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Preface

Nanofluids are engineered colloids made of base fluid and nanoparticles (1-100 nm). The
nanoparticles colloids have certain physical characteristics that enhance their importance in
industrial applications like ceramics, paints, coatings, food industries and drug delivery systems.
These colloids are made of ultrafine nanoparticles. The ultra-high performance cooling is one of
the major requirements of present industrial technologies. Metals (Cu, Fe, Al and Au), oxide
ceramics (CuO and Al,03), carbide ceramics (TiC and SiC), single, double or multiple wall
nanotubes (SWCNT, DWCNT and MWCNT), semiconductors (SiO and TiO,) and various
composite materials are implemented in the production of nanoparticles and are submerged in a
working fluid to make them nanofluids. The nanofluids are usually used to overcome the poor
thermal performance of ordinary fluids like propylene glycol, water, oil and ethylene glycol.
Nanotechnology is very useful in the development of better lubricants and oils. Such
consideration is successfully implemented now in field of biomedical engineering like cancer

therapy and safer surgery.

The boundary-layer flows due to stretching surface are prominent in plastic and metal industries
like annealing and thinning of copper wires, drawing of stretching sheets through quiescent
fluids, polymer filament or sheet extruded from a dye, manufacturing of plastic and rubber
sheets, continuous cooling of fiber spinning, boundary layer along a liquid film condensation
process and aerodynamic extrusion of plastic films. There is no doubt that nanofluids have vital
role in the heat transfer enhancement. Thus we intend to study the boundary-layer flows in the
presence of nanoparticles. It is further noted that two-dimensional flow problems in literature are

much studied when compared with the three-dimensional flow problems. Keeping such facts in



mind the prime objective of present thesis is to analyze three-dimensional flow problems of

nanofluids due to stretching surface. The present thesis is structured as follows.

Chapter one contains literature survey of relevant previous published works and laws of
conservation of mass, momentum, energy and concentration transport. Mathematical formulation
and boundary-layer expressions of Maxwell, Oldroyd-B, Jeffrey and Sisko fluids are provided.

Basic concept of optimal homotopy analysis method is also included.

Chapter two addresses three-dimensional flow of viscous nanofluid in the presence of Cattaneo-
Christov double diffusion. Thermal and concentration diffusions are considered by introducing
Cattaneo-Christov fluxes. Novel features of Brownian motion and thermophoresis are retained.
The conversion of nonlinear partial differential system to nonlinear ordinary differential system
is done through suitable transformations. The obtained nonlinear systems are solved. Graphs are
plotted in order to analyze that how the temperature and concentration profiles are affected by
distinct physical parameters. Skin friction coefficients and rates of heat and mass transfer are
numerically computed and addressed. The contents of this chapter are published in Results in

Physics 6 (2016) 897-903.

Chapter three explores three-dimensional flow of viscous nanofluid characterizing porous space
by Darcy-Forchheimer relation. Both thermal convective and zero nanoparticles mass flux
conditions are utilized. The modeled systems are reduced into dimensionless expressions. The
governing mathematical system is solved by optimal homotopy analysis method (OHAM).
Importance of physical parameters is described through the plots. Numerical computations are
presented to study skin-friction coefficients and Nusselt number. The outcomes of this chapter

are published in Results in Physics 7 (2017) 2791-2797.



Chapter four examines three-dimensional flow of Maxwell nanofluid. Flow is generated due to a
bidirectional stretching surface. Mathematical formulation is performed subject to boundary
layer approach. Heat source/sink, Brownian motion and thermophoresis effects are considered.
Newly developed boundary condition requiring zero nanoparticle mass flux at boundary is
employed. The governing nonlinear boundary layer expressions are reduced to nonlinear
ordinary differential system through appropriate transformations. The resulting nonlinear system
has been solved. Graphs are plotted to examine the contributions of various physical parameters
on velocities, temperature and concentration fields. Local Nusselt number is computed and
examined numerically. The results of this chapter are published in Applied Mathematics and

Mechanics-English Edition 36 (2015) 747-762.

Chapter five describes magnetohydrodynamic (MHD) three-dimensional flow of Maxwell
nanofluid subject to convective boundary condition. Flow induced is by a bidirectional stretching
surface. Effects of thermophoresis and Brownian motion are present. Unlike the previous cases
even in the absence of nanoparticles, the correct formulation for the flow of MHD Maxwell fluid
is established. Newly suggested boundary condition having zero nanoparticles mass flux is
utilized. The resulting nonlinear ordinary differential systems are solved for the velocities,
temperature and concentration distributions. Effects of physical parameters on temperature and
concentration are plotted and examined. Numerical values of local Nusselt number are computed
and analyzed. The contents of this chapter are published in Journal of Magnetism and

Magnetic Materials 389 (2015) 48-55.

Chapter six presents three-dimensional flow of Maxwell nanofluid subject to rotating frame.
Flow is induced by uniform stretching of boundary surface in one direction. Novel aspects of

Brownian diffusion and thermophoresis are accounted. Boundary layer approach is invoked to



simplify the governing system of partial differential equations. Suitable variables are introduced
to non-dimensionalize the relevant boundary layer expressions. Newly proposed boundary
condition associated with zero nanoparticles mass flux is imposed. Uniformly valid convergent
solution expressions are developed through optimal homotopy analysis method (OHAM).
Graphs have been sketched in order to explore the role of embedded flow parameters. Heat
transfer rate has been computed and analyzed. The outcomes of this chapter are published in

Journal of Molecular Liquids 229 (2017) 541-547.

Chapter seven examines three-dimensional rotating flow of Maxwell fluid in the presence of
nanoparticles. Flow is induced due to an exponentially stretching sheet. Optimal homotopic
approach is employed for the solution of governing system. The optimal values of auxiliary
parameters are computed. The optimal solution expressions of temperature and concentration are
elaborated via plots by employing various values of involved parameters. Moreover the local
Nusselt and Sherwood numbers are characterized by numerical data. The results of this chapter

are published in Journal of Molecular Liquids 229 (2017) 495-500.

Chapter eight addresses three-dimensional flow of MHD Oldroyd-B nanofluid. Flow is induced
by a bidirectional stretching surface. Novel attributes of Brownian motion and thermophoresis
are considered. Newly developed boundary condition requiring zero nanoparticles mass flux is
employed. The governing nonlinear boundary layer equations through appropriate
transformations are reduced into the nonlinear ordinary differential systems. The obtained
nonlinear system has been solved for the velocities, temperature and concentration profiles. The
contributions of various physical parameters are studied graphically. The local Nusselt number is
tabulated and discussed. The contents of this chapter are published in Journal of Molecular

Liquids 212 (2015) 272-282.



Chapter nine explores magnetohydrodynamic (MHD) three-dimensional stretching flow of an
Oldroyd-B nanofluid in the presence of heat generation/absorption and convective boundary
condition. A condition associated with nanoparticles mass flux at the surface is utilized. The
strong nonlinear differential equations are solved through optimal homotopy analysis method
(OHAM). Effects of various physical parameters on temperature and concentration are studied.
The local Nusselt number is also computed and analyzed. The outcomes of this chapter are
published in International Journal of Thermal Sciences 111 (2017) 274-288. Chapter ten
extends the analysis of chapter eight for Jeffrey nanofluid. The results of this chapter are
published in Zeitschrift fur Naturforschung A 70 (2015) 225-233. Chapter eleven presents
bidirectional stretched flow of Jeffrey nanofluid subject to convective boundary condition.
Modeling and computations are prepared subject to thermophoresis, Brownian motion and zero
nanoparticles mass flux. Computational results for the velocities, temperature, concentration and
Nusselt number are presented. The contents of this chapter are published in Journal of

Aerospace Engineering 29 (2016) 04015054.

Chapter twelve examines combined effects of magnetic field and nanoparticles in three-
dimensional flow of Sisko fluid. Nanofluid for Brownian motion, thermophoresis and zero
nanoparticles mass flux at surface is adopted. Nonlinear differential systems are solved first for
the convergent solutions and then analyzed. The outcomes of this chapter are published in
Advanced Powder Technology 27 (2016) 504-512. Chapter thirteen is prepared to extend the
flow analysis of previous chapter in presence of convective condition. The results of this chapter

are published in Journal of Magnetism and Magnetic Materials 413 (2016) 1-8.

Chapter fourteen presents the major findings and some possible extensions of presented research

work.
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Chapter 1

Basics of liquid mechanics

1.1 Introduction

The current chapter contains survey of literature corresponding to nanoliquid, magnetohydrody-
namics, extending surface, non-Newtonian fluids and Darcy-Forchheimer porous medium. Con-
stitutive expressions of Maxwell, Oldroyd-B, Jeffrey and Sisko fluids are included. Boundary-
layer expressions for three dimensional (3D) flows of non-Newtonian fluids (Sisko, Maxwell,

Oldroyd-B and Jeffrey) are also given.

1.2 Background

Dilute suspensions of fibers and particles of nano-sized submerged in liquids are designated as
“nanoliquids”. The nanoliquids completely variation the thermal performance of these mix-
tures which arises e.g. density, viscosity, diffusivity and thermal conductivity. In all these
physical features, thermal conductivity is the most important one because of its importance in
various physical implications. The nanoparticles in generally are made of metal oxides (7103,
Zn0q, Aly03, Si0O3), metallic (Au,Cu), carbon (nanotubes, diamond) or any other materi-
als. Ordinary liquid has poor conductivity. This poor conductivity can be improved greatly
with the use of nanoparticles. In fact, the Brownian motion factor of nanoparticles in base
liquid is important in this direction. A great amount of heat is produced in heat exchangers

and microelectro mechanical processes to reduce the framework performance. Liquid thermal



conductivity is improved by nanoparticles addition just to cool such industrial processes. The
nanoparticles have superficial importance in biological and engineering applications like medi-
cine, solar cells, catalysts, electronics, optics, materials, manufacturing, glass industry, turbine
blades cooling, plasma and laser cutting processes etc. Choi and Eastman [1] tentatively inves-
tigated the framework of nanoparticles and they inferred that the inclusion of nanoparticles into
common base fluids is exceedingly helpful method to improve the cooling ability of ordinary
fluids. Buongiorno [2] built up a two-component relation for investigating thermal energy trans-
port in nanoliquids. The relation is based on two important slip mechanisms namely Brownian
motion and thermophoresis. A sizeable information on nanoliquids have been presented in the
literature. Here we present some important researches which have been reported by considering
the features of thermophoretic and Brownian motion (see [3 — 25] and several investigations
therein).

The centrality of magneto nanoliquids has redesigned strikingly in biomedical industry.
Such liquids have potential applications in gastric meds, cleaned devices, adroit biomaterials for
wound treatment and various others. An associated alluring field can be considered for control
of electrically coordinating nanoliquids to achieve the most astonishing quality thing in present
day amassing. Particular examinations have been made in the past to review the enormous
execution of magneto nanoliquids suspension in which the nanoparticles are in a vague demand
from proteins or DNA. The magneto nanoparticles have been similarly utilized for transfer of
tumor through hyperthermia, appealing resonation imaging, concentrating on sedate release,
synergistic effects in immunology, asthma treatment and so forth [26]. Lin et al. [27] examined
the sufficiency of MHD in unsteady pseudo-plastic nanoliquid flow past a thin film by employing
heat source. Free-convective flow of MHD nanoliquid is considered by Sheikholeslami et al.
[28] . Abbasi et al. [29] depicted effect of MHD in thermally and solutally stratified Maxwell
nanoliquid flow by a moving surface. Hayat et al. [30] discussed MHD Sisko nanoliquid flow
with magnetic field. They considered that flow generation is because of bidirectional extending
surface. Heysiattalab et al. [31] dissected anisotropic conduct of magnetic nanoliquids (MNFs)
at filmwise condensation by vertical surface subject to parameter directional magnetic field
impact. MHD three dimensional (3D) flow of nanoliquid by convectively heated nonlinear

extending surface is considered by Hayat et al. [32]. Hayat et al. [33] likewise analyzed doubly



stratified thixotropic nanoliquid flow subject to magnetic field impact. Malvandi et al. [34]
examined thermal attributes in hydro-magnetic nanoliquid flow inside vertical micro-annular
tube. Hayat et al. [35] investigated MHD three dimensional (3D) Oldroyd-B nanoliquid flow
with heat source/sink.

The examinations of boundary-layer flows bounded by extending surface are fundamentally
expanded all through the previous couple of decades because of their useful enormity in modern
and innovative frameworks. Such flows incorporate into wire drawing, paper generation, ex-
pulsion of plastic sheets, drawing of plastic movies, glass fiber creation, hot rolling and various
others. Thus Sakiadis [36] presented an examination to take a gander at the flow caused by
continuously moving surface. At that point Crane [37] continued crafted by Sakiadis [36] for
extending surface and gave a correct answer for velocity field. After innovative examination
of Crane, a couple of experts have examined particular issues of extending surface. Many of
examinations in literature manage two dimensional (2D) flow by extending sheet. There are
uncommon examinations available in literature with respect to three-dimension (3D) flow by
extending sheet. In this way Wang [38] talked about three dimensional (3D) flow bounded by ex-
tending surface. He demonstrated that established issues of axisymmetric and two dimensional
(2D) flows actuated by extending surface can be viably proficient from this examination. At
that point Ariel [39] inspected three dimension flow by extending surface. He gave exact and
homotopic perturbation arrangements of representing framework. Hydro-magnetic unsteady
three dimensional (3D) extending flow is examined by Xu et al. [40]. MHD three dimension
(3D) flow saturating porous media by extending surface is analyzed by Hayat et al. [41]. Liu et
al. [42] explored three dimension viscous liquid flow by exponential extending surface. Recently
Hayat et al. [43] reported three dimension viscous nanoliquid flow by extending surface subject
to Cattaneo-Christov double diffusion.

Recently the flow analysis of non-Newtonian fluids has gained considerable attention. Es-
pecially such fluids are experienced in the foodstuffs, plastic and metal industries, nuclear and
chemical industries, bioengineering and polymeric liquids etc. All the non-Newtonian liquid
expressions by means of their different properties cannot be made distinct by employing one
relationship. Thus various relations are suggested in agreement with the characteristics of non-

Newtonian fluids. The procedure of stress retardation and relaxation is portrayed by rate-type



non-Newtonian expressions. The most straightforward subclass of rate-type non-Newtonian lig-
uid is named as Maxwell liquid [44] . This relation analyzed striking qualities of relaxation time.
Maxwell liquid can’t foresee the effect of retardation time. To anticipate the effects of both re-
tardation and relaxation times, the Oldroyd-B liquid relation [45] has been recommended. The
vast majority of organic and polymeric materials more often than not show the qualities of both
retardation and relaxation times. Further the Jeffrey liquid relation [46] is a subclass of rate
type non-Newtonian fluids. This liquid relation exhibits the properties of ratio of relaxation to
retardation and retardation times. Then again, Sisko liquid relation [47] portrays both pseudo-
plastic and dilatant fluids relying upon their shear thinning and shear thickening highlights.
Sisko liquid relation is a more summed up adaptation of power law relation. It comprises of
both power law and viscous models. Further Sisko liquid can depict many typical properties of
viscous and non-Newtonian liquids through selection of the various material variables.

The phenomenon of flow transport in porous space is a subject of recent advancements in
geophysical and engineering processes. These processes are encountered in the applications like
frameworks of ground water, grain storage, gas-cleaning filtration, vessels of gas-cooled reac-
tors, insulation of granular and fiber, machines of high power density, petroleum reservoirs,
porous bearings, porous pipes, blood flow via arteries or lungs, casting solidification, fossil fuel
beds etc. These applications have attained the potential interest of engineers and scientists
from different fields. Much works corresponding to porous media problems are dealt with by
utilizing the Darcy’s theory [48]. The main disadvantage of this theory is that it works only for
those problems which are modeled by accounting low porosity and smaller velocities. Many of
practical implications involve the non-uniform porous distribution and higher flow transport.
In such circumstances, the Darcy’s theory fails to describe the exact nature of physical phe-
nomenon. For this purpose, the involvement of non-Darcian effects is accounted to describe
the exact conduct of physical problem. Forchheimer [49] considered such factors by using the
additional term through square velocity in Darcian velocity expression. Muskat [50] verified
that this law holds for higher Reynolds parameter. Seddeek [51] utilized the Darcy-Forchheimer
theory to explore the mixed convective thermophoretic flow saturated in porous space. Con-
vective flow with radiation and temperature-dependent viscosity in non-Darcian porous space

has been disclosed by Pal and Mondal [52]. Pal and Chatterjee [53] elaborated the features of



micropolar liquid flow in non-Darcy porous space with radiation and temperature-dependent
heat source. Singh et al. [54] developed an analysis of hydro-magnetic time-dependent flow in
porous channel by employing the Darcy-Brinkman-Forchheimer expression. Gireesha et al. [55]
numerically computed the problem of liquid-particle submersion in viscous liquid flow saturated
in non-Darcy porous medium. Hayat et al. [56] described properties of temperature-dependent
conductivity in Darcy-Forchheimer porous space. Shehzad et al. [57] analytically explored the
features of non-linear convective flow of Oldroyd-B liquid in non-Darcian space with Cattaneo-
Christov theory of heat diffusion. Further relevant investigations on Darcy-Forchheimer flow

can be quoted through the studies [58 — 66] and various attempts therein.

1.3 Basic laws

1.3.1 Law of mass conservation

It is stated that the total mass in any closed framework is conserved. Differential form of law
of mass conservation is
dp

o TV (V) =0, (1.1)

here V exhibits liquid velocity and p represents liquid density. The above expression for an
incompressible liquid is

V-V =0. (1.2)

1.3.2 Law of momentum conservation

It is stated that the total linear momentum of a closed framework is conserved. Differential

form of law of momentum conservation is given by

dV
—=V- b. 1.3
7 T+p (1.3)
Here 7 = —pl + S stands for Cauchy stress tensor, I for identity tensor, p for pressure, b for

body force, S for extra stress tensor and d/dt for material time derivative. Velocity field and



Cauchy stress tensor for three-diemensional (3D) flow are given by

V = [u(e,y, 2), vlx,y, 2), wlz, y, ), (L4)

in which u, v, w stand for velocity components along z—, y— and z—directions respectively,
Tey, Taz, Tyz, Tyz, T2z and T, depict shear stresses and 04, 0yy and o, represent normal

stresses. Expression (1.3) in scalar form is expressed by

@ ov ou ov _ 0 (Ty:b> 0 (Uyy) 0 (Tyz)

P <(9t oz " Vay T (92) = o ey e P (D
ow ow ow ow\  0(T) | O(Tz) N 0(022)

P oz oy 0z

; <au du  Ou 8u) 0(0z) | O(Tay) | O (Taz)

+ pbz, (1.8)
where b, b, and b, depict components of body force in z—, y— and z—axes respectively.

1.3.3 Law of energy conservation

The energy expression for a nanoliquid can be written as
dT .
pep g = -V.-q+h,V - jp, (1.9)

where ¢, stands for specific heat, h, for specific enthalpy of nanoparticles, T' for temperature,
Jjp for nanoparticles diffusion mass flux and q for energy flux. The energy and nanoparticles
diffusion mass fluxes are

q=—kVT + hpjp, (1.10)

. vT
Jp = ppDBVO — ppDTﬂ’ (111)

where k stands for thermal conductivity, p, for nanoparticle mass density, Dp for Brownian

movement coefficient, D for thermophoretic diffusion coefficient and C for nanoparticle con-
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centration. Now Eq. (1.9) becomes

T T.vT
pcpcil—t =kV?T + p,c, |DpVC.VT + DT¥ ) (1.12)

o0

which is the energy expression for nanoliquid.

1.3.4 Law of concentration conservation

The concentration expression for nanoliquid is

ac 1
—=—-——V 1.13
After employing Eq. (1.11), we have
dC V32T
— = DpV?*C + D 1.14
pr gV*C + Dr Tw , ( )
which is the concentration expression for nanoliquid.
1.4 Boundary-layer expressions of non-Newtonian fluids
1.4.1 Maxwell liquid
Extra stress tensor S for Maxwell liquid is
D DS
1+ AM—=—|S=S+A\— =puA 1.1
(+1Dt> +1Dt AL, (1.15)

where A; stands for relaxation time, D/ Dt for covariant differentiation, u for dynamic viscosity

and A; for first Rivlin-Erickson tensor. First Rivlin-Erickson tensor is

A, = (grad V)T 4 grad v, (1.16)
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in which 7" exhibits matrix transpose. For three dimensional (3D) flow, we get

ou ou v ou ow
25 o Tor 02T or
Ay

ou v ov ov ow
oy tor 2oy a: T3y

ou ow v ow ow
o:tor o:Ta 2%
For tensor S for rank two, vector by and scalar ¢, we have

DS 08

-~ _ == . — T _
T +(V-V)S —S(grad V) (grad V)S,
Dby _ dby
Dt = o + (V- V)b, — (grad V)b,,
Dy _ 0y
Dr = ot + (V- V).

(1.17)

(1.18)

(1.19)

(1.20)

Application of (1 + /\1%) on Eq. (1.3), we get following expression in absence of body forces

D\ dV D D
p<1+)\15t> o <1+)\13t> Vp + (1—1—)\1575) (VS)

By using the process as in ref. [67], we get

2(V)=V- <D%>.

Hence above expression in the absence of pressure gradient becomes

Thus above expression for steady Maxwell liquid flow is expressed by

2 2 2
W22 2y W Gt —u<—82u 2
= 2 2
Oz dy 9z +2uv aa;gy + 2w 8‘9; S+ 2uw 8‘9; - 9z dy
02 02 02
LU W O s :V<82v‘+—a%
2 2
du 8y 02 +2uv 6(?1:2[;)3/ +2vw gjavz + 2uw 38;gz O ay

12

(1.21)

(1.22)

(1.23)

|
022 )’

(1.24)

L
022 )"’

(1.25)



202 202 292
ua_w_l_vﬁ_w +wa_w+)\ u 833%}—’_/0 By%}—i_w a;é) — @2w+82w+82w
ox Oy 0z ! 20w 4 2w 1 9 Pw 0x2  Oyr 022 )

2w +2vw Oyoz + “wazaz
(1.26)

oxOy

By employing the boundary-layer approach [68], orders for u, v,  and y and w and z are 1
and 0. Then w—momentum expression vanishes automatically because it has order §. Thus

expressions of boundary-layer for 3D Maxwell liquid flow are

SULNCL +w@+A1 UQ%JFM%JFM% :u@ (1.27)
27 :
Oz Ay 0z +2uv 66:;:2511 + 2vw 59; 5+ 2uw (%2 55 9z
B L +w@+)\1 u2%+v22—zg—|—w2% :u@ (1.28)
5 .
ov 0y 0z +2uv 86:10261)?; + 20w 8%25; + 2uw L2 02
1.4.2 Oldroyd-B liquid
Extra stress tensor S for an Oldroyd-B liquid is expressed by
D DS D
1 — = — = 1 — | A 1.2
< +A1Dt)s S+ Mg, u( +A2Dt> 1 (1.29)

in which A9 exhibits retardation time and law of momentum conservation in the absence of

body force and pressure gradient can be written by

D\ dV
p <1 + A=

) — = <1 + A2D£t> (V-Ay). (1.30)

Dt ) dt

Scalar forms of expressions of boundary-layer in present situation are

29%u 20%u 92u
’U/@ —I—U@ +w@ +\ U™ oa2 +v oy? + 2“”8:1:834
ox 0 0z 20%u 9%u 92u
Yy +w 52 +2vw6yaz + 2uwg5;
2 _Du_ Pu_ _ dudu
- 0“u A U52022 + Uayaz2 Oz 022 (1 31)
022 @y 0wty udw || ’
0z3 Oy 022 0z 022
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CLRCL L
u8 U@ wa 1

0%
= ”(azz“

1.4.3 Jeffrey liquid

93v 93v foadl)

) U52r522 + U8y8z2 + Wazs
_wdv _ wdv _ Jvdw
Oz 022 Oy 022 0z 022

))

Extra stress tensor for Jeffrey liquid can be mentioned as follows:

dA
(Al + Ao dt1>

I
S:
1+ A"

20% 20%v 20%v
v ( u8z2+v 8y2+w 922 )

+2’LL’U 8:1:8y + 2U’LU Byaz + 2u w@xaz

(1.32)

(1.33)

Here A* stands for relaxation to retardation times ratio. Moreover tensor of extra stress S gives

Sxa: =

1+X* 0 oy 0z

0. oy 0z

Ox 0 0z 0z

0 0

u@—i-v@—i-w@ —QS +£S +
p - 9r v T gyt

9 9

a <8U+A2< 88 +v£+w£>2@>

+A ug—l—vg—i-w2 8u+
2oz "oy " 0z) \ oy
+A 8—1—2)3—1-102 @—i-
2\ "oz oy 0z 0z
<8—Z+>\2<ug+vﬁ+w£>2@),
v  Ow 0 0 0 ov
(—Z+—y>+)\2<u—+v—+w—>(—+

.. H (28_w TPV (uﬁ L w3>
ya X

9z

_ySzy +

ox

ov
%)) s
ow
%)) - SZ.’Eu

oy

ow
).

ow
282).

0
&sza

3.,

0

&Szm

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)



where body forces and pressure gradient are absent. By putting Siz, Szy, Szzs Syz, Syy» Syz» Sza,

Sy and S in expressions (1.40) — (1.42) and then employing boundary layer approximations

one has
ou  ou  ou v 0% Qudn Qv lu | Juiy
u% + 118— + wa = —1 T )\* ﬁ + )\2 5 95 9 s (143)
u u u
Y g + Vgm0 +WES
o D 0? Qudv  Gue | Judy
ugs pug by = g (S Ay | PO T RN O O (1.44)
X z z v v v
Y +UW + 'UW + wﬁ
1.4.4 Sisko liquid
The extra stress tensor for Sisko liquid can be defined below:
1 n—1
S=|a+b 5tr(A%) A, (1.45)

Here a, b and n (n > 0) are the material constants of the Sisko liquid. Moreover extra stress

tensor S in components form is defined by

n—1
S = <a+b'%tr(A%) 2 ) <za—z>, (1.46)
T\ fou @
Say = <a+ b'%tr(Ai) ) <6_Z + —Z) = Sya, (1.47)
anl
Sypr = <a+ b'%tr(Af) ) (% + a—j) = Sus (1.48)

1.49)

N ov  Ow
) (5 + —y) = S.,, (1.50)

S, = (a+b‘%tr(A%) nTl) <2a—2’> , (1.51)

o
N———
VR
[\
S|P
N———

Syz = (CL +b '%t’f’(A%)
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where

1
\—tr(A@

2

ou\ 2 ov\ 2 ow\ 2
2 (3) +2(5) (%)

p(Qey 2 2+ @+8—w2+ @+8—w2 (1.52)
Oy Ox 0z Oz 0z 0Oy ' ’
Law of momentum conservation for Sisko liquid provides

ou ou ou 0 0 0

P <u% + Ua—y + IU&) = %S:m + 8_ySzy + &Szm (153)
ov ov ov 0 0 0

1% (ua— + ’Ua—y + ’IU&) = %Syz‘ + 8_ysyy + &Sym (154)
ow ow ow 0 0 0

where body forces and pressure gradient have been omitted. By putting the estimations of S,
Szys Szz, Syzs Syys Syzs Szz, Szy and S, in expressions (1.53) — (1.55) and then employing

approximations of boundary-layer we finally get

du, Ou ., Ou_ad®u b0 [0uldu|" (1.56)
“ow U@y w@z_p8z2 p0z |0z |0z ’ ’
. O o _adv b0 [ov|ow" (1.57)
“or Uay w@z_paz2 p0z |0z |0z ’ ’

1.5 Solutions by OHAM

The optimal homotopic analysis technique (OHAM) is utilized to find the approximate arrange-
ments of highly nonlinear problems. The optimal homotopy analysis technique gives us a con-
venient way to control the convergence of approximation homotopy arrangements and adjust
convergence regions. For the fundamental concept of optimal homotopy analysis technique, we

assume a nonlinear differential expression

Nu(z)] =0, (1.58)
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in which N stands for nonlinear operator, u (z) for unknown function and x for independent
parameter.
1.5.1 Zeroth-order deformation problems

(1 —p) La(z;p) — uo (x)] = phN [0 (z;p)], (1.59)

in which ug (x) stands for the initial approximation, £ for auxiliary linear operator, p € [0, 1] for
embedding parameter, /i for nonzero auxiliary parameter and 4 (x; p) for the unknown function

of z and p.

1.5.2 mth-order deformation problems

Differentiating m times zeroth approximation i.e., Eq. (1.59) w.r.t. p then dividing via m! and

finally inserting p = 0 we have expression for mth-order

L [um () = Xpptm—1 ()] = ARy, (x) , (1.60)
~ 1 omNla(z;p)
Ron (@) = (o5 g R (1.61)
where
0, m<l1
Xom = . (1.62)
1, m>1

Setting p = 0 and p = 1 one has

G (z;0) =ug(x) and u(z;l)=u(x). (1.63)

The arrangement 1 (x;p) varies from initial deformation wug (z) to desired final arrangement

u (x) when p goes from 0 to 1. Using Taylor series expansion one has

i (@50) = w0 (2) + 3t ()97, () = LGB (164)
m=1 m: p p=0
For p =1 we get .
w(z) =uo () + Y tm(z). (1.65)
m=1

17



1.5.3 Optimal convergence control parameter

The nonzero auxiliary parameter i in homotopy arrangements control area of convergence and
also homotopy arrangements rate. To find optimal data of convergence control parameter A,

we employed minimization idea by defining squared residual errors as proposed by Liao [69] .

2

k m
= | (Z - <<>) , (1.66)
i=0 ¢=4o¢

J=0

where €, is the total residual square error.
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Chapter 2

Three-dimensional low of nanofluid
with Cattaneo-Christov double

diffusion

Three dimensional (3D) flow of viscous nanoliquid by extending surface has been explored sub-
ject to Cattaneo-Christov double diffusion. Concentration and thermal diffusions are described
by presenting Cattaneo-Christov fluxes. The novel characteristics in regards to Brownian dis-
persion and thermophoresis are retained. The variation in partial differential framework (PDEs)
to nonlinear ordinary differential framework (ODEs) is done through reasonable transforma-
tions. The subsequent nonlinear frameworks are solved. Plots have been shown keeping in
mind the end goal to examine that how concentration and temperature profiles are influenced
by distinct relevant flow variables. Besides skin frictions and rates of mass and heat transfer are
numerically figured and addressed. Our findings delineate that concentration and temperature
distributions are diminishing elements of concentration and temperature relaxation variables

respectively.

2.1 Formulation

We elaborate three dimensional (3D) flow of viscous nanoliquid by linear extending surface

subject to constant wall concentration and temperature. The Brownian movement and ther-
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mophoresis perspectives are accounted. Here z— and y—axes are along the extending surface
while z—axis is normal to surface. Let Uy, (z) = ax and V,, (y) = by indicate extending veloci-
ties along the x— and y—directions respectively. Mass and heat transfer are examined by means
of Cattaneo-Christov double diffusion articulations. Resulting expressions for boundary-layer

considerations are
ou Ov Ow
— 4+ =4+ —=0 2.1
Ox + oy + 0z ’ (2.1)

ou, O ou_ o
Yor v(?y Yo: T Vo2

u@—i-v@—l—w@*ua—% (2.3)
Ox oy 0z 022 ’

(2.2)

Note that u, v and w depict velocities in z—, y— and z—directions while v(= u/py), p; and
u stand for kinematic viscosity, density and dynamic viscosity respectively. Cattaneo-Christov
double diffusion hypothesis has been proposed in portraying concentration and temperature
diffusions with mass and heat fluxes relaxations respectively. At that point frame indifferent
generalization with respect to Fourier’s and Fick’s laws (which are termed as Cattaneo-Christov

anomalous diffusion expressions) are

q+ g <% +V.Vq—q.VV+(V.V) q> = —kVT, (2.4)
0J
J+Ac (E FV.VI-JVVL(V.V) J) — _DpVC, (2.5)

in which k stands for thermal conductivity, Dp for Brownian diffusivity, J and q for mass and
heat fluxes respectively, A\c and Ap for relaxation time of mass and heat fluxes respectively.
Fundamental Fourier’s and Fick’s laws are deduced by putting A\g = A¢ = 0 in Egs. (2.4)
and (2.5). By using incompressibility condition (V.V = 0) and steady flow with (% =0) and
(% = 0), Egs. (2.4) and (2.5) are diminished by

q+ A\ (V.Vq—q.VV) = —-kVT, (2.6)

J+ A (V.VI—JVV)=—-DgVC. (2.7)
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The three dimension (3D) temperature and concentration expressions provide

2 2
ua—T +va—T +w8—T + AP = an, <8—T> + (pe)y (D <8T 80) + % <8—T> ) , (2.8)

Ox oy 0z 022 (pc) ¢ 0z 0z 0z
oC oC oC 9%*C Dy (O*T
uam +v (9_y + wa— +Ac®c =Dp <W) ﬂ <W> : (2-9)
Here one has the following prescribed conditions:
u=Uy(x)=az, v=V,(y)=by, w=0, T=T,, C=Cy,at z=0, (2.10)
u—0,v—0,T—>Ty, C—Cyxasz— 00, (2.11)
where
o*T 0T 82T 0T
dp = W’ 2 2u
g 022 TV T a2 T W asay
+2vw T + 2uw T + au +v Ou +w Ou 8—T
0yoz 0x0z Y 0w 8 9z ) ox
T LC UL 7 A O C N MWL o (2.12)
ox dy 0z oy ox oy 0z ) 02’ '
and
9%C 9%C 9°C 9%*C
2 2 2 o0°c
b = 62+ 82+w 6z2+2uv(9x8y
+2vw O*C + 2uw 0*C + u@ + v@ +w Ou @
0ydz 0x0z Ox oy 8z ) Ox

+< ov ov 82}) oC ( ow ow 8w> oC (2.13)

u%—kva—y—kw& a—y+ u% ’Ua— 62: %,

in which o, = k/(pc)s, (pc)p and (pc)¢ stand for thermal diffusivity, effective heat potential
of nanoparticles and heat potential of liquid respectively, T for temperature, Dp for Brown-
ian diffusivity, C' for concentration, D7 for thermophoretic diffusion coefficient, C,, and T,

for constant wall concentration and temperature and C, and T, represent ambient liquid
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concentration and temperature respectively. Selecting

u=azf'(C), v=ayg(C), w=—(a)"*(f () +g(C),

(2.14)
0(0) = A%, 3(0) = &=, ¢ = (2)"%=.

Expression (2.1) is identically verified and Egs. (2.2), (2.3) and (2.8) — (2.13) have been

diminished to

"+ (f+9)f" =7 =0, (2.15)

9"+ (f+9)9" — g =0, (2.16)

%9/’ + N0’ ¢’ + NO™ + (f +9) 0 — b ((f +9) (f'+9)0 +(f+9)° 9”) = (2.17)
1 1" N 1 6// I / A 2 m\ _ 218
7 TN (f+g)¢>—c((f+g)(f+g)¢+(f+g)¢)—0, (2.18)
f(0) =g(0) =0, f(0)=1, ¢g'(0) =, 6(0) =1, ¢(0) =1, (2.19)

f(00) = 0, ¢'(00) — 0, 0(c0) = 0, ¢(c0) — 0. (2.20)

Here a stands for ratio number, N, for Brownian movement number, Pr denotes Prandtl para-
meter, J; stands for nondimensional thermal relaxation number, N; for thermophoresis number,
0. for nondimensional concentration relaxation number and Sc for Schmidt parameter. These

variables can be specified by employing the definitions given below:

o= g, Pr=-2. §; = a\g, 0. = alc, } (2.21)
Ny = £l CeC) C°°% Ny = el i) gy
Dimensionless expressions of skin frictions are as follows:
Rel/? Cp = —1"(0),
(2.22)

Rel/2 Cry = —a~3/2¢"(0),

where Re, = Uz /v and Re, = V,,y/v depict local Reynolds parameters.
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2.2 Solutions by OHAM

The optimal series arrangements of Egs. (2.15) — (2.18) through (2.19) and (2.20) have been
developed by utilizing optimal homotopic analysis technique (OHAM). The linear operators

and initial deformations have been selected as follows:

fo(Q) =1 —exp(=(), go(¢) = a(l —exp (=()),

(2.23)
00(¢) = exp (—=C), do(¢) = exp (—(),
=i~k La=id (2.24)
Lo=L8—0, Li=98—¢
The above linear operators obey
Ly [F + Fiexp (¢) + Fiexp (=()] = 0,
Ly [F} + Fgexp (¢) + Fgexp (—()] =0, (2.25)
Lo [F7exp () + Fgexp (—=(¢)] = 0,
Ly [Fgexp (¢) + Flpexp (=¢)] =0,

in which F} (j = 1 —10) stand for arbitrary constants. Problems for zeroth and mth-order
deformations are easily formulated in the view of above operators. The deformation issues are

solved by BVPh2.0 of Mathematica software.

2.3 Convergence analysis

We have solved the momentum, energy and concentration expressions with the help of BVPh2.0.
These expressions contain unknown variables 7y, hig, g and hg,. We can compute the minimum
estimation of these variables by taking total error small. In the frame of HAM, these variables
play a vital role. That is why these variables refer to as convergence-control parameter which
differs HAM from other analytical approximation methods. In order to reduce the CPU time,

we have employed average residual errors at the mth-oder of approximation which are defined

23



ko[ m m
=g | (Z 1), Z,a(o) , (2.26)
7=0 | i=0 i=0 c=jsc |
1 ko[ m m 12
=172 | (Z £(0), Zg«)) : (2:27)
+ 7=0 L 1=0 =0 ¢=36¢ |
1 ko[ m m m m 12
=N APWICID 3TN SUGID S H IFRCE
=0 | =0 =0 =0 =0 ¢=j6¢ |
1 k[ m m m m 12
oy 2o (S0 a0 3. 35600 ) (229)
7=0 | =0 =0 =0 =0 =45 |

Here Ny, Ny, Np and Ny denote the non-linear operators corresponding to Egs. (2.15) — (2.18)
respectively. Following Liao [69] :

t

el =el +ed +0 +e8, (2.30)

where €/ represents total residual square error, k = 20 and 6¢ = 0.5. Optimal data for auxiliary
variables at 2nd order of deformations is iy = —1.64104, hy = —1.02624, hy = —0.933309 and
hy = —0.946239 and !, = 2.61 x 1074, Table 2.1 presents average square residual error at
different order of deformations. It has been analyzed that the average residual square errors
reduce with higher order deformations.

Table 2.1. Individual average residual square errors employing optimal data of auxiliary

variables.

m el e, el e,

2 427x107% 1.29x 1077 1.40x107* 1.17x107*
6 447x107% 1.35x10710 4.69x 1077 1.11 x 1076
10 7.13x10719 377 x1078 443 x107°% 7.21x1078
16 1.83x107'2 6.35x 10710 441 x 1071t 9.87 x 10710
20 3.73x 107" 1.63x 10717 4.75x 107! 7.80 x 10~
26 1.18 x 107 518 x 10720 6.96 x 1071* 1.41 x 10712
30 262x10718 120 x 10721 347 x 1071 9.38 x 10714
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2.4 Discussion

This portion explores the impacts of various pertinent variables like ratio number «, Prandtl
parameter Pr, Schmidt parameter Sc, Brownian movement number N, thermophoresis num-
ber V¢, thermal relaxation number d; and concentration relaxation number J. on temperature
0 (¢) and concentration ¢ (¢) distributions. Fig. 2.1 presents that bigger estimations of ratio
number « give lower temperature 6 (¢) and layer of thermal. Furthermore two dimension (2D)
flow situation is acquired when o = 0. Fig. 2.2 exhibits that how temperature field 6 ({) is
get affected by Prandtl parameter Pr. It is watched that by upgrading Prandtl parameter Pr,
the temperature 6 (¢) and layer of thermal diminishes. Physically, as Prandtl parameter Pr is
a basic piece of thermal diffusivity, in this way, thermal diffusivity is in charge of lower tem-
perature. Higher estimations of Prandtl parameter Pr provide poor thermal diffusivity which
compares to bring down temperature field and less layer of thermal. Fig. 2.3 exhibits the
variety in temperature field 6 (¢) for distinct estimations of Brownian movement number Nj.
It has been clearly watched that by expanding Brownian movement number N, an upgrade
showed up in temperature 6 ({) and its corresponding layer of thermal. Fig. 2.4 is attracted
to portray the impact of thermophoreis parameter V; on temperature field 6 (¢). expanding
estimations of thermophoresis number N; constitutes a elevated temperature and more layer
of thermal. The purpose for this contention is that an improvement in V; provide a more
grounded thermophoretic force which permits further movement of nanoparticles in the liquid
which is far from the surface structures a elevated temperature and layer of thermal. Fig. 2.5
presents variety in temperature 6 (¢) for various estimations of thermal relaxation number J;.
It has been obviously analyzed that an upgrade in the estimation of thermal relaxation number
d; exhibits diminishing conduct for temperature 6 (¢) and layer of thermal. Here §; = 0 speaks
to that the present relation is lessened to basic Fourier’s law. Fig. 2.6 portrays that expanding
estimations of ratio number « presents a poor concentration distribution ¢ () and less layer
of concentration. Fig. 2.7 presents that more prominent Schmidt parameter Sc shapes a di-
minishment in concentration field ¢(¢). Physically Schmidt parameter depends on Brownian
diffusivity. An expansion in Schmidt parameter Sc provide poor Brownian diffusivity. Such
poor Brownian diffusivityrelates to bring down concentration field ¢(¢). From Fig. 2.8, it is

clearly inspected that a poor concentration field ¢(¢) is created by utilizing bigger Brownian
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movement number Np. Fig. 2.9 exhibits that higher thermophoresis number N; create a more
grounded concentration field ¢(¢). Fig. 2.10 presents how concentration relaxation number
0. affects concentration field ¢(¢). By expanding J., both concentration ¢({) and layer of
concentration diminishes. Here §. = 0 represents that present relation is diminished to basic
Fick’s law. Table 2.2 exhibits the comparison for different estimations of o with exact arrange-
ment. Table 2.2 presents an excellent agreement of OHAM arrangement with the existing exact
arrangement in a limiting situation. Table 2.3 is developed to analyze skin frictions —C,, Rey/?
and —Cl, Re;/ % for several estimations of . It is watched that skin frictions show opposite
conduct for bigger ratio number «. Numeric estimations of transfer of heat rate —6’ (0) for dis-
tinct thermal relaxation d; are presented in Table 2.4. Here we examined that transfer of heat
rate has higher estimations for bigger §,. Table 2.5 exhibits numerical estimations of transfer

of mass rate —¢' (0) for distinct estimations of concentration relaxation .. It is watched that

estimations of transfer of mass rate are greater when bigger estimations of J. are considered.

N, =0.1,N, =0.3,6,=6,=02,Pr=Sc = 1.0

1.0 j‘
08|

0.6

6(0)

a=00,03,06, 1.0

0.0

Fig. 2.1. Plots of 0 (¢) for a.
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a=N;=01,Ny=03,6,=6.=0.2,Sc =10
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Fig. 2.2. Plots of 6 (() for Pr.

a=N;=01,6=6.=02,Pr=Sc =1.0

Ny =05,08,1.1,14

Fig. 2.3. Plots of 0 () for Np.
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Fig. 2.4. Plots of 0 (¢) for N;.
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Fig. 2.5. Plots of 6 (¢) for d;.
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Fig. 2.7. Plots of ¢ (¢) for Sec.
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Fig. 2.9. Plots of ¢ (¢) for N;.
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Fig. 2.10. Plots of ¢ (¢) for ..

Table 2.2. Comparative estimations of —f” (0) and —g” (0) for several estimations of a.

a  —f"0) —9"(0)

OHAM  Exact [38] OHAM  Exact [3§]
0 1 1 0 0
0.25 1.048811 1.048813  0.194564 0.194564
0.50 1.093095 1.093097  0.465205 0.465205
0.75 1.134486 1.134485 0.794618  0.794622
1.0 1.173722 1.173720 1.173722  1.173720

Table 2.3. Numeric data for skin frictions —C'y, Rey/? and —C ty Re;/ ? for distinct estimations

of a.

o 0.1 0.4 0.7 1.0

—Rey?Cyp | 1.02026  1.07579 1.12640 1.17372

—Rey/>Cy, | 211389 1.38037 1.23711 1.17372
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Table 2.4. Numeric data for transfer of heat rate —6’ (0) for distinct estimations of 6; when

a=N;=0.1, N, =0.3, 6. = 0.2 and Pr = Sc = 1.0.

0t 0.0 0.1 0.2 0.3
-6’ (0) | 0.51107 0.51884 0.52697 0.53541

Table 2.5. Numeric data for transfer of mass rate —¢’ (0) for distinct estimations of d. when

a=N;=0.1, N, =0.3, 6 = 0.2 and Pr = Sc = 1.0.

Oc 0.0 0.1 0.2 0.3
—¢'(0) | 0.50540 0.51536 0.52574 0.53673
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Chapter 3

A revised model for
Darcy-Forchheimer three
dimensional flow of nanofluid subject

to convective boundary condition

Three dimensional flow of nanoliquid characterizing porous space by Darcy-Forchheimer expres-
sion is studied. Zero nanoparticles mass flux and thermal convective conditions are implemented
at the boundary. The modeled expressions are diminished into dimensionless quantities. The
governing mathematical phenomenon is tackled via optimal homotopic procedure. Importance
of physical constraints is described through plots. Numerical benchmark is presented to study
skin frictions and local Nusselt number. Skin frictions are declared expanding functions of
porosity and Forchheimer variables. Moreover the local Nusselt number is diminished for big-

ger estimations of porosity and Forchheimer variables.

3.1 Formulation

Three dimensional flow of nanoliquid filling porous space by Darcy-Forchheimer relation is

studied. Flow is by a bidirectional extending surface. Nanoliquid relation describes attributes
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of thermophoresis and Brownian movement. Thermal convection and zero nanoparticles flux
constraints are implemented at boundary. We consider Cartesian coordinate framework such
that z— and y—axes are picked along and normal to extending surface. Let U, (x) = az and
Vi (y) = by be the extending velocities along the z— and y—directions. The surface temperature
is controlled by a convective heating procedure which is portrayed by heat exchange coefficient
h; and temperature of hot liquid 7'y under the surface. The boundary-layer expressions for flow

under consideration are

ou Ov Ow
%—F&—yﬁ-g—o, (3.1)
ou ou ou Pu v 9
u%—Fva—y—kw%—uw—?u—Fu, (3.2)
v v o v v 5
U%‘FU@‘FW&—U@*?’U*FU, (33)
or — ar T PT  (pc), dT dC\  Dr [0T\?
o e = an e Dp =)+ 22 () ), 4
u8x+U8y+w82 “ (922+(pc)f B<6z (9z>+Too <8z> (3:4)
oC oC oC 9?C Dy (0T
u% + vﬁ_y + wg =Dp <W) + ﬂ (W) . (3.5)
Here one has the following prescribed conditions:
e v w0 KT gy pOC, DEOT
u=ax, v=>"by, w=0, kaz—hf(Tf T)’DB8z+T0082_Oatz_O’ (3.6)
u—0, v—=0, T—Ty, C— Csx asz— oo. (3.7)

Here u, v and w represent velocities in z—, y— and z—directions, v = u/p ¢ stands for kinematic
viscosity, p for dynamic viscosity, p; for density, K for permeability of porous medium, F' =
Cy/xK 1/2 for nonuniform inertia coefficient, Cj, for drag coefficient, T' for temperature, oy, =
k/(pc)s for thermal diffusivity, k for thermal conductivity, (pc), for effective heat potential
of nanoparticles, (pc); for heat potential of liquid, C for concentration, Dp for Brownian

movement coeflicient, Dy for thermophoretic diffusion coeflicient, Ty, for ambient temperature,
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Cw for ambient concentration and a and b for positive constants. Selecting

u=azf'(C), v=aygd (), w=—(a)"*(f+g),

(3.8)
T _ O0-Cu  ran\1/2
00) = £Le, 6(C) = S58=, ¢ = (2)'"2=.

Now Eq. (3.1) is identically verified while Eqgs. (3.2) — (3.7) are
" f = [P =M = Ff? =0, (3.9)
J"+(f+9)9d —g* -\ —F.¢?=0, (3.10)
0" +Pr ((f+9)0 + Npb'¢/ + N,6"%) =0, (3.11)

" / Nt /"

¢" +Sc(f+9)¢ + 0" =0, (3.12)

Ny

f(0)=9¢(0) =0, f(0) =1, g(0) =, 0'(0) = —y (1 - 6(0)), Np¢'(0) + N:8'(0) =0, (3.13)
f'(00) — 0, ¢'(c0) — 0, 8(c0) — 0, ¢(c0) — 0. (3.14)

Here A\ stands for porosity number, « for ratio number, Sc for Schmidt parameter, F;. for
Forchheimer parameter, Pr for Prandtl parameter, v for Biot parameter, N, for Brownian
movement number and /V; for thermophoresis number. These variables can be specified by

employing the definitions given below:

_ C _b
)‘ Ka’ FT K1I}2a o = ( a? P§ QL SC D_VBa (3 15)
(pc), D Ty—Tw (pc DpCox .
T=% \/_ N = (pc) v Too ’ - (pc)pv -

Dimensionless relations of skin frictions and Nusselt number are

Res/” Cpp = —(0),
1/2 Cf Oz_3/2g”(0), (3.16)
Re, /% Nu, = -0 (0),

where Re, = U,z /v and Re, = V,,y/v depict local Reynolds parameters. It is additionally

watched that Sherwood number is now identically vanishes.
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3.2 Solutions by OHAM

The optimal series arrangements of Eqgs. (3.9) — (3.12) through (3.13) and (3.14) have been
developed by utilizing optimal homotopic analysis technique (OHAM). The linear operators

and initial deformations have been selected as follows:

fo(Q) =1 —exp(=(), go(¢) = a(l —exp (=()),

(3.17)
60(C) = T exp (—C) s Bol(€) = —12 Meexp (=),
_&f _d _ &g dg
froa e Bt (318)
Lo=L0 0, L,=2LS '
d<2 Y qS CQ .
The above linear operators obey
L [Ff + Fyexp (¢) + Fiexp (—¢)] =0,
Ly [F} + Fexp () + Fgexp (—()] = 0, (3.19)
Lo [Fexp (¢) + Fgexp ()] =0,
Ly [Fgexp () + Fioexp (=()] =0,
where I (j = 1 — 10) stand for arbitrary constants. Problems for zeroth and mth-order

deformations are easily formulated in the view of above operators. The deformation issues are

solved by BVPh2.0 of Mathematica software.

3.3 Convergence analysis

We have solved the momentum, energy and concentration expressions with the help of BVPh2.0.
These expressions contain unknown variables 7y, hig, g and hg,. We can compute the minimum
estimation of these variables by taking total error small. In the frame of HAM, these variables
play a vital role. That is why these variables refer to as convergence-control parameter which
differs HAM from other analytical approximation methods. In order to reduce the CPU time,

we have employed average residual errors at the mth-oder of approximation which are defined
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k m m
=g |V (Z f(©). Zg«)) , (3.20)
7=0 L =0 =0 ¢=j6¢
1 ko[ m m 12
= [V (Z £(0), Z@(C)) : (3.21)
7=0 L =0 =0 ¢=j6¢ |
— 12
k m m m m
e = k#ﬂ > | Na (Z F(0), 3 _9(Q), 3 0(0), ZENO’) : (3.22)
=0 | i=0 i=0 i=0 i=0 ¢=38¢ |
- 12
k m m m m
Go= e D N <Z 10,3 _9(0), > _0(0), Z&(O,) (3:23)
J=0 | =0 1=0 1=0 1=0 ¢=356¢ |

Here Ny, Ny, Ny and NV, denote the non-linear operators corresponding to Egs. (3.9) — (3.12)
respectively. Following Liao [69] :

t

el =el +ed +0 +e8, (3.24)

where ¢! exhibits total residual square error, k = 20 and 6¢ = 0.5. Optimal data for auxiliary
variables at 2nd order of deformations is hy = —1.36269, hy, = —1.21974, hy = —1.34638 and
hy = —1.22194 and ef, = 2.69 x 107%. Table 3.1 presents average square residual error at
different order of deformations. It has been analyzed that the average residual square errors
reduce with higher order deformations.

Table 3.1. Individual average residual square errors employing optimal data of auxiliary

variables.

m

f

Em

e,

0

€m

¢

Em

2

6

10
16
20
26
30

1.41 x 104
1.60 x 1075
5.53 x 106
2.00 x 1076
1.22 x 1076
6.79 x 1077
4.92 x 1077

3.22 x 1076
8.21 x 1077
3.67 x 1077
1.53 x 1077
9.75 x 1078
5.62 x 1078
4.12 x 1078

4.80 x 107°
2.80 x 1076
5.47 x 1077
1.06 x 107
4.71 x 1078
1.78 x 1078
1.06 x 1078

7.71 x 107°
2.42 x 107°
1.24 x 107°
5.79 x 106
3.86 x 1076
2.33 x 1076
1.76 x 1076
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3.4 Discussion

This section has been arranged to explore the effects of various pertinent variables like poros-
ity parameter A, Forchheimer parameter F,., Schmidt parameter Sc, ratio number «, Prandtl
parameter Pr, Biot parameter v, Brownian movement number N, and thermophoresis number
N; on temperature 0 (¢) and concentration ¢ (¢) distributions. Impact of porosity number A on
temperature 6 () is shown in Fig. 3.1. Here temperature profile 6 () and layer of thermal are
higher with an expansion in porosity parameter A. Physically the nearness of permeable media
is to upgrade the protection from liquid flow which prompts a more grounded temperature 6 (¢)
and more layer of thermal. Fig. 3.2 presents impact of Forchheimer parameter F,. on 6 ().
An improvement in Forchheimer parameter F, corresponds to a stronger temperature profile
0 (¢) and more layer of thermal. Fig. 3.3 exhibits that bigger estimations of ratio number «
correspond to poor temperature profile 6 (¢) and less layer of thermal. Moreover two dimension
(2D) flow situation is recovered when o = 0. Fig. 3.4 illustrates that how temperature field
0 (¢) gets affected with the variation in Prandtl parameter Pr. It is watched that by upgrading
Prandtl parameter Pr, temperature 6 (¢) and layer of thermal decrease. Physically, as Prandtl
parameter Pr has converse connection with thermal diffusivity, subsequently, an addition in
Pr prompts poor thermal diffusion and accordingly more thinner penetration depth of 6 (¢).
Fig. 3.5 displays that an improvement in Biot parameter v causes an improvement in temper-
ature 6 () and corresponding layer of thermal. Higher estimations of Biot parameter « lead to
stronger convection which produces a elevated temperature profile and more layer of thermal.
Fig. 3.6 is outlined to investigate effect of thermophoreis parameter N; on temperature 6 (¢) .
Bigger thermophoresis number N; prompts a elevated temperature 6 (¢) and thicker thermal
boundary-layer. The purpose for this result is that an upgrade in N; compares to a more
grounded thermophoretic constrain on nanoparticles in heading inverse to forced temperature
gradient. This movements nanoparticles towards the icy surrounding liquid because of which
layer of thermal upgrades. Fig. 3.7 presents impact of porosity parameter A\ on concentration
profile ¢ (¢) . Here concentration profile ¢ (¢) and corresponding layer thickness are expanding
functions of porosity parameter A. Impact of Forchheimer parameter F,. on concentration profile
¢ (¢) is shown in Fig. 3.8. Large Forchheimer parameter F) indicates an improvement in con-

centration profile and corresponding layer of concentration. Fig. 3.9 exhibits that expanding
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estimation of ratio number « produces a poor concentration distribution ¢ (¢) and associated
layer of concentration. Fig. 3.10 exhibits that how the variation in Schmidt parameter Sc
affects concentration field ¢ (¢). It has been watched that expanding estimations of Schmidt
parameter prompt a poor concentration field ¢(¢). Physically Schmidt parameter depends on
Brownian diffusivity. An expansion in Schmidt parameter Sc¢ provides poor Brownian diffusiv-
ity. Such poor Brownian diffusivity relates to bring down concentration field ¢(¢) and thinner
layer of concentration. Fig. 3.11 indicates that higher Brownian movement number N, leads to
a diminishment in concentration field ¢(¢) and corresponding layer thickness. Fig. 3.12 plots
the concentration field ¢ (¢) for varying estimations of thermophoreis parameter N;. It has been
watched that higher thermophoresis number N; prompts a more grounded concentration field
#(¢) and associated layer thickness. Table 3.2 exhibits the comparison for different estimations
of a with exact arrangement. Table 3.2 presents an excellent agreement of OHAM arrangement
with the existing exact arrangement in a limiting situation. Table 3.3 is arranged to examine

/

skin frictions —C'y; Rei % and —Cly Reg]}/ % for several estimations of F,., A and «. It has been
watched that skin frictions show reverse trend for bigger ratio number «. Table 3.4 provides
numerical computations of local Nusselt number Re, 2 u, for several estimations of A, F., a,
v, Ny, Np, Pr and Sec. Local Nusselt number has higher esteems for bigger Prandtl Pr and Biot

~ numbers while inverse conduct is watched for porosity A and Forchheimer F, variables. Also
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the local Nusselt number stays constant when the Brownian movement number NV, is shifted.

a=N;=02,F,=01,N;=05,y=03,Pr=Sc =1.0
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0.00 [, ‘ s . 1]
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¢
Fig. 3.1. Plots of 6 (¢) for .
a=A=N;=02,N,=05,y=03,Pr=Sc =10
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_020f ]
>
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Fig. 3.2. Plots of 6 ({) for F,.
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A=N,=02,F, =01,N, =05, y=03,Pr=Sc = 1.0

0.05r

0.00 -

Fig. 3.3. Plots of 6 (¢) for c.

a=A=N,=02,F,=01,N,=05,y=03,Sc =10

Fig. 3.4. Plots of 6 (¢) for Pr.
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061 @=1=N,=02,F =01, Ny=05,Pr=Sc = 1.0 ]

Fig. 3.5. Plots of 6 (¢) for ~.
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Fig. 3.6. Plots of 6 (¢) for V.
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Fig. 3.7. Plots of ¢ (¢) for A.
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Fig. 3.8. Plots of ¢ (¢) for F,.
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Fig. 3.10. Plots of ¢ (¢) for Se.
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Fig. 3.11. Plots of ¢ (¢) for Np.
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Fig. 3.12. Plots of ¢ (¢) for N;.
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Table 3.2. Comparative estimations of —f” (0) and —g” (0) for several estimations of o when

A=F.=0.

a  —f"(0) —9"(0)

OHAM  Exact [38] OHAM  Exact [3§]
0 1 1 0 0
0.25 1.048811 1.048813 0.194564 0.194564
0.50 1.093095 1.093097  0.465205 0.465205
0.75 1.134486 1.134485 0.794618  0.794622
1.0 1.173722 1.173720 1.173722  1.173720

Table 3.3. Numeric data for skin frictions —C',, Res/? and —Cly Regl/ ? for several estimations

of F., A and a.

A F o -—Re¥’Cp —ReyCy,
0.0 0.1 02 106945 1.67684
0.1 1.11471 1.81669
0.2 1.15830 1.94722
02 0.0 02 113041 1.93414
0.1 1.15830 1.94722
0.2 1.18561 1.96037
02 01 0.1 1.14160 2.54234
0.3 1.17449 1.70234
0.5 1.20563 1.47621
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Table 3.4. Numeric data for transfer of heat rate Regl/ N u, for various estimations of A, F.,

«, v, Nt, Ny, Pr and Sc.

AN FE a ~ N N, Pr Sc Re;Y?Nu,

00 01 02 03 02 05 1.0 1.0 0.20448
0.2 0.20248
0.5 0.19970
02 00 02 03 02 05 1.0 1.0 0.20278
0.2 0.20220
0.4 0.20164

02 01 00 03 02 05 1.0 1.0 0.19458
0.3 0.20560

0.5 0.21080

02 01 02 02 02 05 1.0 1.0 0.15148
0.5 0.27696

1.0 0.38194

02 01 02 03 00 05 1.0 1.0 0.20306
0.5 0.20159

1.0 0.20004

02 01 02 03 02 05 1.0 1.0 0.20248
1.0 0.20248

1.5 0.20248

02 01 02 03 02 05 05 1.0 0.16685
1.0 0.20248

1.5 0.21949

02 01 02 03 02 05 1.0 0.5 0.20271
1.0 0.20248

1.5 0.20234
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Chapter 4

Three-dimensional boundary layer
flow of Maxwell nanofluid: A

mathematical model

This chapter explores three dimensional boundary-layer flow of Maxwell nanoliquid. Flow
is generated by a bidirectional extending surface. Mathematical formulation is carried out
through boundary-layer approach. Heat source/sink, Brownian movement and thermophoresis
are accounted. Newly developed constraint requiring zero nanoparticle flux at boundary is em-
ployed in flow analysis of Maxwell liquid. The governing nonlinear boundary-layer expressions
through appropriate transformations are diminished to coupled nonlinear ordinary differential
framework. The resulting nonlinear framework has been solved. Plots are plotted to explore
impacts of various interesting variables on velocities, concentration and temperature. Nusselt

number is computed and examined numerically.

4.1 Formulation

We consider the steady three dimensional flow of an incompressible Maxwell nanoliquid. Flow
caused is due to linear extending surface. The flow possesses the space z > 0. Heat source/sink,

Brownian movement and thermophoresis impacts are explored. Thermophysical properties of
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liquid are taken constant. The subjected boundary-layer expressions in Maxwell liquid flow are

u o0 0w
or oy 0z
w22 29? 20?2
u%+v%+w?+>\1 8z3+v8—;2‘ o —u%,
x z z
Yy +2uvaxay + 2vwayaz + 2u waxaz
20%0 20%v 28% 2
u?—l—v?—i—w?—kh W T 8y;+w o2 - u%,
z
Y +2uvaxay +2vw6yavz + 2uw 5
or  oT oT o*T Q
C S s = 2 T-T
&L’—H}ﬁy—'_w@z a822+(pc)f( )

e (oo (550) 22 (5) ).

Yoz U@y Yo, TP\ 922 Too \ 022 )

Here one has the following prescribed conditions:

u="Uy(z) =azx, v="Vyu(y) =by, T =Ty(x), DBZO %Z—T—O at z =0,

u—0, v—=0, T—-T, C—Cyx asz— o0

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

where u, v and w stand for velocities in x—, y— and z—directions, A\; for relaxation time,

v (: w/p f) for kinematic viscosity, py for density, p for dynamic viscosity, T" for temperature,

a = k/(pc) s for thermal diffusivity, & for thermal conductivity, (pc) ¢ for heat potential of liquid,

(@ for heat generation/absorption coefficient, (pc), for effective heat potential of nanoparticles,

Dp for Brownian diffusivity, C' for concentration, Dr for thermophoretic diffusion, T;, and T4,

for surface and ambient temperatures and C, for ambient concentration. Here we assumes

that surface extending velocities and temperature are

Uw(x) = ax, Viy(y) = by, Ty(z) =T + Tox,
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where a, b and Ty are the positive constants. Selecting

u:mwm»v=w¢mxw:—mm”ﬂﬂm+mmm

(4.9)
o(n) = £5, o) = =, = (2)"/%=
Eq. (4.1) is automatically verified while Eqgs. (4.2) — (4.8) have the following forms:

P =+ B2+ fF = (F 49 ") =0 (4.10)
9"+ (f+9)9" — g +5( (f+9)d9" —(f+9)? ”) (4.11)
0" + Pr ((f+g) — 0+ S0 + Nbo' ' +Nt9/) 0, (4.12)

/! / Nt 1/
¢" + LePr(f+g)¢' + N_be =0, (4.13)
f=0,9g=0, f=1,¢g =c, 6=1, Nb¢/ + Ntd' =0 at n =0, (4.14)
ff—0,9g—0 0—-0, ¢—0asn— oo. (4.15)

Here Pr stands for Prandtl parameter, 8 for Deborah parameter, ¢ for ratio of extending
rates, S for heat source/sink parameter, Nb for Brownian movement number, Le for Lewis
parameter and Nt for thermophoresis number. These variables can be specified by employing

the definitions given below:

B=Ma, c=% Pr=% §=
Nb = E9pC Lﬁzﬂggff o (4.16)
(pc)pv - (pe) jrToo = Dg-
The local Nusselt number Nu, is defined as
T
Nup =~ =TT~ (Re,)?0(0), (@17

(T —Too) 0z,

It is watched that dimensionless mass flux represented by Sherwood number is now automati-

cally zero and Re, = Uy, z/v is local Reynolds parameter.
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4.2 Solutions by HAM

The series arrangements of Egs. (4.10) — (4.13) through (4.14) and (4.15) have been developed
by utilizing homotopy analysis technique (HAM). The linear operators and initial deformations

have been selected as follows:

Nt

fon) =1—¢" go(n) =c(l =€), bo(n) =e™" () = —77e™" (4.18)

Li=1"~f\ Ly=g"~g, Lo=0"—0, Ly=0" 0. (4.19)

The above linear operators obey

Lp[Fr + Fyrel + Fyre ) =0, Ly[Ff* + Fre + Frre ] =0,
Lo[Fprel + Fire ™ =0, Ly[F3re! + Fite ™ =0,

(4.20)

in which F7* (j = 1 — 10) stand for arbitrary constants. Problems for zeroth and mth-order
deformations are easily formulated in the view of above operators. The deformation issues are

computed by Mathematica software.

4.3 Convergence analysis

The homotopic arrangements have auxiliary variables Ay, Iy, hyg and 7. These variables are
helpful for convergence of series arrangements. Proper estimations of such variables is quite
essential to construct convergent arrangements through homotopic analysis technique (HAM).
To get proper estimations of iy, hg, hg and hg, the h—plots are displayed at 15th order of
deformations. Figs. 4.1 and 4.2 clearly show that convergence area lies within the ranges

—1.95 < hy < —0.25, -1.90 < hy < —0.30, —1.85 < hy < —0.80 and —1.90 < Ay < —0.40. Table
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4.1 exhibits that 32th order of deformations is sufficient for convergent series arrangements.
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Figs. 4.1. h—plots for f(n) and g(n).
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Figs. 4.2. h—plots for 0(n) and ¢(n).
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Table 4.1. HAM arrangements convergence when g = S = Nt = 0.1, ¢ = 0.2, Nb = 0.5,
Pr =0.7 and Le = 1.0.

Order of deformations —f”(0) —g”(0) —6(0) ¢'(0)

1 1.07840 0.14784 0.80600 0.16120
) 1.07330 0.15325 0.75512 0.15102
10 1.07332 0.15323 0.74481 0.14896
15 1.07332 0.15323 0.74211 0.14842
20 1.07332 0.15323 0.74116 0.14823
25 1.07332 0.15323 0.74078 0.14816
32 1.07332 0.15323 0.74058 0.14811
40 1.07332 0.15323 0.74058 0.14811
50 1.07332 0.15323 0.74058 0.14811

4.4 Discussion

The present section addresses impacts of various influential variables including Deborah parame-
ter G, ratio number ¢, Prandtl parameter Pr, thermophoresis number Nt, Brownian movement
number Nb, heat source/sink parameter S and Lewis parameter Le on temperature 6 () and
concentration ¢ (). From Fig. 4.3, we examined that temperature and corresponding layer of
thermal are elevated when we improvement the Deborah parameter. Deborah parameter is di-
rectly proportional to relaxation time. Relaxation time is bigger for higher Deborah parameter.
Hence bigger relaxation time gives rise to temperature and corresponding layer of thermal. Fig.
4.4 exhibits that bigger ratio number give rise to a diminishment in temperature field 6 (n) . For
¢ = 0, two dimensional flow situation is recovered. Here we watched that thermal boundary-
layer thickness is more for two dimensional flow in comparison to three dimensional situation.
Fig. 4.5 exhibits that temperature field 6 (n) is higher for smaller estimations of Prandtl para-
meter Pr. Physically, bigger Prandtl fluids have weaker thermal diffusivity and small Prandtl
fluids have more thermal diffusivity. This variation in thermal diffusivity creates a diminish-
ment in temperature 6 (1) and associated layer of thermal. Influence of thermophoresis number

Nt on temperature field 6 (n) is analyzed in Fig. 4.6. Both temperature and corresponding
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layer of thermal are elevated when we improvement thermophoresis number. Fig. 4.7 presents
variations of heat source/sink parameter S on temperature field 6 (n). Here S > 0 is for heat
source and S < 0 is for heat sink. We watched that temperature and corresponding layer of
thermal are elevated in situation of heat source when we compare it with heat sink. Influence
of Deborah parameter 3 on concentration field ¢ (n) is shown in Fig. 4.8. Here concentration
¢ (n) and corresponding layer thickness are bigger for higher Deborah parameter 5. Fig. 4.9
describes that large ¢ creates decay in concentration ¢ (1) and associated layer thickness. The
variation in concentration field ¢ (n) for different estimations of Lewis parameter Le is exam-
ined in Fig. 4.10. Concentration field is diminished when we improvement Lewis parameter.
Lewis parameter is inversely proportional to Brownian movement. Brownian movement is poor
for higher Lewis parameter. This poor Brownian movement coefficient creates a diminishment
in concentration field. Impact of Prandtl parameter Pr on concentration distribution ¢ (n)
is examined in Fig. 4.11. It is watched that both concentration ¢ (n) and associated layer
thickness are diminishment when we improvement Prandtl parameter Pr. An improvement in
thermophoresis number Nt gives rise to concentration ¢ (1) and its corresponding layer thick-
ness (see Fig. 4.12). Effect of Brownian movement number Nb on concentration field ¢ (n) is
plotted in Fig. 4.13. Here concentration ¢ (1) and associated layer thickness are diminished
for higher Brownian motion. Table 4.2 exhibits the comparison for various estimations of ¢
with exact arrangement. Table 4.2 presents an excellent agreement of HAM arrangement with
the existing exact arrangement in a limiting situation. Table 4.3 presents Nusselt number for
various estimations of (3, ¢, Pr, S, Nt, Nb and Le. Clearly Nusselt number are diminishment

when we improvement the estimations of S, 8, Nt and Le. However an improvement is watched
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for expanding estimations of ¢ and Pr.

S=Nt=0.1,c=02,Nb=05,Pr=0.7,Le =10
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Fig. 4.3. Plots of 6 (n) for f.
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1.0

6 (1)

Fig. 4.4. Plots of 0 (n) for c.
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Fig. 4.6. Plots of 0 (n) for Nt.
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Fig. 4.12. Plots of ¢ (n) for Nt.
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Fig. 4.13. Plots of ¢ (n) for Nb.

Table 4.2. Comparative estimations of —f” (0) and —g” (0) for several estimations of ¢ when

B =0.

c =10 —9"(0)

HAM Exact [38] HAM Exact [38]
0 1 1 0 0
0.25 1.048811 1.048813  0.194564 0.194564
0.50 1.093095 1.093097  0.465205 0.465205
0.75 1.134486 1.134485  0.794618 0.794622
1.0  1.173722 1.173720 1.173722  1.173720
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Table 4.3. Computations of local Nusselt number (Rez)fl/ %2 Nu, against 3, ¢, Pr, S, Nt, Nb
and Le.

B ¢ Pr S Nt Nb Le -6(0)
0.0 02 07 01 01 05 1.0 0.7582
0.2 0.7236
0.5 0.6725
01 00 07 01 01 05 1.0 0.7080
0.2 0.7408
0.5 0.7824
01 02 05 01 01 05 1.0 0.5695
1.0 0.9541

1.5 1.2417

01 02 07 00 01 05 1.0 0.8077
0.1 0.7408

0.2 0.6460

01 02 07 01 00 05 1.0 0.7451
0.5 0.7247

1.0 0.7045

01 02 07 01 01 05 1.0 0.7408
1.0 0.7408

1.5 0.7408

01 02 07 01 01 05 0.5 0.7426
1.0 0.7408

1.5 0.7400
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Chapter 5

Interaction of magnetic field in flow
of Maxwell nanofluid with

convective effect

Magnetohydrodynamic (MHD) three dimensional flow of Maxwell nanoliquid subject to convec-
tively heated boundary is investigated. Flow generated is because of bi-directional extending
surface. Thermophoresis and Brownian movement impacts are explored. Unlike the previous
cases even in the absence of nanoparticles, the correct formulation for the flow of MHD Maxwell
liquid is established. Newly proposed constraint with zero nanoparticles flux at boundary is
employed. The governing nonlinear boundary-layer expressions through appropriate transfor-
mations are diminished in nonlinear ordinary differential frameworks. The resulting nonlinear
frameworks have been solved for velocities, concentration and temperature. Convergence of con-
structed arrangements is verified. Effects of emerging variables for concentration and temper-
ature are plotted and examined. Numerical estimations of local Nusselt number are computed
and analyzed. Clearly effects of magnetic number and Biot parameter on concentration and
temperature are quite similar. Both concentration and temperature are elevated for expanding

estimation of magnetic number and Biot parameter.

62



5.1 Formulation

Consider three dimension flow of Maxwell nanoliquid by bi-directional extending surface. A
constant magnetic field By parallel to z—axis is applied. The electric field and Hall impacts are
disregarded. Induced magnetic field is not taken subject to low magnetic Reynolds parameter.
Thermophoresis and Brownian motion effects are taken into account. Temperature at surface is
controlled by convective heating characterized via coefficient of heat transfer h; and hot liquid

temperature 7y below the surface. The boundary-layer expressions satisfy

ou Ov Ow
—+—+—=—=0 5.1
Ox + Oy + 0z ’ (5-1)
ou  Ou ou UQ% + U2% + UIQ% 0*u  oB? ou
Yor Ty TV, T o2 o ey | V02T o (“ * Al“’@) ’
Y Fuwvg s + 20wg 5t + 2uwg Py
(5.2)
ov ov ov UQ% + UQ% + wZ% 0*v o B} ov
Vs Ty TV T 2 o e | TV82 T ( * Al“’&) :
Y +2uvggs + 20wg g + 2uwggs Py
(5.3)
or 9T 9T  PT  (po)y T dC\  Dr [9T\?
Lo e =l D (&) + L (& 4
“or t oy T T Y0 T o), B(az 8z>+TOO (az> o By
oC oC oC 9?C Dy (0T
T v =D (S )+ 22 (L), .
" ox v8y+w8z B<822>+T00 (622) (5:5)
Here one has the following prescribed conditions:
or oC  DpoT
u=azx, v="by, w=0, *kazhf(Tf*T),DBE+T_T§:OEWZZO, (5.6)
u—0, v—0, T—-Ty, C—Cyx asz— oo (5.7)

Here u, v and w stand for velocities in x—, y— and z—directions, A; for relaxation time,
v (=p/py) for kinematic viscosity, k for thermal conductivity, p; for density, p for dynamic
viscosity, (pc), for effective heat potential of nanoparticles, o for electrical conductivity, 7" for
temperature, o = k/(pc)s for thermal diffusivity, (pc)s for heat potential of liquid, Dp for

Brownian diffusivity, C for concentration, D for thermophoretic diffusion, T, for ambient
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temperature and Cy, for ambient concentration. Selecting

u=azf'(n), v=ayg'(n), w=—(a)’*(f(n) + 9(n)),

0(n) = %;?’;, o(n) = 5=, n = (%)1/2 2

Eq. (5.1) is automatically satisfied while Eqs. (5.2) — (5.7) have the following forms:
f”/+ (M25+ 1) (f+g)f"—f’2 +5 (2(f+g)f/f//_ (f‘i‘g)zf”/) _M2f/ :07 (5'9)

g”’+(M2B+1) (f+g)g”—g/2+B(2(f+g)g/g”—(f+g)2g’”> —MQQ/ZO, (5.10)

0" + Pr ((f + )0 + Nbo'o' + Nte/z) =0, (5.11)

/! / Nt 1/
¢" + LePr(f +g)¢ + N—ba =0, (5.12)
f=0,9g=0,f=1¢g=c, & =—v(1-6(0), Nb¢ + Nt§' =0 at n =0, (5.13)
ff—0 4g—0 606—0, ¢—0asn— oo. (5.14)

Here Nb stands for Brownian movement number, Le for Lewis parameter, M for magnetic
number, Pr for Prandtl parameter, 8 for Deborah parameter, Nt for thermophoresis number,
~ for Biot parameter and c for ratio of extending rates,. These variables can be specified by

employing the definitions given below:

6:)\1@’ MQZO—_.‘B%,C:Q, PI‘:Z, Nb:M,
( )Dpf(aT T, )a ¢ (pe) pv (5.15)
Pe)p DT\ Ls— 1o hy /7 o
Nt:p(pc)Wafysz @ Le:—B‘
The local Nusselt number Nu, is defined as
or

(T — Too) 92 |,

It is watched that dimensionless mass flux represented by Sherwood number is now identically

zero while Re, = uyx /v for local Reynolds parameter.
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5.2 Solutions by HAM

The series arrangements of Egs. (5.9) — (5.12) through (5.13) and (5.14) have been developed
by utilizing homotopic analysis technique (HAM). The linear operators and initial deformations

have been selected as follows:

v Nt Y

fo) =1—¢e™", go(n) =c(l—e"), o(n) = *mN—be’”, Oo(n) = 7 +V6’", (5.17)
Li=f"—Ff\ Ly=g" =g, Lo=¢"—06, Lo=0"—0. (5.18)

The above linear operators obey
L [F* + Fy*el + F3*e ™ =0, Lg[Ff*+ Fe® + Fge ™ =0, (5.19)

Lo[Freen + Fre ™ =0, Ly[Fre" + Fjie™ =0,

in which F7* (j = 1 — 10) stand for arbitrary constants. Problems for zeroth and mth-order
deformations are easily formulated in the view of above operators. The deformation issues are

computed by Mathematica software.

5.3 Convergence analysis

The series arrangements have auxiliary variables hs, hg, hg and hg. These variables are helpful
for convergence of acquired series arrangements. Proper estimations of these variables are quite
essential to construct homotopic convergent arrangements through homotopic analysis tech-
nique (HAM). To choose suitable estimations of hy, hy, hg and he, the h—plots are plotted at
15th order of deformations. Figs. 5.1 and 5.2 show that convergence area lies inside the ranges
—1.80 < hy < —0.35, =1.90 < by < —0.20, —1.65 < Ay < —0.15 and —1.70 < Ay < —0.10.

Table 5.1 exhibits that 8th order of deformations is sufficient for the convergent homotopic
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series arrangements.
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Fig. 5.1. h—plots for f(n) and g(n).
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Fig. 5.2. h—plots for 0(n) and ¢(n).
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Table 5.1. HAM arrangements convergence when 8 = 0.1, ¢ = 0.2 = v, M = 0.3 = Nt,
Nb=10.5, Le=1.0 and Pr = 1.2.

Order of deformations —f"(0) —g”(0) —60'(0) ¢'(0)

1 1.11213 0.16589 0.17056 0.10233
5 1.11540 0.16474 0.17011 0.10206
8 1.11540 0.16473 0.17010 0.10206
15 1.11540 0.16473 0.17010 0.10206
25 1.11540 0.16473 0.17010 0.10206
40 1.11540 0.16473 0.17010 0.10206
50 1.11540 0.16473 0.17010 0.10206

5.4 Discussion

The effects of interesting physical variables like Lewis parameter Le, ratio number ¢, Prandtl
parameter Pr, Deborah parameter §, magnetic number M, Biot parameter -, thermophore-
sis number Nt and Brownian movement number Nb on temperature 6 (n) and concentration
¢ (n) are plotted in Figs. 5.3 — 5.16. Fig. 5.3 presents impact of Deborah parameter [ for
temperature 0. Here temperature and layer of thermal are elevated when we improvement Deb-
orah parameter. Deborah parameter is directly proportional to relaxation time. Relaxation
time is higher for bigger Deborah parameter. Hence higher relaxation time causes to enhance
temperature and layer of thermal. Fig. 5.4 presents variations in temperature profile for differ-
ent estimations of magnetic number M. Here M > 0 corresponds to hydro-magnetic flow and
M =0 is for hydro-dynamic flow situation. We watched that temperature and layer of thermal
are higher for hydro-magnetic flow in comparison to hydro-dynamic flow situation. Fig. 5.5
describes decay in temperature profile and its corresponding layer thickness when c elevates.
Here ¢ = 0 corresponds to two dimensional flow situation. We watched that layer of thermal
is more in two dimension situation when compared with three dimension flow. Fig. 5.6 is
displayed to see the influence of Biot parameter 7 on temperature profile 6 (n). An increment
in v causes a stronger convection which provides elevated temperature and layer of thermal.

Fig. 5.7 describes conduct of Prandtl parameter Pr on temperature profile 6 (n) . We watched
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that bigger Prandtl parameter results in a diminishment of temperature profile and layer of
thermal. An improvement in Prandtl parameter corresponds to poor thermal diffusivity. Phys-
ically bigger Prandtl fluids have poor thermal diffusivity and small Prandtl fluids have stronger
thermal diffusivity. This variation in thermal diffusivity creates a diminishment in temperature
0 (n) and layer of thermal. Fig. 5.8 presents that bigger estimations of thermophoresis number
Nt causes an improvement in temperature profile 6 (n). An improvement in Nt producing an
improvement in thermophoresis force which tends to shift nanoparticles from hot to cold zone
and consequently it elevates the temperature and layer of thermal. Fig. 5.9 presents that an
improvement in Deborah parameter 8 causes an improvement of concentration profile and its
corresponding layer thickness. From Fig. 5.10 we watched that concentration field is higher for
hydro-magnetic flow (M > 0) and lower for hydro-dynamic situation (M = 0). It is additionally
watched that concentration is improved and leaving from the surface of the surface for hydro-
magnetic flow. Impact of ratio number ¢ on concentration profile ¢ (n) is sketched in Fig. 5.11.
Concentration ¢ (1) and its corresponding layer thickness are diminished when we improvement
ratio number. Fig. 5.12 indicates effects of Biot parameter v on concentration profile ¢ (7).
Here we watched that bigger Biot parameter creates an improvement in concentration profile
and its associated layer thickness. Fig. 5.13 exhibits that bigger estimations of Lewis parameter
Le causes a diminishment in concentration profile ¢ (1) . Lewis parameter depends on Brownian
movement coefficient. Bigger Lewis parameter leads to poor Brownian movement coefficient
which exhibits a poor concentration and its corresponding layer thickness. Fig. 5.14 presents
variations in concentration ¢ (n) for different estimations of Prandtl parameter Pr. We watched
that bigger Prandtl parameter show a diminishment in concentration ¢ (n) and its associated
layer thickness. Fig. 5.15 exhibits that an improvement in thermophoresis number Nt causes
an improvement in concentration ¢ (1) and its corresponding layer thickness. Fig. 5.16 presents
that bigger Brownian movement number Nb creates a diminishment in concentration profile
¢ (n) . In nanoliquid framework, due to existence of nanoparticles, the Brownian movement
takes place and with improvement in Nb the Brownian movement is affected and thus layer of
concentration diminishes. Table 5.2 exhibits the comparison for different estimations of ¢ with
exact arrangement. Table 5.2 presents an excellent agreement of HAM arrangement with the

existing exact arrangement in a limiting situation. Table 5.3 is computed to investigate transfer
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of heat rate (local Nusselt number) via 3, ¢, M, v, Le, Pr, Nt and Nb. Transfer of heat rate
is an expanding function of Biot parameter . Effects of Lewis parameter Le and Brownian

movement number Nb on transfer of heat rate are quite similar.

c=02=y,M=03=Nt, Nb=05,Le=10,Pr=12
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Fig. 5.3. Plots of 6(n) for 5.

B=01,c=02=y, Nt=03,Nb=05,Le= 1.0,Pr= 12
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Fig. 5.4. Plots of 6(n) for M.
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Fig. 5.6. Plots of 0(n) for ~.
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Fig. 5.7. Plots of 0(n) for Pr.
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Fig. 5.8. Plots of §(n) for Nt.
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Fig. 5.10. Plots of ¢(n) for M.
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Fig. 5.12. Plots of ¢(n) for .
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Fig. 5.15. Plots of ¢(n) for Nt.
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Table 5.2. Comparative estimations of —f” (0) and —g” (0) for various estimations of ¢ when

B=M=0.

c  —f"(0) —9"(0)

HAM Exact [38] HAM Exact [38]
0 1 1 0 0
0.25 1.048811 1.048813 0.194564 0.194564
0.50 1.093095 1.093097  0.465205 0.465205
0.75 1.134486 1.134485 0.794618  0.794622
1.0 1.173722 1.173720 1.173722  1.173720
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Table 5.3. Numeric data for Nusselt number (—9’ (0)) for different estimations of 3, ¢, M,
v, Le, Pr, Nt and Nb.

B c M ~v Le Pr Nt Nb —6(0)
00 02 03 02 10 12 03 05 0.1704
0.5 0.1689
1.0 0.1675
01 00 03 02 10 1.2 03 0.5 0.1691
0.5 0.1713
1.0 0.1730

0.1 02 00 02 10 12 03 0.5 0.1703
0.5 0.1697

1.0 0.1678

01 02 03 02 10 1.2 03 0.5 0.1701
0.7 0.4326

1.2 0.5817

01 02 03 02 05 1.2 03 0.5 0.1701
1.0 0.1701

1.5 0.1701

01 02 03 02 1.0 05 03 0.5 0.1520
1.0 0.1670

1.5 0.1735

01 02 03 02 10 12 0.0 0.5 0.1702
0.5 0.1700

1.0 0.1699

01 02 03 02 10 12 03 0.5 0.1701
1.0 0.1701

1.5 0.1701
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Chapter 6

An optimal study for
three-dimensional flow of Maxwell

nanofluid subject to rotating frame

Here we are concerned with optimal homotopy arrangements for three dimensional flow of
Maxwell nanoliquid in rotating frame. Flow is induced by uniform extending of boundary sur-
face in one direction. Buongiorno relation is received which includes the novel parts of Brownian
movement and thermophoresis. Boundary-layer approximations are conjured to rearrange the
governing arrangement of partial differential conditions. Appropriate relations are introduced
to nondimensionalize the relevant boundary-layer expressions. Newly suggested condition asso-
ciated with zero nanoparticles mass flux at boundary is imposed. Uniformly valid convergent
arrangement expressions are developed by means of optimal homotopic technique (OHAM).
Plots are portrayed in order to explain role of embedded flow variables. Transfer of heat rate
has been tabulated and analyzed. Our findings present that concentration and temperature
are smaller for Newtonian liquid when compared with upper-convected Maxwell (UCM). More-
over Brownian movement has mild influence of heat flux at boundary. Viscoelastic effect has

tendency to reduce transfer of heat rate from the extending boundary.
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6.1 Formulation

We explore the three dimensional rotating flow of Maxwell nanoliquid by a linearly extend-
ing surface. Nanoliquid relation exhibits the characteristics of Brownian movement and ther-
mophoresis. Cartesian coordinate framework is selected in such a manner that surface is lined
up with xy—plane and liquid is taken in space z > 0. Surface deforms linearly in the z—direction
with rate a. Further the liquid is subjected to uniform rotation about z—axis with consistent an-

gular velocity €2. The associated expressions governing the Maxwell nanoliquid flow in rotating

frame are
ou Ov Ow
— 4+ —4+—=—=0 6.1
Ox + oy + 0z ’ (6.1)
5 5 5 52 UQ%‘FUQ% +w2%
u U u u
u% +va—y+w%—29v = I/@—Al +2uv gjgy + 2vw8‘9y28“2 + 2uwaajgz , (6.2)
v v v ou ou
—20 (’U/% + ’Ua—y + ’LU&) + 2Q) <’U% — u8—y>
5 5 5 52 UQ% +v2%+w2%
v v v v
u@ +U8_y+w£ +2Qu = V@—)\l +2uv a‘fgy + 2vwaa;gz + Zuwafgz , (6.3)
+2Q (u% + Ug_;j + w%) + 29 (v% — u%)
ar  or T PT  (pe)y aT dC\ Dy (0T\?

vt we = ap—— Dy =—=)+=L (=) |, 6.4
u8m+vay+w82 22 (pc) B<8z 8z>+Too <82> (64)

oC oC oC 0*C Dy (0T
— — — =Dp| == —==]. 6.5
u8m+vﬁy+w8z B<8z2>+Too< z2> (6:5)

Here one has the following prescribed conditions:

Dy 0T
u=1uy (r)=azx, v=0, w=0, T =T,, DB@@_S—’_T—::Z_Z =0at z=0, (6.6)
u—0, v—=0, T—>Ty, C—Csx asz— o0. (6.7)

Here u, v and w stand for velocities in x—, y— and z—directions, p for dynamic viscosity, v =
p/py for kinematic viscosity, p; for density, T' for temperature, cu;, = k/(pc)y for thermal
diffusivity, (pc); for heat potential of liquid, k for thermal conductivity, (pc), for effective heat

potential of nanoparticles, C for concentration, Dp for Brownian movement coefficient, \; for
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liquid relaxation time, Dy for thermophoretic diffusion coefficient, T, for wall temperature, T,

for ambient temperature, Co, for ambient concentration and a for positive constant. Selecting

w=azf'(¢), v=axg((), w=— () f(C),

(6.8)
_ _ ay1/2
0(0) = £77, 0(0) = So2=, ¢ = (8)=.
Expression (6.1) is identically verified while Eqgs. (6.2) — (6.7) take to the following forms
"L = P20 (g = BFg) + B RIF = F21") =0, (6.9)

9"+ g —Fa=2X(f'+B(f*=ff"+9°)+B2ffd - f?9") =0, (6.10)

0" +Pr (f0' + Nbo'¢/ + Nt9"*) =0, (6.11)

" + Scf¢’ + %9” =0, (6.12)

£(0) = g(0) =0, f/(0) =1, 6(0) =1, Nbg'(0) + Nt¢'(0) = 0, (6.13)
f(00) =0, g(00) =0, 6(c0) — 0, ¢(c0) — 0. (6.14)

Here Nb stands for Brownian movement number, Pr for Prandtl parameter, 5 for Deborah
parameter, Sc for Schmidt parameter, A for rotation parameter and Nt for thermophoresis

number. These variables can be specified by employing the definitions given below:

A=% B=a, Pr=2, (6.15)
_ (pc), Dl _ (PC)EDT(Tw_Too _ v ’
Nb——(W, Nt = (pC)fVToo s SC—DB.
The local Nusselt number Nu, is defined as
T
Re-1/2 Ny = — %2 = —¢(0), (6.16)

" (Tw —Two) 02|,

where Re, = wuyx/v exhibits local Reynolds parameter. It is also watched that Sherwood

number is identically zero.
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6.2 Solutions by OHAM

The optimal series arrangements of Eqgs. (6.9) — (6.12) through (6.13) and (6.14) have been
developed by utilizing optimal homotopic analysis technique (OHAM). The linear operators

and initial deformations have been selected as follows:

fo(€Q) =1 —exp(=(), 90(¢) =0,

(6.17)
00(¢) = exp (=¢), ¢o(¢) = —Fpexp (—C),
d3 d d2
Lr=tgh =it L= -0 (6.18)
Lo=L0 -0, L,=2¢ g '
d<2 9 qS dCQ .
The above linear operators obey
L [F* + Fy*exp (¢) + Fy*exp (—()] =0,
£, [Fiexp (¢) + Fyexp (=) = 0, 6.9

0
Ly [Fg*exp (¢) + F7*exp (—()] = 0,
Ly [Fg*exp (¢) + Fg*exp (=) =0

in which F7* (j = 1 —9) stand for arbitrary constants. Problems for zeroth and mth-order
deformations are easily formulated in the view of above operators. The deformation issues are

solved by BVPh2.0 of Mathematica software.

6.3 Convergence analysis

We have solved the momentum, energy and concentration expressions with the help of BVPh2.0.
These expressions contain unknown variables 7y, hig, g and hg,. We can compute the minimum
estimation of these variables by taking total error small. In the frame of HAM, these variables
play a vital role. That is why these variables refer to as convergence-control parameter which
differs HAM from other analytical approximation methods. In order to reduce the CPU time,

we have employed average residual errors at the mth-oder of approximation which are defined
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E [ m m
=g | (Z 1), Z,a(o) , (6.20)
7=0 | =0 =0 C=j5<_
1 [ m m 12
em =11 >V <Z £(0), Z@(O) , (6.21)
+ 7=0 L 1=0 =0 ¢=36¢ |
1 E [ m m m m 12
oy (S0 a0 Sao S0 | e
=0 | =0 =0 =0 =0 ¢=j6¢ |
1 E [ m m m m 2
oy 2o (S0 a0 3. 35600 ) (62
7=0 | =0 =0 =0 =0 c=jsc |

Here Ny, Ny, Ny and NV, denote the non-linear operators corresponding to Egs. (6.9) — (6.12)
respectively. Following Liao [69] :

t

el =el +ed +0 +e8, (6.24)

where €l stands for total residual square error, k = 20 and ¢ = 0.5. Optimal data for auxiliary
variables at 2nd order of deformations is hy = —1.50853, hy = —1.17662, hy = —1.15433 and
hy = —1.02305 and ef, = 2.21 x 107%. Table 6.1 presents average square residual error at
different order of deformations. It has been analyzed that the average residual square errors
reduce with higher order deformations.

Table 6.1. Individual average residual square errors employing optimal data of auxiliary

variables.

m el e, el e,

2 147x107° 814 x1076 1.04x107* 941 x107°
6 3.01x107% 541x107® 234x107% 6.87x1076
10 4.52x1071% 1.77x107%  1.65x 1077 1.14 x 1076
16 1.72x 1071 1.61x 1071 4.83x 107 801 x 1078
20 6.60x 1071 1.99x 10712 572x 10719 142 x 1078
26 7.19x 107 7.96x107* 3.08x 107! 1.10 x 107?
30 550x 1071 1.62x 107 4.93 x 10712 2.03 x 10710
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6.4 Discussion

This section explores influences of various pertinent flow variables like Prandt]l parameter Pr,
Deborah parameter 5, Brownian movement number Nb, rotation parameter A, Schmidt para-
meter Sc and thermophoresis number Nt on temperature 6 () and concentration ¢ (¢). Fig.
6.1 exhibits curves of temperature field 0 (¢) for varying Deborah parameter 5. From this Fig.
it has been watched that by expanding Deborah parameter (3, penetration depth of 0 (¢) ends
up thicker. Fig. 6.2 plots the temperature 6 ({) for particular estimations of rotation parameter
. Bigger rotation parameter \ constitutes a elevated temperature and more layer of thermal.
Fig. 6.3 exhibits that how temperature 6 (¢) gets influenced with variety of Prandtl parameter
Pr. It is watched that by upgrading Prandtl parameter Pr, temperature 6 (¢) declines and layer
of thermal diminishes. Physically as Prandtl parameter Pr has opposite association with ther-
mal diffusivity, thusly, an augmentation in Pr prompts poor thermal diffusion and henceforth
less penetration depth of § (¢). Thicker layer of thermal ascribed to bigger Prandtl parameter
is went with higher slope of temperature close to the wall. Fig. 6.4 is plotted to depict im-
pact of thermophoreis parameter Nt for temperature field 0 (¢) . Bigger thermophoresis number
Nt prompt a elevated temperature 6 (¢) and thicker layer of thermal. The explanation for
this result is that an upgrade in Nt provides a more grounded thermophoretic constrain on
nanoparticles in course inverse to forced temperature gradient. This movements nanoparticles
towards the chilly surrounding liquid because of which layer of thermal increments. Fig. 6.5
plots the concentration field ¢ (¢) for wide range of Deborah parameter /3. Bigger estimations of
Deborah parameter 5 constitute a bigger concentration field and more layer of concentration.
Fig. 6.6 exhibits variation in concentration field ¢ (¢) for varying rotation parameter \. From
this Fig. it has been watched that by expanding rotation parameter A, an improvement in
concentration ¢ (¢) and its corresponding layer is taken note. Fig. 6.7 exhibits that how vari-
ation of Schmidt parameter Sc affects concentration field ¢ (¢). It has been watched that the
expanding estimations of Schmidt parameter prompt decrease the concentration ¢(¢). Schmidt
parameter depends on Brownian diffusivity. An expansion in Schmidt parameter Sc provides
poor Brownian diffusivity. Such poor Brownian diffusivity relates to bring down concentration
¢(¢) and less layer of concentration. Fig. 6.8 plots the concentration ¢ (¢) for fluctuating

estimations of thermophoreis parameter Nt. It has been obviously watched that higher ther-
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mophoresis Nt prompts more grounded concentration ¢(¢) and associated layer thickness. Fig.
6.9 exhibits that bigger Brownian movement number Nb prompts a diminishment in concentra-
tion ¢(¢) and its associated layer thickness. Table 6.2 is computed to validate present results
with past published outcomes in a limiting sense. From this Table, we inspected that present
series arrangements have great concurrence with numerical arrangements of Megahed [70] in
a limiting way. Table 6.3 gives numeric calculations of Nusselt number for a few estimations
of A, Nt, B8, Pr, Nb and Sc. We found that Nusselt number has higher estimations for bigger
Prandt]l Pr and Schmidt Sc¢ numbers while inverse pattern is watched for Deborah parameter
(8 and rotation parameter A. In addition the Nusselt number stays constant when Brownian

movement number Nb is shifted.

A=02,Nt=0.1,Nb=03,Pr=Sc =1.0

085 ]
. 0.6 ]
Sl
= 04l B=00,03,06, 1.0 ]

02" 1

00, | ‘ ‘ N

0 2 4 6 8

Fig. 6.1. Plots of 6 (¢) for S.
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Fig. 6.2. Plots of 6 (¢) for \.
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Fig. 6.3. Plots of 6 (¢) for Pr.
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Fig. 6.5. Plots of ¢ (¢) for S.
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Fig. 6.6. Plots of ¢ () for A.
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Fig. 6.7. Plots of ¢ (¢) for Sec.
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Fig. 6.9. Plots of ¢ (¢) for Nb.
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Table 6.2. Comparative estimations of —f” (0) for various estimations of 5 when A = 0.

B OHAM Megahed [70]
0.0 1.0000 0.999978
0.2 1.0519 1.051945
0.4 1.1019 1.101848
0.6 1.1501 1.150160
0.8 1.1967  1.196690
1.2 1.2853  1.285253
1.6 1.3686 1.368641
2.0 1.4476  1.447616
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Table 6.3. Numeric data for Nusselt number (—9/ (0)) for several estimations of Nt, 8, Nb,
A, Scand Pr.

B A Nt Nb Pr Sec —0/(0)
00 02 01 03 1.0 10 0.5583
0.2 0.5390
0.5 0.5115
02 00 01 03 1.0 10 0.5580
0.2 0.5390
0.4 0.5025
02 02 00 03 1.0 1.0 0.5467
0.3 0.5235

0.5 0.5082

02 02 01 03 1.0 1.0 0.5390
0.7 0.5390

1.0 0.5390

02 02 01 03 05 1.0 0.3205
1.0 0.5390

1.5 0.7153

02 02 01 03 1.0 05 05329
1.0 0.5390

1.5 0.5394
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Chapter 7

Three dimensional rotating flow of

Maxwell nanofluid

This chapter investigates three dimensional rotating flow of Maxwell nanoliquid. Flow made
is a result of an exponentially extending surface. Optimal homotopic scheme is executed for
arrangement of governing relation. Optimal estimations of auxiliary variables are figured. The
optimal arrangement articulations of concentration and temperature are explained by means of
plots by utilizing the different estimations of included variables. Physical amounts like Sherwood
and Nusselt numbers are portrayed by numeric esteems. Here we watched that temperature and
its associated thickness of layer emerge for expanding estimations of local Deborah parameter

while it decays for bigger temperature exponent.

7.1 Formulation

We mean to expound three dimension rotating flow of Maxwell nanoliquid due to an exponen-
tially extending surface. Nanoliquid relation portrays Brownian movement and thermophoresis.
Liquid and surface are in condition of rigid body rotation. We taken liquid in space z > 0. The
surface is expected to extend in z—direction with Uy. Also the liquid rotates consistently about
z—axis with constant angular velocity €2. The corresponding conditions for Maxwell nanoliquid

flow in a rotating frame are

ou Ov Ow

_ —_— _— = '1
8m+(9y+8z 0 (7.1)
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20%u 20%u 20%u
u 8:)02 +v yZ tw 922

ou Ou Ou
Uz —i—v&—y—i—w&—?Qv +2uv-2 &Cay + 2Uwayaz + 2u wazaz , (7.2)
ou
—29 dz "H)ay —i—waZ) —i-ZQ( gu —udy>
ov  Ov  Ov Q
ua——l—va—y—i—wa——i—? U = 1/ +2uvax8y + 2Uwayaz + 2u waxaz , (7.3)
v
—i-ZQ 8x+v8y+waz>+29( u8y>
or  aT a2T (pc)p T aC\  Dr (9T\*
e et D e It A 7.4
u8x+vay+w82 (9z2 +(pc)f B<8z (9z>+Too <(9z> ’ (7.4)
oC oC oC 0*C Dy (0T
“or TVay TVa, = DB (W) To (W) | (7.5)
Here one has the following prescribed conditions:
u="Uy (x) =Ugexp(z/L), v=0, w=0, T=T,, C=C, at z=0, (7.6)
u—0, v—=0, T—Ty, C— Csx asz— oo. (7.7)

Here u, v and w stand for velocities in z—, y— and z—directions, v = u/ py for kinematic
viscosity, T' for temperature, p; for density, a = k/(pc); for thermal diffusivity, u for dynamic
viscosity, T, for wall temperature, k for thermal conductivity, (pc), for effective heat potential
of nanoparticles, C for concentration, (pc)s for heat potential of liquid, Dp for Brownian move-
ment, A\ for liquid relaxation time, Dp for thermophoretic diffusion, C,, for wall concentration,
Too for ambient temperature, C for ambient concentration, L for characteristic length and Uy

for reference velocity. Selecting

u="Uexp (z/L) f'(¢), v="Upexp(z/L) g(¢),

w=—/ 5P exp (¢/2L) (f + <), (= \/%exp (x/2L), (7.8)
T =Tw + Toexp (Az/2L) 0(C), C = Coo + Coexp (Bx/2L) $(C).
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Expression (7.1) is identically verified while Egs. (7.2) — (7.7) give

F" A fF =212+ X (49 - 28 (fd' +¢f"9))

_ g (4f/3_Cf/Qf//+f2f///_6ff/f//) =0,

9"+ fg —2fg+4x <f’ +3 <f’2 —9* - ggg’ + %ff”))

2

B
_5(4flzg_<f129/+f291/_6ff/g/) :07
0" +Pr (f0' — Af'0 + Nbo'¢/ + Nto'?) = 0,

Ui / ! Nt "o
¢" + Sc(fo —qu§)+m9 =0,

f'(00) = 0, g(o0) — 0, B(c0) — 0, ¢(oc0) — 0.

(7.10)

(7.11)
(7.12)
(7.13)

(7.14)

Here Nb stands for Brownian movement number, § for local Deborah parameter, A\ for local
rotation parameter, Nt for thermophoresis number, Pr for Prandtl parameter, A for tempera-
ture exponent, B for concentration exponent and Sc for Schmidt parameter. These variables

can be specified by employing the definitions given below:

AN=$8L g—2MUu pp_z
Nb _ (pC)pDB(C'w—g:) Nt _Lipc)pDT(Tw—aToo) S L (715)
N (pe) yv ’ - RrZ ¢= D5
Local Nusselt (Nu,) and Sherwood (Sh,) numbers are
x oT x [Re
Nug = ————~ —— :*_\/—m/ 1
¢ (Tw *Too) 0z 2=0 L 2 0 (O)’ (7 6)
T oC z [Re
hx = T = = —— T , 1
° (Cw *Coo) 0z 2=0 L 2 ¢ (O) (7 7)

where Re; = U,,L/v exhibits local Reynolds parameter.
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7.2 Solutions by OHAM

The optimal series arrangements of Eqs. (7.9) — (7.12) through (7.13) and (7.14) have been
developed by utilizing optimal homotopic analysis technique (OHAM). Initial deformations and

linear operators have been selected as follows:

fo(€) =1 —exp(=(), 90(¢) =0,

(7.18)
HO(C) = exp (7C) 9 d)O(C) = exp (7C) ;
d® d d?
L= L= (7.19)
2 2 :
Lo=198—0, Ly="05 ¢
The above linear operators obey
Ly [FT™ + F5exp () + F"exp (=()] =0,
L F** + F** _ — ,

g [Fi"exp (¢) 2¥exp (—()] (7.20)

0
Ly [Fg*exp () + F7*exp (—()] = 0,
Ly [Fgrexp (¢) + Fgrexp (—=()] =0

in which F7* (j = 1 —9) stand for arbitrary constants. Problems for zeroth and mth-order
deformations are easily formulated in the view of above operators. The deformation issues are

solved by BVPh2.0 of Mathematica software.

7.3 Convergence analysis

We have solved the momentum, energy and concentration expressions with the help of BVPh2.0.
These expressions contain unknown variables 7y, hig, g and hg,. We can compute the minimum
estimation of these variables by taking total error small. In the frame of HAM, these variables
play a vital role. That is why these variables refer to as convergence-control parameter which
differs HAM from other analytical approximation methods. In order to reduce the CPU time,

we have employed average residual errors at the mth-oder of approximation which are defined
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k m m
1 2 N
h=172 |V (Z £(©), Zg«)) , (721)
7=0 L =0 =0 ¢=j6¢
T 12
1 m R m .
=TT >Ny (Z f(C%ZQ(O) ; (7.22)
7=0 L 1=0 =0 ¢=j6¢
o T 12
1 m m . m m
O £29 ¥ L Po¥(EE STEH 3D ) I IR
=0 | i=0 i=0 i=0 i=0 ¢c=joc |
LT -2
1 m m . m R m
3 [ (S0 3000, 00 360 ran
=0 | —0 i=0 =0 i=0 ¢=j5¢
Here Ny, Ny, Ny and NV, denote the non-linear operators corresponding to Egs. (7.9) — (7.12)
respectively. Following Liao [69] :
el =el +ed +0 +e8, (7.25)

where €l stands for total residual square error, k = 20 and ¢ = 0.5. Optimal data for auxiliary
variables at 2nd order of deformations is hy = —0.891408, h, = —1.04506, hy = —0.939956 and
hy = —1.01791 and &f, = 7.26 x 10~%. Table 7.1 presents average square residual error at
different order of deformations. It has been analyzed that the average residual square errors

reduce with higher order deformations.

Table 7.1. Individual average residual square errors employing optimal data of auxiliary

variables.

m el e, el e,

2 6.69x107° 471 x107% 2.77x107* 3.35x107*
6 359x1077 150x1077 1.06 x107® 1.55 x 107°
10 3.13x107% 6.66x 1077 9.70 x 1077  1.70 x 1076
16 1.03x107? 6.23x 10719 3.99x 1078 876 x 1078
20 587 x 107" 1.63x10710 7.79x107% 1.84 x 1078
26 7.47x107'2 1.31x107' 535x 10719 1.48 x 107?
30 4.68x 1072 1.02x10712 1.10x 10719 3.24 x 10710
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7.4 Discussion

This portion explores effects of a few pertinent flow variables like Prandtl parameter Pr, ther-
mophoresis number Nt, local rotation parameter A, local Deborah parameter 8, Schmidt para-
meter Sc, Brownian movement number Nb, temperature exponent A and concentration expo-
nent B on temperature 6 (¢) and concentration ¢ (¢). Fig. 7.1 presents curves of temperature
profile 0 (¢) for differing local Deborah parameter (3. It has been watched that by improving
local Deborah parameter [, penetration depth of 6 (() elevates. Fig. 7.2 displays the tempera-
ture 6 (¢) for distinct estimations of local rotation parameter A. Bigger A compare to a elevated
temperature and more layer of thermal. Fig. 7.3 delineates that how temperature 6 (¢) gets
influenced with the variety in Prandtl parameter Pr. It is watched that by upgrading Prandtl
parameter Pr, temperature 6 () and layer of thermal are diminishment. Physically as Prandtl
parameter Pr has reverse association with thermal diffusivity, in this way, an addition in Prandtl
parameter Pr prompt poor thermal diffusion and subsequently lower penetration depth of 6 (¢) .
Thicker layer of thermal ascribed to bigger Prandtl parameter is went with higher incline of
temperature close to the wall. Fig. 7.4 exhibits the bends of temperature 6 (¢) for shifting tem-
perature exponential A. It is watched that by improving temperature exponential A, thermal
penetration depth winds up lower. Fig. 7.5 exhibits effect of thermophoreis parameter Nt on
temperature 6 (¢) . Bigger Nt relate to a elevated temperature 6 ({) and more layer of thermal.
The purpose for this contention is that an augmentation in thermophoreis parameter Nt pro-
vides a more grounded thermophoretic constrain on nanoparticles toward the path inverse to
forced temperature gradient. This movements nanoparticles towards the icy surrounding liquid
because of which layer of thermal elevates. Fig. 7.6 presents variety in temperature 6 ({) for
changing Brownian movement number Nb. It has been watched that by expanding Brownian
movement number Nb, an improvement happened in temperature 6 (¢) and associated layer.
Fig. 7.7 presents concentration ¢ (¢) for differing local Deborah parameter 3. Bigger § prompt
a elevated concentration and thicker layer of concentration. Fig. 7.8 presents variation in con-
centration ¢ (¢) for particular estimations of local rotation parameter A. It has been watched
that by expanding A, an upgrade showed up in concentration ¢ (¢) and its associated layer. Fig.
7.9 exhibits that how concentration ¢ ({) gets influenced with the variety in Schmidt parameter

Sc. It has been watched that the expanding estimations of Schmidt parameter prompt a lower
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concentration ¢(¢). Schmidt parameter depends on Brownian diffusivity. Bigger estimations
of Schmidt parameter Sc provide poor Brownian diffusivity. Such poor Brownian diffusivity
compares to bring down concentration ¢(¢) and less layer of concentration. Fig. 7.10 presents
bends of concentration ¢(¢) for changing concentration exponent B. It has been watched that
by improving B, penetration depth of ¢({) ends up thinner. Fig. 7.11 exhibits the concentra-
tion ¢ (¢) for particular estimations of thermophoreis parameter Nt. It has been watched that
higher Nt compares to more concentration ¢({) and its associated layer. Fig. 7.12 exhibits that
expanding estimations of Brownian movement number Nb portrays decrease in concentration
¢(¢) and associated layer thickness. Table 7.2 is figured to approve present outcomes with pre-
vious published outcomes in a limiting situation. From this Table, we saw that present OHAM
arrangements have great concurrence with numerical arrangements of Mustafa et al. [16] in
a limiting situation. Table 7.3 presents numeric calculations of Nusselt number (-6’ (0)) and
Sherwood number (—d)’ (0)) for a few estimations of Nt, Nb, 3, Pr, A\, Sc, A and B. Here we
watched that Nusselt and Sherwood numbers have bring down qualities for bigger 5, A and Nt.

In addition the Nusselt and Sherwood numbers appear inverse practices for bigger Pr.

A=Nt=01,4=B=02,Nb=03,Pr=Sc=10

1.0

08+~ i
- 0.6~ i
2
D 04l B =00,04,05,06 1
02+ i
0.0, ‘ ‘ ‘ - |
0 2 4 6 8

Fig. 7.1. Plots of 6 (¢) for .
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Fig. 7.3. Plots of 6 (¢) for Pr.
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Fig. 7.5. Plots of 6 (¢) for Nt.
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Table 7.2. Comparative estimations of —f” (0) and —g’ (0) for several estimations of A\ when

B =0.
A =1(0) —4'(0)
OHAM  Numerical [16] OHAM Numerical [16]

0.2 1.34742 1.3474203 0.37015 0.3701525
0.5 1.51942 1.5194195 0.76251 0.7625142
1.0 1.80248 1.8024749 1.21796  1.2179573
2.0 2.28281 2.2828127 1.84850  1.8485032
5.0 3.34446 3.3444611 3.06092  3.0609164
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Table 7.3. Numeric data for Nusselt number (—¢’(0)) and Sherwood number (—¢' (0)) for a
few estimations of Sc, A, Pr, Nt, Nb, 8, A and B.

B A Nt Nb Pr Sc A B —0(0) —¢/(0
00 0.1 01 03 10 L0 02 02 05323 0.5040
0.1 0.5239  0.4943
0.2 0.5172  0.4858
01 00 01 03 1.0 1.0 02 02 05358 05107
0.1 0.5239  0.4943
0.2 0.4988  0.4609
01 01 00 03 1.0 L0 02 02 05370 0.6152
0.1 0.5239  0.4943

0.3 0.4990  0.2705

00 01 01 03 1.0 L0 02 02 05239 0.4943
0.5 0.4774  0.5501

0.8 0.4145 0.5811

01 01 01 03 05 1.0 02 02 03340 0.5398
1.0 0.5239  0.4943

1.5 0.6637  0.4590

00 01 01 03 1.0 07 02 02 05420 0.2788
1.0 0.5239  0.4943

15 0.5071  0.7449

00 01 01 03 1.0 10 00 02 04368 0.5195
0.2 0.5239  0.4943

0.5 0.6465  0.4585

01 01 01 03 1.0 1.0 02 00 05270 0.3987
0.2 05239 0.4943

0.5 05196 0.6283
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Chapter 8

Impact of magnetic field in

three-dimensional low of an

Oldroyd-B nanofluid

This chapter explores three dimension boundary layer flow of MHD Oldroyd-B nanoliquid. Flow
induced is because of bi-directional extending surface. Brownian movement and thermophoresis
impacts are explored. Newly proposed constraint requiring zero nanoparticles flux is utilized.
The governing nonlinear boundary-layer expressions through appropriate transformations are
diminished into nonlinear ordinary differential frameworks. The resulting nonlinear framework
has been solved for velocities, concentration and temperature. The contributions of various

interesting variables are studied graphically. Nusselt number is tabulated and analyzed.

8.1 Formulation

We examine three dimension flow of an Oldroyd-B nanoliquid. Flow caused is because of bi-
directional extending surface. Liquid is taken electrically conducting subject to constant By
applied in z—direction. Hall and electric field impacts are disregarded. Impacts of Brownian
movement and thermophoresis are considered. We employ Cartesian coordinate framework
such that z— and y—axes are taken in direction of motion and z—axis is normal to it. Surface

at z = 0 is extended in x— and y—directions having velocities U,, and V,,. Boundary layer

105



expressions governing the flow of an Oldroyd-B liquid are

Oou Ov  Ow
i e | 8.1
Ox + oy + 0z ’ (8.1)
du  du . ou w? LY+ 020 + w2 Sy
“or +U8y +w82 A 92 ok 52
+2uv &vgy + 2vw 8y§z + 2uw 8:1:8uz
3 3 93
0> uglts + valgty + wih B2 9
=v a—g + Ao azaf ayaf 8Z23 T Alw—u ,  (8.2)
2 _0udPu _ Qudv _ dudPw Ps 0z
O 022 Yy Hz2 0z 022
o B u?Zy +v23s + w3y
Yaw oy TWa: T 0 0 2
+2uvazgy + QQ)ngZ + 2uwg -
3 3 3
52 w2y 0% B2 P
— _12) T 01022 Oydz? 023 _ 950 v+ )\110—?) 7 (83)
0z v dtv v v dPw Py 0z
Oz 022 Oy 022 0z 0z2
or 9T 9T T  (pc), aTdC\  Dr (0T\?
— — —=a—+—— | Dp|=—— — | = 8.4
u8m+vay+waz a822+(pc)f B< 2 z>+Too <8z> ’ (84)
oC oC oC 9?C Dy (0T
— — — =Dp | =+ — | =—= 8.5
u8x+vt9y+w8,z B< z2>+ 00(822> (8:5)
Here one has the following prescribed conditions:
oC  DrdT
=U = =V =b =0, T=T, Dp—+———=0atz=0, (86
U w(x) =ax, v w(y) = by, w , w(T), B + T 9 at z , (8.6)
u—0, v—0, T—>Ty, C—Cyx asz— oo (8.7)

Here u, v and w stand for velocities in z—, y— and z—directions, u for dynamic viscosity,
v (: w/p f) for kinematic viscosity, Dp for Brownian movement, p; for density, A; for relaxation
time, Ay for retardation time, Dp for thermophoretic diffusion, o for electrical conductivity,
(pc)s for heat potential of liquid, 7" for temperature, o = k/(pc)s for thermal diffusivity, & for
thermal conductivity, (pc), for effective heat potential of nanoparticles, C' for concentration,

T,, and T, for wall and ambient temperatures and C, for ambient concentration. Here we
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assumes that surface stretching velocities and temperature are

Up(x) = ax, Viy(y) = by, Ty(z) =T + Tox, (8.8)

where a, b and T are positive constants. Selecting

w=axf'(n), v=ayg(n), w=—(@)"*(f(n) +9(n)). 9)
00n) = 75 o) = o=, n=(2)"=
Eq. (8.1) is automatically verified while Egs. (8.2) — (8.8) become

P (M2 4 1) (F+9) " = 74 By (200 +9) 17" = (f +9)° 1)
+ By ([ +d") f" = (f+9) f) = M?f' =0, (8.10)

g///+ (M251 +1) (f+g)g//_g/2 +51 (2(f+g)g/g” _ (f+g)29///>
+ By ((f"+9")d" = (f+9)g") - Mg =0, (8.11)
0" + Pr (( Fra)0 — 0+ Nbo'e + Nt9’2> =0, (8.12)
¢" + LePr(f +g)¢' + %9// =0, (8.13)
£(0) =g(0) =0, f(0) =1, ¢'(0) = c, 6(0) =1, Nb¢'(0) + Nt6'(0) = 0, (8.14)
f'(00) = 0, g'(00) = 0, B(c0) — 0, p(c0) — 0. (8.15)

Here 8, and 5 stand for Deborah parameters in terms of relaxation and retardation times
respectively, Nb for Brownian movement number, Pr for Prandtl parameter, ¢ for ratio of
extending rates, M for magnetic number, Le for Lewis parameter and Nt for thermophoresis

number. These variables can be specified by employing the definitions given below:

2
Bi=Ma, By=Xoa, M? =28 c=L pr=t

pra a’ (8 16)
_ (p0),DpCx _ (p0), Dr(Tw—Te) — o .
Nb*W’ Nt = p(pc)fVToo » Le=p;-

107



Local Nusselt number Nu, is

T oT

(To —Too) 02|,y (Re,)"/?¢/(0). (8.17)

Nu, = —

It is watched that mass flux represented by Sherwood number is now identically vanishes and

Re, = Uyx/v is for local Reynolds parameter.

8.2 Solutions by HAM

The series arrangements of Egs. (8.10) — (8.13) through (8.14) and (8.15) have been developed
by utilizing homotopic analysis technique (HAM). The linear operators and initial deformations

have been selected as follows:

_ _ _ Nt _
fﬂ(n) =1l-e 777 90(77) - C(l —€ 77)7 90(77> =e 777 ¢>0(77> = _me "77 (818)
L:f — f/// _ f/7 L:g — g/// _ g/7 L:G — 9// _ 07 L:d) — ¢// _ ¢ (819)

The above linear operators obey

Lp[Fr* + Fyre + Fyre ™) =0, Ly [Ff + Fre + Fre ] =0,
Lo [Frren + Fite ™ =0, Lg[F3*e + Fire ™ =0,

(8.20)

in which F7* (j = 1 —10) stand for arbitrary constants. Problems for zeroth and mth-order
deformations are easily formulated in the view of above operators. The deformation issues are

computed by Mathematica software.

8.3 Convergence analysis

Here series arrangements involve auxiliary variables hf, hy, hg and hg. These variables are
helpful for convergence of homotopic series arrangements. Proper estimations of such variables
play a vital role to construct convergent arrangements through homotopic analysis technique
(HAM). To get suitable estimations of fif, hy, hg and hy, the h—plots are sketched at 15th order

of deformations. Figs. 8.1 and 8.2 clearly show that convergence zone lies within the ranges
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—1.55 < hy < —0.15, —1.60 < Ay < —0.20, —1.55 < Iy < —0.50 and —1.60 < hy < —0.35. Table

8.1 exhibits that 27th order of deformations is sufficient for convergent series arrangements.

02! =f=02=c=NM=03,Nb=05,Pr=07,Le= 1.0

— f" (O)
PR gu (0)

£'0,8" (0
S
&)

Fig. 8.1. The h—plots for f(n) and g(n).

Bi=p=02=c=NtM=03Nb=05Pr=07Le=10
0.75

05
025} | T
S 0
- — 0'(0)
~-0.25 ,
S ' (0)
= -05
e
~0.75
_q \
-15 -1 -05 0
T, g

Fig. 8.2. The hi—plots for 6(n) and ¢(n).
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Table 8.1. HAM arrangements convergence when $; = 85 = 0.2 =c = Nt, M = 0.3, Nb = 0.5,
Pr=0.7 and Le = 1.0.

Order of deformations —f”(0) —g”(0) —6(0) ¢'(0)

1 1.02593 0.14545 0.87333 0.34933
) 1.03095 0.15090 0.82041 0.32816
10 1.03103 0.15083 0.81353 0.32541
15 1.03103 0.15083 0.81214 0.32486
20 1.03103 0.15083 0.81177 0.32471
27 1.03103 0.15083 0.81163 0.32465
35 1.03103 0.15083 0.81163 0.32465
50 1.03103 0.15083 0.81163 0.32465

8.4 Discussion

This section addresses contributions of various influential variables like Deborah parameter by
means of relaxation time (3;, Deborah parameter by means of retardation time (5, magnetic
number M, ratio number ¢, Prandtl parameter Pr, Brownian movement number Nb, ther-
mophoresis number Nt and Lewis parameter Le on concentration and temperature. Influence
of Deborah parameter ; on temperature is dipicted in Fig. 8.3. It is watched that temper-
ature and corresponding layer are higher for bigger estimations of ;. Fig. 8.4 describes that
temperature and layer of thermal are decayed via 85. A comparison of Figs. 8.3 and 8.4 clearly
exhibits that 5, and 3, have quite reverse effects on temperature field. Here 3; depends on re-
laxation time while 3, involves retardation time. bigger relaxation time corresponds to elevated
temperature while higher retardation time creates a diminishment in temperature. Hence an
improvement in (3; leads to an improvement in temperature while bigger 3, exhibits lower tem-
perature. Further 55 = 0 leads to Maxwell liquid flow situation. Fig. 8.5 illustrates variations
in temperature for a few estimations of magnetic number. Here M # 0 is for hydro-magnetic
flow and M = 0 corresponds to hydro-dynamic flow situation. We watched that temperature
and layer of thermal are higher for hydro-magnetic flow in comparison to hydro-dynamic sit-

uation. Magnetic number depends upon Lorentz force. Bigger magnetic number has stronger

110



Lorentz force. Such stronger Lorentz force creates an improvement in temperature and layer
of thermal. Fig. 8.6 exhibits that bigger ratio number creates a diminishment in temperature
profile and layer of thermal. For ¢ = 0, two dimension flow situation is acquired. Here we
watched that layer of thermal is more for two dimension situation when compared with three
dimension flow. Impact of Prandtl parameter on temperature profile is sketched in Fig. 8.7.
Temperature profile is diminished when we improvement estimations of Prandtl parameter.
Physically bigger Prandtl fluids have poor thermal diffusivity and small Prandtl fluids have
stronger thermal diffusivity. Such variation in thermal diffusivity leads to a diminishment in
temperature and corresponding layer of thermal. Fig. 8.8 presents variations of thermophoresis
number Nt on temperature profile 6 (n). We watched that temperature 6 () and associated
layer of thermal are elevated when we improvement thermophoresis number. In fact presence
of nanoparticles elevates thermal conductivity of liquid. An improvement in thermophoresis
number exhibits stronger thermal conductivity. Such stronger thermal conductivity elevates
temperature and layer of thermal. Influence of 8; on concentration profile ¢ (n) is shown in
Fig. 8.9. Here concentration ¢ (1) and associated layer thickness are higher for bigger 3. Effect
of 85 on concentration profile ¢ () is plotted in Fig. 8.10. Concentration ¢ (1) and correspond-
ing layer thickness are diminished for higher estimations of 5. Concentration ¢ (n) is elevated
for bigger magnetic number (see Fig. 8.11). Concentration ¢ (1) elevates for bigger magnetic
number. Variation in concentration ¢ corresponding to a few estimations of ratio number is
plotted in Fig. 8.12. We have watched that bigger estimations of ratio number creates a di-
minishment in concentration and associated layer. Fig. 8.13 illustrates that concentration is
poor for higher Lewis parameter. Lewis parameter depends on Brownian movement. Higher
Lewis parameter corresponds to a poor Brownian movement which exhibits a poor concentra-
tion. Fig. 8.14 exhibits that concentration is diminished via Prandtl parameter. Figs. 8.15 and
8.16 exhibit influences of thermophoresis and Brownian movement on concentration ¢ (1) . Here
an improvement in Nt gives rise to concentration but opposite trend is watched for Brownian
movement number. Table 8.2 exhibits the comparison for different estimations of ¢ with exact
arrangement. Table 8.2 demonstrates an excellent agreement of HAM arrangement with exist-
ing exact arrangement in limiting situation. Table 8.3 is computed to investigate transfer of

heat rate for different estimations of ¢, Nt, Nb, 3, B9, M, Le and Pr. For 3, = 0 the situation
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of Maxwell liquid flow is recovered. It is clearly exhibits that estimations of transfer of heat rate
for an Oldroyd-B liquid are more than Maxwell liquid. Transfer of heat rate is independent for
variations in Brownian movement number. Effects of Lewis and Prandtl parameters on transfer

of heat rate are very reverse.

Fr=02=c=Nt,M=03,Nb=0.5,Pr=0.7,Le=1.0

1.0 ‘

0 m

Fig. 8.3. Plots of 6 (n) for f3;.

P1=02=c=Nt,M=03,Nb=05,Pr=07,Le =10

1.0 -

0.6 -

6 (1)

=0.0, 0.3, 0.6, 1.0
04l B , 0.3, 06,

0.2+

0.0 Cu I I 1 |

Fig. 8.4. Plots of 6 (n) for f,.
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Bi=pB=02=c=Nt,Nb =0.5,Pr=0.7,Le = 1.0
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Fig. 8.5. Plots of 6 (n) for M.
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Fig. 8.6. Plots of 6 (n) for c.
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Fig. 8.7. Plots of 0 (n) for Pr.
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Fig. 8.8. Plots of 0 (n) for Nt.
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Br=02=c=Nt,M=03,Nb=05,Pr=07,Le= 10

Fig. 8.10. Plots of ¢ (n) for fB,.
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Fig. 8.11. Plots of ¢ (n) for M.
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Fig. 8.12. Plots of ¢ (n) for c.
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Fig. 8.13. Plots of ¢ (n) for Le.
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Fig. 8.14. Plots of ¢ (n) for Pr.
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Fig. 8.15. Plots of ¢ (n) for Nt.
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Fig. 8.16. Plots of ¢ (n) for Nb.
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Table 8.2. Comparative estimations of —f” (0) and —g” (0) for several estimations of ¢ when

p1 =Py =M=0.

c =10 —g"(0)

HAM Exact [38] HAM Exact [38]
0 1 1 0 0
0.25 1.048811 1.048813  0.194564 0.194564
0.50 1.093095 1.093097  0.465205 0.465205
0.75 1.134486 1.134485  0.794618 0.794622
1.0 1.173722 1.173720 1.173722  1.173720
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Table 8.3. Numeric data of Nusselt number Nu, (Rex)fl/ 2 for a few estimations of 8,

By, M, ¢, Nt, Nb, Le and Pr.

1 By M ¢ Nt Nb Le Pr —6(0)
00 02 03 02 02 05 1.0 0.7 0.8358
0.2 0.8117
0.5 0.7780
02 00 03 02 02 05 10 0.7 0.7801
0.2 0.8117
0.5 0.8458
02 02 00 02 02 05 1.0 0.7 0.8219
0.3 0.8117

0.5 0.7948

02 02 03 00 02 05 1.0 0.7 0.7806
0.2 0.8117

0.5 0.8539

02 02 03 02 00 05 1.0 0.7 0.8189
0.5 0.8011

1.0 0.7838

02 02 03 02 02 05 10 0.7 08117
1.0 0.8117

1.5 0.8117

02 02 03 02 02 05 05 0.7 0.8149
1.0 0.8117

1.5 0.8098

02 02 03 02 02 05 1.0 0.5 0.6452
1.0 1.0223

1.5 1.3094
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Chapter 9

An analytical solution for
magnetohydrodynamic Oldroyd-B
nanofluid flow induced by a
stretching surface with heat

generation/absorption

This chapter provides an investigation of magnetohydrodynamic (MHD) three dimension (3D)
flow of an Oldroyd-B nanoliquid. Heat absorption/generation and convective boundary condi-
tion are studied. Flow induced is because of extending surface. Brownian movement and ther-
mophoresis are examined. Oldroyd-B liquid is taken conducting through uniform applied mag-
netic field. A condition associated with nanoparticles mass flux at surface is utilized. Problem
formulation is made for boundary-layer and low magnetic Reynolds parameter approximations.
Suitable transformations are employed to construct nonlinear ordinary differential expressions.
The strongly nonlinear differential expressions are solved through optimal homotopic analysis
technique (OHAM). Impacts of different intriguing variables on concentration and temperature
are considered. Nusselt number is also computed and analyzed. Our computations reveal that

temperature has direct relation with Biot parameter and magnetic number.
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9.1 Formulation

We explore three dimension (3D) flow of an Oldroyd-B nanoliquid by a convectively heated
surface. Flow induced is due to a bidirectional extending surface. The liquid is taken conducting
via uniform By applied in z—direction. Also electric field and Hall impacts are disregarded.
Induced magnetic field is not taken for low magnetic Reynolds parameter. Brownian movement,
thermophoresis and heat generation/absorption effects are accounted. We employ Cartesian
coordinate framework such that z— and y—axes brought the extending surface in course of
movement and z—axis is normal to it. Let U, (z) = az and V,, (y) = by be the velocities of
extending surface along x— and y—directions. Temperature at extending surface is managed by
a convective heating phenomenon which is described via coefficient of heat transfer hy and hot
liquid temperature Ty under the surface. The governing boundary layer expressions for three

dimension (3D) flow of an Oldroyd-B nanoliquid are

ou Ov Ow
— 4+ —4+—=—=0 9.1
Ox + oy + 0z ’ (0.1)
2 2
u(?—u + va—u + w(?—u + A w Gk + ;
z
Y +2uvaz8y +22)wayaz +2uw6zauz
8211, u882+v882+w83 O'Bg 8’LL
— "\ 92 Az ajaz auya: du 822 o u+)\1w5 o (92)
0202 0yo2 0z 92 !
v v u?Zy + v + w3y
Ua— +Ua— +w8— + )\1 P
U
Y +2uv8a:8y +2vfw(9y(9z +2uw8azaz
9% U502 + v 5 +we3 o B2 ov
_ Z 24\ z@z ayaz 6,2 _ 0 M w— 9.3
v 8z2+2 5P vty 9w w or v+ lwﬁz ) (9.3)

O 022 dy 0z2 Oz 0z2
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or  oT or 0T Q

ua— Ua—y wa— amw + @ (T — TOO)
(pe)y (p, (PTOCY | Dr (9T

+(pc)f D 0z 0z + Too \ 0z ’ (94)

oC oC oC 0*C Dy (0T

Here one has the following prescribed conditions:

oT oC  DrpoT
u=ax, v="by, w=0, —ka =hy(Ty—-T), DBg—i-ﬂ&—OatZ—O, (9.6)
u—0, v—0, T—Ty, C—Csx asz— o0. (9.7)

Here u, v and w stand for velocities in z—, y— and z—directions, u for dynamic viscosity,
v (: w/ pf) for kinematic viscosity, (pc), for effective heat potential of nanoparticles, A\; for
relaxation time, p, for density, Ay for retardation time, o for electrical conductivity, T" for
temperature, oy, = k/(pc) ¢ for thermal diffusivity, Dp for Brownian movement, k for thermal
conductivity, (pc)s for heat potential of liquid, @ for heat generation/absorption coefficient,
C for concentration, Dp for thermophoretic diffusion, T, for ambient temperature, Cy, for

ambient concentration and a and b for positive constants. Selecting

u=azf'(n), v=ayg(n), w=—(a)"’*(f(n) +g(n)),

(9.8)
00n) = +=%, o(n) = <=, n= (%)=
Now expression (9.1) is automatically satisfied and Eqgs. (9.2) — (9.7) provide
f///+ (MQBl +1) (f"‘Q)f”_f/z +51 (2(f+g)f'f"— (f+g)2f"')
+ By ((f'+9") [" = (f+9) [) —M*f' =0, (9.9)
g///+ (M251 +1) (f+g)g//_g/2 +51 (2(f+g)g'g" _ (f+g)29///>
+ By ((f"+9") 9" = (f+9)g") - Mg’ =0, (9.10)
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0" + Pr (( F+g)0 + 50+ Nvo'd + Nt0’2) —0, (9.11)

Nt
" + Se(f +g)¢’ + me” =0, (9.12)
f=9=0,f=19¢=0a 0 =—(1-60(0), Nb¢/ + Nt§' =0 at n =0, (9.13)
f'—0, ¢ —0, 60 ¢—0asn— oo. (9.14)

Here M stands for magnetic number, Nb for Brownian movement number, 5; and [, for
Deborah parameters by mean of relaxation and retardation times, « for ratio number, Pr
for Prandtl parameter, Le for Lewis parameter, Nt for thermophoresis number, v for Biot
parameter and S for heat generation/absorption parameter. These variables can be specified

by employing the definitions given below:

B1 = A\a, By = Aaa, MQZﬁ a=2 Pr=—>, S =Y

pra’ a’ ™ (I(pc)f ) (9 15)
_ (pC) DBCoo o (pc) DT(TffToo) B ﬂ = an .
Nb_W’ Nt_w,v_ k\/g’ Le—D—B

The local Nusselt number Nu, is defined by

T oT

Nupg=-——"2 %
Y= T, — o) 02 ).,

= — (Re,)26/'(0). (9.16)

It is watched that mass flux denoted by Sherwood number is now identically vanishes and

Re, = Uy /v exhibits local Reynolds parameter.

9.2 Solutions by OHAM

The optimal series arrangements of Egs. (9.9) — (9.12) through (9.13) and (9.14) have been
developed by utilizing optimal homotopic analysis technique (OHAM). The linear operators

and initial deformations have been selected as follows:

foln) =1 =€~ gofn) = a1~ ), o(m) = o=, doln) = = fe (017
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The above linear operators obey

Lr[Fp + Fyre + Fyre M =0, L, [Fy* + Fe + Fie ™ =0,
Lo[Freen + Frre ™) =0, Ly[Fy*e + Fige ™ =0,

(9.19)

in which F7* (j = 1 — 10) stand for arbitrary constants. Problems for zeroth and mth-order
deformations are easily formulated in the view of above operators. The deformation issues are

solved by BVPh2.0 of Mathematica software.

9.3 Convergence analysis

We have solved the momentum, energy and concentration expressions with the help of BVPh2.0.
These expressions contain unknown variables 7y, hig, g and hg,. We can compute the minimum
estimation of these variables by taking total error small. In the frame of HAM, these variables
play a vital role. That is why these variables refer to as convergence-control parameter which
differs HAM from other analytical approximation methods. In order to reduce the CPU time,
we have employed average residual errors at the mth-oder of approximation which are defined

by
- 72

k m m
- (zm Zgw) , 920
1=0 1=0

n=56om |

<Z fn. ng)) , (9.21)
‘ ‘ n=3én ]

(9.22)
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Here Ny, Ny, Ny and NV, denote the non-linear operators corresponding to Egs. (9.9) — (9.12)
respectively. Following Liao [69] :

el =ef 49 +&f 2, (9.24)
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where el stands for total residual square error, k = 20 and én = 0.5. Optimal data for auxiliary
variables at 2nd order of deformations is hy = —0.92591, hy = —0.905895, hy = —1.25056 and
hy = —1.68203 and &f, = 5.43 x 107°. Table 9.1 presents average square residual error at
different order of deformations. It has been analyzed that the average residual square errors

reduce with higher order deformations.

Table 9.1. Individual average residual square errors employing optimal data of auxiliary
variables.

m &b Em el e,

2 761x1077 380x1077 212x107° 3.19x107°
6 7.03x10719 128x107% 3.06x107? 5.05x 1077
10 776 x 10712 1.26 x 1071 579 x 107 1.76 x 1078
16 2.95x107% 286 x 107 1.16 x 1071* 1.47 x 10710
20 227 x 107" 155 x 1071 216 x 10716 6.27 x 10712

9.4 Discussion

The present section examines effects of various interesting variables like Deborah parameters
by mean of relaxation and retardation times (3; and f3, respectively, Lewis parameter Le, mag-
netic number M, Biot parameter «y, ratio number «, heat generation/absorption parameter S,
thermophoresis number Nt, Prandtl parameter Pr and Brownian movement number Nb on
temperature and concentration. Fig. 9.1 displays impact of Deborah parameter 5; on tem-
perature 6 (1) . Here temperature 6 and layer of thermal are higher for expanding estimations
of Deborah parameter ;. Fig. 9.2 presents that an improvement in Deborah parameter f3,
exhibits a decay in temperature 6 (r) and corresponding layer of thermal. A comparative study
of Figs. 9.1 and 9.2 clearly presents that 5, and 8, have quite opposite effects on temperature.
Here (3, involves relaxation time while 3, depends on retardation time. An improvement in /3
and 3, corresponds to bigger relaxation and retardation times respectively. Bigger relaxation
time leads to a stronger temperature profile while bigger retardation time corresponds to a poor
temperature profile. Further present results diminishes to Maxwell liquid flow situation when
B9 = 0. Effect of magnetic number M on temperature € is plotted in Fig. 9.3. Both temper-

ature 6 and layer of thermal are upgraded for expanding estimations of magnetic number M.

126



Magnetic number M includes Lorentz force. Bigger M prompts a more grounded Lorentz force
which causes an improvement in temperature and corresponding layer of thermal. Here M =0
corresponds to a hydro-dynamic flow situation. Fig. 9.4 exhibits that an improvement in ratio
number « lead to a poor temperature 6 and less layer of thermal. For o = 0, the two dimension
flow situation is achieved. Variation in temperature 6 for various estimations of Biot parameter
«v is outlined in Fig. 9.5. Here temperature 6 () and layer of thermal show expanding conduct
for bigger Biot parameter 7. Fig. 9.6 exhibits variations in temperature 6 (1) for various esti-
mations of heat generation/absorption parameter S. Here S > 0 corresponds to heat generation
and S < 0 leads to heat absorption. It is clearly watched that temperature 6 and layer of
thermal are higher for heat generation situation in comparison to heat absorption situation.
Fig. 9.7 presents that temperature 0 (n) and layer of thermal are diminishing elements of Pr.
Prandtl parameter Pr has an opposite association with thermal diffusivity. An expansion in
Prandtl parameter Pr prompt poor thermal diffusivity which causes a rot in temperature and
layer of thermal. Fig. 9.8 delineates conduct of Nt on temperature 6 () . Both temperature 0
and layer of thermal are upgraded for expanding estimations of thermophoresis number Nt. Fig.
9.9 presents impact of Deborah parameter $; on concentration profile ¢ (). Bigger Deborah
parameter [3; causes an improvement in concentration profile. Variation in concentration field
¢ (n) for various estimations of Deborah parameter (3, is sketched in Fig. 9.10. Here concen-
tration ¢ and layer of concentration are lower for expanding estimation of Deborah parameter
Bq. Fig. 9.11 exhibits that bigger magnetic number M leads to elevated concentration profile
and more layer of concentration. Impact of ratio number o on concentration ¢ (n) is displayed
in Fig. 9.12. An improvement in ratio number « causes a decay in concentration profile. Fig.
9.13 displays impact of Biot parameter v on concentration ¢ (). Here concentration ¢ (1) and
layer of concentration are expanding functions of Biot parameter . Fig. 9.14 exhibits that an
improvement in Lewis parameter Le exhibits a decay in concentration ¢ (7). Lewis parame-
ter has an inverse relationship with Brownian movement coefficient. Bigger Lewis parameter
Le corresponds to poor Brownian movement coefficient which causes a diminishment in con-
centration distribution. Fig. 9.15 exhibits that bigger Prandtl parameter Pr leads to lower
concentration distribution ¢ (). Impact of thermophoresis number Nt on concentration ¢ ()

is plotted in Fig. 9.16. Both concentration and associated thickness are higher for expanding
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estimations of thermophoresis number Nt. Fig. 9.17 presents that bigger Brownian movement
number Nb relates to a poor concentration ¢ and less layer of concentration. Table 9.2 exhibits
the comparison for different estimations of o with exact arrangement. Table 9.2 demonstrates
an excellent agreement of OHAM arrangement with existing exact arrangement in limiting sit-
uation. Table 9.3 elucidates local Nusselt number —6' (0) for 3y, 85, @, S, v, Nt, Nb, Le, Pr
and M. Obviously Nusselt number is higher for expanding estimations of Biot 7 and Prandtl
Pr numbers while inverse conduct is watched for thermophoresis number Nt. It is additionally
watched that impacts of 8, and 3, on Nusselt number are very invert. Furthermore estimations
of Nusselt number are higher for hydro-dynamic flow situation (M = 0) when compared with

hydro-magnetic flow situation (M # 0).

M=S=01,8=a=02,Nt=03,Nb=y=05Le=10,Pr=12

6 ()

Fig. 9.1. Plots of 6 (n) for g;.
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M=S=01,8=a=02,Nt=03,Nb=y=05,Le=10,Pr=12

Fig. 9.2. Plots of 6 (n) for B,.

S=01,8=p=a=02,Nt=03Nb=y=05,Le=10,Pr=12
05F T T T

041

Q)

021 M =00,04,08, 12

0.1F

0.0

Fig. 9.3. Plots of 6 (n) for M.
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M=S=01,8 =8 =02 Nt=03,Nb=y=05,Le=10,Pr=12

04

03
=
(e
021 a=00,03, 06, 1.0
0.1h
0.0 L 1 1 L 1 1
0 2 4 6
n

Fig. 9.4. Plots of 6 (n) for .

M=S=01,8=6=a=02,Nt=03,Nb=05,Le =1.0,Pr=1.2

Fig. 9.5. Plots of 6 (n) for .
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Q)

6 ()

M=01,8=p=a=02,Nt=03,Nb=y=05Le=10,Pr=12
0.5+ ! ! ! 1

049

031

§=-0.1,0.0,0.1,02

0.0

Fig. 9.6. Plots of 6 (n) for S.

M=S=01,8=p8=a=02Nt=03,Nb=y=05,Le= 1.0

Fig. 9.7. Plots of 6 (n) for Pr.
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M=S=01,8=B=a=02,Nbo=y=05,Le =1.0,Pr=12

04

03+ 1
=
>

02 Nt =0.0,04, 0.8, 1.2 1

0.1 1

0'07\ L L L \7

0 2 4 6 8

n
Fig. 9.8. Plots of 6 (n) for Nt.
M=S=01,8=a=02Nt=03,Nb=y=05Le=10,Pr=12

0.05+ 1

0001 1
E

< B =00, 03,06, 1.0
—0.051 1

Fig. 9.9. Plots of ¢ (n) for ;.
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¢ ()

M=S=01,8 =a=02,Nt=03,Nb=y=05,Le= 1.0, Pr= 1.2

005} ]
0.00f ]
B> =00, 03,06, 1.0

~0.05 ]
0 2 4 6 8 10

n

Fig. 9.10. Plots of ¢ (n) for S,.
S=01,B1=fr=a=02,Nt=03,Nb=y=05,Le = 1.0, Pr=12

0.06 ‘ | | | ]
0.04 ]
0.02] ]
0.00 ]
—o02l M =00, 04,08, 1.2 ]
-0.04} ]
~0.06] ]
~0.08} | ]
0 2 4 6 8 10

n

Fig. 9.11. Plots of ¢ (n) for M.
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-0.06
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0.05

0.00

-0.05

-0.10

M=S=01,8 = =02, Nt=03,Nb=y=05,Le = 1.0, Pr=12
] a =00, 03,06, 1.0 ]
0 2 4 6 8 10
n
Fig. 9.12. Plots of ¢ (n) for a.
M=S=01,8 =8 =a=02,Nt=03,Nb=05,Le = 1.0, Pr= 1.2
y=02,05,08, 12
L 4
0 2 4 6 8 10
n

Fig. 9.13. Plots of ¢ (n) for .
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M=S=01,8 =8 =a=02,Nt=03,Nb=y=05,Pr=12

Le =0.6, 08, 1.0, 1.2

2 4 6 8 10
n
Fig. 9.14. Plots of ¢ (n) for Le.
M=S=01,8=p=a=02,Nt=03,Nb=y=05,Le = 1.0
Pr=075,10,125, 1.5
2 4 6 8 10
n
Fig. 9.15. Plots of ¢ (n) for Pr.
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o ()

M=S=01,81=f=a=02,Nb=y=05Le=10,Pr=12

_oal,t Nt=0.1, 04,08, 12 ]
I

~02}, ]
—03f ]
0 2 4 6 8 10

n

Fig. 9.16. Plots of ¢ (n) for Nt.
M=S=01,8=p=a=02Nt=03,y=051Le=10,Pr=12
0.04 - 7]
0.02 - ]
0.00 - b
-002p Nb=05,08, 1.1, 1.4 ]
—004-"! ]
)

—0.06 - 7
-0.08 - 7]
0 2 4 6 8 10

n

Fig. 9.17. Plots of ¢ (n) for Nb.
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Table 9.2. Comparative estimations of —f” (0) and —g” (0) for various estimations of o when

p1 =Py =M=0.

a  —f"(0) —9"(0)

OHAM  Exact [38] OHAM  Exact [3§]
0 1 1 0 0
0.25 1.048811 1.048813 0.194564 0.194564
0.50 1.093095 1.093097  0.465205 0.465205
0.75 1.134486 1.134485  0.794618 0.794622
1.0 1173722 1.173720 1.173722  1.173720
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Table 9.3. Numeric data for Nusselt number (—9’ (0)) for various estimations of 3, £y, «,

S, v, Nt, Nb, Le, Pr and M.

Bi By a« S v Nt Nb Le Pr -6’ (0)
M=00 M=05
00 02 02 01 05 03 05 1.0 1.2 0.2833 0.2777
0.2 0.2785 0.2723
0.4 0.2737 0.2667
02 00 02 01 05 03 05 1.0 1.2 0.2719 0.2643
0.2 0.2785 0.2724
0.4 0.2832 0.2778
02 02 00 01 05 03 05 1.0 1.2 0.2589 0.2504
0.5 0.2980 0.2935
1.0 0.3217 0.3160
02 02 02 00 05 03 05 1.0 1.2 0.2958 0.2918
0.1 0.2785 0.2723
0.2 0.2532 0.2415
02 02 02 01 02 03 05 1.0 1.2 0.1522 0.1504
0.5 0.2785 0.2723
0.8 0.3507 0.3407
02 02 02 01 05 00 05 1.0 1.2 0.2818 0.2758
0.3 0.2785 0.2723
0.5 0.2763 0.2698
02 02 02 01 05 03 05 1.0 1.2 0.2785 0.2723
0.7 0.2785 0.2723
1.0 0.2785 0.2723
02 02 02 01 05 03 05 05 1.2 0.2798 0.2738
1.0 0.2785 0.2723
1.5 0.2778 0.2714
02 02 02 01 05 03 05 1.0 0.5 0.1918 0.1812
1.0 0.2620 0.2546
138 1.5 0.2976 0.2923




Chapter 10

A mathematical study for
three-dimensional boundary layer

flow of Jeffrey nanofluid

Here we investigated characteristics of Brownian movement and thermophoresis in magneto-
hydrodynamic (MHD) three dimension flow of Jeffrey liquid. Flow generated is because of
bi-directional extending surface. Mathematical formulation of considered flow problem is made
through boundary-layer approach. Newly developed constraint requiring zero nanoparticle flux
is employed in flow analysis of Jeffrey liquid. The governing nonlinear boundary layer ex-
pressions are diminished into nonlinear ordinary differential frameworks through appropriate
transformations. The resulting frameworks have been solved for velocities, concentration and
temperature. The importance of various interesting variables is studied graphically. The esti-

mations of Nusselt number are computed and examined.

10.1 Formulation

We examine three dimensional (3D) flow of Jeffrey nanoliquid. Flow made is because of a bidi-
rectional extending surface. Liquid is considered electrically conducting subject to constant By
applied in z—direction. Also Hall and electric field impacts are disregarded. Brownian move-

ment and thermophoresis impacts are examined. We employ Cartesian coordinate framework
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such that z— and y—axes are taken along extending surface toward movement and z—axis is
normal to it. Surface at z = 0 is extended in z— and y—directions with velocities U,, and V.

The subjected boundary layer expressions for Jeffrey liquid are written below:

Oou Ov Ow
—+—4+—=—=0 10.1
Ox + oy + 0z ’ (10.1)
o o o 82 uﬂ + Uﬂ + w& BZ
ugs +va fwa = :A SEthel| T e ~Z204, (10.2)
Y ! +8_Z &vauz + 8_28y8uz + 8_158_27; Ps
ov ov ov v 0% u aa?év2 +v 662”2 + w% oB?
“or Ty TV T 1 a2 T bu 05w Py o B v, (103)
Y ! +8_Z axavz + 8_12183181}2 + 8_150_212) Ps
or 9T 9T  PT  (po)y T dC\  Dr [(9T\?
— — — =a— Dp | ——— — | — 10.4
u8x+v8y+waz a(922+(pc)f B(@z 6z>+Too< z) ’ (104)
ocC oC oC 0?C Dy (0T
— — — =Dp | == — | = . 10.
u8x+v8y+w82 B<(922>+Tm( 22) (10.5)
Here one has the following prescribed conditions:
oC  DpdT
w=Us(z) = az, v=Va(y) =by, w=0, T =Ty(x), Do+ T_iE —0at z=0, (10.6)
u—0, v—0, T—-Ty, C—Cyx asz— oo (10.7)

Here u, v and w stand for velocities in £—, y— and z—directions, p for dynamic viscosity,
v (=p/py) for kinematic viscosity, k for thermal conductivity, p; for density, A; for ratio of
relaxation and retardation times, D for thermophoretic diffusion, Ay for retardation time, (pc),
for effective heat potential of nanoparticles, o for electrical conductivity, T for temperature,
a = k/(pc)s for thermal diffusivity, (pc)s for heat potential of the liquid, Dp for Brownian
movement, C' for concentration, T3, and T, for wall and ambient temperatures and Cy, for

ambient concentration. Here we assumes that surface extending velocities and temperature are

Uw($) = ax, Vw(y) = by7 Tw(‘r) =T + Tox, (108)
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where a, b and Ty are positive constants. Selecting

u:mwmxv:wymxw:—@m”ﬂﬂm+amx

10.9
0(n) = 7=, o(n) = e

Expression (10.1) is automatically satisfied and Eqgs. (10.2) — (10.8) have the following forms

7 (L+ M) ((f +9)f f’2) + B ( —(f+g) f— g’f”’) — (14 X)) M2f" =0, (10.10)

"+ 1+ ((F+9)g" =g ) +8 (9" = (F+9)g" = F1g") = (1+X) Mg =0, (10.11)
QHJH(f+g f0+Nw¢4JWH> 0, (10.12)

" + LePr(f + g)¢' + ]]\V]—ZQ” =0, (10.13)

f=0,9g=0, f=1,¢g =c, 6=1, Nb¢/ + Ntd' =0 at n =0, (10.14)

ff—0,9g—0 0—-0, ¢—0asn— oo. (10.15)

Here Pr stands for Prandtl parameter, 5 for Deborah parameter, Nb for Brownian movement
number, M for magnetic number, Le for Lewis parameter, Nt for thermophoresis number and
¢ for ratio of extending rates. These variables can be specified by employing the definitions

given below:

B = Xa, M? = pa=C:§7 Pr=1%
Nb— PaDoCs (06). Dr(Tu—Too) Cheo e (10.16)
— (po)yv - (pe) jrToo €= Dg-
The local Nusselt number Nu, is defined as
T
Ny =~ I (Re,)0(0). (1017)

(T —Two) 0z,

It is watched that mass flux represented by Sherwood number is now identically vanishes and

Re, = Uyx/v is for local Reynolds parameter.
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10.2 Solutions by HAM

The series arrangements of Eqgs. (10.10) — (10.13) through (10.14) and (10.15) have been
developed by utilizing homotopic analysis technique (HAM). The linear operators and initial

deformations have been selected as follows:

fom)=1—¢e go(n)=c(l—e), 6Oo(n) =€, ¢o(n) = —%67", (10.18)

Ef — f/l/ - f,; Eg — g/ll - g/’ EG — 9// - 0’ £¢ — d)” _ d) (1019)
The above linear operators obey

Lp[Fp* + Ffre + Fyre ™ =0, Ly [Ff* + Frrel + Ffre ] =0,
Lo [Fyrel + Fire ™ =0, Ly[F3te" + Fie ™ =0,

(10.20)

in which F7* (j = 1 — 10) stand for arbitrary constants. Problems for zeroth and mth-order
deformations are easily formulated in the view of above operators. The deformation issues are

computed by Mathematica software.

10.3 Convergence analysis

The homotopic series arrangements have auxiliary variables Ay, hy, hg and hg. Such variables
are helpful for convergence of homotopic series arrangements. Proper estimations of such vari-
ables play a vital role to construct convergent homotopic arrangements via homotopic analysis
technique (HAM). To get suitable estimations of hy, hy, hg and hy, the h—plots are depicted
at 20th order of deformations. Figs. 10.1 and 10.2 clearly show that convergence area lies
within the ranges —1.35 < hy < —0.15, —1.45 < hy < —0.10, —1.40 < By < —0.45 and
—1.40 < hy < —0.25. Table 10.1 exhibits that 34th order of deformations is sufficient for
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convergent homotopic series arrangements.

B=02=c=Nt;M=03=2,,Nb=05,Pr=0.7,Le=10
0.25F ¢ ' : : :
1
0 \
5-025 B
w -05 - .“
— — £"(0) ‘
:o-/ _0 75 ————— gn (0) “'
G _1 '="
-1.25 :‘
-15 -1 -05 0
fe, g

Fig. 10.1. The Ai—plots for f(n) and g(n).

B=02=c=Nt;M=03=A;,Nb=05,Pr=0.7,Le=1.0
: : : —~
0.5
> 0
< —6'(0)
s == " (0)
= 05
D
_q \
-15 -1 -05 0
hg , hy

Figs 10.2. The h—plots for 6(n) and ¢(n).
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Table 10.1. HAM arrangements convergence when § = 0.2 = ¢ = Nt, M = 0.3 = Ay,
Nb=0.5, Pr=0.7 and Le = 1.0.

Order of deformations —f"(0) —g”(0) —60'(0) ¢'(0)

1 1.15850 0.18370 0.87333 0.34933
5 1.12932 0.18471 0.80614 0.32245
10 1.12918 0.18474 0.79790 0.31916
15 1.12918 0.18474 0.79613 0.31845
25 1.12918 0.18474 0.79544 0.31817
34 1.12918 0.18474 0.79535 0.31814
45 1.12918 0.18474 0.79535 0.31814
60 1.12918 0.18474 0.79535 0.31814

10.4 Discussion

The motivation behind this segment is to investigate the contributions of several influential
variables including Brownian movement number Nb, Lewis parameter Le, ratio of relaxation
to retardation times Aj, ratio number ¢, Prandtl parameter Pr, magnetic number M, ther-
mophoresis number Nt and Deborah parameter S on concentration and temperature. Fig. 10.3
exhibits that an improvement in ratio of relaxation to retardation times creates an improvement
in temperature 6 () and layer of thermal. The situation A; = 0 compares to least temperature
and thinner layer of thermal. Physically large A\; prompts increment in relaxation time and
a lessening in retardation time. This adjustment in relaxation and retardation times makes a
elevated temperature and thicker layer of thermal. The variety in temperature 6 () because
of Deborah parameter [ is shown in Fig. 10.4. It is watched from Fig. 10.4 that an expansion
in 8 exhibits a decrease in temperature 6 (n) and corresponding layer of thermal. Fig. 10.5
exhibits that temperature 6 (n) and layer of thermal are higher for bigger magnetic number.
Here M > 0 is for hydro-magnetic flow and M = 0 corresponds to hydro-dynamic flow situa-
tion. We watched that temperature and layer of thermal are higher for hydro-magnetic flow in
comparison to hydro-dynamic situation. Magnetic number depends upon Lorentz force. Bigger

magnetic number has stronger Lorentz force. Such stronger Lorentz force is responsible to im-
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provement the temperature in nanoliquid motion. Consequently the layer of thermal becomes
thicker for stronger magnetic field. Influence of ratio number on temperature 6 is displayed in
Fig. 10.6. Temperature and layer of thermal are diminishing functions of ratio number. For
¢ = 0, two dimensional flow circumstance is recuperated. Here we watched that layer of thermal
is more for two dimensional situation in contrast with three dimensional flow. Thermophore-
sis number Nt is key number for dissecting temperature in nanoliquid flow. Influence of Nt
on temperature is presented in Fig. 10.7. With the expansion in Nt, temperature of liquid
increments. An expansion in Nt creates an upgrade in thermophoresis constrain which tends
to shift nanoparticles from hot to icy territories and therefore it improves temperature 6 and
corresponding layer of thermal. Effect of Pr on temperature 6 (n) is depicted in Fig. 10.8.
An augmentation in Prandtl parameter makes real impact on temperature 0 () and layer of
thermal. Layer of thermal diminishes with Prandtl parameter and it occurs due to decrease of
thermal diffusivity for higher Prandtl parameter. Fig. 10.9 plainly delineates that concentration
¢ (n) and corresponding layer are expanding elements of A;. A comparison of Figs. 10.3 and
10.9 obviously portrays that effects of ratio of relaxation to retardation times on concentration
and temperature very comparative. Impact of Deborah parameter 5 on ¢ () is plotted in Fig.
10.10. Here concentration and corresponding layer thickness are diminishment when Deborah
parameter increments. Concentration ¢ (n) is an expanding potential of magnetic number (see
Fig. 10.11). As magnetic number elevates, concentration ¢ (n) improves. variation in ¢ (7)) com-
paring to various estimations of ratio number is inspected in Fig. 10.12. We have watched that
bigger ratio number makes a decrease in concentration and corresponding layer thickness. Fig.
10.13 exhibits that concentration is diminished by means of Lewis parameter. Lewis parameter
relies upon Brownian movement. Higher Lewis parameter leads to poor Brownian movement
which exhibits a poor concentration. Influence of Pr for concentration is depicted in Fig. 10.14.
Bigger Prandtl parameter exhibits a diminishment of concentration. Concentration exhibits
overshoot close to the surface for bigger estimations of Pr, however the nanoparticle volume
layer thickness diminishes. Effect of thermophoresis number Nt on concentration ¢ () is dis-
played in Fig. 10.15. Concentration and corresponding layer thickness are expanding elements
of Nt. An expansion in Nt makes an improvement in thermophoresis compel which tends to

improvement concentration and corresponding layer thickness. Impact of Brownian movement
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number Nb on concentration ¢ (n) is sketched via Fig. 10.16. Concentration diminishes with ex-
panding estimations of Nb. In nanoliquid framework, because of the nearness of nanoparticles,
Brownian movement happens and with expansion in Nb the Brownian movement is influenced
and thusly layer of concentration diminishes. Table 10.2 exhibits the comparison for different
estimations of ¢ with exact arrangement. Table 10.2 presents an excellent agreement of HAM
arrangement with existing exact arrangement in a limiting situation. Table 10.3 is tabulated
to investigate transfer of heat rate for 5, A\, M, ¢, Nt, Nb, Le and Pr. Rate of heat transfer
is independent for variations in Brownian movement number. Effects of Lewis and Prandtl

parameters on transfer of heat rate are very reverse.

L=02=c=Nt, M=03,Nb=05,Pr=0.7,Le = 1.0

1-0 T T T

0 (1)

Fig. 10.3. Plots of 6 (n) for A;.
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Fig. 10.4. Plots of 8 (n) for .
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Fig. 10.5. Plots of 6 (n) for M.
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Fig. 10.6. Plots of 6 (n) for c.
B=02=c,M=03=1,Nb=05,Pr=07,Le =1.0
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Fig. 10.7. Plots of 6 (n) for Nt.
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BL=02=c=Nt, M=03 =A;,Nb=05,Le =1.0
1'0 T T T

0 m

Fig. 10.8. Plots of 6 (n) for Pr.
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Fig. 10.9. Plots of ¢ (n) for A;.
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Fig. 10.10. Plots of ¢ (n) for .
B=02=c=Nt, 4, =03, Nb=05,Pr=07,Le= 10

0.05 - 1
0.00 - 1
= -00s) M =00, 04,08, 1.2 ]
% r 4
-0.10 1
~0.15 ]
0 2 4 6 8 10 12

Fig. 10.11. Plots of ¢ (n) for M.
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Fig. 10.12. Plots of ¢ (n) for c.
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Fig. 10.13. Plots of ¢ (n) for Le.
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Fig. 10.14. Plots of ¢ (n) for Pr.

L=02=c,M=03=A;,Nb=05,Pr=0.7,Le=1.0
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Fig. 10.15. Plots of ¢ (n) for Nt.
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L=02=c=Nt,M=03=21;,Pr=07,Le=1.0

10 12

Fig. 10.16. Plots of ¢ (n) for Nb.

Table 10.2. Comparative estimations of —f” (0) and —g” (0) for several estimations of ¢ when

B=M\=M=0.

c =0 —9"(0)

HAM Exact [38] HAM Exact [38]
0 1 1 0 0
0.25 1.048811 1.048813 0.194564 0.194564
0.50 1.093095 1.093097  0.465205 0.465205
0.75 1.134486 1.134485 0.794618  0.794622
1.0 1.173722 1.173720 1.173722  1.173720
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Table 10.3. Numeric data of Nusselt number Nu, (Rex)fl/ 2 for various estimations of B,

A1, M, ¢, Nt, Nb, Le and Pr.

B M M ¢ Nt Nb Le Pr —6(0)
0.0 03 03 02 02 05 1.0 0.7 0.7674
0.2 0.7954
0.5 0.8268
02 00 03 02 02 05 1.0 0.7 0.8317
0.3 0.7954
0.5 0.7740
02 03 00 02 02 05 1.0 0.7 0.8064
0.3 0.7954

0.5 0.7769

02 03 03 00 02 05 1.0 0.7 0.7650
0.5 0.8378

1.0 0.9065

02 03 03 02 00 05 1.0 0.7 0.8026
0.5 0.7848

1.0 0.7674

02 03 03 02 02 05 1.0 0.7 0.7954
1.0 0.7954

1.5 0.7954

02 03 03 02 02 05 05 0.7 0.7985
1.0 0.7954

1.5 0.7934

02 03 03 02 02 05 1.0 0.5 0.6304
1.0 1.0047

1.5 1.2904
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Chapter 11

Three-dimensional flow of Jeffrey
nanofluid with a new mass flux

condition

Three dimensional flow of Jeffrey nanoliquid with convectively heated surface is analyzed. Flow
induced is due to a bidirectional extending surface. Impacts of thermophoresis and Brownian
movement are explored. Newly developed constraint with zero nanoparticles flux is employed.
Similarity variables have been employed for conversion of partial differential frameworks into
nonlinear ordinary differential frameworks. The subsequent nonlinear ordinary differential con-
ditions have been tackled for velocities, concentration and temperature. Diagrams are sketched
to look at concentration and temperature. Numeric estimations of Nusselt number are tab-
ulated and analyzed. Effects of Biot parameter on concentration and temperature are quite

similar. Both concentration and temperature are elevated for bigger Biot parameter.

11.1 Formulation

Consider three dimensional (3D) flow of Jeffrey nanoliquid. Flow generated is due to a bidi-
rectional extending surface at z = 0. Flow possesses the area z > 0. Effects of thermophoresis
and Brownian movement are explored. Temperature at extending surface is controlled by con-

vective heating process which is characterized via coefficient of heat transfer hy and hot liquid
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temperature Ty below the extending surface. Flow under boundary layer approximations are

presented by the following expressions:

ou Ov Ow
—+—+—=—=0 11.1
ox * Oy + 0z ’ (1L.1)
2 DBu_ gy Pu 0%
PO A e N RN R (11.2)
ox Oy 0z 1+ X\ 022 L Ou 9w | v Pu y dwdu ’ '
0z 0x0z 9z Oydz 0z 022
2 v g v 0%
FLLINNULICLA W T (11.3)
oz Oy Oz 14+ M \ 022 L Ou Py | v 0% Ow o ’ '
0z 020z 0z Oyoz 0z 022
or T 9T  PT  (pc)y dT dC\ Dr (9T
E v s =t Dp () + 2L (S 114
u8m+v8y+w8z a3z2+(pc)f B<8z 8z>+Too 0z ’ (114)

oC oC oC 0%C Dr (0°T
u% +U8_y +w$ = DB <w> + ﬂ (ﬁ) . (11.5)

Here one has the following prescribed conditions:

or oC  DpoT
u=ax, v=>"by, w=0, —kg—hf(Tf—T), D35+§5—0a‘52—0, (11.6)

u—0, v—0, T—-Ty, C—Cyx asz— oo (11.7)

Here u, v and w stand for velocities in x—, y— and z—directions, k for thermal conductivity,
p for dynamic viscosity, Ay for retardation time, (pc); for heat potential of liquid, v (= u/py)
for kinematic viscosity, (pc), for effective heat potential of nanoparticles, p; for density, Dp
for Brownian movement, A for ratio of relaxation and retardation times, T for temperature,
a = k/(pc)¢ for thermal diffusivity, C for concentration, Dy for thermophoretic diffusion, T
for ambient temperature, Cy, for ambient concentration and a and b for positive constants.

Selecting

w=azf'(n), v=ayg' (n), w=—(a)"*(f(n) +9(n)),

_ _ ay1/2
0(n) = F5, o(n) = S5, = (£)"* 2.

(11.8)
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Eq. (11.1) is automatically verified while Egs. (11.2) — (11.7) have the following forms:

P ) (P9 =) +8 (7 = (F+) =g f") =0, (119)

g" + (1+\) ((f +9)d" — g/2) +8 (g”2 —(f+9)d"—fg ”’) (11.10)
0" + Pr ((f+g)9’+Nb9’gb’+Nt9’2) —0, (11.11)
¢" + LePr(f +g)¢' + %9” =0, (11.12)

f=0,9g=0, f'=1,gd=c¢, 0 =—v(1-60(0), Nb¢' + Ntd' =0 at n =0, (11.13)
f'—0,9g—00—0, ¢—0asn— oo. (11.14)

Here Nt stands for thermophoresis number, + for Biot parameter, 3 for Deborah parameter, Nb
for Brownian movement number, ¢ for ratio of extending rates, Pr for Prandtl parameter and

Le for Lewis parameter. These variables can be specified by employing the definitions given

below:
B =MXa, c= b, Pr = Nb:(pcz”c#,
(pc) DT(Tf Too) hf P (1115)
Nt = (PC)f—VToo’ Y= \/_ Le = &
The local Nusselt number Nu, is defined as by
T
Nup = —— 2 OT  (Re ) 20(0), (11.16)

(Tw —Too) 02,

It is watched that mass flux represented by Sherwood number is now identically vanishes and

Re, = uyx /v is for local Reynolds parameter.

11.2 Solutions by HAM

The series arrangements of Eqs. (11.9) — (11.12) through (11.13) and (11.14) have been de-

veloped by utilizing homotopic analysis technique (HAM). The linear operators and initial
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deformations have been selected as follows:

fon) =1—e™", go(n) =c(l —e™), bo(n) =7 e Go(1) = —7 g A (11.17)
Ef — f/// o f/; Eg — g/// o g/’ EG — 9// o 0’ £¢ — d)// _ d) (1118)

The above linear operators obey

Lp[Fp* + Ffre + Fyre ™ =0, Ly [Ff* + Frrel + Ffre ] =0,
Lo [Fyrel + Fire ™ =0, Ly [Fyte" + Fie ™ =0,

(11.19)

in which F7* (j = 1 —10) stand for arbitrary constants. Problems for zeroth and mth-order
deformations are easily formulated in the view of above operators. The deformation issues are

computed by Mathematica software.

11.3 Convergence analysis

The homotopic series arrangements have auxiliary variables Ay, hy, hg and hg. Such variables
are helpful for convergence of acquired homotopic series arrangements. Proper estimations of
such variables play a vital role to construct convergent homotopic arrangements via homotopic
analysis technique (HAM). To get suitable estimations of hy, hy, hg and hg, the h—plots are
depicted at 15th order of deformations. Figs. 11.1 and 11.2 clearly show that convergence
area lies within the ranges —1.50 < iy < —0.10, —1.45 < hy < —0.10, —1.50 < hy < —0.15
and —1.50 < hy < —0.05. Table 11.1 exhibits that 13th order of deformations is sufficient for
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convergent homotopic series arrangements.
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Table 11.1. HAM arrangements convergence when 5 = 0.2 = Nt, c=0.3 =X, y=05=Nb
and Le =1.0 = Pr.

Order of deformations —f"(0) —g”(0) —60'(0) ¢'(0)

1 1.12500 0.27450 0.33889 0.13556
5 1.10643 0.27728 0.33802 0.13521
13 1.10643 0.27737 0.33790 0.13516
20 1.10643 0.27737 0.33790 0.13516
30 1.10643 0.27737 0.33790 0.13516
40 1.10643 0.27737 0.33790 0.13516
50 1.10643 0.27737 0.33790 0.13516

11.4 Discussion

Impacts of ratio number ¢, ratio of relaxation to retardation times \;, Deborah parameter [,
Biot parameter v, Lewis parameter Le, Prandtl parameter Pr, thermophoresis number Nt and
Brownian movement number Nb on temperature 6 (n) and concentration ¢ (n) are shown in
Figs. 11.3 —11.16. Fig. 11.3 presents that an improvement in ratio of relaxation to retardation
times A1 causes an improvement in temperature € (1) and layer of thermal. An increment in
A1 creates an improvement in relaxation time and a diminishment in retardation time. Due
to such fact there is an increment in temperature 6 (n) and layer of thermal via \;. Fig. 11.4
elucidates influence of Deborah parameter /5 on temperature 6 (n) . Here temperature 6 (n) and
layer of thermal are lower for bigger Deborah parameter. Fig. 11.5 presents that bigger ratio
number ¢ exhibits a diminishment in temperature 6 () and layer of thermal. For ¢ = 0, the two
dimension flow situation is achieved. We watched that layer of thermal is more in two dimension
flow when compared with three dimension flow. Fig. 11.6 exhibits impact of Biot parameter ~y
on temperature 6 (). Here bigger Biot parameter causes a higher convection at the extending
surface which provides a stronger temperature 6 (n) and thicker layer of thermal. Fig. 11.7
is plotted to see variations in temperature corresponding to different estimations of Prandtl
parameter Pr. Temperature 6 (n) and layer of thermal are diminished when we improvement

Prandtl parameter. Physically bigger Prandtl liquids have poor thermal diffusivity and small
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Prandtl liquids have stronger thermal diffusivity. Such variation in thermal diffusivity causes
a diminishment in temperature and corresponding layer of thermal. Effect of thermophoresis
number Nt on temperature is depicted in Fig. 11.8. Here temperature 6 (1) and layer of thermal
are higher for bigger thermophoresis number. An improvement in Nt creates an improvement in
thermophoresis force which provides a elevated temperature profile and thicker layer of thermal.
Fig. 11.9 exhibits that concentration ¢ () and its corresponding layer thickness are elevated
for bigger ratio of relaxation to retardation times A;. Here A; = 0 corresponds to minimum
concentration ¢ (1) and thinner layer of concentration. Fig. 11.10 exhibits influence of Deborah
parameter § on concentration ¢ (). Concentration ¢ (1) and corresponding layer are diminish-
ing functions of Deborah parameter 5. Importance of ratio number ¢ on concentration ¢ (n) is
depicted in Fig. 11.11. Here it is watched that concentration ¢ (1) is diminishment when we
improvement ratio number. Fig. 11.12 presents variations in concentration ¢ (n) for different
estimations of Biot parameter 7. We watched that an improvement in Biot parameter v causes
an improvement in concentration ¢ (1) and its corresponding layer thickness. Influence of Lewis
parameter Le on concentration ¢ (n) is plotted in Fig. 11.13. Concentration ¢ (n) and its as-
sociated layer thickness are diminished for bigger Lewis parameter. Higher Lewis parameter
corresponds to poor Brownian movement coefficient which exhibits a poor concentration and
its corresponding layer. Fig. 11.14 presents that concentration ¢ (n) is diminished for Prandtl
parameter Pr. Concentration exhibits overshoot near extending surface for bigger Prandtl pa-
rameter Pr which exhibits a diminishment in layer of concentration. Fig. 11.15 exhibits that
an increment in thermophoresis number Nt causes a elevated concentration and its associated
layer thickness. Importance of Brownian movement number Nb on concentration ¢ (n) is de-
picted in Fig. 11.16. Concentration ¢ (1) and corresponding layer are diminishing functions
of Brownian movement number Nb. In nanoliquid flow, due to the existence of nanoparticles,
the Brownian movement takes place and with improvement in Nb the Brownian movement is
affected and thus layer of concentration diminishes. Table 11.2 exhibits the comparison for
different estimations of ¢ with exact arrangement. Table 11.2 presents an excellent agreement
of HAM arrangement with existing exact arrangement in limiting situation. Table 11.3 indi-
cates Numeric data of Nusselt number (—¢' (0)) for A1, 8, ¢,v, Le, Pr, Nt and Nb. From this
Table we watched that Nusselt number (—9/ (O)) is higher for bigger Biot parameter v. However
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impact of Brownian movement number Nb on local Nusselt number (—9/ (0)) is constant.

B=02=Nt,c=03,y=05=Nb,Le=10=Pr
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Fig. 11.3. Plots of 6 (n) for A;.
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Fig. 11.4. Plots of 0 (n) for .
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B=02=Nt,A; =03, y=05=Nb,Le = 1.0 = Pr
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Fig. 11.5. Plots of 6 (n) for c.
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Fig. 11.6. Plots of 0 (n) for .
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B=02=Nt,c=03=A,y=05=Nb,Le=10

031

0

Pr=0.7,1.0,13, 1.6

0.1

~
0'07\ \_ L L ]

Fig. 11.7. Plots of 6 (n) for Pr.
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Fig. 11.8. Plots of 0 () for Nt.
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Fig. 11.9. Plots of ¢ (n) for A;.
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Fig. 11.10. Plots of ¢ (n) for .

165



B=02=Nt,A;=03,y=05=Nb,Le=1.0="Pr
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Fig. 11.11. Plots of ¢ (n) for c.
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Fig. 11.12. Plots of ¢ (n) for .
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Fig. 11.13. Plots of ¢ (n) for Le.
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Fig. 11.14. Plots of ¢ (n) for Pr.
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Fig. 11.16. Plots of ¢ () for Nb.
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Table 11.2. Comparative estimations of —f” (0) and —g” (0) for various estimations of ¢ when

B =X =0.

c  —f"(0) —9"(0)

HAM Exact [38] HAM Exact [38]
0 1 1 0 0
0.25 1.048811 1.048813 0.194564 0.194564
0.50 1.093095 1.093097  0.465205 0.465205
0.75 1.134486 1.134485 0.794618  0.794622
1.0 1.173722 1.173720 1.173722  1.173720
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Table 11.3. Numeric data for Nusselt number (—9/ (0)) for various estimations of A1, 5, ¢,

v, Le, Pr, Nt and Nb.

M B ¢ v Le Pr Nt Nb —6(0)
0.0 02 03 05 1.0 1.0 0.2 0.5 0.3416
0.5 0.3356
1.0 0.3302
03 00 03 05 1.0 1.0 0.2 0.5 0.3349
0.3 0.3391
0.5 0.3411

03 02 00 05 10 1.0 0.2 0.5 0.3317
0.5 0.3415

1.0 0.3493

03 02 03 01 1.0 1.0 0.2 0.5 0.0913
0.7 0.4186

1.5 0.6138

03 02 03 05 05 1.0 02 0.5 0.3382
1.0 0.3379

1.5 0.3378

03 02 03 05 1.0 05 02 0.5 0.2836
1.0 0.3379

1.5 0.3642

03 02 03 05 1.0 1.0 0.0 0.5 0.3383
0.5 0.3373

1.0 0.3362

03 02 03 05 1.0 1.0 0.2 0.5 0.3379
1.0 0.3379

1.5 0.3379
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Chapter 12

On three-dimensional boundary
layer flow of Sisko nanofluid with

magnetic field effects

This chapter models effects of magnetic field and nanoparticles in three dimensional flow of
Sisko liquid. Flow caused is due to a bi-directional extending surface. Effects of Brownian
movement and thermophoresis in nanoliquid relation are considered. Sisko liquid is taken elec-
trically conducted via constant applied magnetic field. Mathematical development in boundary
layer regime is presented for weak magnetic Reynolds parameter. Newly constructed boundary
condition subject to zero nanoparticles mass flux is employed. Nonlinear differential frame-
works are solved for convergent arrangements. Effects of several physical variables are studied.
Skin frictions and Nusselt number are tabulated and explored. It is watched that effects of
Brownian motion and thermophoresis variables on concentration are quite opposite. Further

concentration and temperature are elevated for bigger magnetic number.

12.1 Formulation

Consider three dimensional (3D) flow of Sisko nanoliquid by bi-directional extending surface.
Sisko liquid is employed electrically conducting. Magnetic field By is taken in z—direction.

Furthermore the electric field and Hall impacts are disregarded. Brownian movement and
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thermophoresis impacts are additionally present. Cartesian coordinate framework is embraced
such that x— and y—axes are brought the extending surface and z—axis is opposite to it. Let
Uy, and V,, denote surface extending velocities along z— and y—directions. The subjected

boundary layer expressions for considered flow are expressed as follows:

ou Ov Ow
e Tyt o =0 (121)
ou  Ou ou ad*u b O ou\" oB?
et - i S e —— 12.2
“or +U@y +w62 pr0z%  ppOz < 8z> Py “ (12.2)

’u,a— —l—’l)a—y —l—w&:p—f@-i-p—f% —& 5 — — 0, (12'3)

2 2
WL LT, 8—T+(pc)p (D <6T80>+%<6—T> ) (12.4)

ov ov ov a 0% b 0O ( 8u>n L ow JBS

oz oy 0z 022 (po); 0z 0 0z
oC oC oC 0?C Dy (0T
Here one has the following prescribed conditions:
oC DT oT
u=Uy(z)=cx, v=V,u(y) =dy, w=0, T=T,, Dp— P T—a Oat z=0, (12.6)
u—0, v—0, T—->Ty%, C—>Cyx asz— o0 (12.7)

Here u, v and w stand for velocities in x—, y— and z—directions, k for thermal conductivity, py
for density, (pc), for effective heat potential of nanoparticles, o for electrical conductivity, a, b
and n (n > 0) for material constants, 7" for temperature, o, = k/(pc) ¢ for thermal diffusivity,
(pc)s for heat potential of the liquid, Dp for Brownian movement, C' for concentration, Dr
for thermophoretic diffusion, T}, and T for wall and ambient temperatures, C, for ambient

concentration and ¢ and d for positive constants. Selecting

n—2\ 1/(n+1)
e, o= =< (5)"" (g s ) e

A\ L/r+D)
0(n) = F=5=, o(n) = S5, == (57,5 =0/ (1),

(12.8)
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Expression (12.1) is now satisfied and Eqgs. (12.2) — (12.7) have the following expressions

Af/// . (f/)2 + gf// +n (7f//)n—1 f/// + <n2_|7_11> ff// _ M2f/ =0, (12.9)
Ag///_ (g/)2+gg//+ (_f//)nfl g”/—(n —1) g//f/// (_f//)n*Q_i_ (n2fl> fg//_M2g/ =0, (12.10)
0" + Pr <<n2—47:1> f0' + g0’ + Nt (9’)2 + NbH’¢’> =0, (12.11)
Nt
¢" + LePr <<n2f1> fé +g¢>’> + (Nb) 0" = (12.12)
f0)=g(0)=0, f/(0)=1, ¢'(0) =, 6(0) =1, Nbg'(0) + Ntt' (0) =0, (12.13)
[ (0) =0, ¢’ (00) = 0, 6(cx) =0, ¢(c0) — 0. (12.14)

Here Pr is for Prandtl parameter, o for ratio number, M for magnetic number, A for ma-
terial parameter, Nb for Brownian movement number, Le for Lewis parameter and Nt for

thermophoresis number. Such variables can be specified by employing the definitions given

below:
2/(n+1 —2/(n+1
A=BE "y 0B _dpp o UeRe T
o 0a0m o (o), DT Ty (12.15)
No=Charm Nt = "0 Tmarn; > L€ =Dy

Skin frictions and Nusselt number are given by

CroRey/ " = Af7(0) = (=" (0)",
CryRey Y = T (Ag” (0) + (=£"(0))" ¢ (0)) (12.16)
NugRe, /) = —g/ (0),

It is watched that Re, = p;Uyz/a and Rey, = p fou_”sc” /b denote local Reynolds parameters

and Sherwood number Sh, is now identically zero.

12.2 Solutions by OHAM

The optimal series arrangements of Eqs. (12.9) — (12.12) through (12.13) and (12.14) have been

developed by utilizing optimal homotopic analysis technique (OHAM). The linear operators
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and initial deformations have been selected as follows:

_ _ _ Nt _
fom=1=¢" go(m) =a(l—e™"), Oo(m) =", do(n) = —7e ", (12.17)
Ef — f/// o f/; Eg — g/// o g/’ EG — 9// o 0’ £¢ — d)// _ d) (1218)

The above linear operators obey

Lp[Fp* + Ffre + Fyre ™ =0, Ly [Ff* + Frrel + Ffre ] =0,
Lo [Fyrel + Fire ™ =0, Ly [Fyte" + Fie ™ =0,

(12.19)

in which F7* (j = 1 —10) stand for arbitrary constants. Problems for zeroth and mth-order
deformations are easily formulated in the view of above operators. The deformation issues are

solved by BVPh2.0 of Mathematica software.

12.3 Convergence analysis

We have solved the momentum, energy and concentration expressions with the help of BVPh2.0.
These expressions contain unknown variables iy, hig, hg and hy. We can compute the minimum
estimation of these variables by taking total error small. In the frame of HAM, these variables
play a vital role. That is why these variables refer to as convergence-control parameter which
differs HAM from other analytical approximation methods. In order to reduce the CPU time,

we have employed average residual errors at the mth-oder of approximation which are defined

by

k m m
e (S o) | 220
i ' n=jén |

j=0 1=0 1=0
1 E [ m m 12
= M (Z ol Zgw) , (12.21)
j=0 =0 =0 n=46n |

k m m m m
43 o (g0 S, Yo Sk ) | oem
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2

(12.23)

k m m m m
e X (S s Sion Sk )

Here Ny, Ny, Ny and N denote the non-linear operators corresponding to Eqgs. (12.9) —(12.12)

respectively. Following Liao [69] :

t

elo=el +ed, +e0 +ef, (12.24)

where ¢! stands for total residual square error, k = 20 and én = 0.5. Optimal data for auxiliary
variables at 4th order of deformations is iy = —0.575281, hy = —0.806452, hy = —0.873621
and fiy = —1.16577 and &f, = 2.81 x 107%. Table 12.1 presents average square residual error
at different order of deformations. It has been analyzed that the average residual square errors
reduce with higher order deformations.

Table 12.1. Individual average residual square errors employing optimal data of auxiliary

variables.

m el Em el e

2 1.11x107% 214x107% 4.69x107° 7.61 x 107
6 838x107° 1.13x107% 1.34x1075 6.65x107°
10 3.36x107° 3.87x1077 7.72x1077 3.12x 1077
16 1.76x 1075 1.11 x 1077 4.65 x 107°  3.46 x 1079
20 1.22x107° 5.90x 107 6.63x 1079  2.37 x 107°
26 7.59x107% 264 x107% 3.98x 10710 539 x 10710
30 568 x1076 1.64x107% 6.12x 10719 3.53 x 10710

12.4 Discussion

Effects of various physical variables like thermophoresis number Nt, Prandtl parameter Pr,
Sisko liquid parameter A, Brownian movement number Nb, magnetic number M, ratio num-
ber a and Lewis parameter Le on temperature # and concentration ¢ are displayed in Figs.
12.1 — 12.12. Impact of Sisko liquid parameter A on temperature 6 (n) is plotted in Fig. 12.1.
Here temperature € (1) and layer of thermal are diminishment when Sisko liquid parameter up-

grades. Fig. 12.2 presents that bigger magnetic number M compares to elevated temperature
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and more layer of thermal. Here M = 0 prompts hydro-dynamic flow and M # 0 for hydro-
magnetic flow situation. It is watched that temperature is higher for hydro-magnetic flow when
contrasted with hydro-dynamic flow circumstance. Fig. 12.3 exhibits effect of ratio number «
on temperature 6 (n). Temperature and layer thickness are diminishing elements of ratio num-
ber. For a = 0 the two dimensional flow circumstance is accomplished. Here we watched that
temperature is more grounded for two dimension flow in contrast with three dimension flow.
Fig. 12.4 presents variations in temperature 6 (1) for different estimations of Prandtl parameter
Pr. Here temperature and layer of thermal are less for bigger Prandtl parameter. Prandtl pa-
rameter has a reverse association with thermal diffusivity. An expansion in Prandtl parameter
prompts poor thermal diffusivity. Such poor thermal diffusivity causes a lessening in temper-
ature and layer of thermal. Variations in temperature 6 (1) relating to various estimations of
thermophoresis number Nt is appeared in Fig. 12.5. Here an upgrade in thermophoresis number
offers ascend to temperature and associated layer thickness. An expansion in thermophoresis
number Nt causes an upgrade in thermophoresis constrain which exhibits a more grounded
temperature and more layer of thermal. Fig. 12.6 exhibits variations in concentration ¢ (1) for
various estimations of Sisko liquid parameter A. It is watched that an expansion in Sisko liquid
parameter exhibits a diminishment in concentration profile ¢ (n) . Fig. 12.7 presents that bigger
magnetic number M creates an improvement in concentration and associated layer. Effect of
ratio number « on concentration ¢ is displayed in Fig. 12.8. Here concentration ¢ and layer
of concentration are diminishing elements of ratio number. Fig. 12.9 exhibits effect of Lewis
parameter Le on concentration ¢ (1) . This Fig. clearly exhibits that bigger Lewis parameter Le
causes a diminishment in concentration ¢ (n). Lewis parameter involves Brownian movement.
An expansion in Lewis parameter prompts poor Brownian movement which exhibits a decrease
in concentration and layer of concentration. Fig. 12.10 presents that bigger Prandtl parameter
Pr relates to poor concentration ¢ and less layer of concentration. Fig. 12.11 portrays impact of
Brownian movement number Nb on concentration ¢. Here an upgrade in Brownian movement
number prompt poor concentration and associated layer of concentration. Fig. 12.12 exhibits
effect of thermophoresis number Nt on concentration ¢. Here concentration is improved when
thermophoresis number increments. Table 12.2 exhibits comparison for different estimations of

« with exact arrangement. Table 12.2 presents an excellent agreement of OHAM arrangement
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with existing exact arrangement in limiting situation. Table 12.3 presents numeric data of skin
frictions —Cf, Re;/ M+ and —C ty Re;/ "+ for various estimations of M , A and a. It is clearly
watched that skin frictions are higher for bigger magnetic number M, Sisko liquid parameter A
and ratio number «. Table 12.4 is processed to investigate Nusselt number —6’ (0) for various
estimations of «, Le, Pr, A, Nb, M and Nt. Here it is watched that impacts of Lewis and

Prandtl parameters on Nusselt number are very inverse. Nusselt number is found constant

when we increment Brownian movement number.

@=0.1,n=20,M=02=NtNb=05,Le =10 = Pr
1.0 T T T T T

0 (1)

Fig. 12.1. Plots of 0 (n) for A.

A=01=a,n=20,Nt=02,Nb=05,Le =10 =Pr
1.0 T T T T T \7

0 (n)

Fig. 12.2. Plots of 6 (n) for M.
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A=01,n=20,M=02=Nt, Nb=05,Le =10 =Pr

1.0

6 (1)

Fig. 12.3. Plots of 6 (n) for .

A=01=an1=20,M=02=Nt,Nb=05,Le =10

1.0}

X))

Fig. 12.4. Plots of 0 (n) for Pr.
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A=01=a,n=20,M=02,Nb=05,Le=10=Pr

1.0

X))

Fig. 12.5. Plots of 6 (n) for Nt.
@=01,n=20,M=02=NtNb=05,Le = 1.0 = Pr

0.05 - R
0.00 - 7

S
S —005¢ 4=00,05,10,15 1
-0.10 - 7
—0.15" . | | | ]
0 2 4 6 8 10

Fig. 12.6. Plots of ¢ (n) for A.
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A=01=a,n=20,Nt=02,Nb=05,Le=10=Pr

0.05 -
0.00 -
S
< M =00,04,08, 1.2
-0.05
-0.10 -
0 2 4 | 6 8 10
n
Fig. 12.7. Plots of ¢ (n) for M.
A=01,n=20,M=02=Nt,Nb =05,Le =1.0 =Pr
AN
0.05
0.00 -
S
"@_0_057 a=0.0,03,06, 1.0
-0.10

Fig. 12.8. Plots of ¢ (n) for a.
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i Le =06, 09,12, 15 ]
0 2 4 6 8 10
n

Fig. 12.9. Plots of ¢ (n) for Le.
A=01=a,n=20M=02=Nt Nb=05,Le = 1.0
. Pr=07,10,13, 1.6 ]
0 2 4 6 8 10

Fig. 12.10. Plots of ¢ (n) for Pr.
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A=01=a,n=20,M=02=Nt,Le =1.0 =Pr

0.05F
0.00
s
S 005 Nb =0.5,0.75, 1.0, 1.25 ]
—0.10 H 1
_0.157\ Il Il L L Il L Il \7
0 2 4 6 8 10
n
Fig. 12.11. Plots of ¢ (n) for Nb.
A=01=a,n=20,M=02,Nb=05,Le =10 =Pr
rd T~ ~
05¢r /;/#_‘\:\\ ]
", - T~ \:
0.0 1
£ j Nt = 0.5, 1.0, 1.5, 2.0
© -05- ,‘l .
]
I
I
-L0, 1
I
157! L L L 1 L L L 1 L L L 1 L L L 1 L L L L
) 2 4 6 8 10

Fig. 12.12. Plots of ¢ (n) for Nt.

182



Table 12.2. Comparative estimations of —f” (0) and —g” (0) for various estimations of & when

n=1land A=M =0.

a  —f"(0) —9"(0)

OHAM  Exact [38] OHAM  Exact [3§]
0 1 1 0 0
0.25 1.048811 1.048813 0.194564 0.194564
0.50 1.093095 1.093097  0.465205 0.465205
0.75 1.134486 1.134485  0.794618 0.794622
1.0 1.173722 1.173720 1.173722  1.173720

Table 12.3. Numeric data of skin frictions —Cf, Rez/ M+D) and —Cly Re;/ "+ for different

estimations of A, M and a.

A M a —CgpRe/"™  _cpRe/H
n=10 n=20 n=10 n=20
0.0 0.2 0.1 1.0394 1.0050 0.0698 0.0703

0.5 1.2730  1.2076  0.0855  0.0850
1.0 1.4700 1.4714 0.0986  0.1060
0.1 0.0 01 1.0700 1.0264 0.0702 0.0709
0.5 1.1907  1.1483  0.0873  0.0854
1.0 1.4967 1.4824  0.1257 0.1233

0.1 0.2 00 1.0696 1.0210 0.0000  0.0000
0.5 1.1650 1.1415 0.4987  0.4935
1.0 1.2482  1.2497  1.2482  1.2497
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Table 12.4. Numeric data of Nusselt number for different estimations of Pr, o, A, Nb, Le, M
and Nt.

A M o Le Pr Nb Nt —0' (0)
n=10 n=20
0.0 02 01 10 10 05 0.2 0.5980 0.6577
0.5 0.6388  0.7142
1.0 0.6638  0.7481
01 00 01 10 10 05 0.2 0.6120 0.6741
0.5 0.5888  0.6595
1.0 0.5335 0.6235
0.1 02 00 1.0 10 05 0.2 0.5727 0.6401
0.5 0.7244  0.7806
1.0 0.8402  0.8949
0.1 02 01 05 1.0 05 0.2 06160 0.6795
1.0 0.6082  0.6716
1.5 0.6040  0.6668
01 02 01 1.0 05 05 0.2 03812 0.4056
1.0 0.6081  0.6716
1.5 0.7829  0.8796
01 02 01 1.0 1.0 05 0.2 06081 0.6715
1.0 0.6081  0.6715
1.5 0.6081  0.6715
0.1 02 01 1.0 1.0 05 0.0 0.6241 0.6907
0.5 0.5845  0.6430
1.0 0.5456  0.5970

184



Chapter 13

Impact of magnetic field in
three-dimensional flow of Sisko

nanofluid with convective condition

This chapter addresses magnetohydrodynamic (MHD) three dimension flow of Sisko nanoliquid
with convectively heated extending surface. Nanoliquid relation includes Brownian movement
and thermophoresis impacts. Heat transfer via convective process is discussed. Developed
constraint with zero nanoparticles flux at boundary is employed. The subjected problems with
boundary layer approach are computed for convergent homotopic series arrangements. Effects
of interesting flow variables on concentration and temperature are studied. Skin frictions and

Nusselt number are computed and explored.

13.1 Formulation

Magnetohydrodynamic (MHD) three dimension (3D) flow of Sisko nanoliquid by bidirectional
extending surface is examined. Sisko liquid is taken electrically conducting through a constant
By applied in z—direction. Moreover electric field and Hall impacts are disregarded. Mass
and heat transfer are investigated via Brownian movement and thermophoresis. We employ
Cartesian coordinate framework such that surface agrees with zy—plane and liquid possesses

space z > 0. Let Uy (z) = cx and V,, (y) = dy depict surface extending velocities in xz—
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and y—directions. Temperature at extending surface is administered by convective heating
procedure which is portrayed by coefficient of heat transfer hy and hot liquid temperature 77

below extending surface. Subjected boundary-layer expressions for considered flow are
— =4+ —=0, (13.1)

ou ~ Ou ou  ad*u b0 ou\" oB?
oz oy T n;@‘;@( ) T (13.2)

@_‘_ @_‘_ @_ia_%_l_ig _@ ”*1@_0—38 (133)

“or U@y Yo, T pr0z2  ppoz \ 0z 9z py v '

or ~ ar  oT T (pe), dT dC\ D [(0T\?
oC oC oC 0?C Dy (0T
Here one has the following prescribed conditions:
- - o kT oc  DroT _

u=Uy(x), v=Vyu(y), w=0, _kaz =hy(Ty-T), DB@Z —I—Too EP =0at z=0,
(13.6)
u—0, v—0, T—>Ty, C—Cx asz— oo (13.7)

Here u, v and w stand for velocities in x—, y— and z—directions, k for thermal conductivity,
(pc)p for effective heat potential of nanoparticles, o for electrical conductivity, Dp for Brownian
movement, py for density, a, b and n (n > 0) for material constants, T' for temperature, (pc);
for heat potential of liquid, oy, = k/(pc)s for thermal diffusivity, C' for concentration, Dr for
thermophoretic diffusion, T, for ambient temperature, Cy, for ambient concentration and c

and d for positive constants. Selecting

a2 1/(n+1) . .
u=czf'(n), v=dyg'(n), w=—c (i,f/f,) (nz—flf + 120 f + g) g(n=1)/(n 1),

— _ N S
bn) = £, o(n) = &=, n == (57) £(-n)/(14n)

(13.8)
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Expression (13.1) is now satisfied and Egs. (13.2) — (13.7) have the following forms:

Af" = (I +gf" +n (=) P+ <n2—f1) Ff' = M2 =0, (13.9)

A" ()" +ag"+(=1")" 9" — (= D" ()" (ff 1) 19"~ M2 =0, (13.10)
0" + Pr < <n2—f1> f0'+ g0 + Nt (6)° + NbH’¢’> =0, (13.11)

¢" + LePr <<n2—f1> fe +g¢>’> + (%) 9" =0, (13.12)

f0)=9g0)=0, f/(0)=1, d(0)=qa, 0 =—~(1—-0(0)), Nbg' (0)+ Nt#' (0) =0, (13.13)
f'(c0) =0, ¢ (c0) — 0, 6() =0, ¢(c0) — 0. (13.14)

Here Pr stands for Prandtl parameter, v for Biot parameter, A for material parameter, Nb
for Brownian movement number, M for magnetic number, Le for Lewis parameter, Nt for
thermophoresis number and « for ratio number. These variables can be specified by employing

the definitions given below:

A B Rez/(n+1) 4 M2 _ B2 P _ 2Uw Re;2/(n+l)
= Re, YT o T e HEE T, (13.15)
Np = (PPl _ e Dr(Ty—To) by R V04D 1o om :
“(pc)salpy T Imalpy 0 VT Tk b , Dg"

Skin frictions and Nusselt number are

Cp.Rey/ ™™ = Af7(0) — (— 7 (0)",
CpyRey/ 0 = Yo (Ag” (0) + (—1"(0)" " ¢ (0)) (13.16)
NugRe, /") = —¢/ (0)

It is watched that Re, = pfUyx/a and Rey, = p fofnx” /b show local Reynolds parameters and

Sherwood number Sh, is now identically zero.
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13.2 Solutions by HAM

The series arrangements of Egs. (13.9) — (13.12) through (13.13) and (13.14) have been devel-
oped by utilizing homotopy analysis technique (HAM). The linear operators and initial defor-

mations have been selected as follows:

foln) =1—e™", go(n) = a(l —e™), Oo(n) = 7 ron i Go(n) = —7 g A (13.17)
Ef — f/l/ . f/’ ﬁg — gll/ - gl’ EG — 9// - 9’ £¢ — ¢II _ ¢ (1318)

The above linear operators obey

Ly [Fy* + Fyre + Fyre ) =0, L, [Fy* + Fr*el + Fi*e ™ = 0,
Lo [Fpre + Fire ™ =0, Lg[Fire" + Fize™] =0,

(13.19)

in which F7* (j = 1 — 10) stand for arbitrary constants. Problems for zeroth and mth-order
deformations are easily formulated in the view of above operators. The deformation issues are

computed by Mathematica software.

13.3 Convergence analysis

Most likely series arrangements are subject to non-zero auxiliary variables Ky, hy, hg and Fg.
Reasonable estimations of these variables are imperative to get convergent series arrangements.
The h—curves for velocities, concentration and temperature are outlined at 20th order of de-
formations. Figs. 13.1 and 13.2 clearly portray that zones of convergence for f, g, # and ¢ are
[-0.71, —0.22], [-0.76, —0.11], [-0.91, —0.24] and [-0.91, —0.11]. Table 13.1 exhibits

that 12th order of deformations is essential for convergent homotopic series arrangements of f,
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g, 0 and ¢.

£"0,g" )

0'0),9¢'(0)

A=a=01,M=02,n=20

0.0 B
m e e e e e —— -
¢ \
( \
\
—ost | £ (0) ]
! " \
T T T g£" () \
| \
-1.0- 1 L
] )
i |
1 |
-15 1 I I I I I |
-0.8 -0.6 -04 -0.2 0.0
hy, hy
Fig. 13.1. The h—plots for f(n) and g(n).
A=a=01,M=02,1=20,Nt =y =03, Nb=0.5,Le = 1.0, Pr= 1.2
e
\ '
\ /
\ ’
02\ ’,’
0.0 — 0'(0)
----- ¢' )
-02}
—04f
-10 -038 -06  —04 -02 0.0 02
ho, hy

Fig. 13.2. The hi—plots for 0(n) and ¢(n).
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Table 13.1. HAM arrangements convergence when A = o« = 0.1, Nt = v = 03, M =
0.2, Nb=0.5, n=2.0, Pr=1.2 and Le = 1.0.

Order of deformations —f”(0) —g”(0) —6'(0) ¢'(0)

1 0.9379 0.0787 0.2250 0.1352
) 0.9675 0.0670 0.2183 0.1308
13 0.9747  0.0685 0.2164 0.1297
20 0.9747 0.0685 0.2164 0.1297
35 0.9747 0.0685 0.2164 0.1297
50 0.9747 0.0685 0.2164 0.1297

13.4 Discussion

Effects of several physical variables like Prandtl parameter Pr, ratio number «, Lewis para-
meter Le, Sisko liquid parameter A, thermophoresis number Nt, Biot parameter v, Brownian
movement number Nb and magnetic number M on temperature § and concentration ¢ are
displayed in Figs. 13.3 —13.16. Fig. 13.3 presents effect of Sisko liquid parameter A on temper-
ature 6. It is watched that an expansion in Sisko liquid parameter A makes a diminishment in
temperature and associated thickness of layer. Fig. 13.4 delineates varieties in temperature 0
for various estimations of M. Here temperature 6 and layer of thermal are expanding elements
of magnetic number. Here M = 0 compares to hydro-dynamic flow situation and M # 0 for
hydro-magnetic flow. It is additionally watched that temperature is more grounded for hydro-
magnetic flow when contrasted with hydro-dynamic flow. Fig. 13.5 delineates that bigger ratio
number a prompts bring down temperature 6 and less layer of thermal. Two dimension (2D)
flow circumstance is recouped when ratio number o = 0. Fig. 13.6 exhibits impact of Biot pa-
rameter v on temperature ¢. Here bigger Biot parameter v causes a elevated temperature and
more layer of thermal. Physically an upgrade in 7 makes a more grounded convection which
prompts elevated temperature. Fig. 13.7 presents that an expansion in Prandtl parameter Pr
gives decrease in temperature 6. Prandtl parameter includes thermal diffusivity. Bigger Prandtl
parameter prompts bring down thermal diffusivity. Such poor thermal diffusivity causes a poor

temperature and less layer of thermal. Fig. 13.8 exhibits impact of thermophoresis number
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Nt on temperature 0. Here temperature 6 and subjected thickness of layer are upgraded when
we increment thermophoresis number. Bigger thermophoresis number prompts more grounded
thermophoresis constrain which exhibits an improvement in temperature. Fig. 13.9 presents
effect of Sisko liquid parameter A on concentration ¢. Concentration ¢ and associated layer
thickness are diminishment when we upgrade Sisko liquid parameter. Fig. 13.10 delineates
that bigger magnetic number M exhibits upgrade in concentration ¢. Effect of ratio number «
on concentration ¢ is shown in Fig. 13.11. Here we watched that bigger ratio number compares
to bring down concentration and less layer of concentration. Fig. 13.12 delineates impact of Biot
parameter vy on concentration ¢. Concentration and associated layer thickness are expanding
elements of Biot parameter. Fig. 13.13 delineates that bigger Lewis parameter Le prompts poor
concentration ¢ and less layer thickness. Lewis parameter has a backwards association with
Brownian movement. Bigger Lewis parameter corresponds to poor Brownian movement. Such
poor Brownian movement exhibits a diminishment in concentration field. Fig. 13.14 exhibits
varieties in concentration ¢ for Prandtl parameter Pr. Here bigger Prandtl parameter demon-
strate a poor concentration. Fig. 13.15 portrays that an expansion in Brownian movement
number Nb causes a poor concentration and less layer thickness. Effect of thermophoresis num-
ber Nt on concentration ¢ is plotted in Fig. 13.16. Here concentration ¢ and associated layer
thickness are improved for bigger thermophoresis number. Table 13.2 exhibits the comparison
for different estimations of a with exact arrangement. Table 13.2 presents an excellent agree-
ment of HAM arrangement with existing exact arrangement in limiting situation. Table 13.3 is
figured to investigate skin frictions —C'¢; Rell,/ "+ and —C fy Re;/ (") for different estimations
of M, A and «. Skin frictions are higher for bigger magnetic number M, Sisko liquid parameter
A and ratio number a. Table 13.4 exhibits Nusselt number —¢’ (0) for different estimations of
Pr, M, ~, Le, A, a, Nt and Nb. We watched that Nusselt number is independent for bigger

Brownian movement number. It is additionally watched that impacts of Biot parameter and
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magnetic number on Nusselt number have been very inverse.
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Fig. 13.3. Plots of 6 (n) for A.

A=a=01,n=20,Nt=y=03,Nb=05,Le =10,Pr=12

Fig. 13.4. Plots of 6 (n) for M.
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Fig. 13.5. Plots of 6 (n) for .
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Fig. 13.6. Plots of 0 (n) for .
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Fig. 13.7. Plots of 6 (n) for Pr.
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Fig. 13.8. Plots of 6 (n) for Nt.
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Table 13.2. Comparative estimations of — f” (0) and —g” (0) for several estimations of & when

n=1land A=M =0.

a  —f"(0) —9"(0)

HAM Exact [38] HAM Exact [38]
0 1 1 0 0
0.25 1.048811 1.048813 0.194564 0.194564
0.50 1.093095 1.093097  0.465205 0.465205
0.75 1.134486 1.134485  0.794618 0.794622
1.0 1.173722 1.173720 1.173722  1.173720

Table 13.3. Skin frictions —C/, Re;/ M+ and —Cly Rez/ " *+D) for various estimations of M ,
A and a.

A M o —CpRe/"™  _cyp Re/ Y
n=10 n=20 n=10 n=20
0.0 02 0.1 10394 1.0050 0.0698 0.0703

0.5 1.2730  1.2076  0.0855  0.0850
1.0 1.4700 1.4714  0.0986  0.1060
0.1 0.0 0.1 1.0700 1.0264 0.0702 0.0709
0.5 1.1907 1.1483 0.0873  0.0854
1.0 1.4967 1.4824  0.1257 0.1233

0.1 0.2 00 1.0696 1.0210 0.0000  0.0000
0.5 1.1650 1.1415 0.4987  0.4935
1.0 1.2482  1.2497  1.2482  1.2497
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Table 13.4. Numeric data of Nusselt number for various estimations of Pr, M, v, Le, A,

a, Nt and Nb.

A M « ~v Le Pr Nb Nt -6’ (0)
n=10 n=20
00 02 01 03 10 12 05 0.3 0.20870 0.21530
0.5 0.21230 0.21940
1.0 0.21440 0.22180
01 00 01 03 1.0 1.2 0.5 0.3 0.20990 0.21650
0.7 0.20600 0.21430
1.5 0.19440 0.20820
0.1 02 00 03 10 12 05 0.3 0.20570 0.21350
0.5 0.22020 0.22500
1.0 0.22860 0.23230
0.1 02 01 02 10 12 05 0.3 0.15540 0.15930
0.7 0.34720 0.36620
1.2 0.43580 0.46630
0.1 02 01 03 05 12 05 0.3 0.20990 0.21670
1.0 0.20950 0.21650
1.5 0.20920 0.21610
01 02 01 03 10 05 05 0.3 0.16880 0.17450
1.0 0.20180 0.20850
1.5 0.21820 0.22510
01 02 01 03 10 1.2 0.5 0.3 0.20960 0.21630
1.0 0.20960 0.21630
1.5 0.20960 0.21630
01 02 01 03 1.0 1.2 05 0.0 0.21030 0.21710
0.5 0.20910 0.21580
1.0 0.20750 0.21430

200



Chapter 14

Conclusions

The exploration performed in the present thesis is finished up through chapters two to thir-
teen. The prime target of every one of these chapters is to analyze the magnetohydrodynamic
three dimensional (3D) boundary-layer flow of viscous and non-Newtonian nanoliquids due to
extending surface. Analysis is carried out in both fixed and rotating frames. Buongiorno re-
lation is adopted which includes the novel parts of Brownian dispersion and thermophoresis.
Thermal convective and zero nanoparticles mass flux conditions are implemented at the bound-
ary. Boundary-layer and low magnetic Reynolds parameter approximations are summoned to
improve the governing arrangement of partial differential expressions. Appropriate transforma-
tions are introduced to nondimensionalize the relevant boundary-layer expressions. Uniformly
valid convergent arrangement expressions are developed by means of homotopy analysis method
(HAM) and optimal homotopy analysis method (OHAM). Importance of physical variables is
described through the plots. Moreover the physical quantities like skin friction and Nusselt
number are characterized by numerical estimations. Major outcomes of the presented research

are summarized as follows:

e Concentration and temperature fields show expanding conduct for bigger magnetic num-

ber.
e Higher ratio number depict diminishing conduct for concentration and temperature.

e Bigger porosity and Forchheimer variables show expanding trend for concentration and

temperature fields.
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e Bigger Biot parameter causes an improvement in concentration and temperature fields.

e By improving thermophoresis number, an increment is watched in both concentration and

temperature fields.
e Concentration field is diminished with an upgrade in Brownian movement number.
e There is decay in temperature and associated layer corresponding to Prandtl parameter.

e Concentration field and corresponding layer thickness are diminishing functions of Lewis

parameter.
e Skin frictions are elevated when we upgrade estimations of magnetic number.

e Nusselt number is diminishment with an upgrade in thermophoresis number while it is

independent of Brownian movement number.

e Both mass and heat transfer rates are higher for bigger concentration and thermal relax-

ation variables.

All chapters considered in this thesis examine the three dimensional (3D) flow problems
of viscous and non-Newtonian nanoliquids due to extending surface. These problems can be
extended to explore the more complicated situations in connection with three dimensional flow

and extending surface. Some possible extensions of present thesis are given below.

e Three dimensional flow of nanoliquids in region of stagnation-point towards extending

surface.
e Melting heat transfer effects on three dimensional flow of nanoliquids.

e Three dimensional flow problems of different non-Newtonian nanoliquids in the presence

of mass and heat flux boundary conditions.

e Binary chemical reaction and activation energy aspects on three dimensional flow of non-

Newtonian nanoliquids.

e Importance of homogeneous and heterogeneous reactions on three dimensional flow of

non-Newtonian nanoliquids.
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