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Preface 

Nanofluids are engineered colloids made of base fluid and nanoparticles (1-100 nm). The 

nanoparticles colloids have certain physical characteristics that enhance their importance in 

industrial applications like ceramics, paints, coatings, food industries and drug delivery systems. 

These colloids are made of ultrafine nanoparticles. The ultra-high performance cooling is one of 

the major requirements of present industrial technologies. Metals (Cu, Fe, Al and Au), oxide 

ceramics (CuO and Al₂O₃), carbide ceramics (TiC and SiC), single, double or multiple wall 

nanotubes (SWCNT, DWCNT and MWCNT), semiconductors (SiO and TiO₂) and various 

composite materials are implemented in the production of nanoparticles and are submerged in a 

working fluid to make them nanofluids. The nanofluids are usually used to overcome the poor 

thermal performance of ordinary fluids like propylene glycol, water, oil and ethylene glycol. 

Nanotechnology is very useful in the development of better lubricants and oils. Such 

consideration is successfully implemented now in field of biomedical engineering like cancer 

therapy and safer surgery. 

The boundary-layer flows due to stretching surface are prominent in plastic and metal industries 

like annealing and thinning of copper wires, drawing of stretching sheets through quiescent 

fluids, polymer filament or sheet extruded from a dye, manufacturing of plastic and rubber 

sheets, continuous cooling of fiber spinning, boundary layer along a liquid film condensation 

process and aerodynamic extrusion of plastic films. There is no doubt that nanofluids have vital 

role in the heat transfer enhancement. Thus we intend to study the boundary-layer flows in the 

presence of nanoparticles. It is further noted that two-dimensional flow problems in literature are 

much studied when compared with the three-dimensional flow problems. Keeping such facts in 



mind the prime objective of present thesis is to analyze three-dimensional flow problems of 

nanofluids due to stretching surface. The present thesis is structured as follows. 

Chapter one contains literature survey of relevant previous published works and laws of 

conservation of mass, momentum, energy and concentration transport. Mathematical formulation 

and boundary-layer expressions of Maxwell, Oldroyd-B, Jeffrey and Sisko fluids are provided. 

Basic concept of optimal homotopy analysis method is also included. 

Chapter two addresses three-dimensional flow of viscous nanofluid in the presence of Cattaneo-

Christov double diffusion. Thermal and concentration diffusions are considered by introducing 

Cattaneo-Christov fluxes. Novel features of Brownian motion and thermophoresis are retained. 

The conversion of nonlinear partial differential system to nonlinear ordinary differential system 

is done through suitable transformations. The obtained nonlinear systems are solved. Graphs are 

plotted in order to analyze that how the temperature and concentration profiles are affected by 

distinct physical parameters. Skin friction coefficients and rates of heat and mass transfer are 

numerically computed and addressed. The contents of this chapter are published in Results in 

Physics 6 (2016) 897-903. 

Chapter three explores three-dimensional flow of viscous nanofluid characterizing porous space 

by Darcy-Forchheimer relation. Both thermal convective and zero nanoparticles mass flux 

conditions are utilized. The modeled systems are reduced into dimensionless expressions. The 

governing mathematical system is solved by optimal homotopy analysis method (OHAM). 

Importance of physical parameters is described through the plots. Numerical computations are 

presented to study skin-friction coefficients and Nusselt number. The outcomes of this chapter 

are published in Results in Physics 7 (2017) 2791-2797. 



Chapter four examines three-dimensional flow of Maxwell nanofluid. Flow is generated due to a 

bidirectional stretching surface. Mathematical formulation is performed subject to boundary 

layer approach. Heat source/sink, Brownian motion and thermophoresis effects are considered. 

Newly developed boundary condition requiring zero nanoparticle mass flux at boundary is 

employed. The governing nonlinear boundary layer expressions are reduced to nonlinear 

ordinary differential system through appropriate transformations. The resulting nonlinear system 

has been solved. Graphs are plotted to examine the contributions of various physical parameters 

on velocities, temperature and concentration fields. Local Nusselt number is computed and 

examined numerically. The results of this chapter are published in Applied Mathematics and 

Mechanics-English Edition 36 (2015) 747-762. 

Chapter five describes magnetohydrodynamic (MHD) three-dimensional flow of Maxwell 

nanofluid subject to convective boundary condition. Flow induced is by a bidirectional stretching 

surface. Effects of thermophoresis and Brownian motion are present. Unlike the previous cases 

even in the absence of nanoparticles, the correct formulation for the flow of MHD Maxwell fluid 

is established. Newly suggested boundary condition having zero nanoparticles mass flux is 

utilized. The resulting nonlinear ordinary differential systems are solved for the velocities, 

temperature and concentration distributions. Effects of physical parameters on temperature and 

concentration are plotted and examined. Numerical values of local Nusselt number are computed 

and analyzed. The contents of this chapter are published in Journal of Magnetism and 

Magnetic Materials 389 (2015) 48-55. 

Chapter six presents three-dimensional flow of Maxwell nanofluid subject to rotating frame. 

Flow is induced by uniform stretching of boundary surface in one direction. Novel aspects of 

Brownian diffusion and thermophoresis are accounted. Boundary layer approach is invoked to 



simplify the governing system of partial differential equations. Suitable variables are introduced 

to non-dimensionalize the relevant boundary layer expressions. Newly proposed boundary 

condition associated with zero nanoparticles mass flux is imposed. Uniformly valid convergent 

solution expressions are developed through optimal homotopy analysis method (OHAM). 

Graphs have been sketched in order to explore the role of embedded flow parameters. Heat 

transfer rate has been computed and analyzed. The outcomes of this chapter are published in 

Journal of Molecular Liquids 229 (2017) 541-547. 

Chapter seven examines three-dimensional rotating flow of Maxwell fluid in the presence of 

nanoparticles. Flow is induced due to an exponentially stretching sheet. Optimal homotopic 

approach is employed for the solution of governing system. The optimal values of auxiliary 

parameters are computed. The optimal solution expressions of temperature and concentration are 

elaborated via plots by employing various values of involved parameters. Moreover the local 

Nusselt and Sherwood numbers are characterized by numerical data. The results of this chapter 

are published in Journal of Molecular Liquids 229 (2017) 495-500. 

Chapter eight addresses three-dimensional flow of MHD Oldroyd-B nanofluid. Flow is induced 

by a bidirectional stretching surface. Novel attributes of Brownian motion and thermophoresis 

are considered. Newly developed boundary condition requiring zero nanoparticles mass flux is 

employed. The governing nonlinear boundary layer equations through appropriate 

transformations are reduced into the nonlinear ordinary differential systems. The obtained 

nonlinear system has been solved for the velocities, temperature and concentration profiles. The 

contributions of various physical parameters are studied graphically. The local Nusselt number is 

tabulated and discussed. The contents of this chapter are published in Journal of Molecular 

Liquids 212 (2015) 272-282. 



Chapter nine explores magnetohydrodynamic (MHD) three-dimensional stretching flow of an 

Oldroyd-B nanofluid in the presence of heat generation/absorption and convective boundary 

condition. A condition associated with nanoparticles mass flux at the surface is utilized. The 

strong nonlinear differential equations are solved through optimal homotopy analysis method 

(OHAM). Effects of various physical parameters on temperature and concentration are studied. 

The local Nusselt number is also computed and analyzed. The outcomes of this chapter are 

published in International Journal of Thermal Sciences 111 (2017) 274-288. Chapter ten 

extends the analysis of chapter eight for Jeffrey nanofluid. The results of this chapter are 

published in Zeitschrift für Naturforschung A 70 (2015) 225-233. Chapter eleven presents 

bidirectional stretched flow of Jeffrey nanofluid subject to convective boundary condition. 

Modeling and computations are prepared subject to thermophoresis, Brownian motion and zero 

nanoparticles mass flux. Computational results for the velocities, temperature, concentration and 

Nusselt number are presented. The contents of this chapter are published in Journal of 

Aerospace Engineering 29 (2016) 04015054. 

Chapter twelve examines combined effects of magnetic field and nanoparticles in three-

dimensional flow of Sisko fluid. Nanofluid for Brownian motion, thermophoresis and zero 

nanoparticles mass flux at surface is adopted. Nonlinear differential systems are solved first for 

the convergent solutions and then analyzed. The outcomes of this chapter are published in 

Advanced Powder Technology 27 (2016) 504-512. Chapter thirteen is prepared to extend the 

flow analysis of previous chapter in presence of convective condition. The results of this chapter 

are published in Journal of Magnetism and Magnetic Materials 413 (2016) 1-8. 

Chapter fourteen presents the major findings and some possible extensions of presented research 

work. 
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Chapter 1

Basics of liquid mechanics

1.1 Introduction

The current chapter contains survey of literature corresponding to nanoliquid, magnetohydrody-

namics, extending surface, non-Newtonian ‡uids and Darcy-Forchheimer porous medium. Con-

stitutive expressions of Maxwell, Oldroyd-B, Je¤rey and Sisko ‡uids are included. Boundary-

layer expressions for three dimensional (3D) ‡ows of non-Newtonian ‡uids (Sisko, Maxwell,

Oldroyd-B and Je¤rey) are also given.

1.2 Background

Dilute suspensions of …bers and particles of nano-sized submerged in liquids are designated as

“nanoliquids”. The nanoliquids completely variation the thermal performance of these mix-

tures which arises e.g. density, viscosity, di¤usivity and thermal conductivity. In all these

physical features, thermal conductivity is the most important one because of its importance in

various physical implications. The nanoparticles in generally are made of metal oxides (2

2 23 2) metallic () carbon (nanotubes, diamond) or any other materi-

als. Ordinary liquid has poor conductivity. This poor conductivity can be improved greatly

with the use of nanoparticles. In fact, the Brownian motion factor of nanoparticles in base

liquid is important in this direction. A great amount of heat is produced in heat exchangers

and microelectro mechanical processes to reduce the framework performance. Liquid thermal

5



conductivity is improved by nanoparticles addition just to cool such industrial processes. The

nanoparticles have super…cial importance in biological and engineering applications like medi-

cine, solar cells, catalysts, electronics, optics, materials, manufacturing, glass industry, turbine

blades cooling, plasma and laser cutting processes etc. Choi and Eastman [1] tentatively inves-

tigated the framework of nanoparticles and they inferred that the inclusion of nanoparticles into

common base ‡uids is exceedingly helpful method to improve the cooling ability of ordinary

‡uids. Buongiorno [2] built up a two-component relation for investigating thermal energy trans-

port in nanoliquids. The relation is based on two important slip mechanisms namely Brownian

motion and thermophoresis. A sizeable information on nanoliquids have been presented in the

literature. Here we present some important researches which have been reported by considering

the features of thermophoretic and Brownian motion (see [3 ¡ 25] and several investigations

therein).

The centrality of magneto nanoliquids has redesigned strikingly in biomedical industry.

Such liquids have potential applications in gastric meds, cleaned devices, adroit biomaterials for

wound treatment and various others. An associated alluring …eld can be considered for control

of electrically coordinating nanoliquids to achieve the most astonishing quality thing in present

day amassing. Particular examinations have been made in the past to review the enormous

execution of magneto nanoliquids suspension in which the nanoparticles are in a vague demand

from proteins or DNA. The magneto nanoparticles have been similarly utilized for transfer of

tumor through hyperthermia, appealing resonation imaging, concentrating on sedate release,

synergistic e¤ects in immunology, asthma treatment and so forth [26]  Lin et al. [27] examined

the su¢ciency of MHD in unsteady pseudo-plastic nanoliquid ‡ow past a thin …lm by employing

heat source. Free-convective ‡ow of MHD nanoliquid is considered by Sheikholeslami et al.

[28]  Abbasi et al. [29] depicted e¤ect of MHD in thermally and solutally strati…ed Maxwell

nanoliquid ‡ow by a moving surface. Hayat et al. [30] discussed MHD Sisko nanoliquid ‡ow

with magnetic …eld. They considered that ‡ow generation is because of bidirectional extending

surface. Heysiattalab et al. [31] dissected anisotropic conduct of magnetic nanoliquids (MNFs)

at …lmwise condensation by vertical surface subject to parameter directional magnetic …eld

impact. MHD three dimensional (3D) ‡ow of nanoliquid by convectively heated nonlinear

extending surface is considered by Hayat et al. [32]  Hayat et al. [33] likewise analyzed doubly

6



strati…ed thixotropic nanoliquid ‡ow subject to magnetic …eld impact. Malvandi et al. [34]

examined thermal attributes in hydro-magnetic nanoliquid ‡ow inside vertical micro-annular

tube. Hayat et al. [35] investigated MHD three dimensional (3D) Oldroyd-B nanoliquid ‡ow

with heat source/sink.

The examinations of boundary-layer ‡ows bounded by extending surface are fundamentally

expanded all through the previous couple of decades because of their useful enormity in modern

and innovative frameworks. Such ‡ows incorporate into wire drawing, paper generation, ex-

pulsion of plastic sheets, drawing of plastic movies, glass …ber creation, hot rolling and various

others. Thus Sakiadis [36] presented an examination to take a gander at the ‡ow caused by

continuously moving surface. At that point Crane [37] continued crafted by Sakiadis [36] for

extending surface and gave a correct answer for velocity …eld. After innovative examination

of Crane, a couple of experts have examined particular issues of extending surface. Many of

examinations in literature manage two dimensional (2D) ‡ow by extending sheet. There are

uncommon examinations available in literature with respect to three-dimension (3D) ‡ow by

extending sheet. In this wayWang [38] talked about three dimensional (3D) ‡ow bounded by ex-

tending surface. He demonstrated that established issues of axisymmetric and two dimensional

(2D) ‡ows actuated by extending surface can be viably pro…cient from this examination. At

that point Ariel [39] inspected three dimension ‡ow by extending surface. He gave exact and

homotopic perturbation arrangements of representing framework. Hydro-magnetic unsteady

three dimensional (3D) extending ‡ow is examined by Xu et al. [40] MHD three dimension

(3D) ‡ow saturating porous media by extending surface is analyzed by Hayat et al. [41] Liu et

al. [42] explored three dimension viscous liquid ‡ow by exponential extending surface. Recently

Hayat et al. [43] reported three dimension viscous nanoliquid ‡ow by extending surface subject

to Cattaneo-Christov double di¤usion.

Recently the ‡ow analysis of non-Newtonian ‡uids has gained considerable attention. Es-

pecially such ‡uids are experienced in the foodstu¤s, plastic and metal industries, nuclear and

chemical industries, bioengineering and polymeric liquids etc. All the non-Newtonian liquid

expressions by means of their di¤erent properties cannot be made distinct by employing one

relationship. Thus various relations are suggested in agreement with the characteristics of non-

Newtonian ‡uids. The procedure of stress retardation and relaxation is portrayed by rate-type
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non-Newtonian expressions. The most straightforward subclass of rate-type non-Newtonian liq-

uid is named as Maxwell liquid [44]  This relation analyzed striking qualities of relaxation time.

Maxwell liquid can’t foresee the e¤ect of retardation time. To anticipate the e¤ects of both re-

tardation and relaxation times, the Oldroyd-B liquid relation [45] has been recommended. The

vast majority of organic and polymeric materials more often than not show the qualities of both

retardation and relaxation times. Further the Je¤rey liquid relation [46] is a subclass of rate

type non-Newtonian ‡uids. This liquid relation exhibits the properties of ratio of relaxation to

retardation and retardation times. Then again, Sisko liquid relation [47] portrays both pseudo-

plastic and dilatant ‡uids relying upon their shear thinning and shear thickening highlights.

Sisko liquid relation is a more summed up adaptation of power law relation. It comprises of

both power law and viscous models. Further Sisko liquid can depict many typical properties of

viscous and non-Newtonian liquids through selection of the various material variables.

The phenomenon of ‡ow transport in porous space is a subject of recent advancements in

geophysical and engineering processes. These processes are encountered in the applications like

frameworks of ground water, grain storage, gas-cleaning …ltration, vessels of gas-cooled reac-

tors, insulation of granular and …ber, machines of high power density, petroleum reservoirs,

porous bearings, porous pipes, blood ‡ow via arteries or lungs, casting solidi…cation, fossil fuel

beds etc. These applications have attained the potential interest of engineers and scientists

from di¤erent …elds. Much works corresponding to porous media problems are dealt with by

utilizing the Darcy’s theory [48] The main disadvantage of this theory is that it works only for

those problems which are modeled by accounting low porosity and smaller velocities. Many of

practical implications involve the non-uniform porous distribution and higher ‡ow transport.

In such circumstances, the Darcy’s theory fails to describe the exact nature of physical phe-

nomenon. For this purpose, the involvement of non-Darcian e¤ects is accounted to describe

the exact conduct of physical problem. Forchheimer [49] considered such factors by using the

additional term through square velocity in Darcian velocity expression. Muskat [50] veri…ed

that this law holds for higher Reynolds parameter. Seddeek [51] utilized the Darcy-Forchheimer

theory to explore the mixed convective thermophoretic ‡ow saturated in porous space. Con-

vective ‡ow with radiation and temperature-dependent viscosity in non-Darcian porous space

has been disclosed by Pal and Mondal [52] Pal and Chatterjee [53] elaborated the features of

8



micropolar liquid ‡ow in non-Darcy porous space with radiation and temperature-dependent

heat source. Singh et al. [54] developed an analysis of hydro-magnetic time-dependent ‡ow in

porous channel by employing the Darcy-Brinkman-Forchheimer expression. Gireesha et al. [55]

numerically computed the problem of liquid-particle submersion in viscous liquid ‡ow saturated

in non-Darcy porous medium. Hayat et al. [56] described properties of temperature-dependent

conductivity in Darcy-Forchheimer porous space. Shehzad et al. [57] analytically explored the

features of non-linear convective ‡ow of Oldroyd-B liquid in non-Darcian space with Cattaneo-

Christov theory of heat di¤usion. Further relevant investigations on Darcy-Forchheimer ‡ow

can be quoted through the studies [58¡ 66] and various attempts therein.

1.3 Basic laws

1.3.1 Law of mass conservation

It is stated that the total mass in any closed framework is conserved. Di¤erential form of law

of mass conservation is



+r ¢ (V) = 0 (1.1)

here V exhibits liquid velocity and  represents liquid density. The above expression for an

incompressible liquid is

r ¢V = 0 (1.2)

1.3.2 Law of momentum conservation

It is stated that the total linear momentum of a closed framework is conserved. Di¤erential

form of law of momentum conservation is given by


V


=r ¢ ¿+b (1.3)

Here ¿ = ¡I+ S stands for Cauchy stress tensor, I for identity tensor,  for pressure, b for

body force, S for extra stress tensor and  for material time derivative. Velocity …eld and
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Cauchy stress tensor for three-diemensional (3D) ‡ow are given by

V = [(  ) (  ) (  )] (1.4)

¿ =

2

6
6
6
4

  

  

  

3

7
7
7
5
 (1.5)

in which    stand for velocity components along ¡ ¡ and ¡directions respectively,

     and  depict shear stresses and   and  represent normal

stresses. Expression (13) in scalar form is expressed by



µ



+ 




+ 




+





¶

=
 ()


+
 ()


+
 ()


+  (1.6)



µ



+ 




+ 




+





¶

=
 ()


+
 ()


+
 ()


+  (1.7)



µ



+ 




+ 




+





¶

=
 ()


+
 ()


+
 ()


+  (1.8)

where ,  and  depict components of body force in ¡ ¡ and ¡axes respectively.

1.3.3 Law of energy conservation

The energy expression for a nanoliquid can be written as





= ¡r ¢ q+ r ¢ j (1.9)

where  stands for speci…c heat,  for speci…c enthalpy of nanoparticles,  for temperature,

j for nanoparticles di¤usion mass ‡ux and q for energy ‡ux. The energy and nanoparticles

di¤usion mass ‡uxes are

q = ¡r + j (1.10)

j = r ¡ 
r

1
 (1.11)

where  stands for thermal conductivity,  for nanoparticle mass density,  for Brownian

movement coe¢cient,  for thermophoretic di¤usion coe¢cient and  for nanoparticle con-
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centration. Now Eq. (19) becomes





= r2 + 

·

rr +
rr

1

¸

 (1.12)

which is the energy expression for nanoliquid.

1.3.4 Law of concentration conservation

The concentration expression for nanoliquid is




= ¡

1


rj (1.13)

After employing Eq. (111)  we have




= r

2 +
r2

1
 (1.14)

which is the concentration expression for nanoliquid.

1.4 Boundary-layer expressions of non-Newtonian ‡uids

1.4.1 Maxwell liquid

Extra stress tensor S for Maxwell liquid is

µ

1 + 1




¶

S = S+ 1
S


= A1 (1.15)

where 1 stands for relaxation time,  for covariant di¤erentiation,  for dynamic viscosity

and A1 for …rst Rivlin-Erickson tensor. First Rivlin-Erickson tensor is

A1 = (gradV)
 0 + gradV (1.16)
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in which  0 exhibits matrix transpose. For three dimensional (3D) ‡ow, we get

A1 =

2

6
6
6
4

2

 +





 +





 +


 2


 +





 +





 +


 2

3

7
7
7
5
 (1.17)

For tensor S for rank two, vector b1 and scalar  we have

S


=
S


+ (V ¢r)S¡ S(gradV)

0
¡ (gradV)S (1.18)

b1


=
b1


+ (V ¢r)b1 ¡ (gradV)b1 (1.19)




=



+ (V ¢r) (1.20)

Application of
¡
1 + 1




¢
on Eq. (13) we get following expression in absence of body forces



µ

1 + 1




¶
V


= ¡

µ

1 + 1




¶

r+

µ

1 + 1




¶

(r ¢ S) (1.21)

By using the process as in ref. [67] we get




(r¢) = r ¢

µ




¶

 (1.22)

Hence above expression in the absence of pressure gradient becomes



µ

1 + 1




¶
V


=  (r ¢A1)  (1.23)

Thus above expression for steady Maxwell liquid ‡ow is expressed by





+ 




+




+ 1

0

@
2 

2
2 + 2 

2
2 +2 

2
2

+2 2
 + 2

2
 + 2

2


1

A = 

µ
2

2
+
2

2
+
2

2

¶



(1.24)





+ 




+




+ 1

0

@
2 

2
2

+ 2 
2

2
+2 

2
2

+2 2
 + 2

2
 + 2

2


1

A = 

µ
2

2
+
2

2
+
2

2

¶



(1.25)
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+ 




+




+ 1

0

@
2 

2
2 + 2 

2
2 +2 

2
2

+2 2
 + 2

2
 + 2

2


1

A = 

µ
2

2
+
2

2
+
2

2

¶



(1.26)

By employing the boundary-layer approach [68] orders for    and  and  and  are 1

and  Then ¡momentum expression vanishes automatically because it has order  Thus

expressions of boundary-layer for 3D Maxwell liquid ‡ow are





+ 




+




+ 1

0

@
2 

2
2

+ 2 
2

2
+2 

2
2

+2 2
 + 2

2
 + 2

2


1

A = 
2

2
 (1.27)





+ 




+




+ 1

0

@
2 

2
2

+ 2 
2

2
+2 

2
2

+2 2
 + 2

2
 + 2

2


1

A = 
2

2
 (1.28)

1.4.2 Oldroyd-B liquid

Extra stress tensor S for an Oldroyd-B liquid is expressed by

µ

1 + 1




¶

S = S+ 1
S


= 

µ

1 + 2




¶

A1 (1.29)

in which 2 exhibits retardation time and law of momentum conservation in the absence of

body force and pressure gradient can be written by



µ

1 + 1




¶
V


= 

µ

1 + 2




¶

(r ¢A1) (1.30)

Scalar forms of expressions of boundary-layer in present situation are





+ 




+




+ 1

0

@
2 

2
2 + 2 

2
2 + 2

2


+2 
2

2
+ 2 2

 + 2
2


1

A

= 

0

@
2

2
+ 2

0

@
 3
2 +  3

2 ¡



2
2

+3
3

¡ 


2
2

¡ 


2
2

1

A

1

A  (1.31)
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A
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0

@
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2
+ 2

0

@
 3
2

+  3
2

+3
3

¡


2
2

¡ 


2
2

¡ 


2
2

1

A

1

A  (1.32)

1.4.3 Je¤rey liquid

Extra stress tensor for Je¤rey liquid can be mentioned as follows:

S =


1 + ¤

µ

A1 + 2
A1


¶

 (1.33)

Here ¤ stands for relaxation to retardation times ratio. Moreover tensor of extra stress S gives

 =


1 + ¤

µ

2



+ 2

µ





+ 




+





¶

2




¶

 (1.34)

 =


1 + ¤

µµ



+




¶

+ 2

µ





+ 




+





¶µ



+




¶¶

=  (1.35)

 =


1 + ¤

µµ



+




¶

+ 2

µ





+ 




+





¶µ



+




¶¶

=  (1.36)

 =


1 + ¤

µ

2



+ 2

µ





+ 




+





¶

2




¶

 (1.37)

 =


1 + ¤

µµ



+




¶

+ 2

µ





+ 




+





¶µ



+




¶¶

=  (1.38)

 =


1 + ¤

µ

2



+ 2

µ





+ 




+





¶

2




¶

 (1.39)

The law of momentum conservation for Je¤rey liquid provides



µ





+ 




+





¶

=



 +




 +




 (1.40)



µ





+ 




+





¶

=



 +




 +




 (1.41)



µ





+ 




+





¶

=



 +




 +




 (1.42)
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where body forces and pressure gradient are absent. By putting       

 and  in expressions (140)¡ (142) and then employing boundary layer approximations

one has





+ 




+




=



1 + ¤

0

@
2

2
+ 2

0

@



2
 +




2
 +




2
2

+ 3
2

+  3
2

+3
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1

A

1

A  (1.43)
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2
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+ 3
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+  3
2

+3
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1

A

1

A  (1.44)

1.4.4 Sisko liquid

The extra stress tensor for Sisko liquid can be de…ned below:

S =

2

4+ 

¯
¯
¯
¯
¯

r
1

2
(A21)

¯
¯
¯
¯
¯

¡1
3

5A1 (1.45)

Here   and  ( ¸ 0) are the material constants of the Sisko liquid. Moreover extra stress

tensor S in components form is de…ned by

 =

Ã

+ 

¯
¯
¯
¯
1

2
(A21)

¯
¯
¯
¯

¡1
2

!µ

2




¶

 (1.46)

 =

Ã

+ 

¯
¯
¯
¯
1

2
(A21)

¯
¯
¯
¯

¡1
2

!µ



+




¶

=  (1.47)

 =

Ã
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¯
¯
¯
¯
1

2
(A21)

¯
¯
¯
¯

¡1
2

!µ



+




¶

=  (1.48)

 =

Ã
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¯
¯
¯
¯
1

2
(A21)

¯
¯
¯
¯

¡1
2

!µ

2




¶

 (1.49)

 =

Ã
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¯
¯
¯
¯
1

2
(A21)

¯
¯
¯
¯

¡1
2
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+




¶

=  (1.50)

 =
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¯
¯
¯
1

2
(A21)

¯
¯
¯
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 (1.51)
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where

¯
¯
¯
¯
1

2
(A21)

¯
¯
¯
¯

¡1
2

=

¯
¯
¯
¯
¯
2

µ




¶2
+ 2

µ




¶2
+ 2

µ




¶2

+

µ



+




¶2
+

µ



+




¶2
+

µ



+




¶2
¯
¯
¯
¯
¯
 (1.52)

Law of momentum conservation for Sisko liquid provides
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 (1.53)
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 (1.54)
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¶

=
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 (1.55)

where body forces and pressure gradient have been omitted. By putting the estimations of 

       and  in expressions (153) ¡ (155) and then employing

approximations of boundary-layer we …nally get
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 (1.56)
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¯
¯
¯
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¡1
#

 (1.57)

1.5 Solutions by OHAM

The optimal homotopic analysis technique (OHAM) is utilized to …nd the approximate arrange-

ments of highly nonlinear problems. The optimal homotopy analysis technique gives us a con-

venient way to control the convergence of approximation homotopy arrangements and adjust

convergence regions. For the fundamental concept of optimal homotopy analysis technique, we

assume a nonlinear di¤erential expression

N [ ()] = 0 (1.58)
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in which N stands for nonlinear operator,  () for unknown function and  for independent

parameter.

1.5.1 Zeroth-order deformation problems

(1¡ )L [̂ (; )¡ 0 ()] = ~N [̂ (; )]  (1.59)

in which 0 () stands for the initial approximation, L for auxiliary linear operator,  2 [0 1] for

embedding parameter, ~ for nonzero auxiliary parameter and ̂ (; ) for the unknown function

of  and .

1.5.2 mth-order deformation problems

Di¤erentiating  times zeroth approximation i.e., Eq. (159) w.r.t.  then dividing via ! and

…nally inserting  = 0 we have expression for th-order

L [ ()¡ ¡1 ()] = ~R ()  (1.60)

R () =
1

(¡ 1)!

N [̂ (; )]



¯
¯
¯
¯
=0

 (1.61)

where

 =

8
<

:

0  · 1

1   1
 (1.62)

Setting  = 0 and  = 1 one has

̂ (; 0) = 0 () and ̂ (; 1) =  ()  (1.63)

The arrangement ̂ (; ) varies from initial deformation 0 () to desired …nal arrangement

 () when  goes from 0 to 1. Using Taylor series expansion one has

̂ (; ) = 0 () +
1X

=1

 () 
  () =

1

!

̂ (; )



¯
¯
¯
¯
=0

 (1.64)

For  = 1 we get

 () = 0 () +
1X

=1

 ()  (1.65)
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1.5.3 Optimal convergence control parameter

The nonzero auxiliary parameter ~ in homotopy arrangements control area of convergence and

also homotopy arrangements rate. To …nd optimal data of convergence control parameter ~

we employed minimization idea by de…ning squared residual errors as proposed by Liao [69] 

 =
1

 + 1

X

=0

2

4N

Ã
X

=0

 ()

!

=

3

5

2

 (1.66)

where  is the total residual square error.
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Chapter 2

Three-dimensional ‡ow of nano‡uid

with Cattaneo-Christov double

di¤usion

Three dimensional (3D) ‡ow of viscous nanoliquid by extending surface has been explored sub-

ject to Cattaneo-Christov double di¤usion. Concentration and thermal di¤usions are described

by presenting Cattaneo-Christov ‡uxes. The novel characteristics in regards to Brownian dis-

persion and thermophoresis are retained. The variation in partial di¤erential framework (PDEs)

to nonlinear ordinary di¤erential framework (ODEs) is done through reasonable transforma-

tions. The subsequent nonlinear frameworks are solved. Plots have been shown keeping in

mind the end goal to examine that how concentration and temperature pro…les are in‡uenced

by distinct relevant ‡ow variables. Besides skin frictions and rates of mass and heat transfer are

numerically …gured and addressed. Our …ndings delineate that concentration and temperature

distributions are diminishing elements of concentration and temperature relaxation variables

respectively.

2.1 Formulation

We elaborate three dimensional (3D) ‡ow of viscous nanoliquid by linear extending surface

subject to constant wall concentration and temperature. The Brownian movement and ther-

19



mophoresis perspectives are accounted. Here ¡ and ¡axes are along the extending surface

while ¡axis is normal to surface. Let  () =  and  () =  indicate extending veloci-

ties along the ¡ and ¡directions respectively. Mass and heat transfer are examined by means

of Cattaneo-Christov double di¤usion articulations. Resulting expressions for boundary-layer

considerations are



+



+



= 0 (2.1)





+ 




+




= 

2

2
 (2.2)





+ 




+




= 

2

2
 (2.3)

Note that   and  depict velocities in ¡ ¡ and ¡directions while (= ),  and

 stand for kinematic viscosity, density and dynamic viscosity respectively. Cattaneo-Christov

double di¤usion hypothesis has been proposed in portraying concentration and temperature

di¤usions with mass and heat ‡uxes relaxations respectively. At that point frame indi¤erent

generalization with respect to Fourier’s and Fick’s laws (which are termed as Cattaneo-Christov

anomalous di¤usion expressions) are

q+ 

µ
q


+Vrq¡ qrV+(rV)q

¶

= ¡r (2.4)

J+ 

µ
J


+VrJ¡ JrV+(rV)J

¶

= ¡r (2.5)

in which  stands for thermal conductivity,  for Brownian di¤usivity, J and q for mass and

heat ‡uxes respectively,  and  for relaxation time of mass and heat ‡uxes respectively.

Fundamental Fourier’s and Fick’s laws are deduced by putting  =  = 0 in Eqs. (24)

and (25). By using incompressibility condition (rV = 0) and steady ‡ow with (q = 0) and

(J = 0), Eqs. (24) and (25) are diminished by

q+  (Vrq¡ qrV) = ¡r (2.6)

J+  (VrJ¡ JrV) = ¡r (2.7)
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The three dimension (3D) temperature and concentration expressions provide
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 (2.9)

Here one has the following prescribed conditions:

 =  () =   =  () =   = 0  =   =  at  = 0 (2.10)

! 0  ! 0  ! 1  ! 1 as  !1 (2.11)

where
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 (2.12)

and

© = 2
2

2
+ 2
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2

2
+ 2
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¶




+
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+ 




+





¶



+

µ
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¶



 (2.13)

in which  = () , () and () stand for thermal di¤usivity, e¤ective heat potential

of nanoparticles and heat potential of liquid respectively,  for temperature,  for Brown-

ian di¤usivity,  for concentration,  for thermophoretic di¤usion coe¢cient,  and 

for constant wall concentration and temperature and 1 and 1 represent ambient liquid
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concentration and temperature respectively. Selecting

 =  0()  = 0()  = ¡ ()12 ( () +  ()) 

() = ¡1
¡1

 () = ¡1
¡1

  =
¡



¢12


(2.14)

Expression (21) is identically veri…ed and Eqs. (22)  (23) and (28) ¡ (213) have been

diminished to

 000 + ( + ) 00 ¡  02 = 0 (2.15)

000 + ( + )00 ¡ 02 = 0 (2.16)

1

Pr
00 +

00 +
02 + ( + ) 0 ¡ 

³
( + )

¡
 0 + 0

¢
0 + ( + )2 00

´
= 0 (2.17)

1


00 +





1


00 + ( + )0 ¡ 

³
( + )

¡
 0 + 0

¢
0 + ( + )2 00

´
= 0 (2.18)

(0) = (0) = 0  0(0) = 1 0(0) =  (0) = 1 (0) = 1 (2.19)

 0(1)! 0 0(1)! 0 (1)! 0 (1)! 0 (2.20)

Here  stands for ratio number,  for Brownian movement number, Pr denotes Prandtl para-

meter,  stands for nondimensional thermal relaxation number,  for thermophoresis number,

 for nondimensional concentration relaxation number and  for Schmidt parameter. These

variables can be speci…ed by employing the de…nitions given below:

 = 
  Pr =




  =   =  

 =
()(¡1)

()
  =

() (¡1)

()1
  = 




9
=

;
(2.21)

Dimensionless expressions of skin frictions are as follows:

Re
12
  = ¡

00(0)

Re
12
  = ¡

¡3200(0)

9
=

;
(2.22)

where Re =  and Re =  depict local Reynolds parameters.
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2.2 Solutions by OHAM

The optimal series arrangements of Eqs. (215) ¡ (218) through (219) and (220) have been

developed by utilizing optimal homotopic analysis technique (OHAM). The linear operators

and initial deformations have been selected as follows:

0() = 1¡ exp (¡)  0() = (1¡ exp (¡))

0() = exp (¡)  0() = exp (¡) 

9
=

;
(2.23)

L =
3
3

¡ 
  L =

3
3
¡ 

 

L =
2
2
¡  L =

2
2

¡ 

9
=

;
(2.24)

The above linear operators obey

L [
¤
1 +  ¤2 exp () +  ¤3 exp (¡)] = 0

L [
¤
4 +  ¤5 exp () +  ¤6 exp (¡)] = 0

L [
¤
7 exp () +  ¤8 exp (¡)] = 0

L [
¤
9 exp () +  ¤10exp (¡)] = 0

9
>>>>>>=

>>>>>>;

(2.25)

in which  ¤ ( = 1 ¡ 10) stand for arbitrary constants. Problems for zeroth and th-order

deformations are easily formulated in the view of above operators. The deformation issues are

solved by BVPh2.0 of Mathematica software.

2.3 Convergence analysis

We have solved the momentum, energy and concentration expressions with the help of BVPh2.0.

These expressions contain unknown variables ~  ~ ~ and ~ We can compute the minimum

estimation of these variables by taking total error small. In the frame of HAM, these variables

play a vital role. That is why these variables refer to as convergence-control parameter which

di¤ers HAM from other analytical approximation methods. In order to reduce the CPU time,

we have employed average residual errors at the th-oder of approximation which are de…ned
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by
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Here N  N N and N denote the non-linear operators corresponding to Eqs. (215)¡ (218)

respectively. Following Liao [69] :

 =  +  +  +  (2.30)

where  represents total residual square error,  = 20 and  = 05 Optimal data for auxiliary

variables at 2nd order of deformations is ~ = ¡164104 ~ = ¡102624 ~ = ¡0933309 and

~ = ¡0946239 and  = 261 £ 10¡4 Table 21 presents average square residual error at

di¤erent order of deformations. It has been analyzed that the average residual square errors

reduce with higher order deformations.

Table 2.1. Individual average residual square errors employing optimal data of auxiliary

variables.

    

2 427£ 10¡6 129£ 10¡7 140£ 10¡4 117£ 10¡4

6 447£ 10¡8 135£ 10¡10 469£ 10¡7 111£ 10¡6

10 713£ 10¡10 377£ 10¡13 443£ 10¡9 721£ 10¡8

16 183£ 10¡12 635£ 10¡16 441£ 10¡11 987£ 10¡10

20 373£ 10¡14 163£ 10¡17 475£ 10¡12 780£ 10¡11

26 118£ 10¡16 518£ 10¡20 696£ 10¡14 141£ 10¡12

30 262£ 10¡18 120£ 10¡21 347£ 10¡15 938£ 10¡14
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2.4 Discussion

This portion explores the impacts of various pertinent variables like ratio number  Prandtl

parameter Pr Schmidt parameter  Brownian movement number  thermophoresis num-

ber  thermal relaxation number  and concentration relaxation number  on temperature

 () and concentration  () distributions. Fig. 21 presents that bigger estimations of ratio

number  give lower temperature  () and layer of thermal. Furthermore two dimension (2D)

‡ow situation is acquired when  = 0 Fig. 22 exhibits that how temperature …eld  () is

get a¤ected by Prandtl parameter Pr. It is watched that by upgrading Prandtl parameter Pr,

the temperature  () and layer of thermal diminishes. Physically, as Prandtl parameter Pr is

a basic piece of thermal di¤usivity, in this way, thermal di¤usivity is in charge of lower tem-

perature. Higher estimations of Prandtl parameter Pr provide poor thermal di¤usivity which

compares to bring down temperature …eld and less layer of thermal. Fig. 23 exhibits the

variety in temperature …eld  () for distinct estimations of Brownian movement number .

It has been clearly watched that by expanding Brownian movement number , an upgrade

showed up in temperature  () and its corresponding layer of thermal. Fig. 24 is attracted

to portray the impact of thermophoreis parameter  on temperature …eld  (). expanding

estimations of thermophoresis number  constitutes a elevated temperature and more layer

of thermal. The purpose for this contention is that an improvement in  provide a more

grounded thermophoretic force which permits further movement of nanoparticles in the liquid

which is far from the surface structures a elevated temperature and layer of thermal. Fig. 25

presents variety in temperature  () for various estimations of thermal relaxation number .

It has been obviously analyzed that an upgrade in the estimation of thermal relaxation number

 exhibits diminishing conduct for temperature  () and layer of thermal. Here  = 0 speaks

to that the present relation is lessened to basic Fourier’s law. Fig. 26 portrays that expanding

estimations of ratio number  presents a poor concentration distribution  () and less layer

of concentration. Fig. 27 presents that more prominent Schmidt parameter  shapes a di-

minishment in concentration …eld (). Physically Schmidt parameter depends on Brownian

di¤usivity. An expansion in Schmidt parameter  provide poor Brownian di¤usivity. Such

poor Brownian di¤usivityrelates to bring down concentration …eld (). From Fig. 28 it is

clearly inspected that a poor concentration …eld () is created by utilizing bigger Brownian
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movement number . Fig. 29 exhibits that higher thermophoresis number  create a more

grounded concentration …eld (). Fig. 210 presents how concentration relaxation number

 a¤ects concentration …eld (). By expanding , both concentration () and layer of

concentration diminishes. Here  = 0 represents that present relation is diminished to basic

Fick’s law. Table 22 exhibits the comparison for di¤erent estimations of  with exact arrange-

ment. Table 22 presents an excellent agreement of OHAM arrangement with the existing exact

arrangement in a limiting situation. Table 23 is developed to analyze skin frictions ¡Re
12


and ¡ Re
12
 for several estimations of  It is watched that skin frictions show opposite

conduct for bigger ratio number  Numeric estimations of transfer of heat rate ¡0 (0) for dis-

tinct thermal relaxation  are presented in Table 24. Here we examined that transfer of heat

rate has higher estimations for bigger . Table 25 exhibits numerical estimations of transfer

of mass rate ¡0 (0) for distinct estimations of concentration relaxation . It is watched that

estimations of transfer of mass rate are greater when bigger estimations of  are considered.
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Table 2.2. Comparative estimations of ¡ 00 (0) and ¡00 (0) for several estimations of 

 ¡ 00(0) ¡00(0)

OHAM Exact [38] OHAM Exact [38]

0 1 1 0 0

025 1048811 1048813 0194564 0194564

050 1093095 1093097 0465205 0465205

075 1134486 1134485 0794618 0794622

10 1173722 1173720 1173722 1173720

Table 2.3. Numeric data for skin frictions ¡Re
12
 and ¡ Re

12
 for distinct estimations

of 

 01 04 07 10

¡Re
12
  102026 107579 112640 117372

¡Re
12
  211389 138037 123711 117372
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Table 2.4. Numeric data for transfer of heat rate ¡0 (0) for distinct estimations of  when

 =  = 01  = 03  = 02 and Pr =  = 10

 00 01 02 03

¡0 (0) 051107 051884 052697 053541

Table 2.5. Numeric data for transfer of mass rate ¡0 (0) for distinct estimations of  when

 =  = 01  = 03  = 02 and Pr =  = 10

 00 01 02 03

¡0 (0) 050540 051536 052574 053673
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Chapter 3

A revised model for

Darcy-Forchheimer three

dimensional ‡ow of nano‡uid subject

to convective boundary condition

Three dimensional ‡ow of nanoliquid characterizing porous space by Darcy-Forchheimer expres-

sion is studied. Zero nanoparticles mass ‡ux and thermal convective conditions are implemented

at the boundary. The modeled expressions are diminished into dimensionless quantities. The

governing mathematical phenomenon is tackled via optimal homotopic procedure. Importance

of physical constraints is described through plots. Numerical benchmark is presented to study

skin frictions and local Nusselt number. Skin frictions are declared expanding functions of

porosity and Forchheimer variables. Moreover the local Nusselt number is diminished for big-

ger estimations of porosity and Forchheimer variables.

3.1 Formulation

Three dimensional ‡ow of nanoliquid …lling porous space by Darcy-Forchheimer relation is

studied. Flow is by a bidirectional extending surface. Nanoliquid relation describes attributes
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of thermophoresis and Brownian movement. Thermal convection and zero nanoparticles ‡ux

constraints are implemented at boundary. We consider Cartesian coordinate framework such

that ¡ and ¡axes are picked along and normal to extending surface. Let  () =  and

 () =  be the extending velocities along the ¡ and ¡directions. The surface temperature

is controlled by a convective heating procedure which is portrayed by heat exchange coe¢cient

 and temperature of hot liquid  under the surface. The boundary-layer expressions for ‡ow

under consideration are
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Here one has the following prescribed conditions:

 =   =   = 0 ¡ 



=  ( ¡  )  




+


1




= 0 at  = 0 (3.6)

! 0  ! 0  ! 1  ! 1 as  !1 (3.7)

Here   and  represent velocities in ¡ ¡ and ¡directions,  =  stands for kinematic

viscosity,  for dynamic viscosity,  for density,  for permeability of porous medium,  =


12 for nonuniform inertia coe¢cient,  for drag coe¢cient,  for temperature,  =

() for thermal di¤usivity,  for thermal conductivity, () for e¤ective heat potential

of nanoparticles, () for heat potential of liquid,  for concentration,  for Brownian

movement coe¢cient,  for thermophoretic di¤usion coe¢cient, 1 for ambient temperature,
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1 for ambient concentration and  and  for positive constants. Selecting

 =  0()  = 0()  = ¡ ()12 ( + ) 

() = ¡1
¡1

 () = ¡1
1

  =
¡



¢12


(3.8)

Now Eq. (31) is identically veri…ed while Eqs. (32)¡ (37) are

 000 + ( + ) 00 ¡  02 ¡  0 ¡ 
02 = 0 (3.9)

000 + ( + )00 ¡ 02 ¡ 0 ¡ 
02 = 0 (3.10)

00 +Pr
¡
( + )0 +

00 +
02
¢
= 0 (3.11)

00 + ( + )0 +



00 = 0 (3.12)

(0) = (0) = 0  0(0) = 1 0(0) =  0(0) = ¡ (1¡  (0))  
0(0) +

0(0) = 0 (3.13)

 0(1)! 0 0(1)! 0 (1)! 0 (1)! 0 (3.14)

Here  stands for porosity number,  for ratio number,  for Schmidt parameter,  for

Forchheimer parameter, Pr for Prandtl parameter,  for Biot parameter,  for Brownian

movement number and  for thermophoresis number. These variables can be speci…ed by

employing the de…nitions given below:

 = 
   =


12   =


  Pr =




  = 




 =



p

   =

() (¡1)
()1

  =
()1
()



9
=

;
(3.15)

Dimensionless relations of skin frictions and Nusselt number are

Re
12
  = ¡

00(0)

Re
12
  = ¡

¡3200(0)

Re
¡12
  = ¡

0 (0) 

9
>>>=

>>>;

(3.16)

where Re =  and Re =  depict local Reynolds parameters. It is additionally

watched that Sherwood number is now identically vanishes.

35



3.2 Solutions by OHAM

The optimal series arrangements of Eqs. (39) ¡ (312) through (313) and (314) have been

developed by utilizing optimal homotopic analysis technique (OHAM). The linear operators

and initial deformations have been selected as follows:

0() = 1¡ exp (¡)  0() = (1¡ exp (¡))

0() =

1+ exp (¡)  0() = ¡


1+



exp (¡) 

9
=

;
(3.17)

L =
3
3

¡ 
  L =

3
3
¡ 

 

L =
2
2
¡  L =

2
2

¡ 

9
=

;
(3.18)

The above linear operators obey

L [
¤
1 +  ¤2 exp () +  ¤3 exp (¡)] = 0

L [
¤
4 +  ¤5 exp () +  ¤6 exp (¡)] = 0

L [
¤
7 exp () +  ¤8 exp (¡)] = 0

L [
¤
9 exp () +  ¤10exp (¡)] = 0

9
>>>>>>=

>>>>>>;

(3.19)

where  ¤ ( = 1 ¡ 10) stand for arbitrary constants. Problems for zeroth and th-order

deformations are easily formulated in the view of above operators. The deformation issues are

solved by BVPh2.0 of Mathematica software.

3.3 Convergence analysis

We have solved the momentum, energy and concentration expressions with the help of BVPh2.0.

These expressions contain unknown variables ~  ~ ~ and ~ We can compute the minimum

estimation of these variables by taking total error small. In the frame of HAM, these variables

play a vital role. That is why these variables refer to as convergence-control parameter which

di¤ers HAM from other analytical approximation methods. In order to reduce the CPU time,

we have employed average residual errors at the th-oder of approximation which are de…ned
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Here N  N N and N denote the non-linear operators corresponding to Eqs. (39)¡ (312)

respectively. Following Liao [69] :

 =  +  +  +  (3.24)

where  exhibits total residual square error,  = 20 and  = 05 Optimal data for auxiliary

variables at 2nd order of deformations is ~ = ¡136269 ~ = ¡121974 ~ = ¡134638 and

~ = ¡122194 and  = 269 £ 10¡4 Table 31 presents average square residual error at

di¤erent order of deformations. It has been analyzed that the average residual square errors

reduce with higher order deformations.

Table 3.1. Individual average residual square errors employing optimal data of auxiliary

variables.

    

2 141£ 10¡4 322£ 10¡6 480£ 10¡5 771£ 10¡5

6 160£ 10¡5 821£ 10¡7 280£ 10¡6 242£ 10¡5

10 553£ 10¡6 367£ 10¡7 547£ 10¡7 124£ 10¡5

16 200£ 10¡6 153£ 10¡7 106£ 10¡7 579£ 10¡6

20 122£ 10¡6 975£ 10¡8 471£ 10¡8 386£ 10¡6

26 679£ 10¡7 562£ 10¡8 178£ 10¡8 233£ 10¡6

30 492£ 10¡7 412£ 10¡8 106£ 10¡8 176£ 10¡6
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3.4 Discussion

This section has been arranged to explore the e¤ects of various pertinent variables like poros-

ity parameter  Forchheimer parameter  Schmidt parameter  ratio number  Prandtl

parameter Pr Biot parameter  Brownian movement number  and thermophoresis number

 on temperature  () and concentration  () distributions. Impact of porosity number  on

temperature  () is shown in Fig. 31 Here temperature pro…le  () and layer of thermal are

higher with an expansion in porosity parameter  Physically the nearness of permeable media

is to upgrade the protection from liquid ‡ow which prompts a more grounded temperature  ()

and more layer of thermal. Fig. 32 presents impact of Forchheimer parameter  on  () 

An improvement in Forchheimer parameter  corresponds to a stronger temperature pro…le

 () and more layer of thermal. Fig. 33 exhibits that bigger estimations of ratio number 

correspond to poor temperature pro…le  () and less layer of thermal. Moreover two dimension

(2D) ‡ow situation is recovered when  = 0 Fig. 34 illustrates that how temperature …eld

 () gets a¤ected with the variation in Prandtl parameter Pr  It is watched that by upgrading

Prandtl parameter Pr, temperature  () and layer of thermal decrease. Physically, as Prandtl

parameter Pr has converse connection with thermal di¤usivity, subsequently, an addition in

Pr prompts poor thermal di¤usion and accordingly more thinner penetration depth of  () 

Fig. 35 displays that an improvement in Biot parameter  causes an improvement in temper-

ature  () and corresponding layer of thermal. Higher estimations of Biot parameter  lead to

stronger convection which produces a elevated temperature pro…le and more layer of thermal.

Fig. 36 is outlined to investigate e¤ect of thermophoreis parameter  on temperature  () 

Bigger thermophoresis number  prompts a elevated temperature  () and thicker thermal

boundary-layer. The purpose for this result is that an upgrade in  compares to a more

grounded thermophoretic constrain on nanoparticles in heading inverse to forced temperature

gradient. This movements nanoparticles towards the icy surrounding liquid because of which

layer of thermal upgrades. Fig. 37 presents impact of porosity parameter  on concentration

pro…le  ()  Here concentration pro…le  () and corresponding layer thickness are expanding

functions of porosity parameter  Impact of Forchheimer parameter  on concentration pro…le

 () is shown in Fig. 38 Large Forchheimer parameter  indicates an improvement in con-

centration pro…le and corresponding layer of concentration. Fig. 39 exhibits that expanding
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estimation of ratio number  produces a poor concentration distribution  () and associated

layer of concentration. Fig. 310 exhibits that how the variation in Schmidt parameter 

a¤ects concentration …eld  ()  It has been watched that expanding estimations of Schmidt

parameter prompt a poor concentration …eld () Physically Schmidt parameter depends on

Brownian di¤usivity. An expansion in Schmidt parameter  provides poor Brownian di¤usiv-

ity. Such poor Brownian di¤usivity relates to bring down concentration …eld () and thinner

layer of concentration. Fig. 311 indicates that higher Brownian movement number  leads to

a diminishment in concentration …eld () and corresponding layer thickness. Fig. 312 plots

the concentration …eld  () for varying estimations of thermophoreis parameter  It has been

watched that higher thermophoresis number  prompts a more grounded concentration …eld

() and associated layer thickness. Table 32 exhibits the comparison for di¤erent estimations

of  with exact arrangement. Table 32 presents an excellent agreement of OHAM arrangement

with the existing exact arrangement in a limiting situation. Table 33 is arranged to examine

skin frictions ¡Re
12
 and ¡ Re

12
 for several estimations of   and  It has been

watched that skin frictions show reverse trend for bigger ratio number  Table 34 provides

numerical computations of local Nusselt number Re
¡12
  for several estimations of   

   Pr and  Local Nusselt number has higher esteems for bigger Prandtl Pr and Biot

 numbers while inverse conduct is watched for porosity  and Forchheimer  variables. Also
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the local Nusselt number stays constant when the Brownian movement number  is shifted.
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Fig. 32 Plots of  () for 
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Fig. 33 Plots of  () for 
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Fig. 34 Plots of  () for Pr 
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Fig. 35 Plots of  () for 
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Fig. 36 Plots of  () for 

42



  0.0 , 0.2, 0.4 , 0.6

  Nt  0.2 , Fr  0.1 , Nb  0.5,   0.3, Pr  Sc  1.0

0 2 4 6 8 10

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03







Fig. 37 Plots of  () for 
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Fig. 38 Plots of  () for 
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Fig. 39 Plots of  () for 
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Fig. 310 Plots of  () for 
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Fig. 311 Plots of  () for 
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Fig. 312 Plots of  () for 
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Table 3.2. Comparative estimations of ¡ 00 (0) and ¡00 (0) for several estimations of  when

 =  = 0

 ¡ 00(0) ¡00(0)

OHAM Exact [38] OHAM Exact [38]

0 1 1 0 0

025 1048811 1048813 0194564 0194564

050 1093095 1093097 0465205 0465205

075 1134486 1134485 0794618 0794622

10 1173722 1173720 1173722 1173720

Table 3.3. Numeric data for skin frictions ¡Re
12
 and ¡ Re

12
 for several estimations

of   and 

   ¡Re
12
  ¡Re

12
 

00 01 02 106945 167684

01 111471 181669

02 115830 194722

02 00 02 113041 193414

01 115830 194722

02 118561 196037

02 01 01 114160 254234

03 117449 170234

05 120563 147621
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Table 3.4. Numeric data for transfer of heat rate Re
¡12
  for various estimations of  

    Pr and 

      Pr  Re
¡12
 

00 01 02 03 02 05 10 10 020448

02 020248

05 019970

02 00 02 03 02 05 10 10 020278

02 020220

04 020164

02 01 00 03 02 05 10 10 019458

03 020560

05 021080

02 01 02 02 02 05 10 10 015148

05 027696

10 038194

02 01 02 03 00 05 10 10 020306

05 020159

10 020004

02 01 02 03 02 05 10 10 020248

10 020248

15 020248

02 01 02 03 02 05 05 10 016685

10 020248

15 021949

02 01 02 03 02 05 10 05 020271

10 020248

15 020234
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Chapter 4

Three-dimensional boundary layer

‡ow of Maxwell nano‡uid: A

mathematical model

This chapter explores three dimensional boundary-layer ‡ow of Maxwell nanoliquid. Flow

is generated by a bidirectional extending surface. Mathematical formulation is carried out

through boundary-layer approach. Heat source/sink, Brownian movement and thermophoresis

are accounted. Newly developed constraint requiring zero nanoparticle ‡ux at boundary is em-

ployed in ‡ow analysis of Maxwell liquid. The governing nonlinear boundary-layer expressions

through appropriate transformations are diminished to coupled nonlinear ordinary di¤erential

framework. The resulting nonlinear framework has been solved. Plots are plotted to explore

impacts of various interesting variables on velocities, concentration and temperature. Nusselt

number is computed and examined numerically.

4.1 Formulation

We consider the steady three dimensional ‡ow of an incompressible Maxwell nanoliquid. Flow

caused is due to linear extending surface. The ‡ow possesses the space   0 Heat source/sink,

Brownian movement and thermophoresis impacts are explored. Thermophysical properties of
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liquid are taken constant. The subjected boundary-layer expressions in Maxwell liquid ‡ow are
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Here one has the following prescribed conditions:

 = () =   = () =   = () 



+


1




= 0 at  = 0 (4.6)

! 0 ! 0  ! 1  ! 1 as  !1 (4.7)

where   and  stand for velocities in ¡ ¡ and ¡directions, 1 for relaxation time,


¡
= 

¢
for kinematic viscosity,  for density,  for dynamic viscosity,  for temperature,

 = () for thermal di¤usivity,  for thermal conductivity, () for heat potential of liquid,

 for heat generation/absorption coe¢cient, () for e¤ective heat potential of nanoparticles,

 for Brownian di¤usivity,  for concentration,  for thermophoretic di¤usion,  and 1

for surface and ambient temperatures and 1 for ambient concentration. Here we assumes

that surface extending velocities and temperature are

() =  () =  () = 1 + 0 (4.8)
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where   and 0 are the positive constants. Selecting

 =  0()  = 0()  = ¡ ()12 (() + ()) 

() = ¡1
¡1

 () = ¡1
1

  =
¡



¢12


9
=

;
(4.9)

Eq. (41) is automatically veri…ed while Eqs. (42)¡ (48) have the following forms:

 000 + ( + ) 00 ¡  0
2
+ 
³
2 ( + )  0 00 ¡ ( + )2  000

´
= 0 (4.10)

000 + ( + )00 ¡ 0
2
+ 
³
2 ( + ) 000 ¡ ( + )2 000

´
= 0 (4.11)

00 +Pr
³
( + )0 ¡  0 +  +00 +0

2
´
= 0 (4.12)

00 + Pr( + )0 +



00 = 0 (4.13)

 = 0  = 0  0 = 1 0 =   = 1 0 +0 = 0 at  = 0 (4.14)

 0 ! 0 0 ! 0 ! 0 ! 0 as  !1 (4.15)

Here Pr stands for Prandtl parameter,  for Deborah parameter,  for ratio of extending

rates,  for heat source/sink parameter,  for Brownian movement number,  for Lewis

parameter and  for thermophoresis number. These variables can be speci…ed by employing

the de…nitions given below:

 = 1  =

  Pr =


   =


()



 =
()1
()

  =
() (¡1)

()1
  = 




9
=

;
(4.16)

The local Nusselt number  is de…ned as

 = ¡


( ¡ 1)





¯
¯
¯
¯
=0

= ¡ (Re)
12 0(0) (4.17)

It is watched that dimensionless mass ‡ux represented by Sherwood number is now automati-

cally zero and Re =  is local Reynolds parameter.
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4.2 Solutions by HAM

The series arrangements of Eqs. (410)¡ (413) through (414) and (415) have been developed

by utilizing homotopy analysis technique (HAM). The linear operators and initial deformations

have been selected as follows:

0() = 1¡ ¡ 0() = (1¡ ¡) 0() = ¡ 0() = ¡



¡ (4.18)

L =  000 ¡  0 L = 000 ¡ 0 L = 00 ¡  L = 00 ¡  (4.19)

The above linear operators obey

L [
¤¤
1 +  ¤¤2  +  ¤¤3 ¡] = 0 L [

¤¤
4 +  ¤¤5  +  ¤¤6 ¡] = 0

L [
¤¤
7  +  ¤¤8 ¡] = 0 L [

¤¤
9  +  ¤¤10 

¡] = 0

9
=

;
(4.20)

in which  ¤¤ ( = 1 ¡ 10) stand for arbitrary constants. Problems for zeroth and th-order

deformations are easily formulated in the view of above operators. The deformation issues are

computed by Mathematica software.

4.3 Convergence analysis

The homotopic arrangements have auxiliary variables ~  ~ ~ and ~ These variables are

helpful for convergence of series arrangements. Proper estimations of such variables is quite

essential to construct convergent arrangements through homotopic analysis technique (HAM).

To get proper estimations of ~  ~ ~ and ~ the ~¡plots are displayed at 15th order of

deformations. Figs. 41 and 42 clearly show that convergence area lies within the ranges

¡195 · ~ · ¡025¡190 · ~ · ¡030¡185 · ~ · ¡080 and ¡190 · ~ · ¡040 Table
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41 exhibits that 32th order of deformations is su¢cient for convergent series arrangements.
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Table 4.1. HAM arrangements convergence when  =  =  = 01  = 02  = 05

Pr = 07 and  = 10

Order of deformations ¡ 00(0) ¡00(0) ¡0(0) 0(0)

1 107840 014784 080600 016120

5 107330 015325 075512 015102

10 107332 015323 074481 014896

15 107332 015323 074211 014842

20 107332 015323 074116 014823

25 107332 015323 074078 014816

32 107332 015323 074058 014811

40 107332 015323 074058 014811

50 107332 015323 074058 014811

4.4 Discussion

The present section addresses impacts of various in‡uential variables including Deborah parame-

ter  ratio number  Prandtl parameter Pr thermophoresis number  Brownian movement

number  heat source/sink parameter  and Lewis parameter  on temperature  () and

concentration  (). From Fig. 43 we examined that temperature and corresponding layer of

thermal are elevated when we improvement the Deborah parameter. Deborah parameter is di-

rectly proportional to relaxation time. Relaxation time is bigger for higher Deborah parameter.

Hence bigger relaxation time gives rise to temperature and corresponding layer of thermal. Fig.

44 exhibits that bigger ratio number give rise to a diminishment in temperature …eld  ()  For

 = 0 two dimensional ‡ow situation is recovered. Here we watched that thermal boundary-

layer thickness is more for two dimensional ‡ow in comparison to three dimensional situation.

Fig. 45 exhibits that temperature …eld  () is higher for smaller estimations of Prandtl para-

meter Pr  Physically, bigger Prandtl ‡uids have weaker thermal di¤usivity and small Prandtl

‡uids have more thermal di¤usivity. This variation in thermal di¤usivity creates a diminish-

ment in temperature  () and associated layer of thermal. In‡uence of thermophoresis number

 on temperature …eld  () is analyzed in Fig. 46 Both temperature and corresponding
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layer of thermal are elevated when we improvement thermophoresis number. Fig. 47 presents

variations of heat source/sink parameter  on temperature …eld  ()  Here   0 is for heat

source and   0 is for heat sink. We watched that temperature and corresponding layer of

thermal are elevated in situation of heat source when we compare it with heat sink. In‡uence

of Deborah parameter  on concentration …eld  () is shown in Fig. 48 Here concentration

 () and corresponding layer thickness are bigger for higher Deborah parameter  Fig. 49

describes that large  creates decay in concentration  () and associated layer thickness. The

variation in concentration …eld  () for di¤erent estimations of Lewis parameter  is exam-

ined in Fig. 410 Concentration …eld is diminished when we improvement Lewis parameter.

Lewis parameter is inversely proportional to Brownian movement. Brownian movement is poor

for higher Lewis parameter. This poor Brownian movement coe¢cient creates a diminishment

in concentration …eld. Impact of Prandtl parameter Pr on concentration distribution  ()

is examined in Fig. 411 It is watched that both concentration  () and associated layer

thickness are diminishment when we improvement Prandtl parameter Pr  An improvement in

thermophoresis number  gives rise to concentration  () and its corresponding layer thick-

ness (see Fig. 412). E¤ect of Brownian movement number  on concentration …eld  () is

plotted in Fig. 413 Here concentration  () and associated layer thickness are diminished

for higher Brownian motion. Table 42 exhibits the comparison for various estimations of 

with exact arrangement. Table 42 presents an excellent agreement of HAM arrangement with

the existing exact arrangement in a limiting situation. Table 43 presents Nusselt number for

various estimations of   Pr    and  Clearly Nusselt number are diminishment

when we improvement the estimations of    and  However an improvement is watched
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for expanding estimations of  and Pr 
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Table 4.2. Comparative estimations of ¡ 00 (0) and ¡00 (0) for several estimations of  when

 = 0

 ¡ 00(0) ¡00(0)

HAM Exact [38] HAM Exact [38]

0 1 1 0 0

025 1048811 1048813 0194564 0194564

050 1093095 1093097 0465205 0465205

075 1134486 1134485 0794618 0794622

10 1173722 1173720 1173722 1173720
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Table 4.3. Computations of local Nusselt number (Re)
¡12 against   Pr   

and 

  Pr     ¡0 (0)

00 02 07 01 01 05 10 07582

02 07236

05 06725

01 00 07 01 01 05 10 07080

02 07408

05 07824

01 02 05 01 01 05 10 05695

10 09541

15 12417

01 02 07 00 01 05 10 08077

01 07408

02 06460

01 02 07 01 00 05 10 07451

05 07247

10 07045

01 02 07 01 01 05 10 07408

10 07408

15 07408

01 02 07 01 01 05 05 07426

10 07408

15 07400
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Chapter 5

Interaction of magnetic …eld in ‡ow

of Maxwell nano‡uid with

convective e¤ect

Magnetohydrodynamic (MHD) three dimensional ‡ow of Maxwell nanoliquid subject to convec-

tively heated boundary is investigated. Flow generated is because of bi-directional extending

surface. Thermophoresis and Brownian movement impacts are explored. Unlike the previous

cases even in the absence of nanoparticles, the correct formulation for the ‡ow of MHD Maxwell

liquid is established. Newly proposed constraint with zero nanoparticles ‡ux at boundary is

employed. The governing nonlinear boundary-layer expressions through appropriate transfor-

mations are diminished in nonlinear ordinary di¤erential frameworks. The resulting nonlinear

frameworks have been solved for velocities, concentration and temperature. Convergence of con-

structed arrangements is veri…ed. E¤ects of emerging variables for concentration and temper-

ature are plotted and examined. Numerical estimations of local Nusselt number are computed

and analyzed. Clearly e¤ects of magnetic number and Biot parameter on concentration and

temperature are quite similar. Both concentration and temperature are elevated for expanding

estimation of magnetic number and Biot parameter.
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5.1 Formulation

Consider three dimension ‡ow of Maxwell nanoliquid by bi-directional extending surface. A

constant magnetic …eld 0 parallel to ¡axis is applied. The electric …eld and Hall impacts are

disregarded. Induced magnetic …eld is not taken subject to low magnetic Reynolds parameter.

Thermophoresis and Brownian motion e¤ects are taken into account. Temperature at surface is

controlled by convective heating characterized via coe¢cient of heat transfer  and hot liquid

temperature  below the surface. The boundary-layer expressions satisfy
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Here one has the following prescribed conditions:

 =   =   = 0 ¡ 



=  ( ¡  )  




+


1




= 0 at  = 0 (5.6)

! 0 ! 0  ! 1  ! 1 as  !1 (5.7)

Here   and  stand for velocities in ¡ ¡ and ¡directions, 1 for relaxation time,


¡
= 

¢
for kinematic viscosity,  for thermal conductivity,  for density,  for dynamic

viscosity, () for e¤ective heat potential of nanoparticles,  for electrical conductivity,  for

temperature,  = () for thermal di¤usivity, () for heat potential of liquid,  for

Brownian di¤usivity,  for concentration,  for thermophoretic di¤usion, 1 for ambient
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temperature and 1 for ambient concentration. Selecting

 =  0()  = 0()  = ¡ ()12 (() + ()) 

() = ¡1
¡1

 () = ¡1
1

  =
¡



¢12


9
=

;
(5.8)

Eq. (51) is automatically satis…ed while Eqs. (52)¡ (57) have the following forms:

 000 +
¡
2 + 1

¢
( + ) 00 ¡  0

2
+ 
³
2 ( + )  0 00 ¡ ( + )2  000

´
¡2 0 = 0 (5.9)

000 +
¡
2 + 1

¢
( + )00 ¡ 0

2
+ 
³
2 ( + ) 000 ¡ ( + )2 000

´
¡20 = 0 (5.10)

00 +Pr
³
( + )0 +00 +0

2
´
= 0 (5.11)

00 + Pr( + )0 +



00 = 0 (5.12)

 = 0  = 0  0 = 1 0 =  0 = ¡ (1¡  (0))  0 +0 = 0 at  = 0 (5.13)

 0 ! 0 0 ! 0 ! 0 ! 0 as  !1 (5.14)

Here  stands for Brownian movement number,  for Lewis parameter,  for magnetic

number, Pr for Prandtl parameter,  for Deborah parameter,  for thermophoresis number,

 for Biot parameter and  for ratio of extending rates,. These variables can be speci…ed by

employing the de…nitions given below:

 = 1 
2 =

2
0


  = 

  Pr =

   =

()1
()



 =
() (¡1)

()1
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p

   =






9
>=

>;
(5.15)

The local Nusselt number  is de…ned as

 = ¡


( ¡ 1)





¯
¯
¯
¯
=0

= ¡ (Re)
12 0(0) (5.16)

It is watched that dimensionless mass ‡ux represented by Sherwood number is now identically

zero while Re =  for local Reynolds parameter.
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5.2 Solutions by HAM

The series arrangements of Eqs. (59)¡ (512) through (513) and (514) have been developed

by utilizing homotopic analysis technique (HAM). The linear operators and initial deformations

have been selected as follows:

0() = 1¡ ¡ 0() = (1¡ ¡) 0() = ¡


1 + 




¡ 0() =



1 + 
¡ (5.17)

L =  000 ¡  0 L = 000 ¡ 0 L = 00 ¡  L = 00 ¡  (5.18)

The above linear operators obey

L [
¤¤
1 +  ¤¤2  +  ¤¤3 ¡] = 0 L [

¤¤
4 +  ¤¤5  +  ¤¤6 ¡] = 0

L [
¤¤
7  +  ¤¤8 ¡] = 0 L [

¤¤
9  +  ¤¤10 

¡] = 0

9
=

;
(5.19)

in which  ¤¤ ( = 1 ¡ 10) stand for arbitrary constants. Problems for zeroth and th-order

deformations are easily formulated in the view of above operators. The deformation issues are

computed by Mathematica software.

5.3 Convergence analysis

The series arrangements have auxiliary variables ~  ~ ~ and ~ These variables are helpful

for convergence of acquired series arrangements. Proper estimations of these variables are quite

essential to construct homotopic convergent arrangements through homotopic analysis tech-

nique (HAM). To choose suitable estimations of ~  ~ ~ and ~ the ~¡plots are plotted at

15th order of deformations. Figs. 51 and 52 show that convergence area lies inside the ranges

¡180 · ~ · ¡035 ¡190 · ~ · ¡020 ¡165 · ~ · ¡015 and ¡170 · ~ · ¡010

Table 51 exhibits that 8th order of deformations is su¢cient for the convergent homotopic
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series arrangements.
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Table 5.1. HAM arrangements convergence when  = 01  = 02 =   = 03 = 

 = 05  = 10 and Pr = 12

Order of deformations ¡ 00(0) ¡00(0) ¡0(0) 0(0)

1 111213 016589 017056 010233

5 111540 016474 017011 010206

8 111540 016473 017010 010206

15 111540 016473 017010 010206

25 111540 016473 017010 010206

40 111540 016473 017010 010206

50 111540 016473 017010 010206

5.4 Discussion

The e¤ects of interesting physical variables like Lewis parameter  ratio number  Prandtl

parameter Pr Deborah parameter  magnetic number  Biot parameter  thermophore-

sis number  and Brownian movement number  on temperature  () and concentration

 () are plotted in Figs. 53 ¡ 516 Fig. 53 presents impact of Deborah parameter  for

temperature  Here temperature and layer of thermal are elevated when we improvement Deb-

orah parameter. Deborah parameter is directly proportional to relaxation time. Relaxation

time is higher for bigger Deborah parameter. Hence higher relaxation time causes to enhance

temperature and layer of thermal. Fig. 54 presents variations in temperature pro…le for di¤er-

ent estimations of magnetic number  Here   0 corresponds to hydro-magnetic ‡ow and

 = 0 is for hydro-dynamic ‡ow situation. We watched that temperature and layer of thermal

are higher for hydro-magnetic ‡ow in comparison to hydro-dynamic ‡ow situation. Fig. 55

describes decay in temperature pro…le and its corresponding layer thickness when  elevates.

Here  = 0 corresponds to two dimensional ‡ow situation. We watched that layer of thermal

is more in two dimension situation when compared with three dimension ‡ow. Fig. 56 is

displayed to see the in‡uence of Biot parameter  on temperature pro…le  ()  An increment

in  causes a stronger convection which provides elevated temperature and layer of thermal.

Fig. 57 describes conduct of Prandtl parameter Pr on temperature pro…le  ()  We watched
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that bigger Prandtl parameter results in a diminishment of temperature pro…le and layer of

thermal. An improvement in Prandtl parameter corresponds to poor thermal di¤usivity. Phys-

ically bigger Prandtl ‡uids have poor thermal di¤usivity and small Prandtl ‡uids have stronger

thermal di¤usivity. This variation in thermal di¤usivity creates a diminishment in temperature

 () and layer of thermal. Fig. 58 presents that bigger estimations of thermophoresis number

 causes an improvement in temperature pro…le  ()  An improvement in  producing an

improvement in thermophoresis force which tends to shift nanoparticles from hot to cold zone

and consequently it elevates the temperature and layer of thermal. Fig. 59 presents that an

improvement in Deborah parameter  causes an improvement of concentration pro…le and its

corresponding layer thickness. From Fig. 510 we watched that concentration …eld is higher for

hydro-magnetic ‡ow (  0) and lower for hydro-dynamic situation ( = 0)  It is additionally

watched that concentration is improved and leaving from the surface of the surface for hydro-

magnetic ‡ow. Impact of ratio number  on concentration pro…le  () is sketched in Fig. 511

Concentration  () and its corresponding layer thickness are diminished when we improvement

ratio number. Fig. 512 indicates e¤ects of Biot parameter  on concentration pro…le  () 

Here we watched that bigger Biot parameter creates an improvement in concentration pro…le

and its associated layer thickness. Fig. 513 exhibits that bigger estimations of Lewis parameter

 causes a diminishment in concentration pro…le  ()  Lewis parameter depends on Brownian

movement coe¢cient. Bigger Lewis parameter leads to poor Brownian movement coe¢cient

which exhibits a poor concentration and its corresponding layer thickness. Fig. 514 presents

variations in concentration  () for di¤erent estimations of Prandtl parameter Pr We watched

that bigger Prandtl parameter show a diminishment in concentration  () and its associated

layer thickness. Fig. 515 exhibits that an improvement in thermophoresis number  causes

an improvement in concentration  () and its corresponding layer thickness. Fig. 516 presents

that bigger Brownian movement number  creates a diminishment in concentration pro…le

 ()  In nanoliquid framework, due to existence of nanoparticles, the Brownian movement

takes place and with improvement in  the Brownian movement is a¤ected and thus layer of

concentration diminishes. Table 52 exhibits the comparison for di¤erent estimations of  with

exact arrangement. Table 52 presents an excellent agreement of HAM arrangement with the

existing exact arrangement in a limiting situation. Table 53 is computed to investigate transfer
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of heat rate (local Nusselt number) via      Pr  and  Transfer of heat rate

is an expanding function of Biot parameter  E¤ects of Lewis parameter  and Brownian

movement number  on transfer of heat rate are quite similar.
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Fig. 59 Plots of () for 
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Fig. 510 Plots of () for 
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Fig. 511 Plots of () for 
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Fig. 512 Plots of () for 
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Fig. 513 Plots of () for 
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Fig. 515 Plots of () for 
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Table 5.2. Comparative estimations of ¡ 00 (0) and ¡00 (0) for various estimations of  when

 = = 0

 ¡ 00(0) ¡00(0)

HAM Exact [38] HAM Exact [38]

0 1 1 0 0

025 1048811 1048813 0194564 0194564

050 1093095 1093097 0465205 0465205

075 1134486 1134485 0794618 0794622

10 1173722 1173720 1173722 1173720

76



Table 5.3. Numeric data for Nusselt number
¡
¡0 (0)

¢
for di¤erent estimations of   

  Pr  and 

     Pr   ¡0 (0)

00 02 03 02 10 12 03 05 01704

05 01689

10 01675

01 00 03 02 10 12 03 05 01691

05 01713

10 01730

01 02 00 02 10 12 03 05 01703

05 01697

10 01678

01 02 03 02 10 12 03 05 01701

07 04326

12 05817

01 02 03 02 05 12 03 05 01701

10 01701

15 01701

01 02 03 02 10 05 03 05 01520

10 01670

15 01735

01 02 03 02 10 12 00 05 01702

05 01700

10 01699

01 02 03 02 10 12 03 05 01701

10 01701

15 01701
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Chapter 6

An optimal study for

three-dimensional ‡ow of Maxwell

nano‡uid subject to rotating frame

Here we are concerned with optimal homotopy arrangements for three dimensional ‡ow of

Maxwell nanoliquid in rotating frame. Flow is induced by uniform extending of boundary sur-

face in one direction. Buongiorno relation is received which includes the novel parts of Brownian

movement and thermophoresis. Boundary-layer approximations are conjured to rearrange the

governing arrangement of partial di¤erential conditions. Appropriate relations are introduced

to nondimensionalize the relevant boundary-layer expressions. Newly suggested condition asso-

ciated with zero nanoparticles mass ‡ux at boundary is imposed. Uniformly valid convergent

arrangement expressions are developed by means of optimal homotopic technique (OHAM).

Plots are portrayed in order to explain role of embedded ‡ow variables. Transfer of heat rate

has been tabulated and analyzed. Our …ndings present that concentration and temperature

are smaller for Newtonian liquid when compared with upper-convected Maxwell (UCM). More-

over Brownian movement has mild in‡uence of heat ‡ux at boundary. Viscoelastic e¤ect has

tendency to reduce transfer of heat rate from the extending boundary.
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6.1 Formulation

We explore the three dimensional rotating ‡ow of Maxwell nanoliquid by a linearly extend-

ing surface. Nanoliquid relation exhibits the characteristics of Brownian movement and ther-

mophoresis. Cartesian coordinate framework is selected in such a manner that surface is lined

up with ¡plane and liquid is taken in space  ¸ 0 Surface deforms linearly in the ¡direction

with rate  Further the liquid is subjected to uniform rotation about ¡axis with consistent an-

gular velocity  The associated expressions governing the Maxwell nanoliquid ‡ow in rotating

frame are



+



+



= 0 (6.1)





+




+




¡2 = 

2

2
¡1

0

B
B
B
@

2 
2

2
+ 2 

2
2

+2 
2

2

+2 2
 + 2

2
 + 2

2


¡2
³

 +  

 + 


´
+ 2

³
 
 ¡ 



´

1

C
C
C
A
 (6.2)





+




+




+2 = 

2

2
¡1

0

B
B
B
@

2 
2

2 + 2 
2

2 +2 
2

2

+2 2
 + 2

2
 + 2

2


+2
³

 +  

 + 


´
+ 2

³
 
 ¡ 



´

1

C
C
C
A
 (6.3)





+ 




+




= 

2

2
+
()
()

Ã



µ








¶

+


1

µ




¶2
!

 (6.4)





+ 




+




= 

µ
2

2

¶

+


1

µ
2

2

¶

 (6.5)

Here one has the following prescribed conditions:

 =  () =   = 0  = 0  =  



+


1




= 0 at  = 0 (6.6)

! 0  ! 0  ! 1  ! 1 as  !1 (6.7)

Here   and  stand for velocities in ¡ ¡ and ¡directions,  for dynamic viscosity,  =

 for kinematic viscosity,  for density,  for temperature,  = () for thermal

di¤usivity, () for heat potential of liquid,  for thermal conductivity, () for e¤ective heat

potential of nanoparticles,  for concentration,  for Brownian movement coe¢cient, 1 for
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liquid relaxation time,  for thermophoretic di¤usion coe¢cient,  for wall temperature, 1

for ambient temperature, 1 for ambient concentration and  for positive constant. Selecting

 =  0()  = ()  = ¡ ()12  () 

() = ¡1
¡1

 () = ¡1
1

  =
¡



¢12


(6.8)

Expression (61) is identically veri…ed while Eqs. (62)¡ (67) take to the following forms

 000 +  00 ¡  02 + 2
¡
 ¡ 0

¢
+ 
¡
2 0 00 ¡ 2 000

¢
= 0 (6.9)

00 + 0 ¡  0 ¡ 2
¡
 0 + 

¡
 02 ¡  00 + 2

¢¢
+ 
¡
2 00 ¡ 200

¢
= 0 (6.10)

00 +Pr
¡
0 +00 +02

¢
= 0 (6.11)

00 + 0 +



00 = 0 (6.12)

(0) = (0) = 0  0(0) = 1 (0) = 1 0(0) +0(0) = 0 (6.13)

 0(1)! 0 (1)! 0 (1)! 0 (1)! 0 (6.14)

Here  stands for Brownian movement number, Pr for Prandtl parameter,  for Deborah

parameter,  for Schmidt parameter,  for rotation parameter and  for thermophoresis

number. These variables can be speci…ed by employing the de…nitions given below:

 = 
   = 1 Pr =






 =
()1
()

  =
() (¡1)

()1
  = 




9
=

;
(6.15)

The local Nusselt number  is de…ned as

Re¡12  = ¡


( ¡ 1)





¯
¯
¯
¯
=0

= ¡0 (0)  (6.16)

where Re =  exhibits local Reynolds parameter. It is also watched that Sherwood

number is identically zero.
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6.2 Solutions by OHAM

The optimal series arrangements of Eqs. (69) ¡ (612) through (613) and (614) have been

developed by utilizing optimal homotopic analysis technique (OHAM). The linear operators

and initial deformations have been selected as follows:

0() = 1¡ exp (¡)  0() = 0

0() = exp (¡)  0() = ¡

exp (¡) 

9
=

;
(6.17)

L =
3
3

¡ 
  L =

2
2
¡ 

L =
2
2
¡  L =

2
2

¡ 

9
=

;
(6.18)

The above linear operators obey

L [
¤¤
1 +  ¤¤2 exp () +  ¤¤3 exp (¡)] = 0

L [
¤¤
4 exp () +  ¤¤5 exp (¡)] = 0

L [
¤¤
6 exp () +  ¤¤7 exp (¡)] = 0

L [
¤¤
8 exp () +  ¤¤9 exp (¡)] = 0

9
>>>>>>=

>>>>>>;

(6.19)

in which  ¤¤ ( = 1 ¡ 9) stand for arbitrary constants. Problems for zeroth and th-order

deformations are easily formulated in the view of above operators. The deformation issues are

solved by BVPh2.0 of Mathematica software.

6.3 Convergence analysis

We have solved the momentum, energy and concentration expressions with the help of BVPh2.0.

These expressions contain unknown variables ~  ~ ~ and ~ We can compute the minimum

estimation of these variables by taking total error small. In the frame of HAM, these variables

play a vital role. That is why these variables refer to as convergence-control parameter which

di¤ers HAM from other analytical approximation methods. In order to reduce the CPU time,

we have employed average residual errors at the th-oder of approximation which are de…ned
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Here N  N N and N denote the non-linear operators corresponding to Eqs. (69)¡ (612)

respectively. Following Liao [69] :

 =  +  +  +  (6.24)

where  stands for total residual square error,  = 20 and  = 05 Optimal data for auxiliary

variables at 2nd order of deformations is ~ = ¡150853 ~ = ¡117662 ~ = ¡115433 and

~ = ¡102305 and  = 221 £ 10¡4 Table 61 presents average square residual error at

di¤erent order of deformations. It has been analyzed that the average residual square errors

reduce with higher order deformations.

Table 6.1. Individual average residual square errors employing optimal data of auxiliary

variables.

    

2 147£ 10¡5 814£ 10¡6 104£ 10¡4 941£ 10¡5

6 301£ 10¡8 541£ 10¡8 234£ 10¡6 687£ 10¡6

10 452£ 10¡10 177£ 10¡9 165£ 10¡7 114£ 10¡6

16 172£ 10¡11 161£ 10¡11 483£ 10¡9 801£ 10¡8

20 660£ 10¡13 199£ 10¡12 572£ 10¡10 142£ 10¡8

26 719£ 10¡14 796£ 10¡14 308£ 10¡11 110£ 10¡9

30 550£ 10¡15 162£ 10¡14 493£ 10¡12 203£ 10¡10
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6.4 Discussion

This section explores in‡uences of various pertinent ‡ow variables like Prandtl parameter Pr

Deborah parameter  Brownian movement number  rotation parameter  Schmidt para-

meter  and thermophoresis number  on temperature  () and concentration  (). Fig.

61 exhibits curves of temperature …eld  () for varying Deborah parameter  From this Fig.

it has been watched that by expanding Deborah parameter  penetration depth of  () ends

up thicker. Fig. 62 plots the temperature  () for particular estimations of rotation parameter

 Bigger rotation parameter  constitutes a elevated temperature and more layer of thermal.

Fig. 63 exhibits that how temperature  () gets in‡uenced with variety of Prandtl parameter

Pr  It is watched that by upgrading Prandtl parameter Pr, temperature  () declines and layer

of thermal diminishes. Physically as Prandtl parameter Pr has opposite association with ther-

mal di¤usivity, thusly, an augmentation in Pr prompts poor thermal di¤usion and henceforth

less penetration depth of  ()  Thicker layer of thermal ascribed to bigger Prandtl parameter

is went with higher slope of temperature close to the wall. Fig. 64 is plotted to depict im-

pact of thermophoreis parameter  for temperature …eld  ()  Bigger thermophoresis number

 prompt a elevated temperature  () and thicker layer of thermal. The explanation for

this result is that an upgrade in  provides a more grounded thermophoretic constrain on

nanoparticles in course inverse to forced temperature gradient. This movements nanoparticles

towards the chilly surrounding liquid because of which layer of thermal increments. Fig. 65

plots the concentration …eld  () for wide range of Deborah parameter  Bigger estimations of

Deborah parameter  constitute a bigger concentration …eld and more layer of concentration.

Fig. 66 exhibits variation in concentration …eld  () for varying rotation parameter  From

this Fig. it has been watched that by expanding rotation parameter  an improvement in

concentration  () and its corresponding layer is taken note. Fig. 67 exhibits that how vari-

ation of Schmidt parameter  a¤ects concentration …eld  ()  It has been watched that the

expanding estimations of Schmidt parameter prompt decrease the concentration () Schmidt

parameter depends on Brownian di¤usivity. An expansion in Schmidt parameter  provides

poor Brownian di¤usivity. Such poor Brownian di¤usivity relates to bring down concentration

() and less layer of concentration. Fig. 68 plots the concentration  () for ‡uctuating

estimations of thermophoreis parameter  It has been obviously watched that higher ther-
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mophoresis  prompts more grounded concentration () and associated layer thickness. Fig.

69 exhibits that bigger Brownian movement number  prompts a diminishment in concentra-

tion () and its associated layer thickness. Table 62 is computed to validate present results

with past published outcomes in a limiting sense. From this Table, we inspected that present

series arrangements have great concurrence with numerical arrangements of Megahed [70] in

a limiting way. Table 63 gives numeric calculations of Nusselt number for a few estimations

of    Pr  and  We found that Nusselt number has higher estimations for bigger

Prandtl Pr and Schmidt  numbers while inverse pattern is watched for Deborah parameter

 and rotation parameter  In addition the Nusselt number stays constant when Brownian

movement number  is shifted.
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Fig. 61 Plots of  () for 
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Fig. 62 Plots of  () for 

Pr  0.5, 1.0 , 1.5 , 2.0
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Fig. 63 Plots of  () for Pr 
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Fig. 64 Plots of  () for 
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Fig. 65 Plots of  () for 

86



  0.0, 0.3, 0.5, 0.7

  0.2, Nt  0.1, Nb  0.3, Pr  Sc  1.0

0 2 4 6 8 10 12

0.10

0.05

0.00

0.05







Fig. 66 Plots of  () for 
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Fig. 67 Plots of  () for 
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Fig. 68 Plots of  () for 
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Fig. 69 Plots of  () for 
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Table 6.2. Comparative estimations of ¡ 00 (0) for various estimations of  when  = 0

 OHAM Megahed [70]

00 10000 0999978

02 10519 1051945

04 11019 1101848

06 11501 1150160

08 11967 1196690

12 12853 1285253

16 13686 1368641

20 14476 1447616
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Table 6.3. Numeric data for Nusselt number
¡
¡0 (0)

¢
for several estimations of   

  and Pr 

    Pr  ¡0 (0)

00 02 01 03 10 10 05583

02 05390

05 05115

02 00 01 03 10 10 05580

02 05390

04 05025

02 02 00 03 10 10 05467

03 05235

05 05082

02 02 01 03 10 10 05390

07 05390

10 05390

02 02 01 03 05 10 03205

10 05390

15 07153

02 02 01 03 10 05 05329

10 05390

15 05394
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Chapter 7

Three dimensional rotating ‡ow of

Maxwell nano‡uid

This chapter investigates three dimensional rotating ‡ow of Maxwell nanoliquid. Flow made

is a result of an exponentially extending surface. Optimal homotopic scheme is executed for

arrangement of governing relation. Optimal estimations of auxiliary variables are …gured. The

optimal arrangement articulations of concentration and temperature are explained by means of

plots by utilizing the di¤erent estimations of included variables. Physical amounts like Sherwood

and Nusselt numbers are portrayed by numeric esteems. Here we watched that temperature and

its associated thickness of layer emerge for expanding estimations of local Deborah parameter

while it decays for bigger temperature exponent.

7.1 Formulation

We mean to expound three dimension rotating ‡ow of Maxwell nanoliquid due to an exponen-

tially extending surface. Nanoliquid relation portrays Brownian movement and thermophoresis.

Liquid and surface are in condition of rigid body rotation. We taken liquid in space  ¸ 0 The

surface is expected to extend in ¡direction with 0 Also the liquid rotates consistently about

¡axis with constant angular velocity  The corresponding conditions for Maxwell nanoliquid

‡ow in a rotating frame are
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= 0 (7.1)
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Here one has the following prescribed conditions:

 =  () = 0 exp ()   = 0  = 0  =   =  at  = 0 (7.6)

! 0  ! 0  ! 1  ! 1 as  !1 (7.7)

Here   and  stand for velocities in ¡ ¡ and ¡directions,  =  for kinematic

viscosity,  for temperature,  for density,  = () for thermal di¤usivity,  for dynamic

viscosity,  for wall temperature,  for thermal conductivity, () for e¤ective heat potential

of nanoparticles,  for concentration, () for heat potential of liquid,  for Brownian move-

ment, 1 for liquid relaxation time,  for thermophoretic di¤usion,  for wall concentration,

1 for ambient temperature, 1 for ambient concentration,  for characteristic length and 0

for reference velocity. Selecting

 = 0 exp () 
0()  = 0 exp () ()

 = ¡
q

0
2 exp (2) ( +  0)   = 

q
0
2 exp (2) 

 = 1 + 0 exp (2) ()  = 1 +0 exp (2)()

9
>>>=

>>>;

(7.8)
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Expression (71) is identically veri…ed while Eqs. (72)¡ (77) give

 000 +  00 ¡ 2 02 + 
¡
4 ¡ 2

¡
0 +  00

¢¢

¡


2

¡
4 03 ¡  02 00 + 2 000 ¡ 6 0 00

¢
= 0  (7.9)

00 + 0 ¡ 2 0 + 4

µ

¡ 0 + 

µ

¡ 02 ¡ 2 ¡


2
0 +

1

2
 00
¶¶

¡


2

¡
4 02 ¡  020 + 200 ¡ 6 00

¢
= 0  (7.10)

00 +Pr
¡
0 ¡ 0 +00 +02

¢
= 0 (7.11)

00 + 
¡
0 ¡ 0

¢
+



00 = 0 (7.12)

(0) = (0) = 0  0(0) = 1 (0) = 1 (0) = 1 (7.13)

 0(1)! 0 (1)! 0 (1)! 0 (1)! 0 (7.14)

Here  stands for Brownian movement number,  for local Deborah parameter,  for local

rotation parameter,  for thermophoresis number, Pr for Prandtl parameter,  for tempera-

ture exponent,  for concentration exponent and  for Schmidt parameter. These variables

can be speci…ed by employing the de…nitions given below:

 = 

  = 1

  Pr = 
 

 =
()(¡1)

()
  =

() (¡1)

()1
  = 




9
=

;
(7.15)

Local Nusselt () and Sherwood () numbers are

 = ¡


( ¡ 1)





¯
¯
¯
¯
=0

= ¡




r
Re
2
0 (0)  (7.16)

 = ¡


( ¡1)





¯
¯
¯
¯
=0

= ¡




r
Re
2
0 (0)  (7.17)

where Re =  exhibits local Reynolds parameter.
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7.2 Solutions by OHAM

The optimal series arrangements of Eqs. (79) ¡ (712) through (713) and (714) have been

developed by utilizing optimal homotopic analysis technique (OHAM). Initial deformations and

linear operators have been selected as follows:

0() = 1¡ exp (¡)  0() = 0

0() = exp (¡)  0() = exp (¡) 

9
=

;
(7.18)

L =
3
3

¡ 
  L =

2
2
¡ 

L =
2
2
¡  L =

2
2

¡ 

9
=

;
(7.19)

The above linear operators obey

L [
¤¤
1 +  ¤¤2 exp () +  ¤¤3 exp (¡)] = 0

L [
¤¤
4 exp () +  ¤¤5 exp (¡)] = 0

L [
¤¤
6 exp () +  ¤¤7 exp (¡)] = 0

L [
¤¤
8 exp () +  ¤¤9 exp (¡)] = 0

9
>>>>>>=

>>>>>>;

(7.20)

in which  ¤¤ ( = 1 ¡ 9) stand for arbitrary constants. Problems for zeroth and th-order

deformations are easily formulated in the view of above operators. The deformation issues are

solved by BVPh2.0 of Mathematica software.

7.3 Convergence analysis

We have solved the momentum, energy and concentration expressions with the help of BVPh2.0.

These expressions contain unknown variables ~  ~ ~ and ~ We can compute the minimum

estimation of these variables by taking total error small. In the frame of HAM, these variables

play a vital role. That is why these variables refer to as convergence-control parameter which

di¤ers HAM from other analytical approximation methods. In order to reduce the CPU time,

we have employed average residual errors at the th-oder of approximation which are de…ned
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Here N  N N and N denote the non-linear operators corresponding to Eqs. (79)¡ (712)

respectively. Following Liao [69] :

 =  +  +  +  (7.25)

where  stands for total residual square error,  = 20 and  = 05 Optimal data for auxiliary

variables at 2nd order of deformations is ~ = ¡0891408 ~ = ¡104506 ~ = ¡0939956 and

~ = ¡101791 and  = 726 £ 10¡4 Table 71 presents average square residual error at

di¤erent order of deformations. It has been analyzed that the average residual square errors

reduce with higher order deformations.

Table 7.1. Individual average residual square errors employing optimal data of auxiliary

variables.

    

2 669£ 10¡5 471£ 10¡5 277£ 10¡4 335£ 10¡4

6 359£ 10¡7 150£ 10¡7 106£ 10¡5 155£ 10¡5

10 313£ 10¡8 666£ 10¡9 970£ 10¡7 170£ 10¡6

16 103£ 10¡9 623£ 10¡10 399£ 10¡8 876£ 10¡8

20 587£ 10¡11 163£ 10¡10 779£ 10¡9 184£ 10¡8

26 747£ 10¡12 131£ 10¡11 535£ 10¡10 148£ 10¡9

30 468£ 10¡12 102£ 10¡12 110£ 10¡10 324£ 10¡10
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7.4 Discussion

This portion explores e¤ects of a few pertinent ‡ow variables like Prandtl parameter Pr ther-

mophoresis number  local rotation parameter  local Deborah parameter  Schmidt para-

meter  Brownian movement number  temperature exponent  and concentration expo-

nent  on temperature  () and concentration  (). Fig. 71 presents curves of temperature

pro…le  () for di¤ering local Deborah parameter  It has been watched that by improving

local Deborah parameter  penetration depth of  () elevates. Fig. 72 displays the tempera-

ture  () for distinct estimations of local rotation parameter  Bigger  compare to a elevated

temperature and more layer of thermal. Fig. 73 delineates that how temperature  () gets

in‡uenced with the variety in Prandtl parameter Pr  It is watched that by upgrading Prandtl

parameter Pr, temperature  () and layer of thermal are diminishment. Physically as Prandtl

parameter Pr has reverse association with thermal di¤usivity, in this way, an addition in Prandtl

parameter Pr prompt poor thermal di¤usion and subsequently lower penetration depth of  () 

Thicker layer of thermal ascribed to bigger Prandtl parameter is went with higher incline of

temperature close to the wall. Fig. 74 exhibits the bends of temperature  () for shifting tem-

perature exponential  It is watched that by improving temperature exponential  thermal

penetration depth winds up lower. Fig. 75 exhibits e¤ect of thermophoreis parameter  on

temperature  ()  Bigger  relate to a elevated temperature  () and more layer of thermal.

The purpose for this contention is that an augmentation in thermophoreis parameter  pro-

vides a more grounded thermophoretic constrain on nanoparticles toward the path inverse to

forced temperature gradient. This movements nanoparticles towards the icy surrounding liquid

because of which layer of thermal elevates. Fig. 76 presents variety in temperature  () for

changing Brownian movement number . It has been watched that by expanding Brownian

movement number  an improvement happened in temperature  () and associated layer.

Fig. 77 presents concentration  () for di¤ering local Deborah parameter  Bigger  prompt

a elevated concentration and thicker layer of concentration. Fig. 78 presents variation in con-

centration  () for particular estimations of local rotation parameter  It has been watched

that by expanding  an upgrade showed up in concentration  () and its associated layer. Fig.

79 exhibits that how concentration  () gets in‡uenced with the variety in Schmidt parameter

 It has been watched that the expanding estimations of Schmidt parameter prompt a lower
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concentration () Schmidt parameter depends on Brownian di¤usivity. Bigger estimations

of Schmidt parameter  provide poor Brownian di¤usivity. Such poor Brownian di¤usivity

compares to bring down concentration () and less layer of concentration. Fig. 710 presents

bends of concentration () for changing concentration exponent  It has been watched that

by improving  penetration depth of () ends up thinner. Fig. 711 exhibits the concentra-

tion  () for particular estimations of thermophoreis parameter  It has been watched that

higher  compares to more concentration () and its associated layer. Fig. 712 exhibits that

expanding estimations of Brownian movement number  portrays decrease in concentration

() and associated layer thickness. Table 72 is …gured to approve present outcomes with pre-

vious published outcomes in a limiting situation. From this Table, we saw that present OHAM

arrangements have great concurrence with numerical arrangements of Mustafa et al. [16] in

a limiting situation. Table 73 presents numeric calculations of Nusselt number
¡
¡0 (0)

¢
and

Sherwood number
¡
¡0 (0)

¢
for a few estimations of    Pr    and  Here we

watched that Nusselt and Sherwood numbers have bring down qualities for bigger   and 

In addition the Nusselt and Sherwood numbers appear inverse practices for bigger Pr 
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Fig. 71 Plots of  () for 
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Fig. 72 Plots of  () for 
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Fig. 73 Plots of  () for Pr 
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Fig. 74 Plots of  () for 
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Fig. 75 Plots of  () for 
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Fig. 76 Plots of  () for 
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Fig. 77 Plots of  () for 
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Fig. 78 Plots of  () for 
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Fig. 79 Plots of  () for 
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Fig. 710 Plots of  () for 
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Fig. 711 Plots of  () for 
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Fig. 712 Plots of  () for 

Table 7.2. Comparative estimations of ¡ 00 (0) and ¡0 (0) for several estimations of  when

 = 0

 ¡ 00(0) ¡0(0)

OHAM Numerical [16] OHAM Numerical [16]

02 134742 13474203 037015 03701525

05 151942 15194195 076251 07625142

10 180248 18024749 121796 12179573

20 228281 22828127 184850 18485032

50 334446 33444611 306092 30609164
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Table 7.3. Numeric data for Nusselt number
¡
¡0 (0)

¢
and Sherwood number

¡
¡0 (0)

¢
for a

few estimations of   Pr     and 

    Pr    ¡0 (0) ¡0 (0)

00 01 01 03 10 10 02 02 05323 05040

01 05239 04943

02 05172 04858

01 00 01 03 10 10 02 02 05358 05107

01 05239 04943

02 04988 04609

01 01 00 03 10 10 02 02 05370 06152

01 05239 04943

03 04990 02705

01 01 01 03 10 10 02 02 05239 04943

05 04774 05501

08 04145 05811

01 01 01 03 05 10 02 02 03340 05398

10 05239 04943

15 06637 04590

01 01 01 03 10 07 02 02 05420 02788

10 05239 04943

15 05071 07449

01 01 01 03 10 10 00 02 04368 05195

02 05239 04943

05 06465 04585

01 01 01 03 10 10 02 00 05270 03987

02 05239 04943

05 05196 06283
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Chapter 8

Impact of magnetic …eld in

three-dimensional ‡ow of an

Oldroyd-B nano‡uid

This chapter explores three dimension boundary layer ‡ow of MHDOldroyd-B nanoliquid. Flow

induced is because of bi-directional extending surface. Brownian movement and thermophoresis

impacts are explored. Newly proposed constraint requiring zero nanoparticles ‡ux is utilized.

The governing nonlinear boundary-layer expressions through appropriate transformations are

diminished into nonlinear ordinary di¤erential frameworks. The resulting nonlinear framework

has been solved for velocities, concentration and temperature. The contributions of various

interesting variables are studied graphically. Nusselt number is tabulated and analyzed.

8.1 Formulation

We examine three dimension ‡ow of an Oldroyd-B nanoliquid. Flow caused is because of bi-

directional extending surface. Liquid is taken electrically conducting subject to constant 0

applied in ¡direction. Hall and electric …eld impacts are disregarded. Impacts of Brownian

movement and thermophoresis are considered. We employ Cartesian coordinate framework

such that ¡ and ¡axes are taken in direction of motion and ¡axis is normal to it. Surface

at  = 0 is extended in ¡ and ¡directions having velocities  and . Boundary layer
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expressions governing the ‡ow of an Oldroyd-B liquid are
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Here one has the following prescribed conditions:

 = () =   = () =   = 0  = () 



+


1




= 0 at  = 0 (8.6)

! 0 ! 0  ! 1  ! 1 as  !1 (8.7)

Here   and  stand for velocities in ¡ ¡ and ¡directions,  for dynamic viscosity,


¡
= 

¢
for kinematic viscosity,  for Brownian movement,  for density, 1 for relaxation

time, 2 for retardation time,  for thermophoretic di¤usion,  for electrical conductivity,

() for heat potential of liquid,  for temperature,  = () for thermal di¤usivity,  for

thermal conductivity, () for e¤ective heat potential of nanoparticles,  for concentration,

 and 1 for wall and ambient temperatures and 1 for ambient concentration. Here we
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assumes that surface stretching velocities and temperature are

() =  () =  () = 1 + 0 (8.8)

where   and 0 are positive constants. Selecting

 =  0()  = 0()  = ¡ ()12 (() + ()) 

() = ¡1
¡1

 () = ¡1
1

  =
¡



¢12


(8.9)

Eq. (81) is automatically veri…ed while Eqs. (82)¡ (88) become

 000 +
¡
21 + 1

¢
( + ) 00 ¡  0

2
+ 1

³
2 ( + )  0 00 ¡ ( + )2  000

´

+ 2
¡¡
 00 + 00

¢
 00 ¡ ( + )  

¢
¡2 0 = 0  (8.10)

000 +
¡
21 + 1

¢
( + )00 ¡ 0

2
+ 1

³
2 ( + ) 000 ¡ ( + )2 000

´

+ 2
¡¡
 00 + 00

¢
00 ¡ ( + ) 

¢
¡20 = 0  (8.11)

00 +Pr
³
( + )0 ¡  0 +00 +0

2
´
= 0 (8.12)

00 + Pr( + )0 +



00 = 0 (8.13)

(0) = (0) = 0  0(0) = 1 0(0) =  (0) = 1 0(0) +0(0) = 0 (8.14)

 0(1)! 0 0(1)! 0 (1)! 0 (1)! 0 (8.15)

Here 1 and 2 stand for Deborah parameters in terms of relaxation and retardation times

respectively,  for Brownian movement number, Pr for Prandtl parameter,  for ratio of

extending rates,  for magnetic number,  for Lewis parameter and  for thermophoresis

number. These variables can be speci…ed by employing the de…nitions given below:

1 = 1 2 = 2 
2 =

2
0


 = 

  Pr =

 

 =
()1
()

  =
() (¡1)

()1
  = 




9
=

;
(8.16)
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Local Nusselt number  is

 = ¡


( ¡ 1)





¯
¯
¯
¯
=0

= ¡ (Re)
12 0(0) (8.17)

It is watched that mass ‡ux represented by Sherwood number is now identically vanishes and

Re =  is for local Reynolds parameter.

8.2 Solutions by HAM

The series arrangements of Eqs. (810)¡ (813) through (814) and (815) have been developed

by utilizing homotopic analysis technique (HAM). The linear operators and initial deformations

have been selected as follows:

0() = 1¡ ¡ 0() = (1¡ ¡) 0() = ¡ 0() = ¡



¡ (8.18)

L =  000 ¡  0 L = 000 ¡ 0 L = 00 ¡  L = 00 ¡  (8.19)

The above linear operators obey

L [
¤¤
1 +  ¤¤2  +  ¤¤3 ¡] = 0 L [

¤¤
4 +  ¤¤5  +  ¤¤6 ¡] = 0

L [
¤¤
7  +  ¤¤8 ¡] = 0 L [

¤¤
9  +  ¤¤10 

¡] = 0

9
=

;
(8.20)

in which  ¤¤ ( = 1 ¡ 10) stand for arbitrary constants. Problems for zeroth and th-order

deformations are easily formulated in the view of above operators. The deformation issues are

computed by Mathematica software.

8.3 Convergence analysis

Here series arrangements involve auxiliary variables ~  ~ ~ and ~ These variables are

helpful for convergence of homotopic series arrangements. Proper estimations of such variables

play a vital role to construct convergent arrangements through homotopic analysis technique

(HAM). To get suitable estimations of ~  ~ ~ and ~ the ~¡plots are sketched at 15th order

of deformations. Figs. 81 and 82 clearly show that convergence zone lies within the ranges
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¡155 · ~ · ¡015¡160 · ~ · ¡020¡155 · ~ · ¡050 and ¡160 · ~ · ¡035 Table

81 exhibits that 27th order of deformations is su¢cient for convergent series arrangements.
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Fig. 81 The ~¡plots for () and ()
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Table 8.1. HAM arrangements convergence when 1 = 2 = 02 =  =   = 03  = 05

Pr = 07 and  = 10

Order of deformations ¡ 00(0) ¡00(0) ¡0(0) 0(0)

1 102593 014545 087333 034933

5 103095 015090 082041 032816

10 103103 015083 081353 032541

15 103103 015083 081214 032486

20 103103 015083 081177 032471

27 103103 015083 081163 032465

35 103103 015083 081163 032465

50 103103 015083 081163 032465

8.4 Discussion

This section addresses contributions of various in‡uential variables like Deborah parameter by

means of relaxation time 1 Deborah parameter by means of retardation time 2 magnetic

number  ratio number  Prandtl parameter Pr Brownian movement number  ther-

mophoresis number  and Lewis parameter  on concentration and temperature. In‡uence

of Deborah parameter 1 on temperature is dipicted in Fig. 83 It is watched that temper-

ature and corresponding layer are higher for bigger estimations of 1 Fig. 84 describes that

temperature and layer of thermal are decayed via 2 A comparison of Figs. 83 and 84 clearly

exhibits that 1 and 2 have quite reverse e¤ects on temperature …eld. Here 1 depends on re-

laxation time while 2 involves retardation time. bigger relaxation time corresponds to elevated

temperature while higher retardation time creates a diminishment in temperature. Hence an

improvement in 1 leads to an improvement in temperature while bigger 2 exhibits lower tem-

perature. Further 2 = 0 leads to Maxwell liquid ‡ow situation. Fig. 85 illustrates variations

in temperature for a few estimations of magnetic number. Here  6= 0 is for hydro-magnetic

‡ow and  = 0 corresponds to hydro-dynamic ‡ow situation. We watched that temperature

and layer of thermal are higher for hydro-magnetic ‡ow in comparison to hydro-dynamic sit-

uation. Magnetic number depends upon Lorentz force. Bigger magnetic number has stronger
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Lorentz force. Such stronger Lorentz force creates an improvement in temperature and layer

of thermal. Fig. 86 exhibits that bigger ratio number creates a diminishment in temperature

pro…le and layer of thermal. For  = 0 two dimension ‡ow situation is acquired. Here we

watched that layer of thermal is more for two dimension situation when compared with three

dimension ‡ow. Impact of Prandtl parameter on temperature pro…le is sketched in Fig. 87

Temperature pro…le is diminished when we improvement estimations of Prandtl parameter.

Physically bigger Prandtl ‡uids have poor thermal di¤usivity and small Prandtl ‡uids have

stronger thermal di¤usivity. Such variation in thermal di¤usivity leads to a diminishment in

temperature and corresponding layer of thermal. Fig. 88 presents variations of thermophoresis

number  on temperature pro…le  ()  We watched that temperature  () and associated

layer of thermal are elevated when we improvement thermophoresis number. In fact presence

of nanoparticles elevates thermal conductivity of liquid. An improvement in thermophoresis

number exhibits stronger thermal conductivity. Such stronger thermal conductivity elevates

temperature and layer of thermal. In‡uence of 1 on concentration pro…le  () is shown in

Fig. 89 Here concentration  () and associated layer thickness are higher for bigger 1 E¤ect

of 2 on concentration pro…le  () is plotted in Fig. 810 Concentration  () and correspond-

ing layer thickness are diminished for higher estimations of 2 Concentration  () is elevated

for bigger magnetic number (see Fig. 811). Concentration  () elevates for bigger magnetic

number. Variation in concentration  corresponding to a few estimations of ratio number is

plotted in Fig. 812 We have watched that bigger estimations of ratio number creates a di-

minishment in concentration and associated layer. Fig. 813 illustrates that concentration is

poor for higher Lewis parameter. Lewis parameter depends on Brownian movement. Higher

Lewis parameter corresponds to a poor Brownian movement which exhibits a poor concentra-

tion. Fig. 814 exhibits that concentration is diminished via Prandtl parameter. Figs. 815 and

816 exhibit in‡uences of thermophoresis and Brownian movement on concentration  ()  Here

an improvement in  gives rise to concentration but opposite trend is watched for Brownian

movement number. Table 82 exhibits the comparison for di¤erent estimations of  with exact

arrangement. Table 82 demonstrates an excellent agreement of HAM arrangement with exist-

ing exact arrangement in limiting situation. Table 83 is computed to investigate transfer of

heat rate for di¤erent estimations of    1 2   and Pr  For 2 = 0 the situation
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of Maxwell liquid ‡ow is recovered. It is clearly exhibits that estimations of transfer of heat rate

for an Oldroyd-B liquid are more than Maxwell liquid. Transfer of heat rate is independent for

variations in Brownian movement number. E¤ects of Lewis and Prandtl parameters on transfer

of heat rate are very reverse.
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Fig. 87 Plots of  () for Pr 

Nt  0.0 , 0.5, 1.0, 1.5

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0







1  2  0.2  c, M  0.3, Nb  0.5 , Pr  0.7 , Le  1.0
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Fig. 89 Plots of  () for 1
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Fig. 810 Plots of  () for 2
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Fig. 811 Plots of  () for 
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Fig. 812 Plots of  () for 
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Fig. 814 Plots of  () for Pr 
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Table 8.2. Comparative estimations of ¡ 00 (0) and ¡00 (0) for several estimations of  when

1 = 2 = = 0

 ¡ 00(0) ¡00(0)

HAM Exact [38] HAM Exact [38]

0 1 1 0 0

025 1048811 1048813 0194564 0194564

050 1093095 1093097 0465205 0465205

075 1134486 1134485 0794618 0794622

10 1173722 1173720 1173722 1173720
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Table 8.3. Numeric data of Nusselt number  (Re)
¡12 for a few estimations of 1

2      and Pr 

1 2      Pr ¡0 (0)

00 02 03 02 02 05 10 07 08358

02 08117

05 07780

02 00 03 02 02 05 10 07 07801

02 08117

05 08458

02 02 00 02 02 05 10 07 08219

03 08117

05 07948

02 02 03 00 02 05 10 07 07806

02 08117

05 08539

02 02 03 02 00 05 10 07 08189

05 08011

10 07838

02 02 03 02 02 05 10 07 08117

10 08117

15 08117

02 02 03 02 02 05 05 07 08149

10 08117

15 08098

02 02 03 02 02 05 10 05 06452

10 10223

15 13094
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Chapter 9

An analytical solution for

magnetohydrodynamic Oldroyd-B

nano‡uid ‡ow induced by a

stretching surface with heat

generation/absorption

This chapter provides an investigation of magnetohydrodynamic (MHD) three dimension (3D)

‡ow of an Oldroyd-B nanoliquid. Heat absorption/generation and convective boundary condi-

tion are studied. Flow induced is because of extending surface. Brownian movement and ther-

mophoresis are examined. Oldroyd-B liquid is taken conducting through uniform applied mag-

netic …eld. A condition associated with nanoparticles mass ‡ux at surface is utilized. Problem

formulation is made for boundary-layer and low magnetic Reynolds parameter approximations.

Suitable transformations are employed to construct nonlinear ordinary di¤erential expressions.

The strongly nonlinear di¤erential expressions are solved through optimal homotopic analysis

technique (OHAM). Impacts of di¤erent intriguing variables on concentration and temperature

are considered. Nusselt number is also computed and analyzed. Our computations reveal that

temperature has direct relation with Biot parameter and magnetic number.
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9.1 Formulation

We explore three dimension (3D) ‡ow of an Oldroyd-B nanoliquid by a convectively heated

surface. Flow induced is due to a bidirectional extending surface. The liquid is taken conducting

via uniform 0 applied in ¡direction. Also electric …eld and Hall impacts are disregarded.

Induced magnetic …eld is not taken for low magnetic Reynolds parameter. Brownian movement,

thermophoresis and heat generation/absorption e¤ects are accounted. We employ Cartesian

coordinate framework such that ¡ and ¡axes brought the extending surface in course of

movement and ¡axis is normal to it. Let  () =  and  () =  be the velocities of

extending surface along ¡ and ¡directions. Temperature at extending surface is managed by

a convective heating phenomenon which is described via coe¢cient of heat transfer  and hot

liquid temperature  under the surface. The governing boundary layer expressions for three

dimension (3D) ‡ow of an Oldroyd-B nanoliquid are




+



+



= 0 (9.1)





+ 




+




+ 1

0

@
2 

2
2 + 2 

2
2 +2 

2
2

+2 2
 + 2

2
 + 2

2


1

A

= 

0

@
2

2
+ 2

0

@
 3
2

+  3
2

+3
3

¡


2
2

¡ 


2
2

¡ 


2
2

1

A

1

A¡
20


µ

+ 1




¶

 (9.2)





+ 




+




+ 1

0

@
2 

2
2 + 2 

2
2 +2 

2
2

+2 2
 + 2

2
 + 2

2


1

A

= 

0

@
2

2
+ 2

0

@
 3
2

+  3
2

+ 3
3

¡


2
2

¡ 


2
2

¡ 


2
2

1

A

1

A¡
20


µ

 + 1




¶

 (9.3)

122







+ 




+




= 

2

2
+



()
( ¡ 1)

+
()
()

Ã



µ








¶

+


1

µ




¶2
!

 (9.4)





+ 




+




= 

µ
2

2

¶

+


1

µ
2

2

¶

 (9.5)

Here one has the following prescribed conditions:

 =   =   = 0 ¡ 



=  ( ¡  )  




+


1




= 0 at  = 0 (9.6)

! 0  ! 0  ! 1  ! 1 as  !1 (9.7)

Here   and  stand for velocities in ¡ ¡ and ¡directions,  for dynamic viscosity,


¡
= 

¢
for kinematic viscosity, () for e¤ective heat potential of nanoparticles, 1 for

relaxation time,  for density, 2 for retardation time,  for electrical conductivity,  for

temperature,  = () for thermal di¤usivity,  for Brownian movement,  for thermal

conductivity, () for heat potential of liquid,  for heat generation/absorption coe¢cient,

 for concentration,  for thermophoretic di¤usion, 1 for ambient temperature, 1 for

ambient concentration and  and  for positive constants. Selecting

 =  0()  = 0()  = ¡ ()12 (() + ()) 

() = ¡1
¡1

 () = ¡1
1

  =
¡



¢12


(9.8)

Now expression (91) is automatically satis…ed and Eqs. (92)¡ (97) provide

 000 +
¡
21 + 1

¢
( + ) 00 ¡  0

2
+ 1

³
2 ( + )  0 00 ¡ ( + )2  000

´

+ 2
¡¡
 00 + 00

¢
 00 ¡ ( + )  

¢
¡2 0 = 0  (9.9)

000 +
¡
21 + 1

¢
( + )00 ¡ 0

2
+ 1

³
2 ( + ) 000 ¡ ( + )2 000

´

+ 2
¡¡
 00 + 00

¢
00 ¡ ( + ) 

¢
¡20 = 0  (9.10)
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00 +Pr
³
( + )0 +  +00 +0

2
´
= 0 (9.11)

00 + ( + )0 +



00 = 0 (9.12)

 =  = 0  0 = 1 0 =  0 = ¡ (1¡  (0))  0 +0 = 0 at  = 0 (9.13)

 0 ! 0 0 ! 0 ! 0 ! 0 as !1 (9.14)

Here  stands for magnetic number,  for Brownian movement number, 1 and 2 for

Deborah parameters by mean of relaxation and retardation times,  for ratio number, Pr

for Prandtl parameter,  for Lewis parameter,  for thermophoresis number,  for Biot

parameter and  for heat generation/absorption parameter. These variables can be speci…ed

by employing the de…nitions given below:

1 = 1 2 = 2 
2 =

2
0


  = 

  Pr =



  = 
()



 =
()1
()

  =
() (¡1)

()1
  =




p

   =






9
>=

>;
(9.15)

The local Nusselt number  is de…ned by

 = ¡


( ¡ 1)





¯
¯
¯
¯
=0

= ¡ (Re)
12 0(0) (9.16)

It is watched that mass ‡ux denoted by Sherwood number is now identically vanishes and

Re =  exhibits local Reynolds parameter.

9.2 Solutions by OHAM

The optimal series arrangements of Eqs. (99) ¡ (912) through (913) and (914) have been

developed by utilizing optimal homotopic analysis technique (OHAM). The linear operators

and initial deformations have been selected as follows:

0() = 1¡ ¡ 0() = (1¡ ¡) 0() =


1 + 
¡ 0() = ¡



1 + 




¡ (9.17)

L =  000 ¡  0 L = 000 ¡ 0 L = 00 ¡  L = 00 ¡  (9.18)
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The above linear operators obey

L [
¤¤
1 +  ¤¤2  +  ¤¤3 ¡] = 0 L [

¤¤
4 +  ¤¤5  +  ¤¤6 ¡] = 0

L [
¤¤
7  +  ¤¤8 ¡] = 0 L [

¤¤
9  +  ¤¤10 

¡] = 0

9
=

;
(9.19)

in which  ¤¤ ( = 1 ¡ 10) stand for arbitrary constants. Problems for zeroth and th-order

deformations are easily formulated in the view of above operators. The deformation issues are

solved by BVPh2.0 of Mathematica software.

9.3 Convergence analysis

We have solved the momentum, energy and concentration expressions with the help of BVPh2.0.

These expressions contain unknown variables ~  ~ ~ and ~ We can compute the minimum

estimation of these variables by taking total error small. In the frame of HAM, these variables

play a vital role. That is why these variables refer to as convergence-control parameter which

di¤ers HAM from other analytical approximation methods. In order to reduce the CPU time,

we have employed average residual errors at the th-oder of approximation which are de…ned

by
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Here N  N N and N denote the non-linear operators corresponding to Eqs. (99)¡ (912)

respectively. Following Liao [69] :

 =  +  +  +  (9.24)
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where  stands for total residual square error,  = 20 and  = 05 Optimal data for auxiliary

variables at 2nd order of deformations is ~ = ¡092591 ~ = ¡0905895 ~ = ¡125056 and

~ = ¡168203 and  = 543 £ 10¡5 Table 91 presents average square residual error at

di¤erent order of deformations. It has been analyzed that the average residual square errors

reduce with higher order deformations.

Table 9.1. Individual average residual square errors employing optimal data of auxiliary

variables.

    

2 761£ 10¡7 380£ 10¡7 212£ 10¡5 319£ 10¡5

6 703£ 10¡10 128£ 10¡9 306£ 10¡9 505£ 10¡7

10 776£ 10¡12 126£ 10¡11 579£ 10¡11 176£ 10¡8

16 295£ 10¡14 286£ 10¡14 116£ 10¡14 147£ 10¡10

20 227£ 10¡14 155£ 10¡14 216£ 10¡16 627£ 10¡12

9.4 Discussion

The present section examines e¤ects of various interesting variables like Deborah parameters

by mean of relaxation and retardation times 1 and 2 respectively, Lewis parameter  mag-

netic number  Biot parameter  ratio number  heat generation/absorption parameter 

thermophoresis number  Prandtl parameter Pr and Brownian movement number  on

temperature and concentration. Fig. 91 displays impact of Deborah parameter 1 on tem-

perature  ()  Here temperature  and layer of thermal are higher for expanding estimations

of Deborah parameter 1 Fig. 92 presents that an improvement in Deborah parameter 2

exhibits a decay in temperature  () and corresponding layer of thermal. A comparative study

of Figs. 91 and 92 clearly presents that 1 and 2 have quite opposite e¤ects on temperature.

Here 1 involves relaxation time while 2 depends on retardation time. An improvement in 1

and 2 corresponds to bigger relaxation and retardation times respectively. Bigger relaxation

time leads to a stronger temperature pro…le while bigger retardation time corresponds to a poor

temperature pro…le. Further present results diminishes to Maxwell liquid ‡ow situation when

2 = 0 E¤ect of magnetic number  on temperature  is plotted in Fig. 93 Both temper-

ature  and layer of thermal are upgraded for expanding estimations of magnetic number 
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Magnetic number  includes Lorentz force. Bigger  prompts a more grounded Lorentz force

which causes an improvement in temperature and corresponding layer of thermal. Here  = 0

corresponds to a hydro-dynamic ‡ow situation. Fig. 94 exhibits that an improvement in ratio

number  lead to a poor temperature  and less layer of thermal. For  = 0 the two dimension

‡ow situation is achieved. Variation in temperature  for various estimations of Biot parameter

 is outlined in Fig. 95 Here temperature  () and layer of thermal show expanding conduct

for bigger Biot parameter  Fig. 96 exhibits variations in temperature  () for various esti-

mations of heat generation/absorption parameter  Here   0 corresponds to heat generation

and   0 leads to heat absorption. It is clearly watched that temperature  and layer of

thermal are higher for heat generation situation in comparison to heat absorption situation.

Fig. 97 presents that temperature  () and layer of thermal are diminishing elements of Pr 

Prandtl parameter Pr has an opposite association with thermal di¤usivity. An expansion in

Prandtl parameter Pr prompt poor thermal di¤usivity which causes a rot in temperature and

layer of thermal. Fig. 98 delineates conduct of  on temperature  ()  Both temperature 

and layer of thermal are upgraded for expanding estimations of thermophoresis number  Fig.

99 presents impact of Deborah parameter 1 on concentration pro…le  ()  Bigger Deborah

parameter 1 causes an improvement in concentration pro…le. Variation in concentration …eld

 () for various estimations of Deborah parameter 2 is sketched in Fig. 910 Here concen-

tration  and layer of concentration are lower for expanding estimation of Deborah parameter

2 Fig. 911 exhibits that bigger magnetic number  leads to elevated concentration pro…le

and more layer of concentration. Impact of ratio number  on concentration  () is displayed

in Fig. 912 An improvement in ratio number  causes a decay in concentration pro…le. Fig.

913 displays impact of Biot parameter  on concentration  ()  Here concentration  () and

layer of concentration are expanding functions of Biot parameter  Fig. 914 exhibits that an

improvement in Lewis parameter  exhibits a decay in concentration  ()  Lewis parame-

ter has an inverse relationship with Brownian movement coe¢cient. Bigger Lewis parameter

 corresponds to poor Brownian movement coe¢cient which causes a diminishment in con-

centration distribution. Fig. 915 exhibits that bigger Prandtl parameter Pr leads to lower

concentration distribution  ()  Impact of thermophoresis number  on concentration  ()

is plotted in Fig. 916 Both concentration and associated thickness are higher for expanding
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estimations of thermophoresis number  Fig. 917 presents that bigger Brownian movement

number  relates to a poor concentration  and less layer of concentration. Table 92 exhibits

the comparison for di¤erent estimations of  with exact arrangement. Table 92 demonstrates

an excellent agreement of OHAM arrangement with existing exact arrangement in limiting sit-

uation. Table 93 elucidates local Nusselt number ¡0 (0) for 1 2       Pr

and  Obviously Nusselt number is higher for expanding estimations of Biot  and Prandtl

Pr numbers while inverse conduct is watched for thermophoresis number  It is additionally

watched that impacts of 1 and 2 on Nusselt number are very invert. Furthermore estimations

of Nusselt number are higher for hydro-dynamic ‡ow situation ( = 0) when compared with

hydro-magnetic ‡ow situation ( 6= 0) 
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Table 9.2. Comparative estimations of ¡ 00 (0) and ¡00 (0) for various estimations of  when

1 = 2 = = 0

 ¡ 00(0) ¡00(0)

OHAM Exact [38] OHAM Exact [38]

0 1 1 0 0

025 1048811 1048813 0194564 0194564

050 1093095 1093097 0465205 0465205

075 1134486 1134485 0794618 0794622

10 1173722 1173720 1173722 1173720
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Table 9.3. Numeric data for Nusselt number
¡
¡0 (0)

¢
for various estimations of 1 2 

     Pr and 

1 2       Pr ¡0 (0)

 = 00  = 05

00 02 02 01 05 03 05 10 12 02833 02777

02 02785 02723

04 02737 02667

02 00 02 01 05 03 05 10 12 02719 02643

02 02785 02724

04 02832 02778

02 02 00 01 05 03 05 10 12 02589 02504

05 02980 02935

10 03217 03160

02 02 02 00 05 03 05 10 12 02958 02918

01 02785 02723

02 02532 02415

02 02 02 01 02 03 05 10 12 01522 01504

05 02785 02723

08 03507 03407

02 02 02 01 05 00 05 10 12 02818 02758

03 02785 02723

05 02763 02698

02 02 02 01 05 03 05 10 12 02785 02723

07 02785 02723

10 02785 02723

02 02 02 01 05 03 05 05 12 02798 02738

10 02785 02723

15 02778 02714

02 02 02 01 05 03 05 10 05 01918 01812

10 02620 02546

15 02976 02923138



Chapter 10

A mathematical study for

three-dimensional boundary layer

‡ow of Je¤rey nano‡uid

Here we investigated characteristics of Brownian movement and thermophoresis in magneto-

hydrodynamic (MHD) three dimension ‡ow of Je¤rey liquid. Flow generated is because of

bi-directional extending surface. Mathematical formulation of considered ‡ow problem is made

through boundary-layer approach. Newly developed constraint requiring zero nanoparticle ‡ux

is employed in ‡ow analysis of Je¤rey liquid. The governing nonlinear boundary layer ex-

pressions are diminished into nonlinear ordinary di¤erential frameworks through appropriate

transformations. The resulting frameworks have been solved for velocities, concentration and

temperature. The importance of various interesting variables is studied graphically. The esti-

mations of Nusselt number are computed and examined.

10.1 Formulation

We examine three dimensional (3D) ‡ow of Je¤rey nanoliquid. Flow made is because of a bidi-

rectional extending surface. Liquid is considered electrically conducting subject to constant 0

applied in ¡direction. Also Hall and electric …eld impacts are disregarded. Brownian move-

ment and thermophoresis impacts are examined. We employ Cartesian coordinate framework
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such that ¡ and ¡axes are taken along extending surface toward movement and ¡axis is

normal to it. Surface at  = 0 is extended in ¡ and ¡directions with velocities  and .

The subjected boundary layer expressions for Je¤rey liquid are written below:
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Here one has the following prescribed conditions:

 = () =   = () =   = 0  = () 



+


1




= 0 at  = 0 (10.6)

! 0 ! 0  ! 1  ! 1 as  !1 (10.7)

Here   and  stand for velocities in ¡ ¡ and ¡directions,  for dynamic viscosity,


¡
= 

¢
for kinematic viscosity,  for thermal conductivity,  for density, 1 for ratio of

relaxation and retardation times,  for thermophoretic di¤usion, 2 for retardation time, ()

for e¤ective heat potential of nanoparticles,  for electrical conductivity,  for temperature,

 = () for thermal di¤usivity, () for heat potential of the liquid,  for Brownian

movement,  for concentration,  and 1 for wall and ambient temperatures and 1 for

ambient concentration. Here we assumes that surface extending velocities and temperature are

() =  () =  () = 1 + 0 (10.8)
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where   and 0 are positive constants. Selecting

 =  0()  = 0()  = ¡ ()12 (() + ()) 

() = ¡1
¡1

 () = ¡1
1

  =
¡



¢12


(10.9)

Expression (101) is automatically satis…ed and Eqs. (102)¡ (108) have the following forms

 000 + (1 + 1)
³
( + ) 00 ¡  0

2
´
+ 
³
 00

2
¡ ( + )   ¡ 0 000

´
¡ (1 + 1)

2 0 = 0 (10.10)

000 + (1 + 1)
³
( + )00 ¡ 0

2
´
+ 
³
00

2
¡ ( + )  ¡  0000

´
¡ (1 + 1)

20 = 0 (10.11)

00 +Pr
³
( + )0 ¡  0 +00 +0

2
´
= 0 (10.12)

00 + Pr( + )0 +



00 = 0 (10.13)

 = 0  = 0  0 = 1 0 =   = 1 0 +0 = 0 at  = 0 (10.14)

 0 ! 0 0 ! 0 ! 0 ! 0 as  !1 (10.15)

Here Pr stands for Prandtl parameter,  for Deborah parameter,  for Brownian movement

number,  for magnetic number,  for Lewis parameter,  for thermophoresis number and

 for ratio of extending rates. These variables can be speci…ed by employing the de…nitions

given below:

 = 2 
2 =

2
0


  = 

  Pr =

 

 =
()1
()

  =
() (¡1)

()1
  = 




9
=

;
(10.16)

The local Nusselt number  is de…ned as

 = ¡


( ¡ 1)





¯
¯
¯
¯
=0

= ¡ (Re)
12 0(0) (10.17)

It is watched that mass ‡ux represented by Sherwood number is now identically vanishes and

Re =  is for local Reynolds parameter.
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10.2 Solutions by HAM

The series arrangements of Eqs. (1010) ¡ (1013) through (1014) and (1015) have been

developed by utilizing homotopic analysis technique (HAM). The linear operators and initial

deformations have been selected as follows:

0() = 1¡ ¡ 0() = (1¡ ¡) 0() = ¡ 0() = ¡



¡ (10.18)

L =  000 ¡  0 L = 000 ¡ 0 L = 00 ¡  L = 00 ¡  (10.19)

The above linear operators obey

L [
¤¤
1 +  ¤¤2  +  ¤¤3 ¡] = 0 L [

¤¤
4 +  ¤¤5  +  ¤¤6 ¡] = 0

L [
¤¤
7  +  ¤¤8 ¡] = 0 L [

¤¤
9  +  ¤¤10 

¡] = 0

9
=

;
(10.20)

in which  ¤¤ ( = 1 ¡ 10) stand for arbitrary constants. Problems for zeroth and th-order

deformations are easily formulated in the view of above operators. The deformation issues are

computed by Mathematica software.

10.3 Convergence analysis

The homotopic series arrangements have auxiliary variables ~  ~ ~ and ~ Such variables

are helpful for convergence of homotopic series arrangements. Proper estimations of such vari-

ables play a vital role to construct convergent homotopic arrangements via homotopic analysis

technique (HAM). To get suitable estimations of ~  ~ ~ and ~ the ~¡plots are depicted

at 20th order of deformations. Figs. 101 and 102 clearly show that convergence area lies

within the ranges ¡135 · ~ · ¡015 ¡145 · ~ · ¡010 ¡140 · ~ · ¡045 and

¡140 · ~ · ¡025 Table 101 exhibits that 34th order of deformations is su¢cient for
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convergent homotopic series arrangements.
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Table 10.1. HAM arrangements convergence when  = 02 =  =   = 03 = 1

 = 05 Pr = 07 and  = 10

Order of deformations ¡ 00(0) ¡00(0) ¡0(0) 0(0)

1 115850 018370 087333 034933

5 112932 018471 080614 032245

10 112918 018474 079790 031916

15 112918 018474 079613 031845

25 112918 018474 079544 031817

34 112918 018474 079535 031814

45 112918 018474 079535 031814

60 112918 018474 079535 031814

10.4 Discussion

The motivation behind this segment is to investigate the contributions of several in‡uential

variables including Brownian movement number  Lewis parameter  ratio of relaxation

to retardation times 1 ratio number  Prandtl parameter Pr magnetic number  ther-

mophoresis number  and Deborah parameter  on concentration and temperature. Fig. 103

exhibits that an improvement in ratio of relaxation to retardation times creates an improvement

in temperature  () and layer of thermal. The situation 1 = 0 compares to least temperature

and thinner layer of thermal. Physically large 1 prompts increment in relaxation time and

a lessening in retardation time. This adjustment in relaxation and retardation times makes a

elevated temperature and thicker layer of thermal. The variety in temperature  () because

of Deborah parameter  is shown in Fig. 104 It is watched from Fig. 104 that an expansion

in  exhibits a decrease in temperature  () and corresponding layer of thermal. Fig. 105

exhibits that temperature  () and layer of thermal are higher for bigger magnetic number.

Here   0 is for hydro-magnetic ‡ow and  = 0 corresponds to hydro-dynamic ‡ow situa-

tion. We watched that temperature and layer of thermal are higher for hydro-magnetic ‡ow in

comparison to hydro-dynamic situation. Magnetic number depends upon Lorentz force. Bigger

magnetic number has stronger Lorentz force. Such stronger Lorentz force is responsible to im-
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provement the temperature in nanoliquid motion. Consequently the layer of thermal becomes

thicker for stronger magnetic …eld. In‡uence of ratio number on temperature  is displayed in

Fig. 106 Temperature and layer of thermal are diminishing functions of ratio number. For

 = 0 two dimensional ‡ow circumstance is recuperated. Here we watched that layer of thermal

is more for two dimensional situation in contrast with three dimensional ‡ow. Thermophore-

sis number  is key number for dissecting temperature in nanoliquid ‡ow. In‡uence of 

on temperature is presented in Fig. 107 With the expansion in  temperature of liquid

increments. An expansion in  creates an upgrade in thermophoresis constrain which tends

to shift nanoparticles from hot to icy territories and therefore it improves temperature  and

corresponding layer of thermal. E¤ect of Pr on temperature  () is depicted in Fig. 108

An augmentation in Prandtl parameter makes real impact on temperature  () and layer of

thermal. Layer of thermal diminishes with Prandtl parameter and it occurs due to decrease of

thermal di¤usivity for higher Prandtl parameter. Fig. 109 plainly delineates that concentration

 () and corresponding layer are expanding elements of 1 A comparison of Figs. 103 and

109 obviously portrays that e¤ects of ratio of relaxation to retardation times on concentration

and temperature very comparative. Impact of Deborah parameter  on  () is plotted in Fig.

1010 Here concentration and corresponding layer thickness are diminishment when Deborah

parameter increments. Concentration  () is an expanding potential of magnetic number (see

Fig. 1011). As magnetic number elevates, concentration  () improves. variation in  () com-

paring to various estimations of ratio number is inspected in Fig. 1012 We have watched that

bigger ratio number makes a decrease in concentration and corresponding layer thickness. Fig.

1013 exhibits that concentration is diminished by means of Lewis parameter. Lewis parameter

relies upon Brownian movement. Higher Lewis parameter leads to poor Brownian movement

which exhibits a poor concentration. In‡uence of Pr for concentration is depicted in Fig. 1014

Bigger Prandtl parameter exhibits a diminishment of concentration. Concentration exhibits

overshoot close to the surface for bigger estimations of Pr however the nanoparticle volume

layer thickness diminishes. E¤ect of thermophoresis number  on concentration  () is dis-

played in Fig. 1015 Concentration and corresponding layer thickness are expanding elements

of  An expansion in  makes an improvement in thermophoresis compel which tends to

improvement concentration and corresponding layer thickness. Impact of Brownian movement
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number  on concentration  () is sketched via Fig. 1016 Concentration diminishes with ex-

panding estimations of  In nanoliquid framework, because of the nearness of nanoparticles,

Brownian movement happens and with expansion in  the Brownian movement is in‡uenced

and thusly layer of concentration diminishes. Table 102 exhibits the comparison for di¤erent

estimations of  with exact arrangement. Table 102 presents an excellent agreement of HAM

arrangement with existing exact arrangement in a limiting situation. Table 103 is tabulated

to investigate transfer of heat rate for  1      and Pr  Rate of heat transfer

is independent for variations in Brownian movement number. E¤ects of Lewis and Prandtl

parameters on transfer of heat rate are very reverse.
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Table 10.2. Comparative estimations of ¡ 00 (0) and ¡00 (0) for several estimations of  when

 = 1 = = 0

 ¡ 00(0) ¡00(0)

HAM Exact [38] HAM Exact [38]

0 1 1 0 0

025 1048811 1048813 0194564 0194564

050 1093095 1093097 0465205 0465205

075 1134486 1134485 0794618 0794622

10 1173722 1173720 1173722 1173720
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Table 10.3. Numeric data of Nusselt number  (Re)
¡12 for various estimations of 

1      and Pr 

 1      Pr ¡0 (0)

00 03 03 02 02 05 10 07 07674

02 07954

05 08268

02 00 03 02 02 05 10 07 08317

03 07954

05 07740

02 03 00 02 02 05 10 07 08064

03 07954

05 07769

02 03 03 00 02 05 10 07 07650

05 08378

10 09065

02 03 03 02 00 05 10 07 08026

05 07848

10 07674

02 03 03 02 02 05 10 07 07954

10 07954

15 07954

02 03 03 02 02 05 05 07 07985

10 07954

15 07934

02 03 03 02 02 05 10 05 06304

10 10047

15 12904
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Chapter 11

Three-dimensional ‡ow of Je¤rey

nano‡uid with a new mass ‡ux

condition

Three dimensional ‡ow of Je¤rey nanoliquid with convectively heated surface is analyzed. Flow

induced is due to a bidirectional extending surface. Impacts of thermophoresis and Brownian

movement are explored. Newly developed constraint with zero nanoparticles ‡ux is employed.

Similarity variables have been employed for conversion of partial di¤erential frameworks into

nonlinear ordinary di¤erential frameworks. The subsequent nonlinear ordinary di¤erential con-

ditions have been tackled for velocities, concentration and temperature. Diagrams are sketched

to look at concentration and temperature. Numeric estimations of Nusselt number are tab-

ulated and analyzed. E¤ects of Biot parameter on concentration and temperature are quite

similar. Both concentration and temperature are elevated for bigger Biot parameter.

11.1 Formulation

Consider three dimensional (3D) ‡ow of Je¤rey nanoliquid. Flow generated is due to a bidi-

rectional extending surface at  = 0 Flow possesses the area   0 E¤ects of thermophoresis

and Brownian movement are explored. Temperature at extending surface is controlled by con-

vective heating process which is characterized via coe¢cient of heat transfer  and hot liquid
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temperature  below the extending surface. Flow under boundary layer approximations are

presented by the following expressions:
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Here one has the following prescribed conditions:

 =   =   = 0 ¡ 



=  ( ¡  )  




+


1




= 0 at  = 0 (11.6)

! 0 ! 0  ! 1  ! 1 as  !1 (11.7)

Here   and  stand for velocities in ¡ ¡ and ¡directions,  for thermal conductivity,

 for dynamic viscosity, 2 for retardation time, () for heat potential of liquid, 
¡
= 

¢

for kinematic viscosity, () for e¤ective heat potential of nanoparticles,  for density, 

for Brownian movement, 1 for ratio of relaxation and retardation times,  for temperature,

 = () for thermal di¤usivity,  for concentration,  for thermophoretic di¤usion, 1

for ambient temperature, 1 for ambient concentration and  and  for positive constants.

Selecting

 =  0()  = 0()  = ¡ ()12 (() + ()) 

() = ¡1
¡1

 () = ¡1
1

  =
¡



¢12


(11.8)
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Eq. (111) is automatically veri…ed while Eqs. (112)¡ (117) have the following forms:

 000 + (1 + 1)
³
( + ) 00 ¡  0

2
´
+ 
³
 00

2
¡ ( + )   ¡ 0 000

´
= 0 (11.9)

000 + (1 + 1)
³
( + )00 ¡ 0

2
´
+ 
³
00

2
¡ ( + )  ¡  0000

´
= 0 (11.10)

00 +Pr
³
( + )0 +00 +0

2
´
= 0 (11.11)

00 + Pr( + )0 +



00 = 0 (11.12)

 = 0  = 0  0 = 1 0 =  0 = ¡ (1¡  (0))  0 +0 = 0 at  = 0 (11.13)

 0 ! 0 0 ! 0 ! 0 ! 0 as  !1 (11.14)

Here  stands for thermophoresis number,  for Biot parameter,  for Deborah parameter, 

for Brownian movement number,  for ratio of extending rates, Pr for Prandtl parameter and

 for Lewis parameter. These variables can be speci…ed by employing the de…nitions given

below:

 = 2  =

  Pr =


   =

()1
()



 =
() (¡1)

()1
  =




p

   =






9
>=

>;
(11.15)

The local Nusselt number  is de…ned as by

 = ¡


( ¡ 1)





¯
¯
¯
¯
=0

= ¡ (Re)
12 0(0) (11.16)

It is watched that mass ‡ux represented by Sherwood number is now identically vanishes and

Re =  is for local Reynolds parameter.

11.2 Solutions by HAM

The series arrangements of Eqs. (119) ¡ (1112) through (1113) and (1114) have been de-

veloped by utilizing homotopic analysis technique (HAM). The linear operators and initial
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deformations have been selected as follows:

0() = 1¡ ¡ 0() = (1¡ ¡) 0() =


1 + 
¡ 0() = ¡



1 + 




¡ (11.17)

L =  000 ¡  0 L = 000 ¡ 0 L = 00 ¡  L = 00 ¡  (11.18)

The above linear operators obey

L [
¤¤
1 +  ¤¤2  +  ¤¤3 ¡] = 0 L [

¤¤
4 +  ¤¤5  +  ¤¤6 ¡] = 0

L [
¤¤
7  +  ¤¤8 ¡] = 0 L [

¤¤
9  +  ¤¤10 

¡] = 0

9
=

;
(11.19)

in which  ¤¤ ( = 1 ¡ 10) stand for arbitrary constants. Problems for zeroth and th-order

deformations are easily formulated in the view of above operators. The deformation issues are

computed by Mathematica software.

11.3 Convergence analysis

The homotopic series arrangements have auxiliary variables ~  ~ ~ and ~ Such variables

are helpful for convergence of acquired homotopic series arrangements. Proper estimations of

such variables play a vital role to construct convergent homotopic arrangements via homotopic

analysis technique (HAM). To get suitable estimations of ~  ~ ~ and ~ the ~¡plots are

depicted at 15th order of deformations. Figs. 111 and 112 clearly show that convergence

area lies within the ranges ¡150 · ~ · ¡010 ¡145 · ~ · ¡010 ¡150 · ~ · ¡015

and ¡150 · ~ · ¡005 Table 111 exhibits that 13th order of deformations is su¢cient for
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convergent homotopic series arrangements.

f '' 0

g '' 0

2.0 1.5 1.0 0.5 0.0

1.5

1.0

0.5

0.0

 f , g

f
''
 0

,
g
''
 0


  0.2 , c  0.3  1

Fig. 111 The ~¡plots for () and ()

 ' 0

 ' 0

2.0 1.5 1.0 0.5 0.0 0.5
0.6

0.4

0.2

0.0

0.2

0.4

 , 


'
 0

,

'
 0


  0.2  Nt, c  0.3  1,   0.5  Nb, Le  1.0  Pr

Fig. 112 The ~¡plots for () and ()

159



Table 11.1. HAM arrangements convergence when  = 02 =   = 03 = 1  = 05 = 

and  = 10 = Pr.

Order of deformations ¡ 00(0) ¡00(0) ¡0(0) 0(0)

1 112500 027450 033889 013556

5 110643 027728 033802 013521

13 110643 027737 033790 013516

20 110643 027737 033790 013516

30 110643 027737 033790 013516

40 110643 027737 033790 013516

50 110643 027737 033790 013516

11.4 Discussion

Impacts of ratio number  ratio of relaxation to retardation times 1 Deborah parameter 

Biot parameter  Lewis parameter  Prandtl parameter Pr thermophoresis number  and

Brownian movement number  on temperature  () and concentration  () are shown in

Figs. 113¡ 1116 Fig. 113 presents that an improvement in ratio of relaxation to retardation

times 1 causes an improvement in temperature  () and layer of thermal. An increment in

1 creates an improvement in relaxation time and a diminishment in retardation time. Due

to such fact there is an increment in temperature  () and layer of thermal via 1 Fig. 114

elucidates in‡uence of Deborah parameter  on temperature  ()  Here temperature  () and

layer of thermal are lower for bigger Deborah parameter. Fig. 115 presents that bigger ratio

number  exhibits a diminishment in temperature  () and layer of thermal. For  = 0 the two

dimension ‡ow situation is achieved. We watched that layer of thermal is more in two dimension

‡ow when compared with three dimension ‡ow. Fig. 116 exhibits impact of Biot parameter 

on temperature  ()  Here bigger Biot parameter causes a higher convection at the extending

surface which provides a stronger temperature  () and thicker layer of thermal. Fig. 117

is plotted to see variations in temperature corresponding to di¤erent estimations of Prandtl

parameter Pr  Temperature  () and layer of thermal are diminished when we improvement

Prandtl parameter. Physically bigger Prandtl liquids have poor thermal di¤usivity and small
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Prandtl liquids have stronger thermal di¤usivity. Such variation in thermal di¤usivity causes

a diminishment in temperature and corresponding layer of thermal. E¤ect of thermophoresis

number  on temperature is depicted in Fig. 118 Here temperature  () and layer of thermal

are higher for bigger thermophoresis number. An improvement in creates an improvement in

thermophoresis force which provides a elevated temperature pro…le and thicker layer of thermal.

Fig. 119 exhibits that concentration  () and its corresponding layer thickness are elevated

for bigger ratio of relaxation to retardation times 1 Here 1 = 0 corresponds to minimum

concentration  () and thinner layer of concentration. Fig. 1110 exhibits in‡uence of Deborah

parameter  on concentration  ()  Concentration  () and corresponding layer are diminish-

ing functions of Deborah parameter  Importance of ratio number  on concentration  () is

depicted in Fig. 1111 Here it is watched that concentration  () is diminishment when we

improvement ratio number. Fig. 1112 presents variations in concentration  () for di¤erent

estimations of Biot parameter  We watched that an improvement in Biot parameter  causes

an improvement in concentration  () and its corresponding layer thickness. In‡uence of Lewis

parameter  on concentration  () is plotted in Fig. 1113 Concentration  () and its as-

sociated layer thickness are diminished for bigger Lewis parameter. Higher Lewis parameter

corresponds to poor Brownian movement coe¢cient which exhibits a poor concentration and

its corresponding layer. Fig. 1114 presents that concentration  () is diminished for Prandtl

parameter Pr  Concentration exhibits overshoot near extending surface for bigger Prandtl pa-

rameter Pr which exhibits a diminishment in layer of concentration. Fig. 1115 exhibits that

an increment in thermophoresis number  causes a elevated concentration and its associated

layer thickness. Importance of Brownian movement number  on concentration  () is de-

picted in Fig. 1116 Concentration  () and corresponding layer are diminishing functions

of Brownian movement number  In nanoliquid ‡ow, due to the existence of nanoparticles,

the Brownian movement takes place and with improvement in  the Brownian movement is

a¤ected and thus layer of concentration diminishes. Table 112 exhibits the comparison for

di¤erent estimations of  with exact arrangement. Table 112 presents an excellent agreement

of HAM arrangement with existing exact arrangement in limiting situation. Table 113 indi-

cates Numeric data of Nusselt number
¡
¡0 (0)

¢
for 1     Pr  and  From this

Table we watched that Nusselt number
¡
¡0 (0)

¢
is higher for bigger Biot parameter  However
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impact of Brownian movement number  on local Nusselt number
¡
¡0 (0)

¢
is constant.

1  0.0, 0.4, 0.7, 1.0

0 2 4 6 8

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35







  0.2  Nt, c  0.3,   0.5  Nb, Le  1.0  Pr

Fig. 113 Plots of  () for 1

  0.0, 0.3, 0.6, 1.0

0 1 2 3 4 5 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30







Nt  0.2, c  0.3  1,   0.5  Nb, Le  1.0  Pr

Fig. 114 Plots of  () for 

162



c 0.0 , 0.3, 0.6, 1.0

0 1 2 3 4 5 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30







  0.2  Nt, 1  0.3,   0.5  Nb, Le  1.0  Pr

Fig. 115 Plots of  () for 

  0.1, 0.5, 1.0, 1.5

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6







  0.2  Nt, c  0.3  1, Nb  0.5, Le  1.0  Pr

Fig. 116 Plots of  () for 

163



Pr  0.7, 1.0, 1.3 , 1.6

0 2 4 6 8

0.0

0.1

0.2

0.3







  0.2  Nt, c  0.3  1,   0.5  Nb, Le  1.0

Fig. 117 Plots of  () for Pr 

Nt  0.0 , 0.5 , 1.0 , 1.5

0 1 2 3 4 5 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30







  0.2 , c  0.3  1,   0.5  Nb, Le  1.0  Pr

Fig. 118 Plots of  () for 

164



1  0.0, 0.4, 0.7 , 1.0

0 2 4 6 8 10

0.04

0.02

0.00

0.02







  0.2  Nt, c  0.3 ,   0.5  Nb, Le  1.0  Pr

Fig. 119 Plots of  () for 1

  0.0, 0.3, 0.6 , 1.0

0 2 4 6 8

0.04

0.02

0.00

0.02







Nt  0.2, c  0.3  1,   0.5  Nb, Le  1.0  Pr

Fig. 1110 Plots of  () for 

165



c  0.0, 0.3, 0.6, 1.0

0 2 4 6 8 10

0.04

0.02

0.00

0.02







  0.2  Nt, 1  0.3,   0.5  Nb, Le  1.0  Pr

Fig. 1111 Plots of  () for 

  0.1 , 0.5, 1.0 , 1.5

0 2 4 6 8

0.08

0.06

0.04

0.02

0.00

0.02

0.04







  0.2  Nt, c  0.3  1, Nb  0.5 , Le  1.0  Pr

Fig. 1112 Plots of  () for 

166



Le  0.75 , 1.0, 1.25 , 1.5

0 2 4 6 8 10

0.04

0.02

0.00

0.02







  0.2  Nt, c  0.3  1,   0.5  Nb, Pr  1.0

Fig. 1113 Plots of  () for 

Pr  0.7, 1.0, 1.3, 1.6

0 2 4 6 8 10
0.06

0.04

0.02

0.00

0.02







  0.2  Nt, c  0.3  1,   0.5  Nb, Le  1.0

Fig. 1114 Plots of  () for Pr 

167



Nt  0.5, 1.0, 1.5, 2.0

0 2 4 6 8

0.4

0.2

0.0

0.2







  0.2, c  0.3  1,   0.5  Nb, Le  1.0  Pr

Fig. 1115 Plots of  () for 

Nb  0.5, 0.75, 1.0, 1.25

0 2 4 6 8

0.04

0.02

0.00

0.02







  0.2  Nt, c  0.3  1,   0.5, Le  1.0  Pr

Fig. 1116 Plots of  () for 

168



Table 11.2. Comparative estimations of ¡ 00 (0) and ¡00 (0) for various estimations of  when

 = 1 = 0

 ¡ 00(0) ¡00(0)

HAM Exact [38] HAM Exact [38]

0 1 1 0 0

025 1048811 1048813 0194564 0194564

050 1093095 1093097 0465205 0465205

075 1134486 1134485 0794618 0794622

10 1173722 1173720 1173722 1173720
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Table 11.3. Numeric data for Nusselt number
¡
¡0 (0)

¢
for various estimations of 1  

  Pr  and 

1     Pr   ¡0 (0)

00 02 03 05 10 10 02 05 03416

05 03356

10 03302

03 00 03 05 10 10 02 05 03349

03 03391

05 03411

03 02 00 05 10 10 02 05 03317

05 03415

10 03493

03 02 03 01 10 10 02 05 00913

07 04186

15 06138

03 02 03 05 05 10 02 05 03382

10 03379

15 03378

03 02 03 05 10 05 02 05 02836

10 03379

15 03642

03 02 03 05 10 10 00 05 03383

05 03373

10 03362

03 02 03 05 10 10 02 05 03379

10 03379

15 03379
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Chapter 12

On three-dimensional boundary

layer ‡ow of Sisko nano‡uid with

magnetic …eld e¤ects

This chapter models e¤ects of magnetic …eld and nanoparticles in three dimensional ‡ow of

Sisko liquid. Flow caused is due to a bi-directional extending surface. E¤ects of Brownian

movement and thermophoresis in nanoliquid relation are considered. Sisko liquid is taken elec-

trically conducted via constant applied magnetic …eld. Mathematical development in boundary

layer regime is presented for weak magnetic Reynolds parameter. Newly constructed boundary

condition subject to zero nanoparticles mass ‡ux is employed. Nonlinear di¤erential frame-

works are solved for convergent arrangements. E¤ects of several physical variables are studied.

Skin frictions and Nusselt number are tabulated and explored. It is watched that e¤ects of

Brownian motion and thermophoresis variables on concentration are quite opposite. Further

concentration and temperature are elevated for bigger magnetic number.

12.1 Formulation

Consider three dimensional (3D) ‡ow of Sisko nanoliquid by bi-directional extending surface.

Sisko liquid is employed electrically conducting. Magnetic …eld 0 is taken in ¡direction.

Furthermore the electric …eld and Hall impacts are disregarded. Brownian movement and
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thermophoresis impacts are additionally present. Cartesian coordinate framework is embraced

such that ¡ and ¡axes are brought the extending surface and ¡axis is opposite to it. Let

 and  denote surface extending velocities along ¡ and ¡directions. The subjected

boundary layer expressions for considered ‡ow are expressed as follows:
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Here one has the following prescribed conditions:

 = () =   = () =   = 0  =  



+


1




= 0 at  = 0 (12.6)

! 0 ! 0  ! 1  ! 1 as  !1 (12.7)

Here   and  stand for velocities in ¡ ¡ and ¡directions,  for thermal conductivity, 

for density, () for e¤ective heat potential of nanoparticles,  for electrical conductivity,  

and  ( ¸ 0) for material constants,  for temperature,  = () for thermal di¤usivity,

() for heat potential of the liquid,  for Brownian movement,  for concentration, 

for thermophoretic di¤usion,  and 1 for wall and ambient temperatures, 1 for ambient

concentration and  and  for positive constants. Selecting

 =  0()  = 0()  = ¡
³
¡2



´1(+1) ³
2
+1 +

1¡
1+

0 + 
´
(¡1)(+1)

() = ¡1
¡1

 () = ¡1
1

  = 
³
2¡



´1(+1)
(1¡)(1+)

9
>=

>;

(12.8)
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Expression (121) is now satis…ed and Eqs. (122)¡ (127) have the following expressions

 000 ¡
¡
 0
¢2
+  00 + 

¡
¡ 00

¢¡1
 000 +

µ
2

+ 1

¶

 00 ¡2 0 = 0 (12.9)

000¡
¡
0
¢2
+00+

¡
¡ 00

¢¡1
000¡(¡ 1) 00 000

¡
¡ 00

¢¡2
+

µ
2

+ 1

¶

00¡20 = 0 (12.10)

00 +Pr

µµ
2

+ 1

¶

0 + 0 +
¡
0
¢2
+00

¶

= 0 (12.11)

00 + Pr

µµ
2

+ 1

¶

0 + 0
¶

+

µ




¶

00 = 0 (12.12)

 (0) =  (0) = 0  0 (0) = 1 0 (0) =   (0) = 1 0 (0) +0 (0) = 0 (12.13)

 0 (1)! 0 0 (1)! 0  (1)! 0  (1)! 0 (12.14)

Here Pr is for Prandtl parameter,  for ratio number,  for magnetic number,  for ma-

terial parameter,  for Brownian movement number,  for Lewis parameter and  for

thermophoresis number. Such variables can be speci…ed by employing the de…nitions given

below:

 =
Re

2(+1)

Re

 2 =
2

0
 

  = 
  Pr =

 Re
¡2(+1)





 =
()1
()

  =
() (¡1)

()1
  = 




9
>=

>;
(12.15)

Skin frictions and Nusselt number are given by

Re
1(+1)
 =  00(0)¡ (¡ 00 (0)) 

 Re
1(+1)
 = 



³
00 (0) + (¡ 00(0))¡1 00 (0)

´


Re
¡1(+1)
 = ¡0 (0) 

9
>>>=

>>>;

(12.16)

It is watched that Re =  and Re = 
2¡
  denote local Reynolds parameters

and Sherwood number  is now identically zero.

12.2 Solutions by OHAM

The optimal series arrangements of Eqs. (129)¡(1212) through (1213) and (1214) have been

developed by utilizing optimal homotopic analysis technique (OHAM). The linear operators
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and initial deformations have been selected as follows:

0() = 1¡ ¡ 0() = (1¡ ¡) 0() = ¡ 0() = ¡



¡ (12.17)

L =  000 ¡  0 L = 000 ¡ 0 L = 00 ¡  L = 00 ¡  (12.18)

The above linear operators obey

L [
¤¤
1 +  ¤¤2  +  ¤¤3 ¡] = 0 L [

¤¤
4 +  ¤¤5  +  ¤¤6 ¡] = 0

L [
¤¤
7  +  ¤¤8 ¡] = 0 L [

¤¤
9  +  ¤¤10 

¡] = 0

9
=

;
(12.19)

in which  ¤¤ ( = 1 ¡ 10) stand for arbitrary constants. Problems for zeroth and th-order

deformations are easily formulated in the view of above operators. The deformation issues are

solved by BVPh2.0 of Mathematica software.

12.3 Convergence analysis

We have solved the momentum, energy and concentration expressions with the help of BVPh2.0.

These expressions contain unknown variables ~  ~ ~ and ~ We can compute the minimum

estimation of these variables by taking total error small. In the frame of HAM, these variables

play a vital role. That is why these variables refer to as convergence-control parameter which

di¤ers HAM from other analytical approximation methods. In order to reduce the CPU time,

we have employed average residual errors at the th-oder of approximation which are de…ned

by
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1
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Ã
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Here N  N N and N denote the non-linear operators corresponding to Eqs. (129)¡(1212)

respectively. Following Liao [69] :

 =  +  +  +  (12.24)

where  stands for total residual square error,  = 20 and  = 05 Optimal data for auxiliary

variables at 4th order of deformations is ~ = ¡0575281 ~ = ¡0806452 ~ = ¡0873621

and ~ = ¡116577 and  = 281 £ 10¡4 Table 121 presents average square residual error

at di¤erent order of deformations. It has been analyzed that the average residual square errors

reduce with higher order deformations.

Table 12.1. Individual average residual square errors employing optimal data of auxiliary

variables.

    

2 111£ 10¡3 214£ 10¡5 469£ 10¡5 761£ 10¡5

6 838£ 10¡5 113£ 10¡6 134£ 10¡5 665£ 10¡6

10 336£ 10¡5 387£ 10¡7 772£ 10¡7 312£ 10¡7

16 176£ 10¡5 111£ 10¡7 465£ 10¡9 346£ 10¡9

20 122£ 10¡5 590£ 10¡8 663£ 10¡9 237£ 10¡9

26 759£ 10¡6 264£ 10¡8 398£ 10¡10 539£ 10¡10

30 568£ 10¡6 164£ 10¡8 612£ 10¡10 353£ 10¡10

12.4 Discussion

E¤ects of various physical variables like thermophoresis number  Prandtl parameter Pr

Sisko liquid parameter  Brownian movement number  magnetic number  ratio num-

ber  and Lewis parameter  on temperature  and concentration  are displayed in Figs.

121¡ 1212 Impact of Sisko liquid parameter  on temperature  () is plotted in Fig. 121

Here temperature  () and layer of thermal are diminishment when Sisko liquid parameter up-

grades. Fig. 122 presents that bigger magnetic number  compares to elevated temperature
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and more layer of thermal. Here  = 0 prompts hydro-dynamic ‡ow and  6= 0 for hydro-

magnetic ‡ow situation. It is watched that temperature is higher for hydro-magnetic ‡ow when

contrasted with hydro-dynamic ‡ow circumstance. Fig. 123 exhibits e¤ect of ratio number 

on temperature  ()  Temperature and layer thickness are diminishing elements of ratio num-

ber. For  = 0 the two dimensional ‡ow circumstance is accomplished. Here we watched that

temperature is more grounded for two dimension ‡ow in contrast with three dimension ‡ow.

Fig. 124 presents variations in temperature  () for di¤erent estimations of Prandtl parameter

Pr  Here temperature and layer of thermal are less for bigger Prandtl parameter. Prandtl pa-

rameter has a reverse association with thermal di¤usivity. An expansion in Prandtl parameter

prompts poor thermal di¤usivity. Such poor thermal di¤usivity causes a lessening in temper-

ature and layer of thermal. Variations in temperature  () relating to various estimations of

thermophoresis number  is appeared in Fig. 125 Here an upgrade in thermophoresis number

o¤ers ascend to temperature and associated layer thickness. An expansion in thermophoresis

number  causes an upgrade in thermophoresis constrain which exhibits a more grounded

temperature and more layer of thermal. Fig. 126 exhibits variations in concentration  () for

various estimations of Sisko liquid parameter  It is watched that an expansion in Sisko liquid

parameter exhibits a diminishment in concentration pro…le  ()  Fig. 127 presents that bigger

magnetic number  creates an improvement in concentration and associated layer. E¤ect of

ratio number  on concentration  is displayed in Fig. 128 Here concentration  and layer

of concentration are diminishing elements of ratio number. Fig. 129 exhibits e¤ect of Lewis

parameter  on concentration  ()  This Fig. clearly exhibits that bigger Lewis parameter 

causes a diminishment in concentration  ()  Lewis parameter involves Brownian movement.

An expansion in Lewis parameter prompts poor Brownian movement which exhibits a decrease

in concentration and layer of concentration. Fig. 1210 presents that bigger Prandtl parameter

Pr relates to poor concentration  and less layer of concentration. Fig. 1211 portrays impact of

Brownian movement number  on concentration  Here an upgrade in Brownian movement

number prompt poor concentration and associated layer of concentration. Fig. 1212 exhibits

e¤ect of thermophoresis number  on concentration  Here concentration is improved when

thermophoresis number increments. Table 122 exhibits comparison for di¤erent estimations of

 with exact arrangement. Table 122 presents an excellent agreement of OHAM arrangement
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with existing exact arrangement in limiting situation. Table 123 presents numeric data of skin

frictions ¡Re
1(+1)
 and ¡ Re

1(+1)
 for various estimations of  and  It is clearly

watched that skin frictions are higher for bigger magnetic number  Sisko liquid parameter 

and ratio number  Table 124 is processed to investigate Nusselt number ¡0 (0) for various

estimations of   Pr    and  Here it is watched that impacts of Lewis and

Prandtl parameters on Nusselt number are very inverse. Nusselt number is found constant

when we increment Brownian movement number.
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Table 12.2. Comparative estimations of ¡ 00 (0) and ¡00 (0) for various estimations of  when

 = 1 and  = = 0

 ¡ 00(0) ¡00(0)

OHAM Exact [38] OHAM Exact [38]

0 1 1 0 0

025 1048811 1048813 0194564 0194564

050 1093095 1093097 0465205 0465205

075 1134486 1134485 0794618 0794622

10 1173722 1173720 1173722 1173720

Table 12.3. Numeric data of skin frictions ¡Re
1(+1)
 and ¡ Re

1(+1)
 for di¤erent

estimations of   and 

   ¡Re
1(+1)
 ¡ Re

1(+1)


 = 10  = 20  = 10  = 20

00 02 01 10394 10050 00698 00703

05 12730 12076 00855 00850

10 14700 14714 00986 01060

01 00 01 10700 10264 00702 00709

05 11907 11483 00873 00854

10 14967 14824 01257 01233

01 02 00 10696 10210 00000 00000

05 11650 11415 04987 04935

10 12482 12497 12482 12497
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Table 12.4. Numeric data of Nusselt number for di¤erent estimations of Pr     

and 

    Pr   ¡0 (0)

 = 10  = 20

00 02 01 10 10 05 02 05980 06577

05 06388 07142

10 06638 07481

01 00 01 10 10 05 02 06120 06741

05 05888 06595

10 05335 06235

01 02 00 10 10 05 02 05727 06401

05 07244 07806

10 08402 08949

01 02 01 05 10 05 02 06160 06795

10 06082 06716

15 06040 06668

01 02 01 10 05 05 02 03812 04056

10 06081 06716

15 07829 08796

01 02 01 10 10 05 02 06081 06715

10 06081 06715

15 06081 06715

01 02 01 10 10 05 00 06241 06907

05 05845 06430

10 05456 05970
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Chapter 13

Impact of magnetic …eld in

three-dimensional ‡ow of Sisko

nano‡uid with convective condition

This chapter addresses magnetohydrodynamic (MHD) three dimension ‡ow of Sisko nanoliquid

with convectively heated extending surface. Nanoliquid relation includes Brownian movement

and thermophoresis impacts. Heat transfer via convective process is discussed. Developed

constraint with zero nanoparticles ‡ux at boundary is employed. The subjected problems with

boundary layer approach are computed for convergent homotopic series arrangements. E¤ects

of interesting ‡ow variables on concentration and temperature are studied. Skin frictions and

Nusselt number are computed and explored.

13.1 Formulation

Magnetohydrodynamic (MHD) three dimension (3D) ‡ow of Sisko nanoliquid by bidirectional

extending surface is examined. Sisko liquid is taken electrically conducting through a constant

0 applied in ¡direction. Moreover electric …eld and Hall impacts are disregarded. Mass

and heat transfer are investigated via Brownian movement and thermophoresis. We employ

Cartesian coordinate framework such that surface agrees with ¡plane and liquid possesses

space  ¸ 0 Let  () =  and  () =  depict surface extending velocities in ¡
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and ¡directions. Temperature at extending surface is administered by convective heating

procedure which is portrayed by coe¢cient of heat transfer  and hot liquid temperature 

below extending surface. Subjected boundary-layer expressions for considered ‡ow are
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Here one has the following prescribed conditions:

 =  ()   =  ()   = 0 ¡ 



=  ( ¡  )  




+


1




= 0 at  = 0

(13.6)

! 0 ! 0  ! 1  ! 1 as  !1 (13.7)

Here   and  stand for velocities in ¡ ¡ and ¡directions,  for thermal conductivity,

() for e¤ective heat potential of nanoparticles,  for electrical conductivity,  for Brownian

movement,  for density,   and  ( ¸ 0) for material constants,  for temperature, ()

for heat potential of liquid,  = () for thermal di¤usivity,  for concentration,  for

thermophoretic di¤usion, 1 for ambient temperature, 1 for ambient concentration and 

and  for positive constants. Selecting
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Expression (131) is now satis…ed and Eqs. (132)¡ (137) have the following forms:
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¶

00 = 0 (13.12)

 (0) =  (0) = 0  0 (0) = 1 0 (0) =  0 = ¡ (1¡  (0))  0 (0) +0 (0) = 0 (13.13)

 0 (1)! 0 0 (1)! 0  (1)! 0  (1)! 0 (13.14)

Here Pr stands for Prandtl parameter,  for Biot parameter,  for material parameter, 

for Brownian movement number,  for magnetic number,  for Lewis parameter,  for

thermophoresis number and  for ratio number. These variables can be speci…ed by employing

the de…nitions given below:
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Skin frictions and Nusselt number are

Re
1(+1)
 =  00(0)¡ (¡ 00 (0)) 

 Re
1(+1)
 = 



³
00 (0) + (¡ 00(0))¡1 00 (0)

´


Re
¡1(+1)
 = ¡0 (0) 

9
>>>=

>>>;

(13.16)

It is watched that Re =  and Re = 
2¡
  show local Reynolds parameters and

Sherwood number  is now identically zero.
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13.2 Solutions by HAM

The series arrangements of Eqs. (139)¡ (1312) through (1313) and (1314) have been devel-

oped by utilizing homotopy analysis technique (HAM). The linear operators and initial defor-

mations have been selected as follows:

0() = 1¡ ¡ 0() = (1¡ ¡) 0() =


1 + 
¡ 0() = ¡



1 + 




¡ (13.17)

L =  000 ¡  0 L = 000 ¡ 0 L = 00 ¡  L = 00 ¡  (13.18)

The above linear operators obey

L [
¤¤
1 +  ¤¤2  +  ¤¤3 ¡] = 0 L [

¤¤
4 +  ¤¤5  +  ¤¤6 ¡] = 0

L [
¤¤
7  +  ¤¤8 ¡] = 0 L [

¤¤
9  +  ¤¤10 

¡] = 0

9
=

;
(13.19)

in which  ¤¤ ( = 1 ¡ 10) stand for arbitrary constants. Problems for zeroth and th-order

deformations are easily formulated in the view of above operators. The deformation issues are

computed by Mathematica software.

13.3 Convergence analysis

Most likely series arrangements are subject to non-zero auxiliary variables ~  ~ ~ and ~

Reasonable estimations of these variables are imperative to get convergent series arrangements.

The ~¡curves for velocities, concentration and temperature are outlined at 20th order of de-

formations. Figs. 131 and 132 clearly portray that zones of convergence for    and  are

[¡071 ¡ 022]  [¡076 ¡ 011]  [¡091 ¡ 024] and [¡091 ¡ 011]. Table 131 exhibits

that 12th order of deformations is essential for convergent homotopic series arrangements of 
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Table 13.1. HAM arrangements convergence when  =  = 01  =  = 03  =

02  = 05  = 20 Pr = 12 and  = 10

Order of deformations ¡ 00(0) ¡00(0) ¡0(0) 0(0)

1 09379 00787 02250 01352

5 09675 00670 02183 01308

13 09747 00685 02164 01297

20 09747 00685 02164 01297

35 09747 00685 02164 01297

50 09747 00685 02164 01297

13.4 Discussion

E¤ects of several physical variables like Prandtl parameter Pr ratio number  Lewis para-

meter  Sisko liquid parameter  thermophoresis number  Biot parameter  Brownian

movement number  and magnetic number  on temperature  and concentration  are

displayed in Figs. 133¡1316 Fig. 133 presents e¤ect of Sisko liquid parameter  on temper-

ature  It is watched that an expansion in Sisko liquid parameter  makes a diminishment in

temperature and associated thickness of layer. Fig. 134 delineates varieties in temperature 

for various estimations of  Here temperature  and layer of thermal are expanding elements

of magnetic number. Here  = 0 compares to hydro-dynamic ‡ow situation and  6= 0 for

hydro-magnetic ‡ow. It is additionally watched that temperature is more grounded for hydro-

magnetic ‡ow when contrasted with hydro-dynamic ‡ow. Fig. 135 delineates that bigger ratio

number  prompts bring down temperature  and less layer of thermal. Two dimension (2D)

‡ow circumstance is recouped when ratio number  = 0 Fig. 136 exhibits impact of Biot pa-

rameter  on temperature  Here bigger Biot parameter  causes a elevated temperature and

more layer of thermal. Physically an upgrade in  makes a more grounded convection which

prompts elevated temperature. Fig. 137 presents that an expansion in Prandtl parameter Pr

gives decrease in temperature  Prandtl parameter includes thermal di¤usivity. Bigger Prandtl

parameter prompts bring down thermal di¤usivity. Such poor thermal di¤usivity causes a poor

temperature and less layer of thermal. Fig. 138 exhibits impact of thermophoresis number
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 on temperature  Here temperature  and subjected thickness of layer are upgraded when

we increment thermophoresis number. Bigger thermophoresis number prompts more grounded

thermophoresis constrain which exhibits an improvement in temperature. Fig. 139 presents

e¤ect of Sisko liquid parameter  on concentration  Concentration  and associated layer

thickness are diminishment when we upgrade Sisko liquid parameter. Fig. 1310 delineates

that bigger magnetic number  exhibits upgrade in concentration  E¤ect of ratio number 

on concentration  is shown in Fig. 1311 Here we watched that bigger ratio number compares

to bring down concentration and less layer of concentration. Fig. 1312 delineates impact of Biot

parameter  on concentration  Concentration and associated layer thickness are expanding

elements of Biot parameter. Fig. 1313 delineates that bigger Lewis parameter  prompts poor

concentration  and less layer thickness. Lewis parameter has a backwards association with

Brownian movement. Bigger Lewis parameter corresponds to poor Brownian movement. Such

poor Brownian movement exhibits a diminishment in concentration …eld. Fig. 1314 exhibits

varieties in concentration  for Prandtl parameter Pr  Here bigger Prandtl parameter demon-

strate a poor concentration. Fig. 1315 portrays that an expansion in Brownian movement

number  causes a poor concentration and less layer thickness. E¤ect of thermophoresis num-

ber  on concentration  is plotted in Fig. 1316 Here concentration  and associated layer

thickness are improved for bigger thermophoresis number. Table 132 exhibits the comparison

for di¤erent estimations of  with exact arrangement. Table 132 presents an excellent agree-

ment of HAM arrangement with existing exact arrangement in limiting situation. Table 133 is

…gured to investigate skin frictions ¡Re
1(+1)
 and ¡ Re

1(+1)
 for di¤erent estimations

of   and  Skin frictions are higher for bigger magnetic number  Sisko liquid parameter

 and ratio number  Table 134 exhibits Nusselt number ¡0 (0) for di¤erent estimations of

Pr       and  We watched that Nusselt number is independent for bigger

Brownian movement number. It is additionally watched that impacts of Biot parameter and
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magnetic number on Nusselt number have been very inverse.
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Table 13.2. Comparative estimations of ¡ 00 (0) and ¡00 (0) for several estimations of  when

 = 1 and  = = 0

 ¡ 00(0) ¡00(0)

HAM Exact [38] HAM Exact [38]

0 1 1 0 0

025 1048811 1048813 0194564 0194564

050 1093095 1093097 0465205 0465205

075 1134486 1134485 0794618 0794622

10 1173722 1173720 1173722 1173720

Table 13.3. Skin frictions ¡Re
1(+1)
 and ¡ Re

1(+1)
 for various estimations of 

 and 

   ¡Re
1(+1)
 ¡ Re

1(+1)


 = 10  = 20  = 10  = 20

00 02 01 10394 10050 00698 00703

05 12730 12076 00855 00850

10 14700 14714 00986 01060

01 00 01 10700 10264 00702 00709

05 11907 11483 00873 00854

10 14967 14824 01257 01233

01 02 00 10696 10210 00000 00000

05 11650 11415 04987 04935

10 12482 12497 12482 12497
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Table 13.4. Numeric data of Nusselt number for various estimations of Pr    

  and 

     Pr   ¡0 (0)

 = 10  = 20

00 02 01 03 10 12 05 03 020870 021530

05 021230 021940

10 021440 022180

01 00 01 03 10 12 05 03 020990 021650

07 020600 021430

15 019440 020820

01 02 00 03 10 12 05 03 020570 021350

05 022020 022500

10 022860 023230

01 02 01 02 10 12 05 03 015540 015930

07 034720 036620

12 043580 046630

01 02 01 03 05 12 05 03 020990 021670

10 020950 021650

15 020920 021610

01 02 01 03 10 05 05 03 016880 017450

10 020180 020850

15 021820 022510

01 02 01 03 10 12 05 03 020960 021630

10 020960 021630

15 020960 021630

01 02 01 03 10 12 05 00 021030 021710

05 020910 021580

10 020750 021430
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Chapter 14

Conclusions

The exploration performed in the present thesis is …nished up through chapters two to thir-

teen. The prime target of every one of these chapters is to analyze the magnetohydrodynamic

three dimensional (3D) boundary-layer ‡ow of viscous and non-Newtonian nanoliquids due to

extending surface. Analysis is carried out in both …xed and rotating frames. Buongiorno re-

lation is adopted which includes the novel parts of Brownian dispersion and thermophoresis.

Thermal convective and zero nanoparticles mass ‡ux conditions are implemented at the bound-

ary. Boundary-layer and low magnetic Reynolds parameter approximations are summoned to

improve the governing arrangement of partial di¤erential expressions. Appropriate transforma-

tions are introduced to nondimensionalize the relevant boundary-layer expressions. Uniformly

valid convergent arrangement expressions are developed by means of homotopy analysis method

(HAM) and optimal homotopy analysis method (OHAM). Importance of physical variables is

described through the plots. Moreover the physical quantities like skin friction and Nusselt

number are characterized by numerical estimations. Major outcomes of the presented research

are summarized as follows:

² Concentration and temperature …elds show expanding conduct for bigger magnetic num-

ber.

² Higher ratio number depict diminishing conduct for concentration and temperature.

² Bigger porosity and Forchheimer variables show expanding trend for concentration and

temperature …elds.
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² Bigger Biot parameter causes an improvement in concentration and temperature …elds.

² By improving thermophoresis number, an increment is watched in both concentration and

temperature …elds.

² Concentration …eld is diminished with an upgrade in Brownian movement number.

² There is decay in temperature and associated layer corresponding to Prandtl parameter.

² Concentration …eld and corresponding layer thickness are diminishing functions of Lewis

parameter.

² Skin frictions are elevated when we upgrade estimations of magnetic number.

² Nusselt number is diminishment with an upgrade in thermophoresis number while it is

independent of Brownian movement number.

² Both mass and heat transfer rates are higher for bigger concentration and thermal relax-

ation variables.

All chapters considered in this thesis examine the three dimensional (3D) ‡ow problems

of viscous and non-Newtonian nanoliquids due to extending surface. These problems can be

extended to explore the more complicated situations in connection with three dimensional ‡ow

and extending surface. Some possible extensions of present thesis are given below.

² Three dimensional ‡ow of nanoliquids in region of stagnation-point towards extending

surface.

² Melting heat transfer e¤ects on three dimensional ‡ow of nanoliquids.

² Three dimensional ‡ow problems of di¤erent non-Newtonian nanoliquids in the presence

of mass and heat ‡ux boundary conditions.

² Binary chemical reaction and activation energy aspects on three dimensional ‡ow of non-

Newtonian nanoliquids.

² Importance of homogeneous and heterogeneous reactions on three dimensional ‡ow of

non-Newtonian nanoliquids.
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