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Preface 

The study of the heat transport phenomena in fluid flows got extensive attention due to its wide 

applications in industries and nano-technology. Nanofluids are suspensions of nanometer-sized 

particle with base fluids. The base fluids are usually taken as water, kerosene oil, or some other 

solvent. Thermal conductivity is larger in a nanofluid as compared to base fluid [1,2]. The nano-

sized particles are made up of carbide, metal, metal oxide, nitride and some other nano-scale fluid 

droplets [3]. The shape and structure of the nanoparticles can be rod-like, spherical or tubular like 

and dispersed individually. Choi [4] initiated the new class of nano fluids. Nano fluids usually 

flow smoothly inside the micro channels. These fluids behave like normal fluids due to small size 

of the nanoparticles [5]. Haq et al. [6] exposed the impact of heat transfer analysis in a squeezed 

flow over a sensor surface in the presence of magneto hydrodynamic. Lin et al. [7] introduced the 

influence of heat transfer analysis in a magneto hydrodynamic pseudo-plastic nanofluid flow over 

a stretching surface in the presence of internal heat generation. Nadeem and Muhammad [8] 

scrutinized the impact of Cattaneo Christov heat and mass flux in a nanofluid imbedded in a porous 

medium. Nadeem and Lee [9] considered the exponentially stretching surface to discuss the 

boundary layer flow of nanofluid.      

The phenomena of induced magnetic field are applicable in several physical situations. The 

scientist and mathematician worked the field of induced magnetic field. Some applications of the 

phenomena of induced magnetic field may be seen in [10, 11]. Kumari et al. [12] examined the 

heat transfer and MHD flow over a stretching surface by considering the impact of the induced 

magnetic field, Takhar et al. [13] contemplated the unsteady free convection flow at the stagnation 

point under the effect of a magnetic field. Ali et al. [14] interrogated the heat transfer and MHD 

stagnation point flows towards a stretching sheet by contemplate the impact of the induced 



magnetic field. Nadeem and Akram [15] investigated the peristaltic flow of a couple stress fluid 

in an asymmetric channel by taking the influence of induced magnetic field. Mekheimer [16] 

explored the impact of induced magnetic field on peristaltic flow of a couple stress fluid. The exact 

solution of temperature appropriation on the steady flow over a stretching sheet has been 

highlighted by Dutta [17] for MHD flow of a viscous and electrically conducting fluid within the 

sight of a constant magnetic field. This problem has been likewise considered by Andersson [18], 

and Pop and Na [19]. Devi and Thiyagarajan [20] explored the nonlinear hydromagnetic steady 

flow and heat transfer past a stretching sheet with variable temperature. Ali et al. [22, 23] 

scrutinized the impact of an induced magnetic field on boundary layer flow over a stretching 

surface.               

The liquid flow due to a moving wedge is an important phenomenon. In such phenomenon, the 

fluid and plate velocities are proportional to each other, this is an applicable in sundry engineering 

processes. For instance, the thermal processing of sheet like substance is an essential operation in 

the preparation of paper, wire drawing, linoleum, drawing of plastic films, polymeric sheets, fine 

fibber matts and metal spinning. In all the above processes and application, the moment of sheet 

is parallel to its own plane. The sheet may reduce the movements of particles in the neighboring 

fluid or the fluid may have a forced convection motion which is parallel to that of the sheet. The 

flow of fluids over a moving wedge is explored by Abraham and sparrow [24, 25]. Sakiadis [26] 

proposed the fluid flows over a moving wedge with a constant speed in a quiescent fluid medium. 

Yacob et al. [27] investigated Falkner-Skan problem for a moving or static wedge in a nanofluid. 

Asaithambi [28] utilized finite difference method to get solutions for -0.19884≤  ≤ 2. Zaturska 

and Banks [29] examined diagnostically the case   > 1. Yang and Chang [30] introduced 

analytical answer for   = -1 for a stable plate. Recently, Fang and Zhang [31] displayed an 



investigative solution for a moving and penetrable wall when   = -1. The present analysis is the 

extension of the work of Yacob et al. [27]. These analyses characterized the impacts of heat transfer 

analysis in Falkner-Skan problem via static or moving wedge in the presence of induced magnetic 

field in a nanofluid with 0 ≤  ≤ 1. Keep in mind that  =0 corresponds to horizontal plate, on 

the other hand  =1 corresponds to a vertical plate. The boundary value problem is solved via 

shooting technique. The characteristic of solid volume friction on the heat transfer rate are 

analyzed and discussed. It is observed that the thermal conductivity arises for nanofluid as 

compared to regular fluid. 

Keeping the above highlights in mind, the dissertation is arranged as follows, in chapter 1, we have 

defined some basic definitions of fluid mechanics.  

Chapter 2, is devoted to analyzed the heat and mass transfer of a Falkner-Skan problem for a 

moving and static wedge in nanofluids. The effect of emerging parameters on the axial velocity 

and temperature field is highlighted and scrutinized graphically.  

In chapter 3, we have examined the Falkner-Skan problem Falkner-Skan problem in the flow of a 

nanofluids in presence of induced magnetic field. The transformed equations are solved 

numerically by using Rung-Kutta technique. Finally, the impact of the emerging flow parameters 

is plotted and discussed through several graphs. 
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Chapter 1 

Basic definitions 

1.1  Preliminaries 

In this chapter, we illustrate some fundamental definitions and governing laws for better 

understanding of fluid problem. 

1.2  Basic definitions 

1.2.1  Fluid 

A substance which deforms constantly under the effect of shear stress is termed as fluid. 

1.2.2  Flow 

The persistently change in the shape of material without any limit under the influence of applied 

forces is called flow. 

1.2.3  Fluid mechanics 

Fluid mechanics is a field of mechanics that deals the characteristic of fluid and forces applied on 

it. Furthermore, it has two sub branches i.e. fluid dynamic and fluid statics. 

The characteristic of moving fluid is studied in fluid dynamics. While fluid statics deals with the 

properties of stationary fluid.  

1.2.4  Stress 

Stress is a force which acts on the unit surface area in a deformable body. The below equation is 

utilized to compute the stress. 



force F
Stress

area A
   (1.1) 

The SI unit of stress is 2/ .kg m s  or Pa (Pascal) and dimension 2

M

LT
 
  . Further two components of 

stress are, 

(i) Shear stress 

Shear stress is expressed as the force acting parallel to surface unit area. 

(ii) Normal stress 

Normal stress is the force which are acting perpendicular to surface unit area. 

1.2.5  Strain 

The non-dimensional quantity which is used to measure the deformation of a material brought on 

by the applied forces is named as strain. 

1.3  Some physical properties of fluids 

1.3.1  Density 

Density of fluid is a considerable property which demonstrates a connection between mass of 

fluid and tiny volume of fluid. The symbol frequently utilized for density is   (the lower case 

Greek letter rho). 

Mathematically define as 

0
lim .
v

m

v





  (1.2) 

 The SI unit of density is 3/kg m  and dimension is 3[ ]M

L
. 

 



1.3.2  Viscosity 

Viscosity is an intrinsic fluid property which measure as the fluid resistance against its 

deformation. Viscosity is proportional to shear stress times to inverse of rate of shear strain. 

Mathematically, it can be written as i.e. 

 

1
viscosity shear stress.

rate of shear strain
   

Where   identify the dynamic viscosity, the SI unit and dimension of viscosity is / .kg m s  and 

 M
LT  respectively. 

1.3.3  Kinematic viscosity     

The kinematic viscosity (momentum diffusivity) is proportional to the quotient of   dynamic 

viscosity to   density of the fluid. The mathematical expression is  

.





  (1.3) 

In which   denote the kinematic viscosity. In mechanics, the SI unit of   (kinematic viscosity) 

is 2 /m s  and dimension is
2L

T
 
  . 

1.3.4  Thermal conductivity 

The heat conducting capacity of a substance is known as thermal conductivity. It is symbolized 

by k and evaluated from Fourier law of heat conduction that is 

k  q T  (1.4) 

 Here q  indicate local heat flux density and T reveal the temperature. Its SI unit is /W mK  and 

3[ ]ML

T 
 is its dimension. It experimentally demonstrates that thermal conductivity differs linearly 



when temperature rises.  

1.3.5  Thermal diffusivity  

We characterize the thermal diffusivity of a material as “the ratio between the thermal conductivity 

of a material and the product of specific heat and density at consistent pressure”. 

Mathematically, the thermal diffusivity communicated as 

.
p

k

c



  (1.5) 

The dimension of thermal diffusivity is 2[ / ]L T  and its SI unit is  2 /m s . 

1.4  Types of flows 

1.4.1  Laminar flow 

Laminar flow is the sort of flow in which every fluid particle has particular paths and do not cross 

the paths of each other. We observe the smoke rising from a cigarette. For the first few centimeters 

the flow is certainly laminar and then becomes turbulent. 

1.4.2  Turbulent flow 

It is the sort of flow where particles of the fluid have no particular paths furthermore these paths 

of particular particles cross each other. 

1.4.3  Incompressible flow 

The fluid having constant density in the entire flow field is called incompressible flow. 

Incompressible flow mathematically expressed as  

( , , , )x y z t   (1.6) 

i.e.    is constant. 



Or 

. 0, V  (1.7) 

also, known as continuity equation for incompressible flow. 

1.4.4  Compressible flow 

Compressible flows are those in which the density of fluid does not remain constant throughout 

the flow channel.  

Mathematically it can be composed as  

( , , , )x y z t  . (1.8) 

1.4.5  Steady flow 

A fluid flows whose characteristics don’t change with the passage of time is known as steady 

flow. 

Mathematically is defined as  

0.
t





 (1.9) 

Here   is the fluid property. 

1.4.6  Unsteady flow 

The properties of the flow that change at every point with time or it is time dependent. 

Mathematical form of unsteady flow is  

0.
t





 (1.10) 

1.5  Nanofluid  

Nanofluid are another group of nanotechnologies based fluids made by scattering nanometer-sized 



particle with normal length scale on the order of (1-100nm) in customary heat transfer fluids. These 

particles can be found in the metal such as (Cu, Al), oxides (Al2O3) Carbides (SiC) or nonmetal 

(Nanotubes, Carbon, Graphite). 

1.5.1  Density of nanofluids 

The density of nanofluid is expressed as 

(1 ) .nf f s       (1.11) 

Here   are the solid volume friction, s  and 
f respectively the density of solid particle and 

base fluid. 

1.5.2  Viscosity of nanofluids 

Brinkman [35] presented a viscosity model of nanofluid as a function of volume friction 

2.5(1 )

f

nf








. (1.12) 

In above equation 
nf  suggest the density of nanofluids and 

f  mean the density of base fluid. 

1.5.3  Nanofluids heat capacity 

The heat capacity of nanofluids is denoted by ( )p nfC  is expressed as 

( ) ( ) (1 )( ) .p nf p s p fC C C        (1.13) 

Here ( )p sC  and ( )p fC  demonstrate the heat capacity of solid particle and base fluid 

respectively. 

1.6  Governing law 

1.6.1  Law of conservation of mass 

This law describes that in a closed system, the mass of the system cannot change over time 



means it can neither be created nor be destroyed although it may change its shape. In vectorially 

form it is defined as 

.( ) 0,
t





 


V  (1.14) 

Here   characterize the density,   identify the differential operator and V  exemplify the 

velocity field. For incompressible fluid, the above equation become as 

. 0. V  (1.15) 

1.6.2  Law of conservation of momentum  

Law of conservation of momentum is another form of Newton’s second law. It is defined that for 

an isolated system combine effect of all forces is proportional to time rate of change of 

momentum. 

Mathematical form is 

div .
d

dt
 

V
Β   (1.16) 

Here B is the body forces,   demonstrate the Cauchy stress tensor and d
dt

 imply the material 

derivative, expressed as  

 . ,
d

dt t


 


V  (1.17) 

1,p  I A   (1.18) 

1A  mark the Rivlin-Erickson tensor, mathematically written as 

   1 grad grad 
T

A V V  (1.19) 

For two-dimension velocity field, the matrix form of Cauchy stress tensor is expressed as  



.
xx xy

yx yy

 

 

 
 
 

   (1.20) 

Here
xy  and 

yx  are shear stresses and xx , 
yy  are the normal stresses. 

1.6.3  Law of conservation of energy 

For an isolated system, the law of conservation of energy says that the total energy remains 

constant i.e. neither created nor destroyed but it transforms from one form to another. 

Its mathematical form is 

  2. .p f
C T k T

t


 
   

 
V L.    (1.21) 

Here k shows the thermal conductivity, .L  intimate the representation of viscous dissipation 

and 
pC  represent the specific heat. 

1.7  Some useful dimensionless numbers     

1.7.1  Prandtl number ( Pr ) 

The ratio between kinematic viscosity and thermal conductivity/diffusivity is measured as 

Prandtl number. Mathematically, it is expressed as 

Pr .



  (1.22) 

1.7.2  Reynolds number 

Dimensionless quantity that describes “the ratio of inertial forces to viscous forces is known as 

Reynolds number”. Physically it determines the flow behavior, weather flow is laminar or 

turbulent. For turbulent flow Re is large while it is small for laminar flow. 

Mathematical form is 



Re ,
UL


  (1.23) 

In above equation L imply the length, U identify the fluid velocity and   intimate the kinematic 

viscosity.  

1.7.3  Nusselt number 

Nusselt number is a unit less quantity and gives ratio of convective heat transfer to conductive 

heat transfer over the boundary layer and can be communicated as 

.
hL

Nu
k

  (1.24) 

Here L is the reference length, h shows convective heat transfer and k designate the thermal 

conductivity of the fluid. 

1.7.4  Skin friction 

The friction which occurs between the solid surface and moving fluid to slow down the fluid 

motion is termed as Skin friction. 

Mathematically, drag force is defined as 

2

2

.
yx

f U
C




  (1.25) 

Here 
yx  is used to denote shear stress,   is the density and U is ambient velocity.  

1.8  Boundary layer 

Ludwing Prandtl gives thought of boundary layer. Boundary layer is really the region closed to 

the surface where upon fluid flows, here the influence of viscosity is significant and these effects 

vanish far from the solid boundary as the velocity is called free-stream velocity. By utilizing this 

idea Navier Stokes equations are simpler to solve. 



1.9  Falkner-Skan flow and transformation 

In 1930 Falkner and Skan has found the class of self-similar boundary layer flows within the sight 

of a pressure gradient. This flow is an external flow with a pressure gradient. The flows over wedge 

shaped bodies are used to portray the Falkner-Skan flow. We consider the boundary layer 

equations, 

0,
u v

x y

 
 

 
 (1.26) 

2

2

1
.

u u u p
u v

x y y p x





   
  

   
 (1.27) 

In above equation 

1
.

p U
U

p x x

 
 

 
 

(1.28) 

Here U symbolizes the free stream velocity and proportional to xm  

mU x        or       U=axm (1.29) 

Where m and a are constants. The similarity variables for the Falkner-Skan flow is defined as 

1( 1)
,

2

mm ax
y






          
 

12

1

max
f

m


 




  

(1.30) 

Using the above equations in Eq. (1.23) to (1.25), we get 

2( 1) 0,f ff f       (1.31) 

With boundary equations 

(0) 0,   (0) 0,    ( ) 1.f f f      (1.32) 

Here  



2

1

m

m
 

  
(1.33) 

The Eq. (1.31) termed as Falkner-Skan equation. The flat plate occur when m=0 (or  =0) and for 

this value Eq. (1.31) reduces to Blasius equation (named after Richard Heinrich Blasius) and for 

m=1 (or  =1) it reduces to 2D stagnation point flow and  = -0.1988 for the separated flow. The 

parameter   indicates the behavior of pressure gradient. The pressure gradient is favorable or 

negative for positive value of   while adverse or positive for negative value of  . Further, for 

separated flow the value of   indicates the point where the pressure gradient is zero. 
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Chapter 2 

Falkner-Skan problem for a moving and 

static wedge in nanofluids 

2.1  Introduction 

In this chapter, two-dimensional steady flow in presence of moving or static wedge submerged in 

nanofluids is examined numerically. The governing partial differential equation of the system are 

transformed into set of nonlinear ordinary differential equations with the help of appropriate 

similarity transformation. The transformed ordinary differentials equations are solved numerically 

by using the shooting technique. Three distinct sorts of nanoparticles, in particular titania TiO2, 

copper Cu and alumina Al2O3 with water base fluid are examined. The parameters which used in 

the problem are   (solid volume friction), β (Hartee pressure gradient),  (the moving wedge 

parameter) and Pr (Prandtl number). The influence of these parameters on heat transfer and flow 

of fluid are examined in tables and figures. It is depicted that Cu-water has the most noteworthy 

the heat transfer rate and wall shear stress at the surface contrasted and the other. The numerical 

values of local Nusselt number and wall shear stresses have been computed and scrutinize. The 

work in this chapter is a review of the research paper   27  . 

2.2  Mathematical formulation 

Two-dimension Falkner-Skan flow passing through a static or moving wedge containing different 



types of nanoparticles such as: Al2O3, TiO2, and Cu. Water is used as a base fluid are incorporated. 

The (x, y) coordinates are utilized as a part of which x-axis is parallel to the plate and y-axis 

perpendicular to it, and (u, v) are the respective velocity components. 

The equation of continuity and equation of motion for incompressible flow are stated as 

. 0,V  (2.1) 

div
d

dt
  

V
b,  (2.2) 

Where   indicates differential operator, V symbolize the fluid velocity,   signify the fluid 

density, d dt  symbolized the material time derivative, b  symbolize the body force per unit 

volume and   expresses Cauchy stress tensor. In the absence of the body forces Eq. (2.2) becomes 

div
d

dt
 

V
  (2.3) 

 For the present flow  , V and   are mathematically expressed as 

( , ),
x y

 


 
  (2.4) 

. ,
d

dt t


  


V  (2.5) 

   , ,  , ,  0 ,u x y v x y   V  (2.6) 

1.p  I A   (2.7) 

In above expression, pI  indicate the intermediate part of the stress, A1 designates the first 

Rivlin-Ericksen tensor (kinematic tensor) and   represent the dynamic viscosity is written as 

T

1 . ( . ) ,  A V V  (2.8) 

here .V is expressed as 



. .
u u

x y

v v
x y

 
 

 
 

 
   

 
V  (2.9) 

After substituting Eq. (2.9) in Eq. (2.8) we acquired A1 as 

2
.

2

u u v
x y x

u v v
y x y

  
  

  
  

 
  

 
1A  (2.10) 

Putting Eqs. (2.4) to (2.10) in Eqs. (2.1) and (2.3) the continuity and the momentum equations in 

x and y component  

0,
u v

x y

 
 

 
 (2.11) 

 

2 2
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1
( 2 ) .nf

u u u u P
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x y y x x




    
   

    
 (2.12) 
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u v
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
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Now we utilize the boundary layer estimation with the assumption as 

2

( ) (1),   ( ) ( ),    ( ) (1),    ( ) ( ),  

( ) ( ).

O x O O y O O u O O v O

O O

 

 

   


 (2.14) 

 After applying the boundary layer approximation given in above equation, Eqs. (2.11) to (2.13) 

reduced to 

0,
u v

x y

 
 

 
 (2.15) 
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The corresponding boundary conditions for the two types of wedge are stated as 



i)  Static wedge 

 

0 0
0,       0,     

.

y y

m

ey

v u

u u x U x

 



 

 
 (2.17) 

ii)  Moving wedge 

 

0 0
0,     ( )

.

m

w wy y

m

ey

v u u x U x

u u x U x

 



  

 
 (2.18) 

Under the boundary layer approach and using the boundary condition at infinity, the pressure 

gradient term can be computed as 

( )1
( ) ,e

e

u xP
u x

x x


 

 
 (2.19) 

Making use of above equation, Eq. (2.16) take the form 

2

2

( )
( ) .e

e nf

u xu u u
u v u x

x y x y


  
  

   
 (2.20) 

Where (u, v) are the respective velocity component along the (x, y) axes. Here ( ) m

w wu x U x  and 

  m

eu x U x  respectively the velocity of the moving wedge and ambient flow, where wU , m and 

U  are constants with 0 1m  , the density and viscosity of nanofluid are identified by 
nf  and 

nf  respectively, which are given below 
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f

nf nf s f


    


   


 (2.21) 

 In above equations 
f  explain the viscosity of base fluid,   justify the solid volume friction, 

f  denote the density of the base fluid and s  assign the density of the solid particle. The 

thermophysical properties of the nanofluids and base fluid (water) are given in table 2.1. 



 

 

Thermo-Physical 

properties 

Cu Al2O3 TiO2 

Fluid phase  

(water) 

K(W/mK) 400.0 40.0 8.9538 0.6130 

Cp(J/kg K) 385.0 765.0 686.2 4179 

 (kg/m3) 8933.0 3970.0 4250 997.10 

∝ × 10-7(m2/s) 1163.10 131.70 30.70 1.470 

Table 2.1 The thermophysical properties of base fluid and solid particles are shown. 

The energy equation for the present case is  

. divp

dT
c

dt
  L q,  (2.22) 

1 grad ,k T q  (2.23) 

 

here 
pc  indicate the specific heat,   characterize the density of fluid,   specify the Cauchy stress 

tensor, L  denote the velocity gradient, T  demonstrate the temperature, q  communicate the heat 

flux and 1k  declare the thermal conductivity of fluid. Therefore using Eq. (2.23) in Eq. (2.22) and 

in the absence of viscous dissipation Eq. (2.22) becomes 

The corresponding boundary conditions are 

2

2
.

nf

nf

T T T
u v

x y y





  
 

  
 (2.24) 



          at 0,             as .wT T y T T y     

In above expression 
nf  display the nanofluid thermal diffusivity and 

nfk  express the nanofluid 

effective thermal conductivity. The Maxwell- Garnett’s (Abu-Nada and Oztop [34]) model 

approximated the 
nfk  in the form are 

( ) ,          

 ( ) ( ) (1 )( ) ,

nf

p nf

nf

p nf p s p f

k
C

C C C




    



  

 (2.25) 

( 2 ) 2 ( )
.

( ) ( 2 )

s f f s

nf f

f s s f

k k k k
k k

k k k k





  


  
 (2.26) 

The thermal conductivity of base fluid and solid particles are symbolizing by kf and ks 

respectively, similarly the heat capacities of base fluid and solid particles are denoted with ( )p sC  

and ( )p nfC .  

2.3  Similarity transformation 

The similarity transformation for the present problem are  

2 ( ) ( 1) ( )
( ),       ,

1 2

( )
.

( )

f e e

f

w

xu x m u x
f y

m x

T T

T T


  



 



   
         






 (2.27) 

Here   represent the stream function and is characterized in the established way as u
y




 

and v
x

 


 to indistinguishably fulfill Eq. (2.1) and 
f  denoted the kinematic viscosity of 

the fluid. Now using above stream function, we get the form of u and v is   



( 1) 1
'( ),     ( ) '( ) .

2 1

m

fm
m U x m

u x U f v f f
m


   





     
            

 (2.28) 

Using transformations (2.27) and (2.28) in Eqs. (2.15) to (2.24) the following ordinary 

differential equation becomes  
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s

f
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


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
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  
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(2.29) 

( )

( )

1
Pr

[1 ]
'' ' 0.

knf
k f

Cp s

Cp f

f


 

 
 

    (2.30) 

And the boundary conditions become  

(i) Static wedge 

'(0) (0) 0,  (0) 1   

'( ) 1,     ( ) 0 .

f f

f





  

   
 (2.31) 

(ii) Moving wedge 

'(0) ,   (0) 0,  (0) 1,

'( ) 1,     ( ) 0.

f f

f

 



  

   
 (2.32) 

In above equations prime indicate differentiation with respect to  , Pr validate the Prandtl number 

and the parameter β and λ respectively known as Hartee pressure gradient and moving wedge 

parameter is designated as  

0

2
,     ,     Pr .

( 1)

fw

f

Um

m U


 



  


 (2.33) 

Here λ=0 resemble to a static wedge, while  > 0 and  < 0 respectively demonstrate the moving 

wedge in the same and inverse directions to the free stream. Moreover, Hartree pressure gradient 

parameter 0  relates to 0   for a wedge total angle  . Now positive estimation of 0 measure 

the pressure gradient is good or negative, while is unfavorable for negative values of 0 , also 0



=0 ( =0o) illustrates the boundary layer flow past a horizontal flat plate, while 0 = 1 ( =180o 

) compares to the flow close to vertical flat plate and stagnation point. Further, when  = 0 the 

present analysis reduces to that determined by Skan and Falkner [24] or Ishak et al [23].  

2.4  Skin friction Coefficient     

The skin friction coefficient is expressed as 

0

2

( )
.

u
ynf y

f

f e

C
u






 

  (2.34) 

Here 
0( )u

ynf y 
 

 indicate the shear stress of the surface operate the similarity transformation 

(2.25) in Eq. (2.32), we obtain 

 
1/2

2.5

1
2Re / ( 1) ''(0),

(1 )
x fm C f


 


 (2.35) 

 where Rex  designate the local Reynolds number and it is defined as 

Re e
x

f

u x


 . (2.36) 

2.5  Local Nusselt number  

The local Nusselt number is define as 

 
,w

x

f w

xq
Nu

k T T




 (2.37) 

in above equation wq  is heat flux of the surface that is defined as 

0

.w nf

y

T
q k

y


 
   

 
 (2.38) 

Using Eq. (2.36) and similarity transformation (2.25) in Eq. (2.34), we get the form 



1/2
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( 1) '(0).
2

nfx
x

f

k
m Nu

k



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  

 (2.39) 

2.6  Shooting Technique 

Shooting technique is a technique in numerical analysis which help, in the solution of the initial 

value problem. Generally, we “shoot” out directions in various path until we catch the correct 

boundary value. The benefit of the shooting technique is that it exploits the speed and adaptivity 

of technique for initial value problems. The drawback of the technique is that it is not as powerful 

as collocation or finite difference methods, problem having initial condition with developing 

modes are inherently unstable even though the boundary value problem itself might be quite stable 

and posed.  

Now to solve our problem with the help of the shooting technique we reduce the Eqs. (2.29) and 

(2.30) and its boundary condition (2.31) and (2.32) to first order by choosing some approximation 

i.e. 

( ) (1),f h   (2.40) 

'( ) (2),f h   (2.41) 

''( ) (3),f h   (2.42) 

2.5 22
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
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
       


 (2.43) 

( ) (4),h    (2.44) 

'( ) (5),h    (2.45) 
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''( ) F(5) Pr (1) (5).

p s

p f
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h h
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
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 
  

      (2.46) 



And its boundary conditions 

 

(i) Static wedge 

(1) 0,     h(2) 0,     h(4) 1,     as         0,

(2) 1,     h(4) 0,                  as            .

h

h





   

  
 (2.47) 

(ii) Moving wedge 

(1) 0,     h(2) ,     h(4) 1,     as         0,

(2) 1,     h(4) 0,                  as            .

h

h

 



   

  
 (2.48) 

2.7  Result and discussion  

Goal of this section is to demonstrate the influence of rising parameters heat transport 

phenomenon, velocity, and temperature profiles. Accordingly, the Figs. 2.2-2.9 have been 

constructed. Fig. 2.2 signify the effect of   (solid volume friction) on the axial velocity. It is 

perceived that axial velocity increases for both static and moving wedge cases with enhancing the 

value of volume friction  . The influence of volume friction   on temperature field is portrayed 

in Fig. 2.3. It is noticed that the temperature field shows dual behavior for  >-0.5, the temperature 

profile increases while for  <-0.5 the temperature profile decreases for increasing value of 

volume friction  . Fig. (2.4-2.5) depict the variation of velocity profile and temperature field for 

distinct value of Hartree pressure gradient parameter 0 . The axial velocity enhances for both 

static or moving wedge while temperature field shows inverse behavior for both moving and static 

wedge parameter for different value of 0 . Further, we can see that the boundary layer thickness 

thinning for moving wedge and it is thickening for static wedge parameter. Fig. 2.6 sketch the 

velocity profile for several values of moving wedge parameter  . The velocity distribution 

enhances with increment in wedge parameter   for both the cases i.e. flow past a flat plate and a 



stagnation-point flow. Further, we noticed that the momentum boundary layer thickness is larger 

in the case of flow past a flat plate when compare with a stagnation-point flow. Fig. 2.7 reveal the 

impact of velocity ratio parameter   on fluid temperature. For the flourishing values of the 

velocity ratio parameter  , the temperature shows decreasing behavior in both case, i.e, flow past 

a flat plate and near the stagnation-point flow. The velocity distribution with the effect of 

nanoparticle have demonstrated in Fig. 2.8. It is shows that the Cu-water have more velocity 

distribution as compared to Al2O3, TiO2. On the other hand, Cu-water have lowest fluid 

temperature field than Al2O3, TiO2 is portrayed in Fig. 2.9. In both Fig. (2.8 and 2.9) we draw the 

graph for static and moving wedge and its maintain same behavior. Table  2.2  show the 

comparison value of  0f  with some other research papers such as Watanabe [32] and Yih [33]. 

Table (2.3) to (2.5) signify the magnitude of drag force and Nusselt number for different 

nanoparticle such as Cu, Al2O3 and TiO2 respectively. Now increases the value of wedge parameter 

and m the magnitude of drag force and Nusselt number increases. 

 

 

Fig. 2.2 Effect of   (volume friction) on '( )f   when 1m   and Pr 6.2 .  



 

Fig. 2.3 Effect of volume friction   on ( )   when 1m   and Pr 6.2 .  

 

Fig. 2.4 Effect of Hartree pressure gradient parameter 0  on '( )f   when Pr 6.2  and 0.1   

. 



 

Fig. 2.5 Effect of Hartree pressure gradient parameter 0  on ( )   when Pr 6.2  and 0.1   . 

 

 

Fig. 2.6 Effect of wedge parameter   on '( )f   when Pr 6.2  and 0.1  . 

 



 

Fig. 2.7 Influence of wedge parameter   on ( )   when Pr 6.2  and 0.1  . 

 

Fig. 2.8 Effect of different nanoparticle on '( )f   when Pr 6.2 , 0.5m   and 0.1  . 



 

Fig. 2.9:  Effect of different nanoparticle on ( )   when Pr 6.2 , 0.5m   and 0.1  . 

 

 

m Watanabe [32] Yih [33] Present result 

0 0.46960 0.469600 0.4696 

1/11 0.65498 0.654979 0.6550 

0.2 0.80213 0.802125 0.8021 

1/3 0.92765 0.927653 0.9277 

0.4 - - - 

0.5 - - 1.0389 

1 - 1.232588 1.2326 

Table 2.2: comparison analysis of f  (0) for certain values of m with  =0,  =0.0. 

 



m   
2.5

1
(0)

(1 )
f






 - nf

f

k

k
θ’(0) 

0 0.1 0.7179 1.1100 

 0.2 0.9992 1.3342 

0.5 0.1 1.5881 1.3472 

 0.2 2.2105 1.6048 

1 0.1 1.8843 1.4043 

 0.2 2.6226 1.6692 

Table 2.3: show the wall shear stress and heat transfer for Cu, when   =0 and certain 

values of m and  . 

 

m   
2.5

1
(0)

(1 )
f






 - nf

f

k

k
θ’(0) 

0 0.1 0.6103 1.0423 

 0.2 0.7842 1.2092 

0.5 0.1 1.3502 1.2744 

 0.2 1.7348 1.4718 

1 0.1 1.6019 1.3305 

 0.2 2.0584 1.5352 

Table 2.4: show the wall shear stress and heat transfer for Al2O3, when   =0 and various 

values of m and  . 

 



m   
2.5

1
(0)

(1 )
f






 - nf

f

k

k
θ’(0) 

0 0.1 0.6169 1.0189 

 0.2 0.7978 1.1561 

0.5 0.1 1.3648 1.2460 

 0.2 1.7651 1.4082 

1 0.1 1.6192 1.3010 

 0.2 2.0942 1.4691 

Table 2.5: show the wall shear stress and heat transfer for TiO2, when   =0 and 

different values of m and  . 

2.8  Concluding Remarks 

The effect of moving wedge and static wedge on the Falkner-Skan flow has been investigated. 

Finally, the numerical solution is obtained with the help of shooting technique from MATLAB. 

The main key point of the present analysis is as follow. 

    The velocity profile enhances with the increment of volume friction  . 

    The temperature profile shows dual behavior with the increase of   parameter. 

    Cu/water have enhanced velocity profile than Al2O3, and TiO2 and reverse behavior occur for 

temperature profile.  

    For various value of wedge parameter λ the axial velocity increases while temperature field 

decrease.      

 

 



Chapter 3 

Falkner-Skan problem in the flow of a 

nanofluids in presence of induced 

magnetic field 

3.1  Introduction 

This chapter consists of the numerical solution for Falkner-Skan flow of a static and moving wedge 

flow. The characteristics of induced magnetic field are incorporated in a viscous fluid. Heat flux 

is evaluated through the Fourier's law of heat conduction. The boundary value problem is solved 

numerically with the help of shooting technique coupled with Runge-Kutta and Newton's method. 

Three distinct types of nanoparticles, Cu, Al2O3, and TiO 2 are studied with water used as base 

fluid. The impacts of sundry parameters, i.e velocity ratio parameter, wedge angle parameter, and 

solid volume friction on the velocity distribution, induced magnetic field and temperature field are 

presented. An excellent agreement is found with available result in the absence of body forces.  

 



3.2  Theory and flow analysis 

The geometry for the flow frame work is identified in Fig. 3.1. An incompressible, two-

dimensional steady flow of a nanofluid past a moving and static wedge is incorporated. The 

influence of the induced magnetic field is considered. Table. 3.1 characterized the thermophysical 

properties of solid particle and fluid. Moreover, the velocity of the ambient fluid and moving 

wedge flow are u(x) =U∞ xm and uw(x) = Uw xm are assumed respectively, where U∞, Uw, and m 

are constant with 0m1. Incorporating the boundary layer approximation, the fundamental 

equations of conservation of velocity and momentum, induced magnetic and temperature fields 

with no viscous dissipation can be declared as 

 

Fig. 3.1 Physical flow chart and coordinate system. 
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The suitable boundary conditions are given by: 

i) Static wedge 

 

(3.6) 

ii) Moving wedge 
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Here x and y are, respectively, the separation towards the sheet of the wedge and normal to wedge; 

the velocity components through (x, y) are taken to by (u, v) respectively. (H1, H2) symbolizes the 
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components of induced magnetic field. Where He(x) and ue(x) are the x component of magnetic 

field and velocity, H0 is the applied magnetic field parallel to plate in free stream, T delineate the 

fluid temperature, 
f , μ,  , 1/ 4e  , is the density of fluid, magnetic permeability, electric 

conductivity, and magnetic diffusivity, respectively, viscosity of the nanofluid is identified 
nf , 

nf  signify the thermal diffusivity, and 
nf  exemplify the density of the nanofluid. The numerical 

values of the specific heat, density, and thermal conductivity, are listed in the Table. 3.1 for both 

nanofluid and regular fluid. 

Thermo-Physical 

properties 

Fluid phase 

(water) 

Cu Al2O3 TiO2 

∝ × 10-7(m2/s) 1.470 1163.10 131.70 30.70 

 (kg/m3) 997.10 8933.0 3970.0 4250.0 

Cp(J/K.kg) 4179.0 385.0 765.0 686.20 

K(W/mK) 0.6130 400.0 40.0 8.95380 

Table 3.1: The thermophysical properties of the solid particle and base fluid. 

The mathematical expression for the thermophysical properties are  
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 (3.8) 

In above parameter, ϕ characterize the solid volume friction, 
f  demonstrate the modified 

viscosity of the base fluid, 
f  and s  are the densities of the regular fluid and solid particle, 



( )p nfC  signify the effective heat capacity of the nanofluid, ( )p fC  and ( )p sC  are the heat 

capacity of the base fluid and solid particle respectively, 
nfk  perceive the modified thermal 

conductivity of the nanofluid, 
fk  and sk  are the respective thermal conductivity of the base fluid 

and solid particle.  

3.3  Similarity transformation 

Now we are applying the following transformation to reduce the two independent variables to 

one and the fundamental equations become dimensionless, i.e. 
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Eqs. (3.1) and (3.2) are fulfilled indistinguishable, and Eqs. (3.3) to (3.5) get to be 
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What’s more the boundary conditions (3.6) and (3.7) take the accompanying structure 

           i) Static wedge 

( ) ( ) 0,  ( ) 1,  ( ) ( ) 0,  0,f f g g              (3.13) 



 

( ) 1,  ( ) 0,  ( ) 1,  .f g          

         ii) Moving wedge 

( ) ,   ( ) 0,  ( ) 1,  ( ) ( ) 0,   0,f f g g               

 

( ) 1,  ( ) 0,  ( ) 1,  .f g          

(3.14) 

In above equation prime indicate the derivative with respect to  . The parameters of   is the 

consistent moving wedge parameter with   > 0 and   < 0 relate to a moving wedge in the same 

and inverse direction to the free stream, individually, while   = 0 compares to a static wedge ,   

(is the magnetic parameter), M (reciprocal magnetic Prandtl number) and  Pr (Prandtl number) are 

as follows 
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It might be noticed that for β (in absence of magnetic field), Eq. (3.10) reduce to that of Ishak [27]. 

Since β =0 suggest the non-appearance of the magnetic field, Eq. (3.11) governing the induced 

magnetic field is did not require anymore. Moreover, consider β0 =
2

1

m

m
describe the Hartee 

pressure gradient parameter which relates to 0   for a complete angle Ω of the wedge. As 

indicated by white [34], positive value of β0 manner the pressure gradient is negative or favorable 

and negative value of β0 denotes an unfavorable pressure gradient. Moreover β0 =1 ( 180 )    

and β0 =0 ( 0 )   are the respective boundary layer flow past a horizontal flat plate and near the 

stagnation point of a vertical flat plate. 

The physical quantities of intrigue are the wall shear stress Cf and the local Nusselt number Nux, 



which are characterized as, 
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Here the surface heat flux wq  and surface shear stress w  are given by 
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Using Eq. (9) and (16), in Eq. (15) we obtain 
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3.4  Numerical method and evidence 

The ordinary differential equations (3.10) to (3.12) under the boundary conditions and initial 

condition (3.13) will be solved with the help of shooting technique. In this method, first we change 

over the third order ordinary differential equations to first order, and have picked a reasonable finite 

value of η∞, say η∞, and absolute convergence criteria were taken as 10-6, we set the following first 

order systems,  

,   ,f p f q    (3.18) 
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with the conditions, 

( ) ,  ( ) 0,  ( ) 1,  ( ) 0, ( ) 0,  0,p f g s              (3.24a) 

( ) 1,  ( ) 0,  ( ) 1,  ,p r         (3.24b) 

In this method, the decision of η∞=10, guarantees that every numerical solution approach 

asymptotic values accurately. The present result for different values of m in the absence of induced 

magnetic field effects are contrasted and those reported by Watanabe [32], Yih [33], and Yacob 

[27] in Table 3.2. It is seen that the correlation demonstrates great understanding for every consider 

value, hence, we are certain that the present result is right and precise. 

 

 

 

 

 

 

 

 

 



m Watanabe [32] Yih [33]  Yacob [27] Present result 

0 0.46960 0.469600 0.4696 0.469600 

1/11 0.65498 0.654979 0.6550 0.654994 

0.2 0.80213 0.802125 0.8021 0.802125 

1/3 0.92765 0.927653 0.9277 0.927680 

0.4 - - - 0.976824 

0.5 - - 1.0389 1.038900 

1 - 1.232588 1.2326 1.232587 

Table 3.2: comparison of f  (0) for various values of m with  =0,  =0.0, M=0 (in the absence of  ) 

3.5  Results and discussion 

The boundary layer nanofluid flow past a static and moving wedge has been examined 

numerically. The impact of induced magnetic field is also incorporated. In present analysis, the 

water is utilized as a base fluid of the nanofluid. The thermos-physical behavior of the base fluid 

and nanofluid are given in Table 3.1. For base fluid (water) the specific Pr (Prandtl number) 6.2 

are used. Then the impact of emerging parameters on the axial velocity, induced magnetic and 

temperature distribution are analyzed and talked about in detail. Moreover, numerical values of 

the drag force coefficient and Nusselt number for different nanoparticle are introduced in table 

(3.3) to (3.5).  

 

 

 



    m M 2.5

1
(0)

(1 )
f






 - nf

f

k

k
θ’(0) 

0 0.2 0 10 0.46960 0.87692 

0.1    0.71788 1.11009 

0.2    0.99924 1.33426 

0.1 0 0.5 10 1.58811 1.34735 

 0.1   1.56794 1.34176 

 0.2   1.54699 1.33590 

0.2 0.1 0 10 0.99924 1.33426 

  0.5  2.18314 1.59844 

  1  2.56554 1.65734 

0.1 0.1 1 100 1.87595 1.40235 

   1000 1.88337 1.40408 

   5000 1.88402 1.40435 

Table 3.3: The estimation of 2Re / ( 1)  x fm C  and 1/2[Re ( 1) / 2]x xm Nu  for Cu, when   =0 and 

various values for some parameter.  

 

 

 

 

 

 

 

 



 

    m M 2.5

1
(0)

(1 )
f






 - nf

f

k

k
θ’(0) 

0 0.2 0 10 0.46960 0.87692 

0.1    0.61034 1.05395 

0.2    0.78420 1.23544 

0.1 0 0.5 10 1.35023 1.28861 

 0.1   1.33123 1.28269 

 0.2   1.31145 1.27647 

0.2 0.1 0 10 0.78420 1.23544 

  0.5  1.70974 1.49672 

  1  2.00600 1.55534 

0.1 0.1 1 100 1.59396 1.34323 

   1000 1.60112 1.34522 

   5000 1.60177 1.34536 

Table 3.4: The estimations of 2Re / ( 1)  x fm C  and 1/2[Re ( 1) / 2]x xm Nu  for Al2O3, when  =0 

and various values for some parameter. 

 

 

 

 

 

 



    m M 2.5

1
(0)

(1 )
f






 - nf

f

k

k
θ’(0) 

0 0.2 0 10 0.46960 0.87692 

0.1    0.61691 1.07021 

0.2    0.79788 1.27091 

0.1 0 0.5 10 1.36480 1.30888 

 0.1   1.34567 1.30290 

 0.2   1.32576 1.29662 

0.2 0.1 0 10 0.79788 1.27091 

  0.5  1.73984 1.54090 

  1  2.04164 1.60158 

0.1 0.1 1 100 1.61114 1.36440 

   1000 1.61830 1.36640 

   5000 1.61908 1.36666 

Table 3.5: The estimation of 2Re / ( 1)  x fm C  and 1/2[Re ( 1) / 2]x xm Nu  for TiO2, when  =0 and 

various values for some parameter. 

The wall shear stress and Nusselt number are constructed in Tables (3.3) – (3.5). It is observed that 

an enhances in the nanoparticles volume fraction, rests in the heat transfer rate at the surface. Now 

the variety   of wall shear stress coefficient and the heat transfer coefficient for the settled 

estimation of some parameters discuss in above tables. We watched that drag force coefficient 

diminishes with the expansion of the magnetic parameter  . The explanation behind such a 

behavior is that the thermal boundary layer thickness turns out to broad as the   increases, which 

bring out lower temperature gradient at the surface, hence lower heat transfer at the surface. 



Nonetheless, the impact of M on the heat transfer rate and skin friction coefficient is the same, as 

appeared in above tables for all nanoparticles, i.e. drag force coefficient and the heat transfer rate 

increment, and similar result is found for the parameter m. 

Figs. (3.2) - (3.4) display the change of the velocity profile, induced magnetic profile, and 

temperature distribution for distinct values of   (magnetic parameter) when M=1, m=0.5, and 

=0.1 are fixed, respectively, it can be seen that the velocity distribution and induced magnetic 

profile diminishes, while temperature increases with enhancing the estimation of  . Now the 

boundary layer thickness for static wedge is larger as compared to moving wedge.   

Figs. (3.5) - (3.7) delineate the graph of velocity profile, induced magnetic profile, and temperature 

profile for Cu/water nanofluid when   varies, respectively. We have perceive that as the values 

of the nanoparticles solid volume fraction ( ) increase, the velocity and induced magnetic profile 

increases while the temperature profile show different effect for different value of   when their 

values is taken greater than -0.5 the temperature field increases while it is a dual behavior for the 

moving wedge range -0.6 < < - 1 and temperature field decrease for  >-1. The value assigns to 

remaining parameter is m = 0.5, M =1, and  =0.04. 

Figs. (3.8) demonstrates the impact of M (reciprocal magnetic Prandtl number) on the induced 

magnetic field for Cu/water nanofluid. As M increases and m=0.5,  =0.04, and  =0.1 are settled, 

the induced magnetic field increases.  

Figs. (3.9) - (3.11) justify the effect of  0 on velocity distribution, temperature profile, and 

induced magnetic profile for Cu/water nanofluid films. It is found that the axial velocity increase, 

induced magnetic field and temperature distribution decrease for increasing the value of m, with 

 =0.1,  =-0.4,  =0.1, and M=1. It is also noticed that from Fig. 9 shows that the boundary layer 



thickness becomes thinner for moving wedge and then become higher for static wedge.  

Figs. (3.12) - (3.14) presented the effect of different types of nanofluid for fixed value of  =0.1, 

 =-0.4,  =0.04, M=1 and m=0.5. It is found that the Cu has high velocity distribution and 

induced magnetic field than TiO2, Al2O3, while the opposite trend occurs for temperature profile.  

Figs. (3.15) - (3.17) manifest the velocity profile, induced magnetic profile and temperature profile 

for various value of velocity ratio parameter  . These figures are bestowed for two different value 

of  , especially,   = 0.0 (means flow past a flat plate) and   = 1.0 relate to a stagnation point 

flow. We noticed that for both case the induced magnetic profile and velocity profile increases 

while temperature field diminishes. Also, the boundary layer thickness is thinner in case of 

stagnation point flow is compared to the flow past a flat plate. All the figures fulfill the far field 

boundary conditions (3.24a) and (3.24b) asymptotically, in this manner bolster the validity of the 

numerical result got. 

 

 Fig. 3.2: Impact of   (magnetic parameter) on f  ( ) . 



 

 Fig. 3.3: Effect of   on induced magnetic profile ( )g  . 

 

Fig. 3.4: Effect of   on temperature field ( )  . 



 

Fig. 3.5: Effect of solid volume friction ( ) on f  ( ) . 

 

Fig. 3.6: Impact of solid volume friction ( ) on induced magnetic profile ( )g  . 



 

Fig. 3.7: Influence of solid volume friction ( ) on temperature distribution 

( )  . 

 

Fig. 3.8: Impact of M on induced magnetic profile '( )g  . 



 

Fig. 3.9: Effect of pressure gradient parameter  0 on '( )f  . 

 

Fig. 3.10: Impact of pressure gradient parameter  0 on '( )g  . 



 

Fig. 3.11: Impact of wedge angle parameter ( 0 ) on temperature field ( )  . 

 

Fig. 3.12: Effect of nanoparticle on '( )f  . 



 

Fig. 3.13: Influence of nanoparticle on '( )g  . 

 

Fig. 3.14: Impact of nanoparticles on temperature field  ( ) . 



 

Fig. 3.15: Effect of wedge parameter   on velocity profile '( )f  . 

 

Fig. 3.16: Influence of wedge parameter   on ( )g  .  



 

Fig. 3.17: Effect of wedge parameter   on temperature field ( )  . 

3.6  Concluding Comments 

The Falkner-Skan problem for a moving and static wedge saturated in nanofluids with induced 

magnetic field is incorporated. The transformed equation resolved numerically by utilizing the 

Runge-Kutta technique. Three distinct sorts of nanoparticles, to be specific alumina Al2O3, copper 

Cu and titania TiO2, with water as the base fluid were considered. 

The subject of the work is deduced in the accompanying way. 

i) The momentum boundary layer thickness enhances while velocity profile reduces for 

larger values of magnetic parameter 𝛽. 

ii) It is delineated that the induced magnetic profile diminishes, while the thermal boundary 

layer thickness and temperature distribution enhances with an increment in  . 

iii) The induced magnetic profile decreases with expanding the values of M. 

iv) The impact of volume friction has been watched that expanding the  , the momentum 

boundary layer and induced boundary layer thickness enhances, while the thermal 



boundary layer reduces gradually. 

v) The axial velocity and induced magnetic profile are higher for Cu/water compared with 

the other. 

vi) Velocity profile increase, while induced magnetic field and temperature profile decrease, 

with an increase in 𝛽0. 

vii) For various value of wedge parameter λ the axial velocity and induced magnetic field 

increases while temperature field decrease.  
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