperature  of the fluid. Brinkman number  in the problem
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is responsible for this effect. Hence increasing shear will give higher value of  which in turn

rises the temperature  (see Fig. 817). The plots for heat transfer coefficient () are shown

through  (818− 823). Basically () defines the heat flux or heat transfer at the walls

and mathematically expressed as () = (). The sinusoidal waves propagating beside the

walls causes heat transfer coefficient to exhibit oscillatory behavior.  818 reveals that the

rate of heat transfer () increases as we rotate the channel with greater velocity. To explore

the impact of radiation parameter  on heat transfer coefficient  819 is plotted. It can be

noticed from the  that heat transfer rate decreases for larger radiation parameter. Influence

of Hall parameter  on () can be studied through  820. We observed enhancement in

the rate of heat transfer through larger Hall parameter . To analyze the impact of thermal

slip 3 and fluid parameter ̄ the  821 and 822 are plotted. It is clearly visible from the

Figs. that heat transfer rate increases by making increment in the values of these parameters.

The graphical results show that the rate of heat transfer is higher when shearing forces between

fluid layers are enhanced (see Fig. 823).

8.1 8.2

 81 : Variation of wall properties on  when ̄ = 
0
= 10  = = 20 1 = 2 = 05

 =  = 02  = 01

  82 : Variation of 
0
on  when 1 = 2 = 03 3 = 001  = = 20 1 = 2 = 05

̄ = 10  =  = 02  = 01
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8.3 8.4

 83 : Variation of  on  when 1 = 2 = 03 3 = 001  = 20 1 = 2 = 05

̄ = 
0
= 10  =  = 02  = 01

  84 : Variation of 1 on  when 1 = 2 = 03 3 = 001  = = 20 2 = 05

̄ = 
0
= 10  =  = 02  = 01

8.5

 85 : Variation of ̄ on  when 1 = 2 = 03 3 = 001 
0
= 10  = = 20

1 = 2 = 05  =  = 02  = 01
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8.6 8.7

 86 : Variation of wall properties on  when ̄ = 
0
= 10  = = 20

1 = 2 = 05  =  = 02  = 01

  87 : Variation of 
0
on  when 1 = 2 = 0001 3 = 01  = = 20 ̄ = 10

1 = 2 = 05  =  = 02  = 01

8.8 8.9

 88 : Variation of  on  when 1 = 2 = 0001 3 = 01  = 20 ̄ = 
0
= 10

1 = 2 = 05  =  = 02  = 01

  89 : Variation of 2 on  when 1 = 2 = 0001 3 = 01  = = 20 ̄ = 
0
= 10

1 = 05  =  = 02  = 01
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8.10

 810 : Variation of ̄ on  when 1 = 2 = 0001 3 = 01  = = 20 
0
= 10

1 = 2 = 05  =  = 02  = 01

8.11 8.12

 811 : Variation of   on  when  = = 20  = 08

1 = 2 = 3 = 05 ̄ = 
0
=  = 10  =  = 02  = 01

  812 : Variation of 
0
on  when 1 = 2 = 03 3 = 001  = = 20  = 08

1 = 2 = 3 = 05 ̄ =  = 10  =  = 02  = 01
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8.13 8.14

 813 : Variation of  on  when 1 = 2 = 03 3 = 001  = 20  = 08

1 = 2 = 3 = 05 ̄ = 
0
=  = 10  =  = 02  = 01

  814 : Variation of 3 on  when 1 = 2 = 03 3 = 001  = = 20  = 08

1 = 2 = 05 ̄ = 
0
=  = 10  =  = 02  = 01

8.15 8.16

 815 : Variation of ̄ on  when 1 = 2 = 03 3 = 001  = = 20  = 08

1 = 2 = 3 = 05 
0
=  = 10  =  = 02  = 01

  816 : Variation of  on  when 1 = 2 = 03 3 = 001  = = 20

1 = 2 = 3 = 05 ̄ = 
0
=  = 10  =  = 02  = 01
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8.17

 817 : Variation of  on  when 1 = 2 = 03 3 = 001  = = 20  = 08

1 = 2 = 3 = 05 ̄ = 
0
= 10  =  = 02  = 01

8.18 8.19

 818 : Variation of 
0
on  when 1 = 2 = 03 3 = 001  = = 20  = 08

1 = 2 = 3 = 05 ̄ =  = 10  = 02  = 01

  819 : Variation of  on  when 1 = 2 = 03 3 = 001  = = 20

1 = 2 = 3 = 05 ̄ = 
0
=  = 10  = 02 and  = 01
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8.20 8.21

 820 : Variation of  on  when 1 = 2 = 03 3 = 001  = 20  = 08

1 = 2 = 3 = 05 ̄ = 
0
=  = 10  = 02  = 01

  821 : Variation of 3 on  when 1 = 2 = 03 3 = 001  = = 20  = 08

1 = 2 = 05 ̄ = 
0
=  = 10  = 02  = 01

8.22 8.23

 822 : Variation of ̄ on  when 1 = 2 = 03 3 = 001  = = 20  = 08

1 = 2 = 3 = 05 
0
=  = 10  = 02  = 01

  823 : Variation of  on  when 1 = 2 = 03 3 = 001  = = 20  = 08

1 = 2 = 3 = 05 ̄ = 
0
= 10  = 02  = 01
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8.6 Conclusions

The main features for peristaltic transport of Ree-Eyring liquid in a rotating frame with Hall

effects are discussed. Impact of slip conditions and thermal radiation are also considered. The

main observation are mentioned below.

• Axial velocity decreases via channel rotation.

• Velocities ( ) are increasing functions of fluid parameter ̄

• In non-rotating case
³

0
= 0

´
the secondary velocity vanishes.

• Velocities ( ) and temperature  are enhanced for an increase in the slip parameters
1 2 and 3.

• Rotation parameter  0
has opposite effects on temperature when compared with secondary

velocity .

• Fluid and radiation parameters (̄ and ) exhibit opposite behavior for temperature .

• Rate of heat transfer  enhances for 3 (thermal slip parameter),  (fluid parameter) and
 (Brinkman number).
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Chapter 9

Summary

The research carried out in the present thesis is summed up through chapters two to eight.

The main objective of all these chapters is to study the impact of magnetohydrodynamics

on peristaltic flow of viscous and non-Newtonian fluids in a compliant wall channel when the

whole system is in rigid body rotation. Effect of secondary velocity, which is generated due to

the rotation is given major attention. Mathematical modelling is simplified by adopting the

lubrication approach. Results for stream function, axial and secondary velocities, temperature

and concentration are obtained. Exact as well as numerical solutions using NDSolve command of

MATHEMATICA, are calculated and analyzed. Variation of pertinent parameters on velocities,

temperature, concentration and heat transfer coefficient is shown graphically and discussed

physically. Moreover the streamlines are also drawn and discussed. Main outcomes of the

conducted research are summerized as follows:

• Axial velocity shows decrease through increase in rotation parameter and Hartman num-
ber.

• Wall elastance parameters 1 and 2 show similar behavior whereas 3  4 and 5 show
opposite behavior to 1 and 2

• Axial velocity enhances as the permeability of porous medium (1), nanoparticle volume

fraction (), Hall parameter (), fluid parameter (̄) and velocity slip increases.

• It is worthmentioning that axial velocity is graeter for aluminium nanoparticles than that
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of copper.

• Secondary velocity shows opposite behavior for 1  0
and wall properties except for  .

• Secondary velocity exhibits similar results for involved parameter when compared with
axial velocity.

• Temperature is found decreasing function of rotation parameter, thermal radiation, wall
characterising parameters (3 4 and 5), nanoparticle volume fraction () and 1

• Temperature exhibits increasing behavior when we make increment in the values of fluid
parameter (̄), Hartman, Eckert, Prandtl, Brinkman and Soret and Dufour numbers.

Moreover increasing permeability and Hall and slip effects also enhance the temperature.

In addition it is noticed that temperature is higher for heat generation (  0) coefficient

when compared with heat absorption coefficient (  0).

• It is noteworthy that large non-uniform temperature field inside the fluid has decreasing

effect on temperature which is represented through Biot number .

• Irreversibility or entropy generation () is helpful in determining the efficiency of system.

Therefore entropy generation analysis is performed for pertinent parameters. Hartman

number, rotation parameter and nanoparticle volume fraction show decreasing effect for

. It is also noticed that magnitude of entropy generation is higher for aluminium when

compared to copper nanoparticles.

• Brinkman parameter Λ studying viscous effects shows an enhancement in entropy

generation.

• Bejan number close to 1 shows the dominance of heat transfer irreversibility at central
part of channel.

• Concentration of fluid increases with the enhancement in the values of rotation, thermal
radiation, thermophoresis, constructive chemical reaction and wall elastance parameters

(3 4 and 5).

• An increase in the values of Soret, Dufour, Hartman and Schmidt numbers shows decreas-
ing behavior for concentration field.
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• Magnitude of heat transfer increases for Eckert, Prandtl, Soret, Dufour and Schmidt
numbers. Similar behavior is noticed for Hall, thermal slip and fluid parameters. It

decreases for Hartman and Biot numbers, radiation and rotation parameters.

• Effective thermal conductivity of nanofluid enhances for increasing Biot, Brinkman and
Hartman numbers. Thermal slip parameter and nanoparticle volume fraction also exhibit

similar impact on thermal conductivity.

• Size of trapped bolus decreases for wall parameters (1 2 and 5), Taylors and Hartman
number whereas its size increases for (3 and 4).

It is a known fact that fluid enters a peristatltic pump through a rotating axis and thus

theoretical investigations regarding peristaltic flows in a rotating frame is an interesting area

which has been addressed in the present thesis. Moreover the rotational flows and magnetic

field generate heat due to an increase in frictional forces. Therefore studying heat transfer in

rotating system is of great importance.

All chapters discussed in this thesis analyze the flow problems of viscous and non-Newtonian

fluids under the influence of magnetic field when the whole system is in rigid body rotation.

These investigations can be extended to discuss more complicated situations in connection with

rotation and peristalsis. Following are some possible extensions that can be studied regarding

to the peristalsis:

• Soret and Dufour effects on peristaltic flow with different non-Newtonian fluids in rotating
geometry.

• Impact of rotation on peristalsis in curved channel etc.

• Convective heat and mass transfer on peristaltic flow in non-uniform channel for rotating

frame.

• Rotating peristaltic flow of nanofluids in an inclined channel.
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