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Abstract
Rapidly increasing use of international networking offers various new openings for the design 
and demonstration in the form of digital data. Easy availability and access to digital contents 
like electronic advertising, video, audio, digital repositories, electronic libraries, web designing 
etc. arise many security concerns. In this era, digital images are counted as one of the major 
communication sources as there is excessive application of multimedia knowledge and 
techniques. Generally, multimedia security is number of methods or techniques which ensures 
the security of multimedia data. For this reason, many researchers initiated working in 
developing different security techniques. Although there are certain methods for data security, 
but lot of improvement is required to guarantee the data security. 
The strength of substitution box ensures the strength of block ciphers which have very 
important role in symmetric key cryptography. The main purpose of Substitution box is to 
create confusion, secure the original data from cryptanalysis and hide it in cipher text. It is 
noticed that mostly substitution boxes are constructed on Galois field. The other algebraic 
structures like groups, finite commutative ring can also be utilized for the construction of 
substitution box.
The methodologies for two multimedia security techniques i.e., for cryptography and 
steganography are different but they both are used for information hiding. In cryptography,
data is transformed into an unintelligible arrangement called cipher text which is decrypted by 
receiver end into plaintext. On the other hand, steganography is an art of embedding 
surreptitious material into an unsuspicious carrier.
Another multimedia security technique is watermarking. Watermarking provides copyright 
protection of digital content. Copyright violations and plagiarism indicate that current 
copyright rules are vulnerable to be used for the digital data transfer on Internet. Keeping in 
view, the importance of copyright protection of digital contents, robustness of watermarking 
techniques, we in this thesis, initiated working for the construction of algebraic and chaotic 
high nonlinearity substitution boxes which has strong cryptographic properties.
These Substitution boxes are then utilized in the field of multimedia security specifically in 
watermarking and steganography (spatial and frequency domain) techniques. The basic 
purpose is to enhance the security and robustness against malicious attacks. 
The first construction of substitution box depends on the action of a projective general linear 
group over the set of units of the finite commutative ring. The strength of substitution box and 
ability to create confusion is assessed with different analyses and equated with well-known 
substitution boxes.
In the next step, we suggest that the choice of the background irreducible polynomial, used for 
the construction of the Galois field ��(28) has a deep influence on the highly desirable features 
on an Substitution box. We therefore propose that the performance of a substitution box is not 
just depending on the nature of the bijective Boolean function, however, it is affected by the 
degree 8 irreducible polynomial �(�) as well, which generates the maximal ideal of the 
principal ideal domain ��[�]. A unique nonlinear combination of two chaotic maps give a 
chaotic Tent-Sine system. This arrangement of chaotic maps shows brilliant complex chaotic 
properties. The chaotic range of Tent-Sine system is increased throughout the domain and the 
output sequences are distributed uniformly. We propose a chaotic substitution box with the 
help of this chaotic map. This Substitution box is capable of providing confusion ability by 



achieving the substitution operation. This Substitution box is helpful against linear and 
differential attacks.
After that, the chaotic logistic map is employed for locating embedding positions of chaotic 
watermark generation and a novel watermarking scheme is proposed. Simulation results reveal 
that the proposed technique is feasible and watermarks are indiscernible.
In the next two frequency domain watermarking techniques, chaotic and algebraic substitution 
boxes are used. In the first case, the system of non-linear ordinary differential equations which 
defines a continuous-time dynamical system is used to construct chaotic box. In the second 
case, the algebraic box which develops one-one correspondence between the multiplicative 
group of units of the local ring ℤ51� and the Galois field ��56. is used. The watermark is 
substituted with substitution boxes and then embedded into host image which give additional 
security to our proposed techniques. 
For application of substitution box in digital steganography, we engage a specific high 
nonlinearity Substitution box along with some chaotic systems, possessing enhanced chaotic 
range, to embed information in the least significant bits of the host image. At the end, we have 
proposed a high capacity and robust steganographic algorithm based on an effective application 
of chaos and substitution box. The speciality of the proposed method lies, on one hand, in the 
process of embedding secret information using some stronger chaotic systems with enhanced 
chaotic range. While, on the other, high embedding-capacity level and robustness is attained 
due to the combination of the spatial domain steganography approach along with the frequency 
domain transform.
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Chapter 1 

Introduction and Basic Definitions 

The 1st chapter of this thesis has two detailed parts. In the 1st part we represented the introduction, 

objective and layout of the thesis. The idea of multimedia contents and their security is explained 

to understand the term multimedia security. A brief description and difference between different 

information hiding techniques and typical functions are thoroughly discussed. As far as 2nd portion 

of this thesis is concerned, the basic definitions and theorems are given for better understanding of 

the later work done in this thesis. 

1.1. Introduction 

The initiation of the international networking and its effectiveness provide various new 

opportunities for the design and presentation in the form of digital material. Some of the 

applications of this digital contents are electronic advertising, video, audio, digital repositories, 

electronic libraries, web designing and much more. But this easy access to digital content through 

internet arises the issue of information security. In the recent past, it was quite impossible to side 

step cracking of original data. This security lapse attracts modern researchers to counterfeit 

challenges by the express propagation of digital media. Over the last few decades, a lot of 

researchers worked to develop different methods to secure information integrity, anonymity, 

authenticity, and confidentiality. 

Multimedia security techniques provide integrity of the network, temper proofing, content 

authentication, copyright protection and broadcast monitoring and also ensure robustness against 
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any attempt to modify digital substances [1]. Digital watermarking and steganography may shield 

information, hide secrets, or are used as basic content in digital rights management techniques. We 

can be categorized multimedia security techniques into three major parts namely: cryptography, 

steganography and watermarking. The first two types may be considered as information hiding 

techniques. Initially, we discuss cryptography due to its foundation over Boolean algebra and then 

rest of two multimedia security techniques will be discussed in detail. 

Cryptography provides tools for secure communication of information in the presence of different 

opponents. It is the science which constructs different algorithms and procedures that avoid any 

unauthorized use of data. Current cryptography depends on mathematics, electrical engineering 

and computer science. It covers the three vital areas such as integrity, confidentiality and 

authentication. The basic purpose of confidentiality is to hide information from whom it was 

unintended. Integrity ensures that the data cannot be changed from transmitting to receiving end. 

The transmitter and receiver can confirm the identity of each other with the help of authentication. 

The encryption and unscrambling of data are recognized as an action in cryptography. Encryption 

is the process which converts the plaintext or readable information into cipher text or meaningless 

form. On contrary decryption takes ciphertext as an input and provide the plain text by applying 

the reverse instructions. The process of enciphering mainly depends on the strong algorithm and 

key distribution. A cryptosystem is a combination of a finite number of plaintexts, ciphertexts, 

finite possible keys and the set of instructions for encryption and decryption. Cryptosystems can 

further be classified into two types which are symmetric and asymmetric cryptosystems. In 

symmetric cryptosystems, a message is encrypted and decrypted with alike key whereas in 

asymmetric cryptosystems, public key and the private key are used for encryption and decryption 
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process respectively. The well-known examples of symmetric key cryptography are block ciphers 

(blocks of data) and stream ciphers (individual characters). 

For security prospective, public key cryptography is considered as more secure as compared to 

symmetric key cryptography since it permits to convey in a protected way irrespective of no 

common keys. Shannon [2] gave the concept of confusion and diffusion to attain security in 

different cryptosystems. The mind-boggling connection between the key and each binary bit of the 

ciphertext is obtained through confusion. In diffusion, half of the bits in the ciphertext must be 

changed while changing a single bit of the plaintext.  

By keeping all the parameters for strong cryptosystems, it is required that there must be some 

functions that have characteristics of creating confusion and diffusion to enhance the security level. 

For this reason, there is a need for functions which hold the above-mentioned properties. It is 

observed that Boolean functions generate confusion and diffusion which is required for a strong 

cryptosystem.  

Substitution boxes (S-boxes) and Boolean functions are important components of modern 

cryptosystems. The function quantity is used to link both S-boxes and Boolean functions. In a 

Boolean function, a single input bit results as a single output bit whereas S-box consists of different 

output Boolean functions. In block ciphers, the only nonlinear component is S-box which is 

responsible for confusion. 

Normally, Boolean functions are used in the stream ciphers for the construction of secret key 

stream. In Stream ciphers, single keystream is obtained by joining all the inputs which are in the 

form of linear feedback shifts registers. In addition to this, the properties of Boolean functions 

oppose any kind of attacks to secure keystream. 
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In advanced encryption standard (AES), the S-box produces confusion to hide the plain text [3]. 

In May 2002, AES is officially accepted by the U.S. government as the Federal Information 

Processing Standard (FIPS). AES algorithm [3] depends on following  steps: Round key addition, 

Byte Substitution, Shift Row and Mix Column, but the most influential of all these is the byte-

substitution step. This step relies on a S-box, which serves as the only nonlinear component in any 

substitution- permutation network (SPN). It is recognized fact that the S-box is the source to 

produce nonlinearity in symmetric key cryptography. For this reason, it is frequently used in 

substitution-permutation network. and in many algorithms for the synthesis of safer and more 

dependable S-boxes. Moreover, S-boxes can be applied in digital image encryption, watermarking 

and steganography [4]–[7]. This nonlinear part of substitution process produces confusion and 

ambiguity. The substitution process is defined as: 

S: 𝔽𝑚  →  𝔽𝑚 

S-box provides a technique of substituting different blocks of bits for a totally different set of 

output bits. It is significant to use secure S-boxes having exceptional encryption properties. 

Although the methodologies used in cryptography and steganography are totally different but the 

theme of both the information hiding techniques is similar, i.e., to obscure the information data. In 

order to avoid information leakage, many techniques are proposed in steganography and 

cryptography. It is worth mentioning that cryptography basically deals with changing the 

information into dummy data, for secure communication as discussed in detail. But steganography 

is a technique of embedding surreptitious material into an unsuspicious carrier. It is the science 

that ensures secure communication. The basic theme is to hide the secret information in a carrier. 

It can be intertwined with two further kinds of security named as cryptography and watermarking. 
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Plagiarism of copyright contents indicates that present copyright rules are inappropriate for 

handling digital data on the internet. This violation of copyright laws provides a platform for new 

protection mechanism of data. Watermarks can be seen on banknotes, passports, stamps and for 

other security papers. Digital watermarking is an extension lead to ensure the security of digital 

contents. It is observed that, digital watermarking is counted as one of the top techniques to avoid 

unlawful replication, altering and restructuring of multimedia data. Due to encryption of 

multimedia data, an invader has no access to the digital contents without a decryption key. But 

after decryption, this data can be copied and illegitimately distributed. The main features of digital 

watermarking are copyright protection, data authentication, content identification and covert 

communication. A design of bits embedding into audio, digital image and in any video that 

ascertains the copyright information of the file is named as digital watermarking. The watermark 

cannot be identified and manipulated easily if it is spread all over the file. This watermark detects 

the copyright information. The watermark image is noticeably smaller in the size as compared to 

the host image. that is the difference of size between watermark image and host image should be 

one-sixteenth [8].  

Since the early nineties, the use of chaos theory has been promoted in many fields like physics, 

biology, engineering, and weather forecasting. The property of creating perplexity and confusion 

is the central feature of chaotic systems and this is valuable in the study of cryptography. The 

accessibility/inaccessibility of the initial values describes the certainty/uncertainty of the chaotic 

system. This nonlinear behaviour of the chaotic system ensures the secure communication through 

an insecure communication path by creating randomness and perplexity in the plain text. Diffusion 

is generally developed by the random application of non-linear dynamical structures. A minor 

alteration in the initial values describes an entirely different behavior of the chaotic structures 



  

 10  
 

which indicate their sensitivity to initial conditions. The idea of using chaos theory for safe 

communication of data which attracted scholars of a different realm of life to develop chaos-based 

secure communication theory [2]. The most promising feature in developing novel cryptosystems 

with the help of chaos theory is their sensitivity to initial conditions. 

In this thesis, construction of algebraic and chaotic S-boxes is presented. These S-boxes are then 

utilized in the field of multimedia security specifically in watermarking and steganography (spatial 

and frequency domain) methods. The basic purpose is to improve the security and robustness 

against different attacks.  

1.2. Contribution of This Thesis 

The foremost objectives of this thesis are discussed in detail as follows. 

1- To obtain the strong algebraic and chaotic S-boxes for enhancing the security level of 

different cryptosystems. In this thesis, algebraic S-box is obtained by using the finite local 

ring. Here, the selection of the contextual irreducible polynomial, applied for the 

construction of the Galois field 𝐺𝐹 (28), has a deep impact on an S-box. 

2- Utilizing two chaotic systems to enhance the chaotic range. This helps to design some novel 

schemes for construction of chaotic S-boxes. It helps to construct different ciphers for 

watermarking and steganography. 

3- To develop new techniques for watermarking and steganography by using S-boxes 

constructed in 1 and 2. Similarly, to apply outcomes from 1 and 2 as a substitution process 

in the proposal of different ciphers for multimedia techniques. The theme is to increase the 

security level of current multimedia techniques by utilizing the findings and information 

obtained from different S-boxes constructions. It also motivates to design new ciphers for 

watermarking and steganography. At this stage, we try to develop few new securities 
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conspires in this proposal for the application to this errand, notwithstanding trialing known 

systems through examination. 

1.3. Thesis Layout 

In this thesis, nine chapters are included, however chapter 2 to chapter 4 are for the construction 

of S-boxes and chapter 5 to chapter 8 are based on the application of S-boxes in multimedia 

security. The detail description of each chapter is as follows: 

 Introduction and Basic definitions are given in the 1st chapter. The detailed description of 

Boolean function and theory of S-box are also the part of chapter 1. 

 In 2nd chapter, a group action method for structure of strong S-box is presented. In this 

chapter, S-box is obtained by applying action of a projective general linear group over the 

set of units of the finite commutative ring. This S-box is cryptographically strong which 

can be used in multimedia security and data hiding techniques.  

 In chapter 3, we suggest that the selection of the background irreducible polynomial, used 

for the construction of the Galois field 𝐺𝐹 (28), has a deep impact on the greatly required 

features on an S-box. We, therefore, propose that the efficiency of an S-box is not just 

depending on the nature of the bijective Boolean function, however, it is affected by the 

degree 8 irreducible polynomial as well, which produces the maximal ideal of the principal 

ideal domain 𝔽2[𝑋]. 

 In chapter 4, the chaotic behavior of the tent-sine map is discussed and a new method to 

construct different S-Boxes is proposed. The combination of two seed maps give a chaotic 

map (tent-sine map) which has increased chaotic range and uniformity. 
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 In chapter 5, the chaotic S-box is designed with the help of system of non-linear ordinary 

differential equations. This system provides a continuous-time dynamical system that has 

fractal features of the attractor. The addition of chaos in frequency domain ensures 

robustness. In frequency domain watermarking, low or middle frequencies are used for 

embedding watermark so the alterations can be observed throughout the image. 

 The algebraic structure of finite local ring is used to synthesize S-box in chapter 6. We use 

this S-box in a watermarking scheme to make our technique more confusing and secure to 

provide more support in copyrights protection strategies. The proposed non-blind digital 

watermarking technique deals with the application of discrete cosine transform (DCT) in 

the frequency domain which is comparatively more robust than spatial domain techniques.  

 Chapter 7 introduces a new scheme for digital steganography in the spatial domain. In this 

approach, we engage a specific high-nonlinearity S-box along with some chaotic systems, 

possessing enhanced chaotic range, to insert data in the least significant bits of the original 

image. 

 Chapter 8 presents a high capacity and robust steganographic algorithm based on an 

effective application of chaos and S-box. The specialty of the proposed method lies, on one 

hand, in the process of embedding secret information using some stronger chaotic systems 

with enhanced chaotic range. While, on the other, high embedding-capacity level is 

attained due to the combination of the spatial domain steganography approach along with 

the frequency domain technique. For frequency domain, the combination of discrete 

wavelet transform (DWT) and discrete cosine transform (DCT) is used. 

 We have ended this thesis with conclusions and future suggestions. 
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1.4. Review of S-box Theory 

The knowledge of Boolean function and S-box is mandatory for better understanding of this thesis 

work. It helps to recognize the importance of this research and correlation between this thesis work 

and study of cryptography. In this chapter, basic concepts, formulae and theorems are given as 

required contextual. 

1.4.1. Boolean Functions 

The Boolean function theory is wide-ranging area in itself. We presented a comprehensive 

classification which is necessary for understanding of this thesis. The cryptographic properties and 

their inter-relationship is well-defined and discussed in detail. 

1.4.2. Properties of Boolean functions for Cryptography 

In this section, some basic definitions on Boolean functions are given. Let 𝐺𝐹 (2𝑘) be the vector 

space of dimension 𝑘 over the two-element Galois field GF(2). 𝐺𝐹 (2𝑘) contains 2𝑘 vectors given 

in a binary sequence of length 𝑘. This vector space has scalar product. <. , . > : 𝐺𝐹 (2𝑘) ×

 𝐺𝐹 (2𝑘) → 𝐺𝐹(2) 

                                                              < 𝑎, 𝑏 >=  ⨁𝑗=1
𝑞 𝑎𝑗. 𝑏𝑗 ,                                                                (1.1) 

where the multiplication and addition ⨁ are over 𝐺𝐹(2). 

Definition 1 [9] A linear Boolean function can be defined as 

                                                        𝐿𝛽(𝑦) = 𝛽1𝑦1⨁𝛽2𝑦2⨁. . . ⨁𝛽1y1                                             (1.2) 

where β1y1 represents the bitwise AND of the j − th bits of β, y and ⨁ shows bitwise XOR. 

Definition 2 [10] Affine Boolean functions is the set of linear Boolean function along with their 

complements. 
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                                                            Aβ,c =   Lβ(y)⨁ c,                                                                 (1.3) 

where y ∈  GF (2k). An affine (linear) sequence is the sequence of affine (linear) functions. 

Definition 3 [9] In the form of set, all single valued Boolean function can be given as 

                                                       Gp  = {g|g: GF (2k) → GF(2)}.                                                 (1.4) 

For the space Gk, the subset of all affine and for the space GF (2k) linear Boolean functions can 

be given by eq. (1.5) and (1.6) respectively. 

                                              Ap  = {γ|γ: is affine and γ ∈   Gp}.                                                   (1.5) 

                                              LP  = {β|β: is linear and β ∈ Gp}.                                                     (1.6) 

Remark The set of all affine functions is obtained with the help of linear functions and their 

negations. 

Definition 4 [11] In Boolean function h: GF (2k) → GF(2); the Hamming-weight is the total 

count of 1’s in the truth table of h. 

Definition 5 [10] The Hamming-distance between two Boolean functions j, h: GF (2k) → GF(2); 

is the total number of arguments where j and h differ, that is 

                                          d(j, h)  =  #{z ∈ GF (2k)/ j(z)  ≠  h(z)                                             (1.7) 

Or it can be defined as the number of 1’s in the truth table of j⨁h. It is established fact that 

Hamming-distance d is the metric onGF (2k). So, Hamming-distance can be defined with the help 

of Hamming weight is d(j, h)  =  wt(j⨁h). The 𝑑(𝑘, ℎ) equals to the numbers of the values that 

are required to turn j to h. So, the d(j;  h) is zero if and only if 𝑗 =  ℎ: 

Definition 6 [12] For Boolean function h, the support of h is given as 

                                              𝐬𝐮𝐩𝐩(h)  =  #{z ∈ GF (2k)|h(z)  = 1                                                 (1.8) 



  

 15  
 

Moreover, Hamming-weight can be expressed with the help of Hamming-distance and the 

support of a Boolean function: 

                                                            𝐰𝐭(h) = d(h, 0) =  𝐬𝐮𝐩𝐩(h).                                                    (1.9) 

Definition 7 [12] A (0,1) − sequence ((1, −1) − sequence) holds an equal value of zeros and 

one (ones and minus ones) then it is named as balanced sequence. If the sequences of function 

are balanced, then the function is balanced function. 𝐰𝐭(h) = 2k−1. 

Definition 8 [10] In Boolean function h, the imbalance of function is the difference between the 

number of inputs that maps to 0 and the number of inputs that maps to 1 divided by 2 The 

imbalance ranges from −2k to 2k. It is denoted by Imb(h)  

                                             𝐈𝐦𝐛(h)  = 1 2⁄ (#{b|h(b) = 0 −  #{b|h(b) = 1}                            (1.10) 

If the value of imbalance is 0, then that Boolean function is balanced. 

Definition 9 [12] The autocorrelation function with a shift b ∈ GF (2k) is denoted by γ̂h(b). It is 

defined as 

   γ̂h(b)   = ∑ ĥ(z)

z∈GF (2p)

. ĥ(z⨁b).                                             (1.11) 

Definition 10 [10] Let h be a function defined on GF (2k). Let b ∈ GF (2k) is named as linear 

structure of b∈ GF (2k) if 

  γ̂ĥ(b) =  2k;                                                                      (1.12) 

i.e., if ĥ(z). ĥ(z⨁b) is constant. 

A linear subspace of GF (2k) is formed with the set of all linear structures of a function h. The 

dimension provides a measure of linearity. This measure is upper bounded by 2k. The bound is 

attainable by the all zero vector in GF (2k). A nonzero linear structure is cryptographically 

undesirable. 
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Definition 11 [12] To calculate correlation between two Boolean functions j and h, we have 

C(h, k) =  2 Pr(j(z) =  h(z)) −  1, 

=  2 [
2k −  d(j, h)

2k
] − 1, 

    = [
2k+1 −  2d(j, h)

2k
] − 1, 

                                                                 = 1 −  [
 2d(j, h)

2k−1
]                                                                (1.13). 

The value of correlation is a rational number in the interval [−1, 1]. If the Hamming distance 

between two functions is zero, then the value of correlation is 1.and if the Hamming distance 

between two functions is equal to 2k, the result of correlation is −1. 

Definition 12 [9] The algebraic degree can be defined as the number of variables in highest order 

monomial with zero coefficients. 

Definition 13 [10] The n-variables Boolean function is algebraic normal form (ANF) which can 

be given as follows: 

                                   h(x) = b0 ⨁b0z0⨁b0z0z1⨁b012…..n−1z0z1 … . . . . zn−1,                                 (1.14) 

where the coefficients b ∈  GF (2k) generate the values of the truth table of the ANF of h(z). 

Definition 14 [9] If ANF contains all n variables of a Boolean function h(z), then it is named as 

non degenerate function. On contrary, if h(z) does not hold every variable in its ANF then the 

function is degenerate. 

Definition 15 [10] The algebraic degree of a Boolean function and the algebraic complexity of the 

function are directly proportional to each other. Moreover, if the value of degree of a function is 

on higher side, the greater will be its algebraic complexity. 
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Definition 16 [10] The algebraic degree of a Boolean function h(z)  is the total count of variables 

in the highest product term of the function’s ANF having a non-zero coefficient. It is denoted by 

deg(h). 

Definition 17 [12] For Boolean function, the nonlinearity is represented by Nh and is defined as 

follows 

                                                                Nh =  d(h, An) =  min
β∈An

d(h, β )                                         (1.15) 

The nonlinearity of an affine function is zero. By definition, for non-affine Boolean function h, the 

value of nonlinearity is Nh > 0. For strong cryptosystem, the high nonlinearity ensures the ability 

of resistance of any cryptographic system against linear cryptanalysis discussed in [13]. 

Definition 18 [11] The Walsh transform of a function h on  GF(2k)is a mapping Ω: GF(2k) → ℝ 

given as 

                                                                 Ω(h)(v) = ∑ h(z)

z∈GF(2k)

(−1)<v,z> ,                                (1.16) 

where < v, z > is the canonical scalar product. The Walsh spectrum of h is the list of 2k Walsh 

coefficients as given by Eq. (1.16) as varied. 

Definition 19 [14] A Boolean function h in n variables is said to be correlation immune of order 

m, 1 ≤  m ≤  n, if its values are statistically independent of any subset of input variables.  

Definition 20 [11] If an average half of the output bits changes due to a single input bit is 

complemented A function h: GF (2k) → GF(2k) observes the avalanche effect i.e. 

                               
1

2k
∑ 𝐰𝐭(g(zi) − g(z))

v∈GF (2k)

=
q

2
, for all i = 1,2, … . . p.                          (1.17) 

Definition 21 [10] A function h: GF (2k) → GF(2l) of k input bits into l output bits is complete, 

if every single output bit depends on every input bits. 
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       ∀ i =  1, 2, … … . k, j =  1;  2, … … , l, ∃ z ∈ GF(2)k with (h(zi))
j

≠  (h(z))
j
.               (1.18)  

If every ciphertext bit depends on all of the output bits it means cryptographic transformation is 

complete. Complete cryptographic transformations having complete inverses described as being 

two-way complete, and if the inverse is not complete then that transformation is only one-way 

complete. 

Definition 22 [11]Whenever a single input bit is complemented and output bit changes with a 

probability of 1 2⁄ , then the function h: GF (2k) → GF(2l) holds the strict avalanche criterion. i.e. 

             ∀ i =  1, 2, … … . k, j =  1;  2, … … , l, Prob (h(zi))
j

≠  Prob(h(z))
j
. =

1

2
                  (1.19)  

Definition 23 [12] The autocorrelation function of a Boolean function in k variables is given as 

     
2 1

0

k

h i i

i

r b h z h z b




         (1.20) 

for all every b ∈ GF (2k). 

The autocorrelation function is the summation over all the values of the directional derivatives 

every h(z)⨁g(x ⨁ a) as z runs through GF (2k). 

Bent Functions 

In [15], Rothaus, introduced a specific class of Boolean functions showing unique features. These 

functions are named as bent functions. Due to their optimal distance to linear structures, bent 

functions are named as perfect nonlinear [16].It is observed that the existence of these functions 

depend on the space of even dimensional Boolean functions. On contrary, for odd dimensional 

space, Boolean functions are unable to fulfil the required criteria of bent function 

. 
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It is obvious that the Walsh Hadamard spectrum is flat as two-valued Walsh Hadamard spectrum 

of a Boolean function consists of ±2k 2⁄  values. The bent function has nonlinearity which can be 

defined as (2k − 2k 2⁄ )/2. As Parseval’s Theorem hold, so this is the maximum possible 

nonlinearity for k-dimensional Boolean functions (where k is even). It indicates that there is 

maximum distance between bent function and linear structures. In addition to this, bent functions 

have no order of correlation immunity as there does not exist zero-valued entries in the Walsh 

Hadamard spectrum, bent functions do not show any order of correlation immunity. 

For k-variable bent Boolean function (p even), the auto correlation vector is given as r̂(a) =

{2k, 0,0, … ,0}. Here, all entries have value 0 except the first one which has value 2k. 

Even though bent functions display cryptographically optimal characteristics in the form of 

maximal non-linearity and perfect (minimal) autocorrelation, p-variable bent functions have a 

Hamming weight of (2k−1 ± 2k 2⁄ −1). It shows a bias from the balance of constant magnitude 

2k 2⁄ −1, bent functions are never balanced. Furthermore, all n-variable bent functions have 

algebraic degree are cryptographically undesirable for bent functions to be of direct practical use 

1.5. S-box Theory 

In this section, we will discuss S-boxes (S-boxes). We added some elementary definitions of S-

box theory and cryptographic properties to highlight the research work of this thesis. 

1.5.1. Definition and Types of S-box 

The natural progression of single output Boolean functions to multiple output Boolean functions 

is the basic feature of S-box. Various type of S-boxes depend upon the connection between the 

input and output bits. For the sake of better understanding, necessary S-box definitions along with 

some S-box types are given in detail. 
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S-box of 𝑘 × 𝑙 is a mapping from 𝑝 input bits to 𝑞 output bits, 𝑆: 𝐺𝐹(2𝑘) × 𝐺𝐹(2𝑙). For an 𝑘 × 𝑙 

S-box, possible inputs and output are 2𝑘 and 2𝑙 respectively. It is easy to decompose output vector 

𝑆(𝑥) = (𝑠1, 𝑠2, . . . , 𝑠𝑞) into 𝑞 component functions 𝑆𝑛: 𝐺𝐹(2𝑘) × 𝐺𝐹(2), 𝑖 = 1,2, … , 𝑞. The look 

up table, an 𝑘 × 𝑙 S-box, S, is represented as a matrix of size 2𝑘 × 𝑙, indexed as 𝑆[𝑛] 0 ≤ 𝑛 ≤  2𝑘 −

1. S-boxes can be classified into three categories: Straight, compressed and expansion S-boxes. If 

each input entry of 𝑘 × 𝑙 S-box is mapped to a different output OR multiple inputs mapped to the 

similar output is counted as straight S-box. An injective and surjective 𝑘 × 𝑙 S-box is named as 

bijective S-box. In bijective S-box, every input maps to a different output value and all likely 

outputs are present in the S-box. The required condition for bijective S-boxes is 𝑘 = 𝑙. They are 

also known as reversible as there exists a mapping for output distinct values to corresponding input 

values. This kind of S-box is used in Rijndael cipher. 

In data encryption standard [DES] [17], a 𝑘 × 𝑙 compression S-box is used where the sufficient 

condition is 𝑘 > 𝑙. In DES, for 6 input bits but the output for only 4 bits show that it gives back 

fewer bits as compared to input bits. On contrary with condition that 𝑘 < 𝑙, 𝑘 × 𝑙 S-box gives out 

more bits as compared to input bits. In regular 𝑘 × 𝑙 S-box, all possible 2𝑙 output appears an equal 

number of times. In addition to this, all possible output values appear 2𝑘−𝑙 times in the S-box. It 

is important to note that all single output Boolean functions including regular S-box (and their 

linear combinations) are balanced. For all regular S-boxes to be balanced, 𝑘 ≥ 𝑙 is the required 

condition. A 𝑘 × 𝑙 S box (𝑘 ≥ 2𝑙 𝑎𝑛𝑑 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛) is named as bent provided that every linear 

combination of its constituent Boolean functions is also a bent function. 

In compression and expansion S-boxes there is an issue of reversibility or decryption. In these both 

type of S-boxes, it is difficult to reverse the process as they alter the total number of bits. Moreover, 

they have a problem of loss of information, particularly in compression S-boxes. Due to the 
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complexities associated with compression or expansion S-boxes, straight S-boxes are more 

commonly used by researchers. 

1.5.2. Cryptographic properties of S-boxes 

While discussing the cryptographic properties of S-box, it is important to study the cryptographic 

properties of each component of Boolean functions and all the linear combinations of the 

component functions. This is explained in the upcoming S-box properties. 

For balanced 𝑘 × 𝑙 S-box, it is necessary that its component Boolean functions and their linear 

combinations are balanced. With this property, an invader is unable to trivially approximate the 

function or the output.  

In [18], Shannon explained that there is a complex relation between the ciphertext and the key 

material. This concept is named as confusion. In cipher system, confusion is attained by using the 

nonlinear components. For this reason, S-boxes become the major nonlinear component of any 

cryptographic cipher systems. The nonlinearity of an 𝑘 × 𝑙 S-box is defined in the later definition. 

Definition 24 [19] The minimum nonlinearity of every Boolean function output component and 

their linear combination is defined as nonlinearity of a 𝑘 × 𝑙 S-box 𝑆. It is denoted by 𝑁𝑆𝑘,𝑙
. Let 𝑢𝑗  

be the set of all linear combinations of 𝑠𝑛 (𝑛 = 1, … , 𝑙). Mathematically, the nonlinearity of 𝑆 can 

be written as: 

                                          𝑁𝑆𝑘,𝑙
= min

𝑢
{𝑁𝑆𝑘,𝑙

(𝑢𝑗) }      (𝑗 = 1, … , 2𝑙 − 1 )                                        (1.21) 

where 𝑆 = (𝑠1, 𝑠2, … , 𝑠𝑙) and 𝑠𝑛 (𝑛 = 1, … , 𝑙) are all Boolean functions. 

As 𝑝 and 𝑞 increases, computationally it is very difficult to calculate the nonlinearity of a 𝑘 × 𝑙 S 

box. In the next section, we discuss few cryptanalytic attacks to highlight the importance of 

nonlinearity for the security of cipher systems. 
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In order to resist a cryptanalytic attack, the algebraic degree of Boolean function and 𝑘 × 𝑙 S-box 

must be high. It is named as low order approximation [13]. The degree of S-box is given below: 

Definition 25 Let  S = (s1, s2, … , sl) be a k × l S-box and sn (n = 1, … , l) are all Boolean 

functions. Let uj be the set of all linear combinations of sn (n = 1, … , l). The algebraic degree of 

S which is denoted by deg( Sk,l) can be written as: 

                                      deg( Sk,l)  = min
u

{deg(uj) }      (j = 1, … , 2l − 1 )                                 (1.22) 

In [2], Shannon proposed the idea of diffusion. Diffusion is a method in which data redundancy in 

a cipher is spread throughout the data to minimize the probability of its statistical structure. The 

avalanche characteristics of a cipher system are linked with diffusion. These characteristics are 

achieved by using cipher components which indicate better avalanche characteristics. Following 

definitions help to measure these characteristics of 𝑘 × 𝑙 S-boxes. 

Definition 26 [10] Let S = (s1, s2, … , sl) be a k × l S-box and sn (n = 1, … , l) are all Boolean 

functions. Let uj be the set of all linear combinations of sn (n = 1, … , l) having autocorrelation 

functions as ϔuj
(a). Mathematically, maximum absolute autocorrelation value of S can be defined 

as: 

                                                   |ACSk,l
|max = max

u
|ϔuj

(a)|                                                    (1.23) 

With a ∈ {1, … , 2k − 1} and (j = 1, … … 2l − 1) 

Definition 27 [20] Let S = (s1, s2, … , sl) be a k × l S-box and sn (n = 1, … , l) are all Boolean 

functions. Letuj be the set of all linear combinations of sn (n = 1, … , l). If every uj (j = 1, … , 2l −

1) satisfies strict avalanche criterion (SAC) then S is said to satisfy SAC. 
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Definition 28 [12] Let S = (s1, s2, … , sl) be a k × l S-box and sn (n = 1, … , l) are all Boolean 

functions. Let uj be the set of all linear combinations of sn (n = 1, … , l). If every uj (j = 1, … , 2l −

1) satisfies propagation criteria of order q denoted as PC(q), then S is said to satisfy PC(q). 

Definition 29 [21] Let  S = (s1, s2, … , sl) be a k × l S-box and sn (n = 1, … , l) are all Boolean 

functions. Let uj be the set of all linear combinations of  sn (n = 1, … , l). If every lk (j = 1, … , 2l −

1) satisfies correlation immunity denoted by CI(z), then S is said to be CI(z). 

Definition 30 [12] Let S = (s1, s2, … , sl) be a k × l S-box and sn (n = 1, … , l) are all Boolean 

functions. Let  uj be the set of all linear combinations of sn (n = 1, … , l). If every lk (k =

1, … , 2l − 1) are z-resilient, then S is said to be z-resilient Boolean functions. 

Bit Independent Criterion 

In 1985, Webster and Tavares introduced bit independent criterion (BIC) for better understanding 

of S-boxes [22]. This criterion helps to signify the confusion function. If a single input bit r is 

reversed in BIC, the output bits m and n must be altered independently for all i, j and 𝑘 ∈

(1,2, … , 𝑛). The correlation coefficient between 𝑚𝑡ℎ and 𝑛𝑡ℎ output bits is required to understand 

the concept of BIC. The bit independence effects on the 𝑚𝑡ℎ and  𝑛𝑡ℎ output bits by changing the 

𝑟𝑡ℎ input bit can be denoted as 𝐵𝑒𝑞: 

𝐵𝐼𝐶(𝑏𝑚, 𝑏𝑛) = max
1≤𝑟≤𝑛

| 𝐜𝐨𝐫𝐫 (𝑏𝑚
𝑒𝑟 , 𝑏𝑛

𝑒𝑟)|.                                     (1.24) 

For S-box function 𝑔: 𝐺𝐹(2𝑘) →  𝐺𝐹(2𝑙), the BIC can be defined as: 

𝐵𝐼𝐶(𝑔) = max
1≤𝑚,𝑛≤𝑛

𝑚≠𝑛

 𝐁𝐈𝐂 (𝑏𝑚, 𝑏𝑛 ).                                                 (1.25) 
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1.5.3. Linear and Differential Cryptanalysis of S-boxes 

In 1993, M. Matsui presented the linear cryptanalysis as a theoretical attack on Data Encryption 

Standard (DES). Later, this linear cryptanalysis is successfully used for cryptanalysis of DES. This 

cryptanalysis searches “high probability” existences of linear expressions which include plaintext 

ciphertext, and subkey bits [23]. To determine the value of key bits, different plaintext ciphertext 

pairs are used in this cryptanalysis. 

In 1990, E. Biham and A. Shamir introduced differential cryptanalysis as an attack on DES. In 

[24], Heys defines the differential analysis as: “Differential cryptanalysis exploits the high 

probability of certain occurrences of plaintext differences and differences into the last round of the 

cipher”. Linear cryptanalysis is a known plaintext attack whereas differential cryptanalysis is a 

chosen plaintext attack [25].  

Definition 31 [11] The size of XOR table for a vector Boolean function h: GF(2k)  → GF(k) is 

2k ×  2k . The input vectors in the XOR table for the position (r, m) is given by: 

|{P ∈ GF(2k): h(P)⨁ h(P + τr) =  τm }|                                                       (1.26) 

for  0 ≤ r, m ≤  2k − 1. The n-bit binary representation of indices r and m is represented by τr 

and τm. The pair (r, m) is an input/output XOR pair, h is the cryptographic function of the S-box 

and P is the input vector. The S-boxes having low XOR table entries are considered as secured 

cipher against differential cryptanalysis. In each row, the sum of XOR table entries are equal to 

2k which is equal to a number of total input vector pairs. 

Definition 32 [9] The linear approximation table for a Boolean function h: GF(2k)  → GF(2l) is 

given by  

LATh(c, d) = # {y ∈ GF(2k)|c. y = d. h(y)} − 2k−1                           (1.27) 
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where c ∈ GF(2k), d ∈ GF(2l)\{0}. 

Lemma [10] For a given vector Boolean function h: GF(2k) → GF(2l) it is defined the linear 

approximation table which elements are 

LATh(c, d) = 2k − 1 − d(c. y, d. h),                                             (1.28) 

where c ∈ GF(2k), d ∈ GF(2l)\{0}. 

Lemma [10] For a given vector Boolean function h: GF(2k) → GF(2l), 

Nh = 2k−1 − max
c,d

| LATh(c, d)|,                                           (1.29) 

where c ∈ GF(2k), d ∈ GF(2l)\{0}. 

Definition 33 [12] For any given 

 Δz, Δt, Γz, Γt ∈ GF(2k), the linear and differential approximation probabilities for every vector 

Boolean function (S-box) can be given as: 

LPSr(Γt → Γz) = 2 (
# {z ∈ GF(2k)|zΓz = Sr(z)Γt}   

2k )                                   (1.30) 

DPSr(Δz →  Δt) = (
# {z ∈ GF(2k)|Sr(z)⨁Sr(z⨁Δz) = Δz}   

2k )                      (1.31) 

where, the bitwise product of z and Γz is zΓz (denotes the parity (0 or 1). 

Definition 34 [10] For vector Boolean function (S-boxes), the maximum linear and differential 

approximation probabilities can be defined as: 

p = max
i

max
Γz, Γz

LPSi  (Γz → Γz)                                               (1.32) 

q = max
i

max
Γz, Γz

DPSi  (Γz → Γz)                                               (1.33) 
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The introduction and basic preliminaries are presented in this chapter. In the next chapter, a 

novel technique for the construction of S-box based on algebraic structure of finite commutative 

ring is presented. 
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Chapter 2 

Construction of S-box using finite commutative ring 

In this chapter, the method to develop cryptographically strong S-box is presented which can be 

used in multimedia security and data hiding techniques. The algorithm of construction depends on 

the action of a projective general linear group over the set of units of the finite commutative ring. 

The strength of S-box and ability to create confusion is assessed with different available analyses. 

Moreover, the ability of resistance against malicious attacks is also evaluated. The S-box is 

examined by bit independent criterion, nonlinearity test, strict avalanche criterion, linear and 

differential approximation probability tests. This S-box is equated with well-recognized S-boxes 

such as AES [3], Gray [26], APA [27], S8 [28], prime of residue [29], Xyi [30] and Skipjack [31]. 

The comparison shows encouraging results about the quality of the proposed box. The majority 

logic criterion is also calculated to analyze the strength and its practical implementation. 

2.1. Background 

In symmetric key cryptography, block ciphers depends on the strength of S-box and hence these 

boxes play very important role. The main theme of S-box is to develop confusion, secure the 

original data from cryptanalysis and hide it in cipher text. In the literature, the construction of S-

box is started by Shannon in Shannon theory and then in Fiestal cipher by Fiestal [2], [32]. The 

different analysis of the properties of S-box like scrambling and creating confusion in data suggests 

its vital role in encryption schemes and applications. The S-box evaluates the nonlinearity and 

efficiency of the cryptosystem. The S-boxes used in data encryption standard (DES), advanced 
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encryption standard (AES) and other designs provide alluring and remarkable properties which are 

applicable in multiple ciphers. 

In an AES, the combination of permutation box and the key based data substitution provide the 

substitution-permutation network. Several layers of substitution-permutation combination give the 

cipher text with the application of multiple keys used in each round. The algebraic complexity and 

better cryptographic properties for encryption are observed in affine power affine (APA) [27]. 

Similarly, these properties are depicted in S8 AES and Gray S box [3], [28]. The Gray S-box ansd 

S8 AES S-box are the actions of binary Gray codes and symmetric group S8 and on AES S-box, 

respectively. In addition to this, Xyi S-box , Skipjack S-box, and Prime S box are also used in 

certain encryption techniques and best fit for data hiding [29], [31], [33]. The concept of Finite 

fields and their extensions provide the base of S-boxes as obvious from APA S-box, AES S-box, 

S8 S-box, Residue Prime S-box, , Skipjack S-box, Gray S-box and Xyi S-box [26], [34]. In the 

literature, Galois field (28) was used to construct S-box. The elements of Galois field were taken 

in typical ascending order [35], [36]. In our proposed technique, initially finite local ring ℤ512 is 

utilized for the structure of S-box. Furthermore, to increase the randomness, inverse map and 

composition of scalar and inverse map are used. Lastly, group action is applied in the form of 

linear fractional transformation (LFT) on the permuted elements of Galois field. In this new 

method, group action method using linear fractional transformation is used to construct S-box 

depending upon [37]. The algebraic construction is defined with group action of the projective 

general linear group over the set (group) of units of ring ℤ512 which is given by 𝐾. This group 𝐾 

have 256 unit elements of ℤ512 develops a bijection with 𝐺𝐹 (28). It can be elaborated as: 

                                          𝑔(2𝑚 + 1) =
𝑡𝑚 + 𝑢

𝑣𝑚 + 𝑤
, 0 ≤ 𝑚 ≤ 255                                              (2.1) 
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where 𝑡, 𝑢, 𝑣 and 𝑤 belongs to Galois field which have 256 elements 𝐺𝐹(28). The elementary 

subject of the S-box is to scramble data values and produce confusion and perplexity which is used 

in the encryption scheme. The statistical analyses of S-box not only provide the strength but also 

give the usage of specific encryption application. As in this encryption procedure, the only 

nonlinear component is  S-box so it is worth finding to notify the values of parameters of linear 

fractional transform and the nonlinearity manipulated in plaintext. The analyses of S-box are 

performed by using nonlinearity analysis and analyzing the change effect in output bits by giving 

a slight variation in input bits. For this, we use bit independent criterion (BIC) and strict avalanche 

criterion (SAC) [34]. Moreover, the volume of similarity is attained by using the probability of 

events [17], and these analyses can be done by performing linear and differential probability 

analysis. The majority logic criterion (MLC) proceeds the outcomes of different analyses and 

concludes the top-quality S-box with necessary properties [38]. 

2.2. Algebraic Structure of Proposed S-box 

In the literature, algebraic techniques are being applied on the ascending sequence of Galois field 

having element 0-255. In this novel technique, the sequence is permuted with the help of inverse 

map and then by applying the composition of inverse and scalar map. Furthermore, the group 

action is applied to get the enhanced non-linearity of S-box. The work in [39] shows the 

comparison of previous techniques with proposed technique. 

2.2.1. Algorithm for Proposed S-box 

Here, the basic phases for evolving the algorithm of new S-box are given as: 

A1. In the first step, consider the units from the ring of integers modulo 512 which is denoted by 

𝑈(ℤ512). 
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                                                       𝐾 = 𝑈(ℤ512) = {2m +  1, 0 ≤  n ≤  255}                  (2.2) 

where elements of 𝐾 and 512 are relatively prime. The multiplicative inverses of elements of 𝐾  

are given in Table 1 using the map 𝛾 given in Eq. (2.3). 

𝛾(𝑦)  =  𝑦−1          (2.3) 

Table 𝟏: Multiplicative inverses of elements of 𝐾 (subgroup of 𝑈(ℤ512)) 

1 171 205 439 57 419 197 239 241 27 317 423 41 19 53 479 

481 395 429 407 25 131 421 207 209 251 29 391 9 243 277 447 

449 107 141 375 505 355 133 175 177 475 253 359 489 467 501 415 

417 331 365 343 473 67 357 143 145 187 477 327 457 179 213 383 

385 43 77 311 441 291 69 111 113 411 189 295 425 403 437 351 

353 267 301 279 409 3 293 79 81 123 413 263 393 115 149 319 

321 491 13 247 377 227 5 47 49 347 125 231 361 339 373 287 

289 203 237 215 345 451 229 15 17 59 349 199 329 51 85 255 

257 427 461 183 313 163 453 495 497 283 61 167 297 275 309 223 

225 139 173 151 281 387 165 463 465 507 285 135 265 499 21 19 

193 363 397 119 249 99 389 431 433 219 509 103 233 211 245 159 

161 75 109 87 217 323 101 399 401 443 221 71 201 435 469 127 

129 299 333 55 185 35 325 367 369 155 445 39 169 147 181 95 

97 11 45 23 153 259 37 335 337 379 157 7 137 371 405 63 

65 235 269 503 121 483 261 303 305 91 381 487 105 83 117 31 

33 459 493 471 89 195 485 271 273 375 93 455 73 307 205 511 

A2. Similarly, we define 𝜓 on K by the next equation: 

                𝜓(𝑦)  =  𝑠 𝑦 , 𝑤ℎ𝑒𝑟𝑒 𝑠 𝜖 𝐾                         (2.4) 
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The composition 𝜃 of the maps given in Eq. 2.3 and 2.4 will be 

                                   𝜃 =  𝛾 ∘  𝜓  =  𝑠 𝑦−1                                                            (2.5) 

For our understanding in calculation process, we take 𝑠 = 13 and the result is given in Table 2 

Table 2: 16 ×  16 pseudo S-box constructed on a subgroup of (ℤ512) 

13 175 105 75 229 327 1 35 61 351 25 379 21 247 177 83 

109 15 457 171 325 161 353 131 157 191 377 475 117 87 17 179 

205 367 297 267 421 7 193 227 253 31 217 59 213 439 369 275 

301 207 137 363 5 359 33 323 349 383 57 155 309 279 209 371 

397 47 489 459 101 199 385 419 445 223 409 251 405 119 49 467 

493 399 329 43 197 39 225 3 29 63 249 347 501 471 401 51 

77 239 169 139 293 391 65 99 125 415 89 443 85 311 241 147 

173 79 9 235 389 231 417 195 221 255 441 27 181 151 81 243 

269 431 361 331 485 71 257 291 317 95 281 123 277 503 433 339 

365 271 201 427 69 423 97 387 413 447 121 219 373 343 273 247 

461 111 41 11 165 263 449 483 509 287 473 315 469 183 113 19 

45 463 393 107 261 103 289 67 93 127 313 411 53 23 465 115 

141 303 233 203 357 455 129 163 189 479 153 507 149 375 305 211 

237 143 73 299 453 295 481 259 285 319 505 91 245 215 145 307 

333 495 425 395 37 135 321 355 381 159 345 187 341 55 497 403 

429 335 265 491 133 487 161 451 477 267 185 283 437 407 105 499 

A3. In the last step, we define an action of the Projective general linear group on the set (group) 𝐾 

which is the main theme of this article. This group action of 𝑃𝐺𝐿(2, 𝐾) on the set 𝐾 is 

accomplished by linear fractional transformation. This procedure can be explained as: 
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Fig. 1 Algorithm for the structure of constructed S-box 
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𝑔: 𝑃𝐺𝐿(2, 𝐾) × 𝐾 → 𝐾 

The linear fractional transformation is an invertible map and mathematically it can be defined as: 

𝑔(2𝑚 +  1) =
31𝑚+19

23𝑚+7
, 0 ≤  𝑛 ≤  255       (2.6) 

where 31, 19, 23 and 7 belongs to Galois field. With the help of this map, Table 2 is converted into 

a 16×16 table that provides our new S-box. The 256 dissimilar results of the proposed S-box are 

shown in Table 3. Fig. 1 shows the algorithm for the synthesis of S-box. 

Table 3: S-Box constructed by using finite commutative ring 

199 24 244 208 226 40 65 32 3 114 172 238 103 25 141 92 

44 42 149 77 78 36 104 105 133 52 222 55 247 85 186 87 

64 214 171 7 49 164 239 216 35 230 125 168 192 163 246 190 

147 116 110 60 107 196 41 228 191 128 176 152 205 51 106 4 

86 132 120 20 158 143 167 21 118 173 201 198 210 90 59 112 

180 217 0 188 30 88 174 48 27 209 136 17 47 157 140 175 

130 177 207 189 181 170 117 73 153 26 204 185 111 8 248 187 

71 212 235 67 63 95 102 62 223 184 155 129 200 221 97 38 

113 69 16 5 252 234 9 56 254 193 178 75 1 237 160 33 

124 84 91 123 119 206 229 115 148 89 220 241 57 31 2 218 

165 19 43 28 166 66 54 100 74 127 96 231 243 240 13 68 

138 12 98 156 253 93 224 6 11 46 29 139 169 50 232 159 

225 202 22 137 179 15 227 122 251 195 23 249 18 61 211 151 

213 145 245 79 126 76 70 39 182 80 135 236 34 10 58 250 

154 121 146 215 233 197 162 242 94 45 161 83 203 14 72 183 

81 82 150 108 109 37 144 142 99 255 101 194 131 219 134 53 
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It is clear from the algorithm that loop applied in it takes values of 𝑡, 𝑢, 𝑣 and 𝑤 along with values 

of 𝑚 from the set {0,1,2, … ,255}. The algorithm moves through the step A3 once it is confirmed 

that the result of 𝑡 × 𝑤 − 𝑢 × 𝑣 is not equal to 0. Moreover, the condition that 23𝑚 + 7 ≠ 0 ∀  𝑚 

is also necessary for the iteration of the third step A3 for the structure of our new S-box. 

2.3. Statistical results and simulation analysis 

This section investigates different characteristics of suggested S-box generated by an algebraic 

structure which involves group action of the projective general linear group over K (the units of 

ℤ512). The valuation of S-box gives assurance of its effectiveness and capability to generate 

confusion in cipher. The three categories of performance indexes provide the analyses of S-box. 

The non-linearity of proposed S-box is evaluated in first category. In the second category, the 

effects of deviation in input bits observed in output bits are observed. The last category is about 

outcomes of probability of events and differential uniformity. It is observed that the S-box reaches 

almost all conditions near to ideal results. The subsections concisely designate the analyses linked 

with the secure S-box. 

2.3.1. Nonlinearity 

To measure the distance of known Boolean function to all possible affine functions is obtained in 

nonlinearity analysis. The modification in Boolean function is due to alteration of bits in the truth 

table. Hence, the outcomes of nonlinearity is the tally of altered bits with the aim of getting the 

closest affine function. Usually, for S-boxes, the nonlinearity is limited by 𝑁(𝑓) = 2𝑚−1 −

2𝑚/2−1 with optimal value at N=120. Table 4 provides the outcome of non-linearity of our new S-

box. This S-box has average nonlinearity value 106.75 which is comparatively better as likened to 

the residue of Prime, Skipjack, Hussain and Xyi S-box. The proposed S-box non-linearity indicate 
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the unaffected behavior against cryptanalysis using algebraic attacks. It is observed that the least 

value of non-linearity is 100, the highest value is 110, and an average value is 106.75 for the 

proposed S-box. 

Table 4: Nonlinearity of basic functions of well-known S-boxes 

S-boxes 𝒇𝟎 𝒇𝟏 𝒇𝟐 𝒇𝟑 𝒇𝟒 𝒇𝟓 𝒇𝟔 𝒇𝟕 Average 

Hussain [15] 104 106 106 106 110 104 100 108 105.5 

Prime [29] 94 100 104 104 102 100 98 94 99.5 

Skipjack [31] 104 108 108 108 108 104 104 106 105.75 

Proposed 106 108 110 110 108 104 100 108 106.75 

Hussain [14] 102 104 98 108 104 102 108 106 104 

AES [3] 112 112 112 112 112 112 112 112 112 

S8 AES [28] 112 112 112 112 112 112 112 112 112 

Xyi [30] 106 104 106 106 104 106 104 106 105 

2.3.2. Design of Input/Output Bits 

Many methods in the literature assess the changes occurred in output bits due to alteration in input 

bit patterns. The special effects of these variations can be observed in different rounds of the 

encryption process. The alterations of input bits and the measure of independence between pair 

wise avalanche vectors are the significant aspects of BIC. The eight functions used in the 

construction of S-box and the outcomes of the successive iterations are the major sources of 

independent features. These iterations are attained when the input bits are altered to recognize the 

behavior of any two output bits. Table 5 provides the outcomes for the non-linearity of BIC. In 

Table 6, least values, average values and square deviation of BIC for constructed S-box are given. 

From this table, it is obvious that average value of our S-box is better as compared to Xyi, Hussain 
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[35] and prime S-boxes. To understand the characteristics of output bits in detail, the SAC is used. 

If the particular input difference grounds sequence of variations in the entire network of 

substitution-permutation, the avalanche result is viewed. It is observed that half of the values have 

converted values due to this single input variation.  

Table 5: Values of Non-linearity of BIC of S-box  

----------- 108.000 108.000 104.000 104.000 104.000 106.000 106.000 

108.000 ----------- 106.000 108.000 108.000 106.000 106.000 108.000 

108.000 106.000 --------- 108.000 106.000 106.000 104.000 106.000 

104.000 108.000 108.000 ---------- 108.000 108.000 108.000 106.000 

104.000 108.000 106.000 108.000 --------- 108.000 104.000 104.000 

104.000 106.000 106.000 108.000 108.000 ---------- 106.000 104.000 

106.000 106.000 104.000 108.000 104.000 106.000 ---------- 108.000 

106.000 108.000 106.000 106.000 104.000 104.000 108.000 ---------- 

Table 6: Bit independence criterion of different S-boxes 

S-boxes Least value Average Square deviation 

New S-box 104 106.27 1.578 

Hussain [15] 106 102 2.1381 

Hussain[14] 98 103.37 0 

Prime [29] 94 101.71 3.53 

S8 AES [28] 112 112 0 

Xyi [30] 98 103.78 2.743 

AES [3] 112 112 0 

Skipjack [31] 102 104.14 1.767 
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When SAC is functional to the nonlinear S-box transformation of proposed algorithm these 

variations are observed. The outcome assures the confrontation against cryptanalysis and the asset 

of the cipher. Table 7 demonstrates the outcomes for the SAC. The outcomes for SAC are almost 

the same as for another designed S-box. 

Table 7: SAC of new S-box 

0.5000 0.5313 0.5000 0.4531 0.4844 0.5469 0.4844 0.4688 

0.5156 0.4844 0.4688 0.5469 0.4531 0.5469 0.4375 0.4844 

0.4688 0.5000 0.5156 0.4375 0.5312 0.6094 0.4688 0.5000 

0.4844 0.5000 0.4688 0.4844 0.4375 0.5312 0.4688 0.5000 

0.5313 0.4688 0.5000 0.5000 0.4844 0.4531 0.5469 0.4844 

0.5625 0.5469 0.5000 0.4844 0.5000 0.5312 0.5156 0.5782 

0.4375 0.4532 0.4844 0.4688 0.5156 0.4844 0.4531 0.5156 

0.5000 0.5000 0.5938 0.5312 0.4844 0.4844 0.5156 0.5000 

2.3.3. Approximation Probability Analysis 

Here, the probability analysis is discussed for the proposed S-box. Initially, linear approximation 

probability is used on new S-box to calculate the result of an imbalance of an event [17]. Due to 

changes in input bits pattern there is an imbalance at output bits. The outcomes of differential 

uniformity provide strong point to linear approximation analysis. The ᴦ𝑢 and ᴦ𝑣 are the required 

masks which are functioned on the equivalence of both input and output bits. We can define it as, 

         𝐿𝑃 =  max
ᴦ𝑢,ᴦ𝑣≠0

⃒
#{𝑢/𝑢•ᴦ𝑢= 𝑆(𝑢)•ᴦ𝑣}

2𝑙 −
1

2
⃒        (2.7) 

where all the probable domain results can be given by 𝑢 and total number of elements are given 

by 2𝑙. Table 8 gives the output of this probability of bias. From these values, it is obvious that the 
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new S-box give extensive confrontation to linear assaults. The maximum result for linear 

approximation probability is 160.  

Table 8: Comparison of Linear approximation probability of proposed and well-known S-boxes  

S-boxes Hussain  

[15] 

Prime  

[29] 

Proposed  Hussain       

[14] 

S8 AES 

[28] 

Xyi 

[30] 

Skypjack 

[31] 

AES 

[3] 

Max value 160 162 160 160 144 168 156 144 

Max LP 0.1328 0.132 0.125 0.140 0.062 0.156 0.109 0.062 

Table 9: Results of differential probability of proposed S-box 

.0234 .0234 .0234 .0234 .0234 .0234 .0156 .0234 .0234 .0234 .0234 .0234 .0312 .0313 .0156 .0234 

.0234 .0234 .0313 .0234 .0234 .0234 .0313 .0234 .0313 .0313 .0234 .0234 .0234 .0234 .0234 .0156 

.0234 .0234 .0234 .0234 .0234 .0312 .0234 .0156 .0234 .0313 .0234 .0234 .0156 .0156 .0234 .0234 

.0234 .0313 .0156 .0234 .0234 .0234 .0234 .0156 .0234 .0234 .0234 .0313 .0234 .0313 .0234 .0234 

.0234 .0234 .0234 .0313 .0234 .0234 .0234 .0156 .0234 .0234 .0156 .0234 .0234 .0234 .0234 .0234 

.0234 .0234 .0234 .0234 .0234 .0234 .0234 .0156 .0234 .0234 .0234 .0313 .0312 .0234 .0313 .0313 

.0313 .0234 .0234 .0234 .0234 .0312 .0234 .0234 .0156 .0234 .0234 .0391 .0234 .0313 .0234 .0234 

.0313 .0156 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0156 .0156 .0234 .0234 .0234 .0234 .0234 

.0234 .0156 .0234 .0234 .0234 .0234 .0234 .0234 .0312 .0313 .0234 .0234 .0234 .0234 .0234 .0234 

.0234 .0234 .0156 .0234 .0234 .0234 .0312 .0234 .0234 .0234 .0234 .0234 .0156 .0234 .0234 .0313 

.0234 .0234 .0234 .0234 .0234 .0234 .0234 .0156 .0234 .0156 .0156 .0234 .0313 .0234 .0234 .0234 

.0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0156 .0156 .0234 .0156 .0313 .0234 

.0313 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 

.0234 .0234 .0234 .0313 .0156 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 .0234 

.0234 .0234 .0234 .0234 .0234 .0234 .1171 .0234 .0156 .0234 .0234 .0234 .0234 .0313 .0234 .0313 

.0156 .0234 .0156 .0234 .0234 .0234 .0234 .0234 .0312 .0156 .0234 .0234 .0313 .0313 .0234 ----- 

The value of Linear approximation probability is 0.125. Secondly, differential uniformity is 

calculated with the help of differential probability analysis. By plotting the input bits to output bits 
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the theme is to find and analyze any uniquely plotted differential for input bits. For input 

differential, ∆𝑢 is a unique uniform mapping which provides an output of a ∆𝑣. It is represented 

by 

𝐷𝑃𝑠  (∆𝑢 → ∆𝑣) =
[#{𝑢𝜀𝑈/𝑆(𝑢)⨁𝑆(𝑢⨁∆𝑢)=∆𝑦}]

2𝑑
                   (2.8) 

The outcomes of this probability scrutiny are given in Table 9 which is the probability of 

differential by functioning the input and output differentials. Interestingly, the value of differential 

probability is almost equal to prime, gray, APA and S8 AES S-boxes.  

2.4. Majority Logic Criteria 

In MLC, statistical studies are done to assess the statistical strength of the novel S-box for the 

encryption of data [38]. For analyzing the confusion creating ability of S-box, certain statistical 

and analytical methods are available in the literature. As encryption process handles data and 

produces alteration in the image, it is essential to get results of statistical properties. The outcomes 

of these analyses help us to determine best suited S-box for the whole encryption procedure. In 

these analyses, homogeneity, contrast, correlation, entropy, energy are evaluated and given in 

Table 10.  

2.4.1. Entropy analyses 

In any cryptosystem, measure of the amount of randomness is called entropy. For images, the 

degree of entropy is linked to the organization of artifacts which supports the individuals to observe 

the image. In this process of substitution, or application of nonlinear S-box transformation, 

introduces randomness in the image. The extent of randomness introduced by the encryption 

process is extremely relevant to the fact that the human eye can perceive the texture in the image. 
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The lack of randomness may result in partial/full recognition of the encrypted image. Therefore, 

the measurement of entropy may provide important information about the encryption strength, and 

is measured as 

                                                                       𝐻 = ∑ 𝑝(𝑥𝑖 )𝑙𝑜𝑔𝑏 𝑝(𝑥𝑖 )

𝑛

𝑖=0

                                             (2.9)  

where 𝑝(𝑥𝑖) indicates the histogram counts. 

2.4.2. Energy 

Energy analysis is used to determine the energy of the encrypted image. The gray-level co- 

occurrence matrix is also used in energy analysis. Mathematically it can be given as 

                                                                     𝐸 =    ∑ ∑ 𝑃2[𝑖, 𝑗]                                                        (2.10) 

𝑗𝑖

 

2.4.3. Contrast 

The objects in an image are vividly identified to an observer with the help of amount of contrast 

in the picture. A reasonable amount of contrast levels in the image also saturates the artifacts which 

enable the identification of the image more precisely. Due to encryption of an image, the amount 

of randomness rises, which uplifts the contrast, levels to a very high value. The objects in the image 

completely smudge because of the nonlinear mapping from the substitution of the image data. We 

can conclude that a higher level of contrast in the encrypted image depicts strong encryption 

because it is related to the amount of confusion created by the S-box in the original image. The 

mathematical representation of this analysis is given as 

                                                             𝐶 = ∑ ∑(𝑖 − 𝑗)2𝑝[𝑖, 𝑗]                                                      (2.11) 

𝑗𝑖
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Here 𝑖 and 𝑗 are the pixels in the image, and the number of gray-level co-occurrences matrices is 

represented by 𝑝(𝑖, 𝑗). 

2.4.4. Homogeneity 

The image data have a natural distribution which is related to the contents of that image. We 

perform the homogeneity analysis which measures the closeness of the distributed elements in the 

GLCM to GLCM diagonal. This is also known as gray tone spatial dependency matrix (GLCM). 

The GLCM depicts the statistics of combinations of pixel gray levels in tabular form. The analyses 

are further extended by processing entries from the GLCM table. The mathematical representation 

of this analysis is given as 

                                                            𝐻 = ∑   ∑
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗 |
𝑗

                                                      (2.12)  

𝑖

  

2.4.5. Correlation 

The correlation analysis is divided into three different types. It is performed on vertical, horizontal, 

and diagonal formats. In addition to analysis on partial regions, the entire image is also included 

in the processing. This analysis measures the correlation of a pixel to its neighbor by keeping into 

consideration the texture of the entire image. The mathematical representation of the correlation 

analysis is given as 

                                                              𝐾 = ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑝(𝑖, 𝑗)

𝜎𝑖 𝜎𝑗
𝑖,𝑗

                                            (2.13) 

By considering the significance of the outcomes of above-mentioned analyses, the data are further 

assessed by MLC to obtain the S-box for different applications. 
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Table 10: MLC results for S-box over ℤ512 and different S-boxes 

S-boxes Entropy Correlation Homogeneity Contrast Energy 

Cameraman Image 

Plain Text 7.1025 0.9292 0.8964 0.4785 0.1679 

S-box over ℤ𝟓𝟏𝟐 7.9828 - 0.0024 0.4133 8.3936 0.0179 

AES 7.2531 0.0554 0.4662 7.5509 0.0202 

Hussain [14] 7.3557 0.0473 0.4821 7.2173 0.0209 

Prime 7.2531 0.0855 0.4640 7.6236 0.0202 

S8 AES 7.2357 0.1235 0.4707 7.4852 0.0208 

Hussain [15] 7.7536 0.1683 0.4924 7.4521 0.0315 

Xyi 7.2531 0.0417 0.4533 8.3108 0.0196 

Skipjack 7.2531 0.1025 0.4689 7.7058 0.0193 

Gold Hill Image 

Plain Text 7.4761 0.9084 0.8700 0.3341 0.1274 

Proposed S-box 7.9385 0.0423 0.4443 7.6225 0.0196 

AES 7.2531 0.0554 0.4662 7.5509 0.0202 

Hussain [14] 7.5131 0.1473 0.4760 7.9511 0.0199 

Prime 7.2531 0.0855 0.4640 7.6236 0.0202 

S8 AES 7.2357 0.1235 0.4707 7.4852 0.0208 

Hussain [15] 7.6521 0.0786 0.4223 7.5003 0.0300 

Xyi 7.2531 0.0417 0.4533 8.3108 0.0196 

Skipjack 7.2531 0.1025 0.4689 7.7058 0.0193 

Table 10 indicates that MLC results of proposed S-box are better as compared with Hussain [35], 

[39], skipjack, prime and xyi. Our proposed S-box is highly recommended for multimedia security 
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methods and encryption applications. The baboon, cameraman and Gold hill images and their 

substitution with proposed S-box are given in Fig. 2(a)-c, respectively. 

      a          b           c 

                 

                 

Fig. 2: Host and the encrypted image (a). Baboon. (b). Cameraman. (c). Gold hill. 

The encryption of cameraman, baboon and gold hill images with Hussain S-boxes is given in 

Fig.3a-c respectively. 
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Fig. 3: Host and the encrypted image with Hussain [35], [39] S-boxes respectively  

 (a). Cameraman (b). Baboon. (c). Gold hill. 

This substitution with proposed S-box indicates the complete encryption. MLC outcomes show 

that the proposed S-box is apposite for encryption and secure transmission of the information. 

In this chapter, a scheme for construction of S-box by using group action of the projective general 

linear group over the unit element of ℤ512 is presented. The ability of our new S-box to create 

perplexity in data is quite exceptional. The proposed S-box can be used for information hiding 

techniques and different encryption process. In the next chapter, we suggest that the choice of the 

background irreducible polynomial, involved in the structure of the Galois field 𝐺𝐹 (28), has a 

critical influence on the highly desirable features on an S-box  
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Chapter 3 

Construction of S-Box Using Different Irreducible 

Polynomial 

Keeping in view the importance of the S-box, many designs are recently presented by researchers 

to synthesize cryptographically stronger S-boxes. In this chapter, we suggest that the selection of 

the background irreducible polynomial, has a deep influence on the highly desirable features on 

an S-box such as nonlinearity, bit independence, strict avalanche, linear and differential 

approximation probability etc. We therefore propose that the capacity of an S-box is not just 

depending on the nature of the bijective Boolean function, however, it is affected by the degree 8 

irreducible polynomial µ(𝑋) as well, which generates the maximal ideal of the principal ideal 

domain 𝔽2[𝑋]. We discuss a detailed example to support our proposition and show practically that 

the same algorithm produces a different output when the generating polynomial is changed. 

3.1. Statement of the problem 

The study of innovation in design algorithms for S-boxes witnesses that the change of model and 

the selection of Boolean function etc. contribute little to the performance indices of an S-box. We 

in this chapter propose that the performance of an S-box is highly related with the background 

Galois field. The fact that finite fields of the same order are isomorphic is of worth but the 

scrambling effect of a nonlinear Boolean function applied on two different fields of the same order 

might vary. Since in cryptography, an S-box is the salient component used to produce confusion 
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in the data, it is worth-studying that the confusion creating ability is associated with the choice of 

the irreducible polynomial used to form the background Galois field. 

In [35], Hussain et. al. presented an algorithm for generating S-box through the application of a 

linear fractional transformation on the Galois field 
8(2 ),GF structured by the polynomial 

8 4 3 2 1.X X X X     We in the proposed work show that the same algorithm used for a 

different polynomial exhibits highly improved results. By comparing the numerical results of these 

tests, we prove that different polynomials produce significantly different results. This observation 

leads us to revise the existing models by choosing different background polynomials as it could be 

more influential in the improvement of ideas rather changing the whole scheme. 

3.2. Generating Polynomial and the Galois Field 

For any prime ,p  Galois field 𝐺𝐹(𝑃𝑛) is expressed as the factor ring 𝐹𝑃[𝑋]/(µ(𝑋))  where 

µ(𝑋)  ∈ 𝔽𝑝[𝑋] is an irreducible polynomial of degree 𝑛. For 𝐺𝐹(28) we select an irreducible 

polynomial of degree-8 that becomes the maximal ideal of the principal ideal domain 𝔽2[𝑋]. It is 

quite obvious, that the multiplicative group of this field 𝐺𝐹(28) is cyclic in nature and therefore, 

power of the generator 𝛼 = 00000010 can be used to express every nonzero element of this field. 

In this section, we take two irreducible polynomials µ1 and µ2 of degree 8, to construct Galois 

Field 𝔽1 and 𝔽2 respectively, where we choose µ1 = 𝑋8 + 𝑋6+𝑋5+𝑋4 + 1 and µ2 = 𝑋8 +

𝑋4+𝑋3+𝑋2 + 1, as used in [35]. Let  𝐺𝑖 represents the multiplicative group of the Galois field, 

𝔽𝑖.The exponential form of elements of the multiplicative group 𝐺1, along with their inverses, is 

represented in Table 1, however the elements of 𝐺2 are presented in Table 2 of [35]. In the 

upcoming section, we use these calculations to construct the corresponding S-boxes. 
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3.3. Algorithm for S-box 

An 𝑛 × 𝑛 S-box can be given as: 

𝑆𝑛(𝑣) = (𝑠1(𝑣), 𝑠2(𝑣), … , 𝑠𝑛(𝑣), 

where 𝑣 = (𝑣1, 𝑣2, … , 𝑣2
𝑛 ) ∈  𝔽2

𝑛  and each of 𝑆𝑖′𝑠 is regarded as a component Boolean 

function. 

For a field 𝔽, the general linear group 𝐺𝐿(𝑛, 𝔽) is a group constructed by all 𝑛 × 𝑛 invertible 

matrices. A projective general linear group of degree 𝑛 over a field 𝔽 is defined to be the quotient 

group of 𝐺𝐿(𝑛, 𝔽) by its center. For this chapter, we form the 8×8 S-box by considering the action 

of the Galois field 𝐺𝐹(28) on the projective linear group 𝑃𝐺𝐿(2; 𝐺𝐹(28)), i.e. we take a function  

𝜎: 𝑃𝐺𝐿(2, 𝐺𝐹(28)) × 𝐺𝐹(28) → 𝐺𝐹(28) 

Table 1: Exponential representation and the multiplicative inverses of elements of 𝐺 

   𝑥 ∈ 𝐺         𝛼 𝑛        𝑥 −1     𝑥 ∈ 𝐺            𝛼 𝑛        𝑥 −1       𝑥 ∈ 𝐺            𝛼 𝑛           𝑥 −1 

1      𝛼 255 1 

2 𝛼 1 184 

3    𝛼 231 208 

4     𝛼 2 92 

5   𝛼 207 159 

6   𝛼 232 104 

7    𝛼 59 134 

8    𝛼3 46 

9    𝛼 35 173 

87 𝛼 240 193 

88 𝛼 157 99 

89 𝛼 116 163 

90 𝛼 243 54 

91 𝛼 128 149 

92 𝛼 253 4 

93 𝛼 205 158 

94     𝛼 33 86 

95     𝛼 18 192 

172    𝛼 223 47 

173 𝛼 220 9 

174 𝛼 241 216 

175    𝛼 31 41 

176 𝛼 158 137 

177    𝛼 65 166 

178 𝛼 117 233 

179    𝛼 250 32 

180    𝛼 244 27 
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10    𝛼 208 247 

11    𝛼 154 139 

12    𝛼 233 52 

13    𝛼 20 48 

14    𝛼 60 67 

15 𝛼 183 117 

16    𝛼 4 23 

17    𝛼 159 252 

18    𝛼 36 238 

19    𝛼 66 83 

20    𝛼 209 195 

21  𝛼 118 204 

22    𝛼 155 253 

23    𝛼 251 16 

24  𝛼 234 26 

25  𝛼 245 181 

26    𝛼 21 24 

27    𝛼 11 180 

28    𝛼 61 153 

29 𝛼 130 121 

30    𝛼 184 130 

31    𝛼 146 73 

32    𝛼 5 179 

33 𝛼 122 232 

96 𝛼 236 190 

97 𝛼 163 235 

98 𝛼 214 162 

99     𝛼 98 88 

100 𝛼 247 113 

101     𝛼 55 123 

102 𝛼 136 42 

103 𝛼 102 89 

104     𝛼 23 6 

105     𝛼 82 135 

106     𝛼 43 160 

107 𝛼 177 169 

108     𝛼 13 45 

109 𝛼 169 199 

110 𝛼 141 74 

111     𝛼 89 155 

112     𝛼 63 122 

113     𝛼 8 100 

114 𝛼 228 215 

115 𝛼 151 237 

116 𝛼 132 66 

117     𝛼 72 15 

118     𝛼 76 221 

119 𝛼 218 36 

181    𝛼 10 25 

182 𝛼 129 242 

183 𝛼 145 146 

184 𝛼 254 2 

185 𝛼 230 209 

186    𝛼 206 79 

187    𝛼 58 125 

188    𝛼 34 43 

189 𝛼 153 103 

190    𝛼 19 96 

191 𝛼 182 234 

192    𝛼 237 95 

193    𝛼 15 187 

194 𝛼 164 205 

195    𝛼 46 20 

196 𝛼 215 81 

197 𝛼 171 213 

198    𝛼 99 44 

199    𝛼 86 109 

200 𝛼 248 128 

201 𝛼 143 170 

202    𝛼 56 133 

203 𝛼 180 59 

204 𝛼 137 21 
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34 𝛼 160 126 

35   𝛼 79 141 

36   𝛼 37 119 

37  𝛼 113 220 

38    𝛼 67 145 

39  𝛼 106 248 

40 𝛼 210 217 

41 𝛼 224 175 

42   𝛼 119 102 

43   𝛼 221 188 

44   𝛼 156 198 

45   𝛼 242 108 

46   𝛼 252 8 

47   𝛼 32 172 

48   𝛼 235 13 

49   𝛼 213 53 

50   𝛼 246 226 

51   𝛼 135 84 

52   𝛼 22 12 

53   𝛼 42 49 

54   𝛼 12 90 

55   𝛼 140 148 

56   𝛼 62 244 

57   𝛼 227 223 

120 𝛼 186 152 

121 𝛼 125 29 

122 𝛼 192 112 

123 𝛼 200 101 

124 𝛼 148 78 

125 𝛼 197 187 

126     𝛼 95 34 

127 𝛼 174 140 

128     𝛼 7 200 

129 𝛼 150 171 

130     𝛼 71 30 

131 𝛼 217 72 

132 𝛼 124 58 

133 𝛼 199 202 

134 𝛼 196 7 

135 𝛼 173 105 

136 𝛼 162 167 

137 𝛼 97 176 

138 𝛼 54 246 

139  𝛼 101 11 

140     𝛼 81 127 

141 𝛼 176 35 

142 𝛼 168 255 

143     𝛼 88 71 

205    𝛼 91 194 

206 𝛼 103 230 

207 𝛼 29 164 

208 𝛼 24 3 

209 𝛼 25 25 

210 𝛼 83 251 

211 𝛼 26 228 

212 𝛼 44 80 

213 𝛼 84 197 

214  𝛼 178 236 

215 𝛼 27 114 

216 𝛼 14 174 

217 𝛼 45 40 

218   𝛼 170 219 

219 𝛼 85 218 

     220   𝛼 142 37 

     221   𝛼 179 118 

     222  𝛼 90 245 

     223 𝛼 28     57 

     224 𝛼 64     61 

     225     𝛼 249     64 

     226     𝛼 9     50 

     227   𝛼 144 85 

     228   𝛼 229 211 
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58   𝛼 131 132 

59   𝛼 75 203 

60   𝛼 185 65 

61   𝛼 191 224 

62   𝛼 147 156 

63   𝛼 94 68 

64   𝛼 6 225 

65   𝛼 70 60 

66   𝛼 123 116 

67   𝛼 195 14 

68   𝛼 161 63 

69   𝛼 53 157 

70   𝛼 80 254 

71   𝛼 167 143 

72   𝛼 38 131 

73   𝛼 109 31 

74   𝛼 114 110 

75   𝛼 203 154 

76   𝛼 68 240 

77   𝛼 51 150 

78   𝛼 107 124 

79   𝛼 49 186 

80   𝛼 211 212 

81   𝛼 40 196 

144     𝛼 39 249 

145 𝛼 188 38 

146 𝛼 110 183 

147 𝛼 239 243 

148 𝛼 115 55 

149 𝛼 127 91 

150 𝛼 204    77 

151 𝛼 17 241 

152 𝛼 69 120 

153 𝛼 194 28 

154     𝛼 52 75 

155 𝛼 166 111 

156 𝛼 108 62 

157 𝛼 202 69 

158     𝛼 50 93 

159     𝛼 48 5 

160 𝛼 212 106 

161 𝛼 134 168 

162     𝛼 41 98 

163 𝛼 139 89 

164 𝛼 226 207 

165     𝛼 74 231 

166 𝛼 190 177 

167     𝛼 93 136 

     229 𝛼 57 250 

     230   𝛼 152 206 

     231   𝛼 181 165 

     232  𝛼 133 33 

     233  𝛼 138 178 

     234    𝛼 73 191 

     235    𝛼 92 97 

     236    𝛼 77 214 

     237 𝛼 104 115 

     238 𝛼 219 18 

     239    𝛼 30 82 

     240 𝛼 187 76 

     241 𝛼 238 151 

     242 𝛼 126 182 

     243    𝛼 16 147 

     244 𝛼 193 56 

     245 𝛼 165 222 

     246 𝛼 201 138 

     247    𝛼 47 10 

     248 𝛼 149 39 

     249 𝛼 216 144 

     250 𝛼 198 229 

251 𝛼 172 210 

     252    𝛼 96 17 
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82   𝛼 225 239 

83   𝛼 189 19 

84 𝛼 120   51 

85 𝛼 111  227 

86 𝛼 222   94 

 

168 𝛼 121 161 

169   𝛼 78 107 

170       𝛼 112 201 

171       𝛼 105 129 

 

     253 𝛼 100 22 

254   𝛼 175     70 

255 𝛼 87    142 

 

 

Table 2: S-box 𝑆1 

  3 214  37  74 126   4  18  26 219  62  45 226  50 136 104 148 

154  38 200 199 185 228 170 245 177 114 137 231 139  35   8 134 

158  27 223 232  17 157 217  49  83 141 171  42  47 206  64 194 

106  29  30 110  14  40  72 236 105 221 202  87 241  41  11  71 

186  28 253 175  67  31  23  33  66 189 117 118  94 149 135 252 

235  43 124 125  90 229 204 215 218 100 101 249 243  54 173 166 

138 234 244 201 167  44 250  25  16 187 207 246 107 103 161  1 

183  99 179 240 129 123 188 193  20 143 155 174  7 220 213 239 

108  84 113 184   5  57 208 153  75 112 223 178 180 150  65  24 

224 248 102  89  70 111  59 172  95 131 198 163  93 164  55 209 

 86 132  6 225  51  79  53  34  97  48 197 142 182 210  91 247 

195  15 10 144  85  63 168 238 196 162  98  32 251 254 203 156 

 80 152 237  24 127  78 165  12  52 222 122  58 211  36 140 191 

216 146 109  96 147  73 116 190 128  68  56  77 115 160  19  92 

 69  2 192 121 145  21  76  61  60 181 133 151 159   0  88 205 

 13 230  22  82  39 119   9 255 120  46  81 212 227 130 176 169 

defined as; 
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 𝜎(𝑣) =
𝛼𝑣+𝛽

𝛾𝑣+𝛿
                                                                 (3.1) 

In Eq. (3.1), 𝜎 is known as a linear fractional transformation (LFT) with  𝛼, 𝛽,  𝛾  and 𝛿 ∈ 𝐺𝐹(28) 

satisfying the non-degeneracy condition 𝛼𝛿 − 𝛽𝛾 ≠ 0. The ease of implementation, lesser 

computational labour and high algebraic complexity of an LFT are the prime features that give the 

incentive to employ this map for byte substitution. For the presented calculations, in particular, we 

choose 𝛼 =  35, 𝛽 =  15, 𝛾 =  9 and  𝛿 =  5. 

Table 3: S-box 𝑆2 

198 214 241 163 130 165 217 127 179 123 111 197  43 141 237  3 

168 201    17 121 142 101 232 174  11 249  16 156  10  50 183 65 

 72 184 200 132  58  47  27 159 231 189   8  18 206 194 177  31 

193  92 122 192  85 137 243  49 178 170  36 135 230  95 100 128 

 13 109 227  0 224 144 208  78 173  32 139 234 107  82 172  81 

 51 233  12 154  94 161 244  55  7  34 251 225 153  93 254 138 

102 240 115 242 110 134 124  79 157 160  90 238  73  53 169 250 

136 118 112  48  40 114  22 246  46 131  23  69  52 235 248  2 

116  91 117  26 166  25 219  59  54 229 120 245  89 185  99 226 

105  45  60 199 164 191 228 202  37 104 143 209 220 147  44 186 

145 125 203  29  38  41 215 108  64  88 119  74 213  96 211  83 

218 146 196 205  67 152 129 175  84 158 207 176  80  62 150  86 

 57 155 195 216  75  19  1  87  33  68  71 236 239 255  35 212 

148 188 133  15 204 187 42 182  97  56  24 221 252  30  77 181 

  4 247 167  21  9 222 180 190 151 140  39 171  14 126  66 253 

103 223 70  98 28  20 63 162  61 113 149 210 106   5   6  76 
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The images of the map 𝜎, when applied on 𝔽1 and 𝔽2 produce our S-boxes 𝑆1 and 𝑆2 respectively, 

as shown in Table 2 and 3 respectively. 

3.4. Performance Analysis of S-boxes 

The cryptographic strength of the S-boxes, generated in the foregoing section, is examined through 

nonlinearity, strict avalanche, bit independence, linear and differential approximation probabilities 

etc. 

As it is mentioned before, non-linearity criterion outlines the total number of bits that must be 

altered in the truth table of a Boolean function to get close to the nearby affine function [40]. Table 

4 shows that for 𝑆1, the average nonlinearity measure is 112., which is the highest Fig. attained by 

the AES S- box. Fig. 1 shows the comparison which clearly depicts outstanding performance of 

𝑆1 as compared to 𝑆2. 

          

Fig. 1: Nonlinearity of different S-boxes 

 

 

0.492

0.494

0.496

0.498

0.5

0.502

0.504

0.506

0.508

AES S1 S2



  

 54  
 

Table 4: Performance Indices for new S-box 

Analysis Max. Min. Average Square 

deviation 

DP LP 

Nonlinearity 113 111 112    

SAC 0.546875 0.429688 0.498291 0.0157537   

BIC  111 111.751 0.6227    

DP     0.015625  

LP      0.064063 

Numerical outcomes presented in Table 5 and compared in Fig. 2 show that the linear 

approximation probability of 𝑆1 is much better than 𝑆2. 

For further analysis, we utilize the differential approximation probability that gives the differential 

uniformity established by an S-box.  

Table 5: Comparison of performance indices for various S-boxes 

S-box Nonlinearity SAC BIC DP LP 

AES 112 0.5058 112 0.0156 0.062 

 𝑆1 112 0.498291 111.751 0.015625 0.064063 

𝑆2 105.5 0.507 106 0.0242 0.140 
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Fig. 2: LP of different S-boxes 

Table 5 and Fig. 3 show that in terms of the differential approximation probability 𝑆1 is much 

stronger than 𝑆2 

An S-box is said to fulfil strict avalanche criterion if for a change in an input bit, the probability 

of change in the output bit is 1/2. The outcomes are given in Table 5 and Fig. 4.  

 

Fig. 3: DP of different S-boxes 
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Fig. 4: SAC of different S-boxes 

In BIC, input bits are transformed exclusively, and then output results are scrutinized for their 

independency [22]. The numerical results of BIC when applied to the proposed S-box are given in 

Table 5 and are compared in Fig. 5. It can be observed that according to these results our S-box 𝑆1 

is pretty like the AES S-box and is much better than 𝑆2. 

 

Fig. 5: BIC of different S-boxes 
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One can observe that overall performance of 𝑆1 is much better than that of 𝑆2. The performance 

parameters for 𝑆1 seem to be pretty close to that of AES S-box. The algorithm used for both 𝑆1 

and 𝑆2 is same but the primitive polynomial selected to generate the Galois field is different, which 

really contributes to the outputs. 

The kernel of the presented work lies in the fact that the choice of the background Galois field and 

its generating primitive polynomial matters to the function and performance of the S-boxes. This 

fact leads to the fascinating idea that rather the development of new algorithms, the improvement 

of the existing algorithms is worth-studying as its least laborious but most effective. We propose, 

based on the example discussed, that the effect of the choice of generating polynomial may lead 

to an intensive research in future to modify the design models of S-boxes. In the next chapter, a 

new method for construction of S-boxes based on chaotic tent-sine map is proposed. 
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Chapter 4 

Chaos Based Construction of S-Box 

Over the last few decades, different mediums of secure communication use chaos which is 

demonstrated by some nonlinear dynamical systems. Chaos shows unpredictable behavior and this 

characteristic is quite helpful in different encryption techniques and for multimedia security. In 

this work, the chaotic behavior of the tent-sine map is discussed and a new method to make a S-

Boxes is proposed. Moreover, S-box is evaluated with the help of certain algebraic tests which 

include nonlinearity, bit independence criterion, strict avalanche criterion, linear approximation 

probability and differential approximation probability. In addition to this, proposed S-box shows 

very good statistical properties like correlation, Homogeneity, energy, entropy, contrast, PSNR 

and MSE. The comparison of proposed S-box with some of privileged S-boxes, like AES, gray, 

APA S8 and Lui J depict the strong point of anticipated technique. 

4.1. Introduction 

The value and capability of producing confusion are measured by variations in output bit pattern. 

The selected S-box must be robust and shows opposition against any attempt of cryptanalysis. 

Nonlinearity is considered as a foremost performing criterion of the S-box in any encryption 

method. Over the years, researchers are keen to get algebraically strong and cryptographically 

robust S-boxes. In addition to this, chaos-based S-boxes also have their importance for secure 

communication of data. These S-boxes exhibit different striking properties and offer interesting 

results to various ciphers.[41]. 
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S-box holds one to one and onto relations which makes it a bijection mapping and hence its inverse 

is possible. A text symbol is replaced with one element of S-box. By elaborating equation (4.1), a 

× b S-box takes a bit as the input and gives b bits as the output. It can be seen as 

𝑦1 =  𝑦2 ⇒  𝑓 (𝑦1)  =  𝑓 (𝑦2)                                                   (4.1) 

Some of the privileged S-boxes are AES, [42], gray [26], Lui J [43] and S8 [44]. In this work, the 

proposed technique for the synthesis of S-box is using a different chaotic maps to improve their 

chaotic range. Moreover, the group action of a projective general linear group is performed on the 

elements of GF (28). The distinct 256 values of our anticipated S-box are then compared with 

some of the existing S-boxes 

4.2. Review of Various Chaotic Maps 

In the past, various chaotic maps are applied for encryption schemes and for multimedia security. 

The background of Tent map and sine map is discussed in this section. By the combination of these 

two maps a Tent-Sine system (TSS) is formed which gives new chaotic S-box. 

4.2.1. Chaotic Tent Map 

It is obvious from bifurcation diagram of chaotic tent map; the map name is due to its tent map 

like shape. The interval of chaotic behavior of tent map is [2, 4]. The Lyapunov Exponent and 

bifurcation diagrams are shown in fig 1(a). It can be expressed as: 

                    𝑦𝑛+1 = {
𝜏

𝑦𝑛

2
                    𝑧𝑖 < 1/2

𝜏(1−𝑦𝑛)

2
               𝑧𝑖 > 1/2

      0 <  𝜏 ≤  4; 𝑦𝑛  ∈  [0, 1]                             (4.2) 

The behavior of tent map is chaotic and uniform for the specific interval as depicted in bifurcation 

and Lyapunov Exponent diagrams. It shows the limitations of this chaotic map. 
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4.2.2. Chaotic Sine Map 

The behavior of Logistic map and Sine map is similar to each other. This can be seen in both 

bifurcation and Lyapunov Exponent diagrams of sine map. Fig 1(b) describes the sine map 

graphical interpretation. It can be expressed as:  

                                            𝑦𝑛+1  =
𝜎𝑠𝑖𝑛(𝜋𝑦𝑛)

4
, 0 <  𝜎 ≤  4; 𝑦𝑛  ∈  [0, 1]                 (4.3) 

As both maps have identical behavior so they have the common problems as well. The range of 

chaos in sine map is limited as depicted in bifurcation diagram. Moreover, the non-uniformity of 

data combine with limited chaotic range makes application of sine map limited. 

4.2.3. Chaotic Tent-Sine System 

As the chaotic range of both tent map and sine map is limited so there is a demands of a chaotic 

map whose chaotic range is much greater as compared to two seed maps. A unique nonlinear 

combination of tent map and sine map give a chaotic Tent-Sine system (TSS). This arrangement 

of chaotic maps shows brilliant complex chaotic properties. The output range of data remains in 

interval [0, 1] due to mod 1 operator. The assimilation of parameters of both chaotic maps, the 

mathematical expression will take a form 

𝑦𝑛+1 = {

( 𝜎
𝑦𝑛

2
+ (4 − 𝑟)sin (𝜋𝑦𝑛)/4)𝑚𝑜𝑑1                                    𝑧𝑖 < 1/2

( 𝜎 (1 − 𝑦𝑛)/2 + (4 − 𝑟)sin (𝜋𝑦𝑛)/4)𝑚𝑜𝑑1                    𝑧𝑖 > 1/2

      (4.4) 

where  0 <  𝜎 ≤  4. The chaotic range of Tent-Sine system is increased remarkably well and the 

output sequences are distributed uniformly which can be seen in Fig 1(c).  
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      (a)                       (b)            (c) 

       

      

Fig. 1. Lyapunov and bifurcation diagrams of (a) Tent, (b) Sine and (c) TSS 

4.3. Construction of chaotic S-box using Mobius Transformation 

The careful selection of S-box provides support to confront any linear and differential 

cryptanalysis. With a higher chaotic range and complex properties, Tent-Sine system is considered 

for the structuring of proposed S-boxes. The flow chart given in fig 2 indicates that the primary 

input for the structure of S-box is taken from chaotic Tent-Sine map. 

The mathematical foundation of the scheme is defined by using the concept of group action of a 

projective general linear group (linear fractional transformation) over a finite field (28). The choice 

of four random values, allocated to linear fractional transformation is selected from the chaotic 

Tent-Sine system. Further, we can explain it as: 
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𝑔: 𝑃𝐺𝐿(2, 𝐺𝐹(28)) × 𝐺𝐹(28) → 𝐺𝐹(28) 

                                  𝑔(𝑚) =    
𝑖𝑥+𝑗

𝑘𝑥+𝑙
, 0 ≤  𝑚 ≤  255                                                (4.5) 

start

y(n+1) = (4-r)

Sin(πyn) + ryn(1  yn)

y1,y2,y3,y4

q=floor y1*256
r=floor y2*256
s=floor y3*256
t=floor y4*256

Loop t=0 to 255, Loop s=0 to 255
Loop r=0 to 255, Loop q=0 to 255

Int q, r, s, t for
gf(q,r,s,t,8)

If q*t-r*s   0 

Yes Loop m = 0 to 255

Int m for gf(z,8)

If s*m+t   0
Yes

H =(q*m + r)/( s*m + t) H1=hex(H)

m = m + 1
t = t + 1, s = s + 1
r = r + 1, q = q + 1

Stop

No

No

 

Fig. 2. Algorithm for the construction of proposed S-box 

where, finite field (28).provides  four chaotic values 𝑖, 𝑗 , 𝑘 and 𝑙. The products of this new scheme 

provide new chaotic S-box and values are given in Table 1. The algorithm depicts that loop applied 

in it takes values of 𝑖, 𝑗, 𝑘, 𝑙 and 𝑚 from interval 0-255. 

4.3.1. Proposed S-boxes 

S-boxes are constructed by using various powers of chaotic TSS. The detailed description of the 

map relates to first S-box is specified in equation (4.4) and the maps of rest of the four S-boxes 

are given in equations (4.6) to (4.9). The exponent in the equation of TSS is used as a parameter. 

The tabular form of proposed chaotic S-boxes is given in Tables (1) to (5). 

𝑦𝑛+1 = {

( 𝜎
𝑦𝑛

2
+ (4 − 𝑟)sin (𝜋𝑦𝑛

8
9⁄ )/4)𝑚𝑜𝑑1                                    𝑧𝑖 < 1/2

( 𝜎 (1 − 𝑦𝑛)/2 + (4 − 𝑟)sin (𝜋𝑦𝑛
8

9⁄ )/4) 𝑚𝑜𝑑1                    𝑧𝑖 > 1/2

       (4.6) 
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𝑦𝑛+1 = {

( 𝜎
𝑦𝑛

2
+ (4 − 𝑟)sin (𝜋𝑦𝑛

4
5⁄ )/4)𝑚𝑜𝑑1                                    𝑧𝑖 < 1/2

( 𝜎 (1 − 𝑦𝑛)/2 + (4 − 𝑟)sin (𝜋𝑦𝑛
4

5⁄ )/4) 𝑚𝑜𝑑1                    𝑧𝑖 > 1/2

       (4.7) 

Table 1. Chaotic S-box corresponds to the TSS by equation (6), 𝛽 = 1 

83 27 78 85 30 124 26 239 153 109 48 57 154 38 191 46 

118 7 73 230 201 213 94 144 41 250 216 9 242 121 101 127 

50 63 234 252 126 199 174 225 217 52 21 233 86 88 135 3 

106 180 238 223 18 214 28 95 205 227 240 162 105 37 49 131 

31 29 237 114 155 65 96 139 246 173 198 147 67 54 138 120 

12 80 68 241 167 145 132 210 99 158 89 22 11 192 134 149 

218 79 181 71 219 8 69 60 87 248 91 133 34 90 39 32 

130 251 16 245 76 122 156 108 171 159 23 228 254 110 44 142 

19 169 148 189 58 6 35 123 72 200 194 36 222 116 64 186 

232 10 17 188 236 202 14 168 229 176 2 212 4 129 74 42 

215 195 104 207 221 92 5 235 77 208 47 187 20 119 193 197 

226 220 166 163 255 141 182 128 93 211 102 66 125 62 61 33 

97 253 179 175 40 164 70 185 151 25 112 137 157 177 13 165 

247 55 56 84 24 161 15 51 117 231 190 244 146 152 206 209 

150 1 53 0 45 172 178 81 59 111 82 249 98 203 224 183 

113 243 43 75 143 196 115 160 136 170 103 204 140 107 100 184 
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Table 2. Chaotic S-box corresponds to the TSS by equation (8), 𝛽 = 8/9 

112 80 53 200 68 242 11 3 72 46 89 136 114 224 78 166 

174 120 176 65 73 163                                204 95 30 23 107 197 32 217 128 215 

1 214 33 6 154 180 75 158 143 173 169 161 185 116 92 0 

164 12 115 137 221 245 19 51 44 8 195 59 181 142 160 41 

237 190 110 189 29 35 213 129 148 127 24 18 208 171 56 119 

252 134 186 126 232 183 109 246 162 25 203 222 34 211 27 111 

170 60 2 202 98 206 64 133 177 130 225 22 250 233 251 228 

49 104 71 238 201 149 90 152 105 150 20 97 184 47 94 255 

223 52 199 118 66 48 147 17 145 124 74 153 231 240 132 117 

40 39 139 36 7 81 212 103 155 101 219 187 102 62 21 113 

125 144 249 106 196 121 167 83 168 138 209 227 151 10 191 37 

188 63 100 69 77 254 179 84 178 57 247 239 15 28 135 220 

205 216 198 42 175 13 5 9 244 50 79 182 141 165 58 243 

207 96 193 76 31 99 146 226 87 70 93 234 194 236 253 230 

218 159 55 235 122 14 4 16 229 248 241 88 38 192 157 61 

43 131 156 67 26 45 172 108 91 140 85 82 123 86 210 54 

Exponents used for the construction of these S-boxes are written with tables. Fig. 1 (c) give the 

bifurcation and Lyapunov diagram of TSS. The bifurcation diagrams of S-boxes having different 

exponents are shown in Fig. 3. 

  𝑦𝑛+1 = {

( 𝜎
𝑦𝑛

2
+ (4 − 𝑟)sin (𝜋𝑦𝑛

6
7⁄ )/4)𝑚𝑜𝑑1                                    𝑧𝑖 < 1/2

( 𝜎 (1 − 𝑦𝑛)/2 + (4 − 𝑟)sin (𝜋𝑦𝑛
6

7⁄ )/4) 𝑚𝑜𝑑1                    𝑧𝑖 > 1/2

            (4.8) 
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Table 3. Chaotic S-box corresponds to the TSS by equation (9), 𝛽 = 4/5 

51 188 63 187 122 179 183 101 24 1 55 147 254 111 211 62 

226 66 225 189 250 169 39 120 213 108 82 215 204 84 58 96 

95 253 75 22 30 159 127 228 28 85 117 121 57 232 25 13 

4 103 19 99 136 78 5 202 7 10 64 114 243 23 90 61 

129 67 148 138 139 182 170 80 42 155 110 91 145 115 151 68 

43 105 0 245 16 252 89 171 178 227 222 153 162 164 168 231 

104 247 210 251 35 165 27 69 37 249 2 191 40 156 207 208 

41 83 32 199 74 205 152 125 220 94 234 17 8 255 123 106 

229 132 11 244 175 79 36 15 100 87 190 157 52 173 137 59 

48 65 167 236 18 146 72 192 38 246 216 12 238 174 131 235 

112 26 154 130 161 6 20 172 98 107 212 50 73 77 116 185 

119 224 31 181 197 109 166 209 180 46 124 242 53 186 214 128 

218 184 21 150 140 86 92 102 240 237 60 143 163 221 195 194 

56 158 93 54 160 3 126 134 49 29 47 217 70 97 141 206 

113 248 200 9 177 233 198 76 203 142 71 241 230 45 144 239 

196 81 193 133 223 118 34 176 33 201 149 135 88 44 219 14 

 

Fig. 3. Bifurcation diagrams for the expressions given in (a) Equ.(4.6), (b) Equ.(4.7), (c) 

Equ.(4.8), (a) Equ.(4.9). 
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                    𝑦𝑛+1 = {

( 𝜎
𝑦𝑛

2
+ (4 − 𝑟)sin (𝜋𝑦𝑛

10
9⁄ )/4)𝑚𝑜𝑑1                       𝑧𝑖 < 1/2

( 𝜎 (1 − 𝑦𝑛)/2 + (4 − 𝑟)sin (𝜋𝑦𝑛
10

9⁄ )/4) 𝑚𝑜𝑑1    𝑧𝑖 > 1/2

              (4.9) 

Table 4. Chaotic S-box corresponds to the TSS by equation (10), 𝛽 = 6/7 

232 166 125 1 10 184 148 152 143 192 196 237 118 208 204 7 

211 36 223 173 44 156 239 108 3 12 112 134 210 115 214 76 

249 142 60 104 67 0 102 128 56 171 114 121 73 93 22 14 

250 219 97 172 50 207 254 47 199 151 34 203 99 225 24 11 

244 246 113 18 58 64 168 52 187 96 138 15 19 130 202 127 

234 154 123 53 227 215 139 31 61 98 33 157 101 40 158 229 

235 169 253 9 178 92 120 82 129 20 65 163 85 245 39 160 

141 212 135 54 68 186 13 221 57 6 147 78 165 35 21 194 

80 79 81 41 176 226 137 87 133 161 164 195 198 200 62 136 

8 149 77 48 122 174 222 117 109 231 188 177 159 89 51 30 

`233 100 205 4 181 119 32 182 243 86 71 213 209 185 45 75 

106 111 220 228 124 90 251 72 91 17 224 230 59 94 206 43 

247 23 216 238 74 162 144 16 193 183 28 201 170 37 167 84 

189 69 150 105 236 131 83 255 155 179 29 242 95 140 153 145 

110 240 88 116 107 146 63 252 26 42 197 103 46 27 66 126 

241 132 25 217 5 175 70 180 248 190 218 2 38 55 191 49 

4.4. Analysis of S-boxes 

The assessment of S-box defines its utilization in any cryptosystem and for multimedia security 

[45] For this purpose, different theoretic and statistical approaches are being utilized to evaluate 

the characteristics of S-boxes [46]. A comprehensive demonstration of such techniques, involving 

differential properties of the block cipher is explained in [17]. This category of cryptanalysis is 
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used in DES algorithm, multiple ciphers and on different S-boxes. The cipher can be scrutinized 

by using information theory approach [46]. Different tests like the evaluation of nonlinearity, a 

scheme of input and output bits (strict avalanche criterion and bit independence criterion) that give 

features and connection of input and output bits and approximation probability (linear and 

differential approximation probabilities) which give the probability of events and differential 

uniformity to get an iterative method. 

Table 5. Chaotic S-box corresponds to the TSS by equation (11), 𝛽 = 10/9 

51 244 119 243 122 179 183 45 80 1 55 147 254 111 155 118 

170 10 169 245 250 225 39 120 157 108 26 159 204 28 114 40 

95 253 75 22 86 215 127 172 84 29 61 121 113 232 81 69 

4 47 19 43 192 78 5 202 7 66 8 58 187 23 90 117 

129 11 148 194 195 182 226 24 98 211 110 91 145 59 151 12 

99 105 0 189 16 252 89 227 178 171 222 209 162 164 224 175 

104 191 154 251 35 165 83 13 37 249 2 247 96 212 207 152 

97 27 32 143 74 205 208 125 220 94 234 17 64 255 123 106 

173 132 67 188 231 79 36 71 44 31 246 213 52 229 193 115 

48 9 167 236 18 146 72 136 38 190 216 68 238 230 131 235 

56 82 210 130 161 6 20 228 42 107 156 50 73 77 60 241 

63 168 87 181 141 109 166 153 180 102 124 186 53 242 158 128 

218 240 21 150 196 30 92 46 184 237 116 199 163 221 139 138 

112 214 93 54 160 3 126 134 49 85 103 217 14 41 197 206 

57 248 200 65 177 233 142 76 203 198 15 185 174 101 144 239 

140 25 137 133 223 62 34 176 33 201 149 135 88 100 219 70 

Table 6 represents the nonlinearity of new S-boxes and other reputed S-boxes. The tables of S-

boxes made by an upgraded range of chaotic maps and group action of a projective general linear 
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group is given in Tables 1, 2, 3, 4, 5. Moreover, the results of bit independence criterion, strict 

avalanche criterion, linear approximation probability and differential approximation probability 

are also calculated. 

Table 6. Nonlinearity of proposed and well-known S-boxes 

S-boxes 0 1 2 3 4 5 6 7 Ave 

S-box-1 108 106 108 110 110 108 104 100 106.75 

S-box-2 108 106 108 104 104 104 108 104 105.75 

S-box-3 112 112 112 112 112 112 112 112 112 

S-box-4 112 112 112 112 112 112 112 112 112 

S-box-5 112 112 112 112 112 112 112 112 112 

S8 AES 112 112 112 112 112 112 112 112 112 

Jakimoski[4] 98 100 100 104 104 106 106 108 103.2 

Tang[5] 100 103 104 104 105 105 106 109 104.5 

Gray 112 112 112 112 112 112 112 112 112 

Prime 94 100 104 104 102 100 98 94 99.5 

Chen[6] 100 102 103 104 106 106 106 108 104.3 

Skipjack 104 108 108 108 108 104 104 106 105.75 

Wang [7] 104 106 106 102 102 104 104 102 103.7 

APA 112 112 112 112 112 112 112 112 112 

AES 112 112 112 112 112 112 112 112 112 

Xyi 106 104 106 106 104 106 104 106 105 

Moreover, the results of strict avalanche criterion, bit independence criterion, linear and 

differential approximation probabilities are depicted in Table 7. 
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Table 7. Results of algebraic analysis for the proposed S-boxes 

S-box BIC SAC BIC/SAC DP LP 

S-box-1 106.286 0.500 0.500 0.1171 158/0.125 

S-box-2 103.429 0.492 0.505 0.0391 162/0.133 

S-box-3 112 0.504 0.504 0.0156 144/0.0625 

S-box-4 112 0.504 0.504 0.0156 144/0.0625 

S-box-5 112 0.504 0.504 0.0156 144/0.0625 

4.5. Simulation Results and Statistical Analysis 

The encryption quality of the S-box is analyzed by substituting the pepper image with five different 

proposed S-boxes.  

Table 8. Comparison of Majority Logic Criterion results 

Images Contrast Correlation Entropy Energy Homogeneity 

Plain Text 0.2668 0.9365 7.5498 0.1477 0.9191 

Proposed I 8.4388 0.0167 7.9876 0.0175 0.4152 

Proposed II 8.5848 0.0056 7.9814 0.0174 0.4119 

Proposed III 8.6736 0.0101 7.9829 0.0173 0.4104 

Proposed IV 8.7232 0.0159 7.9767 0.0170 0.4121 

Proposed V 8.4380 0.0275 7.9749 0.0175 0.4170 

AES 7.5509 0.0554 7.2531 0.0202 0.4662 

APA 8.1195 0.1473 7.2531 0.0183 0.4676 

Prime  7.6236 0.0855 7.2531 0.0202 0.4640 

S8_AES 7.4852 0.1235 7.2357 0.0208 0.4707 

Gray 7.5283 0.0586 7.2531 0.0203 0.4623 

Xyi 8.3108 0.0417 7.2531 0.0196 0.4533 

Skipjack 7.7058 0.1025 7.2531 0.0193 0.4689 
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Fig 4 gives the pictorial representation of the host and encrypted images. In addition to this, the 

results of histogram of the host and encrypted images is given in Fig. 5. The different analyses are 

performed to assess the S-box for encryption techniques and multimedia security purposes. The 

comparison of the results of these analyses for proposed technique with some of the existing S-

boxes which include S8, AES, gray, APA, Lui J and is given in Table 2. The outcomes of our 

proposed technique are quite better as compared to existing techniques. 

  Plaintext Image  S-box I    S-box II 

            

             S-box III   S-box IV   S-box V 

                

 Fig. 4. Pepper image and its two rounds encrypted images with chaotic S-boxes  
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   Plaintext     S-box I     S-box I 

 

   S-box III      S-box IV      S-box V 

 

Fig. 5. Histograms of images known in Fig. 4. 

In this chapter, the chaotic tent-sine system is applied for the structure of different S-boxes. The 

linear fractional transformation is used on random values of the chaotic map and provides 256 

different values of S-box. The randomness produced with the inclusion of chaos not only increases 

the unpredictability of the cipher but also helps to resist any attempt of cryptanalysis. The chaotic 

S-box based frequency domain watermarking technique is presented in chapter 5. The issue of 

robustness is addressed by using chaos and frequency domain. 
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Chapter 5 

A Watermarking Technique with Chaotic S-Box 

Transformation 

In this chapter, the system of non-linear ordinary differential equations which describes a 

continuous-time dynamical system are applied to develop chaotic S-box. In this new digital 

watermarking technique, robustness problem is addressed by using chaos and frequency domain. 

In frequency domain watermarking, watermark is embedded into the low or middle frequencies 

which help to spread changes all over the image. Moreover, the fractional S-box is assessed by 

using algebraic and statistical analyses. In addition to this, some security analyses are done for the 

strength of proposed watermarking scheme. The confidence measure suggests the resistance of 

proposed technique against malicious attacks like noise, cropping and compression 

5.1.  

5.2. Introduction 

In this proposed technique, S-box is constructed and employed for a new digital watermarking 

technique using frequency domain. Diffusion and confusion are the features of cryptographic 

structures and chaotic sequences. The unarranged behavior exhibited by non-linear dynamical 

systems may be considered as a basis of diffusion [41]. Chaotic communication which uses chaos 

theory having a feature of unpredictability planned to give security in the communication of data 

attained through broadcasting tools. The S-boxes is one of the applications of chaotic systems in 
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block cryptosystems and an application of chaotic cryptology [47]. The chaotic systems approach 

to utilize uncertainty makes it a striking choice in generating mix-up and additional in execution 

nonlinear alterations among various approaches to uncertainty. 

Certain examples of chaotic maps constructed block ciphers are revealed in literature. Resistance 

to cryptanalysis is mainly due to chaotic maps for generation of strong block ciphers. We may use 

diverse types of chaotic maps to develop strong block cipher [48]. Three-dimensional baker’s maps 

and heuristic approach for S-box is being used by Chen et. al. [49]. The idea to use the chaotic 

differential equation for generating the S-boxes is proposed by Özkaynak et al. and Khan et al 

[50]. The chaotic algorithms have shown numerous benefits like reasonable computational 

overheads, speed, computational power over the conventional algorithms and high security.  

For the last three decades, different techniques for watermarking are developed and categorized 

into two main types named as spatial domain [51] and frequency domain techniques. In the first 

technique, the process of watermarking replaces the pixels of the host image with the watermark 

image. However, in the later technique, the watermark is embedded into the coefficients values of 

the host image. The main feature of both these techniques is to provide digital data the integrity, 

authentication, copyright protection, broadcast monitoring and most important robustness against 

malicious attacks [52]. In this proposed algorithm, strong cryptographic properties of fractional 

chaotic Rössler system help us to generate a S-box having the ability to create confusion and 

capability of adding randomness [53], we employed this chaotic S-box to propose a novel 

watermarking technique which embed watermark by using discrete Fourier cosine transform. 

Simulation results statistical analysis for host and watermark image depict good results. The 

robustness of proposed algorithm is analyzed by several image processing operations. 
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5.3. Mathematical Model of Chaotic System 

Rössler was motivated by the geometry of flows in dimension three and, specifically, by the 

reinjection principle, which consists of relaxation-type systems to often present a Z-shaped slow 

manifold in their phase space. In dimension three, the reinjection can persuade chaotic behavior if 

the motion is spiraling out on one branch of the slow manifold. In this way, Rössler invented a 

series of systems which is applied for construction of chaotic system [54]. Mathematically, system 

of differential equations can be represented as|: 

𝑑𝑥

𝑑𝑡
=  −𝑦 − 𝑧 

𝑑𝑦

𝑑𝑡
=  𝑥 + 𝑎𝑦                                                                   (5. 1) 

𝑑𝑧

𝑑𝑡
=  𝑏 − 𝑐𝑧 + 𝑧𝑥 

This dynamical system is basically for creating confusion in the plaintext to accomplish secure 

transmission. Comparatively, Rössler system and Lorenz attractor produce chaotic attractor with 

a single lobe and two lobes respectively.. The chaotic behavior of Rössler system is depicted in 

Fig. 1. In Eq. (1), three variables (𝑥, 𝑦, 𝑧) that develop in the continuous time t and having three 

parameters (a, b, c). Figs 2, 3 and 4 represent the graphs of x, y and z variables of Rossler system, 

respectively. Initial conditions are given as: 

𝑥(0) = 𝑥𝑜 , 𝑦(0) = 𝑦𝑜 , 𝑧(0) = 𝑧𝑜 

where 𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜 are constants. 
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Fig. 1: The Rössler system with values of parameters                   Fig. 2: The Rössler system for 𝒙 along t-axis for  

                          a=0.1, b=0.1, c=14.       a=0.1, b=0.1, c=14. 

 

 

 

  

 

 

Fig. 3: The Rössler system for y along t-axis for                    Fig. 4: The Rössler system for z along t-axis for a=0.1, a= 0.1, 

b=0.1, c=14.                                                                                        b=0.1, c=14. 

The space plots obtained from the equations represented in (1) are given in Fig.s 1, 2, 3 and 4. 

Here the parameters are a=0.1, b=0.1 and c=14. The intervals range in the state of the system are 

0 ≤  𝑥 ≤ 1600, 0 ≤  𝑦 ≤ 1600 and 0 ≤  𝑧 ≤ 1600. The Rossler system shows chaotic 

performance for the particular parameters and intervals. 
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5.4. Construction of Fractional Chaotic S-box and Watermarking 

Algorithm 

In Fig. 5 the algorithm of the chaos based S-box design and watermarking by using frequency 

domain is presented. In symmetric key cryptography, S-box is counted as one of the basic 

components. In all-purpose, an S-box takes 𝑝 input bits and convert them into 𝑞 output bits. We 

say it as 𝑝 ×  𝑞 S-box and is shown in Table 1. These S-boxes are vigilantly selected to defend 

against linear and differential cryptanalysis. The outcome of Rössler’s system creates the 

trajectories and dimension of the system indicate the total number of orbits. The sensitivity of 

initial conditions is of great importance to produce chaos. MATLAB is operated to get the solution 

of the chaotic system equations. In order to construct the fractional S-box which alternate 8 bits of 

data, every trajectory is sampled at 8-bit resolution and in this way, we achieve 256 different values 

whose range is from 0 to 255. Table 1 represents the values of S-box attained by the proposed 

fractional system. The behavior of chaotic trajectories of the Rössler system in 𝒙𝒚 plane is depicted 

in Fig. 1. By making codes in Matlab the answers of S-box are achieved from the preferred 

trajectories having specific initial conditions. As we know, the dynamical systems sensitivity to 

initial conditions, we selected conditions with immense effort to get chaos. The trajectories are 

attained from 1000 data samples. By substituting watermark image values with the help of chaotic 

fractional S-box we obtain the altered watermark image. Now to embed altered watermark image 

in host image we have options in the form of spatial and frequency domain. Because of not as 

much of robustness ability of spatial domain against dissimilar attacks it may not be capable to 

protect image processing attacks although it has the capacity of hiding data around 6.25%.  

 

 



  

 77  
 

Table 1: S-box obtained with the help of chaotic fractional S-box 

224 25 191 122 65 3 219 61 12 134 157 26 149 39 181 229 

216 18 186 118 62 28 158 150 179 58 139 127 30 235 29 99 

208 11 182 115 56 80 209 87 9 20 121 21 199 123 6 100 

201 5 177 112 53 197 55 1 225 239 117 188 10 97 174 204 

194 254 173 108 51 228 109 222 147 203 113 232 27 24 43 178 

167 248 169 105 49 4 163 183 32 166 116 67 85 176 120 7 

144 242 164 101 47 37 217 142 250 131 119 211 255 82 227 143 

124 237 160 98 45 141 14 75 212 61 136 213 90 40 244 170 

107 231 156 94 44 253 72 2 135 218 145 13 19 15 187 153 

93 226 152 91 60 36 185 180 95 155 165 233 38 54 175 104 

81 220 148 88 79 76 240 96 17 238 221 42 241 128 151 193 

69 215 140 84 92 202 48 16 234 162 0 172 70 190 130 243 

59 210 137 78 103 246 110 189 154 138 63 245 46 223 64 8 

50 205 133 74 195 34 132 146 114 206 86 247 23 73 106 77 

41 200 129 71 214 125 52 102 35 192 111 89 184 230 83 207 

33 196 126 68 236 171 159 57 252 168 251 22 66 31 249 198 

On contrary, in the spectrum- (or frequency) domain watermarks are inserted in coefficients of the 

transformed image. We have the options of discrete Fourier transform (DFT) discrete cosine 

transform (DCT), discrete wavelet transform (DWT) and so on. The embedding scheme of 

watermarking into the low or middle frequencies, the whole image examines the change due to all 

over the allocation of the watermark as greater part of the energy lies in the low-frequency 

components. Here, we will apply discrete Fourier transform on the host image and then embed the 

watermark in the frequency coefficients of the image. 
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5.4.1. Discrete Fourier Transform 

An image is counted as a spatially varying function which is decomposed into orthogonal functions 

with the help of Fourier transform so spatial intensity image may transform into the frequency 

domain. For phase modulation between watermark image and its carrier, we may use discrete 

Fourier transform (DFT) visual effect along with robustness against noise attack. Mathematically, 

the pair of equations (5.2) and (5.3) given below represents DFT and inverse DFT respectively. 

𝐹(𝑢, 𝑣) =
1

𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝑒𝑥𝑝 [−𝑗2𝜋 (

𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)] 

𝑁−1

𝑦=0

𝑀−1

𝑋=0

                                           (5.2)  

                  𝑓(𝑥, 𝑦) = ∑ ∑ 𝐹(𝑢, 𝑣)𝑒𝑥𝑝 [𝑗2𝜋 (
𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)]

𝑁−1

𝑣=0

𝑀−1

𝑢=0

                                                         (5.3) 

Where 𝐹(𝑢, 𝑣) and 𝑓(𝑥, 𝑦) are named as Fourier transform pair. 

Algorithm 

A.1: By using initial conditions and chaotic parameters, S-box is obtained from the solution of the 

Rössler system by mapping each output of x values of numerical solutions in the range from 0 to 

255. 

A.2: From the values of watermark image pixels, we generate the indices of the S-box.  Values 

from these indices location are replaced with corresponding original values of image pixels. 

 A.3: The chaotic y-sequence of Rössler system identify the embedding positions of S-box  
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Fig. 5 Flow chart of algorithm 

substituted watermark into frequency coefficients (obtained by discrete Fourier transform) of the 

Host image. 

A.4: Lastly, the watermark image is attained by using inverse Fourier transform. 



  

 80  
 

5.5. Analysis of S-box 

The evaluation of fractional S-box evaluates its efficiency and strength [55], [56]. We analyze 

proposed chaotic system generated with the help of Rössler system in section 3. Among different 

available tests, we selected nonlinearity, strict avalanche criterion, bit independence criterion 

(BIC), linear approximation probability (LP), and differential approximation probability (DP). 

Different results indicate that the S-box approximately fulfill all the parameters near to optimal 

values. 

The avalanche effect is viewed if more or less half output bits have changed results due to single 

input deviation and owing to this output bits transform the entire substitution-permutation system 

view the series of variations [57]. The outcomes of the strict avalanche criterion are shown in Table 

2. 

Table 2 Strict avalanche criterion analysis of chaotic fractional S-box 

0.5078 0.5234 0.5000 0.5078 0.4609 0.5000 0.5000 0.5313 

0.5000 0.5234 0.4766 0.5078 0.5000 0.5000 0.5313 0.4688 

0.5000 0.5234 0.5000 0.5078 0.5000 0.5078 0.5000 0.5000 

0.5000 0.5000 0.5234 0.5078 0.4609 0.4922 0.4688 0.5000 

0.5000 0.4766 0.5000 0.4922 0.5000 0.5078 0.5000 0.5000 

0.5000 0.5234 0.5234 0.5000 0.4609 0.4922 0.5313 0.4688 

0.5000 0.5234 0.5000 0.5078 0.5000 0.5078 0.5313 0.5000 

0.5000 0.5000 0.4766 0.5078 0.4609 0.5000 0.5000 0.5000 

The BIC is analyzed if some of its input bits remain unchanged. This adjustment of input bits and 

the avalanche vectors independent performance of pair wise variables are the assets of this 
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criterion. Non-linearity represents the bits which are modified in the truth table to attain the least 

distance from the set of affine function. The value of nonlinearity of new S-box is 102.5. 

Table 3 The nonlinearity of BIC of chaotic fractional S-box 

     0    106   106   104   104   102   108    98 

   106      0   106   106   104   106   100   100 

   106    106     0   104   104   104   104   100 

   104    106   104     0   102   106   102   102 

   104    104   104   102     0   106   104   108 

   102    106   104   106   106     0   104   104 

   108    100   104   102   104   104     0   102 

    98    100   100   102   108   104   102     0 

Table 4 BIC of SAC analysis of chaotic S-box 

0.5123 0.5011 0.5190 0.5145 0.5056 0.5011 0.5045 0.4911 

0.5246 0.5000 0.5022 0.4955 0.4754 0.4955 0.5078 0.4900 

0.4911 0.4888 0.4911 0.4955 0.4911 0.5000 0.4989 0.5123 

0.4922 0.5056 0.4922 0.4989 0.4944 0.5033 0.5000 0.4911 

0.5089 0.4978 0.4911 0.4821 0.4911 0.5000 0.4944 0.4944 

0.5067 0.5067 0.4866 0.5067 0.5045 0.4955 0.5089 0.5112 

0.5145 0.5011 0.5033 0.4989 0.4900 0.4967 0.4944 0.4833 

0.5112 0.5089 0.5134 0.5000 0.4933 0.5045 0.5011 0.4810 

The highest value of the disproportion of an event between input and output bits is enumerated by 

linear approximation probability. Differential approximation probability is a unique uniform 
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mapping which gives output of 𝑦𝑖 for input differential 𝛥𝑥𝑖.From Table 5 we observed the values 

of differential approximation probability of proposed S-box. 

Table 5: Differential approximation probability of chaotic fractional S-box 

6 6 8 6 6 8 8 6 6 6 6 6 8 6 6 8 

6 6 6 6 8 6 6 8 6 8 8 6 8 6 8 8 

8 8 10 8 6 6 6 6 6 6 6 6 8 8 8 6 

6 6 6 10 6 6 6 6 8 6 6 6 6 8 6 6 

8 8 6 6 6 8 8 8 6 6 8 6 6 8 6 8 

6 6 6 6 6 8 6 6 6 8 6 6 8 6 8 8 

6 10 6 8 6 6 8 6 8 6 8 8 8 6 8 10 

6 8 6 6 6 6 8 6 6 6 6 6 6 8 6 6 

6 6 6 8 8 6 6 6 6 6 8 8 6 10 6 8 

6 8 6 4 8 8 8 8 6 6 6 6 8 8 8 8 

6 8 4 6 6 6 8 8 6 6 8 6 8 6 8 8 

8 8 8 6 8 4 6 8 10 8 8 6 8 6 10 6 

8 6 6 10 6 6 8 8 6 6 6 8 8 8 6 6 

6 6 8 8 6 6 8 8 6 6 6 6 6 6 8 6 

6 6 6 8 8 6 6 6 6 8 6 6 6 6 8 6 

6 8 6 8 8 8 6 6 6 6 8 6 6 6 8 256 

5.6. Simulated Results and Statistical Analysis 

It is essential to judge the both original image and watermarked image by using available statistical 

analyses. In this chapter, we look at images with the help of homogeneity, correlation, energy, 

contrast, entropy, mean square error and peak signal to noise ratio. To find out the security of 
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images the analyses are made on 256 × 256 Host images of Lena, baboon and pepper and 50 ×

50 watermark image. 

5.6.1. Comparison of Statistical Analysis  

The proposed technique employed chaos with the frequency domain embedding of the watermark. 

This approach is new and has certain advantages over the previous works. Moreover, the proposed 

work has been compared with one of the states of art techniques that uses almost the same 

methodology [54].The comparison is given in Table 6 

Table 6 Statistical Analysis Original Image and Watermarked Image 

Statistical 

Analysis 

Pepper Lena Baboon 

Host Proposed 
Ref. 

[54] 
Host Proposed 

Ref. 

[54] 
Host Proposed Ref.  

Homo. 0.8902 0.8902 0.8901 0.8651 0.8811 0.8601 0.7294 0.7294 0.7298 

Contrast 0.3311 0.3311 0.3318 0.4141 0.3371 0.4221 1.0004 1.0004 0.9993 

Energy 0.1330 0.1330 0.1317 0.0942 0.1130 0.0920 0.0817 0.0817 0.0825 

Entropy 7.5612 7.5613 7.4105 7.7021 7.7023 7.5121 7.3903 7.3903 7.4602 

Corr. 0.9207 0.9207 0.9219 0.9444 0.9443 0.9383 0.6607 0.6607 0.6593 

The results of MSE and PSNR tests for pepper, lena and baboon images are given in Table 7. 

Moreover, Fig.6 represents the host image, watermark, substituted watermark (substituted with S-

box) and watermarked image respectively. 

 

 

 

 



  

 84  
 

Table 7 MSE and PSNR values of proposed watermarking technique 

Image MSE PSNR 

Pepper 15.7216 81.9777 

Lena 10.5413 86.2234 

Baboon 4.8876 91.4512 

Host image                             Watermark      substituted watermark   watermarked image 

                       

Fig.6 Pictorial results of proposed Embedding and Extraction of Watermarking Technique 

5.6.2. Extraction of watermark 

The basic idea of inverse proposed watermark algorithm is authentication. Watermarked image 

shown in Fig. 7 follows the inverse process and the watermark image is extracted. Moreover, 

inverse substitution is on the card because the extracted watermark image is substituted by the 

proposed chaotic S-box to attain original watermark. 
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Fig. 7: Pictorial representation of the extracted image, substituted watermark and watermark 

images.  

5.7. Robustness Test Based on Image Processing Operations 

The numerical estimate of two watermarks is the similarity of extracted and original watermark, 

Cox et.al. [58]. The High correlation between two watermark images guarantees the robustness of 

the watermarking algorithm. In addition to this, if the value is on the higher side, it represents the 

more correlation between two watermark images. It is given as: 

                                                                  𝑆𝑖𝑚 =
∑ 𝑡𝑖. 𝑠𝑖

√∑ 𝑡𝑖
2. ∑ 𝑠𝑖

2.

                                                              𝑞𝑎 

 

where 𝒕𝒊 and 𝒔𝒊 represent the corresponding 𝒊𝒕𝒉 element of extracted and original watermark 

respectively. The perfect correlation between extracted and original watermark is observed by 

seeing the numerical value of confidence measure which is 98.09. With the help of certain image 

processing operations on the watermarked image and on the extracting watermark we may have 

the better idea of similarity. 

We consider and add salt and pepper noise to check the noise attack on our watermarked image. 

Among different compression attack, we consider the Joint Photographic Experts Group (JPEG) 
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for our proposed algorithm. If extracted image is disfigured or giving fewer information then this 

is count as an example of cropping attack. Fig. 8 depicts compression, noise and cropping attack 

on our scheme and outcomes are given in Table 8. 

Table 8 Confidence measure values of selected images against different image processing attacks 

Attacks         Pepper             Lena        Baboon 

Compression         71.5691          71.2982       69.2561 

Noise        75.9812          76.1256       74.3253 

Cropping        41.3694          44.5197       42.1582 

                   

Fig. 8: Image Processing Effects on Baboon image. 

This new idea shows the importance of utilization of the chaotic system of differential equation 

for synthesis of S-box in watermarking. The embedding of the watermark (secret signature) has 

been done in the frequency domain of the original image whose copyrights must be protected. The 

embedding positions are defined by the random values generated with the help of chaotic map. We 

use the algebraic S-box in a watermarking scheme to make our scheme robust in the next chapter. 
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Chapter 6 

Frequency domain watermarking based on algebraic 

S-box 

This chapter presents a new and comparatively secure watermarking technique, in the frequency 

domain. Our scheme deploys a local ring-based S-box. The algebraic algorithm used to synthesize 

S-box basically exploits one-one correspondence between the multiplicative group of units of the 

local ring ℤ512 and the Galois field 𝔽256. This S-box has high confusion creating capability due to 

the structural properties of the local ring and fulfills the necessary requirements to be reliably used 

in multimedia applications. We use this S-box in a watermarking scheme to make our technique 

more confusing and secure to provide more support in copyrights protection strategies. The 

proposed non-blind digital watermarking technique deals with the application of discrete cosine 

transform (DCT) in the frequency domain which is comparatively more robust than spatial domain 

techniques. In the proposed scheme, first the watermark image is substituted through the S-box, 

and the scrambled watermark is then embedded in the DCT-transformed host image. To measure 

the strength of the proposed technique, simulation results and statistical analyses are made. Most 

significant analyses techniques including measures of homogeneity, energy, contrast, entropy, 

correlation, Mean squared error (MSE) and peak signal to noise ratio (PSNR) are applied which 

show coherent results.  
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6.1. Introduction 

Among the aforementioned types of watermarking, spatial domain algorithms offer more capacity 

to insert watermark but as far as robustness is concerned, frequency domain watermarking is a 

preferably used technique (see [59] for more details). 

Several methods for digital watermarking in the frequency domain are available in literature 

including Discrete Fourier Transform (DFT) [60], Discrete Cosine Transform (DCT), Discrete 

Wavelet Transform (DWT) and Discrete Fractional Fourier Transform (DFRFT) [61]. We, in the 

proposed framework, apply the Discrete Cosine Transform method to get robust watermarking. It 

is safe from annoying blocking artifacts as it is not a block-based transform and offers a high 

degree of freedom for embedding due to its multi-resolution property. DCT may be used with the 

combination of other transforms to obtain maximum advantages of the properties of other 

transforms [62], [63]. 

DCT-based watermarking algorithms have been widely studied [64], [65]. Recently Zhang et. al. 

[66] anticipated a digital watermarking scheme using DCT, that involves two preprocessing steps 

(before watermark embedding); changing the size of the watermark and scrambling it. However, 

our proposed method achieves the security targets by using a comparatively simple, direct and 

more secure approach as compared to [66]. This algorithm is distinguished from the previous work 

in two senses; firstly, it enhances the security level by utilizing the S-box, secondly, the structural 

properties of the used local ring contribute to elevating the imperceptibility level of our technique. 

Construction of stronger S-boxes is considered as a major focus of recent research as in the last 

few years S-boxes gained attention in further multimedia applications as well [7], [67]. 

In this chapter, we introduce an application of S-box in digital watermarking in the frequency 

domain using DCT method. For the construction of our S-box, we utilize the structure of a local 
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ring ℤ512 of size 512 which has a multiplicative subgroup of cardinality 256, formed by the unit 

elements. The bijection between the group of units and the Galois field 𝔽256 leads us to formulate 

a new S-box by applying a specific map in the corresponding field. This values of S-box are 

substituted with watermark before the embedding process. By the involvement of S-box, our 

technique becomes highly secured against any plagiarism and copyright violations. The substituted 

watermark image is embedded in the DCT- transformed host image, and the watermarked image 

is achieved by utilizing the inverse DCT. The algorithm for the extraction of the watermark is also 

discussed which shows non-blind watermark technique. 

6.2. Construction of S-Box 

In this section, the algebraic algorithm used to structure new S-box. In chapter 2 of this thesis, a 

construction method of an 8 × 8 S-box over the elements of units of the integer modulo ring ℤ512 

is given. The construction of proposed S-box with different parameters as of reference depends on 

3 major’s steps; calculation of multiplicative inverses of the elements of the group of units 

𝑈(ℤ512), then the construction of pseudo S-box based on 𝑈(ℤ512)  and in the last step defining the 

one-one correspondence between 𝑈(ℤ512) and 𝔽256. Consequently, 256 distinct values of S-box 

are obtained [68]. 

We define bijective correspondence between 𝑈(ℤ512) and 𝔽256 by 

𝑙(2𝑡 + 1) =  
33𝑡+23

12𝑡+9
,                               (6.5) 

where 0 ≤ 𝑡 ≤ 255. The fraction on the left side of Eq. (6.5) is evaluated by expressing each 

number in 8-bits format such as 33=00100001, 23=00010111, 12=00001100 and 9=00001001. 

Table 1 gives the 256 values of proposed S-box. 
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Table 1: Proposed S-box 

95 228 190 139 255 0 175 241 43 8 66 70 125 62 245 119 

250 181 158 214 96 100 44 53 192 73 178 17 187 135 246 161 

122 206 234 149 106 99 133 235 51 212 211 170 7 93 91 27 

205 86 89 67 63 243 182 13 87   77 16 160 41 20 237 167 

117 15 24 146 252 216 166 200 213 46 196 152 113 115 42 209 

137 111 147 1 2 31 206 194 3 240 148 164 239 21 184 154 

189 281 84 143 110 35 220 253 132 61 108 244 247 9 50 208 

39 10 112 236 54 126 199 203 33 159 186 72 11 165 222 28 

140 155 0 59 30 58 174 79 251 157 142 34 45 6 105 173 

151 83 40 101 215 231 123 130 121 59 207 36 204 202 116 62 

82 248 78 180 185 176 14 198 22 193 226 156 127 75 218 94 

109 12 134 57 76 150 232 230 163 224 177 183 179 32 10 223 

141 128 120 48 47 254 153 103 52 69 85 5 238 201 25 197 

145 90 107 74 64 249 60 131 18 38 97 168 124 210 104 136 

71 162 92 217 169 98 227 129 81 65 37 191 219 68 188 19 

242 49 88 23 55 29 229 171 144 149 233 221 138 56 190 114 

6.3. Performance Analysis of the Proposed S-box 

In this section, the essential performance parameters are inspected for the newly generated S-box. 

The assessment of the projected S-box guarantees its competence and strength [18]. In this article, 

best available tests are selected to assure the perfomance of the S-box. It includes bit independence 

criterion (BIC), linear approximation probability (LP), differential approximation probability 

(DP), nonlinearity, bit independence criterion (BIC) and strict avalanche criterion. It is proved that 
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the new S-box fulfills all the requirements to be used in further applications. The subsections below 

describe the required properties in detail. 

It is the highly-desired property of an S-box that single input deviation produces series of variations 

in the substitution- permutation network [22], [69]. 

Table 2: Results of algebraic analysis for the new S-boxes 

S-box BIC SAC BIC/SAC DP LP Bijective 

Proposed 

S-box 

103.25 0.503906 0.504 0.046875 160/0.1406 yes 

 

Fig. 1: Comparison of Strict avalanche criteria for various S-boxes 

Table 2 shows the results of strict avalanche criterion and Fig. 1 provides the comparison of the 

new S-box with the prevailing S-boxes such as Gray, APA, residue prime, S8, Xyi and state of the 

art, AES S-box. The average value of the strict avalanche criterion comes out to be 0.5039. 

The independent behavior of the pair of variables and the variations of input bits are considered as 

important factors of bit independence criterion. In bit independence criterion, input bits are 

transformed exclusively, and then output results are studied for their independency [22], [55], [69]. 

Table 1 presents bit independence of nonlinearity and Fig. 2 is a pictorial representation of the 

comparison of numerical results of BIC applied on different S-boxes. 

0
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Fig. 2 Bit Independence Criterion of various S-boxes 

Nonlinearity analysis measures the distance of the reference function from all of the affine 

functions. For more details and calculation process see[70]. The average nonlinearity of our S-box 

is 103.25 that is reasonably acceptable. Fig. 3 is the graphical representation of the nonlinearity 

comparison. 

 

 

Fig. 3: Nonlinearity of proposed and other S-boxes 

The unevenness of an event is calculated in linear approximation method. The Linear 

approximation probability of the proposed S-box is 0.1094. It is evident from these results that our 
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S-box gives confrontation to different linear attacks. In fig 4, the graphical representation of the 

linear approximation of proposed S-box and different S-boxes is given. 

=  

Fig. 4: Comparison of Linear approximation probability 

We depend on the differential approximation probability test which concludes the differential 

uniformity confirmed by an S-box.  

 

Fig. 5: Comparison of differential probability of different S-boxes 
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The results of odds of differential by applying input and output differentials are given in Table 1. 

The graphical analyses of proposed S-box and some well-known S-boxes are also shown in Fig. 

5. 

6.4. Algorithm of Frequency domain Watermarking Technique 

The flow chart of the new technique of watermarking using S-box and frequency domain 

watermarking is depicted in Fig. 1. By utilizing the multiplicative subgroup of unit elements 

𝑈(ℤ512) of the local ring ℤ512, a new S-box which depends on the special algebraic structure of a 

local ring and its relationship with the Galois field. The newly developed S-box possesses 

reasonably acceptable performance indices as discussed in the previous section. By the help of this 

S-box, we substitute the watermark image first. This altered and secured watermark is embedded 

into the DCT-transformed version of the original image. In the frequency domain, almost all 

portions of image observe the change as the watermark is inserted in low or middle frequencies 

and low-frequency components contain the larger portion of energy. Due to special features of 

discrete cosine transform, we are applying the frequency domain technique using DCT. 

Fourier series provides us the establishment of various transforms including discrete cosine 

transform (DCT). DCT converts an image to the frequency domain by compression which is 

obtained through data quantization. This transform only uses the real part of the Fourier complex 

kernel and neglect complex part. The information of the original image is concentrated into the 

smallest low-frequency coefficient with the help of 2D-DCT. Moreover, due to this transformation, 

the effect of image blocking is minified, which shows the good interaction between the information 

centralizing and the computing complications. The embedding process is strengthened with the 

help of secure S-box and this altered watermark is then embedded into the DCT-converted host 

image. For extraction of the watermark, the original host image is needed as it is the non-blind 
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technique of frequency domain. Fig. 6 and 7 represent the process of embedding and extraction of 

the watermark respectively. 

6.4.1. Embedding and Extraction of Watermark 

Let the host image is of size 𝐻1 ×  𝐻2 and is given by 𝐻 =  {ℎ(𝑥, 𝑦), 1 ≤  𝑥 ≤  𝐻1, 1 ≤  𝑦 ≤

 𝐻2} whereas, the watermark image is of size 𝑊1 ×  𝑊2 be denoted as 𝑊 =  {𝑤(𝑖, 𝑗 ), 1 ≤  𝑖 ≤

 𝑤1, 1 ≤  𝑗 ≤ W2} and (𝑥, 𝑦), (𝑖, 𝑗 ) show the pixel coordinates of original host image and gray 

watermark image respectively, If 𝑃 denotes the total number of binary bits of gray level image 

pixels than ℎ(𝑥, 𝑦) and 𝑤(𝑖, 𝑗) is given by {0, 1, . . . , 2L  1}. The substitution of the frequency 

domain is almost same as that in spatial domain with an exception that the watermark is embedded 

into frequency coefficients of the transformed image. In this article, the scheme becomes more 

secure as the watermark is substituted with algebraic S-box. 

Input Image

DCT of Input 
Image

Watermark 
Image

Substitution of
S-Box values

S-Box with the 
help of Galois 

Field

4 MSBs of each 
watermark image 

pixels Embedding of 
watermark in 

original image by 
replacing 4 LSBs 
with 4 MSBs of 

watermark image
Inverse DCT

Watermarked 
Image

S-Box from 

U(Z512) over 
Galois Field

Unit elements of 
Commutative 

ring Z512

 

Fig. 6: Embedding of S-box substituted watermark in original image 
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This provides more strength to our technique and copy right protection to support our claim at any 

forum. The watermark is then inserted into DCT-transformed image where we consider positive 

integral parts of DCT coefficients (neglecting the sign of negative DCT coefficients) and replace 

the LSBs of DCT coefficient with MSBs of the altered watermark. After applying IDCT on the 

result we attain the final watermarked image. 

In embedding scheme, the S-box is another hidden truth to counterfeit any plagiarism attempt. 

Moreover, this provides a strong mathematical foundation to our technique. The pictorial 

representation of embedding and extraction procedure of this novel scheme is given in Fig. 8. The 

gray level images of Lena, Baboon and Peppers respectively are selected as host images. The 

watermark is substituted with proposed S-box and depicted in fig 9. After embedding the 

substituted watermark into host images (DCT is applied on host image), the watermarked images 

of Lena, Baboon and Peppers, are given in Fig 8. The visual results witness that the final 

watermarked images have the identical appearance as in Fig. 8 of the original images. Following 

the inverse process of embedding, it is possible to extract the watermark image from the host 

image. The watermarked image is then subjected to DCT and extraction of the original image is 

done by replacing 4 LSBs of DCT watermarked image with original values. By this process, we 

can remove the watermark from the original image. The extraction procedure requires the inverse 

S-box algorithm as well. Fig. 11 represents the extracted S-box substituted image and successfully 

extracted watermark. The extracted original images of Lena, baboon and Peppers are represented 

in Fig. 10. 
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Fig. 7: Extraction of watermark from watermarked image 

Host Images 

    (a) Lena       (b) Baboon       (c) Pepper 
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Watermarked images 

                   

Fig. 8 Host and the watermarked images 

watermark         Substituted watermark 

                                                                                                                       

Fig 9: Original and the substituted watermark 

                     

Fig. 10: Extracted images of Lena, Baboon and Pepper 

        Substituted watermark     Extracted watermark 

                                                                                 

Fig. 11: Substituted and the Extracted watermark 
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6.5. Simulation Results and Statistical Analysis 

The assessment of both the host image and the S-box substituted, watermarked image with certain 

statistical tests is performed in this section. We perform frequently used tests including  

 

Fig. 12: Comparison of MLC for different Images 

homogeneity, contrast, correlation, entropy, energy, mean square error and peak signal to noise 

ratio on both the images. The outcomes of above-mentioned analyses are presented in Table 3 and 

Fig. 12. 

Table 3: Statistical Analyses of Host Image and Watermarked Image 

Statistical Pepper     Pepper Lena       Lena Baboon Baboon 

 Host Watermarked Host Watermarked Host Watermarked 

Homogeneity 0.9317       0.9279 0.8651      0.8625 0.7848    0.7839 

Contrast 0.2219       0.2295 0.4141      0.4194 0.6159    0.6194 

Energy 0.1560       0.1537 0.0942      0.0934 0.0655    0.0653 

Entropy 0.7856       0.7579 0.5859      0.5859 0.6962    0.6962 

Correlation 0.9484       0.9467 0.9444      0.9437 0.8994    0.8989 
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These analyses are made on 256 x 256 image of Lena, baboon and pepper along with 50 x 50 

watermark image.  

The dissimilarity between two digital images is calculated with the help of the mean squared error. 

The logarithm of the ratio between the signal strength and difference between the images (MSE) 

gives peak signal to noise ratio Table 4 gives the result of MSE and PSNR results. 

Table 4: MSE and PSNR values of proposed watermarking technique 

Image MSE PSNR 

Pepper 1.4786 46.4814 

Lena 1.4665 46.5741 

Baboon 1.4644 46.4742 

6.5.1. Complexity Analysis 

For the application of the proposed technique, the most important factors are the improved security 

and the embedding, extraction speed of watermark along with the space complexity. In this regard, 

speed analysis is performed with the help of MATLAB 7.9.0 (R2009b) on a laptop having 

Windows 7 working structure, Intel(R) Core(TM) i5-2520M, CPU@ 2.50GHz and RAM of 4GB.  

One can see that the speed of our embedding and extraction process is pretty close to the other 

DCT-based schemes, however the security level attained by the proposed scheme is highly 

improved than the recently known techniques. The sequence of operations used for the proposed 

algorithm requires no additional space. Table 5 provides elapsed time for embedding and 

extraction of the watermark with different image sizes and picture qualities. 

 

Table 5: Elapsed time for Embedding and Extraction of watermark 
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Serial 

No 

Size JPEG PNG 

  Baboon Pepper Lena Baboon Pepper Lena 

01 512*512 5.3631 

sec 

5.3579 

sec 

5.6291 sec 

 

5.4792 

sec 

5.4385 

sec 

5.6820sec. 

02 256*256 1.7309 

sec 

1.2096 

sec 

1.7533 sec 1.6618 

sec 

1.9459 

sec 

1.9154 

6.6. Robustness Test Based on Image Processing Operations 

The mathematical approximation of two watermarks is the similarity between the extracted and 

the original watermark [58]. The numerical value for confidence measure in our simulation results 

is 99.92. It demonstrates the ideal correlation between extracted and original watermarks. The 

watermarked image and extracted watermark are gone through well-known image processing 

operations which are given in the following subsections. Similarity analysis of different images is 

given in Table 6. 

Table 6: Similarity analysis of different Images 

Image SIM       

Pepper 0.9964 

Lena 0.9937 

Baboon 0.9987 

 

 

Table 7: Confidence measure values against different image processing attacks 
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Attacks         Pepper             Lena        Baboon 

Compression          33.0563          36.4937       22.5401 

Noise        18.5720          18.3259       18.7559 

Cropping        30.1589          32.4309       28.0296 

Compression Attack   Salt and Pepper Attack        Cropping Attack 

                       

Fig. 13 Image Processing Effects on Baboon image. 

In this technique, for noise attack, we add salt and pepper noise. Joint Photographic Experts Group 

(JPEG) is measured for compression attack. In cropping attack either extracted image is distorted 

or offers fewer information than the original image. The outcomes of all image processing attacks 

are given in Table 7 and Fig.13 represents the compression, noise and cropping attacks 

respectively. 

In this chapter, a new idea is presented for watermarking that mainly relies on a newly designed 

8 × 8 S-box from a local ring instead of a Galois field. The involvement of S-box in the scheme, 

where we substitute the values of the watermark image, not only develops confusion in 

understanding the used scheme but also provides more security and support to our argument for 

copy right protection of digital data. This technique of watermarking is based on frequency domain 

Discrete Cosine Transform. The complexity of the algebraic structure of the S-box and then 
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frequency domain technique makes almost impossible to identify watermark. In the next chapter, 

steganography techniques based on S-boxes are presented in the spatial domain. 
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Chapter 7 

Steganography Technique with Enhanced Security 

Based on a High-Nonlinearity S-box 

This chapter introduces a new scheme for digital steganography in the spatial domain. In this 

approach, we engage a specific high-nonlinearity S-box along with some chaotic systems, 

possessing enhanced chaotic range, to embed data in the least significant bits of the original image. 

An effective application of chaos in secure communication is presented in the proposed work. We 

determine the statistical strength of our steganographic algorithm through various analyses. We 

further evaluate the robustness of our technique against several image processing attacks. The 

outcomes of these analysis techniques depict that our scheme is significantly secure and can be 

reliably used in confidential communication applications. 

7.1. Introduction  

When secret information is transferred electronically, the main problem is to avoid unauthorized 

way to get the information. To achieve the essential security in this process many methods such as 

cryptography, watermarking, steganography etc. have been the major focus of research for past 

few years [71]–[73]. 

The word steganography is a combination of two Greek words, steganos and graphein, which mean 

"covered writing". In steganography, secret information is embedded into an unsuspecting carrier 

(any digital media), to avoid the unwanted attention during communication. Evidence for the use 
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of steganographic methods, for secret communication, are available in ancient Greek history [74], 

[75]. With the passage of time, more advanced techniques have been developed for 

steganography[71], [76]–[80]. Particularly, the advent of modern computer technology remarkably 

polished the skills of surreptitious communication [73], [76], [81], [82]. The wide-ranging 

applications of steganographic methods in computer forensics, copyright protection, broadcast 

monitoring, circumvention of web-censorship etc. made it an absolutely ascendant strategy in 

communication security [77], [80], [82], [83]. 

In the last decade, chaos has gained incredible importance as the most authentic source to elevate 

the level of security in confidential communication. Chaotic systems possess some extra ordinary 

features such as, irregularity and sensitivity to the initial conditions, unpredictability, speed and 

computational strength which distinguish these nonlinear dynamical systems in security 

applications [84]–[86]. 

7.1.1. Previous Work 

Due to the exceptional properties of the chaotic maps, the study and analysis of chaos-based 

steganographic techniques have been quite popular. Recently it has been identified that some 

algorithms are susceptible to the statistical analysis [87], [88]. Steganalysis (the inverse proof 

steganography) seems to have increased significance [89]–[91]. This necessitates an acute 

evolution in steganographic methods. Recently in [72], Amir et. al. presented an effective 

application of one-dimensional chaotic systems in digital steganography. The authors engaged 

three chaotic maps; the logistic map, TD-ERCS and NCA to embed information in a spatial 

domain. The strategy is quite simple and efficient (for further details see section 3 of [72]). Zhou 

et. al.[92] proved that the combinations of one dimensional chaotic maps have enhanced chaotic 
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range. The authors applied these systems in image encryption applications but in literature, such 

systems have not been applied in steganographic methods as yet. 

7.1.2. Contribution of This Work 

We, in the proposed framework, ameliorate the algorithm discussed in [72] in two ways. Firstly, 

we increase the complexity by involving a highly nonlinear S-box to substitute information bits. 

Secondly, rather plain one-dimensional chaotic maps, we employ the nonlinear combinations of 

the chaotic maps with enhanced chaotic range as described in [92]. These two steps contribute to 

increase the security of the anticipated method and the analysis thus performed shows outstanding 

results when compared with the method discussed in [93].  

7.2. Algebraic Algorithm for S-box 

For better understanding of the structural properties of an S-box, it is necessary to understand few 

basic facts. For the convenience of our readers, the algebraic structure of the Galois field are 

thoroughly explained to construct an S-box. For the underlying synthesis of 8 × 8 S-box, we use 

𝐺𝐹(28) =  𝔽2[𝑥] < 𝑝(𝑋) >⁄  

with  𝑝(𝑋) =  𝑋8 + 𝑋4 + 𝑋3 + 𝑋 + 1 ∈ 𝔽2[𝑥]. is an irreducible polynomial of degree 8. It is 

our option that we can use any degree 8 irreducible polynomial for constructing the background 

field 𝐺𝐹(28) but this affects our calculations as the binary operations are carried modulo the 

used polynomial [68]. 

For a field 𝔽, the general linear group 𝐺𝐿 (𝑛, 𝔽) is a group made by all 𝑛 × 𝑛 invertible matrices. 

A projective general linear group of degree 𝑛 over a field 𝔽 is defined to be the quotient group of 

𝐺𝐿 (𝑛, 𝔽) by its center. For this chapter, we form the 8 × 8 S-box by considering the action of the 
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aforementioned Galois field 𝐺𝐹(28) on the projective linear group 𝑃𝐺𝐿(2; 𝐺𝐹(28)), i.e. we take 

a function f : 𝑃𝐺𝐿(2, 𝐺𝐹(28)) × 𝐺𝐹(28) → 𝐺𝐹(28)  defined as; 

𝑓(𝑣) =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
                                                                (7.1) 

In Eq. (1), 𝑓 is named as a linear fractional transformation (LFT) with 𝑎;  𝑏;  𝑐 and 𝑑  ∈ 𝐺𝐹(28)  

satisfying the non-degeneracy condition 𝑎𝑑 − 𝑏𝑐 ≠ 0. The algebraic complexity and nonlinearity 

of LFT give the incentive to employ this map for byte substitution. In our S-box we u 𝑎 = 21; 𝑏 = 

8; 𝑐 = 3 and 𝑑 = 17. The images of this map provide our S-box as given in Table 1. The nonlinearity 

of the proposed S-box is equal to 112 which is the same to state-of-the-art AES S-box [94] but it 

employs a simple map rather than composition of maps as used by AES S-box [95]. 

7.3. One-dimensional Chaotic Maps 

Literature regarding security protocols witnesses that one-dimensional chaotic maps have far-

reaching applications due to the straightforward structure and computational simplicity. For the 

proposed study, we use three one-dimensional chaotic maps; the logistic map, the tent map and 

the sine map. In the following sub-sections, we discuss the fundamental properties of these three 

maps. 

7.3.1. The Logistic Map 

The most commonly used 1-D chaotic map is logistic map which have the simplest structure [92]. 

Its defining equation is simply a quadratic recurrence equation stated as, 

ℒ(𝜇, 𝑥𝑖) = 𝑥𝑖+1  =  𝜇𝑥𝑖(1 − 𝑥𝑖);                                                      (7.2) 

where 𝜇 ∈ (0, 4]. Change in the value of the parameter, 𝜇 changes the behaviour of the map. We, 

therefore, may call 𝜇 the catalyst for chaos. In the study of dynamical systems, its quite interesting 
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to see the bifurcation pattern. It is clear from the bifurcation diagram (as shown in Fig. 1(a)) that 

𝕃 produces the chaotic effect for 𝜇 > 3.56995. One can see that the Logistic map, though most 

markedly used map, unfortunately, has a limited chaotic range [3:56995; 4]. 

7.3.2. The Tent Map 

The tent map is another example of most commonly used discrete dynamical systems. It is defined 

by a piecewise linear function given below and discussed in section 4.2.1 of this work. The 

bifurcation diagram of the tent map, Fig. 1(b), shows that for the parameter values 𝜆 ∈ (2,4] the 

map has chaotic effect. 

7.3.3. The Sine Map 

The sine map is defined in section 4.2.2 of this thesis. The sine map has a chaotic behavior similar 

to the logistic map. The bifurcation diagram of Sine map is given in Fig. 1(c). Study regarding the 

combinations of one-dimensional chaotic maps shows that by introducing suitable combinations 

of such maps the chaotic range can be enhanced [92]. In the upcoming section, we explain  this in 

detail. 

7.4. Chaotic Combinations of Seed Maps 

Here we detail the procedure to obtain new chaotic systems that possess chaotic nature throughout 

the domain. For this purpose, we model three nonlinear combinations of the involved seeds maps, 

as stated below; 

1. Logistic Tent Chaotic System (LT chaotic system) 

2. Logistic Sine Chaotic System (LS chaotic system) 

3. Tent Sine Chaotic System (TS chaotic system) 



  

 109  
 

Each of the above-stated systems can be defined by; 

𝑥𝑖+1   = 𝐶1(𝜏1, 𝑥𝑖) + 𝐶2(𝜏2, 𝑥2)𝑚𝑜𝑑1;                                            (7.3) 

where 𝐶1 and 𝐶2 are any two chaotic maps with their respective parameters 𝜏1 and 𝜏2. We explain 

the structure of each of the newly generated chaotic systems one by one as follows. 

Table 1 LFT-based S-box 

215 93 171 23 234 76 201 236 175 59 141 214 99 162 108 74 

167 97  3 36 235 95 52  1 60 242  55 161 63 110 225 241 

145 153 245 254 73 17 118 90 173 21 178 176 94 122 136 114 

72 177 43 58 56 11 184 149 120 127 185 37 243 157 69 10 

189 92 77 0 196 222 4 223 181 168 78 186 207 195 148 190 

50 66 26 70 238 112 132 248 221 46 253 2 102 188 247 170 

194 187 45 53 213 86 62 24 200 115 111 68 212 40 140 130 

104 163 98 82 119 31 7 154 255 155 81 15 85 219 42 64 

20 80 129 211 88 160 156 218 123 109 204 107 19 205 12 216 

106 84 30 169 228 44 249 135 124 229 159 232 67 133 126 101 

137 100 38 144 143 116 29 134 244 180 224 217 33 113 6 210 

203 158 22 166 79 138 105 164 183 240 65 191 209 197 27 251 

150 227 239 51 12 61 54 165 48 237 233 147 41 193 252 198 

206 230 25 87 89 28 47 16 151 96 35 172 57 152 199 139 

220 117 246 71 208 34 121 13 83 32 128 103 39 146 75 167 

14 179 131 91 226 182 231 174 18 49 142 5 8 9 192 202 

 

(a)  Logistic                             (b)  Tent                                    (c) Sine 
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Fig. 1 Bifurcation diagrams of logistic, sine and tent map 

   (a) 𝐿𝑇-System                             (b) 𝐿𝑆-System                              (c) 𝑇𝑆-System 

         

Fig. 2 Bifurcation diagrams of LTS, LSS and STS 

Table 2 Comparison of performance indices of different S-boxes with LFT S-box 

S-box Nonlinearity        SAC BIC DP LP 

AES 

APA 

Gray 

Skipjack 

Xyi 

RP 

LFT 

112 

112 

112 

105.7 

105 

99.5 

112 

0.5058 

0.4987 

0.5058 

0.4980 

0.5048 

0.5012 

0.510254 

112.0 

112.0 

112.0 

104.1 

103.7 

101.7 

112 

0.0156 

0.0156 

0.0156 

0.0468 

0.0468 

0.2810 

0.015625 

0.062 

0.062 

0.062 

0.109 

0.156 

0.132 

0.0625 
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7.4.1. LT chaotic System 

From Eq (7.3), LT- System is given as, 

𝑥𝑖+1   = 𝐿(𝜗, 𝑥𝑖) + 𝑇(4 − 𝜗, 𝑥𝑖)𝑚𝑜𝑑1, 

                           =  {
𝜗𝑥𝑖(1 − 𝑥𝑖) +

(4 − 𝜗)𝑥𝑖

2
𝑚𝑜𝑑1                  ;  𝑥𝑖 <

1

2
 

𝜗𝑥𝑖(1 − 𝑥𝑖) +
(4 − 𝜗)(1 − 𝑥𝑖)

2
𝑚𝑜𝑑1         ;      𝑥𝑖 ≥

1

2
        

                         (7.4) 

where the parameter 𝜗 ∈ (0, 4]. The bifurcation diagram of the new chaotic system is given in Fig. 

2(a). Comparing with the bifurcation diagrams of the logistic and the tent maps in Fig. 1, it's quite 

clear that the new chaotic system has much more chaotic range than that for the individual chaotic 

maps. (logistic and tent maps). One may observe that the performance of LT chaotic system in 

terms of the uniform distribution of the density function is also improved as compared to that of 

both the seed maps. This ensures the better chaotic behaviour of the newly generated chaotic 

system and makes them more efficiently applicable in information security problems. The similar 

properties are exhibited by the other two chaotic systems designed below.  

7.4.2. LS Chaotic System 

Logistic Sine System is given by, 

𝑥𝑖+1   = 𝐿(𝜗, 𝑥𝑖) + 𝑆(4 − 𝜗, 𝑥𝑖)𝑚𝑜𝑑1, 

                                                    = 𝜗𝑥𝑖(1 − 𝑥𝑖) +
(4 − 𝜗)𝑠𝑖𝑛(𝜋𝑥𝑖)

4
𝑚𝑜𝑑1                                        (7.5) 

where 𝜗 ∈ (0, 4]. 
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7.4.3. TS-chaotic System 

Again from Eq. (7.3), we may deduce an expression for the TS chaotic system which is 

discussed in section 4.2.3. Fig. 2(b) and (c) show the bifurcation diagrams of LS and TS chaotic 

systems respectively. 

7.5. Steganographic Scheme 

The steganographic algorithm is pretty alike to [93], except for the two major differences which 

critically affect the results of the used scheme. Our scheme primarily includes a byte substitution 

step to boost the security level. Amir et.al. [93] used plain one-dimensional chaotic maps however, 

we hire chaotic systems, with enhanced chaotic range, for embedding information. The scheme 

utilizes a spatial domain and the information is embedded through the following steps. 

1- The host image is fragmented into two parts; the upper and the lower. 

2- Three improved chaotic range systems, LT, LS and TS are constructed in the foregoing 

section. These systems are applied to define the embedding position of pixels in both the 

upper and the lower parts of the host image such as LT -System defines the row number, 

LS -System defines the column number and TS -System corresponds to the frame number 

respectively. 

3- Every specific pixel of the host image in both the parts is changed into binary 8 bits. These 

8 bits are further split into the most significant bits (MSBs) and the least significant bits 

(LSBs) for both the upper and the lower parts. 

4- An S-box is structured by using LFT and the nonlinearity of this S-box (Table 1) is 112, 

which is equal to that of the state of art, AES S-box. 
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5- The input text (that is to be hidden in the host image) is substituted through the proposed 

S-box and is then converted from decimal values to binary 8 bits. These 8 bits are further 

split into 4 MSBs and 4-LSBs. 

6- For the upper part, the 4 LSBs are then replaced with the 4 LSBs of the substituted text, 

however, for the lower part, 4 LSBs are replaced with the 4 MSBs of the substituted text. 

7- For each of the upper and the lower parts, the unchanged MSBs and the changed LSBs are 

joined together and converted into the decimal form. At this stage, joining the frames 

together produces the steganographic image. Fig. 4 represents the Host and steganographic 

images of Pepper, Baboon and Lena. 

7.5.1. Inverse Steganographic Scheme 

In order to obtain the host image, one may use the reverse of the above-stated methodology, we 

further explain it through the following steps. 

1- Split the stego image into two parts. Again, we may call them the upper and the lower part. 

2- Use the chaotic systems LT, LS and TS to identify the pixels' position in both the upper and 

the lower parts in a similar fashion as described in the steganographic scheme 

3- Convert every specific pixel in both parts into binary 8 bits and further split each of 8 bits 

into MSBs and LSBs 

4- 4 LSBs of the upper part are considered as the 4 LSBs of the text character and the 4 LSBs 

of the lower part are considered as the 4 MSBs of the text character. 

5- Join these binary bits together and convert from 8 binary bits into the decimal form. This 

produces the substituted text. 

6- Apply the inverse S-box to recover the original text. 
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Fig. 3 Flowchart of proposed steganographic scheme 
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It is evident that reverting the process requires the inverse S-box, this step seriously increases the 

security of the proposed technique when compared with [93]. Though not possible, but if an 

unintended recipient is able to recover the intermediate text, he would not be able to recover the 

original information unless the substitution algorithm is known. 

          (a) Host image     (b) Steganographic Image 

    

    

    

Fig. 4 Host and steganographic images of Pepper, Baboon and Lena 
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7.6. Statistical Security Analysis 

We measure the cryptographic strength of the new method with the help of analysis such as 

,homogeneity, correlation entropy, contrast, , peak signal to noise ratio (PSNR). We selected three 

benchmark images, Pepper, Baboon and Lena for analysis. One may observe that the specialty of 

the used scheme is the high similarity between original and  

Table 3: Majority logic criterion analyses for original images 

Original images Entropy Contrast Correlation Homogeneity 

Peppers 5.5002 0.2190 0.9660 0.9637 

Baboon 5.6840 0.3422 0.9571 0.8840 

Lena 5.4183 0.1432 0.9665 0.9533 

Table 4: Majority logic criterion analyses for steganographic images 

Original images Entropy Contrast Correlation Homogeneity 

Peppers 5.5003 0.2190 0.9660 0.9637 

Baboon 5.6790 0.3409 0.9573 0.8845 

Lena 4.9612 0.1217 0.9703 0.9603 

Table 5 MSE and PSNR 

Image MSE PSNR 

Peppers 0.0013 28.8962 

Baboon 0.0024 26.2405 

Lena 0.0017 27.6436 
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steganographic images. Here, all the security parameters will be discussed and we present the 

numerical results in Tables 3-5. The numerical results are arranged in Table 3 and 4 for both the 

original and the steganographic images. 

7.7. Robustness Analysis 

To assess the robustness of our steganographic algorithm, we apply JPEG compression, the 

inclusion of noise and cropping effect on the steganographic images define the  common similarity 

between the original image and the steganographic image. 

   (a) Compression                     (b) Noise                                  (c) Cropping 
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Fig. 5 Image processing effects on Pepper, Baboon and Lena's images 

We study the effect on the steganographic image when information is embedded during JPEG 

compression. We compress the steganographic images of peppers, baboon and Lena as shown in 

Fig.5 and Table 6 which prove the robustness of our proposed scheme. 

Table 6 Measure of similarity in steganographic images for image processing attacks 

Attacks Peppers Baboon Lena 

Compression 1.1123 × 10−4 1.1124 × 10−4 1.1125 × 10−4 

Noise 1.0868 × 10−4 1.0906 × 10−4 1.0957 × 10−4 

Cropping 1.1087 × 10−4 1.1087 × 10−4 1.1087 × 10−4 

We further evaluate our algorithm under the effect of salt and pepper noise. The outcomes are 

given in Fig.5 and Table 6. In the light of these results, one can infer that this novel method is quite 

robust beside the noise attacks. Fig.5 shows the cropped steganographic images of peppers, baboon 

and Lena in which cropping effect is visible near the top left corner.In Table 6, the numerical 

results prove the strength of the steganographic technique against the geometric attack of cropping. 

The technique presented in this chapter is an improvement of the scheme introduced in [93].The 

involvement of a high-nonlinearity S-box and chaotic systems with improved chaotic range 

produces the enhanced security for the proposed steganographic method. Both the original and 

steganographic images exhibit almost same results under the application of statistical analysis 
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techniques. The strength of the steganographic algorithm is evaluated with the help of security 

analyses. In addition to this, our technique shows the property of robustness counter to different 

malicious attacks.  Table. 6 witnesses that our scheme is semi-fragile to robust. In chapter 8, the 

chaotic steganographic technique in combined spatial and transform domain will be discussed in 

detail.  
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Chapter 8 

Steganographic Technique Using Chaotic S-box in 

Combined Domain 

This chapter presents a robust steganographic algorithm using substitution box, with high 

embedding capacity. The scheme is predominantly based on a potent application of chaos. The 

proposed method effectively addresses two major objectives of steganography: high embedding 

capacity and robustness. In this regard, on one hand, our method deploys the amalgamation of the 

spatial and the transform domain to enhance the capacity of embedding secret information. On the 

other hand, the involvement of stronger chaotic systems with enhanced chaotic range increases the 

robustness. The statistical strength of our algorithm is examined through various reliable analysis 

techniques. We further examine the robustness of our novel technique against several images 

processing attacks The outcomes of these analyses show that our algorithm is robust and highly 

secure and can be reliably used in multimedia applications. 

8.1. Introduction 

The study and improvement of ingenious ideas, to keep secret information protected from 

intruders, is the foremost objective of the modern research. [73], [74], [83], [96]–[98]. 

Steganography deals with concealing confidential information into other information. The 

methodology of watermarking and steganography revolves around embedding secret information 
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but their motives are different. The proposed framework deals with the technique of 

steganography. 

With the advent of modern computer technology, remarkable skills for surreptitious 

communication have been developed [73], [76], [98], [99]. The wide-ranging applications of 

steganographic methods in computer forensics, copyright protection, broadcast monitoring, 

circumvention of web-censorship etc. made it an absolutely ascendant strategy in communication 

security. 

A steganographic technique involves two steps: firstly, hiding secret information in the carrier 

image, secondly, retrieving hidden information from the stego image. Generally, in steganography, 

secret information is embedded in either spatial or the transform (frequency) domain. In spatial 

domain embedding, LSB- substitution technique is most common. However, in the transform 

domain, invertible transforms such as discrete cosine transform, discrete Fourier transform or 

discrete wavelet transforms are applied to transform the image into its frequency representation. 

Both the domains have some advantages and disadvantages also. Frequency domain embedding is 

robust but spatial domain offers increased capacity for hiding data. This motivates researchers to 

deploy the combinations of both the domains [100]–[102]. 

The features of chaotic systems, such as unpredictability, irregularity and sensitivity to the initial 

conditions, speed and computational power etc., distinguish them in multimedia security 

applications [84]–[86]. Keeping this in view, the study and analysis of chaos-based steganographic 

techniques have been quite popular in last few decades. It is, however, observed that some chaos-

based methods are vulnerable to the statistical analysis because of the limited chaotic range of the 

used maps. 
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In [92] Zhou et. al. anticipated a nonlinear combination of chaotic maps that enhance the chaotic 

range of the resulting system. Such systems are applied in image encryption applications [92], but, 

these systems have not been applied in steganographic methods as yet. We, in this chapter, 

establish a successful image-steganographic application of improved chaotic systems in 

information embedding process. To structure these systems, we engage two most frequently used 

one-dimensional chaotic maps, the logistic map and the sine map. By constructing S-box with the 

amalgamation of these two maps, we construct a chaotic S-box. We further exploit the combination 

of the spatial and transform domains to reach the significantly high capacity level for embedding 

secret information. The evaluation of our novel method is done with the help of some most 

frequently used analysis techniques and we prove that our technique produces coherent results. 

8.2. One-dimensional Chaotic Maps 

In the understudy problem, we use two of the most popular one-dimensional chaotic maps; the 

logistic map and the sine map. These maps are further used to develop stronger chaotic systems. 

In the consequent subclasses, the fundamental properties of these maps are thoroughly discussed. 

The logistic map is the most frequently used map having a straightforward structure. The chaotic 

logistic map is defined in section 7.3.1. Similarly, the sine map is thoroughly explained in section 

7.3.3.[92]. 

8.2.1. Combinations of Chaotic Maps 

The two models of the nonlinear combinations of the involved seeds maps, as stated below; 

1. Logistic-Logistic System (LLS) 

2. Sine-Sine System (SSS) 

Each of the above-mentioned systems can be defined by 
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                                       𝑥𝑖+1  =  ℱ1(𝜆1 , 𝑥𝑖) × 𝐺(𝑘) − 𝑓𝑙𝑜𝑜𝑟( ℱ2(𝜆2 , 𝑥𝑖) × 𝐺(𝑘);                      (8.1) 

where 𝐺(𝑘) =  2𝑚, 8 ≤ 𝑚 ≤ 20 and  ℱ1 and ℱ2 are any two chaotic maps with their respective 

parameters 𝜆1 and 𝜆2. We explain the structure of each of the new chaotic systems one by one as 

follows. 

8.2.2. Logistic-Logistic System LLS 

From Eq. (8.1), LLS is given as 

                                                                        

= 𝓋𝑥𝑖(1 − 𝑥𝑖) × 214 − 𝑓𝑙𝑜𝑜𝑟(𝓋 × 𝑥𝑖 × (1 − 𝑥𝑖) × 214                          (8.2) 

where the parameter 𝓋 ∈ (0,4]. The bifurcation diagram of the new chaotic system. It is quite clear 

from bifurcation diagrams of the logistic and the tent maps that the new chaotic system has enhance 

chaotic range than that for the individual seed maps (logistic and logistic maps)., One may observe 

that the performance of LLS in terms of the uniform distribution of the density function is also 

improved as compared to that of both the seed maps. This ensures the better chaotic behaviour of 

the newly generated chaotic system and makes them more efficiently applicable in information 

security problems. The similar properties are exhibited by the other chaotic system designed 

below. 

8.2.3. Sine-Sine System SSS 

By using eq (8.1), Sine-Sine System is given by, 

                           = 𝓋 × 𝑠𝑖𝑛(𝜋𝑥𝑖) × 214 − 𝑓𝑙𝑜𝑜𝑟(𝓋 × 𝑠𝑖𝑛(𝜋 × 𝑥𝑖) × 214            (8.2)                            

where 𝓋 ∈ (0,4]. 
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8.3. Construction of chaotic S-box using group action 

Block ciphers are one of the vital components to build cryptosystem and they have a phenomenal 

dependence on the quality of S-box. In this substitution process, 𝑚 binary input bits transform into 

𝑛 binary output bits. The resistance against any differential and linear cryptanalysis in encryption 

scheme depends on the suitable selection of S-box. In this chapter, Sine-Logistic map (SLM) is 

applied for the synthesis for new S-boxes due to its wider chaotic range and cryptographic 

properties. The Fig. 1 of flow chart shows that the initial values as input for the design of proposed 

S-box are taken from chaotic SLM. These values are then assigned to the linear fractional 

transformation for the action of the projective general linear group on the finite field 28 having 

256 elements. The proposed chaotic S-box has 256 unique values and given in Table 1. 

8.3.1. Proposed S-box 

In this chapter, S-box are constructed by taking exponents value 1 of chaotic SLM. The 

mathematical description of the map corresponds to S-box is given in equation (8.4) 

𝑌𝑛+1 = Π𝑆𝐿(𝜇, 𝑌𝑛
𝛽) = (𝑆 ((4 − 𝜇), 𝑌𝑛

𝛽) + 𝐿(𝜇, 𝑌𝑛
𝛽)) 𝑚𝑜𝑑1 

                                                 = ((4 − 𝜇)𝑆𝑖𝑛(𝜋𝑌𝑛
𝛽)/4 + 𝜇𝑌𝑛

𝛽(1 − 𝑌𝑛
𝛽)) 𝑚𝑜𝑑1                                        (8.4) 

where 0 < 𝜇 ≤ 4. 
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start

y(n+1) = (4-r)

Sin(πyn) + ryn(1  yn)

y1,y2,y3,y4

q=floor y1*256
r=floor y2*256
s=floor y3*256
t=floor y4*256

Loop r=0 to 255

Loop q=0 to 255

Loop s=0 to 255

Loop t=0 to 255
Int q, r, s, t for

gf(q,r,s,t,8)
If q*t-r*s   0 

Yes

Loop m = 0 to 255

Int m for gf(z,8)

If s*m+t   0 Yes
H =(q*m + r)/

( s*m + t)

H1=hex(H)

m = m + 1 t = t + 1

s = s + 1

r = r + 1

q = q + 1

Stop

No

No

 
Fig. 1. Algorithm for the synthesis of proposed S-box 

 

Table 1. S-box corresponds to the SLM, 𝛽 = 1 

1 88 219 77 115 240 245 33 165 85 198 35 117 201 192 10 

62 251 205 143 47 69 3 0 188 149 94 190 58 246 27 177 

158 202 146 118 138 148 137 239 108 66 43 49 218 20 172 52 

124 25 19 67 73 206 168 22 233 81 193 181 105 113 211 122 

222 31 109 164 212 210 101 56 104 39 225 249 141 159 106 140 

247 242 145 176 185 57 237 64 100 238 228 128 111 199 34 215 

18 136 220 110 252 183 5 91 216 15 42 241 38 253 72 155 

87 221 203 63 142 163 103 28 96 194 175 46 80 129 24 41 

162 160 61 16 86 150 208 8 213 231 232 11 78 13 123 147 

60 187 53 135 130 125 196 227 173 6 157 83 134 17 244 144 

189 120 26 112 236 99 7 152 119 79 217 45 102 156 131 75 

209 230 89 14 151 30 54 169 243 37 76 93 178 21 71 197 

132 2 84 127 29 116 40 153 171 255 107 180 32 207 82 174 

48 70 186 114 121 55 229 167 126 59 195 90 223 184 182 23 

224 234 133 235 170 214 254 226 97 154 65 200 51 9 68 74 

166 44 95 204 92 248 50 98 4 12 250 161 36 139 191 179 
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8.4. Background of DWT and DCT 

In Discrete wavelet transform (DWT), the time domain signal is gone through sequential high-

pass filtering and low-pass filtering for decomposition of a signal into various frequency bands. 

There are two functions in 1D-DWT namely as scaling and wavelet functions. Scaling is related 

with low-pass filters whereas wavelet functions are related with high pass filters. Signal 

decomposition into a coarse approximation and detail information for analyzing at a different 

frequency with different resolutions is an important feature of DWT. Moreover, the characteristics 

of multi-resolution, excellent spatial localization and its analysis performance similar to Human 

visual system (HVS) make DWT a necessary and important tool for digital watermarking. 

In 1D-DWT, the Nyquist’s criteria suggest the elimination of half of the samples of original signal 

𝑧[𝑚] after filtering through half band high pass filter 𝑥[𝑚] and low pass filter 𝑡[𝑚] as highest 

frequency of signal remained 𝜋 2⁄ . It gives the opportunity to sub-sample the signal by 2, by 

discarding every other sample. Mathematically, 

  𝑔ℎ𝑖𝑔ℎ[𝑐] = ∑  𝑧[𝑚] ⊗ 𝑥[2𝑐 − 𝑚]𝑚                                             (8.5) 

   𝑔𝑙𝑜𝑤[𝑐] =   ∑  𝑧[𝑚]  ⊗ 𝑡[2𝑐 − 𝑚]𝑚                    (8.6) 

where,   𝑔ℎ𝑖𝑔ℎ[𝑐] is the result of high pass filtering and  𝑔𝑙𝑜𝑤[𝑐] is the outcome of low pass 

filtering. In DWT, the time resolution remains half and frequency resolution gets double after the 

filtering and sub-sampling of signal at every decomposition. 

By applying row-wise and column-wise 1D-DWT transform, our transformation can easily get in 

2-dimensional discrete wavelet transform. These 2D-DWT filters divide the host image into four 

disjoint multi-resolution sub-bands LL, HL, LH, and HH. The approximation band LL1 represents 

low-frequency coefficients whereas vertical, horizontal and diagonal edges of the digital image are 
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in HL1, LH1, and HH1 as shown in Fig. 2. The next coarser scale of wavelet coefficients is 

obtained by repeating the same process on LL1; we will have 3m+1 sub-bands, where m is a count 

of decomposition levels. 

 

Fig. 2: 2 level sub-band DWT transformation 

It is observed that Fourier series provide the foundation of different transforms which includes 

discrete cosine transform (DCT). The compression through data quantization is obtained through 

(DCT) which transform an image into frequency domain. The DCT uses only the real part of the 

Fourier complex kernel. Mathematically, the pair of equation (8.7) and (8.8) represents DCT and 

inverse DCT respectively. 

  𝐹(𝑢, 𝑣) = C(u)C(v) ∑ ∑ 𝑓(𝑥, 𝑦)𝑐𝑜𝑠
(2𝑥 + 1)𝑢𝜋

2𝑁
𝑐𝑜𝑠

(2𝑦 + 1)𝑣𝜋

2𝑁

𝑁−1

𝑦=0

𝑁−1

𝑥=0

                                     (8.7)  

  𝑓(𝑥, 𝑦) = ∑ ∑ C(u)C(v)𝐹(𝑢, 𝑣)𝑐𝑜𝑠
(2𝑥 + 1)𝑢𝜋

2𝑁
𝑐𝑜𝑠

(2𝑦 + 1)𝑣𝜋

2𝑁

𝑁−1

𝑦=0

𝑁−1

𝑥=0

                                     (8.8. ) 
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8.5. Steganographic Scheme 

The proposed scheme highlights two most important steps for information embedding process. 

First, rather depending on either spatial or transform domain only, it employs the combination of 

both the domains to reach the acceptable level of embedding capacity. 

(a) Original        (b) Steganographic 

       

Fig. 3: Lena: Original and steganographic images 

as well as robustness. Secondly, the scheme is based on stronger chaotic combinations which 

depict extra ordinary features when compared with the individual seed maps. 

The detailed steganographic strategy is explained through the flowchart. In this process, we take 

the host image 𝐼𝐻 (sized 512×512), and shape this into a vector of length 𝑚. The secret information 

is a text I of about 20% of the size of the host image. This text message is first substituted with 

SLM S-box to increase the security level. Break I into two parts 𝐼1  and 𝐼2  such that 𝐼1  and 𝐼2  are 

70% and 30% of I respectively. We aim to embed 𝐼1  in the spatial domain and 𝐼2  in the frequency 

domain. First 𝐼1  is inserted at random positions of 𝐼𝐻 using the chaotic system LLS. This gives the 

partial stego image in the spatial domain. We reshape this partial stego image into a matrix form 

and convert into frequency domain by using both discrete wavelet transform DWT and discrete 

cosine transform DCT. Again, revamp the obtained image into a vector of length 𝑚 and pick the 

largest frequency components (30% of the whole) and use the sine-sine chaotic system to embed 
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𝐼2  at the random positions of the selected largest values. This produces the frequency domain 

version of the stego image. At this stage, we apply the inverse transform to reach the final version 

of the stego image.  

The reverse process of the above mentioned method is required for the extraction of original image 

I from the stego image. The flow chart of the whole method is thoroughly explained in. Fig. 4. We 

apply the steganographic algorithm on 512 × 512 benchmark images of Lena in Fig. 3. 
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Reshape into one 
vector of length m

XOR

Spatial Domain 
version of stego 

image

Under Modulo x
Logistic -Logistic 

System
LLS

70% of text image X

Input Text
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Frequency domain 
conversion of 2-
level DWT and 

DCT

Reshape into 
matrix rxc
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frequency 

components
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Fig. 4. Algorithm for the proposed watermarking technique 
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8.6. Statistical Security Analysis 

Here, we measure the cryptographic strength of our new technique with the help of analysis such 

as correlation, entropy, homogeneity, contrast, peak signal to noise ratio (PSNR) and Mean 

squared error (MSE). We selected two benchmark images of Lena and baboon for analysis. One 

may observe that the specialty of the used scheme is high similarity between original and 

steganographic images. Table 2-4 provide the results of all security parameters. 

Table 2: Original Image: results of majority logic criterion 

Images Entropy Contrast Correl. Homog. 

Lena 5.4183 0.1432 0.9665 0.9533 

Babbon 5.6840 0.3422 0.9571 0.8840 

Table 3: Stego Image: results of majority logic criterion 

Images Entropy Contrast Correl. Homog. 

Lena 4.9612 0.1217 0.9703 0.9603 

Babbon 5.6790 0.3409 0.9573 0.8845 

Table 4: MSE and PSNR 

Image MSE PSNR 

Lena 0.0017 27.6436 

Baboon 0.0024       26.2405 

8.7. Robustness Analysis 

The robustness of our novel steganographic algorithm is measured by applying JPEG compression, 

the addition of noise and cropping effect on the steganographic images. This helps to conclude the 

similarity between the host steganographic image and the steganographic image extracted by 

applying the above-mentioned effects. The High correlation between these two images 

demonstrates the robustness of our method. Fig. 5 represents the image processing attacks on our 

scheme and Table 5 is the tabular form of these analyses. 
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Table 5: Measure of similarity in steganographic images for image processing attacks 

Attacks Peppers Baboon Lena 

Compression 1.1124 × 10−4 1.1125 × 10−4 1.1125 × 10−4 

Noise 1.0906 × 10−4 1.0957 × 10−4 1.0957 × 10−4 

Cropping 1.1087 × 10−4 1.1087 × 10−4 1.1087 × 10−4 

(a) Compression                   (b) Noise                       (c) Cropping 

 

 

Fig. 5: Image processing effects on Lena and Baboon's image 

The involvement of a S-box and chaotic systems with improved chaotic range produces the 

enhanced security for the proposed steganographic method. For any invader, it is very hard to 

obtain the information from the steganographic image as this image is apparently similar to the 

host image. The original text is first substituted with S-box which increased the security of the 

proposed scheme and by amalgamation of spatial and frequency domain, we address the issue of 

capacity and robustness. The strength of the steganographic algorithm is evaluated with the help 



  

 133  
 

of security analyses. In addition to this, our technique shows the property of robustness against 

different malicious attacks. In the last chapter, we give the conclusion of the whole thesis with 

some future directions. 
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Chapter 9 

Conclusion 

This chapter deals with brief and precise description of the results obtained in this thesis. 

Some future guidelines are also part of this chapter. 

The central objective of the presented work can be categorized in the following categories. 

1. By employing algebraic structures which include finite local ring, linear fractional 

transformation to construct S-boxes to enhance the security level. 

2. With the help of combined one-dimensional chaotic systems, multiple S-boxes are constructed. 

The combination of chaotic systems enhanced the chaotic range which is helpful to create 

confusion in cryptosystems. 

3. To introduce new techniques for digital watermarking and steganography to enhance the 

security of digital contents. The involvement of S-box in the schemes, not only develops 

confusion but also provides more security and robustness. 

9.1. Conclusion 

In chapter two, a novel S-box technique is presented which is based on projective general linear 

group over the unit element of 𝑍512. Randomness and improved security is perceived with the 

support of security analysis results. The ability of new S-box to create perplexity in data is quite 

exceptional. In certain analyses, vulnerability to malicious attacks and ability to create confusion 

is being checked. The analysis started from calculating nonlinearity of S-box followed by 

input/output bit designs analyses which consist of strict avalanche criterion and bit independence 
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criterion analysis. These analyses give features and assembly of bits at input and output. In the 

end, approximation probability which consists of linear and differential probabilities gives the 

probability of events and differential uniformity to progress in the form of iterative process. The 

proposed S-box is equated with AES, Xyi , Skipjack, S8, Gray, APA, and Prime S-boxes, 

frequently involved in variant encryption systems. The proposed S-box is extremely valuable for 

information security methods and different encryption process. 

In chapter three, the kernel of the presented work lies in the fact that the choice of the 

background Galois field and its generating primitive polynomial matters to the function and 

performance of the substitution boxes. This fact leads to the fascinating idea that rather the 

development of new algorithms, the improvement of the existing algorithms is worth-studying as 

its least laborious but most effective. We propose, on the basis of the example discussed, that the 

effect of the choice of generating polynomial may lead to an intensive research in future to modify 

the design models of S-boxes. It will definitely affect the applications of S-boxes in other branches 

of the digital communication, such as steganography, watermarking and image encryption etc 

By applying chaotic tent-sine system, the construction of different S-boxes is presented in chapter 

four. The linear fractional transformation is used on random values obtained through the chaotic 

map and provides 256 different values of S-box. The randomness produced through inclusion of 

chaos not only increases the unpredictability of the cipher but also supports to confront any attempt 

of cryptanalysis. These two prominent properties help to confirm secure communication of data. 

The outcomes of the various statistical analysis confirm the performance of our new S-boxes. The 

generated S-boxes show better results when matched with some privileged S-boxes, as apparent 

from the different statistical analysis. 
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Chapter 5 represents a new idea of utilization of a chaotic system of differential equation for 

construction of S-box. This S-box is further utilized for frequency domain watermarking. It is 

almost impossible to recognize watermark once the watermarking is done with frequency domain 

include the chaos from numerical solution of the differential equation. The embedding of the 

watermark (secret signature) has been done in the frequency domain of the host image whose 

copyrights is to be protected. The random results of chaotic map are applied to identify the 

embedding positions. The embedding through chaos is our idea which differentiates our work from 

others. In addition to this, the outcomes of security statistical analysis along with robustness test 

with the help of confidence measure really support the new idea of watermarking. The similarity 

after image processing tests which is between 42 and 77 % proposed scheme is an example of semi 

fragile watermarking technique 

In the next chapter, a new idea is presented for watermarking that mainly relies on a newly 

designed 8 × 8 S-box from a local ring instead of a Galois field. The involvement of S-box in the 

scheme, where we substitute the values of the watermark image, not only develops confusion in 

understanding the used scheme but also provides more security and support to our argument for 

copy right protection of digital data. This technique of watermarking is based on frequency domain 

Discrete Cosine Transform. The complexity of the algebraic structure of the S-box and then 

frequency domain technique makes almost impossible to identify watermark. Moreover, the 

outcomes of statistical analyses and robustness tests really support the new idea of watermarking. 

The numeric results of similarity, after the application of the image processing tests, lie in the 

range 40- 79%, (78.92 % in our case) which makes us conclude that our technique is a semi-fragile 

watermarking technique. 
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The technique presented in chapter 7 is an improvement of the scheme introduced in [103]. The 

involvement of a high-nonlinearity S-box and chaotic systems with improved chaotic range 

produces the enhanced security for the proposed steganographic method. It is very challenging for 

any invader to get the information from the steganographic image as this image is apparently 

identical to the host image. Both the original and steganographic images exhibit almost same 

results under the application of statistical analysis techniques. The strength of the steganographic 

algorithm is calculated with these security analyses. In addition to this, our technique shows the 

property of robustness against various malicious attacks. Table. 6 witness that our scheme is semi-

fragile to robust. 

In the last chapter, a watermarking technique in combined spatial and frequency domain is 

presented. This technique involves high-nonlinearity S-box and improved chaotic range. This 

technique addresses the problem of watermark embedding capacity, robustness and security of the 

technique. It is very tough to get any information from the steganographic image as this image is 

a decoy of the host image. The simulation and statistical analyses indicate the strength of the 

steganographic algorithm. Moreover, our technique shows the property of robustness against 

different malicious attacks. 

9.2. Future work 

While going through this research work, multiple queries came across in my mind but 

remained unanswered. These may be helpful for future directions or can be considered as the 

continuation of the proposed research. Some of these are listed below. 

 To construct cryptographically strong component for block ciphers (S-box) having a better 

number of input bits to withstand against numerous linear and differential attacks. 
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 Construction of S-boxes with simple algebraic structures having high nonlinearity. 

 Project different software to study cryptographic properties of S-box  

 The invention of novel techniques based on the combination of algebraic and chaotic 

structures for the improvement of cryptographic properties of the nonlinear component of 

block cipher. 

 Construction of S-boxes with the utilization of various algebraic structures like the 

symmetric group, Galois ring, cyclic groups and loop theory etc. Design of novel 

techniques of multimedia security based upon these S-boxes. 
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