
 



 

 

 

 

Investigation of Unsteady Stagnation point 

flow of nanofluids 

 

 
 

 

 

By 

 

Arif Ullah Khan 
 

 

 

 

 

Department of Mathematics 

Quaid-i-Azam University 

Islamabad, Pakistan 

2018 



 

 

Investigation of Unsteady Stagnation point 

flow of nanofluids 

 

 
 

 

By 

 

Arif Ullah Khan 

 

 

Supervised By 

 

 

Prof. Dr. Sohail Nadeem 

 

 

Department of Mathematics 

Quaid-i-Azam University 

Islamabad, Pakistan 

2018 
 

 



 

 

Investigation of Unsteady Stagnation point 

flow of nanofluids 
 

 
 

By 

 

Arif Ullah Khan 

 

A Dissertation Submitted in the Partial Fulfillment of 

the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

IN 

MATHEMATICS 

 
Supervised By 

 

Prof. Dr. Sohail Nadeem 
 

Department of Mathematics 

Quaid-i-Azam University 

Islamabad, Pakistan 

2018  













Preface 

This study is motivated to understand the time dependent stagnation point flow of 

nanofluids. Basically, stagnation flow occurs due to the impact of fluid on the solid 

objects. Near the stagnation point, the flow exhibits the highest heat transfer rate, 

pressure (static pressure), and mass deposition. According to Bernoulli’s equation 

when fluid velocity comes to zero it experiences a maximum pressure. It is because 

kinetic energy of the fluid is converted into pressure known as stagnation pressure 

(static pressure). Stagnation flows of nanofluids are significant in transpiration cooling 

(e.g. cooling of a nuclear reactor), reduce friction, and many other industrial and 

hydrodynamic activities. In this thesis we study the unsteady stagnation point flow of 

a Newtonian and micropolar nanofluids by considering different types of base fluids 

and different nanoparticles in two as well as in three dimensions. Also, we studied 

three types of unsteady stagnation point flow of incompressible nanofluids: plane 

orthogonal, plane oblique and three dimensional non-axisymmetric by considering 

different geometries such as two-dimensional horizontal plate, two-dimensional 

curved shrinking surface and three-dimensional vertical surface. All of the above 

mention physical problems are transformed into mathematical model using the 

governing equations of the fluid flow. These equations are then transformed into the 

set of nonlinear ordinary differential equations. The solutions of transformed equations 

are obtained via homotopy analysis method, midpoint method with Richardson 

extrapolation enhancement, shooting mechanism with fifth order R-K Fehlberg 

technique, bvp4c package in MATLAB, some analytical and perturbation solutions. In 

order to check the accuracy of the solution methods, comparison is made with the 

previous results. Also, different observations are made using graph and tables for all 

the problems under consideration. 
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Chapter # 0 

 Introduction 

Stagnation flow occurs due to the impact of fluid on the solid objects. Near the stagnation 

point, the flow exhibits the highest heat transfer rate, pressure (static pressure), and mass 

deposition.  According to Bernoulli’s equation when fluid velocity comes to zero it experiences 

a maximum pressure. It is because kinetic energy of the fluid is converted into pressure and is 

known as stagnation pressure (static pressure). Stagnation flows are significant in transpiration 

cooling (e.g. cooling of a nuclear reactor), reduce friction, and many other industrial and 

hydrodynamic activities. The application of stagnation point flows in analytical chemistry and 

life sciences has been seen in the literature presented by [1]. Hiemenz [2] was the first who 

studied the flow in the region of stagnation point. He begins with a qualitative description of 

the flow phenomena observed in a fluid of low friction over an obstacle. In the mathematical 

treatment of this flow, in the boundary layer, Hiemenz start from the Navier-Stockes system 

and presented a curvilinear coordinate system adjusted to the problem by applying the 

boundary layer approximation, Hiemenz got the same flow problem as found for the boundary 

layer along a fixed straight wall. It is exciting to take note of that the curvature of the 

coordinates has no impact on the procedures in the boundary layer. Hiemenz found the series 

solution for this problem and from the first order approximation, he used the similarity 

transformation and found the third order ordinary differential equation. The asymptotic forms 

for large 𝑦 → ∞ as 𝑓~𝑦 − 0.6479,   𝛿∗~0.6479𝛿, where 𝛿∗ is a boundary layer thickness. 

Hiemenz compare the computational results with the experimental one and found that the last 

outcome is a quantitatively very palatable understanding of experimental perception and 

numerical computation. Pohlhausen (loc. Cit. as given in [3]) attacks Hiemenz result for the 

point of separation as being obtained from an insufficient number of terms of a slowly 

converging series, as all terms of higher power than the fifth in 𝑥 were neglected. For this 

purpose, in 1934, Howarth [3] discussed the Hiemenz flow and solved it with nine different 

method in which some are 

i. Blasius method

ii. Karmain-Pohlhausen method
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iii. Bairstow and Green method

iv. Falkner-Skan’s method

v. Thomas second method.

After these analysis, Howarth found that this attack was, to some extent, unjustified. 

Howarth was shown that Hiemenz’s results for the position of the point of separation hold 

good to, within, two degrees. Later on, in 1936, Homann [4] found the equation for the 

axisymmetric stagnation point flow  and compare the computation with the experimental data. 

Howarth [5], in 1951, proposed the equation for the non-axisymmetric by using the equations 

of his another paper [6]. He used the similarity variables and obtained a pair of simultaneous 

ordinary third-order differential equations containing a single parameter 𝑐 = 𝑏/𝑎. He restricted 

the range for this parameter as 0 ≤ 𝑐 ≤ 1, where 𝑐 = 0 corresponding to two-dimensional flow 

(i.e. Hiemenz flow) and 𝑐 = 1 corresponding to the axial flow past a body of revolution (i.e. 

Homann flow) and found the numerical results. In 1956, Root [7] extend the work of Hiemenz 

and discussed the orthogonal stagnation point flow over a plate which perform a hormonic 

oscillation in its own plane. He used the similarity solutions which is the combination of 

orthogonal flow (Hiemenz flow) and temporal part of flow (𝑔-flow) where he got the coupled 

equations of Hiemenz function and 𝑔-flow. Since 𝑓 was found by Hiemenz [2], so Root took 

𝑓 as a known function and find the closed form solution for the steady part of 𝑔-flow and 

show that the corresponding shearing stress at the wall depends upon Hiemenz function only. 

The inviscid stream function for the oblique stagnation point flow, also known as non-

orthogonal stagnation point flow, was discussed for the very first time by Stuart [8] in 1959. 

He just added a constant vorticity 𝜉0 to the Hiemenz orthogonal flow. Stuart used the similarity 

solution which is the combination of orthogonal flow (Hiemenz flow) and shear flow and got 

a system of coupled ordinary differential equations in which the Hiemenz function was 

independent of shear flow but shear flow depends upon Hiemenz function. Like Root’s, Stuart 

assume 𝑓 as a known function (Hiemenz’s function) and find the analytical solution for the 

shear flow (𝑔-flow). In 1951, Howarth [5] pointed out that the solution for 𝑓′(𝑦) and 𝑔′(𝑦) for 

𝑐 < 0 may be found by using the symmetry 

𝑔(𝑦,−𝑐) = 𝑔(𝑦, 𝑐), 𝑓(𝑦, −𝑐) = 𝑓(𝑦, 𝑐) 
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but later-on, in 1964, Davey [9] stated that “these equations are incorrect since they do not 

satisfy the boundary conditions at infinity. Thus, solutions with 𝑐 < 0 can’t not be found from 

Howarth [5] results”. He suggested that the solution is possible for 𝑐 < 0 when one take the 

velocity component normal to the surface near the stagnation point as  {−𝑎(1 + 𝑐)𝑧̅} which is 

negative when 𝑐 > −1, and he found that, the case 𝑐 < −1 would correspond to saddle point 

of separation (but the equations can’t be solved by Davey), whereas Howarth discussed only 

the nodal point of attachment. Furthermore, he proved that “𝑔 − 𝑓𝑙𝑜𝑤 has no solution which 

satisfy 𝑔′(𝑦) → 1 as 𝑦 → 1 when 𝑐 < −1”. In follow-on work, Rosenhead [10], Davey and 

Schofield [11], Libby [12], Schofield and Davey [13] reported dual solutions of Howarth's 

equations at selected values of 𝑐. In 1967, Libby [14] extend the work of Homann by studying 

the stagnation point flow with large rates of injection. This flow is also known as a well-known 

“Homann-Libby flow”. Matunnobu [15,16] extend the Homann stagnation point flow and 

discussed the temporal variation of wall shear stress near the stagnation point. Tamada [17] 

and Dorrepaal [18] extended the orthogonal stagnation point flow (Hiemenz flow) to non-

orthogonal stagnation point flow and found the exact solution of the Navier-Stokes equation. 

Recently, Weidman [19] found a new non-axisymmetric Homann flow by superposed an outer 

irrotational flow �̅� = 𝑏�̅�,   �̅� = 𝑏�̅� on to the Homann potential flow �̅� = 𝑎�̅�,   �̅� = 𝑎�̅�, �̅� =

−2𝑎𝑧̅. In this flow, the non-dimensional Navier–Stokes equations depends on a single free 

stream parameter 𝛾 =  𝑏/𝑎 which is the ratio of shear rate and strain rate. Many researchers 

have shown their great interest in stagnation point flow and widely explored this area by their 

research [20-30]. 

Nanofluids are engineerely manufactured fluids in which a small concentration of 

nanoparticles is added in such a way that it remains to behave as a fluid. The quantity of the 

solid concentration is kept small to make sure that the nature of the fluid is not changed. These 

small concentrations are producing the magical effects on the nature of the ordinary fluids. The 

addition of solid particle in liquids to improve their properties is not a new idea and originally 

dates back to Maxwell times 1873. But the addition of micrometer dimension solid particles 

has disadvantages like clogging, sedimentation, clogging of channels and decrease in pressure 

force. The molecular size of ordinary liquids ranges in nanometers for example size of most 

commonly used liquid water is 0.275 nm. This size is almost comparable to the size of 
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nanoparticles which ranges between 1-100 nm [31]. This makes it more suitable to mix with 

the molecules of ordinary liquids as compared to micro size particles. Because of their extreme 

small size, they create slip velocity between the liquid molecules and solid particles which 

prevents the gravitational settling of the molecules in fluid flow and avoid clogging of channel. 

The use of nanofluid as a coolant can reduce the cooling cost as reported by Choi [32]. Masuda 

et al. [33] claimed that the positive change in thermophysical properties of fluids is primarily 

due to the thermal conductivity and viscosity difference between the solid particles and base 

fluid. Buongiorno [34] sheds the light on an important flow aspect of nanoparticle i.e. they 

carry slip velocity to the neighboring liquid molecules. After the detailed analysis on possible 

impact of various slip mechanisms he reached the conclusion that the important slip 

mechanisms are the thermophoresis and Brownian motion. Researchers have given equal 

importance to the homogenous concentration model and the Buongiorno models 

simultaneously in recent literature. Hussain et al. [35] studied micro rotation effects in flowing 

fluid due to the moving surface in the presence of nanoparticles. It concludes that micro-

rotation reduces the drag but increase the heat transfer mechanism. It is further highlighted 𝐶𝑢 

and 𝐴𝑔 − water has low Nusselt number as compared to 𝐶𝑢 −  𝐴𝑔 − kerosene oil. 

Nanoparticles shape is equally playing an important role in the alteration of thermal properties 

of fluid. Considering this fact Timofeeva et al. [36] presented the detailed comparison of 

particle shapes and their effects on the thermal conductivity enhancement. It concludes that the 

blade shape particles produce the highest change in thermal conductivity of base fluid as 

compared to the other shaped nanoparticles. Vajravelu et al. [37] considered the heat transfer 

phenomenon in Ag- and Cu-water. Their analysis suggest that Ag-water produced deeper 

penetration of heat due to greater thermal boundary layer as compared to that of Cu-water. 

During last decade renowned researchers [38–44] have considered the flow of nanofluids in 

various shaped geometries.  

The nanofluid flow behavior over a continuous stretching surface has been discussed by 

renowned scientist in recent years [45–48]. Hassani et al [49] developed the mathematical 

model for nanofluid flow over a moving surface and produced the analytical solution. Ibrahim 

et al [50] studied the effects of stagnation point flow due to the presence of normal direction 

magnetic field. Some other studies report the nanofluid flow with different kind of moving flat 

boundaries. Nadeem and Lee [51] examined the effects of exponentially moving surface on 
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the nanofluid boundary layer. Rana and Bhargava [52] presented the numerical solutions for 

the boundary layer nanofluid flow due to a non-linearly stretching velocity. Haq et al. [53] 

discussed the effects of radiation, microrotation and nanoparticles due to a vertically moving 

surface.  

In above mentioned articles the surface is considered to be smooth, flat and flow is 

generated due to the motion of surface. The dynamics of the flow will be quite different in case 

of curved surface stretching. It requires the consideration of curvature effects and as well as 

consideration of moving wall. The formation of boundary layer around the surface will be 

different from the one for plane surface stretching. This phenomenon has potential application 

in polymer industry where the extrusion process is being done due to the movement of curved 

surface. Saleh et al. [54] analyzed the effects of curved stretching or shrinking surface on the 

micro-polar fluid flow, they found that multiple solutions will exist in this case. Pop et al. [55] 

analyzed the surface curvature effects in the presence of magnetic field, the presence of 

magnetic field has shown significant variation in the skin friction values. Moreover, they 

proved the existence of four solutions for small values of suction and magnetic parameters. 

Arifin et al. [56] examined the curvature and suction effects for a permeable curved surface. 

Rosca and Pop [57] suggested existence of multiple solutions in case of curved surface 

shrinking and creating a situation of reverse flow. They also examined the stability of solution 

and presented the range of values for which single solution, multiple solution and no solution 

exist. The case of shrinking is different from the stretching as it will create a reverse flow 

situation. Mathematically in the case of shrinking more than one solution will exist. 

The question of thermal conductivity enhancement due to presence of nanoparticles is 

beyond doubt but the problem remains with the mathematical model whose data can be 

correctly correlated with the experimental observations. Maxwell model [58] is usually 

considered to analyze the impact of solid concentrations on the viscosity and thermal 

conductivity of the base fluid. This model is based on the assumption that the solid particles 

are highly dispersed and the temperature variation of one particle has negligible effect on the 

any other surrounding particle. Moreover, it is based on the steady state fluid assumption. This 

model doesn’t consider the effect of shape and size of nanoparticles on the effective thermal 

conductivity of fluid. The Hamilton and Crosser [59] accommodated this constraint of the 
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Maxwell model and proposed the new model which reduces to the Maxwell model for the case 

of spherical particles. Yamada and Ota [60] proposed the unit cell model equation to describe 

the effects of solid concentration on the thermal conductivity. Zhang et al. [61] experimentally 

correlated the data for thermal conductivity enhancement and thermal diffusivity of different 

particles including carbon nanotubes and found that the experimental data is close to the results 

predicted by Maxwell, Yamada and Ota models. In 2005, Xue [62] has proposed an effective 

model for thermal conductivity of carbon nanotubes. He showed that the data generated by 

proposed model are in agreeing with the experimental observations generated for carbon 

nanotubes suspension. The nanoparticles effects on the nanofluid flow have been extensively 

discussed by researchers in recent years [63-65]. Keeping the above important highlights in 

mind, the present thesis is arranged as follows: 

In first chapter we have presented the theoretical comparison of two main methods of 

nanofluids, phase flow and Buongiorno model. The governing flow equations for oscillatory 

oblique stagnation point flow are deliberated in fixed frame and in moving frame of references. 

The complicated coupled system of differential equations is transformed into non-dimensional 

form via a suitable similarity transformation. The numerical and analytical results have been 

obtained by using the homotopy analysis method and the results are observed through tables 

and graphs. The content of this chapter had been published in European journal of physics plus. 

In second chapter we studied non-orthogonal stagnation point flow of nanofluid over the 

oscillatory and slip surface and assume the MHD effects in the direction of stream lines. We 

considered water based nanofluid with three types of nanoparticles, namely, Alumina (𝐴𝑙2𝑂3), 

Copper (𝐶𝑢), and Titania (𝑇𝑖𝑂2). Mathematical equations were formulated by applying 

magnetic field in the dividing stream line. The complicated coupled system of differential 

equations is transformed into non-dimensional form via a suitable similarity transformation. 

The numerical results have been obtained by using the midpoint method with Richardson 

extrapolation enhancement. The effects of physical parameters on the flow are showed 

graphically and discussed quantitatively. The content of this chapter had been published in 

journal of molecular liquids. 

The third chapter is made to envision the characteristics of magneto-hydrodynamic 

oscillatory oblique stagnation point flow of micropolar nanofluid. The applied magnetic field 
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is assumed parallel towards dividing streamline. A comparative study is executed for copper 

Cu and Alumina Al2O3 nanoparticles while considering water as a base fluid. To be more 

specific, in the presence of both weak and strong concentration, the physical situation of 

micropolar fluid is mathematically modeled in terms of differential equations. The transformed 

coupled system is finally solved by midpoint method with the Richardson extrapolation 

enhancement and shooting mechanism with fifth order R-K Fehlberg technique. The obtained 

results are compared with existing published literature. An excellent match has been found 

which yields the validity of the current analysis. The content of this chapter has been submitted 

in journal of the Brazilian society of mechanical sciences and engineering. 

In forth chapter, different proposed theoretical models for the thermal conductivity of 

Carbon nanotubes are analyzed. Both SWCNT and MWCNT are discussed in three types of 

base fluids namely ethylene glycol, engine oil and water. By using the fundamental governing 

laws and their modifications for the presence of solid concentrations are used to 

mathematically model the differential equations. The complicated coupled system of 

differential equations is transformed into non-dimensional form via a suitable similarity 

transformation. Then numerical results have been obtained by using the midpoint method with 

Richardson extrapolation enhancement. The numerical results can be computed when the 

length “L” and diameter “d” of CNT’s are 3𝜇𝑚 ≤ 𝐿 ≤ 70𝜇𝑚 and 10𝑛𝑚 ≤ 𝑑 ≤ 40𝑛𝑚. It can 

be observed that when length and diameter of CNT’s are 50 𝜇𝑚 ×  25 𝑛𝑚, the calculated value 

of Yamada and Ota model is greater than that of Xue and H-C (Hamilton and Crosser) model. 

The content of this chapter had been published in international journal of hydrogen energy. 

Fifth chapter examines possible existence of reverse flow situation in unsteady nanofluid 

flow over a curved surface. Alumina (𝐴𝑙2𝑂3) and Ethylene glycol are considered as a 

nanoparticles and base fluid, respectively. Mathematical form of the problem is obtained by 

using the fundamental form of governing equations for motion and heat transfer when solid 

concentrations are added to an ordinary liquid. The complicated coupled unsteady system is 

transformed into non-dimensional form by use relevant transformations. The solution of the 

nonlinear problem is produced by use of numerical scheme available in the form of BVP4C 

package in MATLAB. In the case of surface shrinking towards the surface a reverse flow 

situation is also developed and requires careful selection of solution by examining the stability 
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of solution. Detailed stability analysis is done, and critical values are determined for possible 

existence of dual solutions. Various parameters variation is analyzed by plotting graphs and 

tables. The numerical values are also calculated for the reduced Nusselt number and skin 

friction due to variation in values of different flow parameters. Results have shown that for the 

curved shrinking surfaces, one should expect multiple solutions for a set of parameter values 

like mass suction, curvature, nanoparticles volume fraction and unsteadiness. The content of 

this chapter has been submitted in journal of molecular liquids. 

Sixth chapter examines the unsteady 3D non-axisymmetric Homann flow of an electrically 

conducting nanofluids in the presence of buoyancy forces. We consider the uniform external 

magnetic field, 𝐁𝟎, by neglecting induced magnetic field and examines the three possible 

directions of 𝐁𝟎 which coincides with the direction of axes. A similarity solution is derived 

which involve the dimensionless parameters 𝜑,𝑀, 𝜔, 𝛾 and 𝜆. We have treated the case for 

forced convection when 𝜆 = 0 which arise from the singularity 𝛾 = ∓1. We found that, for 

large 𝛾 and 𝜆, the leading terms of the solutions are independent of  𝑀 and 𝜔, and the effects 

of 𝜑 in that solutions are negligible. Numerical results are found for illustrative values of all 

the flow parameters by using bvp4c scheme in MATLAB. The critical values 𝜆𝑐 of 𝜆 are seen 

in opposing flow for small rate of deceleration parameter 𝜔 while it changes to assisting flow 

for large value of 𝜔. The content of this chapter has been submitted in scientific reports. 
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Chapter 1 

 A comparative study of different nanofluid models for the 

oscillatory stagnation point flow 

1.1 Introduction 

In this chapter, we have presented the theoretical comparison of two main methods of 

nanofluids, phase flow and Buongiorno models. The governing flow equations for oscillatory 

oblique stagnation point flow are deliberated in fixed frame and in moving frame of references. 

The complicated coupled system of differential equations is transformed into non-dimensional 

form via a suitable similarity transformation. Then numerical and analytical results have been 

obtained by using the homotopy analysis method and the results are discussed through graphs 

and tables. 

1.2 Mathematical formulation for two-phase model: 

Consider the problem of electrically conducting stagnation point flow of nanofluid over an 

oscillatory surface with velocity 𝑈 cos𝜔 𝑡̅ The fluid impinges obliquely to the oscillatory 

surface �̅� = 0. By neglecting external mechanical body force and body couple the flow 

rheological equations becomes 

𝜕�̅�

𝜕�̅�
 +  

𝜕�̅�

𝜕�̅�
= 0, (1.1) 

𝜐𝑛𝑓 (
𝜕2�̅�

𝜕�̅�2
+
𝜕2�̅�

𝜕�̅�2
) − �̅�

𝜕�̅�

𝜕�̅�
− �̅�

𝜕�̅�

𝜕�̅�
−
𝜕�̅�

𝜕𝑡̅
−
𝜎𝑓𝐵0

2

𝜌𝑛𝑓
�̅� =

1

𝜌𝑛𝑓

𝜕�̅�

𝜕�̅�
, (1.2) 

𝜐𝑛𝑓 (
𝜕2�̅�

𝜕�̅�2
+
𝜕2�̅�

𝜕�̅�2
) − �̅�

𝜕�̅�

𝜕�̅�
− �̅�

𝜕�̅�

𝜕�̅�
−
𝜕�̅�

𝜕𝑡̅
=  

1

𝜌𝑛𝑓

𝜕�̅�

𝜕�̅�
, (1.3) 

𝛼𝑛𝑓  (
𝜕2𝑇

𝜕�̅�2
+
𝜕2𝑇

𝜕�̅�2
) − �̅�

𝜕𝑇

𝜕�̅�
− �̅�

𝜕𝑇

𝜕�̅�
−
𝜕𝑇

𝜕𝑡̅
= 0, (1.4) 

where 𝜌𝑛𝑓 , 𝜐𝑛𝑓 and 𝛼𝑛𝑓 are defined in Table 1.1. From Eq. (1.1), we considered that 

�̅� =
𝜕�̅�

𝜕�̅�
,  �̅� = −

𝜕�̅�

𝜕�̅�
. (1.5) 
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Putting Eq. (1.5) in Eqs. (1.2)-(1.4) and eliminate the pressure from resulting equations 

using �̅��̅��̅� = �̅��̅��̅� yields 

𝜕(∇̅2�̅�)

𝜕𝑡̅
−
𝜕(�̅�, ∇̅2�̅�)

𝜕(�̅�, �̅�)
− 𝜐𝑛𝑓∇̅

4�̅� +
𝜎𝑓𝐵0

2

𝜌𝑛𝑓

𝜕2�̅�

𝜕�̅�2
= 0, (1.6) 

𝛼𝑛𝑓  (
𝜕2𝑇

𝜕�̅�2
+
𝜕2𝑇

𝜕�̅�2
) −

𝜕𝑇

𝜕𝑡̅
−
𝜕�̅�

𝜕�̅�

𝜕𝑇

𝜕�̅�
+
𝜕�̅�

𝜕�̅�

𝜕𝑇

𝜕�̅�
= 0. (1.7) 

Eqs (1.6,1.7) were solved in both fixed and moving frame of references as studied by [66]. 

1.2.1 Fixed frame of reference: 

According to [67] and [66], we assume that 

�̅� = 𝑎[�̅�𝑓(̅�̅�) + �̅�(𝑡,̅ �̅�)]. (1.8) 

We consider that the fluid occupies the entire plane �̅� > 0 and the plate at �̅� = 0 is 

oscillating with velocity 𝑈𝑐𝑜𝑠(𝜔𝑡̅). Furthermore, we assume the stream function away from 

the plate as [66] �̅� = 𝑎 [
1

2
𝛾�̅�2 + �̅��̅�]. Thus, the boundary conditions are,

𝑓(̅0) = 0,   �̅�(𝑡,̅ 0) = 0,   𝑓′̅(0) = 0 ,   �̅��̅�(𝑡̅, 0) = 𝑅𝑒[
𝑈

𝑎
𝑒𝑖𝜔𝑡̅] (1.9) 

𝑓̅′(�̅�) = 1,   �̅��̅�(𝑡,̅ �̅�) = 𝛾�̅�  as  �̅� → ∞. (1.10) 

We are interested only in real part of the complex quantity. Making use of Eq. (1.8) and Eq. 

(1.6), we get 

𝜐𝑛𝑓
𝑑4𝑓̅

𝑑�̅�4
+ a(𝑓̅

𝑑3𝑓̅

𝑑�̅�3
−
𝑑𝑓̅

𝑑�̅�

𝑑2𝑓̅

𝑑�̅�2
) −

𝜎𝑓𝐵0
2

𝜌𝑛𝑓

𝑑2𝑓̅

𝑑�̅�2
= 0 (1.11) 

 𝜐𝑛𝑓
𝜕4�̅�

𝜕�̅�4
+ 𝑎 (𝑓̅

𝜕3�̅�

𝜕�̅�3
−
𝜕�̅�

𝜕�̅�

𝑑2𝑓̅

𝑑�̅�2
) −

𝜕3�̅�

𝜕�̅�2𝜕𝑡̅
−
𝜎𝑓𝐵0

2

𝜌𝑛𝑓

𝜕2�̅�

𝜕�̅�2
= 0 (1.12) 

Integrate Eqs. (1.11) and (1.12) with respect to �̅� and use Eq. (1.10), we get 
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𝜐𝑛𝑓
𝑑3𝑓̅

𝑑�̅�3
+ 𝑎 (𝑓̅

𝑑2𝑓̅

𝑑�̅�2
−
𝑑𝑓̅

𝑑�̅�

𝑑𝑓̅

𝑑�̅�
) −

𝜎𝑓𝐵0
2

𝜌𝑛𝑓

𝑑𝑓̅

𝑑�̅�
= −𝑎 −

𝜎𝑓𝐵0
2

𝜌𝑛𝑓
(1.13) 

 𝜐𝑛𝑓
𝜕3�̅�

𝜕�̅�3
+ 𝑎 (𝑓̅

𝜕2�̅�

𝜕�̅�2
−
𝜕�̅�

𝜕�̅�

𝑑𝑓̅

𝑑�̅�
) −

𝜕2�̅�

𝜕�̅�𝜕𝑡̅
−
𝜎𝑓𝐵0

2

𝜌𝑛𝑓

𝜕�̅�

𝜕�̅�
= −

𝜎𝑓𝐵0
2

𝜌𝑛𝑓
𝛾�̅� (1.14) 

For non-dimensionalizing, we introduce 

𝑓(̅�̅�) =  √
𝜐𝑓

𝑎
𝑓(𝑦), �̅�(𝑡̅, �̅�) =

𝜐𝑓

𝑎
[𝑔0(𝑦) + 𝜀𝑔1(𝑦)𝑒

𝑖𝑡],

 𝑦 = √
𝑎

𝜐𝑓
�̅�, Ω =  

𝜔

𝑎
, 𝜀 =

𝑈

√𝜐𝑓𝑎
, 𝑡 = 𝜔𝑡̅

}

. (1.15) 

Eqs. (1.13)-(1.14) along with the boundary conditions (1.9) and (1.10) take the form 

 𝜐𝑛𝑓

𝜐𝑓
𝑓′′′ + 𝑓𝑓′′ − (𝑓′)2 −𝑀2𝑓′ = −1 −𝑀2, (1.16) 

 𝜐𝑛𝑓

𝜐𝑓
𝑔0

′′′ + 𝑓𝐺0′′ − 𝑓′𝑔0′ − 𝑀
2𝑔0′ = −𝑀2𝛾𝑦, (1.17) 

 𝜐𝑛𝑓

𝜐𝑓
𝑔1

′′′ + 𝑓𝑔1′′ − 𝑓
′𝑔1′ − 𝑖Ω𝑔1

′ −𝑀2𝑔1′ = 0, (1.18) 

𝑓′(0)  =  0, 𝑓(0)  =  0,  𝑓′(∞)  =  1, (1.19) 

𝑔0
′ (0)  =  0, 𝑔0(0)  =  0, 𝑔0′

′(∞)  =  𝛾, (1.20) 

𝑔1
′ (0) = 1, 𝑔1(0) = 0, 𝑔1

′(∞) = 0. (1.21) 

In flow along the surface the important parameters to determine the flow behavior is the 

skin friction coefficient 𝐶𝑓. The shear stress at the plate is given by 𝜏𝑤 and are defined below 

𝐶𝑓 =
𝜏𝑤

1
2𝜌𝑓𝑈𝑤

2
, 

𝜏𝑤 = 𝜇𝑛𝑓
𝜕�̅�

𝜕�̅�
|�̅�=0. 
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By using Eqs. (1.15), the above equations reduced to 

1

2
𝑅𝑒�̅�𝐶𝑓 =

𝜇𝑛𝑓

𝜇𝑓
[√𝑅𝑒�̅�𝑓

′′(0) + 𝑔0
′′(0) + 𝜖𝑔1

′′(0)𝑒𝑖𝑡], (1.22) 

where 𝑅𝑒�̅� = 𝑎�̅�²/𝑣𝑓. 

With the help of Eqs. (1.15), we find the dimensionless stream function as 

𝜓 =
�̅�

𝜐𝑓
= 𝑥𝑓(𝑦) + 𝑔0(𝑦) + 𝜀𝑔1(𝑦)𝑒

𝑖𝑡. (1.23) 

The separating stream line making an angle, say 𝛼, with the plate. This line can be obtained 

by putting 𝜓 = 0 as [66]. Thus, we have 

𝜓 =
1

2
𝛾𝑦2 + 𝑥 𝑦 = 0

which gives a straight line 𝑦 = (−
2

𝛾
) 𝑥 whose slope is 𝑚 = −

2

𝛾
. Thus, we can easily find the 

relation between the free stream parameter 𝛾 and the impinging angle 𝛼 as 

𝛼 = 𝑡𝑎𝑛−1 (−
2

𝛾
). 

Further, the point of attachment of the separation stream line can be found by setting 𝜏𝑤 =

0. It is also known as the point of zero skin friction

𝑥𝑠 = −
[𝑔0

′′(0) + 𝜀𝑔1
′′(0)𝑒𝑖𝑡]

𝑓′′(0)
. 

1.2.2 Moving frame of reference: 

To discuss the flow equations in moving frame, we considered that the (�̅�, �̅�) frame is 

moving with the plate such that the plate becomes at rest reference to (�̅�, �̅�) coordinates system. 

The stream function in this case can be considered as [66] 

�̅� = 𝑎[�̅�𝑓(̅�̅�) + ℎ̅(𝑡,̅ �̅�)]. (1.24) 

The boundary constrains become 
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𝑓(̅ 0 ) = 0,  ℎ̅( 𝑡̅ , 0) = 0,   𝑓̅′ (0) = 0 ,   ℎ̅�̅� (𝑡̅ ,0) = 0  

 𝑓̅′(�̅�) = 1,  ℎ̅�̅�(𝑡̅, �̅�) = 𝛾�̅� − 𝑅𝑒[
𝑈

𝑎
𝑒𝑖𝜔�̅�]   as �̅� → ∞ , 

} (1.25) 

Substitute Eq. (1.24) in Eq. (1.6) and comparing like powers of �̅�. After that integrate once 

with respect to �̅� and then use the conditions of free stream, we get 

𝜐𝑛𝑓
𝑑3𝑓̅

𝑑�̅�3
+ 𝑎 (𝑓̅

𝑑2𝑓̅

𝑑�̅�2
−
𝑑𝑓̅

𝑑�̅�

𝑑𝑓̅

𝑑�̅�
) −

𝜎𝑓𝐵0
2

𝜌𝑛𝑓

𝑑𝑓̅

𝑑�̅�
= −𝑎 −

𝜎𝑓𝐵0
2

𝜌𝑛𝑓
(1.26) 

 𝜐𝑛𝑓
𝜕3ℎ̅

𝜕�̅�3
+ 𝑎 (𝑓̅

𝜕2ℎ̅

𝜕�̅�2
−
𝜕ℎ̅

𝜕�̅�

𝑑𝑓̅

𝑑�̅�
) −

𝜕2ℎ̅

𝜕�̅�𝜕𝑡̅
−
𝜎𝑓𝐵0

2

𝜌𝑛𝑓

𝜕ℎ̅

𝜕�̅�

= −
𝜎𝑓𝐵0

2

𝜌𝑛𝑓
𝛾�̅� + (1 +

𝑖ω

𝑎
+
𝜎𝑓𝐵0

2

𝜌𝑛𝑓𝑎
)𝑈𝑒𝑖ω�̅� 

(1.27) 

Introducing the dimensionless shear flow component of stream function ℎ̅(𝑡̅, �̅�) =

𝜐𝑓

𝑎
[𝑔0(𝑦) − 𝜀ℎ(𝑦)𝑒

𝑖𝑡] and using (1.15) and Eqs. (1.24)-(1.27), we obtain

 𝜐𝑛𝑓

𝜐𝑓
𝑓′′′ + 𝑓𝑓′′ − (𝑓′)2 −𝑀2𝑓′ = −1 −𝑀2, (1.28) 

 𝜐𝑛𝑓

𝜐𝑓
𝑔0

′′′ + 𝑓𝐺0′′ − 𝑓′𝑔0′ − 𝑀
2𝑔0′ = −𝑀2𝛾𝑦, (1.29) 

 𝜐𝑛𝑓

 𝜐𝑓
ℎ′′′ + 𝑓ℎ′′ − 𝑓′ℎ′ − 𝑖Ωℎ′ −𝑀2ℎ′ = −(1 + 𝑖Ω +𝑀2) (1.30) 

𝑓′(0)  =  0, 𝑓(0)  = 0,  𝑓′(∞)  =  1, (1.31) 

𝑔0
′ (0)  =  0, 𝑔0(0)  =  0, 𝑔0′

′(∞)  =  𝛾, (1.32) 

ℎ′(0)  =  0, ℎ(0)  =  0,  ℎ′(∞)  =  1. (1.33) 

The skin friction coefficient 𝐶𝑓 and the wall shear stress 𝜏𝑤, along the plate, are 

𝐶𝑓 =
𝜏𝑤

1
2𝜌𝑓𝑈𝑤

2
, 
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𝜏𝑤 = 𝜇𝑛𝑓
𝜕�̅�

𝜕�̅�
|�̅�=0. 

In non-dimensional form, the above equations take the form 

1

2
𝑅𝑒�̅�𝐶𝑓 =

𝜇𝑛𝑓

𝜇𝑓
[√𝑅𝑒�̅�𝑓

′′(0) + 𝑔0
′′(0) − 𝜖ℎ′′(0)𝑒𝑖𝑡], (1.34) 

Further, the dimensionless stream function can be obtained, as 

𝜓 =
�̅�

𝜐𝑓
= 𝑥𝑓(𝑦) + 𝑔0(𝑦) − 𝜀ℎ(𝑦)𝑒

𝑖𝑡. (1.35) 

The separating stream line can be obtained by setting the far away stream function 𝜓 = 0, 

obtain 

𝜓 =
1

2
𝛾𝑦2 + 𝑥 𝑦 − 𝜀𝑦𝑒𝑖𝑡 = 0.

This gives a straight line 𝑦 = (−
2

𝛾
) 𝑥 + 𝜀𝑒𝑖𝑡 whose slope is 𝑚 = −

2

𝛾
. Thus, we can easily find 

the relation between the free stream parameter 𝛾 and the impinging angle 𝛼 as 

𝛼 = 𝑡𝑎𝑛−1 (−
2

𝛾
). 

Further, the point of attachment of the separation stream line can be found by setting 𝜏𝑤 =

0. It is also known as the point of zero skin friction

�̅�𝑠 = −
[𝑔0′′(0) − 𝜀ℎ′′(0)𝑒

𝑖𝑡]

𝑓′′(0)
. 

1.2.3 Energy Equation: 

The energy equation is same, defined in Eq. (1.7), in both fixed and in moving frame of 

references because the temperature in each layer can be seen same in both references. The 

boundary conditions for Eq. (1.7) is assumed as 

𝑇(�̅�, 0, 𝑡̅) = 𝑇𝑤 + 𝜖(𝑇𝑤 − 𝑇∞)𝑅𝑒[𝑒
𝑖ω�̅�],     𝑇(�̅�,∞, 𝑡̅) = 𝑇∞, (1.36) 
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Introduce the non-dimensional temperature profile  

𝜃(𝑦, 𝑡) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

= 𝜃0(𝑦) + 𝜀𝜃1(𝑦)𝑒
𝑖𝑡 

and using Eqs. (1.15), we attain 

𝑘𝑛𝑓

𝑘𝑓
𝜃0

′′ + 𝑃𝑟
(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓
𝑓𝜃0

′ = 0 , (1.37) 

𝑘𝑛𝑓

𝑘𝑓
𝜃1
′′ + 𝑃𝑟

(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓
𝑓𝜃1

′ − 𝑖Ω𝑃𝑟
(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓
𝜃1 = 0 , (1.38) 

𝜃0(0) = 1,   𝜃0(∞) = 0

𝜃1(0) = 1,   𝜃1(∞) = 0
} . (1.39) 

The local Nusselt number 𝑁𝑢 and the surface heat flux 𝑞𝑤, from the flat plate, are 

𝑁𝑢 =
�̅�𝑞𝑤

𝑘𝑓(𝑇𝑤 − 𝑇∞)
, 

𝑞𝑤 = −𝑘𝑛𝑓
𝜕𝑇

𝜕�̅�
|
�̅�=0

. 

Using Eqs. (1.15), we obtain 

(𝑅𝑒�̅�)
−
1
2 𝑁𝑢 = −

𝑘𝑛𝑓

𝑘𝑓
 (𝜃0

′(0)  +  𝜀𝜃1(0)𝑒
𝑖𝑡), (1.40) 

1.3 Mathematical formulation for Buongiorno model: 

To avoid the repetition, the momentum equations for Buongiorno nanofluid model can be 

obtained from section 1.2 by putting 𝜑 = 0 (defined in  𝜐𝑛𝑓/𝜐𝑓 see Table 1.1) for both fixed 

and moving frame of references. Therefore, here we mention only temperature and 

concentration equations as 
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𝛼 (
𝜕2𝑇

𝜕�̅�2
+
𝜕2𝑇

𝜕𝑦2
) − �̅�

𝜕𝑇

𝜕�̅�
− �̅�

𝜕𝑇

𝜕�̅�
−
𝜕𝑇

𝜕𝑡̅
+
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

𝐷𝑇
𝑇∞
[(
𝜕𝑇

𝜕�̅�
)
2

+ (
𝜕𝑇

𝜕�̅�
)
2

]

+
(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

𝐷𝐵 (
𝜕𝐶

𝜕�̅�

𝜕𝑇

𝜕�̅�
+
𝜕𝐶

𝜕�̅�

𝜕𝑇

𝜕�̅�
) = 0 

(1.41) 

𝐷𝐵  (
𝜕2𝐶

𝜕�̅�2
+
𝜕2𝐶

𝜕�̅�2
) − �̅�

𝜕𝐶

𝜕�̅�
− �̅�

𝜕𝐶

𝜕𝑦
−
𝜕𝐶

𝜕𝑡̅
+
𝐷𝑇
𝑇∞
(
𝜕2𝑇

𝜕�̅�2
+
𝜕2𝑇

𝜕�̅�2
) = 0 (1.42) 

𝑇(𝑡,̅ �̅�, 0) = 𝑇𝑤 + 𝜖(𝑇𝑤 − 𝑇∞)𝑅𝑒[𝑒
𝑖𝜔�̅�],     𝑇(𝑡̅, �̅�, ∞) = 𝑇∞

𝐶(𝑡,̅ �̅�, 0) = 𝐶𝑤 + 𝜖(𝐶𝑤 − 𝐶∞)𝑅𝑒[𝑒
𝑖𝜔�̅�],     𝐶(𝑡̅, �̅�, ∞) = 𝐶∞

} (1.43) 

By using (1.8) and the similarity variables define below, we attain 

𝑓(̅�̅�) =  √
𝜐𝑓

𝑎
𝑓(𝑦), 𝜃(𝑡, 𝑦) = [𝜃0(𝑦) + 𝜖𝜃1(𝑦)𝑒

𝑖𝑡] =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

,

 𝑦 = √
𝑎

𝜐𝑓
�̅�,  Ω =  

ω

𝑎
, 𝜖 =

𝑈

√𝜐𝑓𝑎
,    𝑡 = ω𝑡̅

𝜙(𝑡, 𝑦) = [𝜙0(𝑦) + 𝜖𝜙1(𝑦)𝑒
𝑖𝑡] =

𝐶 − 𝐶∞
𝐶𝑤 − 𝐶∞ }

1

𝑃𝑟
𝜃0
′′ + 𝑓𝜃0

′ + 𝑁𝑏𝜙0
′𝜃0

′
+ 𝑁𝑡(𝜃0

′)2 = 0, (1.44) 

1

𝑃𝑟
𝜃1
′′ + 𝑓𝜃1

′ − 𝑖Ω𝜃1 + 𝑁𝑏(𝜙1
′𝜃0

′
+ 𝜙0

′𝜃1
′
) + 2𝑁𝑡𝜃0

′𝜃1
′ = 0, (1.45) 

𝜙0
′′ + 𝑆𝑐𝑓𝜙0

′ +
𝑁𝑡

𝑁𝑏
𝜃0

′′ = 0, (1.46) 

𝜙1
′′ + 𝑆𝑐(𝑓𝜙0

′ − 𝑖Ω𝜙1) +
𝑁𝑡

𝑁𝑏
𝜃1
′′ = 0, (1.47) 

𝜃0(0) = 1,   𝜃0(∞) = 0

𝜃1(0) = 1,   𝜃1(∞) = 0

𝜙0(0) = 1,   𝜙0(∞) = 0

𝜙1(0) = 1,   𝜙1(∞) = 0}

(1.48) 
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where 

𝑃𝑟 =
𝜐𝑓

𝛼𝑓
, 𝑁𝑡 =

𝐷𝑇
𝑇∞

(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

(𝑇𝑤 − 𝑇∞)

𝜐𝑓
, 𝑁𝑏 = 𝐷𝐵

(𝜌𝐶𝑝)𝑠
(𝜌𝐶𝑝)𝑓

(𝐶𝑤 − 𝐶∞)

𝜐
, 𝑆𝑐 =

𝜐𝑓

𝐷𝐵
. 

The physical quantities are the local Nusselt number, the Sherwood number, the surface 

heat flux 𝑞𝑤 and the mass diffusion flux 𝑗𝑤, along the plate, which can be written as 

𝑁𝑢 =
�̅�𝑞𝑤

𝑘(𝑇𝑤 − 𝑇∞)
, 

𝑆ℎ =
�̅�𝑗𝑤

𝐷(𝐶𝑤 − 𝐶∞)
, 

𝑞𝑤 = −𝑘
𝜕𝑇

𝜕�̅�
|
�̅�=0

, 

𝑗𝑤 = −𝐷
𝜕𝐶

𝜕�̅�
|
�̅�=0

. 

In dimensionless form the above quantities reduced to 

(𝑅𝑒�̅�)
−
1
2𝑁𝑢 = −[𝜃0

′(0) + 𝜀𝜃1(0)𝑒
𝑖𝑡] (1.49) 

(𝑅𝑒�̅�)
−
1
2𝑆ℎ = −[𝜙0

′(0) + 𝜀𝜙1(0)𝑒
𝑖𝑡] (1.50) 

1.4 Homotopy Analysis method: 

For the homotopy analysis method, the main requirements are linear operators and initial 

guesses which are defined below, whereas the detail is given in the book of Liao [68]. 

Therefore, in the preceding sections we presented only the numerical and graphical data. 

𝑓0(𝑦) = 𝑦 − 1 + 𝑒
−𝑦, 𝑔00(𝑦) =

𝛾

2
𝑦2,

  𝑔10(𝑦) = 1 − 𝑒
−𝑦,   ℎ0(𝑦) = 𝑦 − 1 + 𝑒−𝑦

𝜃00(𝑦) = 𝑒
−𝑦, 𝜃10(𝑦) = 𝑒−𝑦,

 𝜙00(𝑦) = 𝑒−𝑦, 𝜙10(𝑦) = 𝑒−𝑦 }
 
 

 
 

 (1.51) 

  The linear operators are given by, 
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𝐿𝑓 =
𝑑3𝑓

𝑑𝑦3
+
𝑑2𝑓

𝑑𝑦2
, 𝐿𝑔0 =

𝑑3𝑔0
𝑑𝑦3

,

 𝐿𝑔1 =
𝑑3𝑔1
𝑑𝑦3

−
𝑑𝑔1
𝑑𝑦

,   𝐿ℎ =
𝑑3ℎ

𝑑𝑦3
+
𝑑2ℎ

𝑑𝑦2

𝐿𝜃0 =
𝑑2𝜃0
𝑑𝑦2

− 𝜃0, 𝐿𝜃1 =
𝑑2𝜃1
𝑑𝑦2

− 𝜃1,

 𝐿𝜙0 =
𝑑2𝜙0
𝑑𝑦2

− 𝜙0, 𝐿𝜙1 =
𝑑2𝜙1
𝑑𝑦2

− 𝜙1}

(1.52) 

1.5  Results and Discussion: 

The aim of this study is to present the comparison of main models of nanofluids, i.e. two-

phase model and Buongiorno model. This comparison is made on the rising parameters of 

oblique stagnation point flow over oscillatory surface. The flow equations (1.16)-(1.21), (1.30), 

(1.37)-(1.39) and (1.44)-(1.48) have been solved in fixed and moving frame of references by 

using homotopy analysis method. We have used copper (Cu) as a nanoparticle and water as a 

base fluid in this chapter whereas the thermophysical properties of nanoparticles and base fluid 

are given in Table 1.2. To validate the HAM procedure, the comparison of data is made for the 

particular case as shown in Table 1.3. These results are in good agreement with the former 

results by [69,70,71]. We can observe from Fig. 1.1 that the normal component of velocity 

𝑓′(𝑦) increases against M and 𝜑 and the boundary layer thickness in the normal direction 

decreases against both parameters. Also, the magnitude of steady part of shear velocity 𝑔0′(𝑦) 

increase against 𝜑 and M as shown in Fig. 1.2. As well as, these figures show that the behavior 

of 𝑔0′(𝑦) for 𝛾 < 0 and 𝛾 > 0 is symmetric about 𝛾 = 0. Fig. 1.3 display the effects of M and 

𝜑 on the temporal parts of shear velocity in fixed frame of reference 𝑔₁′(𝑦) and in moving 

frame of reference ℎ′(𝑦). It is seen that 𝑔₁′(𝑦) increases while ℎ′(𝑦) decreases against both M 

and 𝜑 whereas the boundary layer thickness of both velocity components decreases against M 

and 𝜑. Fig. 1.4 depicts shear velocity component 𝑔𝑦(𝑦, 𝑡) in the unsteady domain. Generally, 

free stream velocity drives the flow due to the plate oscillation. At the plate, the velocity of 

nanofluid is minimum and gradually it approaches the free stream velocity as approaches 

infinity. It is observed that, in fixed frame, the amplitude of oscillation is maximum at the 

surface, whereas, in the moving frame the amplitude is maximum at the free stream. It satisfies 

the boundary constrains which also shows validity of obtained results. Figs. 1.5 are plotted for 
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stream lines in the case of impinging fluid at different angles. It intersects the surface at the 

point 𝑥 = 𝑥𝑠 which is the point of zero velocity that is stagnation point. Its location depends 

on the values of 𝛾. It is observed that for the positive values of 𝛾, the stagnation point appears 

on the left sides of the plate from the origin whereas the opposite behavior can be seen for the 

negative values of 𝛾. The behavior of temperature and concentration profile against different 

physical parameters are shown in Figs. 1.6. It is observed that the temperature profile increases 

against 𝜑 and the amplitude of oscillation is maximum at the surface and gradually decrease 

when it goes away from the surface. Furthermore, temperature profile increases for higher 

values of 𝑁𝑡 and 𝑁𝑏, whereas, concentration profile increases against 𝑁𝑡 and decreases for 

higher values of 𝑁𝑏. For some particular values of Pr, the temperature profile is observed in 

two-phase model and Buongiorno model as shown in Fig. 1.7. We observed that 𝜃(𝑦, 𝑡) 

decreases in both models for higher values of 𝑃𝑟 and the value of 𝜃(𝑦, 𝑡) in two-phase model 

is higher than the Buongiorno model. The influence of skin friction coefficient against different 

physical parameters are shown in Figs. 1.8. We observed that the behavior of skin friction is 

same in both frame of references. Also, the skin friction coefficient has oscillation behavior 

against time t. Furthermore, skin friction increases against M and 𝜑 and change the phase of 

oscillation for different values of Ω. The influence of Nusselt number against different 

involving parameters are described in Figs. 1.9. from these figures we observed that Nusselt 

number has oscillatory behavior against time t and the amplitude of oscillation increase by 

increasing Ω. Also, the value of Nusselt number is same for 𝑁𝑡 = 𝑁𝑏 = 0 in Buongiorno 

model and 𝜑 = 0 in two-phase model. Further, Nusselt number increase with respect to Pr in 

both nanofluid models. Fig. 1.10 suggest that Sherwood number increases against Nb and 

decreases against Nt. 
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(a) (b) 

Fig. 1. 1. Normal component of velocity profile 𝑓′(𝑦) against 𝑀 and φ. 

(a) (b) 

Fig. 1. 2. Steady part of shear velocity 𝑔0′(𝑦) against 𝑀 and 𝜑. 
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(a) (b) 

Fig. 1. 3. Temporal parts of shear velocity in fixed frame 𝑔1
′ (𝑦) and moving frame ℎ′(𝑦) 

against 𝑀 and 𝜑. 

(a) (b) 

Fig. 1. 4. Time dependent flow 𝑔𝑦(𝑦, 𝑡) at different locations from the surface when Ω =

1, 𝛾 = 1,𝑀 = 0.5, 𝜀 = 0.2 . (a) fixed frame of reference (b) moving frame of reference. 
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(a) 

(b) 

Fig. 1. 5. Streamlines pattern when Ω = 1, 𝑀 = 0.5, 𝑡 =
𝜋

2
, 𝜀 = 0.2 (a) fixed frame of 

reference (b) moving frame of reference. 
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(a) (b) 

(c)  (d) 

Fig. 1. 6. Influence of concentration and temperature profiles for different values of the 

involving parameters.  
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Fig. 1. 7. Comparison of two-phase model and Buongiorno model against Pr when Ω =

1,𝑀 = 0.5, 𝑡 =
𝜋

2
, 𝜀 = 0.2.

(a) (b) 

Fig. 1. 8. Variation of skin friction coefficient (a) fixed frame of reference (b) moving 

frame of reference. 
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(a) (b) 

(c) 

Fig. 1. 9. Variation of Nusselt number (a) 𝑁𝑡,𝑁𝑏 and φ (b) Ω (c) 𝑃𝑟. 
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Fig. 1. 10. Sherwood number for different value of 𝑁𝑡 and 𝑁𝑏. 

Table. 1. 1. Effective thermophysical quantities of nanofluids [72] 

Dynamic viscosity of nanofluid 𝜇𝑛𝑓 =
𝜇𝑓

(1 − 𝜑)2.5
, 

Density of nanofluid 𝜌𝑛𝑓 = (1 − 𝜑)𝜌𝑓 + 𝜑𝜌𝑠,

Thermal expansion coefficient of 

nanofluid 

𝛽𝑛𝑓 = (1 − 𝜑)𝛽𝑓 + 𝜑𝛽𝑠,

Electric conductivity of nanofluid 𝜎𝑛𝑓 = (1 − 𝜑)𝜎𝑓 + 𝜑𝜎𝑠,

Kinematic viscosity of nanofluid 𝜐𝑛𝑓 =
𝜇𝑓

( 1 − 𝜑 )2.5  ×  [(1 − 𝜑)𝜌𝑓 +𝜑𝜌𝑠]
, 

Heat capacity of nanofluid ( 𝜌𝐶𝑝 )𝑛𝑓 =
( 1 − 𝜑 ) ( 𝜌𝐶𝑝 )𝑓 +𝜑 (𝜌𝐶𝑝)𝑠,

Thermal conductivity of nanofluid 𝑘𝑛𝑓

𝑘𝑓
 =  

(𝑘𝑠 + 2𝑘𝑓) − 2 𝜑 (𝑘𝑓 − 𝑘𝑠)

(𝑘𝑠 + 2𝑘𝑓) + 𝜑 (𝑘𝑓 − 𝑘𝑠)
, 

Thermal diffusivity of nanofluid 
𝛼𝑛𝑓 =

𝑘𝑛𝑓

(𝜌𝐶𝑝)𝑛𝑓
, 



27 

Table. 1. 2. Thermophysical properties of nanoparticles and base fluids [72]. 

Thermophysical 

properties 

𝐶𝑝(𝐽

/𝑘𝑔𝐾) 

𝜌 (𝑘𝑔

/𝑚³) 

𝑘 (𝑊

/𝑚𝐾) 

𝜎 (S/m) 𝛽 × 10−5

(1/K) 

Pure-water 4179 997.1 0.613 5.5

× 10−6

21 

Ethylene glycol 2430 1115 0.253 1 × 10−7 70 

Engine oil 1910 884 0.144 1.07

× 10−6

57 

Copper (𝐶𝑢) 385 8933 400 59.6

× 106

1.67 

Alumina (𝐴𝑙2𝑂3) 765 3970 40 35 × 106 0.85 

Titania or 

Titanium Oxide (𝑇𝑖𝑂2) 

686.2 4250 8.9538 2.0 × 106 0.9 

SWCNT 425 2600 6600 1.26

× 106

0.19 

MWCNT 796 1600 3000 0.21 

Table. 1. 3. Validation of results for 𝑓′′(0). 

M Ariel [69] Grosan et al. [70] T. Javed [71] Present 

Study 

0.0 1.232588 1.232588 1.232597 1.232593 

0.16 1.295368 1.295368 1.295377 1.295369 

0.64 1.467976 1.467976 1.467987 1.467975 

1.0 1.585331 1.585331 1.585342 1.585329 
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1.6 Conclusion 

This chapter is based on the comparison of two main models of nanofluids namely two-

phase model and Buongiorno model. We have check this comparison on the oblique 

stagnation point flow over an oscillatory surface and considered a mixture of Cu and water 

as a nanofluid for two-phase model. The governing equations of this comparative study 

have been solved analytically with the help of homotopy analysis method and results are 

discussed through graphs. The conclusions of this study are summarized as follows: 

• In fixed frame of reference, the amplitude of oscillation is maximum at the surface

while in moving frame the amplitude is maximum at free stream.

• Both skin friction coefficient and Nusselt number have oscillatory behavior against

𝑡.

• Generally, the values of physical quantities skin friction coefficient and Nusselt

number doesn’t match for two-phase model and Buongiorno model.

• The values of Nusselt number are same for both models, only, when we choose

𝑁𝑡 = 𝑁𝑏 = 0 in Buongiorno model and 𝜑 = 0 in two-phase model.

• The behavior of skin friction coefficient and Nusselt number are same in both fixed

frame and moving frame of reference.
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Chapter # 2 

 Phase flow study of MHD nanofluid with slip effects on 

oscillatory oblique stagnation point flow in view of inclined 

magnetic field  

2.1 Introduction 

In second chapter we studied oblique stagnation point flow of MHD nanofluid over the 

oscillatory and slip surface. We compared three different nanoparticles namely, Alumina 

(𝐴𝑙2𝑂3), Copper (𝐶𝑢), and Titania (𝑇𝑖𝑂2) by assuming water as a base fluid. Mathematical 

equations were formulated by applying magnetic field in the direction of dividing stream line. 

The complicated coupled system of differential equations is transformed into non-dimensional 

form via a suitable similarity transformation. The numerical results have been obtained by 

using the midpoint method with Richardson extrapolation enhancement. The effects of 

different involved parameters on the flow characteristics are presented in tables and showed 

graphically. 

Fig. 2. 1. Geometry of the problem 
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2.2 Problem description and governing equations 

Consider the problem of stagnation point flow over an oscillatory surface with velocity 

𝑈0 cos𝜔 𝑡̅. The �̅�-coordinate is taken horizontally and the �̅�-coordinate is considered 

perpendicular to horizontal direction and is pointed in outward direction towards the fluid as 

shown in Fig. 2.1. It is assumed that the fluid impinges obliquely to the oscillatory surface. 

The governing equations of fluid flow can be written as 

𝜇𝑛𝑓�̅�
2�̅� − 𝜌𝑛𝑓

𝜕�̅�

𝜕𝑡̅
− (�̅� ⋅ �̅�)�̅� + 𝜇𝑒(�̅� × �̅�) × �̅� + �̅��̅� = 0,

𝛼𝑛𝑓�̅�
2�̅� −

𝜕�̅�

𝜕𝑡̅
− (�̅� ⋅ �̅�)�̅� = 0,

�̅� × �̅� = 𝜎𝑒(�̅� + 𝜇𝑒�̅� × �̅�),

�̅� ∙ �̅� = 0, �̅� ⋅ �̅� = 0, �̅� × �̅� = 𝟎, �̅� ⋅ �̅� = 0,

 (2.1) 

where 𝜇𝑛𝑓, 𝜌𝑛𝑓 and 𝛼𝑛𝑓 are defined in Table 1.1. �̅� and �̅� = 𝟎 are the magnetic and electric 

fields and are defined as 

�̅� =  𝐻(𝑐𝑜𝑠 𝜗𝒊 +  𝑠𝑖𝑛 𝜗𝒋), ϑ =  arctan (−2𝑎/𝑏 ) 

Consider the boundary conditions to system (2.1) as  

�̅� = 0, �̅� − 𝜆1
𝜇𝑛𝑓

𝜇𝑓

𝜕�̅�

𝜕�̅�
= 𝑈 cos𝜔 𝑡̅,

�̅� − 𝜆2
𝑘𝑛𝑓

𝑘𝑓

𝜕�̅�

𝜕�̅�
= �̅�𝑤 + 𝜖(�̅�𝑤 − �̅�∞)𝑅𝑒[𝑒

𝑖𝜔�̅�]
}
 
 

 
 

 at �̅� = 0

      
�̅� = −𝑎�̅�,   �̅� = 𝑎�̅� + 𝑏�̅�,       �̅� = �̅�∞      as         �̅� → ∞,

 (2.2) 

where 𝜆1 and 𝜆2 are the velocity slip and thermal jump parameters. 

The free stream velocities in system (2.2) shows that the streamlines are hyperbolas. The 

asymptotes of these stream lines, also known as degenerate streamlines, can be obtained from 

the free stream velocities as 

�̅� = 0    𝑎𝑛𝑑  �̅� = −
2𝑎

𝑏
�̅�. (2.3) 

We consider a more general case of free stream that the fluid imping obliquely on the plane 
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�̅�  =  𝐴 by letting 

∀ �̅� ∈ ℝ and �̅� ≥ 𝐴 ⇒   �̅� = −𝑎(�̅� − 𝐴), �̅� = 𝑎�̅� + 𝑏(�̅� − 𝐵),       

The stagnation point become in this case is (𝑏(𝐵 −  𝐴)/𝑎, 𝐴) and the asymptotes of the 

hyperbolic streamlines are 

�̅� = 𝐴 

And 

�̅� = −
2𝑎

𝑏
�̅� + 2𝐵 − 𝐴. 

Further [73] stated that “the oblique stagnation point flow exists if, and only if, the external 

magnetic field is parallel to the dividing streamline” and shown that 

�̅�0 =
𝐻0(−𝑏�̂� + 2𝑎𝒋̂)

√4𝑎2 + 𝑏2
. (2.4) 

After neglecting the induced magnetic and electric field, we can write 

(�̅� × �̅�) × �̅� ≅ 𝜎𝑒𝜇𝑒(�̅� × �̅�0) × �̅�0, (2.5) 

and by assuming 

 �̅� = −𝑎𝑓(̅�̅�),   �̅� = 𝑎�̅�𝑓̅′(�̅�) + 𝑏�̅�(�̅�, 𝑡)̅,    (2.6) 

the Eqs. (2.1)1,2 and (2.2) reduce to 

𝑎�̅� [𝑎𝑓̅′
2
− 𝑎𝑓�̅�̅′′ − 𝑣𝑛𝑓𝑓̅

′′′ + 4𝑎2
𝜎𝑓

𝜌𝑛𝑓

𝐵0
2

4𝑎2 + 𝑏2
𝑓̅′]

+ 𝑏 [ �̅��̅�  +  𝑎 (�̅�𝑓̅
′ − 𝑓�̅̅�′)  −  𝑣𝑛𝑓�̅�

′′

+ 2 𝑎2  
𝜎𝑓

𝜌𝑛𝑓

𝐵0
2

4𝑎2 + 𝑏2
(2�̅� − 𝑓)̅] = −

1

𝜌𝑛𝑓

𝜕�̅�

𝜕�̅�
  , 

(2.7) 

𝑎2 𝑓 ̅𝑓̅′ + 𝑣𝑛𝑓 𝑎 𝑓̅
′′ +

𝜎𝑓

𝜌𝑛𝑓
 

𝐵0
2

4𝑎2 + 𝑏2
( 2 𝑎2𝑏�̅�𝑓̅′ + 𝑎𝑏2(2�̅� − 𝑓)̅) = −

1

𝜌𝑛𝑓

𝜕�̅�

𝜕�̅�
  , (2.8) 
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𝑓(̅0) = 0, 𝑓̅′(0) − 𝜆1  
𝜇𝑛𝑓

𝜇𝑓
 𝑓̅′′ (0) = 0 ,

�̅� (0, 𝑡̅) − 𝜆1
𝜇𝑛𝑓

𝜇𝑓
�̅�′(0, 𝑡̅) = 𝑅𝑒 [

𝑈

𝑏
𝑒𝑖𝜔�̅�] ,

�̅�′(�̅�, 𝑡̅) = 1,   𝑓̅′(�̅�) = 1,        as  �̅� → ∞.   }

(2.9) 

From the free stream velocities (2.9)4,5, we can easily find the solutions �̅� and 𝑓 ̅for large 

�̅� as 

𝑔 ̅~ �̅� − 𝐵,   𝑓 ̅~ �̅� − 𝐴,  𝑎𝑠   �̅� → ∞. (2.10) 

In consideration of Eq. (2.8), the pressure field takes the form 

�̅�(�̅�, �̅�) = −𝜌𝑛𝑓 [𝑣𝑛𝑓 𝑎𝑓̅
′ +

𝑎2

2
𝑓̅2

+
𝜎𝑓

𝜌𝑛𝑓

𝐵0
2

4𝑎2 + 𝑏2
{𝑎𝑏2 (∫(2�̅�(�̅�, 𝑡̅) − 𝑓(̅�̅�)) 𝑑�̅�

�̅�

0

) + 2𝑎2𝑏�̅�𝑓}̅]

+ �̅�(�̅�),

(2.11) 

where �̅�(�̅�) is determined by assuming that �̅� and free stream velocities have same behavior 

as given in system (2.2). Thus, from equations (2.10) and (2.11), we get 

�̅�(�̅�) = −𝜌𝑛𝑓
𝑎2

2
(
𝜎𝑓

𝜌𝑛𝑓

4𝑎2𝐵0
2

4𝑎2 + 𝑏2
+ 1) [�̅�2 − 2

𝑏

𝑎
(𝐵 − 𝐴)�̅�] + �̅�0. (2.12) 

Finally, Eq. (2.11) imply that 
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�̅�0 − �̅�(�̅�, �̅�) = 𝜌𝑛𝑓 [𝑣𝑛𝑓 𝑎𝑓̅
′ +

𝑎2

2
(�̅�2 − 2

𝑏

𝑎
(𝐵 − 𝐴)�̅� + 𝑓̅2)

+
𝜎𝑓

𝜌𝑛𝑓

𝐵0
2

4𝑎2 + 𝑏2
{2𝑎3 (�̅�2 − 2

𝑏

𝑎
(𝐵 − 𝐴)�̅�) + 2𝑎2𝑏�̅�𝑓̅

+ 𝑎𝑏2∫(2�̅�(�̅�, 𝑡̅) − 𝑓(̅�̅�)) 𝑑�̅�

�̅�

0

}]. 

(2.13) 

In Eq. (2.13), �̅�0 is the stagnation pressure and represent that it is the maximum pressure 

throughout the field. By using Eq. (2.13), Eqs. (2.7)-(2.9) takes the form 

1

𝑎
𝑣𝑛𝑓𝑓̅

′′′ + 𝑓�̅�̅′′ − 𝑓̅′
2
−
𝜎𝑓

𝜌𝑛𝑓

4𝑎𝐵0
2

4𝑎2 + 𝑏2
𝑓̅′ = −

𝜎𝑓

𝜌𝑛𝑓

4𝑎𝐵0
2

4𝑎2 + 𝑏2
− 1

1

𝑎
𝑣𝑛𝑓�̅�

′′ + 𝑓�̅̅�′ − �̅�𝑓̅′ +
𝜎𝑓

𝜌𝑛𝑓

4𝑎𝐵0
2

4𝑎2 + 𝑏2
(𝑓̅ − �̅�) −

1

𝑎
�̅��̅� =

(1 +
𝜎𝑓

𝜌𝑛𝑓

4𝑎𝐵0
2

4𝑎2 + 𝑏2
) (𝐵 − 𝐴).

}
 
 
 

 
 
 

 (2.14) 

The following similarity variables are presented to make simpler the mathematical analysis 

of the problem 

𝑦 = √
𝑎

𝑣𝑓
�̅�, 𝑓(𝑦) = √

𝑎

𝑣𝑓
𝑓̅ (√

𝑣𝑓

𝑎
𝑦) , 𝑡 = 𝜔𝑡̅,

𝑔(𝑦, 𝑡) = √
𝑎

𝑣𝑓
�̅� (√

𝑣𝑓

𝑎
𝑦,
𝑡

𝜔
) = 𝑔0(𝑦) + 𝜀𝑔1(𝑦)𝑒

𝑖𝑡 ,

 𝜃(𝑦, 𝑡) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

=  𝜃0(𝑦) + 𝜀𝜃1(𝑦)𝑒
𝑖𝑡.

}
 
 
 
 

 
 
 
 

 (2.15) 

Using the above similarity variables, Eqs. (2.7)-(2.8) together with (2.9) (2.1)2 and (2.2)3,6 

reduce to 
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𝜇𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑔0

′′ + 𝑓𝑔0
′ − 𝑔0𝑓

′ +
𝜌𝑓

𝜌𝑛𝑓
M2(𝑓 − 𝑔0) − (1 +

𝜌𝑓

𝜌𝑛𝑓
M2) (𝔹 − 𝔸) = 0,

𝜇𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑓′′′ + 𝑓𝑓′′ −  𝑓′

2
+ 1 +

𝜌𝑓

𝜌𝑛𝑓
M2(1 − 𝑓′) = 0,

𝜇𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑔1

′′ + 𝑓𝑔1
′ − 𝑔1𝑓

′ −
𝜌𝑓

𝜌𝑛𝑓
M2𝑔1 − 𝑖Ω𝑔1 = 0,

𝑘𝑛𝑓

𝑘𝑓
𝜃0

′′ + 𝑃𝑟
(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

𝑓𝜃0
′ = 0,

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓
𝜃1
′′ + 𝑃𝑟

(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

𝑓𝜃1
′ − 𝑖Ω𝑃𝑟

(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

𝜃1 = 0,

 (2.16) 

𝑓(0) = 0,    𝑓′(0) −
𝜇𝑛𝑓

𝜇𝑓
𝑁1 𝑓

′′(0) = 0,    𝑔0(0) −
𝜇𝑛𝑓

𝜇𝑓
𝑁1 𝑔0

′ (0) = 0,

 𝑔1(0) −
𝜇𝑛𝑓

𝜇𝑓
𝑁1 𝑔1

′ (0) = 1,   

𝜃0(0) −
𝑘𝑛𝑓

𝑘𝑓
𝑁2 𝜃0

′(0) = 1,   𝜃1(0) −
𝑘𝑛𝑓

𝑘𝑓
𝑁2 𝜃1

′(0) = 1,

𝑔0
′ (𝑦) = 1,    𝑓′(𝑦) = 1,     𝑔1(𝑦) = 0,   𝜃1(𝑦) = 0,   𝜃0(𝑦) = 0,          𝑦 → ∞,

     𝑔0(𝑦) = 𝑦 − 𝔹,   𝑓(𝑦) = 𝑦 − 𝔸,                𝑎𝑠              𝑦 → ∞, }
 
 
 
 

 
 
 
 

 (2.17) 

where 

 

𝔹 = √
𝑎

𝑣𝑓
𝐵,   𝔸 = √

𝑎

𝑣𝑓
𝐴,   𝑁2 = 𝜆2√

𝑎

𝑣𝑓
,   𝑁1 = 𝜆1√

𝑎

𝑣𝑓
,

M2 = 4𝑎
𝜎𝑓

𝜌𝑓

B0
2

4a2 + b2
,   Ω =  

𝜔

𝑎
,   𝑃𝑟 =

𝜈𝑓

𝛼
,      𝜖 = √

𝑎

𝑣𝑓

𝑈

𝑏
 ,

  

  (2.18) 

where  𝑁1 and 𝑁2 are the velocity slip and thermal jump parameters. 

Furthermore, the skin-friction coefficient (𝐶𝑓), local wall shear stress 𝜏𝑤, local Nusselt 

number (𝑁𝑢) and surface heat flux 𝑞𝑤 are defined as 

𝐶𝑓 =
𝜏𝑤

1
2𝜌𝑓𝑈𝑤

2
, 

𝑁𝑢 =
�̅�𝑞𝑤

𝑘𝑓(�̅�𝑤 − �̅�∞)
, 



35 

𝜏𝑤 = [𝜇𝑛𝑓
𝜕�̅�

𝜕�̅�
]|
�̅�=0

, 

𝑞𝑤 = −𝑘𝑛𝑓
𝜕�̅�

𝜕�̅�
|
�̅�=0

. 

By making use of (2.15), the above equations reduced 

1

2
𝑅𝑒�̅�𝐶𝑓 =

𝜇𝑛𝑓

𝜇𝑓
[√𝑅𝑒𝑥𝑓

′′(0) +
𝑏

𝑎
(𝑔0

′ (0) + 𝜖𝑔1
′ (0)𝑒𝑖𝑡)]

𝑁𝑢

√𝑅𝑒�̅�
= −

𝑘𝑛𝑓

𝑘𝑓
𝜃0

′(0) −
𝑘𝑛𝑓

𝑘𝑓
𝜀𝜃1′(0)𝑒

𝑖𝑡,

At the surface �̅�  =  0, three points carry significant importance: the stagnation point 

towards which the separating streamline far away from the surface are directed, the position 

where maximum pressure is exerted �̅�  =  �̅�𝑝, and the position of zero tangential stress �̅�  =

 �̅�𝑠. The equation of separating streamline which intersect the boundary is 

 𝑥 = √
𝑎

𝑣𝑓
�̅�, 𝑥𝑓(𝑦) +

𝑏

𝑎
∫( 𝑔0(𝑠) + 𝜀𝑒

𝑖𝑡  𝑔1(𝑠)) 𝑑𝑠

𝑦

0

= 0. (2.19) 

From Eq. (2.13) and wall shear stress, we see that 

�̅�𝑝 =
𝑏

𝑎
(
𝑣𝑓

𝑎
)
1/2

(𝔹 − 𝔸) 

�̅�𝑠 = −
𝑏

𝑎
(
𝑣𝑓

𝑎
)
1/2 [𝑔0′(0) + 𝜀𝑔1′(0)𝑒

𝑖𝑡]

𝑓′′(0)

(2.20) 

We note that �̅�𝑝 does not depend on 𝑀2 and the ratio

�̅�𝑝

�̅�𝑠
= −(𝔹 − 𝔸)

𝑓′′(0)

[𝑔0′(0) + 𝜀𝑔1′(0)𝑒𝑖𝑡]
,

is same for all angles of incidence. 
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2.3 Solution procedure 

Numerical solutions of (2.16)1 and (2.17)1,2,7,12 have been solved numerically by means 

of midpoint method with Richardson extrapolation enhancement. Notice that we have coupled 

system of governing equations in which 𝑓(𝑦) is coupled in  𝜃0(𝑦), 𝑔0(𝑦), 𝜃1(𝑦) and  𝑔1(𝑦) 

but not vice versa. Thus, we can find the solution for 𝑔0(𝑦)-flow as 

𝑔0(𝑦) = 𝐶1𝑓
′′ + 𝐶2𝑓

′′𝛥(𝑦) + (𝔸 − 𝔹)𝑓′ + 𝑔0𝑝(𝑦), 

with 

𝐶1 = 𝑁1
𝜇𝑛𝑓

𝜇𝑓

𝑔0
′ (0)

𝑓′′(0)
+ (𝔹 − 𝔸)

𝑓′(0)

𝑓′′(0)
 , 

𝐶2 = 𝑁1
𝜇𝑛𝑓

𝜇𝑓
𝑔0
′ (0)(𝑓′′(0))

2
𝜐𝑓
𝜐𝑛𝑓  +  (𝔹 − 𝔸)𝑓′(0)(𝑓′′(0))

2
𝜐𝑓
𝜐𝑛𝑓  , 

𝛥(𝑦) = ∫ (𝑓′′(𝑠))
−2

𝜐𝑓
𝜐𝑛𝑓

𝑦

0

⋅ 𝐸𝑥𝑝 (−
𝜐𝑓

𝜐𝑛𝑓
∫ 𝑓(𝜂)
𝑠

0

𝑑𝜂)𝑑𝑠 , 

𝑔0𝑝(𝑦) =
𝜌𝑓

𝜌𝑛𝑓
𝑀2𝑓′′(𝑦)

{
 
 

 
 ∫ 𝛥(𝑠) ⋅ 𝑓(𝑠)(𝑓′′(𝑠))

(2
𝜐𝑓
𝜐𝑛𝑓

−1)
𝑦

0

⋅ 𝐸𝑥𝑝 (
𝜐𝑓

𝜐𝑛𝑓
∫ 𝑓(𝜂)
𝑠

0

𝑑𝜂)𝑑𝑠

−𝛥(𝑦)∫ 𝑓(𝑠)(𝑓′′(𝑠))
(2
𝜐𝑓
𝜐𝑛𝑓

−1)
𝑦

0

⋅ 𝐸𝑥𝑝 (
𝜐𝑓

𝜐𝑛𝑓
∫ 𝑓(𝜂)
𝑠

0

𝑑𝜂) 𝑑𝑠
}
 
 

 
 

 

Furthermore, the series solutions of equation (2.16)3 and (2.16)5 for small value of Ω 

have been obtained 

𝑔1(𝑦) = ∑(iΩ)𝑛𝜙𝑛(𝑦)

∞

𝑛=0

. 

𝜃1(𝑦) = ∑(iΩ)𝑛𝜃1n(𝑦)

∞

𝑛=0

. 

In present problem, the real part of solutions is  

𝑔1(𝑦) = 𝜙0(𝑦) − Ω
2𝜙2(𝑦) + Ω

4𝜙4(𝑦)…

𝜃1(𝑦) = 𝜃10(𝑦) − Ω
2𝜃12(𝑦) + Ω

4𝜃14(𝑦)…
} 

where 
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𝜇𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌𝑛𝑓
𝜙0

′′ + 𝑓𝜙0
′ − 𝜙0𝑓

′ −
𝜌𝑓

𝜌𝑛𝑓
M2𝜙0 = 0

𝜇𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌𝑛𝑓
𝜙𝑚

′′ + 𝑓𝜙𝑚
′ − 𝜙𝑛𝑓

′ −
𝜌𝑓

𝜌𝑛𝑓
M2𝜙𝑚 = 𝜙𝑚−1

𝜙0(0) −   𝑁1
𝜇𝑛𝑓

𝜇𝑓
𝜙0
′ (0) = 1,      𝜙0(∞) = 0 

𝜙𝑚(0) −   𝑁1
𝜇𝑛𝑓

𝜇𝑓
𝜙𝑚
′ (0) = 0,      𝜙𝑚(∞) = 0

}
 
 
 
 

 
 
 
 

,        𝑚 = 1,2,3… 

and 

𝑘𝑛𝑓

𝑘𝑓
𝜃1𝑛

′′ + 𝑃𝑟
(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

𝑓𝜃1𝑛
′ − 𝑃𝑟

(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

𝜃1(𝑛−1) = 0

  𝜃1𝑛(0) −   𝑁2
𝑘𝑛𝑓

𝑘𝑓
 𝜃1𝑛
′ (0) = 0,        𝜃1𝑛(∞) = 0

}
 
 

 
 

,      𝑛 = 1,2,3… 

in which 𝜃10(𝑦) = 𝜃0(𝑦) which can be obtained from (2.16)4 

𝜃0(𝑦) =
1

𝐽𝑛𝑓(∞,𝑃𝑟) + 𝑁2
𝑘𝑛𝑓
𝑘𝑓

(𝐽𝑛𝑓(∞,𝑃𝑟) − 𝐽𝑛𝑓(𝑦, 𝑃𝑟)) 

where 

𝐽𝑛𝑓(𝑦, 𝑃𝑟) = ∫ 𝐸𝑥𝑝 (−
𝑘𝑓

𝑘𝑛𝑓

(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

𝑃𝑟∫ 𝑓(𝜂)𝑑𝜂
𝑠

0

)𝑑𝑠
𝑦

0

 

and 

𝐽𝑛𝑓(∞, 𝑃𝑟) = lim
𝑦→∞

𝐽𝑛𝑓(𝑦, 𝑃𝑟). 

The above systems have been solved numerically using midpoint method with Richardson 

extrapolation enhancement and the numerical integration for 𝑔0(𝑦) and 𝜃0(𝑦) can be executed 

easily with aid of any mathematical software.  

2.4 Results and Discussion 

The numerical results of the modeled equations are obtained for three types of different 

nanoparticles namely Titania (𝑇𝑖𝑂2), Alumina (𝐴𝑙2𝑂3) and copper (𝐶𝑢) having water as a base 

fluid and the thermophysical properties of nanoparticles and base fluid are given in Table 1.2. 
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The solid volume fraction 𝜑 of the nanoparticles represent up to what fraction of whole liquid, 

solid concentrations are incorporated. Keeping the fluid nature of base material, it is kept less 

than 0.2. We have used constant Prandtl number for water, 𝑃𝑟 = 6.2, throughout in 

computation. The values of the skin friction components and boundary layer thickness are 

obtained and compared with previously published results [73] as given in Table 2.1,2.2. It is 

seen that the comparison is in good agreement and thus gives us confidence to the accuracy of 

the numerical results presented in this chapter. 

We illustrate the effects of the parameters 𝑀,𝜑,𝑁1, 𝑁2 and Ω on dimensionless stream-

function, velocity profile, temperature profile, velocity gradient at the surface, temperature 

gradient at the surface and boundary layer thickness. Generally, the flow over an oscillatory 

surface is driven by the combine effect of free stream parameter and magnetic field. Fig 2.2 

shows that normal component of velocity profile satisfies the boundary constrains which also 

shows validity of obtained results. Furthermore, from this figure, we depict that 𝑓(𝑦) = 𝑦 −

0.393589 and the velocity gradient decreases gradually when it goes far away from the 

surface. The maximum value of velocity gradient is found at the surface and from this figure 

we illustrate that 𝑓′′(0) = 2.346663. The steady part of shear velocity 𝑔0(𝑦) changes its

direction for positive and negative values of 𝔹− 𝔸 and the same behavior is seen for 𝑔0′(𝑦)

as shown in Fig. 2.3. Furthermore, the magnitude of 𝑔0(𝑦) is gradually increase whenever it

achieves the free stream  𝑔0(𝑦) = 𝑦 − 𝔹. The normal velocity component 𝑓′(𝑦) increases

against both parameters 𝑀 and 𝑁1 whereas the boundary layer thickness decreases. Figs. 2.5

shows the effects of different involved flow parameters 𝑀, 𝑁1 and 𝔹− 𝔸 on the steady part of 

shear flow 𝑔0(𝑦) and its gradient 𝑔0′(𝑦). Fig. 2.6 depicts velocity profile 𝑢(𝑦, 𝑡) in the

unsteady domain. Generally, free stream velocity drives the flow due to the plate oscillation. 

At the plate nanofluid velocity is minimum and gradually it approaches the free stream 

velocity. It observes that the amplitude of oscillation is maximum at the surface and regularly 
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increase until it achieves the free stream velocity. We know that temperature equation does not 

influence the momentum equations therefore, the effects of thermal jump parameter 𝑁2 does 

not affect the velocity components and hence velocity components are identical against thermal 

jump parameter 𝑁2. Moreover, the thermal boundary layer thickness decreases for higher 

values of 𝑀 and 𝑁2 as shown in Fig. 2.7. Fig. 2.8 are plotted for stream lines in the case of 

impinging fluid at different angles 𝔹− 𝔸 and Hartmann number 𝑀. It intersects the wall 𝑦 =

0 at the point �̅�𝑠, which is the point of zero skin friction. The location of this point depends on 

𝔹− 𝔸 and we observed that for positive values of 𝔹 − 𝔸, the stagnation point appears at the 

right side of the plate from the origin whereas the opposite can be seen for negative values of 

𝔹− 𝔸. Fig. 2.9 is constructed for the comparison of different nanoparticles. These results 

show that Alumina (𝐴𝑙2𝑂3) are definitely small, while Titania (𝑇𝑖𝑂2) and copper (𝐶𝑢) 

distinctly under estimate the Nusselt number. The numerical values of skin friction coefficient 

components and Nusselt number components are given in Table 2.3-2.6. From these tables we 

observed that momentum boundary layer thickness decreases against all physical involved 

parameters whereas 𝐴𝑙2𝑂3 produce highest value of boundary layer and 𝐶𝑢 has the lowest. 

The values of  𝑓′′(0) increases for higher values of M and decreases against velocity slip 

parameter 𝑁1. Also, the values of  𝑓′′(0) is maximum for 𝐶𝑢 − 𝑤𝑎𝑡𝑒𝑟 nanofluids and 

minimum for 𝐴𝑙2𝑂3 − 𝑤𝑎𝑡𝑒𝑟 nanofluids. From Table 2.4 we observed that the values of 

steady part of shear component 𝑔0′(0) change its sign against 𝔹 − 𝔸 that is for 𝔹− 𝔸 < 0 the 

values of 𝑔0′(0) are positive and for 𝔹− 𝔸 > 0 it is negative. It is due the change of direction 

of velocity profile for 𝔹− 𝔸 ≷ 0. Furthermore, the values of 𝑔0′(0) decreases for higher 

values of M and 𝑁1. Also, 𝑔0′(0) is maximum in the case of 𝐶𝑢 − 𝑤𝑎𝑡𝑒𝑟 and minimum for 

𝐴𝑙2𝑂3 − 𝑤𝑎𝑡𝑒𝑟. Table 2.5(a, b) represents the values of ∅0
′(0), ∅2

′(0) and ∅4
′(0) for 
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different values 𝑀, 𝜑 and 𝑁1. Table 2.6(a, b) shows that Nusselt number enhance against the

Hartmann number 𝑀 and reduce for higher values of  𝑁2 and 𝜑. Also 𝐶𝑢 − 𝑤𝑎𝑡𝑒𝑟 produce the 

highest Nusselt number whereas 𝐴𝑙2𝑂3 − 𝑤𝑎𝑡𝑒𝑟 produce the lowest.

Fig. 2. 2. 𝑓(𝑦), 𝑓′(𝑦), 𝑓′′(𝑦) when 𝑀 = 2,  𝑁1 = 0.0, 𝜑 = 0.0,

(a) (b) 

Fig. 2. 3. 𝑔0(𝑦), 𝑔0′(𝑦) for different 𝔹− 𝔸 when 𝑀 = 2,𝑁1 = 0.0, 𝜑 = 0.0.
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(a) 

(b) 

Fig. 2. 4. Influence of 𝑓′(𝑦), (a)  𝜑 = 0.0, 𝑁1 = 0.0 and (b)  𝑀 = 0, 𝜑 = 0.0
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(a) (b) 

(c) (d) 

Fig. 2. 5. Influence of 𝑔0(𝑦) and 𝑔0′(𝑦) (a)-(b) 𝜑 = 0.0, 𝑁1 = 0.0 and (c)-(d) 𝜑 =
0.0,𝑀 = 0.0. 
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Fig. 2. 6. Time dependent flow 𝑢(𝑦, 𝑡) at different locations from the surface when 𝜑 =
0.1, 𝑁1 = 0.0,𝑀 = 1.0, 𝜀 = 0.2, Ω = 0.2, 𝔹 − 𝔸 = −𝔸, 𝑥 = 1 .  

(a) (b) 

Fig. 2. 7. Variation of  𝜃(𝑦, 𝑡) (a)  𝜑 = 0.1,  𝑁2 = 0.0, 𝑁1 = 0.5, 𝜖 = 0.0 and (b)  𝜑 =
0.1,𝑀 = 2.0, 𝑁1 = 0.5, 𝜖 = 0.0. 



44 

 

 

 

(a)      (b)     (c) 

 

(d)    (e)     (f) 

Fig. 2.8. Streamlines pattern for 𝐶𝑢 −𝑊𝑎𝑡𝑒𝑟 nanofluid when  𝑡 = 0,
𝑏

𝑎
= 1,Ω = 0.5, 𝑁1 =

0.5, 𝜀 = 0.2 for 𝔹− 𝔸 = −5𝔸, 0, 5𝔸 respectively. (a), (b), (c) for 𝑀 = 1 and (d), (e), (f) for 

𝑀 = 5. 
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Fig. 2. 9. Bar graph comparison of various nanoparticles. 
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Table. 2. 1. Validation of results for 𝑓′′(0) and 𝔸 when φ = 0 and N1 = 0. 

𝑴 𝒇′′(𝟎) 𝔸 

Present results [73] Present results [73] 

0 1.232588 1.2326 0.647901 0.6479 

1 1.585331 1.5853 0.541007 0.5410 

2 2.346663 2.3467 0.393589 0.3936 

5 5.147964 5.1480 0.190729 0.1907 

10 10.074741 10.0747 0.098774 0.0988 

 

Table. 2. 2. Validation of results for 𝑔0
′(0) when 𝜑 = 0 and 𝑁1 = 0. 

𝑴 𝔹 − 𝔸 
𝒈𝟎

′(𝟎) 
[73] Present results 

0 

−𝔸 = −0.647901 1.4065 1.406545 

0 0.6080 0.607950 

𝔸 = 0.647901 0.1906 -0.190645 

1 

−𝔸 = −0.541007 1.4240 1.423990 

0 0.5663 0.566316 

𝔸 = 0.541007 -0.2913 -0.291360 

2 

−𝔸 = −0.393589 1.4541 1.454064 

0 0.5304 0.530442 

𝔸 = 0.393589 -0.3932 -0.393181 

5 

−𝔸 = −0.190729 1.4880 1.488171 

0 0.5063 0.506303 

𝔸 = 0.190729 -0.4754 -0.475564 

10 

−𝔸 = −0.098774 1.4970 1.496769 

0 0.5016 0.501643 

𝔸 = 0.098774 -0.4937 -0.493483 

 

  



47 

Table. 2. 3. 𝑓′′(0) and 𝔸 for different values of 𝑁1, 𝑀, 𝜑 and nanoparticles.

𝜑 𝑀 𝑁1 

𝐴𝑙2𝑂3-Water 

nanofluid 
𝐶𝑢-Water nanofluid 

𝑇𝑖𝑂2-Water 

nanofluid 

𝑓′′(0) 𝔸 𝑓′′(0) 𝔸 𝑓′′(0) 𝔸 

0.0 0.0 0.0 1.232587 0.647900 1.232587 0.647900 1.232587 0.647900 

0.1 1.231074 0.648697 1.447977 0.551523 1.244317 0.641792 

0.2 1.178253 0.677777 1.501345 0.531918 1.198801 0.666160 

0.1 1.0 1.509640 0.561376 1.691074 0.494686 1.520451 0.556870 

5.0 4.550725 0.214712 4.613509 0.210182 4.554289 0.214448 

10.0 8.850999 0.112272 8.883376 0.111603 8.852829 0.112233 

1.0 0.5 0.801948 0.246579 0.851419 0.200339 0.805091 0.243368 

1.0 0.531899 0.154881 0.552730 0.122968 0.533255 0.152631 

1.5 0.396376 0.112573 0.407669 0.088472 0.397119 0.110861 

Table. 2. 4. 𝑔0
′(0) and 𝔹 − 𝔸 for different values of 𝑁1, 𝜑,𝑀 and nanoparticles

𝑁1 𝑀 𝜑 
𝐶𝑢-Water nanofluid 

𝐴𝑙2𝑂3-Water 

nanofluid 

𝑇𝑖𝑂2-Water 

nanofluid 

𝔹 − 𝔸 𝑔0
′(0) 𝔹 − 𝔸 𝑔0

′(0) 𝔹 − 𝔸 𝑔0
′(0)

0.0 0.0 0.0 

-

0.647900 
1.406544 

-

0.647900 
1.406544 

-

0.647900 
1.406544 

0 0.607950 0 0.607950 0 0.607950 

0.647900 
-

0.190644 
0.647900 

-

0.190644 
0.647900 

-

0.190644 

0.1 

-

0.551523 
1.406544 

-

0.648697 
1.406544 

-

0.641792 
1.406544 

0 0.607949 0 0.607950 0 0.607950 

0.551523 
-

0.190644 
0.648697 

-

0.190644 
0.641792 

-

0.190644 

0.2 

-

0.531918 
1.406544 

-

0.677777 
1.406544 

-

0.666160 
1.406544 

0 0.607949 0 0.607950 0 0.607950 

0.531918 
-

0.190644 
0.677777 

-

0.190643 
0.666160 

-

0.190643 

1.0 0.1 
-

0.494686 
1.416619 

-

0.561376 
1.420283 

-

0.556870 
1.420010 
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0 0.580068 0 0.572806 0 0.573315 

0.494686 
-

0.256482 
0.561376 

-

0.274670 
0.556870 

-

0.273379 

5.0 

-

0.210182 
1.480522 

-

0.214712 
1.485147 

-

0.214448 
1.484872 

0 0.510844 0 0.508050 0 0.508212 

0.210182 
-

0.458832 
0.214712 

-

0.469045 
0.214448 

-

0.468447 

10.0 

-

0.111603 
1.494335 

-

0.112272 
1.495843 

-

0.112233 
1.495757 

0 0.502917 0 0.502124 0 0.502169 

0.111603 
-

0.488500 
0.112272 

-

0.491595 
0.112233 

-

0.491419 

0.5 1.0 

-

0.200339 
0.580021 

-

0.246579 
0.621280 

-

0.243368 
0.618665 

0 0.409448 0 0.423537 0 0.422731 

0.200339 0.238875 0.246579 0.225793 0.243368 0.226798 

1.0 

-

0.122968 
0.355580 

-

0.154881 
0.388140 

-

0.152631 
0.386037 

0 0.287611 0 0.305759 0 0.304646 

0.122968 0.219643 0.154881 0.223378 0.152631 0.223254 

1.5 

-

0.088472 
0.255542 

-

0.112573 
0.281223 

-

0.110861 
0.279551 

0 0.219474 0 0.236602 0 0.235525 

0.088472 0.183407 0.112573 0.191980 0.110861 0.191500 
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Table. 2. 5(a). Numerical values of−∅0
′(0), ∅2

′(0) and ∅4
′(0).

𝑁1 𝑀 𝜑 
𝐶𝑢-Water nanofluid 𝐴𝑙2𝑂3-Water nanofluid 

−∅0
′(0) ∅2

′(0) ∅4
′(0) −∅0

′(0) ∅2
′(0) ∅4

′(0)

0.0 0.0 0.0 0.811301 0.094676 0.011705 0.811301 0.094676 0.011705 

0.1 0.953073 0.111221 0.013751 0.810305 0.094560 0.011691 

0.2 0.988200 0.115320 0.014258 0.775538 0.090503 0.011189 

1.0 0.1 1.270471 0.065327 0.004642 1.169800 0.047055 0.002793 

5.0 4.463166 0.002545 0.000003 4.440694 0.001369 0.000001 

10.0 8.805590 0.000344 0 8.794587 0.000181 0 

0.5 1.0 0.765688 0.027499 0.002707 0.722477 0.022119 0.001778 

1.0 0.518612 0.012595 0.001418 0.498804 0.010703 0.000990 

1.5 0.389577 0.007080 0.000847 0.378456 0.006179 0.000611 

Table. 2. 5(b). Numerical values of −∅0
′(0), ∅2

′(0) and ∅4
′(0).

𝝋 𝑴 𝑵𝟏 

𝑻𝒊𝑶𝟐-Water nanofluid 

−∅0
′(0) ∅2

′(0) ∅4
′(0)

0.0 0.0 0.0 0.811301 0.094676 0.011705 

0.1 0.819022 0.095577 0.011817 

0.2 0.789063 0.092081 0.011384 

0.1 1.0 1.175675 0.048140 0.002895 

5.0 4.441957 0.001426 0.000001 

10.0 8.795207 0.000189 0 

1.0 0.5 0.725143 0.022478 0.001833 

1.0 0.500059 0.010838 0.001017 

1.5 0.379170 0.006246 0.000626 
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Table. 2. 6(a). −𝜃0
′(0), 𝜃12

′(0) and 𝜃14
′(0) when 𝑁1 = 0.5.

𝜑 𝑀 𝑁2 
𝐴𝑙2𝑂3-Water nanofluid 𝐶𝑢-Water nanofluid 

−𝜃0
′(0) 𝜃12

′(0) 𝜃14
′(0) −𝜃0

′(0) 𝜃12
′(0) 𝜃14

′(0)

0.0 0.0 0.0 1.518447 0.615987 0.239294 1.518447 0.615987 0.239294 

0.1 1.374020 0.467158 0.155804 1.420924 0.427659 0.128054 

0.2 1.237966 0.368580 0.110049 1.291484 0.330620 0.086582 

0.1 1.0 1.418100 0.432202 0.131229 1.451223 0.406570 0.114632 

5.0 1.613428 0.320890 0.068744 1.615178 0.319486 0.068152 

10.0 1.671431 0.300534 0.059955 1.670761 0.300222 0.059866 

1.0 0.5 0.967924 0.376784 0.290370 0.999085 0.354113 0.255369 

1.0 0.871449 0.276243 0.288779 0.903134 0.258399 0.251649 

1.5 0.829395 0.215670 0.260087 0.861412 0.201215 0.225352 

Table. 2. 6(b). −𝜃0
′(0), 𝜃12

′(0) and 𝜃14
′(0) when 𝑁1 = 0.5.

𝝋 𝑴 𝑵𝟐 

𝑻𝒊𝑶𝟐-Water nanofluid 

−𝜃0
′(0) 𝜃12

′(0) 𝜃14
′(0)

0.0 0.0 0.0 1.518447 0.615987 0.239294 

0.1 1.399510 0.475001 0.158319 

0.2 1.281369 0.381109 0.113856 

0.1 1.0 1.443460 0.440112 0.133775 

5.0 1.641117 0.327016 0.070167 

10.0 1.700527 0.306012 0.061082 

1.0 0.5 0.988548 0.386194 0.294901 

1.0 0.889490 0.284371 0.295033 

1.5 0.846134 0.222513 0.266708 



51 

 

2.5 Conclusion 

This chapter is based on study of slip conditions and MHD effects on the oscillatory non-

orthogonal stagnation point flow of water based nanofluids for three different type of 

nanoparticles, namely, 𝐶𝑢, 𝐴𝑙2𝑂3 and 𝑇𝑖𝑂2. The governing coupled system is solved 

numerically by using BVP solution method with the aid of midpoint method with Richardson 

extrapolation enhancement. Moreover, a detailed analysis is presented for the magnetic, 

velocity slip and thermal jump effects on the flow behavior. The important finding of the 

current study can be summarized as follows: 

• Velocity profile changes its direction for 𝔹 − 𝔸 > 0 and 𝔹− 𝔸 < 0. 

• The momentum boundary layer thickness becomes thinner for higher values of 𝑀,𝜑 

and 𝑁2. 

• The thermal boundary layer thickness decreases for higher values of 𝑁2 and 𝑀. 

• The velocity amplitude of oscillation is maximum at the surface and gradually decrease 

when it goes away from the surface 

• The stagnation point appears on the right side of the plate, from origin, for 𝔹 − 𝔸 > 0 

and on the opposite side for 𝔹 −𝔸 < 0. 

• The momentum boundary layer thickness decreases against all physical involved 

parameters whereas 𝐴𝑙2𝑂3 produce highest value of boundary layer and 𝐶𝑢 has the 

lowest. 

• The values of  𝑓′′(0) increases for higher values of M and decreases against velocity 

slip parameter 𝑁1. Also,  𝑓′′(0) is maximum for 𝐶𝑢 − 𝑤𝑎𝑡𝑒𝑟 nanofluids and minimum 

for 𝐴𝑙2𝑂3 − 𝑤𝑎𝑡𝑒𝑟 nanofluids. 

• Nusselt number enhances against the Hartmann number 𝑀 and reduce for higher values 

of  𝑁2 and 𝜑. 

• 𝐶𝑢 − 𝑤𝑎𝑡𝑒𝑟 produce the highest Nusselt number whereas 𝐴𝑙2𝑂3 − 𝑤𝑎𝑡𝑒𝑟 produce the 

lowest.  
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Chapter # 3 

 Impact of external magnetic field and metallic particles on 

oscillatory oblique stagnation point flow of a micropolar 

fluid 

3.1 Introduction 

The present chapter is made to envision the characteristics of magneto-hydrodynamic 

oscillatory oblique stagnation point flow of micropolar nanofluid. The applied magnetic field 

is assumed parallel towards dividing streamline. A comparative study is executed for copper 

Cu and Alumina Al2O3 nanoparticles while considering water as a base fluid. To be more 

specific, in the presence of both weak and strong concentration, the physical situation of 

micropolar fluid is mathematically modeled in terms of differential equations. The transformed 

coupled system is finally solved by midpoint method with the Richardson extrapolation 

enhancement and shooting mechanism with fifth order R-K Fehlberg technique. The obtained 

results are compared with existing published literature. An excellent match has been found 

which yields the validity of the current analysis.  

Fig. 3. 1. Flow description of the problem. 
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3.2 Problem description and governing equations: 

Consider the problem of stagnation point flow of an electrically conducting micropolar 

nanofluid over an oscillatory surface with velocity 𝑈 cos𝜔 𝑡̅. The fluid impinges obliquely on 

the oscillatory surface �̅� = 0. By neglecting external mechanical body force and body couple 

the flow rheological equations become 

�̅� ∙ �̅� = 0

(
𝜕�̅�

𝜕𝑡̅
+ (�̅� ⋅ �̅�)�̅�) = −

1

𝜌𝑛𝑓
�̅��̅� +

1

𝜌𝑛𝑓
(𝜇𝑛𝑓 + 𝜘)�̅�

2�̅� +
𝜇𝑒
𝜌𝑛𝑓

(�̅� × �̅�) × �̅�

+
𝜘

𝜌𝑛𝑓
(�̅� × �̅�)

𝜌𝑛𝑓𝑗 (
𝜕�̅�

𝜕𝑡̅
+ (�̅� ⋅ �̅�)�̅�) = 𝛾𝑛𝑓�̅�

2�̅� + 𝜘(�̅� × �̅�) − 2𝜘�̅�

(
𝜕�̅�

𝜕𝑡̅
+ (�̅� ⋅ �̅�)�̅�) = 𝛼𝑛𝑓�̅�

2�̅�

�̅� × �̅� = 0,   �̅� ⋅ �̅� = 0,

   �̅� ⋅ �̅� = 0, �̅� × �̅� = σe(�̅� + μe�̅� × �̅�), }
 
 
 
 
 
 

 
 
 
 
 
 

 (3.1) 

For system (3.1) we append the boundary condition: 

�̅� = 𝑈 cos𝜔 𝑡̅,   �̅� = 0,   �̅� = −𝑛
𝜕�̅�

𝜕𝑦
,   

�̅� = �̅�𝑤 + 𝜖(�̅�𝑤 − �̅�∞)𝑅𝑒[𝑒
𝑖𝜔�̅�]     𝑎𝑡   �̅� = 0

�̅� = 𝑎�̅� + 𝑏�̅�,   �̅� = −𝑎�̅�,   �̅� =
1

2
(∇̅ × V̅),   𝑇 = �̅�∞      𝑎𝑠         �̅� → ∞.}

 
 

 
 

 (2.2) 

It is interesting to note that the concentration of micropolar fluid is controlled by the value 

of micro gyration parameter 𝑛 (0 ≤  𝑛 ≤  1). For the case of 𝑛 =  0, we have �̅�  =  0 at the 

wall which shows strong concentration [74]. Physically it means that microelements near the 

surface are unable to rotate [75]. Further, for the case 𝑛 = ½, narrates the vanishing of anti- 

symmetric part of the stress tensor and indicates weak concentration [76] of microelements. 

On the other side, at 𝑛 = 1, flows indicate turbulent boundary layer flow [77] 

Conditions (3.2) mean that at infinity, �̅� =
1

2
(�̅� × �̅�), the micropolar fluid behaves like a 

classical fluid. 
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The equations of degenerate streamlines, also known as asymptotes of streamlines, can be 

expressed as: 

�̅� = −
2𝑎

𝑏
�̅�  and  �̅� = 0. (3.3) 

Considering a more general motion as reported by [73] 

�̅� = −𝑎(�̅� − 𝐴),   �̅� = 𝑎�̅� + 𝑏(�̅� − 𝐵). 

In this way, the stagnation point is ( 
𝑏

𝑎
(𝐵 −  𝐴), 𝐴) and the asymptotes of the streamlines 

becomes 

�̅� = −
2𝑎

𝑏
�̅� + 2𝐵 − 𝐴,   𝑎𝑛𝑑 �̅� = 𝐴. 

Further, [73] show that 

�̅�0 = H0(b
2 + 4a2)−

1
2(−b�̂� + 2a𝒋̂). (3.4) 

Neglect the influence of induced magnetic field, we have 

(�̅� × �̅�) × �̅�~σeμe(�̅� × �̅�0) × �̅�0,   �̅� = 0, (3.5) 

and by consideration of 

�̅� = �̅��̅�(�̅�) + �̅�(�̅�, 𝑡̅)

 �̅� = −𝑎𝑓(̅�̅�), �̅� = 𝑎�̅�𝑓̅′(�̅�) + 𝑏�̅�(�̅�, 𝑡̅)

𝛾𝑛𝑓 = (𝜇𝑛𝑓 +
𝜘

2
) 𝑗

𝑗 =
𝑎

𝜈𝑓 }
 
 

 
 

, (3.6) 

Eqs. (3.1) and (3.2) can be written as 
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𝑎�̅� [𝑎𝑓̅′
2
− 𝑎𝑓�̅�̅′′ − (𝑣𝑛𝑓 +

𝜘

𝜌𝑛𝑓
)𝑓̅′′′ −

𝜘

𝑎𝜌𝑛𝑓
�̅�′ + 4𝑎2

𝜎𝑛𝑓

𝜌𝑛𝑓

B0
2

4a2 + b2
𝑓̅′]

+ 𝑏 [�̅��̅� + 𝑎(�̅�𝑓̅
′ − 𝑓�̅̅�′) − (𝑣𝑛𝑓 +

𝜘

𝜌𝑛𝑓
) �̅�′′ −

𝜘

𝑏𝜌𝑛𝑓
�̅�′

+ 2𝑎2
𝜎𝑛𝑓

𝜌𝑛𝑓

B0
2

4a2 + b2
(2�̅� − 𝑓)̅] = −

1

𝜌𝑛𝑓

𝜕�̅�

𝜕�̅�
 

(3.7) 

𝑎2𝑓�̅�̅′ + (𝑣𝑛𝑓 +
𝜘

𝜌𝑛𝑓
)𝑓̅′′ −

𝜘

𝜌𝑛𝑓
�̅�

+
𝜎𝑛𝑓

𝜌𝑛𝑓

B0
2

4a2 + b2
( 2𝑎2𝑏�̅�𝑓̅′ + 𝑎𝑏2(2�̅� − 𝑓)̅) = −

1

𝜌𝑛𝑓

𝜕�̅�

𝜕�̅�
 

(3.8) 

(𝑣𝑛𝑓 +
𝜘

2𝜌𝑛𝑓
) (�̅��̅�′′ + �̅�′′) +

𝜘

𝑗𝜌𝑛𝑓
(−𝑎�̅�𝑓̅′′ − 𝑏�̅�′) −

2𝜘

𝑗𝜌𝑛𝑓
(�̅��̅� + �̅�)

= �̅��̅� + (𝑎�̅�𝑓̅
′ + 𝑏�̅�)�̅� − 𝑎𝑓(̅�̅��̅�′ + �̅�′) 

(3.9) 

𝑓(̅0) = 0, 𝑓̅′(0) = 0 , �̅�(0, 𝑡̅) =
𝑈

𝑏
𝑅𝑒(𝑒𝑖𝜔�̅�),

�̅�(0) = −𝑎𝑛𝑓̅′′(0),   �̅�(0, 𝑡̅) = −𝑏𝑛�̅�′(0, 𝑡̅),

𝑓̅′(�̅�) = 1,   �̅�′(�̅�, 𝑡̅) = 1,   �̅�(�̅�) = 0,   �̅�(�̅�, 𝑡̅) = −
𝑏

2
          as        �̅� → ∞   }

 
 

 
 

 (3.10) 

From (3.10), we can find the asymptotic solutions for large �̅� 

�̅�(�̅� )~ �̅� − 𝐵  and  𝑓(̅�̅� )~ �̅� − 𝐴. (3.11) 

From Eqs. (3.7-3.8), we find the pressure field as  
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�̅�0 − �̅�(�̅�, �̅�) = 𝜌𝑛𝑓 [
𝑎2

2
(�̅�2 + 𝑓̅2 − 2

𝑏

𝑎
(𝐵 − 𝐴)�̅�) + (𝑣𝑛𝑓 +

𝜘

𝜌𝑛𝑓
)  𝑎𝑓̅′

+
𝜘

𝜌𝑛𝑓
∫ �̅�(�̅�)𝑑�̅�

�̅�

0

+
𝜎𝑛𝑓

𝜌𝑛𝑓

B0
2

4a2 + b2
{2𝑎2𝑏�̅�𝑓̅ + 4𝑎3 (�̅�2 − 2

𝑏

𝑎
(𝐵 − 𝐴)�̅�)

+ 𝑎𝑏2∫(2�̅�(�̅�, 𝑡)̅ − 𝑓(̅�̅�)) 𝑑�̅�

�̅�

0

}], 

(3.12) 

in which �̅�0 is the stagnation pressure. From Eq. (3.12), it is clearly seen that maximum 

pressure occurs at the stagnation point in through-out the flow domain. Thus Eqs. (3.7) -(3.9) 

implies that 

1

𝑎
(𝑣𝑛𝑓 +

𝜘

𝜌𝑛𝑓
)𝑓̅′′′ − 𝑓̅′

2
+ 𝑓�̅�̅′′ +

𝜘

𝑎2𝜌𝑛𝑓
�̅�′

−4𝑎
𝜎𝑛𝑓

𝜌𝑛𝑓

B0
2

4a2 + b2
(𝑓̅′ − 1) + 1 = 0

1

𝑎
(𝑣𝑛𝑓 +

𝜘

𝜌𝑛𝑓
) �̅�′′ − �̅�𝑓̅′ −

1

𝑎
�̅��̅� + 𝑓�̅̅�

′ +
𝜘

𝑎𝑏𝜌𝑛𝑓
�̅�′

+4𝑎
𝜎𝑛𝑓

𝜌𝑛𝑓

B0
2

4a2 + b2
(𝑓̅ − �̅�) = (1 + 4𝑎

𝜎𝑛𝑓

𝜌𝑛𝑓

B0
2

4a2 + b2
) (𝐵 − 𝐴)

(𝑣𝑛𝑓 +
𝜘

2𝜌𝑛𝑓
) �̅�′′ + 𝑎𝑓�̅̅�′ − 𝑎𝑓̅′�̅� −

𝜘

𝑗𝜌𝑛𝑓
𝑎𝑓̅′′ −

2𝜘

𝑗𝜌𝑛𝑓
�̅� = 0

(𝑣𝑛𝑓 +
𝜘

2𝜌𝑛𝑓
) �̅�′′ + 𝑎𝑓�̅̅�′ − 𝑏�̅��̅� − �̅��̅� −

𝜘

𝑗𝜌𝑛𝑓
𝑏�̅�′ −

2𝜘

𝑗𝜌𝑛𝑓
�̅� = 0

}

(3.13) 

The following similarity variables are presented to make simpler the mathematical analysis 

of the problem 
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𝑓(𝑦) = √
𝑎

𝑣𝑓
𝑓̅ (√

𝑣𝑓

𝑎
𝑦) ,   𝑦 = √

𝑎

𝑣𝑓
�̅�,   𝐹(𝑦) =

1

𝑎
√
𝑣𝑓

𝑎
�̅� (√

𝑣𝑓

𝑎
𝑦) ,   𝑡 = 𝜔𝑡̅, 

𝑔0(𝑦) + 𝜀𝑔1(𝑦)𝑒
𝑖𝑡 = 𝑔(𝑦, 𝑡) = √

𝑎

𝑣𝑓
�̅� (√

𝑣𝑓

𝑎
𝑦,
𝑡

𝜔
), 

𝐺0(𝑦) + 𝜀𝐺1(𝑦)𝑒
𝑖𝑡 = 𝐺(𝑦, 𝑡) =

1

𝑏
�̅� (√

𝑣𝑓

𝑎
𝑦,
𝑡

𝜔
), 

𝜃0(𝑦) + 𝜀𝜃1(𝑦)𝑒
𝑖𝑡 = 𝜃(𝑦, 𝑡) =

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

, 

(3.14) 

Using the above similarity variables, Eqs. (3.13) and (3.14) together with boundary 

conditions (3.10) and (3.2)4,8 reduce to 

(
𝜇𝑛𝑓

𝜇𝑓
+ 𝐾)

𝜌𝑓

𝜌𝑛𝑓
𝑓′′′ −  𝑓′

2
+ 𝑓𝑓′′ + 𝐾

𝜌𝑓

𝜌𝑛𝑓
𝐹′ +

𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
M2(1 − 𝑓′) + 1 = 0,

(
𝜇𝑛𝑓

𝜇𝑓
+ 𝐾)

𝜌𝑓

𝜌𝑛𝑓
𝑔0

′′ + 𝑓𝑔0
′ − 𝑔0𝑓

′ + 𝐾
𝜌𝑓

𝜌𝑛𝑓
𝐺0

′

−
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
M2(𝑔0 − 𝑓) =

(1 +
σnf
σf

𝜌𝑓

𝜌𝑛𝑓
M2) (𝔹 − 𝔸),

(
𝜇𝑛𝑓

𝜇𝑓
+ 𝐾)

𝜌𝑓

𝜌𝑛𝑓
𝑔1

′′ + 𝑓𝑔1
′ − 𝑔1𝑓

′ − 𝑖Ω𝑔1 + 𝐾
𝜌𝑓

𝜌𝑛𝑓
𝐺1

′

−
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
M2𝑔1 = 0,

(
𝜇𝑛𝑓

𝜇𝑓
+
𝐾

2
)
𝜌𝑓

𝜌𝑛𝑓
𝐹′′ − 𝑓′𝐹 + 𝑓𝐹′ − 𝐾

𝜌𝑓

𝜌𝑛𝑓
(𝑓′′ − 2𝐹) = 0,

(
𝜇𝑛𝑓

𝜇𝑓
+
𝐾

2
)
𝜌𝑓

𝜌𝑛𝑓
𝐺0

′′ − 𝑔0𝐹 + 𝑓𝐺0
′ − 𝐾

𝜌𝑓

𝜌𝑛𝑓
(𝑔0

′ − 2𝐺0) = 0,

(
𝜇𝑛𝑓

𝜇𝑓
+
𝐾

2
)
𝜌𝑓

𝜌𝑛𝑓
𝐺1

′′ + 𝑓𝐺1
′ − 𝑔1𝐹 − 𝑖Ω𝐺1 − 𝐾

𝜌𝑓

𝜌𝑛𝑓
(𝑔1

′ − 2𝐺1) = 0,

𝑘𝑛𝑓

𝑘𝑓
𝜃0

′′ + 𝑃𝑟
(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

𝑓𝜃0
′ = 0,

𝑘𝑛𝑓

𝑘𝑓
𝜃1
′′ + 𝑃𝑟

(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

𝑓𝜃1
′ − 𝑖Ω𝑃𝑟

(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

𝜃1 = 0,
}

(3.15) 
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𝑓(0) = 0,  𝑔0(0) = 0, 𝑓
′(0) = 0,  𝑔1(0) = 1,   𝜃0(0) = 1,   𝜃1(0) = 1,

𝐹(0) = −𝑛𝑓′′(0),   𝐺0(0) = −𝑛𝑔0
′ (0),    𝐺1(0) = −𝑛𝑔1

′ (0),

  𝑔1(𝑦) = 0, 𝑔0
′ (𝑦) = 1, 𝑓′(𝑦) = 1, 𝐹(𝑦) = 0,  𝐺0(𝑦) = −

1

2
,  𝐺1(𝑦) = 0,       𝑦 → ∞ 

𝜃0(𝑦) = 0,   𝜃1(𝑦) = 0, 𝑔(𝑦)~ 𝑦 − 𝔹,   𝑓(𝑦)~ 𝑦 − 𝔸,                           �̅� → ∞ , }
 
 

 
 

 (3.16) 

Where 

𝔹 = 𝐵√
𝑎

𝑣𝑓
,   𝔸 = 𝐴√

𝑎

𝑣𝑓
, M2 = 4𝑎

σf
𝜌𝑓

B0
2

4a2 + b2
, 𝐾 =

𝜘

𝜇𝑓
, Ω =  

𝜔

𝑎
, 𝑃𝑟 =

𝜈𝑓

𝑘𝑓
, 𝜖 =

𝑈

𝑏
√
𝑎

𝑣𝑓
  . 

The surface shear stress (𝐶𝑓) and heat transfer rate (𝑁𝑢) in dimensionless form can be 

expressed as 

𝐶𝑓 =
𝜏𝑤

1
2𝜌𝑓𝑈𝑤

2
,     

 𝑁𝑢 =
�̅�𝑞𝑤

𝑘𝑓(�̅�𝑤 − �̅�∞)
, 

(3.17) 

where 𝜏𝑤, is the wall shear stress and 𝑞𝑤 the surface heat flux defines as 

𝜏𝑤 = [(𝜇𝑛𝑓 + 𝜅)
𝜕�̅�

𝜕�̅�
+ 𝜅�̅�]|

�̅�=0

,     

𝑞𝑤 = −𝑘𝑛𝑓
𝜕�̅�

𝜕�̅�
|
�̅�=0

. 

(3.18) 

By using of (3.14), (3.17) and (3.18), we may write it as 

1

2
𝑅𝑒�̅�𝐶𝑓 = (

𝜇𝑛𝑓

𝜇𝑓
+ (1 − 𝑛)𝐾) [√𝑅𝑒�̅�𝑓

′′(0) +
𝑏

𝑎
𝑔0
′ (0) − 𝜖

𝑏

𝑎
𝑒𝑖𝑡𝑔1

′ (0)] 

(𝑅𝑒�̅�)
−
1
2𝑁𝑢 = −

𝑘𝑛𝑓

𝑘𝑓
𝜃0

′(0) −
𝑘𝑛𝑓

𝑘𝑓
𝜀𝑒𝑖𝑡𝜃1(0), 

At the surface �̅�  =  0, three points carry significant importance: the stagnation point 

towards which the separating streamline far away from the surface are directed, the position 
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where maximum pressure is exerted �̅�  =  �̅�𝑝, and the position of zero tangential stress �̅�  =

 �̅�𝑠. The equation of separating streamline which intersect the boundary is 

 𝑥 = √
𝑎

𝑣𝑓
�̅�, 𝑥𝑓(𝑦) +

𝑏

𝑎
∫( 𝑔0(𝑠) + 𝜀𝑒

𝑖𝑡  𝑔1(𝑠)) 𝑑𝑠

𝑦

0

= 0, (3.19) 

From Eqs. (3.12) and (3.18), we see that 

�̅�𝑝 =
𝑏

𝑎
(
𝑣𝑓

𝑎
)
1/2

(𝛽 − 𝛼), 

�̅�𝑠 = −
𝑏

𝑎
(
𝑣𝑓

𝑎
)
1/2 1

𝑓′′(0)
(𝑔0′(0) + 𝜀𝑒

𝑖𝑡𝑔1′(0)).

(3.20) 

We note that �̅�𝑝 does not depend on 𝑀 whereas �̅�𝑠 depends on 𝑀. The ratio 

�̅�𝑝

�̅�𝑠
= −(𝔹 − 𝔸)

𝑓′′(0)

[𝑔0′(0) + 𝜀𝑒𝑖𝑡𝑔1′(0)]
,

(for a fixed time) is same for all angles of incidence. 

3.3 Solution procedure: 

Numerical solution of (3.15)1,2,4,5 together with their boundary conditions in (3.16) have 

been deliberated by means of shooting technique with fifth order R–K–Fehlberg method and 

midpoint method with the Richardson extrapolation enhancement. 

Furthermore, the series solutions of equations (3.15)3,6 for small value of frequency Ω 

have been obtained, that is 

𝑔1(𝑦) = ∑(𝑖𝛺)𝑛𝛷𝑛(𝑦)

∞

𝑛=0

and 

𝐺1(𝑦) = ∑(𝑖𝛺)𝑛𝛾𝑛(𝑦)

∞

𝑛=0

In this problem, the real part of solution is 
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𝑔1(𝑦) = Φ0(𝑦) − Ω
2Φ2(𝑦) + Ω

4Φ4(𝑦)… , 

where 

𝜇𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌𝑛𝑓
Φ0

′′ + 𝑓Φ0
′ −Φ0𝑓

′ + 𝐾
𝜌𝑓

𝜌𝑛𝑓
𝛾0 −

𝜌𝑓

𝜌𝑛𝑓
M2Φ0 = 0

𝜇𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌𝑛𝑓
Φ𝑛

′′ + 𝑓Φ𝑛
′ −Φ𝑛𝑓

′ + 𝐾
𝜌𝑓

𝜌𝑛𝑓
𝛾𝑛 −

𝜌𝑓

𝜌𝑛𝑓
M2Φ𝑛 = Φ𝑛−1

Φ0(0) = 1,      Φ0(∞) = 0 

Φ𝑛(0) = 0,      Φ𝑛(∞) = 0 }
  
 

  
 

,        𝑛 = 1,2,3… 

The above system has been tackled numerically using midpoint method with the 

Richardson extrapolation enhancement. 

Similarly, for a small value of Ω, equation (3.15)5 becomes 

𝜃1(𝑦) = ∑(iΩ)nΘ1n(𝑦)

∞

n=0

. 

𝜃1(𝑦) = Θ10(𝑦) − Ω
2Θ12(𝑦) + Ω

4Θ14(𝑦)… (3.21) 

From (3.15)4, we have  

𝜃0(𝑦) =
𝐼𝑛𝑓(𝑃𝑟,∞) − 𝐼𝑛𝑓(𝑃𝑟, 𝑦)

𝐼𝑛𝑓(𝑃𝑟,∞)
 (3.22) 

where 

𝐼𝑛𝑓(𝑃𝑟, 𝑦) = ∫ 𝐸𝑥𝑝 (−𝑃𝑟
𝑘𝑓

𝑘𝑛𝑓

(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

∫ 𝑓(𝜂)𝑑𝜂
𝑠

0

)𝑑𝑠
𝑦

0

 

and 

𝐼𝑛𝑓(𝑃𝑟,∞) = lim
𝑦→∞

𝐼𝑛𝑓(𝑃𝑟, 𝑦). 

Making use of Eqs. (3.21) and (3.15)5, we may write 

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓
Θ1𝑛

′′ +
(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

(𝑓Θ1𝑛
′ − Θ1(𝑛−1)) = 0

  Θ1𝑛(0) = 0,        Θ1𝑛(∞) = 0

} ,      𝑛 = 1,2,3… 
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Where Θ10(𝑦) = 𝜃0(𝑦) is given in (3.22)

The numerical integration for the above system can be executed easily with aid of any 

mathematical software. 

3.4 Results and Discussion: 

Numerical assessment is carried out towards model equations by way of water based 

micropolar nanofluid containing metals and oxide ceramics nanoparticles named as Alumina 

(𝐴𝑙2𝑂3) and copper (𝐶𝑢). The range of solid volume fraction 𝜑 for the nanoparticles is 

maintained as 0 ≤   ≤  0.2 along with the upper limit of Prandtl number is 6.2 for base fluid 

i-e water. Table 1.2 is used to present the thermos-physical properties of Copper, Alumina and

water. The numerical scheme is validated by constructing discrete case of Hartmann number 

by ignoring the effects of nanoparticles shown in Table 3.1 and Table 3.2, we have found that 

our obtained results are agreed perfectly with [73]. 

The influences of involved physical parameters on velocity distributions are portrayed in 

Figs. (3.2-3.6). The combined impact of free stream and magnetic action claims the fluid flow 

past an oscillatory sheet. The velocity of nanofluid is minimum near the plate and gradually 

increases until it attains the free stream condition and satisfying the prearranged endpoint 

condition. Fig. 3.2 depicts the behavior of 𝑓(𝑦), 𝑓′(𝑦), 𝑓′′(𝑦) for 𝑀 = 10−7, 𝜑 = 0.0, 𝐾 =

0.0. Fig. 3.4 displays the alterations in 𝑓′(𝑦) for distinct values of 𝐾, 𝜑, 𝑛 and different

nanoparticles when water is considered as base fluid. In Fig. 3.4(a), it is detected that thickness 

of momentum boundary layer increases by increasing the material parameter 𝐾. In Fig. 3.4(b), 

it is seen that the momentum boundary layer thickness decreases with increasing the 

nanoparticle volume fraction 𝜑. The strength of Fig. 3.4(c) is drawn to discuss the impact of 

an imperative parameter 𝑛, the micro gyration parameter, which indicates the concentration of 

micropolar fluid. From this figure, it can be observed that momentum boundary layer thickness 

is thin just in case of weak concentration as compared to strong concentration. It is interesting 

to note that 𝐴𝑙2𝑂3 −𝑤𝑎𝑡𝑒𝑟 nanofluid produce a thicker momentum boundary layer than 𝐶𝑢 −

𝑤𝑎𝑡𝑒𝑟 as illustrated in Fig. 3.4(d). Fig. 3.3 indicates the profile of 𝐹(𝑦), 𝐹′(𝑦) when 𝑀 =

10−7, 𝐾 = 1.0 and , 𝜑 = 0.0. In Fig. 3.5, demonstrates the change in 𝑔0(𝑦) for dissimilar

Hartmann number 𝑀 and micro gyration parameter 𝑛 along with the condition i.e. 𝔹− 𝔸 =
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−5 − 𝔸 and 𝔹− 𝔸 = 5 − 𝔸. The flow field is unaffected by Prandtl number because flow 

equations and temperature are uncoupled. To be more specific, the fact is that for every value 

of 𝑃𝑟, functions i-e 𝑓(𝑦), 𝑔0(𝑦), 𝑔1(𝑦) and their derivatives are found to be identical. In Fig. 

3.6 the impact of time 𝑡 on 𝑢(𝑥, 𝑦, 𝑡) is reported. It is seen that 𝑢(𝑥, 𝑦, 𝑡) shows an oscillation 

performance with maximum amplitude at the surface and gradually decreases away from the 

surface. Fig. 3.7 depicts the attitude of the temperature distribution 𝜃(𝑦, 𝑡) towards 

nanoparticle volume fraction 𝜑 and Hartmann number 𝑀 when 𝑃𝑟 = 6.2. The influence of 

increasing Hartmann number on temperature profile, the decreasing nature of temperature field 

can be observed neat the surface, while it shows a rise in behavior with the enhancement in 

nanoparticle volume fraction. The impact of time 𝑡 on 𝜃(𝑥, 𝑦, 𝑡) is shown with the aid of Fig. 

3.8. It is noticed that 𝜃(𝑥, 𝑦, 𝑡) exhibit waving nature and the amplitude of wave is found 

maximum near the surface and decreases far away from the surface. Further, it is examined 

that the temperature is maximum at the surface, that is 𝑦 = 0, and decrease away from it. The 

oblique flows are presented by way of streamline patterns in Figs. (3.9-3.11). The streamline 

meets the wall 𝑦 = 0, at �̅�𝑠. It is concluded from these figures that their location depends on 

Hartmann number 𝑀, 𝔹− 𝔸 and time 𝑡. Fig. 3.12. shows the bar graph comparison of both 

Copper and Aluminum oxide nanoparticles. It demonstrates that Copper has higher surface 

temperature gradient when contrasted with the Aluminum oxide nanoparticles. 

Table 3.3-3.6 delineate the impacts of the involved parameter on the physical quantities 

near the wall for both Copper and Aluminum oxide nanoparticles when water is treated as a 

base fluid. We comment that the estimations of 𝔸 and 𝑓′′(0) rely on upon 𝑀, 𝜑 and, 𝐾, as 

should be obvious from Table 3.3(a, b). More precisely, 𝑓′′(0) increases and 𝛼 decreases as 

𝜑 and 𝑀 are increases. Moreover, increases in material parameter 𝐾 cause increase in 𝔸 and 

decrease in 𝑓′′(0). Table 3.4(a, b) shows the numerical values of velocity gradient at the 

surface against  𝑀, 𝜑, 𝐾 and 𝔹− 𝔸 = −𝔸, 0, 𝛼 and it is noticed that the magnitude of 𝑔0(𝑦) 

does not depend on 𝜑. As far as the variation of 𝑔0(𝑦) against 𝑀 and 𝐾 are concerned, we 

found its magnitude shows increments when 𝑀 increases while shows decline nature for all 

𝔹− 𝔸 when 𝐾 increases. The rapid increase is found for 𝐶𝑢-water nanofluid as compared to 

𝐴𝑙2𝑂3-water. The numerical variation of ∅0
′(0), ∅2

′(0), ∅4
′(0) against 𝑀, 𝜑, 𝑎𝑛𝑑 𝐾 are 

revealed in Table 3.5(a, b). In Table 3.6(a, b), it is found that temperature gradient is 
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decreasing function of both material parameter 𝐾 and nanoparticle volume fraction 𝜑. Thus, 

the heat transfer rate increase near the surface. It is important to note that 𝐶𝑢-water remarks 

higher heat transfer rate as compared to 𝐴𝑙2𝑂3-water nanofluid. Furthermore, it is also noticed 

that the temperature gradient shows inciting attitude when we increase Hartmann number 𝑀 

which brings enhancement in heat transfer rate near the surface. 

Fig. 3. 2. 𝑓(𝑦), 𝑓′(𝑦), 𝑓′′(𝑦) when 𝑀 = 10−7, 𝜑 = 0.0, 𝐾 = 0.0

Fig. 3. 3. 𝐹(𝑦), 𝐹′(𝑦) when 𝑀 = 10−7, 𝜑 = 0.0, 𝐾 = 1.0.
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(a) (b) 

(c)  (b) 

Fig. 3. 4. Plots showing 𝑓′(𝑦) when 𝑀 = 10−7 (a) 𝜑 = 0.0, 𝑛 = 0,𝑀 = 10−7, (b)  𝑛 =
0.1, 𝐾 = 0.0 and (c)  𝐾 = 0, 𝜑 = 0.0 (d) 𝑛 = 0,𝐾 = 0, 𝜑 = 0.1. 
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(a) (b) 

Fig. 3. 5. Influence of 𝑔0(𝑦), (a) for various 𝑀 when  𝜑 = 0.0, 𝐾 = 0.0 and (b) for various

𝑛 when  𝑀 = 10−7, 𝜑 = 0.0, 𝐾 = 0.

Fig. 3. 6. Time dependent flow 𝑢(𝑦, 𝑡) at different locations from the surface when 𝐶𝑢 −
𝑊𝑎𝑡𝑒𝑟, 𝜑 = 0.1, 𝐾 = 0.0,𝑀 = 10−7, 𝜀 = 0.2, Ω = 0.2, 𝔹 − 𝔸 = −𝔸, 𝑥 = 1.
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(a)         (b) 

Fig. 3. 7. Influence of 𝜃(𝑦, 𝑡) for various parameters when (a)  𝜑 = 0.0, 𝐾 = 0.0 and 

(b)  𝑀 = 10−7, 𝐾 = 0.0. 

 

 

Fig. 3. 8. Time dependent flow 𝜃(𝑦, 𝑡) at different locations from the surface when 𝐶𝑢 −
𝑊𝑎𝑡𝑒𝑟, 𝜑 = 0.1, 𝐾 = 0.0,𝑀 = 10−7, 𝜀 = 0.2, Ω = 0.2, 𝑥 = 1. 
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(a)      (b)     (c) 

Fig. 3. 9. Shows the streamlines for 𝐶𝑢 −𝑊𝑎𝑡𝑒𝑟 nanofluid when 
𝑏

𝑎
= 1,𝑀 = 10−7, 𝐾 =

1, Ω = 0.5, 𝜀 = 0.2, 𝑡 = 𝜋. (a) 𝔹 −𝔸 = −5 − 𝔸, (b) 𝔹− 𝔸 = 0, (c) 𝔹− 𝔸 = 5 − 𝔸. 

 

(a)     (b)     (c) 

Fig. 3. 10. Shows the streamlines for 𝐶𝑢 −𝑊𝑎𝑡𝑒𝑟 nanofluid when 
𝑏

𝑎
= 1,𝔹 − 𝔸 = −5 −

𝔸,𝐾 = 1, Ω = 0.5, 𝜀 = 0.2, 𝑡 = 𝜋. (a) 𝑀 = 10−7, (b) 𝑀 = 10−6, (c) 𝑀 = 10−5. 
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(a) (b) 

(c)  (d) 

Fig. 3. 11. Shows the streamlines of 𝐶𝑢 −𝑊𝑎𝑡𝑒𝑟 nanofluid when 
𝑏

𝑎
= 1, 𝔹 − 𝔸 = −5 −

𝔸,𝐾 = 1, Ω = 0.5, 𝜀 = 0.2, 𝑡 = 0. (a) 𝑡 = 0, (b) 𝑡 =
𝜋

2
, (c) 𝑡 = 𝜋, (d) 𝑡 =

3𝜋

2
. 
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Fig. 3. 12. Bar graph comparison of two nanoparticles concentrations 5%, 15% and 20% 

respectively. 
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Table. 3. 1. Validation of results for 𝑓′′(0) when 𝜑 = 0 and 𝐾 = 0.

𝑴 𝔸 𝑓′′(0) 
Present [73] Present [73] 

0 0.647901 0.6479 1.232588 1.2326 

1 0.541007 0.5410 1.585331 1.5853 
2 0.393589 0.3936 2.346663 2.3467 
5 0.190729 0.1907 5.147964 5.1480 

10 0.098774 0.0988 10.074741 10.0747 

Table. 3. 2. Validation of results for 𝑔0
′(0) when 𝜑 = 0 and 𝐾 = 0.

Table 3.2. 

𝑴 𝔹− 𝔸 𝑔0
′(0)

[73] Present 
0 −𝔸 = −0.647901 1.4065 1.406545 

0 0.6080 0.607950 
𝔸 = 0.647901 -0.1906 -0.190645

1 −𝔸 = −0.541007 1.4240 1.423990 
0 0.5663 0.566316 

𝔸 = 0.541007 -0.2913 -0.291360
2 −𝔸 = −0.393589 1.4541 1.454064 

0 0.5304 0.530442 
𝔸 = 0.393589 -0.3932 -0.393181

5 −𝔸 = −0.190729 1.4880 1.488171 
0 0.5063 0.506303 

𝔸 = 0.190729 -0.4754 -0.475564
10 −𝔸 = −0.098774 1.4970 1.496769 

0 0.5016 0.501643 
𝔸 = 0.098774 -0.4937 -0.493483



71 

 

Table. 3. 3(a). Numerical value of 𝔸 and 𝑓′′(0). 

𝐶𝑢 −𝑊𝑎𝑡𝑒𝑟 

𝑀 𝐾 𝜑 
𝑛 = 0.0 𝑛 = 0.5 

𝔸 𝑓′′(0) 𝔸 𝑓′′(0) 

10−7 1 0.1 0.722568 1.069269 0.647978 1.233009 

10−6   0.644688 1.264293 0.573809 1.440364 

10−5   0.142575 6.935249 0.116581 7.227920 

10−7 2  0.848297 0.868343 0.732395 1.09084 

 3  0.950844 0.742678 0.808043 0.988713 

 4  1.039219 0.655790 0.877179 0.910772 

 1 0.05 0.782726 0.972330 0.696955 1.140483 

  0.15 0.680741 1.139190 0.615133 1.293535 

  0.2 0.657732 1.185850 0.599389 1.327287 

 

Table. 3. 3(b). Numerical value of 𝔸 and 𝑓′′(0). 

𝐴𝑙2𝑂3 −𝑊𝑎𝑡𝑒𝑟 

𝑀 𝐾 𝜑 
𝑛 = 0.0 𝑛 = 0.5 

𝔸 𝑓′′(0) 𝔸 𝑓′′(0) 

10−7 1 0.1 0.846878 0.903951 0.762347 1.047950 

10−6   0.770550 1.040532 0.689359 1.194029 

10−5   0.185034 5.324346 0.152298 5.584560 

10−7 2  0.990380 0.730675 0.861656 0.927134 

 3  1.107115 0.623266 0.950585 0.840333 

 4  1.207568 0.549524 1.031693 0.774098 

 1 0.05 0.861087 0.877879 0.769082 1.033635 

  0.15 0.835022 0.919714 0.756813 1.050349 

  0.2 0.833913 0.925333 0.753188 1.061526 
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Table. 3. 4(a). Numerical value of 𝑔0
′(0).

𝐶𝑢 −𝑊𝑎𝑡𝑒𝑟 

𝑀 𝐾 𝜑 
𝑛 = 0.0 𝑛 = 0.5 

𝔹− 𝔸 𝑔0′(0) 𝔹− 𝔸 𝑔0′(0) 

10−7 1 0.1 

-0.722568 1.271410 -0.647978 1.406550 

0 0.498790 0 0.607587 

0.722568 -0.273830 0.647978 -0.191375

10−6 

-0.644688 1.294936 -0.573809 1.408199 

0 0.479861 0 0.581705 

0.644688 -0.335214 0.573809 -0.244789

10−5 

-0.142575 1.459372 -0.116581 1.366378 

0 0.470574 0 0.523735 

0.142575 0.518223 0.116581 -0.318907

10−7 2 

-0.848297 1.185937 -0.732395 1.406516 

0 0.449325 0 0.607585 

0.848297 -0.287287 0.732395 -0.191346

3 

-0.950844 1.126700 -0.808043 1.406519 

0 0.420537 0 0.607598 

0.950844 -0.285624 0.808043 -0.191322

4 

-1.039219 1.083121 -0.877179 1.406571 

0 0.401646 0 0.607674 

1.039219 -0.279829 0.877179 -0.191222

1 0.05 

-0.782726 1.253428 -0.696955 1.406544 

0 0.489102 0 0.607715 

0.782726 -0.275223 0.696955 -0.191113

0.15 

-0.680741 1.253428 -0.615133 1.406544 

0 0.489102 0 0.607715 

0.680741 -0.275223 0.615133 -0.191113

0.2 

-0.657732 1.253428 -0.599389 1.406544 

0 0.489102 0 0.607715 

0.657732 -0.275223 0.599389 -0.191113
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Table 3.4(b). Numerical value of 𝑔0
′(0). 

𝐴𝑙2𝑂3 −𝑊𝑎𝑡𝑒𝑟 

𝑀 𝐾 𝜑 
𝑛 = 0.0 𝑛 = 0.5 

𝔹− 𝔸 𝑔0′(0) 𝔹− 𝔸 𝑔0′(0) 

10−7 1 0.1 

- 0.838110 1.263658 - 0.754251 1.406554 

0 0.497639 0 0.607660 

0.838110 - 0.268379 0.754251 - 0.191234 

10−6   

- 0.763937 1.282825 - 0.683338 1.407946 

0 0.481221 0 0.585292 

0.763937 - 0.320383 0.683338 - 0.237360 

10−5   

- 0.184939 1.450722 - 0.152254 1.371608 

0 0.465719 0 0.520896 

0.184939 - 0.519283 0.152254 - 0.329814 

10−7 2  

-0.980384 1.171577 -0.852508 1.406571 

0 0.447083 0 0.607713 

0.980384 -0.277409 0.852508 -0.191145 

 3  

-1.096144 1.109010 -0.940504 1.406727 

0 0.418007 0 0.607960 

1.096144 -0.272996 0.940504 -0.190805 

 4  

-1.195780 1.063927 -1.020783 1.407090 

0 0.399428 0 0.608598 

1.195780 -0.265071 1.020783 -0.189894 

 1 0.05 

-0.861087 1.247827 -0.769082 1.406550 

0 0.488260 0 0.607789 

0.861087 -0.271306 0.769082 -0.190972 

  0.15 

-0.835022 1.247827 -0.756813 1.406550 

0 0.488260 0 0.607789 

0.835022 -0.271306 0.756813 -0.190972 

  0.2 

-0.833913 1.247827 -0.753188 1.406550 

0 0.488260 0 0.607789 

0.833913 -0.271306 0.753188 -0.190972 
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Table. 3. 5(a). Numerical value of −Φ0
′(0),Φ2

′(0) and Φ4
′(0).

𝐶𝑢 −𝑊𝑎𝑡𝑒𝑟 

𝑀 𝐾 𝜑 
𝑛 = 0.0 𝑛 = 0.5 

−Φ0′(0) Φ2′(0) Φ4′(0) −Φ0′(0) Φ2′(0) Φ4′(0) 

10−7 1 0.1 0.691779 0.085912 0.010277 0.813191 0.093913 0.011531 

10−6 0.945615 0.050471 0.003659 1.083458 0.055256 0.003881 

10−5 6.877988 0.000465 0.000018 7.116813 0.010491 0.000744 

10−7 2 0.551502 0.069872 0.007756 0.719432 0.083075 0.010198 

3 0.466232 0.058929 0.006346 0.652080 0.075288 0.009240 

4 0.408703 0.051265 0.005471 0.600686 0.069334 0.008499 

1 0.05 0.625838 0.078389 0.009190 0.751624 0.087123 0.010723 

0.15 0.625838 0.078389 0.009190 0.751624 0.087123 0.010723 

0.2 0.625838 0.078389 0.009190 0.751624 0.087123 0.010723 

Table 3.5(b). Numerical value of −Φ0
′(0),Φ2

′(0) and Φ4
′(0).

𝐴𝑙2𝑂3 −𝑊𝑎𝑡𝑒𝑟 

𝑀 𝐾 𝜑 
𝑛 = 0.0 𝑛 = 0.5 

−Φ0′(0) Φ2′(0) Φ4′(0) −Φ0′(0) Φ2′(0) Φ4′(0) 

10−7 1 0.1 0.589384 0.073201 0.008584 0.698279 0.080806 0.009934 

10−6 0.766655 0.047268 0.003592 0.888616 0.051682 0.003936 

10−5 5.270802 0.000533 0.000015 5.491650 0.006956 0.000369 

10−7 2 0.467838 0.058713 0.006477 0.617781 0.071474 0.008779 

3 0.394924 0.049220 0.005321 0.559961 0.064732 0.007922 

4 0.346119 0.042662 0.004559 0.515870 0.059506 0.007218 

1 0.05 0.567381 0.071016 0.008240 0.685102 0.079566 0.009805 

0.15 0.567381 0.071016 0.008240 0.685102 0.079566 0.009805 

0.2 0.567381 0.071016 0.008240 0.685102 0.079566 0.009805 
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Table. 3. 6(a). Numerical value of −𝜃0
′(0), Θ12

′(0) and Θ14
′(0).

𝐶𝑢 −𝑊𝑎𝑡𝑒𝑟 

𝑀 𝐾 𝜑 
𝑛 = 0.0 𝑛 = 0.5 

−𝜃0′(0) Θ12′(0) Θ14′(0) −𝜃0′(0) Θ12′(0) Θ14′(0) 

10−7 1 0.1 0.976002 0.625531 0.894378 1.010236 0.511496 0.817287 

10−6 1.014206 0.502684 0.810538 1.047785 0.415034 0.743960 

10−5 1.416020 0.094820 0.374691 1.434746 0.087727 0.361806 

10−7 2 0.926816 0.852550 1.026503 0.976897 0.628893 0.895597 

3 0.891638 1.077594 1.138896 0.950471 0.746466 0.965929 

4 0.864509 1.301745 1.238182 0.928661 0.864375 1.030293 

1 0.05 1.003951 0.899119 1.094526 1.043860 0.713781 0.987421 

0.15 0.903354 0.596328 0.841090 0.938019 0.479655 0.762802 

0.2 0.857919 0.490484 0.741267 0.890235 0.397167 0.674087 

Table 3.6(b). Numerical value of −𝜃0
′(0),Θ12

′
(0) and Θ14

′
(0).

𝐴𝑙2𝑂3 −𝑊𝑎𝑡𝑒𝑟 

𝑀 𝐾 𝜑 
𝑛 = 0.0 𝑛 = 0.5 

−𝜃0′(0) Θ12′(0) Θ14
′
(0) −𝜃0′(0) Θ12′(0) Θ14

′
(0)

10−7 1 0.1 0.932422 0.834821 1.016303 0.966518 0.675214 0.924473 

10−6 0.964089 0.686724 0.931296 0.997735 0.559994 0.850331 

10−5 1.360115 0.111887 0.405929 1.380663 0.102134 0.389729 

10−7 2 0.884116 1.152682 1.172595 0.933797 0.838537 1.017006 

3 0.849870 1.468078 1.304933 0.907950 1.002624 1.100002 

4 0.823621 1.782222 1.421429 0.886673 1.167569 1.175876 

1 0.05 0.976038 1.077483 1.185520 1.015805 0.849488 1.066400 

0.15 0.878960 0.709963 0.908840 0.913561 0.567020 0.821797 

0.2 0.835014 0.581655 0.799721 0.867296 0.467622 0.725061 
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3.5 Conclusion 

In this exploration the we characterize the flow and heat transport in micropolar nanofluid 

along oblique stagnation point over an oscillatory plate. Two different metallic nanoparticles 

are considered (Alumina and Copper) in base fluid water. The governing coupled system is 

solved numerically by using BVP solution method with the aid of Maple software shooting 

scheme along with fifth order Runge–Kutta– Fehlberg algorithm. Analysis has been made in 

order to report the influence of different parameters namely, nanoparticles volume fraction , 

Hartmann number 𝑀, and material parameter 𝐾 on velocity, temperature, local wall shear 

stress and heat transfer rate are examined fixing the Prandtl number 𝑃𝑟 (i.e. 6.2) for water. The 

key finding of current analysis is itemized as follows 

• It is observed that the momentum boundary layer is thicker in the case of 𝐴𝑙2𝑂3/ water

as compared to 𝐶𝑢/water . In addition, 𝐴𝑙2𝑂3/water results show more surface

temperature while 𝐶𝑢/water generates the lowest surface temperature.

• Thickness decline is found for momentum boundary layer against increasing value of

nanoparticles volume fraction while inverse trend towards material parameter is

observed. Further, the thickness of momentum boundary layer is thin for the case of

weak concentration as compared to strong concentration.

• The local wall shear stress is the increasing function of Hartmann number and material

parameter while it shows opposite attitude towards nanoparticles volume fraction. It

was also noticed that 𝐶𝑢 − 𝑤𝑎𝑡𝑒𝑟 with the comparison of 𝐴𝑙2𝑂3–  𝑤𝑎𝑡𝑒𝑟 gives

maximum local wall shear stress.

• The magnitude of heat transfer rate is significantly large for 𝐶𝑢 − 𝑤𝑎𝑡𝑒𝑟 as compared

to 𝐴𝑙2𝑂3–  𝑤𝑎𝑡𝑒𝑟. On the other hand, the heat transfer rate near the plate surface is

decreasing function of Hartmann number while opposite trend is found for both

material parameter and nanoparticles volume fraction.

• The zero-skin fraction and stagnation point remarkably depend on 𝔹− 𝔸 and time 𝑡.
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Chapter # 4 

 Model based study of SWCNT and MWCNT thermal 

conductivities effect on the heat transfer due to the 

oscillating wall conditions  

4.1 Introduction 

In this chapter, different proposed theoretical models for the thermal conductivity of 

Carbon nanotubes are analyzed. Both SWCNT and MWCNT are discussed in three types of 

base fluids namely ethylene glycol, engine oil and water. By using the fundamental governing 

laws and their modifications for the presence of solid concentrations are used to 

mathematically model the differential equations. The complicated coupled system of 

differential equations is transformed into non-dimensional form via a suitable similarity 

transformation. Then numerical results have been obtained by using the midpoint method with 

Richardson extrapolation enhancement. The numerical results can be computed when the 

length “L” and diameter “d” of CNT’s are 3𝜇𝑚 ≤ 𝐿 ≤ 70𝜇𝑚 and 10𝑛𝑚 ≤ 𝑑 ≤ 40𝑛𝑚. 

Fig. 4. 1. Functional Diagram. 
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4.2 Problem description and governing equations: 

Consider the problem of stagnation point flow over an oscillatory surface with velocity 

𝑈0 cos𝜔 𝑡̅. The �̅�-coordinate is taken horizontally and the �̅�-coordinate is considered

perpendicular to horizontal direction and is pointed in outward direction towards the fluid as 

shown in Fig. 4.1. The fluid impinges obliquely to the oscillatory surface. It is assumed that 

free stream velocity is of the form �̅� = (𝑎�̅� + 𝑏(�̅� − 𝐵),−𝑎(�̅� − 𝐴), 0), where a and b are 

constant. The governing equations of fluid flow can be written as 

�̅� ∙ �̅� = 0,

(
𝜕�̅�

𝜕𝑡̅
+ (�̅� ⋅ �̅�)�̅�) = −

1

𝜌𝑛𝑓
�̅��̅� +

𝜇𝑛𝑓

𝜌𝑛𝑓
�̅�2�̅�,

(
𝜕�̅�

𝜕𝑡̅
+ (�̅� ⋅ �̅�)�̅�) = 𝛼𝑛𝑓�̅�

2�̅�,

(4.1) 

where 𝜇𝑛𝑓 , 𝜌𝑛𝑓 and 𝛼𝑛𝑓 are defined in Table 1.1. For system (4.1) we append the boundary 

condition: 

�̅� = 𝑈 cos𝜔 𝑡̅,   �̅� = 0,  �̅� = �̅�𝑤 + 𝜖(�̅�𝑤 − �̅�∞)𝑅𝑒(𝑒
𝑖𝜔�̅�)     𝑎𝑡   �̅� = 0,

�̅� = 𝑎�̅� + 𝑏(�̅� − 𝐵),   �̅� = −𝑎(�̅� − 𝐴),    𝑇 = �̅�∞  𝑎𝑠              �̅� → ∞.
(4.2) 

From (4.2)4,5, the stagnation point is ( 
𝑏

𝑎
(𝐵 −  𝐴), 𝐴) and hyperbolic streamlines 

asymptotes are 

�̅� = −
2𝑎

𝑏
�̅� + 2𝐵 − 𝐴,    �̅� = 𝐴 (4.3) 

They are also well known as degenerate stream-lines. Now, consider 

 �̅� = −𝑎𝑓(̅�̅�),   �̅� = 𝑎�̅�𝑓̅′(�̅�) + 𝑏�̅�(�̅�, 𝑡̅), (4.4) 

Eqs. (4.1)2 and (4.2)1,2,4,5 can be written as 
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𝑎�̅� [𝑎𝑓̅′
2
− 𝑎𝑓�̅�̅′′ − 𝑣𝑛𝑓𝑓̅

′′′] + 𝑏[�̅��̅� + 𝑎(�̅�𝑓̅
′ − 𝑓�̅̅�′) − 𝑣𝑛𝑓�̅�

′′] = −
1

𝜌𝑛𝑓

𝜕�̅�

𝜕�̅�
 , (4.5) 

𝑎2𝑓�̅�̅′ + 𝑣𝑛𝑓𝑓̅
′′ = −

1

𝜌𝑛𝑓

𝜕�̅�

𝜕�̅�
 , (4.6) 

𝑓(̅0) = 0, 𝑓̅′(0) = 0 , �̅�(0, 𝑡̅) =
𝑈

𝑏
𝑅𝑒(𝑒𝑖𝜔�̅�),

�̅�′(�̅�, 𝑡̅) = 1,   𝑓̅′(�̅�) = 1,          𝑎𝑠        �̅� → ∞.   
} (4.7) 

From (4.7)4,5 the values of 𝑓(̅�̅� ) and �̅�(�̅�, 𝑡̅) can be calculated as 

𝑓(̅�̅� )~ �̅� − 𝐴,    �̅�(�̅�, 𝑡̅)~ �̅� − 𝐵. (4.8) 

From Eqs. (4.5-4.6), we find the pressure field as 

�̅�0 − �̅�(�̅�, �̅�) = 𝜌𝑛𝑓 {𝑣𝑛𝑓 𝑎𝑓̅
′ +

𝑎2

2
(�̅�2 + 𝑓̅2 − 2

𝑏

𝑎
(𝐵 − 𝐴)�̅�)}, (4.9) 

in which �̅�0 is the stagnation pressure. From Eq. (4.9), it is clearly seen that maximum pressure 

occurs at the stagnation point in through-out the flow domain. Thus Eqs. (4.5)-(4.6) imply that 

1

𝑎
𝑣𝑛𝑓𝑓̅

′′′ − 𝑓̅′
2
+ 𝑓�̅�̅′′ + 1 = 0,

𝑣𝑛𝑓�̅�
′′ − �̅�𝑓̅′ −

1

𝑎
�̅��̅� + 𝑓�̅̅�

′ = (𝐵 − 𝐴).

 (4.10) 

The following similarity variables are presented to make simpler the mathematical analysis 

of the problem 

𝑓(𝑦) = √
𝑎

𝑣𝑓
𝑓̅ (√

𝑣𝑓

𝑎
𝑦) ,   𝑦 = √

𝑎

𝑣𝑓
�̅�,   𝑡 = 𝜔𝑡̅, 

 𝑔(𝑦, 𝑡) = √
𝑎

𝑣𝑓
�̅� (√

𝑣𝑓

𝑎
𝑦,
𝑡

𝜔
) = 𝑔0(𝑦) + 𝜀𝑔1(𝑦)𝑒

𝑖𝑡,   

(4.11) 
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𝜃(𝑦, 𝑡) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

=  𝜃0(𝑦) + 𝜀𝜃1(𝑦)𝑒
𝑖𝑡. 

Using the above similarity variables, Eqs. (4.10) and (4.1)3 together with boundary 

conditions (4.7) and (4.2)3,6 reduce to 

𝜇𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑓′′′ −  𝑓′

2
+ 𝑓𝑓′′ + 1 = 0,

𝜇𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑔0

′′ + 𝑓𝑔0
′ − 𝑔0𝑓

′ − (𝔹 − 𝔸) = 0,

𝜇𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑔1

′′ + 𝑓𝑔1
′ − 𝑔1𝑓

′ − 𝑖Ω𝑔1 = 0,

𝑘𝑛𝑓

𝑘𝑓
𝜃0

′′ + 𝑃𝑟
(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

𝑓𝜃0
′ = 0,

𝑘𝑛𝑓

𝑘𝑓
𝜃1
′′ + 𝑃𝑟

(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

𝑓𝜃1
′ − 𝑖Ω𝑃𝑟

(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

𝜃1 = 0,

 (4.12) 

𝑓(0) = 0𝑓′(0),  𝑔0(0) = 0,  𝑔1(0) = 1,   𝜃0(0) = 1 =   𝜃1(0),

  𝑔1(𝑦) = 0, 𝑓′(𝑦) = 1 = 𝑔0
′ (𝑦),   𝜃0(𝑦) = 0,   𝜃1(𝑦) = 0,       𝑦 → ∞,

𝑔(𝑦)~ 𝑦 − 𝛽,   𝑓(𝑦)~ 𝑦 − 𝛼,            𝑎𝑠   𝑦 → ∞ ,      

} (4.13) 

where 

𝔹 = 𝐵√
𝑎

𝑣𝑓
,   𝔸 = 𝐴√

𝑎

𝑣𝑓
,   Ω =  

𝜔

𝑎
, 𝑃𝑟 =

𝜈𝑓

𝑘𝑓
, 𝜖 =

𝑈

𝑏
√
𝑎

𝑣𝑓
. 

The different models of effective thermal conductivity are 

4.2.1 Hamilton and Crosser model [59]: 

𝑘𝑛𝑓

𝑘𝑓
=
𝑘𝑠 + (𝑛 − 1)𝑘𝑓 + (𝑛 − 1)𝜑(𝑘𝑠 − 𝑘𝑓)

𝑘𝑠 + (𝑛 − 1)𝑘𝑓 + (𝑛 − 1)𝜑(𝑘𝑠 − 𝑘𝑓)
. (4.14) 

in which n represents the empirical value of particles shape. 

Hamilton and Crosser simply correlate n as 
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𝑛 = 3Λ−𝛿 , (4.15) 

where 𝛿 is an empirical parameter and Λ is the sphericity defined as 

Λ =
2𝑒(𝛾)[1 − 𝑒2(𝛾)]

1
6

𝑒(𝛾)√1 − 𝑒2(𝛾) + arcsin (𝑒(𝛾))
, 𝑒(𝛾) = √1 −

𝑅2 + 𝛾

(𝐿/2)2 + 𝛾
. 

4.2.2 Yamada and Ota model [60]: 

𝑘𝑛𝑓

𝑘𝑓
=

1 +
𝑘𝑓
𝑘𝑠

𝐿
𝑅
𝜑0.2 + (1 −

𝑘𝑓
𝑘𝑠
)𝜑

𝐿
𝑅
𝜑0.2 + 2𝜑

𝑘𝑠
𝑘𝑠 − 𝑘𝑓

ln (
𝑘𝑠 + 𝑘𝑓
2𝑘𝑓

)

1 − 𝜑 + 2𝜑
𝑘𝑓

𝑘𝑠 − 𝑘𝑓
ln (

𝑘𝑠 + 𝑘𝑓
2𝑘𝑓

)

, (4.16) 

where R and L are the radius and length of the nanotube, respectively 

4.2.3 Xue model [62]: 

𝑘𝑛𝑓

𝑘𝑓
=

1 − 𝜑 + 2𝜑
𝑘𝑠

𝑘𝑠 − 𝑘𝑓
ln (

𝑘𝑠 + 𝑘𝑓
2𝑘𝑓

)

1 − 𝜑 + 2𝜑
𝑘𝑓

𝑘𝑠 − 𝑘𝑓
ln (

𝑘𝑠 + 𝑘𝑓
2𝑘𝑓

)

, (4.17) 

The surface shear stress (𝐶𝑓) and heat transfer rate (𝑁𝑢) can be expressed as 

𝐶𝑓 =
𝜏𝑤

1
2𝜌𝑓𝑈𝑤

2
, 

 𝑁𝑢 =
�̅�𝑞𝑤

𝑘𝑓(�̅�𝑤 − �̅�∞)
,

(4.19) 

where 𝑞𝑤 𝜏𝑤, are the surface heat flux and the wall shear stress, define as 

𝜏𝑤 = 𝜇𝑛𝑓
𝜕�̅�

𝜕�̅�
|
�̅�=0

, 

𝑞𝑤 = −𝑘𝑛𝑓
𝜕�̅�

𝜕�̅�
|
�̅�=0

.

(4.20) 

By the use of Eqs. (4.11), (4.19) and (4.20), we can write 
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1

2
𝑅𝑒�̅�𝐶𝑓 =

𝜇𝑛𝑓

𝜇𝑓
[√𝑅𝑒�̅�𝑓

′′(0) +
𝑏

𝑎
𝑔0
′ (0) + 𝜖

𝑏

𝑎
𝑒𝑖𝑡𝑔1

′ (0)],

(𝑅𝑒�̅�)
−
1
2𝑁𝑢 = −

𝑘𝑛𝑓

𝑘𝑓
𝜃0

′(0) −
𝑘𝑛𝑓

𝑘𝑓
𝜀𝑒𝑖𝑡𝜃1(0),

At the surface �̅�  =  0, three points carry significant importance: the stagnation point 

towards which the separating streamline far away from the surface are directed, the position 

where maximum pressure is exerted �̅�  =  �̅�𝑝, and the position of zero tangential stress �̅�  =

 �̅�𝑠. The equation of separating streamline which intersect the boundary is 

 𝑥 = √
𝑎

𝑣𝑓
�̅�,   𝑥𝑓(𝑦) +

𝑏

𝑎
∫{ 𝑔0(𝑠) + 𝜀𝑒

𝑖𝑡 𝑔1(𝑠)}𝑑𝑠

𝑦

0

= 0, (4.21) 

From Eqs. (4.9) and (4.20), we see that 

�̅�𝑝 =
𝑏

𝑎
(
𝑣𝑓

𝑎
)
1/2

(𝛽 − 𝛼),

�̅�𝑠 = −
𝑏

𝑎
(
𝑣𝑓

𝑎
)
1/2 1

𝑓′′(0)
(𝑔0′(0) + 𝜀𝑒

𝑖𝑡𝑔1′(0)) .

(4.22) 

We note that �̅�𝑝 does not depend on 𝜑 whereas �̅�𝑠 depends on 𝜑. The ratio 

�̅�𝑝

�̅�𝑠
= −(𝔹 − 𝔸)

𝑓′′(0)

(𝑔0′(0) + 𝜀𝑒𝑖𝑡𝑔1′(0))

is same for all angles of incidence. 

4.3 Solution procedure: 

Numerical solution of (4.12)1 together with their boundary conditions in (4.13) has been 

solved numerically by means of midpoint method with the Richardson extrapolation 

enhancement. 

For Eq. (4.12)2 the solution is in the form [73] 

𝑔0(𝑦) = (𝔸 − 𝔹)𝑓′ + 𝐶1𝑓
′′𝛥(𝑦), (4.23) 
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with 

𝐶1 = 𝑓′′(0)[𝑔0
′ (0) + (𝛽 − 𝛼)𝑓′′(0)],

𝛥(𝑦) = ∫ 𝐸𝑥𝑝 (−
𝜐𝑓

𝜐𝑛𝑓
∫ 𝑓(𝜂)
𝑠

0

𝑑𝜂) (𝑓′′(𝑠))

−2𝑦

0

𝑑𝑠. 

Furthermore, the series solutions of equations (4.12)3,5 for small value of frequency Ω 

have been obtained [66] 

𝑔1(𝑦) = ∑(𝑖𝛺)𝑛𝛷𝑛(𝑦),

∞

𝑛=0

and 

𝜃1(𝑦) = ∑(𝑖𝛺)𝑛𝛩1𝑛(𝑦)

∞

𝑛=0

. 

In present problem, the real part of the solution is 

𝑔1(𝑦) = Φ0(𝑦) − Ω
2Φ2(𝑦) + Ω

4Φ4(𝑦)… ,

𝜃1(𝑦) = Θ10(𝑦) − Ω
2Θ12(𝑦) + Ω

4Θ14(𝑦)…,

where 

𝜇𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌𝑛𝑓
Φ0

′′ −Φ0𝑓
′ + 𝑓Φ0

′ = 0

𝜇𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌𝑛𝑓
Φ𝑛

′′ −Φ𝑛𝑓
′ + 𝑓Φ𝑛

′ = Φ𝑛−1

Φ0(0) = 1,      Φ0(∞) = 0 

Φ𝑛(0) = 0,      Φ𝑛(∞) = 0 }

,  𝑛 = 1,2,3… (4.24) 

and 
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1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓
Θ1𝑛

′′ +
(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

(𝑓Θ1𝑛
′ − Θ1(𝑛−1)) = 0

  Θ1𝑛(0) = 0,        Θ1𝑛(∞) = 0

} ,      𝑛 = 1,2,3… (4.25) 

where Θ10(𝑦) = 𝜃0(𝑦) which can be obtained from (4.12)4 as [23] 

𝜃0(𝑦) =
𝐼𝑛𝑓(𝑃𝑟,∞) − 𝐼𝑛𝑓(𝑃𝑟, 𝑦)

𝐼𝑛𝑓(𝑃𝑟,∞)
, (4.26) 

where 

𝐼𝑛𝑓(𝑃𝑟, 𝑦) = ∫ 𝐸𝑥𝑝 (−𝑃𝑟
𝑘𝑓

𝑘𝑛𝑓

(𝜌𝐶𝑝)𝑛𝑓

(𝜌𝐶𝑝)𝑓

∫ 𝑓(𝜂)𝑑𝜂
𝑠

0

)𝑑𝑠,
𝑦

0

 

and 

𝐼𝑛𝑓(𝑃𝑟,∞) = lim
𝑦→∞

𝐼𝑛𝑓(𝑃𝑟, 𝑦). 

The systems (4.19, 4.20) have been solved numerically using midpoint method with the 

Richardson extrapolation enhancement and the numerical integration for (4.18, 4.21) can be 

executed easily with aid of any mathematical software as [78]. 

4.4 Results and Discussion: 

Numerical evaluation of the model equations for SWCNT and MWCNT is performed for 

three different base liquids namely engine oil, ethylene glycol and water. The solid volume 

fraction 𝜑 of the nanoparticles represents up to what fraction of whole liquid solid 

concentrations are incorporated. Keeping the fluid nature of base materials, it is kept less than 

0.5. For water the value of the Prandtl number of water is kept constant at 6.2. The thermos-

physical properties of base fluids and the nanoparticles are shown in Table. 1.2. In order to 

validate the numerical algorithm, the comparison of data is made for the particular case of Cu-

Water nanofluid as shown in Tables 4.1-4.2. These results are in excellent agreement with the 

already reported results by [79]. It is convenient to mention that in the original Hamilton & 

Crosser model, the empirical parameter 𝛿 was set as 𝛿 = 1. However, in the later studies by 

Yu et al. [80] and Jiang et al. [81], it was found that 𝛿 = 1.55 was more suitable for CNT’s 
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nanofluid. Therefore, in this study, 𝛿 is set as 1.55 and the ratio of length to diameter (L/d) is 

500. 

Figs. 4.2 depict velocity profiles of nanofluid flow in the unsteady domain when, 𝜑 =

0.1, 𝔹 − 𝔸 = −𝔸, 𝜀 = 0.2, 𝑥 = 1, Ω = 0.2. Generally; free stream velocity drives the flow 

due to the plate oscillation. At the surface the nanofluid is zero and gradually it approaches the 

free stream velocity as approaches infinity. It satisfies the boundary constraints which also 

show validity of obtained results. It is observed that 𝑢(𝑥, 𝑦, 𝑡) depicts the same oscillatory 

behavior as it was in source. Moreover, it is noticed that the amplitude of the oscillation has 

peak value at the wall and gradually it decreases as move away from the surface. Figs. 4.3-4.5 

are plotted for stream lines in the case of impinging fluids at different angles when 
𝑏

𝑎
= 1, Ω =

0.5, 𝜀 = 0.2, 𝑡 = 𝜋. It intersects the surface �̅� = 0, at the point �̅�𝑠 , which is the point of zero 

velocity that is stagnation point. Its location depends on the value of 𝔹 − 𝔸, base fluid and 

time t. From Fig. 4.3, it can be observed that for positive value of 𝔹 − 𝔸, the stagnation point 

appears on the right side of the plate form origin whereas the opposite behavior can be seen 

for negative value of 𝔹 − 𝔸. Figs. 4.4 predict that for some constant number 𝔹− 𝔸 = −2𝔸, 

the stagnation point location appears in the neighborhood of -2 in case of SWCNT-Water 

nanofluid, whereas, it appears in the neighborhood of 0 for both SWCNT-Ethylene Glycol and 

SWCNT-Engine Oil nanofluid. The same situation can be seen for the consideration of 

MWCNT. Furthermore, the stagnation point has the oscillatory behavior w.r.t time t as seen in 

Fig. 4.5. Isotherms are plotted in Figs. 4.6 when 
𝑏

𝑎
= 1, Ω = 0.5, 𝜀 = 0.2. It can be seen that

Yamada and Ota model gives the highest temperature as compare to Hamilton & Crosser and 

Xue model. Figs. 4.7(a-c) represents the skin friction coefficient for different base fluids and 

time t. It can be observed that skin friction coefficient has sinusoidal variation with respect to 

time and furthermore, engine oil overrated the skin friction coefficient as compared to water 

and ethylene glycol. Figs. 4.8-4.10 are constructed for the comparison of different thermal 

conductivity models. The comparison results show that Yamada model are definitely 

overrated, while Hamilton & Crosser model and Xue model distinctly underestimate the 

Nusselt number of CNT nanofluid. It is also seen that Nusselt number has sinusoidal variation 

with respect to t. It is observed from Table. 4.4 that MWCNT produce higher skin friction 

coefficient than SWCNT. Furthermore, Ethylene glycol produced highest skin friction 
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coefficient followed by water while engine oil produced the lowest skin friction. Table. 4.5 

shows the numerical value of 𝛼 and it is observed that 𝛼 and skin friction has same behavior. 

Tables. 4.5-4.8 shows the numerical value of Nusselt number for different base fluid and 

nanoparticles. From these, it is noticed that SWCNT produced the highest value of Nusselt 

number than MWCNT. Furthermore, ethylene glycol produced highest value of skin friction 

as compared to that of values for water while engine oil produced the highest Nusselt number. 

The thermal conductivity of Yamada model is overrated the Nusselt number as compared to 

Xue and Hamilton & Crosser models. 
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(a) (b) 

Fig. 4. 2. Time dependent flow of the velocity field 𝑢(𝑦, 𝑡) at different locations from the 

wall. The time period is 𝑡 ∈ [0, 10𝜋] for (a) 𝑆𝑊𝐶𝑁𝑇 −𝑊𝑎𝑡𝑒𝑟. (b) 𝑀𝑊𝐶𝑁𝑇 −𝑊𝑎𝑡𝑒𝑟. 

(a) (b)  (c) 

Fig. 4. 3. streamlines pattern for 𝑆𝑊𝐶𝑁𝑇 −𝑊𝑎𝑡𝑒𝑟 nanofluid. (a) 𝔹− 𝔸 = −6𝔸, (b) 𝔹−
𝔸 = 0, (c) 𝔹− 𝔸 = 4𝔸. 
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(a) (b)  (c) 

(d)  (e)  (f) 

Fig. 4. 4.  Streamlines pattern for nanofluids when 𝔹 − 𝔸 = −2𝔸. (a) 𝑆𝑊𝐶𝑁𝑇 −𝑊𝑎𝑡𝑒𝑟, 

(b) 𝑆𝑊𝐶𝑁𝑇 − 𝐸𝑛𝑔𝑖𝑛𝑒 𝑂𝑖𝑙, (c) 𝑆𝑊𝐶𝑁𝑇 − 𝐸𝑡ℎ𝑦𝑙𝑖𝑛𝑒 𝐺𝑙𝑦𝑐𝑜𝑙 (d) 𝑀𝑊𝐶𝑁𝑇 −𝑊𝑎𝑡𝑒𝑟, (e)

𝑀𝑊𝐶𝑁𝑇 − 𝐸𝑛𝑔𝑖𝑛𝑒 𝑂𝑖𝑙, (f) 𝑀𝑊𝐶𝑁𝑇 − 𝐸𝑡ℎ𝑦𝑙𝑖𝑛𝑒 𝐺𝑙𝑦𝑐𝑜𝑙.
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(a) (b) 

(c)  (d) 

Fig. 4. 5. Streamlines of 𝑆𝑊𝐶𝑁𝑇 −𝑊𝑎𝑡𝑒𝑟 nanofluid when 𝔹 − 𝔸 = 0. (a) 𝑡 = 0, (b) 𝑡 =
𝜋/2, (c) 𝑡 = 𝜋 (d) 𝑡 = 3𝜋/2. 
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(a) (b) 

(c)  (d) 

(e)  (f) 

Fig. 4. 6. Variation of isotherms for different nanofluid models, (a) SWCNT, Hamilton & 

Crosser model, (b) SWCNT, Xue model, (c) SWCNT, Yamada & Otta model, (d) MWCNT, 

Hamilton & Crossor model, (e) MWCNT, Xue model, (f) MWCNT, Yamada & Otta. 
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(a) (b) 

(c) 

Fig. 4. 7. Shows the skin friction coefficient vs time for different value of 𝑆𝑊𝐶𝑁𝑇 −
𝑊𝑎𝑡𝑒𝑟 nanofluid, (a)  𝔹 − 𝔸 = −5𝔸, (b)  𝔹 − 𝔸 = 𝔸, (c)  𝔹 − 𝔸 = 5𝔸. Solid lines for 

MWCNT and dotted lines for SWCNT 
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(a) (b) 

Fig. 4. 8. Shows the Nusselt number vs time for, (a) Ethylene Glycol, (b) Engine Oil, when 

Ω = 0.5, 𝜀 = 0.2. SWCNT as nanoparticles. 

(a) (b) 

Fig. 4. 9. Comparison of different thermal conductivities models for CNT’s nanofluids. (a) 

SWCNT-Water nanofluid, (b) MWCNT-Water nanofluid. 
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Fig. 4. 10. Bar graph comparison of various models for SWCNTs-water nanofluids when 

𝑡 = 𝜋/2. 
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Table. 4. 1. Validation of results for 𝑓′′(0).

𝜑 

𝔸 𝑓′′(0)

[79] Present [79] Present 

0.0 0.647900 0.647900 1.232587 1.232587 

0.1 0.551523 0.551523 1.447977 1.447977 

0.2 0.531918 0.531918 1.501345 1.501345 

Table. 4. 2. Validation of results for 𝑔0
′(0).

𝜑 𝔹− 𝔸 
𝑔0

′(0)

[79] Present 

0.0 

-0.647900 1.406544 1.406544 

0 0.607950 0.607950 

0.647900 -0.190644 -0.190644

0.1 

-0.551523 1.406544 1.406544 

0 0.607949 0.607949 

0.551523 -0.190644 -0.190644

0.2 

-0.531918 1.406544 1.406544 

0 0.607949 0.607949 

0.531918 -0.190644 -0.190644
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Table. 4. 3. Skin friction variation when 𝜀 = 0.5, Ω = 0.5, 𝑡 = 0, 𝔹 − 𝔸 = −𝔸 

𝜑 Water Ethylene Glycol Engine Oil 

SWCNT MWCNT SWCNT MWCNT SWCNT MWCNT 

0 1.840537 1.840537 1.840537 1.840537 1.840537 1.840537 

0.002 1.842736 1.845192 1.84341 1.845608 1.841921 1.844688 

0.004 1.844963 1.849873 1.84631 1.850707 1.843337 1.848865 

0.006 1.847218 1.854583 1.849235 1.855836 1.844785 1.853069 

0.008 1.849501 1.85932 1.852187 1.860995 1.846265 1.857299 

0.01 1.851812 1.864085 1.855165 1.866183 1.847776 1.861555 

Table. 4. 4 Numerical values of 𝛼 when 𝜀 = 0.5, Ω = 0.5, 𝑡 = 0, 𝔹 − 𝔸 = −𝔸 

𝜑 
Water Ethylene Glycol Engine Oil 

SWCNT MWCNT SWCNT MWCNT SWCNT MWCNT 

0 0.647900 0.647900 0.647900 0.647900 0.647900 0.647900 

0.002 0.648482 0.649131 0.64866 0.649241 0.648266 0.648998 

0.004 0.649071 0.650368 0.649427 0.650588 0.648641 0.650102 

0.006 0.649667 0.651611 0.650200 0.651942 0.649024 0.651212 

0.008 0.65027 0.652861 0.650979 0.653302 0.649415 0.652328 

0.01 0.65088 0.654116 0.651765 0.654669 0.649814 0.65345 
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Table. 4. 5. Numerical values of Nusselt number when water is considered as a base fluid 

and 𝜀 = 0.5, Ω = 0.5, 𝑡 = 0. 

𝜑 H-C model Xue model Yamadda model 

SWCNT MWCNT SWCNT MWCNT SWCNT MWCNT 

0 1.127964 1.127964 1.127964 1.127964 1.127964 1.127964 

0.002 1.135721 1.135432 1.151727 1.149193 1.498869 1.488021 

0.004 1.143456 1.142877 1.175238 1.17021 1.906997 1.882497 

0.006 1.151171 1.150301 1.198505 1.191022 2.302384 2.264089 

0.008 1.158865 1.157701 1.22154 1.211636 2.681222 2.629316 

0.01 1.166539 1.165081 1.24435 1.232059 3.044395 2.979113 

Table. 4. 6. Numerical values of Nusselt number when Ethylene Glycol is considered as a 

base fluid and 𝜀 = 0.5, Ω = 0.5, 𝑡 = 0. 

𝜑 
H-C model Xue model Yamada and Ota model 

SWCNT MWCNT SWCNT MWCNT SWCNT MWCNT 

0 1.127964 1.127964 1.127964 1.127964 1.127964 1.127964 

0.002 1.135754 1.13552 1.154279 1.151799 1.504277 1.499455 

0.004 1.143524 1.143054 1.180285 1.175371 1.919267 1.908311 

0.006 1.151275 1.150568 1.205996 1.198691 2.321604 2.304388 

0.008 1.159007 1.158062 1.231424 1.221768 2.707324 2.68388 

0.01 1.16672 1.165535 1.256583 1.244613 3.077293 3.047685 
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Table. 4. 7. Numerical values of Nusselt number when Engine Oil is considered as a base fluid 

and 𝜀 = 0.5, Ω = 0.5, 𝑡 = 0. 

Table 4.7. Numerical values of Nusselt number when Engine Oil is considered as a base 

fluid and 𝜀 = 0.5, Ω = 0.5, 𝑡 = 0. 

𝜑 

Hamiliton & Crosser 

model 
Xue model Yamada and Ota model 

SWCNT MWCNT SWCNT MWCNT SWCNT MWCNT 

0 1.127964 1.127964 1.127964 1.127964 1.127964 1.127964 

0.002 1.136149 1.135874 1.156284 1.153761 1.506449 1.503488 

0.004 1.144319 1.143767 1.184271 1.179273 1.924321 1.917567 

0.006 1.152474 1.151644 1.211942 1.204512 2.329807 2.31913 

0.008 1.160614 1.159506 1.239313 1.229491 2.718867 2.704247 

0.01 1.168741 1.167353 1.2663985 1.254222 3.092342 3.073788 

4.5 Conclusion 

This chapter is based on the comparison of three different models of effective thermal 

conductivity and density of nanofluid for three different base fluids namely; Ethylene Glycol, 

Water and Engine Oil in the presence of carbon nanotubes. The mathematical modelling is 

being done by using the fundamental governing laws of motion and heat transfer in the form 

of partial differential equations. A detailed analysis is presented for the unsteadiness effect on 

the velocity and temperature profiles by considering the oscillating boundary condition for the 

wall velocity and wall temperature. The important finding of the current study can be 

summarized as follows: 

The isotherms pattern suggests that for both the cases of SWCNT and MWCNT the heat 

penetration depth proposed by Hamilton & Crosser and Xue model is almost equal, but the 

heat penetration appeared in isotherms by using the Yamada & Ota model is larger. When 

comparison is made among the SWCNT and MWCNT for the same model the heat penetration 

depth for the MWCNT is deeper. In the transient domain, the skin friction produced by 

Ethylene Glycol Carbon-nanofluid is higher as compared to the water and Engine Oil. Engine 

oil Carbon-nanofluid has the least skin friction coefficient. The Nusselt number prediction for 

the CNT’s nanofluid is highest for Yamada & Ota model and was lowest for Hamilton & 
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Crosser model. A big difference is observed between the values of Yamada model and 

Hamilton & Crosser model. The skin friction behavior prediction is similar for all the three 

models and it shows decreasing trend with the increase in nanotubes volumetric concentration. 

Once again, the prediction by Yamada model is higher as compared to the other two models. 

Overall the skin friction offered due to the presence of MWCNT is higher as compared to the 

SWCNTs. It can be observed that the stagnation point location appears in the neighborhood of 

-2 in case of SWCNT-Water nanofluid, whereas, it appears in the neighborhood of 0 for both

SWCNT-Ethylene Glycol and SWCNT-Engine Oil nanofluid. The same situation can be seen 

for the consideration of MWCNT. Furthermore, the stagnation point has the oscillatory 

behavior w.r.t time t. 
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Chapter # 5 

 Unsteady stagnation point flow of viscous nanofluids over 

the curved shrinking sheet: Existence of multiple solution 

5.1 Introduction 

This chapter examines possible existence of reverse flow situation in unsteady nanofluid 

flow over a curved surface. Alumina (𝐴𝑙2𝑂3) and Ethylene glycol are considered as a 

nanoparticles and base fluid, respectively. Mathematical form of the problem is obtained by 

using the fundamental form of governing equations for motion and heat transfer when solid 

concentrations are added to an ordinary liquid. The complicated coupled unsteady system is 

transformed into non-dimensional form by use relevant transformations. The solution of the 

nonlinear problem is produced by use of numerical scheme available in the form of BVP4C 

package in MATLAB. In the case of surface shrinking towards the surface a reverse flow 

situation is also developed and requires careful selection of solution by examining the stability 

of solution. Detailed stability analysis is done, and critical values are determined for possible 

existence of dual solutions. Various parameters variation is analyzed by plotting graphs and 

tables. The numerical values are also calculated for the reduced Nusselt number and skin 

friction due to variation in values of different flow parameters.  

Fig. 5. 1. Geometry of the surfaces (a) Curved surface (b) Boundary layer shrinking surface. 
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5.2 Problem description and governing equations: 

The geometry of the problem is based on the assumption that the flow is generated due to 

the motion of the curved surface of radius R and the nanofluid is considered above the curved 

surface. The curvilinear coordinates �̅� and �̅� are chosen as it is shown in Fig. 5.1(a), the 

variation in values of R defines the curvedness of surface, the large values of R depict the slight 

curvedness in surface. The boundary layer formation in shrinking case is shown in Fig. 1(b). 

However, the free stream velocity in 1(b) is �̅�𝑒(�̅�)/1 − 𝑐𝑡̅. The shrinking velocity of the

surface is assumed to be �̅�𝑤(�̅�)/1 − 𝑐𝑡̅ along the �̅� direction. Mass flux velocity is denoted by 

�̅�𝑤(𝑡̅) , where �̅�𝑤(𝑡)̅ < 0 is for the case of suction and �̅�𝑤(𝑡̅) > 0 is for the case of injection, 

respectively. Under the boundary layer assumption, the fundamental governing laws for 

motion and thermodynamics are given by, [57], 

𝑅
𝜕�̅�

𝜕�̅�
+
𝜕

𝜕�̅�
((�̅� + 𝑅)�̅�) = 0 (5.1) 

1

𝜌𝑛𝑓

𝜕𝑝

𝜕𝑟
=

�̅�2

𝑟+ 𝑅
(5.2) 

1

𝜌𝑛𝑓

𝑅

𝑟+ 𝑅

𝜕𝑝

𝜕�̅�
= 𝑣𝑛𝑓 (

𝜕2�̅�

𝜕𝑟2
+

1

𝑟+ 𝑅

𝜕�̅�

𝜕𝑟
−

�̅�

(𝑟+ 𝑅)2
) −

𝜕�̅�

𝜕𝑡̅
− �̅�

𝜕�̅�

𝜕𝑟
−

𝑅�̅�

𝑟+ 𝑅

𝜕�̅�

𝜕�̅�

−
�̅��̅�

𝑟+ 𝑅

(5.3) 

𝛼𝑛𝑓 (
𝜕2𝑇

𝜕𝑟2
+

1

𝑟+ 𝑅

𝜕𝑇

𝜕𝑟
) −

𝜕𝑇

𝜕𝑡̅
− �̅�

𝜕𝑇

𝜕𝑟
−

𝑅�̅�

𝑟+ 𝑅

𝜕𝑇

𝜕�̅�
= 0 (5.4) 

According to the physical model the mathematical form of boundary constraints is 

𝑡̅ < 0: �̅� = 0,   �̅� = 0,   𝑇 = 𝑇∞  for any 𝑟 and �̅� 

𝑡̅ ≥ 0:  �̅� = �̅�𝑤(𝑡̅) = −√
𝑎𝑣𝑓

1 − 𝑐𝑡̅ 
𝑆,  �̅� =

𝑢𝑤(�̅�)

1 − 𝑐𝑡̅
=

𝑏�̅�

1 − 𝑐𝑡̅
,   𝑇 = 𝑇𝑤  𝑎𝑡 𝑟 = 0 

�̅� →
�̅�𝑒(�̅�)

1 − 𝑐𝑡̅
=

𝑎�̅�

1 − 𝑐𝑡̅
, 
𝜕�̅�

𝜕�̅�
→ 0,   𝑇 → 𝑇∞ 𝑎𝑠 𝑟 → ∞

(5.5) 
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where 𝑐 >  0 for an accelerated sheet and 𝑐 <  0 for a decelerated sheet, respectively. 𝑆 is the 

constant wall mass transfer parameter, with 𝑆 >  0 for suction and 𝑆 <  0 for injection, 

respectively. 

5.2.1 Steady-state case 

Following similarity variables are used to non-dimensionalize the problem, where the 

primes symbol represents the derivative w.r.t to non-dimensional variable 𝑟, the use of 

transformation given below produce the non-dimensional form Eqs. (5.1)–(5.5). 

�̅� =
�̅�𝑒

1 − 𝑐𝑡̅
𝑓′(𝑟),   �̅� = −

𝑅

𝑟+ 𝑅
√

𝑣𝑓 �̅�𝑒
(1 − 𝑐𝑡̅)�̅�

𝑓(𝑟),   𝑟 = √
�̅�𝑒

𝑣𝑓(1 − 𝑐𝑡)̅�̅�
𝑟

�̅� =
𝜌𝑓�̅�𝑒

2

(1 − 𝑐𝑡̅)2
𝑝(𝑟),   𝜃(𝑟) =

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞ }

 𝑐 < 0 (5.6) 

𝜌𝑓

𝜌𝑛𝑓

𝜕𝑝

𝜕𝑟
=

1

𝑟+𝐾
𝑓′2 (5.7) 

𝜌𝑓

𝜌𝑛𝑓

2𝐾

𝑟+ 𝐾
𝑝 =

𝑣𝑛𝑓

𝑣𝑓
(𝑓′′′ +

1

𝑟+ 𝐾
𝑓′′ −

1

(𝑟+ 𝐾)2
𝑓′) −

𝐾

𝑟+𝐾
𝑓′
2
+ +

𝐾

𝑟 + 𝐾
𝑓𝑓′′

+
𝐾

(𝑟+ 𝐾)2
𝑓𝑓′ − Ω (𝑓′ +

𝑟

2
𝑓′′) 

(5.8) 

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)𝑛𝑓

(𝜃′′ +
1

𝑟+ 𝐾
𝜃′) +

𝐾

𝑟+ 𝐾
𝑓𝜃′ − Ω

𝑟

2
𝜃′ = 0 (5.9) 

where 𝐾 = 𝑅√𝑎/[𝑣𝑓(1 − 𝑐𝑡̅)] is the unsteady curvature parameter. Mukhopadhyay and

Andersson [82] assumed R in terms of characteristic radius of curved surface i.e. 𝑅 =

𝑅0√1 − 𝑐𝑡,̅ where 𝑅0 is the characteristic radius of the curvature sheet. Thus, 𝐾 = 𝑅√𝑎/𝑣𝑓 is

the constant dimensionless curvature parameter and Ω =  𝑐/𝑎, 𝑃𝑟 = 𝑣𝑓/𝛼𝑓, 𝛽 = 𝑏/𝑎 are the 

unsteadiness parameter, Prandtl number and stretching/shrinking parameter, respectively, with 

𝛽 < 0 for shrinking and 𝛽 > 0 indicate stretching. In this chapter, we assume only decelerating 
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shrinking sheet with Ω ≤  0 and 𝛽 < 0. Also, the constants relating to the properties of the 

nanofluids are given in Table 1.1-1.2. 

Simultaneously solving Eqs. 5.7-5.8 to eliminate the pressure term  

𝑓𝑖𝑣 +
2

𝑟+𝐾
𝑓′′′ −

1

(𝑟+𝐾)2
𝑓′′ −

1

(𝑟+𝐾)3
𝑓′

+
𝑣𝑓
𝑣𝑛𝑓

[
𝐾

𝑟+𝐾
(𝑓𝑓′′′ − 𝑓′𝑓′′) +

𝐾

(𝑟+𝐾)2
(𝑓𝑓′′ − 𝑓′

2
)

−
𝐾

(𝑟+𝐾)3
𝑓𝑓′ −

Ω

𝑟+𝐾
(𝑓′ +

𝑟

2
𝑓′′)−

Ω

2
(3𝑓′′ + 𝑟𝑓′′′)] = 0 

(5.10) 

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)𝑛𝑓

(𝜃′′ +
1

𝑟+ 𝐾
𝜃′) +

𝐾

𝑟+ 𝐾
𝑓𝜃′ − Ω

𝑟

2
𝜃′ = 0 (5.11) 

and corresponding boundary constraints are 

𝑓(0) = 𝑆,   𝑓′(0) = 𝛽,   𝜃(0) = 1  

𝑓′(𝑟) = 1,   𝑓′′(𝑟) = 0,   𝜃(𝑟) = 0 𝑎𝑠 𝑟 →∞ 
(5.12) 

Eq. (5.8) can be used to calculate the pressure 

𝑝 = (
𝜌𝑓

𝜌𝑛𝑓

2𝐾

𝑟+ 𝐾
)

−1

[
𝑣𝑛𝑓

𝑣𝑓
(𝑓′′′ +

1
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𝑓′′ −

1

(𝑟+ 𝐾)2
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𝐾

𝑟+𝐾
𝑓′
2
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𝐾

𝑟+ 𝐾
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𝐾

(𝑟+ 𝐾)2
𝑓𝑓′ − Ω (𝑓′ +

𝑟

2
𝑓′′)] 

(5.13) 

In flow along the surface the important parameters to determine the flow and heat transfer 

behavior are the skin friction coefficient 𝐶𝑓 and the local Nusselt’s number 𝑁𝑢𝐿. The shear 

stress at the curved surface is given by 𝜏𝑤 and heat flux through curved surface is denoted by 

𝑞𝑤 and are defined below 

𝐶𝑓𝑟 =
𝜏𝑤

1
2𝜌𝑓�̅�𝑒

2(�̅�)
, 𝑁𝑢𝐿 =

�̅�𝑞𝑤
𝑘𝑓(𝑇𝑤 − 𝑇∞)

 (5.14) 
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𝜏𝑤 = 𝜇𝑛𝑓 (
𝜕�̅�

𝜕�̅�
−

�̅�

�̅� + 𝑅
)|
�̅�=0

, 𝑞𝑤 = −𝑘𝑛𝑓
𝜕𝑇

𝜕�̅�
|
�̅�=0

(5.15) 

Using transformation in Eqs. (5.6), (5.14) and (5.15) takes the following form 

𝐶𝑓 =
𝜇𝑛𝑓

𝜇𝑓
(𝑓′′(0) −

𝛽

𝐾
) ,   𝑁𝑢 = −

𝑘𝑛𝑓

𝑘𝑓
𝜃′(0) (5.16) 

where 𝐶𝑓  =  (1 −  𝑐 𝑡̅)
3/2(𝑅𝑒�̅�)

1/2 𝐶𝑓𝑟, and 𝑁𝑢 =  (1 −  𝑐 𝑡̅)1/2(𝑅𝑒�̅�)
−1/2 𝑁𝑢𝐿 are the

reduced skin friction coefficient and reduced local Nusselt number. 𝑅𝑒�̅�  =  �̅�𝑒 (�̅�) �̅�/𝜈𝑓 is the 

localized Reynolds number. 

If the curvature parameter 𝐾 ⟶ ∞ &  Ω = 0, the case of plane surface flow is obtained, 

and the governing equations takes the following form 

𝜇𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑓′′′ −  𝑓′

2
+ 𝑓𝑓′′ + 1 = 0

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)𝑛𝑓

𝜃′′ + 𝑓𝜃′ = 0
}

(5.17) 

𝑓(0) = 𝑆,   𝑓′(0) = 𝛽,   𝜃(0) = 1

𝑓′(𝜂) = 1,   𝜃(𝜂) = 0 𝑎𝑠 𝑟 → ∞
} (5.18) 

5.3 Stability analysis 

The Weidman et al. [23] and Roşca & Pop [82] showed the possible existence of multiple 

solutions. Stability analysis needs to be carried out to determine which one of them are stable 

and for what range of parameters. A dimensionless time variable τ is introduced to model the 

problem for stability analysis. Non-dimensional parameters in terms of τ are given below 
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�̅� =
�̅�𝑒

1 − 𝑐 𝑡̅
𝑓′(𝑟, 𝜏),   �̅� = −

𝑅

�̅� + 𝑅
√

𝑣𝑓�̅�𝑒
(1 − 𝑐 𝑡)̅�̅�

𝑓(𝑟, 𝜏),   

𝑟 = √
�̅�𝑒

𝑣𝑓(1 − 𝑐 𝑡̅)�̅�
𝑟  ,    𝑐 < 0

�̅� =
𝜌𝑓�̅�𝑒

2

(1 − 𝑐 𝑡̅)2
𝑝(𝑟, 𝜏),   𝜃(𝑟, 𝜏) =

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

, 𝜏 = 𝑐 𝑡̅
}
 
 
 
 

 
 
 
 

 (5.19) 

so that Eqs. (5.3,5.5) can be written as 

𝜕4𝑓

𝜕𝑟4
+

2

𝑟 + 𝐾

𝜕3𝑓

𝜕𝑟3
−

1

(𝑟 + 𝐾)2
𝜕2𝑓

𝜕𝑟2
−

1

(𝑟 + 𝐾)3
𝜕𝑓

𝜕𝑟

+
𝑣𝑓

𝑣𝑛𝑓
[
𝐾

𝑟 + 𝐾
(𝑓
𝜕3𝑓

𝜕𝑟3
−
𝜕𝑓

𝜕𝑟

𝜕2𝑓

𝜕𝑟2
)

+
𝐾

(𝑟 + 𝐾)2
(𝑓
𝜕2𝑓

𝜕𝑟2
− (

𝜕𝑓

𝜕𝑟
)
2

) −
𝐾

(𝑟 + 𝐾)3
𝑓
𝜕𝑓

𝜕𝑟

−
Ω

𝑟 + 𝐾
(
𝜕𝑓

𝜕𝑟
+
𝑟

2

𝜕2𝑓

𝜕𝑟2
) −

Ω

2
(3
𝜕2𝑓

𝜕𝑟2
+ 𝑟

𝜕3𝑓

𝜕𝑟3
)

−
(1 − 𝑐 𝑡̅)

𝑟 + 𝐾

𝜕2𝑓

𝜕𝑟𝜕𝜏
− (1 − 𝑐 𝑡̅)

𝜕3𝑓

𝜕𝑟2𝜕𝜏
] = 0 

(5.20) 

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)𝑛𝑓

(
𝜕2𝜃

𝜕𝑟2
+

1

𝑟 + 𝐾

𝜕𝜃

𝜕𝑟
) +

𝐾

𝑟 + 𝐾
𝑓
𝜕𝜃

𝜕𝑟
− Ω

𝑟

2

𝜕𝜃

𝜕𝑟

− (1 − 𝑐 𝑡̅)
𝜕𝜃

𝜕𝜏
= 0 

(5.21) 

𝑓(0, 𝜏) = 𝑆,   
𝜕𝑓(0, 𝜏)

𝜕𝑟
= 𝛽,   𝜃(0, 𝜏) = 1 

𝜕𝑓(𝑟, 𝜏)

𝜕𝑟
= 1,

𝜕2𝑓(𝑟, 𝜏)

𝜕𝑟2
= 0,   𝜃(𝑟, 𝜏) = 0 𝑎𝑠 𝑟 → ∞ 

(5.22) 

In order to examine the stability of the solution the steady flow solutions are 𝑓(𝑟)  =  𝑓0(𝑟) 

and 𝜃(𝑟)  =  𝜃0(𝑟) satisfying the boundary-value problem (5.10-5.12), the complete solution 

can be written as 

𝑓(𝑟, 𝜏) = 𝑓0(𝑟) + 𝑒
−𝛼𝜏𝐹(𝑟, 𝜏) (5.23) 

𝜃(𝑟, 𝜏) = 𝜃0(𝑟) + 𝑒
−𝛼𝜏𝜃1(𝑟, 𝜏) (5.24) 
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where 𝛼 is an unknown eigenvalue parameter. the unsteady part of solution 𝐹(𝑟, 𝜏) and 𝜃1(𝑟, 𝜏) 

are relatively small compared to 𝑓0(𝑟) and 𝜃0(𝑟). using Eqs. (5.23-5.24) into Eqs. (5.20-5.22), 

the linearized form of the equations is obtained as follows 

𝜕4𝐹

𝜕𝑟4
+

2

𝑟 + 𝐾

𝜕3𝐹

𝜕𝑟3
−

1

(𝑟 + 𝐾)2
𝜕2𝐹

𝜕𝑟2
−

1

(𝑟 + 𝐾)3
𝜕𝐹

𝜕𝑟

+
𝑣𝑓

𝑣𝑛𝑓
[
𝐾

𝑟 + 𝐾
(𝑓0

𝜕3𝐹

𝜕𝑟3
− 𝑓0

′
𝜕2𝐹

𝜕𝑟2
− 𝑓0

′′
𝜕𝐹

𝜕𝑟
+ 𝑓0′′′𝐹)

+
𝐾

(𝑟 + 𝐾)2
(𝑓0

𝜕2𝐹

𝜕𝑟2
− 2𝑓0

′
𝜕𝐹

𝜕𝑟
+ 𝑓0′′𝐹)

−
𝐾

(𝑟 + 𝐾)3
(𝑓0

𝜕𝐹

𝜕𝑟
+ 𝑓0′𝐹) −

Ω

𝑟 + 𝐾
(
𝜕𝐹

𝜕𝑟
+
𝑟

2

𝜕2𝐹

𝜕𝑟2
)

−
Ω

2
(3
𝜕2𝐹

𝜕𝑟2
+ 𝑟

𝜕3𝐹

𝜕𝑟3
) +

(1 − 𝑐 𝑡̅)

𝜂 + 𝐾
(𝛼

𝜕𝐹

𝜕𝑟
−
𝜕2𝐹

𝜕𝑟𝜕𝜏
)

+ (1 − 𝑐 𝑡̅) (𝛼
𝜕2𝐹

𝜕𝑟2
−

𝜕3𝐹

𝜕𝑟2𝜕𝜏
)] = 0 

(5.25) 

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)𝑛𝑓

(
𝜕2𝜃1
𝜕𝑟2

+
1

𝑟 + 𝐾

𝜕𝜃1
𝜕𝑟
) +

𝐾

𝑟 + 𝐾
(𝑓0

𝜕𝜃1
𝜕𝑟

+ 𝐹𝜃0′)

− Ω
𝑟

2

𝜕𝜃1
𝜕𝑟

+ (1 − 𝑐 𝑡̅) (𝛼𝜃1 −
𝜕𝜃1
𝜕𝜏
) = 0 

(5.26) 

𝐹(0, 𝜏) = 0,   
𝜕𝐹(0, 𝜏)

𝜕𝜂
= 0,   𝜃1(0, 𝜏) = 1 

𝜕𝐹(𝑟, 𝜏)

𝜕𝑟
= 0,

𝜕2𝐹(𝑟, 𝜏)

𝜕𝑟2
= 0,   𝜃1(𝑟, 𝜏) = 0 𝑎𝑠 𝑟 → ∞ 

(5.27) 

By putting 𝜏 = 0 the steady state 𝑓0 and 𝜃0 are achieved, 𝐹 = 𝐹0(𝑟) and 𝜃1 = Θ(𝑟) 

determines the growth or decay of the solution for examining the stability of solution (5.23-

5.24). 
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𝐹0
𝑖𝑣 +

2

𝑟 + 𝐾
𝐹0′′′ −

1

(𝑟 + 𝐾)2
𝐹0′′ −

1

(𝑟 + 𝐾)3
𝐹0′′

+
𝑣𝑓

𝑣𝑛𝑓
[
𝐾

𝑟 + 𝐾
(𝑓0𝐹0′′′ − 𝑓0

′𝐹0′′ − 𝑓0
′′𝐹0′ + 𝑓0′′′𝐹0)

+
𝐾

(𝑟 + 𝐾)2
(𝑓0𝐹0′′ − 2𝑓0

′𝐹0′ + 𝑓0′′𝐹0)

−
𝐾

(𝑟 + 𝐾)3
(𝑓0𝐹0′ + 𝑓0′𝐹0) −

Ω

𝑟 + 𝐾
(𝐹0

′ +
𝑟

2
𝐹0
′′)

−
Ω

2
(3𝐹0

′′ + 𝑟𝐹0
′′′) +

𝛼

𝑟 + 𝐾
𝐹0′ + 𝛼𝐹0′′] = 0 

(5.28) 

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)𝑛𝑓

(Θ′′ +
1

𝑟 + 𝐾
Θ′) +

𝐾

𝑟 + 𝐾
(𝑓0Θ′ + 𝐹0𝜃0′) − Ω

𝑟

2
Θ′

+ 𝛼Θ = 0 

(5.29) 

𝐹0(0) = 0,   𝐹0′(0) = 0,   Θ(0) = 1 

𝐹0
′ (𝑟) = 0, 𝐹0

′′(𝑟) = 0,   Θ(𝑟) = 0 𝑎𝑠 𝑟 →∞ 

(5.30) 

It should be stated that for specific values of 𝑆, 𝐾, Ω and 𝛽, the stability of the steady 

solution 𝑓0(𝑟) and 𝜃0(𝑟) is analyzed by using the smallest of the eigenvalues 𝛼. According to 

Roşca [83], the range of possible eigenvalues can be obtained by relaxing the condition on 

𝐹0(𝑟) to 𝐹0
′′(𝑟) = 0 𝑎𝑠 𝑟 →∞ and an additional condition 𝐹0

′′′(0) = 1 for solving Eq. (5.28). 

Infinite number of eigenvalues 𝛼1 < 𝛼2 < ⋯ < 𝛼𝑛 < ⋯ are obtained when satisfying the 

boundary condition 𝐹0
′′(𝑟) = 0 𝑎𝑠 𝑟 →∞. 

It is found that for shrinking curved surface case 𝛽 <  0, offers dual solutions when 𝛼1 >

0 and 𝜏 → ∞ (steady-state solution). In this case the upper solution branch is found to be stable 

and physically possible. However, 𝛼1 < 0 causes disturbance in the solution and the lower 

branch of solution shows instability as 𝜏 → ∞. This solution is not found to be stable and hence 

not possible in the current flow situation. 

5.4 Results and discussion 

The system of governing equations for the nanofluid flow over a curved 

stretching/shrinking surface have been solved by implementing bvp4c package available in 

MATLAB for a range of parameter values involved in the mathematical equations. This 

package is based on the finite difference scheme by implementing three-stage Lobatto IIIa 
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scheme having fourth-order accuracy. The error control is based on the residual error appearing 

during continuous solution. The tolerance level is set to the order of 10−7. A good initial guess 

is important to start the process because of the existence of dual solution. The guess is chosen 

in such a way that it should satisfy the boundary constraints given in Eq. (5.12) and show 

asymptotically convergent behavior. Any reasonable initial guess can be taken for the upper 

solution branch because the scheme is ultimately producing the convergent solution. However, 

any guess is not able to produce the convergent solution for the case of 𝛽 <  0. In order to 

avoid this problem a suitable set of parameter values are chosen by trial approach to choose 

suitable guess for obtaining the second solution. This solution is taken as an initial guess to 

produce solution for different variations in parameter values. The suitable values of boundary 

layer region are taken to make sure that the infinity condition is satisfied at faraway from 

surface.  Here 𝑟 =  𝑟∞  =  20 to produce the upper solution branch and 𝑟 =  𝑟∞ is taken to be 

in the range of 40 −80 to produce lower solution branch. The solution is verified against all the 

boundary constraints and tolerance level of 10−7. The validation of code is done by comparing 

the results for the reduced case by Nazar et al. [84] in Table 5.2, which shows and excellent 

agreement. 

The effects of the important parameters  𝛽, 𝜑, 𝑆 and Ω are presented in the form of graphs 

against the dimensionless velocity, shear stress profiles and temperature profiles see Figs. 5.2–

5.5. It can be clearly seen that for the case of lower branch solution the boundary layer 

thickness is larger as compared to the one for upper branch solution. It is also observed that 

the wall shear stress shows increasing behavior against the increasing values of S when upper 

branch solution is considered. However, a different behavior is observed for 𝛽 (< 0) (Fig. 

5.2(a)). (Fig. 5.2(b),5.3(b),5.4(b)) show the behavior for the lower branch solution. Finally, 

Figs. 5.5 display the temperature profiles for decelerating shrinking sheet with Ω ≤  0 and 

mass transfer parameter S. The thermal boundary layer has decreasing trend against both the 

parameters. All the conditions at the surface are satisfied as well as the asymptotically 

converging behavior is observed for far field boundary condition.  The terms upper (first) and 

lower (second) branch solutions is being taken from the figures (5.7-5.13) It was expected that 

the upper solution branch will be stable as compared with the lower solution branch. From 

Figs 5.6-5.8 It is seen that there exists more than one solution for different range of 𝛽 values. 
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Two solutions exist for 𝛽 > 𝛽𝑐 , unique solution for 𝛽 = 𝛽𝑐 and no solution exists for 𝛽 < 𝛽𝑐, 

the subscript c represent the critical value. The critical point of 𝛽 changes with the variation in 

|Ω|, 𝜑 and 𝑆. Fig. 5.9 shows the variation of 𝐶𝑓 with respect to Ω for several values of 𝑆 when 

𝐾 = 200, 𝛽 = −0.5, 𝜑 = 0.2. It can be observed from this Fig that there are two solutions 

when  Ω >  Ω𝑐, one solution when  Ω =  Ω𝑐 and no solutions when  Ω <  Ω𝑐. Its critical point 

value also increases with increase in S. The suction parameter 𝑆 plays an important role in 

delaying the separation near the surface. The variation of 𝐶𝑓 with respect to 𝐾 for several values 

of 𝛽 is shown in Fig. 5.10. It is observed from this figure that dual solutions will exist for 

different ranges of curvature parameter as well. Once again two solutions appear when  𝐾 >

 𝐾𝑐 , one solution for 𝐾 = 𝐾𝑐 and no solutions for 𝐾 < 𝐾𝑐. The critical point value of 

curvature also changes with change in |𝛽|. Figs 5.11-5.13 show the dual solution and critical 

value of Nusselt number for range of parameter values involved in equation. It is found that 

the consideration of upper branch solution results in higher value of Nusselt number as 

compared to that of produced by using lower branch of solution. Further it is also noticed that 

the suction parameter is causing the wideness in the range of Nusselt number values for which 

the solution exists. At the end of graphical section streamlines are plotted to analyze the flow 

pattern if the upper or lower branch solutions are considered. The streamline pattern suggests 

for the upper branch (stable) solution a normal stagnation point flow was occurring (Fig. 5.14a 

(1-3)). While streamlines suggest the situation of reverse flow when the lower branch solution 

is considered (Fig. 5.14b (1-3)). The stream lines are clearly showing that flow region is 

divided into two sub-regions one where flow is like a normal stagnation point flow and other 

showing the reverse flow region. The isotherms for the nanofluid flow over curved surface are 

shown in Fig.5.15 for a range of different parameters. Finally, a tabular form of eigen values 

(for selected values of 𝑆 and 𝛽) are given in Table (5.2-5.3) for which stability analysis is 

performed. It is noticed that for the case of upper branch solution all the smallest eigen values 

are positive while they are negative for the lower branch solution. This concludes that the upper 

branch solution is more stable compared to the lower branch solution. 
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(a)         (b) 

Fig. 5. 2. Plot showing the behaviour of 𝑓′(𝑟) & 𝑓′′(𝑟) with respect to 𝛽. 

 

(a)         (b) 

Fig. 5. 3. Plot showing the behaviour of 𝑓′(𝑟) & 𝑓′′(𝑟) with respect to 𝜑. 
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(a)         (b) 

Fig. 5. 4. Plot showing the behaviour of 𝑓′(𝑟) & 𝑓′′(𝑟) with respect to 𝑆. 

 

(a)         (b) 

Fig. 5. 5. Plot showing the behaviour of 𝜃(𝑟) with respect to Ω & 𝑆. 
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Fig. 5. 6. Variation of 𝐶𝑓 with respect to 𝛽 for several values of S. 

 

 

Fig. 5. 7. Variation of 𝐶𝑓 with respect to 𝛽 for several values of Ω. 
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Fig. 5. 8. Variation of 𝐶𝑓 with respect to 𝛽 for several values of 𝜑. 

 

 

Fig. 5. 9. Variation of 𝐶𝑓 with respect to Ω for several values of 𝑆. 
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Fig. 5. 10. Variation of 𝐶𝑓 with respect to 𝐾 for several values of 𝛽. 

 

 

Fig. 5. 11. Variation of 𝑁𝑢 with respect to 𝛽 for several values of. 𝜑. 
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Fig. 5. 12. Variation of 𝑁𝑢 with respect to Ω for several values of. 𝑆. 

 

 

Fig. 5. 13. Variation of 𝑁𝑢 with respect to 𝐾 for several values of. 𝛽. 
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Fig. 5. 14. Stream lines pateren for several values of. 𝛽 when 𝑆 = 2, 𝐾 = 50, 𝜑 = 0.2, Ω =
 −2. 
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(a) 

 

(b) 

Fig. 5. 15. Isotherms for several values of. 𝐾 when 𝑆 = 2, 𝛽 = −1.5, 𝜑 = 0.2, Ω =
 −2, 𝑃𝑟 = 6.2. 
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Table. 5. 1. Numerical Values of 𝐶𝑓  with 𝐾 = ∞, 𝑆 = 0 𝑎𝑛𝑑 𝜑 =  0 (regular fluid), 

Results in parenthesis () are the second (lower branch) solutions. 

𝛽 
𝑪𝒇 

Present Nazar et al [84] 

-0.2 1.37389 - 

-0.25 1.40224 1.40224 

-0.3 1.42758 - 

-0.35 1.44975 - 

-0.4 1.46861 - 

-0.45 1.48399 - 

-0.5 1.49567 1.49567 

-0.55 1.50344 - 

-0.6 1.50703 - 

-0.7 1.50036 - 

-0.75 1.4893 1.48930 

-0.8 1.47239 - 

-0.9 1.41808 - 

-0.95 1.3786 - 

-1 1.32882 1.32882 

-1.05 1.26623 - 

-1.1 
1.18668 

(0.049229) 

1.18668 

(0.04920) 

-1.15 
1.08223 

(0.116702) 

1.08223 

(0.116702) 

-1.2 
0.932477 

(0.23365) 

0.93247 

(0.23363) 
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Table. 5. 2. Comparison of eigenvalues 𝛼 for different 𝛽 when 𝑆 = 0, 𝜑 = 0.0, 𝐾 = ∞,Ω = 0. 

𝜷 

Upper branch solution Lower branch solution 

[84] Present [84] Present 

-1 1.3690 1.369044 - - 

-1.1 1.0463 1.046348 −0.8437 -0.843697 

-1.2 0.5780 0.577960 −0.5173 -0.512109 

-1.24 0.2121 0.212053 −0.2036 -0.203639 

-1.245 0.1030 0.102975 −0.1010 -0.100958 

-1.246 0.0622 0.062157 −0.0614 -0.061418 

 

 

Table. 5. 3. Smallest eigenvalues 𝛼 at selected values of S and 𝛽 when 𝜑 = 0.2, 𝐾 = 200, Ω =
−2. 

𝑺 𝜷 Upper solution branch Lower solution branch 

1.5 

0.0 1.492433 - 

-0.1 1.181180 -0.180752 

-0.2 1.037085 -0.114800 

-0.3 0.947922 -0.046200 

2.0 

0.0 2.171598 -0.481961 

-0.1 1.514339 -0.46323 

-0.2 1.313345 -0.436906 

-03 1.198322 -0.404290 
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5.5 Conclusion 

A theoretical study of unsteady viscous nanofluid flow over a curved shrinking surface 

with mass suction has been analyzed. Alumina (𝐴𝑙2𝑂3) and Ethylene glycol are considered as 

nanoparticles and base fluids, respectively. The corresponding flow equations are reduced to a 

system of nonlinear coupled ordinary differential equations which contain the flow parameters, 

curvature parameter, mass suction parameter, unsteadiness parameter, nanoparticles volume 

fraction, shrinking parameters and Prandtl number 𝑃𝑟. The reduced system of ODE’s is solved 

numerically by using bvp4c scheme in MATLAB. The numerical results are obtained for the 

physical parameters the reduced skin friction and the reduced local Nusselt number against 

different values of flow parameters. From this study we get the following remarks: 

1. Dual solution exists for shrinking curved surface. 

2. The critical values 𝛽𝑐 of shrinking parameter (𝛽) depends upon 𝜑,𝐾, Ω and S. 

3. The mass suction parameter S decrease the range of shrinking parameter, 𝛽, and 

unsteadiness parameter, Ω, for which solution exist. 

4. The range of solution interval for curvature parameter K found compatible with 

lesser values of shrinking parameter (Ω).  

5. The critical point |𝛽𝑐| decrease for nanoparticle volume friction (𝜑). 

6. The streamline pattern for the upper branch (stable) solutions is similar to normal 

stagnation point flow. 

7. Reversed flow is appearing in the case of the lower branch solutions. 

8. The upper branch solutions have positive eigenvalue while all the lower branch 

solutions have negative eigenvalue. 
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9. The upper branch solution is physically realizable (stable) while the lower branch is not 

physically realizable (unstable). 

  



121 

Chapter # 6 

 Analysis of unsteady non-axisymmetric Homann stagnation 

point flow of nanofluid and possible existence of multiple 

solutions 

6.1 Introduction 

This chapter examines the unsteady 3D non-axisymmetric Homann flow of an electrically 

conducting nanofluids in the presence of buoyancy forces. We consider the uniform external 

magnetic field, 𝐁𝟎, by neglecting induced magnetic field and examines the three possible 

directions of 𝐁𝟎 which coincides with the direction of axes. A similarity solution is derived 

which involve the dimensionless parameters 𝜑,𝑀, 𝜔, 𝛾 and 𝜆. We have treated the case for 

forced convection when 𝜆 = 0 which arise from the singularity 𝛾 = ∓1. We found that, for 

large 𝛾 and 𝜆, the leading terms of the solutions are independent of  𝑀 and 𝜔, and the effects 

of 𝜑 in that solutions are negligible. Numerical results are found for illustrative values of all 

the flow parameters by using bvp4c scheme in MATLAB.  
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6.2 Problem formulation 

Consider the unsteady MHD asymmetric Homan stagnation point flow of a homogeneous, 

electrically conducting and incompressible inviscid fluid over a flat vertical wall. It is assumed 

that the external flow is 

�̅�(𝑡,̅ �̅�, �̅�) =
1

1 − 𝑐𝑡̅
(𝑎�̅� + 𝑏�̅�),   �̅�(𝑡,̅ �̅�, �̅�) =

1

1 − 𝑐𝑡̅
(𝑏�̅� + 𝑎�̅�),

�̅�(𝑡,̅ 𝑧̅) =
−2𝑎𝑧̅

1 − 𝑐𝑡̅

(6.1) 

𝑐 > 0 represent an accelerated flow and 𝑐 < 0 a decelerated flow, and, �̅� − 𝑎𝑥𝑖𝑠 measured in 

the gravity direction and 𝑧̅ − 𝑎𝑥𝑖𝑠 measured in the normal direction to the �̅��̅� − 𝑝𝑙𝑎𝑛𝑒. 

The horizontal velocities �̅� and �̅� in system (1) can be written as in matrix form 

(
�̅�
�̅�
) =

1

1 − 𝑐𝑡̅
(
𝑎 𝑏
𝑏 𝑎

) (
�̅�
�̅�
) (6.2) 

To obtain the principal axis of the system, we diagonalized the coefficient matrix in (6.2) 

by using the results from linear algebra. The velocity components (𝑢′̅, 𝑣′̅) in the direction of

principal axes (𝑥′̅, 𝑦′̅) is then given by

(𝑢′̅
𝑣′̅
) =

1

1−𝑐�̅�
(
𝜆1 0
0 𝜆2

) (
𝑥′̅

𝑦′̅
). (6.3) 

Rotating the coordinates (�̅�, �̅�, 𝑧̅) to the principal axes (𝑥′̅, 𝑦′̅, 𝑧′̅), we get the outer potential

flow 

𝑢′̅(𝑡,̅ 𝑥 ′̅, 𝑦 ′̅) =
1

1 − 𝑐𝑡̅
(𝑎 + 𝑏)𝑥 ′̅,   𝑣 ′̅(𝑡̅, 𝑥 ′̅, 𝑦 ′̅) =

1

1 − 𝑐𝑡̅
(𝑎 − 𝑏)𝑦 ′̅, 

�̅�(𝑡̅, 𝑧′̅) =
−2𝑎𝑧̅

1 − 𝑐𝑡̅

(6.4) 

It is difficult to find the asymptotic behavior of solutions by considering the outer flow 

(6.1). For this purpose, we preferred to formulate the problem along the principal axes, without 

loss of generality, and after dropping the prime notation in (6.4), we arrive at 
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�̅�(𝑡̅, �̅�, �̅�) =
𝑎

1 − 𝑐𝑡̅
(1 + 𝛾)�̅�,   �̅�(𝑡,̅ �̅�, �̅�) =

𝑎

1 − 𝑐𝑡̅
(1 − 𝛾)�̅�,    �̅�(𝑡̅, 𝑧̅) =

−2𝑎𝑧̅

1 − 𝑐𝑡̅
(5) 

where 𝛾 = 𝑏/𝑎 represent the ratio of shear-to-strain rate 

6.2.1 The flow of an inviscid fluid 

The equations overseeing such a flow within the existence of the gravity forces are: 

𝜌0 (
𝜕𝑽

𝜕𝑡̅
+ (𝑽 ∙ 𝛁)𝑽) = −𝛁�̅� +

1

𝜇𝑒
(𝛁 × 𝐁) × 𝐁 + 𝜌0𝐠𝟎

1

𝜇𝑒
(𝛁 × 𝐁) = 𝜎𝑒(𝐄 + 𝐕 × 𝐁)

𝛁 ∙ 𝑽 = 𝟎,   𝛁 × 𝐄 = 𝟎,   𝛁 ∙ 𝑬 = 𝟎,   𝛁 ∙ 𝑩 = 𝟎 }

(6.6) 

where 𝐠𝟎 is the gravity acceleration. 

We suppose that a uniform external magnetic field B is impressed and that the electric field 

is absent. Further we assume that the magnetic Reynolds number is very small, so that the 

induced magnetic field is negligible in comparison with the imposed field. Then  

(𝛁 × 𝐁) × 𝐁 ≃ 𝜎𝑒𝜇𝑒(𝐕 × 𝐁𝟎) × 𝐁𝟎

In the results, we will use the modified pressure 𝑝∗ given by 𝑝∗ = �̅� + 𝜌0g0�̅�. As in [20]

one can prove that the steady three-dimensional stagnation point flow is possible if, and only 

if, 𝐁𝟎 is parallel to one of the axes. 

If 𝐁𝟎 = B0�̂�, we deduce

𝑝0 − 𝑝
∗ = 𝜌0 (

𝜕

𝜕�̅�
∫ �̅�𝜕�̅� +

𝑽𝟐

𝟐
) + 𝜌0

𝛼

2

𝑎

(1−𝑐�̅�)2
((1 − 𝛾)�̅�2 − 2𝑧̅2) +

𝜎𝑒
1

2

𝑎

1−𝑐�̅�
B0

2((1 − 𝛾)�̅�2 − 2𝑧̅2).

(6.7) 

If 𝐁𝟎 = B0𝒋̂, we obtain

𝑝0 − 𝑝
∗ = 𝜌0 (

𝜕

𝜕�̅�
∫ �̅�𝜕�̅� +

𝑽𝟐

𝟐
)+𝜌0

𝛼

2

𝑎

(1−𝑐�̅�)2
((1 + 𝛾)�̅�2 − 2𝑧̅2) +

𝜎𝑒
𝛼

2

𝑎

1−𝑐�̅�
B0

2((1 + 𝛾)�̅�2 − 2𝑧̅2).

(6.8) 

If 𝐁𝟎 = B0�̂�, we arrive at 
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𝑝0 − 𝑝
∗ = 𝜌0 (

𝜕

𝜕�̅�
∫ �̅�𝜕𝑧̅ +

𝑽𝟐

𝟐
) +

𝛼

2

𝑎

(1−𝑐�̅�)2
((1 + 𝛾)�̅�2 + (1 − 𝛾)�̅�2) +

𝜎𝑒
1

2

𝑎

1−𝑐�̅�
B0

2((1 + 𝛾)�̅�2 + (1 − 𝛾)�̅�2). 

(6.9) 

From Eqs. (6.7-6.9), we notice that the modified pressure along the wall 𝑧̅ = 0 takes its 

maximum value in the stagnation point. 

6.2.2 Newtonian nanofluids: analysis of the flow 

In order to study the electrically conducting Newtonian nanofluids we neglect the induced 

magnetic and apply the Boussinesq approximation. Consider that 𝑜�̅��̅� plane is vertical (𝑜�̅� 

vertical upward), then the flow equations can be written as 

𝜌𝑛𝑓 (
𝜕𝑽

𝜕�̅�
+ (𝑽 ∙ 𝛁)𝑽) = −𝛁�̅� + 𝜇𝑛𝑓𝛁

𝟐𝑽 + 𝜎𝑛𝑓(𝐕 × 𝐁𝟎) × 𝐁𝟎 − (𝜌𝛽)𝑛𝑓(�̅� − �̅�0)𝐠𝟎

(𝜌𝐶𝑝)𝑛𝑓 (
𝜕�̅�

𝜕�̅�
+ (𝑽 ∙ 𝛁)�̅�) = 𝑘𝑛𝑓𝛁

𝟐�̅�

1

𝜇𝑒
(𝛁 × 𝐁) = 𝜎𝑒(𝐄 + 𝐕 × 𝐁)

𝛁 ∙ 𝑽 = 𝟎,   𝛁 × 𝐄 = 𝟎,   𝛁 ∙ 𝑬 = 𝟎,   𝛁 ∙ 𝑩 = 𝟎 }
 
 

 
 

, (6.10) 

As for as we concerned, the condition at boundary (wall) for 𝑽 and �̅�, we propose: 

𝑽|�̅�=0 = 𝟎,    �̅�|�̅�=0 = �̅�𝑤(𝑡,̅ �̅�) =
𝐷�̅�

1−𝑐�̅�
+ �̅�0. (6.11) 

where D is constant. If the constant D is negative (positive), then the wall 𝑧̅ = 0 is colder 

(hotter) than the surroundings at �̅� > 0, while it is hotter (colder) than the surroundings at �̅� <

0. 

Assume the steady state behavior of solutions 

�̅� =
𝑎

1 − 𝑐𝑡̅
(1 + 𝛾)�̅�𝑓̅′(𝑧̅),   �̅� =

𝑎

1 − 𝑐𝑡̅
(1 − 𝛾)�̅��̅�′(𝑧̅),     

�̅� =
−𝑎

1−𝑐�̅�
[(1 + 𝛾)𝑓̅(𝑧̅) + (1 − 𝛾)�̅�(𝑧̅)], �̅� − �̅�0 =

𝐷�̅�

1−𝑐�̅�
𝑇(𝑧̅). 

(6.12) 

where 𝑓(̅𝑧̅), �̅�(𝑧̅), 𝑇(𝑧̅) are sufficiently regular unknown and prime represents derivative with 

respect to 𝑧̅. 
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From Eqs. (6.7-6.9), we found that it is more suitable from a physical point of view by 

applying the external magnetic field normal to the wall. Therefore, we begin with 𝐁𝟎 = B0�̂� 

so that Eq. (6.10)1 become 

𝜕�̅�

𝜕�̅�
= −𝜌𝑛𝑓 {

𝛼𝑎

(1 − 𝑐𝑡̅)2
(1 + 𝛾)�̅�𝑓̅′

+
𝑎2

(1 − 𝑐𝑡̅)2
(1 + 𝛾)2�̅�(𝑓̅′)

2
−𝜐𝑛𝑓 (

𝑎

1 − 𝑐𝑡̅
(1 + 𝛾)�̅�𝑓̅′′′)

−
𝑎2

(1 − 𝑐𝑡̅)2
(1 + 𝛾)2�̅�𝑓̅′′[(1 + 𝛾)𝑓̅ + (1 − 𝛾)�̅�]

+
𝜎𝑛𝑓

𝜌𝑛𝑓
B0

2 𝑎

1 − 𝑐𝑡̅
(1 + 𝛾)�̅�𝑓̅′} 

(6.13) 

𝜕�̅�

𝜕�̅�
= −𝜌𝑛𝑓 {

𝑐𝑎

(1 − 𝑐𝑡̅)2
(1 − 𝛾)�̅��̅�′

+
𝑎2

(1 − 𝑐𝑡)̅2
(1 − 𝛾)2�̅�(�̅�′)2−𝜐𝑛𝑓 (

𝑎

1 − 𝑐𝑡̅
(1 − 𝛾)�̅��̅�′

′′
)

−
𝑎2

(1 − 𝑐𝑡)̅2
(1 − 𝛾)2�̅�𝑔′′[(1 + 𝛾)𝑓̅ + (1 − 𝛾)�̅�]

+
𝜎𝑛𝑓

𝜌𝑛𝑓
B0

2 𝑎

1 − 𝑐𝑡̅
(1 − 𝛾)�̅��̅�′ + 𝛽𝑛𝑓

𝐷�̅�

1 − 𝑐𝑡̅
𝑇g0} 

(6.14) 

𝜕�̅�

𝜕𝑧̅
= −𝜌𝑛𝑓 {

−𝑐𝑎

(1 − 𝑐𝑡̅)2
[(1 + 𝛾)𝑓̅ + (1 − 𝛾)�̅�]

+
𝑎2

(1 − 𝑐𝑡̅)2
[(1 + 𝛾)𝑓̅ + (1 − 𝛾)�̅�][(1 + 𝛾)𝑓′̅

+ (1 − 𝛾)�̅�′]+𝜐𝑛𝑓 (
𝑎

1 − 𝑐𝑡̅
[(1 + 𝛾)𝑓′̅′ + (1 − 𝛾)�̅�′′])} 

(6.15) 

Further the conditions (11) provides 

𝑓′̅(0) = 0, 𝑓(̅0) = 0, �̅�′(0) = 0, �̅�(0) = 0, 𝑇(0) = 1. (6.16a) 
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Furthermore, as usual, when studying the stagnation point flow for viscous nanofluids, we 

presume that the free stream flow has the similar behavior as for an inviscid fluid flow at the 

temperature �̅�0 whose velocity is specified by (6.5). Thus, to solve (6.16a) we add the 

subsequent conditions 

𝑓̅′(𝑧̅) = 1,   �̅�′(𝑧̅) = 1,   𝑇(𝑧̅) = 0           𝑎𝑠    𝑧̅ → ∞. (6.16b) 

To find the pressure field we integrate (6.15) and suppose that, the pressure �̅� away from 

the surface has the similar behavior as for an inviscid fluid (see (6.5)) and same modified 

pressure as in section (6.2.1). We then obtain the modified pressure field as 

𝑝∗ = 𝑝0 − 𝜌𝑛𝑓 {
−𝑐𝑎

(1 − 𝑐𝑡̅)2
[(1 + 𝛾)∫ 𝑓̅

�̅�

0

𝑑𝑧̅ + (1 − 𝛾)∫ �̅�
�̅�

0

𝑑𝑧̅]

+
𝑎2

2(1 − 𝑐𝑡̅)2
[(1 + 𝛾)𝑓̅ + (1 − 𝛾)�̅�]

2
+𝜐𝑛𝑓 (

𝑎

1 − 𝑐𝑡̅
[(1 + 𝛾)𝑓̅′

+ (1 − 𝛾)�̅�′])

+ [
𝑐𝑎

(1 − 𝑐𝑡̅)2
(1 + 𝛾) +

𝑎2

(1 − 𝑐𝑡̅)2
(1 + 𝛾)2

+
𝜎𝑛𝑓

𝜌𝑛𝑓
B0

2 𝑎

1 − 𝑐𝑡̅
(1 + 𝛾)]

�̅�2

2

+ [
𝑐𝑎

(1 − 𝑐𝑡̅)2
(1 − 𝛾) +

𝑎2

(1 − 𝑐𝑡̅)2
(1 − 𝛾)2

+
𝜎𝑛𝑓

𝜌𝑛𝑓
B0

2 𝑎

1 − 𝑐𝑡̅
(1 − 𝛾)]

�̅�2

2
}, 

(6.17) 

where 𝑝∗ is modified pressure and 𝑝0is stagnation pressure. In consideration of (6.17) we 

obtain a system of ordinary differential equations 
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𝜐𝑛𝑓
1 − 𝑐𝑡̅

𝑎
𝑓̅′′′ + 𝑓̅′′[(1 + 𝛾)𝑓̅ + (1 − 𝛾)�̅�] − (1 + 𝛾) [(𝑓̅′)

2
− 1]

− 𝜔[𝑓̅′ − 1] −
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑀2[𝑓̅′ − 1] = 0, 

(6.18) 

𝜐𝑛𝑓
1 − 𝑐𝑡̅

𝑎
�̅�′′′ + �̅�′′[(1 + 𝛾)𝑓̅ + (1 − 𝛾)�̅�] − (1 − 𝛾)[(�̅�′)2 − 1]

− 𝜔[�̅�′ − 1] −
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑀2[�̅�′ − 1] +

β𝑛𝑓

β𝑓
(1 − 𝛾)𝜆𝑇 = 0, 

(6.19) 

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)𝑛𝑓

(1 − 𝑐𝑡̅)𝜐𝑓

𝑎
𝑇′′ − 𝜔𝑇 − (1 − 𝛾)�̅�′𝑇

+ [(1 + 𝛾)𝑓̅ + (1 − 𝛾)�̅�]𝑇′ = 0, 

(6.20) 

where 

𝑀2 =
(1 − 𝑐𝑡̅)𝜎𝑓𝐵0

2

𝑎𝜌𝑓
, 𝜆 =

𝐷β𝑓g0(1 − 𝑐𝑡̅)

𝑎2(1 − 𝛾)2
,   𝜔 =

𝑐

𝑎
,   𝑃𝑟 =

(𝜌𝐶𝑝)𝑓𝜐𝑓

𝑘𝑓
 

𝐵0 =
𝐵00

√(1 − 𝑐𝑡̅)
  , 𝐷 =

𝐷0
(1 − 𝑐𝑡̅)

 . 

For the current study we assumed a decelerated flow with 𝜔 ≤ 0. Now it is suitable to write 

the flow equations in dimensionless form. For this, we use  

𝑓(𝑧) = √
𝑎

𝜐𝑓(1 − 𝑐𝑡̅)
𝑓̅ (√

𝜐𝑓(1 − 𝑐𝑡̅)

𝑎
𝑧), 

𝑔(𝑧) = √
𝑎

𝜐𝑓(1 − 𝑐𝑡̅)
�̅� (√

𝜐𝑓(1 − 𝑐𝑡̅)

𝑎
𝑧), 

  𝑧 = √
𝑎

𝜐𝑓(1 − 𝑐𝑡̅)
𝑧̅,   𝜃(𝑧) = 𝑇 (√

𝜐𝑓(1 − 𝑐𝑡̅)

𝑎
𝑧) . 

(6.21) 

Thus, Eqs. (6.18-6.20) transformed to 
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𝜐𝑛𝑓

𝜐𝑓
𝑓′′′ + 𝑓′′[(1+𝛾)𝑓+(1−𝛾)𝑔] − (1 + 𝛾)[(𝑓′)2 − 1] − 𝜔[𝑓′ − 1]

−
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑀2[𝑓′ − 1] = 0, 

(6.22) 

𝜐𝑛𝑓

𝜐𝑓
𝑔′′′ + 𝑔′′[(1+𝛾)𝑓+(1−𝛾)𝑔] − (1 − 𝛾)[(𝑔′)2 − 1] − 𝜔[𝑔′ − 1]

−
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑀2[𝑔′ − 1] +

β𝑛𝑓

β𝑓
(1 − 𝛾)𝜆𝜃 = 0 , 

(6.23) 

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)𝑛𝑓

𝜃′′ − 𝜔𝜃 − (1 − 𝛾)𝑔′𝜃 + [(1 + 𝛾)𝑓 + (1 − 𝛾)𝑔]𝜃′ = 0. (6.24) 

The boundary conditions in dimensionless form become 

𝑓(0) = 0, 𝑓′(0) = 0, 𝑔(0) = 0, 𝑔′(0) = 0, 𝜃(0) = 1,

𝑓′(𝑧) = 1,   𝑔′(𝑧) = 1,   𝜃(𝑧) = 0           𝑎𝑠    𝑧 → ∞.
} (6.25) 

The solution can be easily obtained for the other two cases of MHD by the same calculation 

procedure. Once we get the solutions then the two-dimensional boundary-layer displacement 

thickness 𝛿�̅� and 𝛿�̅� can be computed from the relation [85] 

√
𝑎

𝜐𝑓(1 − 𝑐𝑡̅)
𝛿�̅� = ∫ [1 − 𝑓′(𝑧)]𝑑𝑧 = 𝐴

∞

0

 ,

√
𝑎

𝜐𝑓(1 − 𝑐𝑡)̅
𝛿�̅� = ∫ [1 − 𝑔′(𝑧)]𝑑𝑧 = 𝐵

∞

0

.

}
 
 

 
 

 
(6.26) 

We can find the three-dimensional boundary-layer displacement thickness 𝛿1 at the 

stagnation point [9], from the following expression 

√
𝑎

𝜐𝑓(1 − 𝑐𝑡)̅
𝛿1 =

(1 + 𝛾)𝐴 + (1 − 𝛾)𝐵

2
= 𝐶. (6.27) 

The main quantities of attention are the values of 𝑓′′(0), 𝑔′′(0) and 𝜃′(0) which evaluate 

the skin friction coefficient in 𝑥 and 𝑦 direction and the surface temperature gradient. Our aim 
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is to see, how the values of 𝑓′′(0), 𝑔′′(0), 𝜃′(0), 𝐴, 𝐵 and 𝐶 vary in term of the flow 

parameters? We have taken the fixed Prandtl number (𝑃𝑟 = 6.2) in the present computation. 

6.3 Results 

The boundary value problem given by (6.22-6.25) have been solved numerically using 

bvp4c in MATLAB [20]. We start with the case of forced convection by considering 𝜆 = 0, 

because of the singularity in Eq. (6.23) at 𝛾 = 1, to find the solutions in the neighborhood of 

𝛾 = 1. We have considered water as a base fluid and Cupper (Cu) as a nanoparticle whereas 

the thermophysical properties of base fluid and nanoparticles are given in Table 1.1-1.2. 

6.3.1 Forced convection, 𝝀 = 𝟎 

To find the solutions to (6.22-6.25) for 𝜆 = 0, which arise from singularities 𝛾 → ∓1, we 

consider 𝛾 = 1 − 𝛿 and look for a solution valid for small 𝛿 by writing 𝑔 = 𝛿−1𝐺. Eqs (6.22-

6.23) and (6.25) becomes 

𝜐𝑛𝑓

𝜐𝑓
𝑓′′′ + 𝑓′′[(2 − 𝛿)𝑓 + 𝐺] − (2 − 𝛿)[(𝑓′)2 − 1] − 𝜔[𝑓′ − 1]

−
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑀2[𝑓′ − 1] = 0, 

(6.28) 

𝜐𝑛𝑓

𝜐𝑓
𝐺′′′ + 𝐺′′[(2 + 𝛿)𝑓 + 𝐺] − [(𝐺′)2 − 𝛿] − 𝜔[𝐺′ − 𝛿]

−
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑀2[𝐺′ − 𝛿] = 0, 

(6.29) 

𝑓(0) = 0, 𝑓′(0) = 0, 𝐺(0) = 0, 𝐺′(0) = 0,

𝑓′(𝑧) = 1,   𝐺′(𝑧) = 𝛿           𝑎𝑠    𝑧 → ∞.
} (6.30) 

Comparing the like powers of 𝛿 in Eqs. (6.28) to (6.30), the leading terms 𝑓0 and 𝐺0 

satisfying 
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𝜐𝑛𝑓

𝜐𝑓
𝑓0′′′ + 𝑓0′′[2𝑓0 + 𝐺0] − 2[(𝑓0′)

2 − 1] − 𝜔[𝑓0′ − 1]

−
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑀2[𝑓0′ − 1] = 0, 

(6.31) 

𝜐𝑛𝑓

𝜐𝑓
𝐺0′′′ + 𝐺0′′[2𝑓0 + 𝐺0] − (𝐺0′)

2 − 𝜔𝐺0′ −
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑀2𝐺0′ = 0, (6.32) 

𝑓0(0) = 0, 𝑓0
′(0) = 0, 𝐺0(0) = 0, 𝐺0

′(0) = 0,

𝑓0
′(𝑧) = 1,   𝐺0

′(𝑧) = 0           𝑎𝑠    𝑧 → ∞.
} (6.33) 

Now suppose 𝐺0
′′(0) = −𝑎0 for some constant 𝑎0 > 0; then we can find 𝐺0 = 𝑎0�̅�0 to 

obtain  

𝜐𝑛𝑓

𝜐𝑓
𝑓0′′′ + 𝑓0′′[2𝑓0 + 𝑎0�̅�0] − 2[(𝑓0′)

2 − 1] − 𝜔[𝑓0′ − 1]

−
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑀2[𝑓0′ − 1] = 0, 

(6.34) 

𝜐𝑛𝑓

𝜐𝑓
�̅�0′′′ + �̅�0′′[2𝑓0 + 𝑎0�̅�0] − 𝑎0(�̅�0′)

2 − 𝜔�̅�0′ −
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑀2�̅�0′ = 0, (6.35) 

𝑓0(0) = 0, 𝑓0
′(0) = 0, �̅�0(0) = 0, �̅�0

′(0) = 0, �̅�0
′′(0) = −1 ,

𝑓0
′(𝑧) = 1,   �̅�0

′(𝑧) = 0           𝑎𝑠    𝑧 → ∞.
} (6.36) 

The problem given by (6.34)-(6.36) is an eigenvalue problem for 𝑎0. For 𝜑 = 𝜔 = 𝑀 = 0, 

Merkin el. al [21] found that 𝑎0 = 1.78068 and 𝑓0
′′(0) = 1.66588. We are interested the 

solution of Eqs. (6.34) to (6.36) for different 𝜑,𝜔, and 𝑀. Generally, we can write 

𝑓′′(0) = 𝑓0
′′(0) + ⋯,      𝑔′′(0) = −𝑎0(1 − 𝛾)

−1 +⋯          as 𝛾 → 1. (6.37) 

We now exploit the symmetry, given in [19], of 𝛾 → −𝛾, 𝑔 → 𝑓 and 𝑓 → 𝑔 to extand this 

analysis to show that there is also singularity as 𝛾 → −1. Taking the same procedure, we find 

𝑓′′(0) = −𝑎0(1 − 𝛾)
−1 +⋯,      𝑔′′(0) = �̅�0

′′ +⋯                 𝑎𝑠 𝛾 → −1 . (6.38) 

To generate further numerical solutions close to 𝛾 = ∓1 we use the integration of 

expression in (6.37) and (6.38). 
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(a)         (b) 

Fig. 6. 1. Forced convection: Plots (a) 𝑓′′(0) and (b) 𝑔′′(0) against 𝛾 for different 𝜔 

obtained from the numerical integration of (6.34)-(6.36). 

The singular nature of 𝑓 and 𝑔 are clearly seen in Fig 6.1. The asymptotes of 𝑓′′(0) and 

(b) 𝑔′′(0) against large |𝛾| are in the neighborhoods (−0.2,0.2) when 𝜔 = −0.5 and 

(−0.3,0.3) when 𝜔 = −1.5. It is seen that 𝜔 influence the solution behavior but there is no 

longer variation in the solutions against 𝜑 and 𝑀, so we cannot discuss it. 

6.3.2 Numerical results 

In this section we have discussed the solution to Eqs. (6.22)-(6.25) against different flow 

parameters for representative values of 𝛾 > 1 and 𝛾 < 1 nothing for 𝛾 = 1 that the solution is 

independent of 𝜆 as discussed in section 6.3.1. The important highlight of these consequences 

is the existence of critical values 𝜆𝑐 of 𝜆 which separate the solution branches by making 

saddle-node at 𝜆 = 𝜆𝑐. These critical values depend on 𝛾, 𝜑, 𝜔 and 𝑀. The upper branch 

solutions of 𝑔′′(0), as seen in Fig 6.2(b), continues to large 𝜆. Also, 𝑓′′(0) and −𝜃′(0) increase 

for positive 𝜆. It is found that the critical point |𝜆𝑐| rapidly increase its value when 𝛾 enters in 

the neighbouhood of 1. To increase the value of decceleration the flow physical parameters 

𝑓′′(0), 𝑔′′(0) and −𝜃′(0) show its decreasing behaviour as we expect. The critical values 𝜆𝑐 

also depend on the unsteadiness parameter 𝜔 and found that the critical point changes from 

opposing direction (𝜆 < 0) to assisting direction (𝜆 > 0) if we increse the rate of decceleration 
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(𝜔), as shown in Fig 6.5. Fig 6.7 exhibits the two dimensional displacement thickness 𝐴 and 

𝐵 and the three dimensional displacement thickness 𝐶  over the range −10 ≤ 𝛾 ≤ 10. The 

thickness 𝐴 and 𝐵 are always positive and achive the maximum values 𝐴 = 0999 and 𝐵~0.85 

at 𝛾𝑚𝐴~− 2.47 and 𝛾𝑚𝐵~4.5, respectively. Beyond these points it appear that 𝐴 and 𝐵 

decrease monotonically with increasing |𝛾|.  
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(a)         (b) 

 

(c) 

Fig. 6. 2. Plots (a) 𝑓′′(0), (b) 𝑔′′(0) and (c) −𝜃′(0) against 𝜆 for different 𝛾 obtained from 

the numerical integration of (6.22)-(6.25). 
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Fig. 6. 3. Critical values:.a plot of 𝜆𝑐 against 𝛾. 
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(a)         (b) 

 

(c) 

Fig. 6. 4. Plots (a) 𝑓′′(0), (b) 𝑔′′(0) and −𝜃′(0) against 𝜆 for different 𝜔 obtained from 

the numerical integration of (6.22)-(6.25). 
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Fig. 6. 5. Critical values:.a plot of 𝜆𝑐 against 𝜔. 
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(a)         (b) 

 

(c) 

Fig. 6. 6. Plots (a) 𝑓′′(0), (b) 𝑔′′(0) and −𝜃′(0) against 𝜆 for different 𝜑 obtained from 

the numerical integration of (6.22)-(6.25). 
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Fig. 6. 7. Variation of the displacement thickness 𝐴, 𝐵 and 𝐶 with 𝛾 when 𝜑 = 0.2, 𝜆 =
−2,𝜔 = −0.5,𝑀 = 10−7, obtained from (6.26)-(6.27). 
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6.3.3 Free convection limit, 𝝀 large 

We assume that 𝛾 ≠ 1 and to obtain a solution for 𝜆 ≫ 1 we put [21] 

𝑓 = 𝜆1/4Φ, 𝑔 = 𝜆1/4Ψ, 𝜂 = 𝜆1/4𝑦  (6.39) 

Eqs. (6.22)-(6.25) becomes 

𝜐𝑛𝑓

𝜐𝑓
Φ′′′ + Φ′′[(1 + 𝛾)Φ+ (1 − 𝛾)Ψ] − (1 + 𝛾)[(Φ′)2 − 𝜆−1]

− 𝜔[𝜆−1/2Φ′ − 𝜆−1] −
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑀2[𝜆−1/2Φ′ − 𝜆−1] = 0 

(6.40) 

𝜐𝑛𝑓

𝜐𝑓
Ψ′′′ + Ψ′′[(1 + 𝛾)Φ + (1 − 𝛾)Ψ] − (1 − 𝛾)[(Ψ′)2 − 𝜆−1]

− 𝜔[𝜆−1/2Ψ′ − 𝜆−1] −
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑀2[𝜆−1/2Ψ′ − 𝜆−1]

+
β𝑛𝑓

β𝑓
(1 − 𝛾)𝜃 = 0 

(6.41) 

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)𝑛𝑓

𝜃′′ − 𝜔𝜆−1/2𝜃 − (1 − 𝛾)𝑔′𝜃 + [(1 + 𝛾)Φ + (1 − 𝛾)𝑔]𝜃′ = 0 (6.42) 

Φ(0) = 0,Φ′(0) = 0,Ψ(0) = 0,Ψ′(0) = 0, 𝜃(0) = 1

Φ′(𝜂) = 𝜆−1/2,   Ψ′(𝜂) = 𝜆−1/2,   𝜃(𝜂) = 0           𝑎𝑠    𝜂 → ∞
} 

(6.43) 

where prime denotes differentiation with respect to 𝜂. 

An expansion in power of 𝜆−1/2 (see [21]) we obtain the leading order terms 

𝜐𝑛𝑓

𝜐𝑓
Φ0′′′ + (1 − 𝛾)Ψ0Φ0′′ = 0, (6.44) 

𝜐𝑛𝑓

𝜐𝑓
Ψ0′′′ + (1 − 𝛾)Ψ0Ψ0′′ − (1 − 𝛾)(Ψ0′)

2 +
β𝑛𝑓

β𝑓
(1 − 𝛾)𝜃 = 0, (6.45) 

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)𝑛𝑓
𝜃0′′ − (1 − 𝛾)Ψ0′𝜃0 + (1 − 𝛾)Ψ0𝜃0′ = 0, (6.46) 
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Φ0(0) = 0,Φ0′(0) = 0,Ψ0(0) = 0,Ψ0′(0) = 0, 𝜃0(0) = 1

Φ0′(𝜂) = 1,   Ψ0′(𝜂) = 0,   𝜃0(𝜂) = 0           𝑎𝑠    𝜂 → ∞
}. 

(6.47) 

Further, we can remove 𝛾 from Eqs. (6.44)-(6.48) by writing 

Ψ0 = (1 − 𝛾)−1/2Ψ̅0, �̅� = (1 − 𝛾)
1/2𝜂      𝑖𝑓      𝛾 < 1, (6.48) 

and 

Ψ0 = −(−(1 − 𝛾))
−1/2

Ψ̅0, �̅� = (−(1 − 𝛾))
1/2
𝜂      𝑖𝑓      𝛾 > 1, (6.49) 

to obtain 

𝜐𝑛𝑓

𝜐𝑓
Φ0′′′ + Ψ̅0Φ0′′ = 0, (6.50) 

𝜐𝑛𝑓

𝜐𝑓
Ψ̅0′′′ + Ψ̅0Ψ̅0′′ − (Ψ̅0′)

2 +
β𝑛𝑓

β𝑓
𝜃 = 0, (6.51) 

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)𝑛𝑓
𝜃0′′ + Ψ̅0𝜃0′ − Ψ̅0′𝜃0 = 0, (6.52) 

Φ0(0) = 0,Φ0′(0) = 0, Ψ̅0(0) = 0, Ψ̅0′(0) = 0, 𝜃0(0) = 1

Φ0′(𝜂) = 1,   Ψ̅0′(𝜂) = 0,   𝜃0(𝜂) = 0           𝑎𝑠    𝜂 → ∞
}, (6.53) 

here prime denotes differentiation with respect to �̅�. 

To find solution for 𝛾 < 1, we set 

𝑓′′(0) = (1 − 𝛾)
1

2𝜆
3

4Φ0
′′(0) + ⋯ , 𝑔′′(0) = (1 − 𝛾)𝜆

1

4Ψ̅0
′′(0) + ⋯ ,

𝜃0′(0) = (1 − 𝛾)1/2𝜆1/4𝜃0
′(0) + ⋯ ,

}, (6.54) 

and for 𝛾 > 1 

𝑓′′(0) = (−(1 − 𝛾))
1

2𝜆
3

4Φ0
′′(0) +⋯ , 𝑔′′(0) = |1 − 𝛾|𝜆

1

4Ψ̅0
′′(0) + ⋯ ,

𝜃0′(0) = (−(1 − 𝛾))
1/2
𝜆1/4𝜃0

′(0) +⋯ ,
}, (6.55) 

A numerical integration of Eqs. (6.50)-(6.53) gives for 𝜑 ∈ [0,0.2], Φ0
′′(0) =

0.230955, Ψ̅0
′′(0) = 0.517641 and 𝜃0

′(0) = 1.024012 so that, when 𝛾 < 1 
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𝑓′′(0) = 0.230955(1 − 𝛾)
1

2𝜆
3

4 +⋯ , 𝑔′′(0) = 0.517641(1 − 𝛾)𝜆
1

4 +⋯ ,

𝜃0′(0) = 1.024012(1 − 𝛾)
1/2𝜆1/4 +⋯ ,

}, (6.54a) 

and when 𝛾 > 1 

𝑓′′(0) = 0.230955(−(1 − 𝛾))
1
2𝜆

3
4 +⋯ , 𝑔′′(0) = 0.517641|1 − 𝛾|𝜆

1
4 +⋯

𝜃0′(0) = 1.024012(−(1 − 𝛾))
1/2
𝜆1/4 +⋯ ,

} (6.55a) 

as 𝜆 → ∞. These results are consistent with the values seen in Fig 2. 

6.3.4 Asymptotic for large 𝜸 

The asymptotic behavior of solution for 𝛾 ≫ 1 is obtained by the change of variables  

𝑓(𝑦) = 𝜖F(𝜁), 𝑔 = 𝜖H(𝜁), 𝜁 = 𝜖−1𝑧 (6.56) 

where 𝜖 = 𝛾−1/2 ≪ 1. By making use of these transformation, we obtain from (6.22)-(6.25) 

𝜐𝑛𝑓

𝜐𝑓
𝐹′′′ + 𝐹′′[(𝜖2 + 1)𝐹 + (𝜖2 − 1)𝐻] − (𝜖2 + 1)[(𝐹′)2 − 1] − 𝜔𝜖2[𝐹′ − 1]

−
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑀2𝜖2[𝐹′ − 1] = 0 

(6.57) 

𝜐𝑛𝑓

𝜐𝑓
𝐻′′′ + 𝐻′′[(𝜖2 + 1)𝐹 + (𝜖2 − 1)𝐻] − (𝜖2 − 1)[(𝐻′)2 − 1] − 𝜔𝜖2[𝐻′ − 1]

−
𝜎𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌𝑛𝑓
𝑀2𝜖2[𝐻′ − 1] +

β𝑛𝑓

β𝑓
(𝜖2 − 1)𝜆𝜃 = 0 

(6.58) 

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)𝑛𝑓

𝜃′′ − 𝜔𝜖2𝜃 − (𝜖2 − 1)𝐻′𝜃 + [(𝜖2 + 1)𝐹 + (𝜖2 − 1)𝐻]𝜃′ = 0 (6.59) 

𝐹(0) = 0, 𝐹′(0) = 0,𝐻(0) = 0,𝐻′(0) = 0, 𝜃(0) = 1

𝐹′(𝜁) = 1,   𝐻′(𝜁) = 1,   𝜃(𝜁) = 0           𝑎𝑠    𝜁 → ∞
} (6.60) 

where prime denotes differentiation with respect to 𝜁. Positing the regular perturbation 

expansion (see [21]), we get the lowest order system  
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𝜐𝑛𝑓

𝜐𝑓
𝐹0
′′′ + 𝐹0

′′𝐹0 − (𝐹0′)
2 + 1 − 𝐹0

′′𝐻0 = 0, (6.61) 

𝜐𝑛𝑓

𝜐𝑓
𝐻0
′′′ −𝐻0

′′𝐻0 + (𝐻0′)
2 − 1 + 𝐻0

′′𝐹0 −
β𝑛𝑓

β𝑓
𝜆𝜃 = 0, (6.62) 

1

𝑃𝑟

𝑘𝑛𝑓

𝑘𝑓

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)𝑛𝑓
𝜃0

′′ − 𝐻0𝜃0′ + 𝐻0′𝜃0 + 𝐹0𝜃0′ = 0, (6.63) 

𝐹0(0) = 0, 𝐹0′(0) = 0,𝐻0(0) = 0,𝐻0′(0) = 0, 𝜃0(0) = 1

𝐹0′(𝜁) = 1,   𝐻0′(𝜁) = 1,   𝜃0(𝜁) = 0           𝑎𝑠    𝜁 → ∞
}. (6.64) 

This furnishes the large 𝛾 leading behavior for the shear stress parameters 

𝑓′′(0) ~ 𝛾
1

2𝐹0
′′(0) + ⋯ , 𝑔′′(0) ~ 𝛾

1

2𝐻0
′′(0) + ⋯ ,

𝜃0
′(0) ~ 𝛾

1

2𝜃0
′(0) +⋯

}, (6.65) 

and found that 

Table. 6. 1. Numerical values of physical parameters obtained from Eqs. (6.61)-(6.64) when 

φ = 0.2 

𝜆 
𝐹0
′′(0) 𝐻0

′′(0) −𝜃0
′(0) 

2.0 1.546306 -1.39591 1.289627 

1.5 1.540641 -1.21789 1.248234 

1.0 1.534529 -1.03243 1.201338 

0 1.52027 -0.62871 1.06969 

-1.0 1.470081 0.267444 0.140489 

-1.5 1.465408 0.454667 0.353976 

-2.0 1.464168 0.592279 0.521576 

Also, for 𝜆-large we can apply transformation (6.39) in Eqs. (6.61)-(6.64) to obtain Eqs. 

(6.50)-(6.53) at leading order, giving in the limit of large 𝛾 and 𝜆, 

𝑓′′(0) = 0.230955𝛾
1

2𝜆
3

4 +⋯ , 𝑔′′(0) = 0.517641𝛾
1

2𝜆
1

4 +⋯ ,

𝜃0′(0) = 1.024012𝛾
1

2𝜆1/4 +⋯ ,
}, (6.66) 
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And for displacement thickness one finds 

𝐴 ~ 𝛾
1

2𝐴0

𝐵 ~ 𝛾
1

2𝐵0

𝐶~
(1+𝛾)𝐴0+(1−𝛾)𝐵0

2𝛾
1
2 }

 
 

 
 

. (6.67) 

where 𝐴0 and 𝐵0 should be find by solving Eqs. (6.61)-(6.64) and defined as, 

∫ [1 − 𝑓′(𝜁)]𝑑𝜁 = 𝐴0
∞

0
   

∫ [1 − 𝑔′(𝜁)]𝑑𝜁 = 𝐵0
∞

0

}. (6.68) 

Thus when 𝛾 → ∞, then the shear stress parameter grows without bound and the 

displacement thickness 𝐴 and 𝐵 tends to zero. Also, the leading behavior for 𝐶 tends to 

negative infinity as 𝛾 → ∞ as 

𝐶~ −
1

2
(𝐵0 − 𝐴0)𝛾

1

2. (6.69) 
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6.4 Conclusion 

A theoretical study of unsteady non-axisymmetric Homann stagnation point flow of 

nanofluids has been analyzed under the assumption of buoyancy forces and external magnetic 

field. The corresponding flow equations are reduced to a system of nonlinear coupled ordinary 

differential equations which contain the flow parameters, the nanoparticles volume fraction 𝜑, 

the unsteadiness parameter 𝜔, the buoyancy parameter 𝜆, Hartmann number 𝑀, Prandtl 

number 𝑃𝑟 and shear-to-strain ratio 𝛾 (represents the strength of the potential flow of inviscid 

fluid). Since the reduce system of ODE’s contain a singularity at 𝛾 ∓ 1, so first we treated the 

case of forced convection flow by taking 𝜆 = 0 and get the numerical results by using bvp4c 

scheme in MATLAB. The numerical results are obtained for the physical parameters 

𝑓′′(0), 𝑔′′(0) and −𝜃′(0) against different values of flow parameters. Finally, we use the 

perturbation to see the behavior of flow for large values of buoyancy parameter 𝜆 and for large 

strength of potential flow 𝛾. From this study we get the following remarks: 

1. Dual solution exists for the opposing flow. 

2. In free convection flow, the singular nature of 𝑓 and 𝑔 at 𝛾 = ∓1 is observed for all 

values of unsteadiness parameter 𝜔 while the impact of nanoparticle volume friction 

𝜑 and Hartmann number 𝑀 are negligible. 

3. The critical values 𝜆𝑐 of 𝜆 depends upon 𝜑, 𝛾, 𝜔 and M. 

4. The critical point |𝜆𝑐| rapidly increase its value when 𝛾 enters in the neighborhood 

of 1. 

5. The nanoparticle volume fraction 𝜑 increase the range of 𝜆 for which the solution 

exist. 
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6. Againsts the unsteadiness parameter 𝜔, the critical points 𝜆𝑐 changes from opposing 

(𝜆 < 0) to assisnting flow (𝜆 > 0). 

7. The boundary layer thickness 𝐴 and 𝐵 are always positive and achieve its maximum 

values 𝐴 = 0.99 at 𝛾~ − 2.47 and 𝐵 = 0.85 at 𝛾~ − 4.5. 

8. The three-dimensional boundary layer thickness 𝐶 intersect the boundary layers 𝐴 

and 𝐵 at approximately 𝛾~ − 0.594 and also at that point, 𝐶 attain its maximum 

value. 

9. The impacts of nanoparticle volume fraction 𝜑, Hartmann number M and 

unsteadiness parameter 𝜔 are negligible in the solution of free convection limit (𝜆 

large) and large asymptotic behavior of 𝛾. 
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