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Preface

This study is motivated to understand the time dependent stagnation point flow of
nanofluids. Basically, stagnation flow occurs due to the impact of fluid on the solid
objects. Near the stagnation point, the flow exhibits the highest heat transfer rate,
pressure (static pressure), and mass deposition. According to Bernoulli's equation
when fluid velocity comes to zero it experiences a maximum pressure. It is because
kinetic energy of the fluid is converted into pressure known as stagnation pressure
(static pressure). Stagnation flows of nanofluids are significant in transpiration cooling
(e.g. cooling of a nuclear reactor), reduce friction, and many other industrial and
hydrodynamic activities. In this thesis we study the unsteady stagnation point flow of
a Newtonian and micropolar nanofluids by considering different types of base fluids
and different nanoparticles in two as well as in three dimensions. Also, we studied
three types of unsteady stagnation point flow of incompressible nanofluids: plane
orthogonal, plane oblique and three dimensional non-axisymmetric by considering
different geometries such as two-dimensional horizontal plate, two-dimensional
curved shrinking surface and three-dimensional vertical surface. All of the above
mention physical problems are transformed into mathematical model using the
governing equations of the fluid flow. These equations are then transformed into the
set of nonlinear ordinary differential equations. The solutions of transformed equations
are obtained via homotopy analysis method, midpoint method with Richardson
extrapolation enhancement, shooting mechanism with fifth order R-K Fehlberg
technique, bvp4c package in MATLAB, some analytical and perturbation solutions. In
order to check the accuracy of the solution methods, comparison is made with the
previous results. Also, different observations are made using graph and tables for all

the problems under consideration.
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Chapter #0

Introduction

Stagnation flow occurs due to the impact of fluid on the solid objects. Near the stagnation
point, the flow exhibits the highest heat transfer rate, pressure (static pressure), and mass
deposition. According to Bernoulli’s equation when fluid velocity comes to zero it experiences
a maximum pressure. It is because kinetic energy of the fluid is converted into pressure and is
known as stagnation pressure (static pressure). Stagnation flows are significant in transpiration
cooling (e.g. cooling of a nuclear reactor), reduce friction, and many other industrial and
hydrodynamic activities. The application of stagnation point flows in analytical chemistry and
life sciences has been seen in the literature presented by [1]. Hiemenz [2] was the first who
studied the flow in the region of stagnation point. He begins with a qualitative description of
the flow phenomena observed in a fluid of low friction over an obstacle. In the mathematical
treatment of this flow, in the boundary layer, Hiemenz start from the Navier-Stockes system
and presented a curvilinear coordinate system adjusted to the problem by applying the
boundary layer approximation, Hiemenz got the same flow problem as found for the boundary
layer along a fixed straight wall. It is exciting to take note of that the curvature of the
coordinates has no impact on the procedures in the boundary layer. Hiemenz found the series
solution for this problem and from the first order approximation, he used the similarity
transformation and found the third order ordinary differential equation. The asymptotic forms
for large y - o as f~y — 0.6479, §*~0.64795, where §* is a boundary layer thickness.
Hiemenz compare the computational results with the experimental one and found that the last
outcome is a quantitatively very palatable understanding of experimental perception and
numerical computation. Pohlhausen (loc. Cit. as given in [3]) attacks Hiemenz result for the
point of separation as being obtained from an insufficient number of terms of a slowly
converging series, as all terms of higher power than the fifth in x were neglected. For this
purpose, in 1934, Howarth [3] discussed the Hiemenz flow and solved it with nine different

method in which some are

i. Blasius method

ii. Karmain-Pohlhausen method



iii. Bairstow and Green method
iv.  Falkner-Skan’s method

v.  Thomas second method.

After these analysis, Howarth found that this attack was, to some extent, unjustified.
Howarth was shown that Hiemenz’s results for the position of the point of separation hold
good to, within, two degrees. Later on, in 1936, Homann [4] found the equation for the
axisymmetric stagnation point flow and compare the computation with the experimental data.
Howarth [5], in 1951, proposed the equation for the non-axisymmetric by using the equations
of his another paper [6]. He used the similarity variables and obtained a pair of simultaneous
ordinary third-order differential equations containing a single parameter c = b/a. He restricted
the range for this parameteras 0 < ¢ < 1, where ¢ = 0 corresponding to two-dimensional flow
(i.e. Hiemenz flow) and ¢ = 1 corresponding to the axial flow past a body of revolution (i.e.
Homann flow) and found the numerical results. In 1956, Root [7] extend the work of Hiemenz
and discussed the orthogonal stagnation point flow over a plate which perform a hormonic
oscillation in its own plane. He used the similarity solutions which is the combination of
orthogonal flow (Hiemenz flow) and temporal part of flow (g-flow) where he got the coupled
equations of Hiemenz function and g-flow. Since f was found by Hiemenz [2], so Root took
f as a known function and find the closed form solution for the steady part of g-flow and
show that the corresponding shearing stress at the wall depends upon Hiemenz function only.
The inviscid stream function for the oblique stagnation point flow, also known as non-
orthogonal stagnation point flow, was discussed for the very first time by Stuart [8] in 1959.
He just added a constant vorticity &, to the Hiemenz orthogonal flow. Stuart used the similarity
solution which is the combination of orthogonal flow (Hiemenz flow) and shear flow and got
a system of coupled ordinary differential equations in which the Hiemenz function was
independent of shear flow but shear flow depends upon Hiemenz function. Like Root’s, Stuart
assume f as a known function (Hiemenz’s function) and find the analytical solution for the
shear flow (g-flow). In 1951, Howarth [5] pointed out that the solution for f'(y) and g'(y) for
¢ < 0 may be found by using the symmetry

Q(J’:_C) = g(}’;c)'f(y'_c) =f(y'c)



but later-on, in 1964, Davey [9] stated that “these equations are incorrect since they do not
satisfy the boundary conditions at infinity. Thus, solutions with ¢ < 0 can’t not be found from
Howarth [5] results”. He suggested that the solution is possible for ¢ < 0 when one take the
velocity component normal to the surface near the stagnation pointas {—a(1 + ¢)z} which is
negative when ¢ > —1, and he found that, the case ¢ < —1 would correspond to saddle point
of separation (but the equations can’t be solved by Davey), whereas Howarth discussed only
the nodal point of attachment. Furthermore, he proved that “g — flow has no solution which
satisfy g'(y) - 1 as y » 1 when ¢ < —1”. In follow-on work, Rosenhead [10], Davey and
Schofield [11], Libby [12], Schofield and Davey [13] reported dual solutions of Howarth's
equations at selected values of c. In 1967, Libby [14] extend the work of Homann by studying
the stagnation point flow with large rates of injection. This flow is also known as a well-known
“Homann-Libby flow”. Matunnobu [15,16] extend the Homann stagnation point flow and
discussed the temporal variation of wall shear stress near the stagnation point. Tamada [17]
and Dorrepaal [18] extended the orthogonal stagnation point flow (Hiemenz flow) to non-
orthogonal stagnation point flow and found the exact solution of the Navier-Stokes equation.
Recently, Weidman [19] found a new non-axisymmetric Homann flow by superposed an outer
irrotational flow u = by, v = bx on to the Homann potential flow & = ax, v =ay, w =
—2az. In this flow, the non-dimensional Navier—Stokes equations depends on a single free
stream parameter y = b/a which is the ratio of shear rate and strain rate. Many researchers
have shown their great interest in stagnation point flow and widely explored this area by their
research [20-30].

Nanofluids are engineerely manufactured fluids in which a small concentration of
nanoparticles is added in such a way that it remains to behave as a fluid. The quantity of the
solid concentration is kept small to make sure that the nature of the fluid is not changed. These
small concentrations are producing the magical effects on the nature of the ordinary fluids. The
addition of solid particle in liquids to improve their properties is not a new idea and originally
dates back to Maxwell times 1873. But the addition of micrometer dimension solid particles
has disadvantages like clogging, sedimentation, clogging of channels and decrease in pressure
force. The molecular size of ordinary liquids ranges in nanometers for example size of most

commonly used liquid water is 0.275 nm. This size is almost comparable to the size of



nanoparticles which ranges between 1-100 nm [31]. This makes it more suitable to mix with
the molecules of ordinary liquids as compared to micro size particles. Because of their extreme
small size, they create slip velocity between the liquid molecules and solid particles which
prevents the gravitational settling of the molecules in fluid flow and avoid clogging of channel.
The use of nanofluid as a coolant can reduce the cooling cost as reported by Choi [32]. Masuda
et al. [33] claimed that the positive change in thermophysical properties of fluids is primarily
due to the thermal conductivity and viscosity difference between the solid particles and base
fluid. Buongiorno [34] sheds the light on an important flow aspect of nanoparticle i.e. they
carry slip velocity to the neighboring liquid molecules. After the detailed analysis on possible
impact of various slip mechanisms he reached the conclusion that the important slip
mechanisms are the thermophoresis and Brownian motion. Researchers have given equal
importance to the homogenous concentration model and the Buongiorno models
simultaneously in recent literature. Hussain et al. [35] studied micro rotation effects in flowing
fluid due to the moving surface in the presence of nanoparticles. It concludes that micro-
rotation reduces the drag but increase the heat transfer mechanism. It is further highlighted Cu
and Ag — water has low Nusselt number as compared to Cu— Ag — kerosene oil.
Nanoparticles shape is equally playing an important role in the alteration of thermal properties
of fluid. Considering this fact Timofeeva et al. [36] presented the detailed comparison of
particle shapes and their effects on the thermal conductivity enhancement. It concludes that the
blade shape particles produce the highest change in thermal conductivity of base fluid as
compared to the other shaped nanoparticles. Vajravelu et al. [37] considered the heat transfer
phenomenon in Ag- and Cu-water. Their analysis suggest that Ag-water produced deeper
penetration of heat due to greater thermal boundary layer as compared to that of Cu-water.
During last decade renowned researchers [38-44] have considered the flow of nanofluids in

various shaped geometries.

The nanofluid flow behavior over a continuous stretching surface has been discussed by
renowned scientist in recent years [45-48]. Hassani et al [49] developed the mathematical
model for nanofluid flow over a moving surface and produced the analytical solution. lbrahim
et al [50] studied the effects of stagnation point flow due to the presence of normal direction
magnetic field. Some other studies report the nanofluid flow with different kind of moving flat

boundaries. Nadeem and Lee [51] examined the effects of exponentially moving surface on
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the nanofluid boundary layer. Rana and Bhargava [52] presented the numerical solutions for
the boundary layer nanofluid flow due to a non-linearly stretching velocity. Haq et al. [53]
discussed the effects of radiation, microrotation and nanoparticles due to a vertically moving

surface.

In above mentioned articles the surface is considered to be smooth, flat and flow is
generated due to the motion of surface. The dynamics of the flow will be quite different in case
of curved surface stretching. It requires the consideration of curvature effects and as well as
consideration of moving wall. The formation of boundary layer around the surface will be
different from the one for plane surface stretching. This phenomenon has potential application
in polymer industry where the extrusion process is being done due to the movement of curved
surface. Saleh et al. [54] analyzed the effects of curved stretching or shrinking surface on the
micro-polar fluid flow, they found that multiple solutions will exist in this case. Pop et al. [55]
analyzed the surface curvature effects in the presence of magnetic field, the presence of
magnetic field has shown significant variation in the skin friction values. Moreover, they
proved the existence of four solutions for small values of suction and magnetic parameters.
Arifin et al. [56] examined the curvature and suction effects for a permeable curved surface.
Rosca and Pop [57] suggested existence of multiple solutions in case of curved surface
shrinking and creating a situation of reverse flow. They also examined the stability of solution
and presented the range of values for which single solution, multiple solution and no solution
exist. The case of shrinking is different from the stretching as it will create a reverse flow

situation. Mathematically in the case of shrinking more than one solution will exist.

The question of thermal conductivity enhancement due to presence of nanoparticles is
beyond doubt but the problem remains with the mathematical model whose data can be
correctly correlated with the experimental observations. Maxwell model [58] is usually
considered to analyze the impact of solid concentrations on the viscosity and thermal
conductivity of the base fluid. This model is based on the assumption that the solid particles
are highly dispersed and the temperature variation of one particle has negligible effect on the
any other surrounding particle. Moreover, it is based on the steady state fluid assumption. This
model doesn’t consider the effect of shape and size of nanoparticles on the effective thermal

conductivity of fluid. The Hamilton and Crosser [59] accommodated this constraint of the



Maxwell model and proposed the new model which reduces to the Maxwell model for the case
of spherical particles. Yamada and Ota [60] proposed the unit cell model equation to describe
the effects of solid concentration on the thermal conductivity. Zhang et al. [61] experimentally
correlated the data for thermal conductivity enhancement and thermal diffusivity of different
particles including carbon nanotubes and found that the experimental data is close to the results
predicted by Maxwell, Yamada and Ota models. In 2005, Xue [62] has proposed an effective
model for thermal conductivity of carbon nanotubes. He showed that the data generated by
proposed model are in agreeing with the experimental observations generated for carbon
nanotubes suspension. The nanoparticles effects on the nanofluid flow have been extensively
discussed by researchers in recent years [63-65]. Keeping the above important highlights in

mind, the present thesis is arranged as follows:

In first chapter we have presented the theoretical comparison of two main methods of
nanofluids, phase flow and Buongiorno model. The governing flow equations for oscillatory
oblique stagnation point flow are deliberated in fixed frame and in moving frame of references.
The complicated coupled system of differential equations is transformed into non-dimensional
form via a suitable similarity transformation. The numerical and analytical results have been
obtained by using the homotopy analysis method and the results are observed through tables

and graphs. The content of this chapter had been published in European journal of physics plus.

In second chapter we studied non-orthogonal stagnation point flow of nanofluid over the
oscillatory and slip surface and assume the MHD effects in the direction of stream lines. We
considered water based nanofluid with three types of nanoparticles, namely, Alumina (Al,03),
Copper (Cu), and Titania (Ti0,). Mathematical equations were formulated by applying
magnetic field in the dividing stream line. The complicated coupled system of differential
equations is transformed into non-dimensional form via a suitable similarity transformation.
The numerical results have been obtained by using the midpoint method with Richardson
extrapolation enhancement. The effects of physical parameters on the flow are showed
graphically and discussed quantitatively. The content of this chapter had been published in

journal of molecular liquids.

The third chapter is made to envision the characteristics of magneto-hydrodynamic

oscillatory oblique stagnation point flow of micropolar nanofluid. The applied magnetic field
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is assumed parallel towards dividing streamline. A comparative study is executed for copper
Cu and Alumina Al,05; nanoparticles while considering water as a base fluid. To be more
specific, in the presence of both weak and strong concentration, the physical situation of
micropolar fluid is mathematically modeled in terms of differential equations. The transformed
coupled system is finally solved by midpoint method with the Richardson extrapolation
enhancement and shooting mechanism with fifth order R-K Fehlberg technique. The obtained
results are compared with existing published literature. An excellent match has been found
which yields the validity of the current analysis. The content of this chapter has been submitted

in journal of the Brazilian society of mechanical sciences and engineering.

In forth chapter, different proposed theoretical models for the thermal conductivity of
Carbon nanotubes are analyzed. Both SWCNT and MWCNT are discussed in three types of
base fluids namely ethylene glycol, engine oil and water. By using the fundamental governing
laws and their modifications for the presence of solid concentrations are used to
mathematically model the differential equations. The complicated coupled system of
differential equations is transformed into non-dimensional form via a suitable similarity
transformation. Then numerical results have been obtained by using the midpoint method with
Richardson extrapolation enhancement. The numerical results can be computed when the
length “L” and diameter “d” of CNT's are 3um < L < 70um and 10nm < d < 40nm. It can
be observed that when length and diameter of CNT ®are 50 um X 25 nm, the calculated value
of Yamada and Ota model is greater than that of Xue and H-C (Hamilton and Crosser) model.

The content of this chapter had been published in international journal of hydrogen energy.

Fifth chapter examines possible existence of reverse flow situation in unsteady nanofluid
flow over a curved surface. Alumina (Al,03) and Ethylene glycol are considered as a
nanoparticles and base fluid, respectively. Mathematical form of the problem is obtained by
using the fundamental form of governing equations for motion and heat transfer when solid
concentrations are added to an ordinary liquid. The complicated coupled unsteady system is
transformed into non-dimensional form by use relevant transformations. The solution of the
nonlinear problem is produced by use of numerical scheme available in the form of BVP4C
package in MATLAB. In the case of surface shrinking towards the surface a reverse flow

situation is also developed and requires careful selection of solution by examining the stability



of solution. Detailed stability analysis is done, and critical values are determined for possible
existence of dual solutions. Various parameters variation is analyzed by plotting graphs and
tables. The numerical values are also calculated for the reduced Nusselt number and skin
friction due to variation in values of different flow parameters. Results have shown that for the
curved shrinking surfaces, one should expect multiple solutions for a set of parameter values
like mass suction, curvature, nanoparticles volume fraction and unsteadiness. The content of

this chapter has been submitted in journal of molecular liquids.

Sixth chapter examines the unsteady 3D non-axisymmetric Homann flow of an electrically
conducting nanofluids in the presence of buoyancy forces. We consider the uniform external
magnetic field, Bg, by neglecting induced magnetic field and examines the three possible
directions of B, which coincides with the direction of axes. A similarity solution is derived
which involve the dimensionless parameters ¢, M, w,y and A. We have treated the case for
forced convection when A = 0 which arise from the singularity y = +1. We found that, for
large y and A, the leading terms of the solutions are independent of M and w, and the effects
of ¢ in that solutions are negligible. Numerical results are found for illustrative values of all
the flow parameters by using bvp4c scheme in MATLAB. The critical values 4. of A are seen
in opposing flow for small rate of deceleration parameter w while it changes to assisting flow

for large value of w. The content of this chapter has been submitted in scientific reports.



Chapter 1

A comparative study of different nanofluid models for the

oscillatory stagnation point flow

1.1 Introduction

In this chapter, we have presented the theoretical comparison of two main methods of
nanofluids, phase flow and Buongiorno models. The governing flow equations for oscillatory
oblique stagnation point flow are deliberated in fixed frame and in moving frame of references.
The complicated coupled system of differential equations is transformed into non-dimensional
form via a suitable similarity transformation. Then numerical and analytical results have been
obtained by using the homotopy analysis method and the results are discussed through graphs

and tables.
1.2 Mathematical formulation for two-phase model:

Consider the problem of electrically conducting stagnation point flow of nanofluid over an
oscillatory surface with velocity U coswt The fluid impinges obliquely to the oscillatory
surface y = 0. By neglecting external mechanical body force and body couple the flow

rheological equations becomes

ou v _ 11

ax oy 5
0’u  0%u ou _ou o0u orB§ 1 dp

R - _________— y = — — 12
Unf <6f2 * ay2> Y% Y3y 9 by T puy 0% (12)
6217+6217 _0v  _0v 9v_ 1 dp (13)

n\ox2 " 9y2) "ax 0y Of pp 0 '
0°T N 0°T\ _oT _oT oT _ 0 (1.4)

i \oxz Tay2)  “Yax Yoy ot '

where p, ¢, Unr and a,,; are defined in Table 1.1. From Eq. (1.1), we considered that

__ o 0y
u —a—}_], v = —ﬁ. (15)



Putting Eq. (1.5) in Egs. (1.2)-(1.4) and eliminate the pressure from resulting equations

using pyx = Py Yields

o(V*Y) 0@, V*) o OfBGO%Y
FTA %) —Uan4l/J+ — =0, (1.6)

0%T 92T\ 0T o0YoT oY aT
Uy ( ) L yor _ 0. (1.7)

ox2 t9y2) "9t dyox oxoy

Egs (1.6,1.7) were solved in both fixed and moving frame of references as studied by [66].
1.2.1 Fixed frame of reference:

According to [67] and [66], we assume that
¥ =al[xf() + & P]. (1.8)

We consider that the fluid occupies the entire planey > 0 and the plate at y =0 is

oscillating with velocity Ucos(wt). Furthermore, we assume the stream function away from

the plate as [66] ¢ = a Eyyz + 9237]. Thus, the boundary conditions are,
= . - o U . .
f(0)=0, g0 =0, f/(0)=0, gy(t,0) = Re[ze“"t] (1.9)

ffM=1 g&»=vy as  y - oo (1.10)

We are interested only in real part of the complex quantity. Making use of Eq. (1.8) and Eq.
(1.6), we get

0 (1.11)

d*f a<_d3f dfd2f> B3 df

Wayt TN G T dydy?) ey 7

=0 (1.12)

a4g+ ~0°g agd*f _ 2g _afBgaZg‘_
0y?0t  pny 0y?

oy 0y® 0y dy*

Integrate Eqs. (1.11) and (1.12) with respect to ¥ and use Eq. (1.10), we get
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e Y e A R R (113

" dy3 dy? dydy) ppy dy Pns

333 902G a8gd 02§ ofB3dg  opBj
IR T R S

0y 0y? 0ydy) 0yot ppr 0y Pnf

For non-dimensionalizing, we introduce

For= [Lron  5@n =Lig0) +en00e)
a

N U . (1.15)
= |—9, Q= —, &= , t=wt
y= 57 - e )

Egs. (1.13)-(1.14) along with the boundary conditions (1.9) and (1.10) take the form

v
L ff = () = M = ~1— M, (1.16)
f

Unf " " r 2 / 2

?go +fGy —f g0 —M°gy = —M?yy, (1.17)

Unf " " ror . ’ 2 ’

?gl +f9." —f'9. —iQg,' —M?g, =0, (1.18)
f'(0) =0, f(0) =0, f'(o0) =1, (1.19)
g(l)(o) = 0) gO(O) = O' gOH(OO) = y' (120)
91(0)=1, g,(0)=0, g;'()=0. (1.21)

In flow along the surface the important parameters to determine the flow behavior is the

skin friction coefficient Cr. The shear stress at the plate is given by 7,, and are defined below

Tw

Cf=1 2,
?prw

ou
Tw = HUnf 6_37 |5=0-
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By using Egs. (1.15), the above equations reduced to

1

l" 17 17 17 [
ERe,;Cf = Miff [,/Re,gf (0) + g5 (0) + €g; (O)e‘t], (1.22)

where Rez = ax?/vy.

With the help of Egs. (1.15), we find the dimensionless stream function as

Y= ;/)_f =xf(¥) + go(¥) + eg1(y)e'. (1.23)

The separating stream line making an angle, say a, with the plate. This line can be obtained

by putting ¢ = 0 as [66]. Thus, we have
1
Yp=5ry +xy=0

which gives a straight line y = (— %) x whose slope ism = —3. Thus, we can easily find the

relation between the free stream parameter y and the impinging angle a as

2
a=tan ! (— —).
)4

Further, the point of attachment of the separation stream line can be found by setting 7,, =

0. It is also known as the point of zero skin friction

. _ 90+ egi(©e”]
: oy

1.2.2 Moving frame of reference:

To discuss the flow equations in moving frame, we considered that the (x,y) frame is
moving with the plate such that the plate becomes at rest reference to (i, y) coordinates system.

The stream function in this case can be considered as [66]
¥ = a[xf(7) + h(E 7). (1.24)
The boundary constrains become
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f(0)=0, h(£,00=0, f'(0)=0, hy (£,0)=0
i} _ U . . (1.25)
=1 hy(t,)_/)=)/)7—Re[Ee“"t] asy - o,

Substitute Eq. (1.24) in Eq. (1.6) and comparing like powers of x. After that integrate once

with respect to ¥ and then use the conditions of free stream, we get

O L B L (1.26
" dy? dy* dydy)  pps dy P |
93h N _02h  dhdf\ 02h o;B}oh
nfoys T\ 552 " aydy) " ayat  pa; 0y
(1.27)

Introducing the dimensionless shear flow component of stream function h(t,y) =

%f [go(y) — eh(y)e®] and using (1.15) and Eqgs. (1.24)-(1.27), we obtain

U
U_nffur + ffu _ (fl)z _ sz/ =_1-— MZ, (128)
f
1))
v_njfgo”’ +fGy" = f'go’ — M?gy' = —M?yy, (1.29)
v
—Lp 4+ fRT — R = QR = MR’ = ~(1 + i+ M2) (1.30)
f
F1(0) =0, f(0) =0 f'(o) =1, (1.31)
go(0) =0,  go(0) =0, go" () =y, (1.32)
K@) =0, h(0) =0 k(o) =1 (1.33)

The skin friction coefficient Cr and the wall shear stress z,,,, along the plate, are

T
Cf= i

1 )
5prUS
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u
Tw = .unfa_}—} |37=0-

In non-dimensional form, the above equations take the form

.unf

3 ResCy = 222 [[Ref"(0) + g5 (0) = e (0)e"] (139)
f

Further, the dimensionless stream function can be obtained, as

y= % — xf () + go(y) — eh(y)et. (L.35)

The separating stream line can be obtained by setting the far away stream function ¢ = 0,

obtain
1 .
Y =§yy2 +xy—¢eye't = 0.

This gives a straight line y = (— %) x + ge't whose slopeism = — % Thus, we can easily find

the relation between the free stream parameter y and the impinging angle a as
2
a=tan™! (— —).
)4

Further, the point of attachment of the separation stream line can be found by setting t,, =

0. It is also known as the point of zero skin friction

N ORI O
S HONE

1.2.3 Energy Equation:

The energy equation is same, defined in Eq. (1.7), in both fixed and in moving frame of
references because the temperature in each layer can be seen same in both references. The

boundary conditions for Eq. (1.7) is assumed as

T(f, O, t_) = TW + G(TW - TOO)Re[eimE]l T(f; ooi t_) = Too, (136)
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Introduce the non-dimensional temperature profile

T — T .
0y, 6) = 57—~ = 6o (y) + €61 (y)e"
w o

and using Egs. (1.15), we attain

@ " (p p)nf
ks 6, + Pr (oC )f ——f6, =0, (1.37)
knf " (p p)nf (p p)nf
ks —0, + Pr ), ———f6," —iQPr ©C,); —0, = (1.38)
6,(0) =1, 6y(0) =0
9(1)(0) =1, 9(1)(00) = 0}. (1.39)

The local Nusselt number Nu and the surface heat flux g,,, from the flat plate, are

Xqw
Nu = ——m——,
ke(Tw — To)
" oT
q - f_—|
w n ay 37 0
Using Egs. (1.15), we obtain
1
(Rex) 2 Nu = ——= (00 (0) + £6,(0)e™), (1.40)

1.3 Mathematical formulation for Buongiorno model:

To avoid the repetition, the momentum equations for Buongiorno nanofluid model can be
obtained from section 1.2 by putting ¢ = 0 (defined in v, /v, see Table 1.1) for both fixed
and moving frame of references. Therefore, here we mention only temperature and

concentration equations as
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a(aZT aZT) o _oT T, (pCy), Dy (6_7_‘)2+(6T>zl

a% "ay2) "oz Uay ot (pC »), Teo ay
(1.41)
, %), (ac or , oc aT) ~
(p ) dx 0x 0yody)
5 azc+azc ac ac ac DT aT 92T _o (1.42)
ow2 Tay2) "ax Yoy ot %2 Tay2) = '
T(£%0) =T, + €(T,, — Tw)Re[et], T({ % ») =T, } (1.43)
C(£%0) = C, +€(C, — Cw)Re[ei®t], C(E % ) = C, '
By using (1.8) and the similarity variables define below, we attain
— Uf it T —T,
f = |=f@), 0y =[6:(y)+eb:(y)e”] = ,
a Tw - Too
5 Q © v t t
= —Y, = —, € = , =W
y Ufy " e
Bty) = [ ) + ey (] = ——=
Cp — Coo )
1 " ! ’ ! ’
ﬂeo +f6," + Nbey' 6y + Nt(6,)* =0, (1.44)
1 ! 12 ! 12 !
E(91” +£0," —i00; + Nb(¢p,'0y + ¢o'0; ) + 2Nt6,'6," =0, (1.45)
II+S I+N0H_O (146)
bo cf o Npo T .
n N II
1"+ Sc(fpo' — iQpy) +— Nb =0, (1.47)
6,(0) =1, 90(00) =0

$o(0) = 1 $o(0) =0
$1(0) =1, ¢1(0) = 0)
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where

R (pCo). (T, — Too)’Nb ~(PC), (€ = Co) s

ay’ _E(Pcp)f Vs - B(pcp)f v Dy

The physical quantities are the local Nusselt number, the Sherwood number, the surface

heat flux q,, and the mass diffusion flux j,,, along the plate, which can be written as

. Xqy
Nu = -1y
B Xjw
Sh =5, -y
k6T|
CI = —K—-_ ]
w ay 37=0
o ac|
]W a}—] 3_/:0'

In dimensionless form the above quantities reduced to
1 .
(Rez) 2Nu = —[0,'(0) + £6,(0)e'] (1.49)
1 .
(Rez)"2Sh = —[¢,'(0) + 1 (0)e™] (1.50)

1.4 Homotopy Analysis method:

For the homotopy analysis method, the main requirements are linear operators and initial
guesses which are defined below, whereas the detail is given in the book of Liao [68].

Therefore, in the preceding sections we presented only the numerical and graphical data.

) =y—1+e,  go,0) =53

G, =1—-e7, hy(y)=y—-1+e™” (1.51)
HOO(y) = e_yt 910(}’) = e_y;
b0, =€, ¢, MN=e? )

The linear operators are given by,
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I =4 Tayz L =g
d°g, dg; d3h d*h
L, ——, Ly =—+—
1 dy3 dy dy3 dyz
d290 d291 (152)
60 = dy? — 6o, 6, = dy? Y
d’¢o d’¢,
L¢0 = dyz _(,bo, L¢1 = dyz _¢1

1.5 Results and Discussion:

The aim of this study is to present the comparison of main models of nanofluids, i.e. two-
phase model and Buongiorno model. This comparison is made on the rising parameters of
oblique stagnation point flow over oscillatory surface. The flow equations (1.16)-(1.21), (1.30),
(1.37)-(1.39) and (1.44)-(1.48) have been solved in fixed and moving frame of references by
using homotopy analysis method. We have used copper (Cu) as a hanoparticle and water as a
base fluid in this chapter whereas the thermophysical properties of nanoparticles and base fluid
are given in Table 1.2. To validate the HAM procedure, the comparison of data is made for the
particular case as shown in Table 1.3. These results are in good agreement with the former
results by [69,70,71]. We can observe from Fig. 1.1 that the normal component of velocity
f'(y) increases against M and ¢ and the boundary layer thickness in the normal direction
decreases against both parameters. Also, the magnitude of steady part of shear velocity g,'(y)
increase against ¢ and M as shown in Fig. 1.2. As well as, these figures show that the behavior
of go'(y) fory < 0 and y > 0 is symmetric about y = 0. Fig. 1.3 display the effects of M and
¢ on the temporal parts of shear velocity in fixed frame of reference g.'(y) and in moving
frame of reference h'(y). It is seen that g,'(y) increases while h'(y) decreases against both M
and ¢ whereas the boundary layer thickness of both velocity components decreases against M
and ¢. Fig. 1.4 depicts shear velocity component g,,(y, t) in the unsteady domain. Generally,
free stream velocity drives the flow due to the plate oscillation. At the plate, the velocity of
nanofluid is minimum and gradually it approaches the free stream velocity as approaches
infinity. It is observed that, in fixed frame, the amplitude of oscillation is maximum at the
surface, whereas, in the moving frame the amplitude is maximum at the free stream. It satisfies

the boundary constrains which also shows validity of obtained results. Figs. 1.5 are plotted for
18



stream lines in the case of impinging fluid at different angles. It intersects the surface at the
point x = x; which is the point of zero velocity that is stagnation point. Its location depends
on the values of y. It is observed that for the positive values of y, the stagnation point appears
on the left sides of the plate from the origin whereas the opposite behavior can be seen for the
negative values of y. The behavior of temperature and concentration profile against different
physical parameters are shown in Figs. 1.6. It is observed that the temperature profile increases
against ¢ and the amplitude of oscillation is maximum at the surface and gradually decrease
when it goes away from the surface. Furthermore, temperature profile increases for higher
values of Nt and Nb, whereas, concentration profile increases against Nt and decreases for
higher values of Nb. For some particular values of Pr, the temperature profile is observed in
two-phase model and Buongiorno model as shown in Fig. 1.7. We observed that 6(y,t)
decreases in both models for higher values of Pr and the value of 8(y, t) in two-phase model
is higher than the Buongiorno model. The influence of skin friction coefficient against different
physical parameters are shown in Figs. 1.8. We observed that the behavior of skin friction is
same in both frame of references. Also, the skin friction coefficient has oscillation behavior
against time t. Furthermore, skin friction increases against M and ¢ and change the phase of
oscillation for different values of Q. The influence of Nusselt number against different
involving parameters are described in Figs. 1.9. from these figures we observed that Nusselt
number has oscillatory behavior against time t and the amplitude of oscillation increase by
increasing Q. Also, the value of Nusselt number is same for Nt = Nb = 0 in Buongiorno
model and ¢ = 0 in two-phase model. Further, Nusselt number increase with respect to Pr in
both nanofluid models. Fig. 1.10 suggest that Sherwood number increases against Nb and
decreases against Nt.

19



Fig. 1. 1. Normal component of velocity profile f'(y) against M and .

¢=0.0,0.1,0.2

Go' (V)

Fig. 1. 2. Steady part of shear velocity g,'(y) against M and ¢.
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-

Fig. 1. 3. Temporal parts of shear velocity in fixed frame g;(y) and moving frame h'(y)
against M and ¢.
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Fig. 1. 10. Sherwood number for different value of Nt and Nb.

Table. 1. 1. Effective thermophysical quantities of nanofluids [72]

Dynamic viscosity of nanofluid = i
nf (1—¢)2%
Density of nanofluid pnr = (1 —@)ps + @ps,
Thermal expansion coefficient of Bny = (1 — @)Br + @B,
nanofluid
Electric conductivity of nanofluid Onr = (1 — @)os + @as,
Kinematic viscosity of nanofluid v = Kr
YT (1= )25 x [(1- 0oy + 9ps]
Heat capacity of nanofluid (pC, )nf =(1-¢)(pC )f + ¢ (pCP)s’
Thermal conductivity of nanofluid knp (ks + 2kf) — 2 @ (kp — k)
k¢ (ks + 2ks) + ¢ (kf — kg)
Thermal diffusivity of nanofluid ks
(Inf = C )
(P p)nf

26




Table. 1. 2. Thermophysical properties of nanoparticles and base fluids [72].

Thermophysical C,(J p (kg k(W o (S/m) B x107°
properties /kgK) /m?®) /mK) (1/K)
Pure-water 4179 997.1 0.613 5.5 21

x 107°
Ethylene glycol 2430 1115 0.253 1x1077 70
Engine oil 1910 884 0.144 1.07 S7
X 1076
Copper (Cu) 385 8933 400 59.6 1.67
x 10°

Alumina (Al,05) 765 3970 40 35 x 10° 0.85

Titania or 686.2 4250 8.9538 | 2.0 x 10° 0.9
Titanium Oxide (Ti0,)

SWCNT 425 2600 6600 1.26 0.19

x 10°
MWCNT 796 1600 3000 0.21
Table. 1. 3. Validation of results for f'(0).
M Ariel [69] Grosan et al. [70] T. Javed [71] Present
Study

0.0 1.232588 1.232588 1.232597 1.232593
0.16 1.295368 1.295368 1.295377 1.295369
0.64 1.467976 1.467976 1.467987 1.467975
1.0 1.585331 1.585331 1.585342 1.585329
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1.6 Conclusion
This chapter is based on the comparison of two main models of nanofluids namely two-
phase model and Buongiorno model. We have check this comparison on the oblique
stagnation point flow over an oscillatory surface and considered a mixture of Cu and water
as a nanofluid for two-phase model. The governing equations of this comparative study
have been solved analytically with the help of homotopy analysis method and results are
discussed through graphs. The conclusions of this study are summarized as follows:
e In fixed frame of reference, the amplitude of oscillation is maximum at the surface
while in moving frame the amplitude is maximum at free stream.
e Both skin friction coefficient and Nusselt number have oscillatory behavior against
t.
e Generally, the values of physical quantities skin friction coefficient and Nusselt
number doesn’t match for two-phase model and Buongiorno model.
e The values of Nusselt number are same for both models, only, when we choose
Nt = Nb = 0 in Buongiorno model and ¢ = 0 in two-phase model.
e The behavior of skin friction coefficient and Nusselt number are same in both fixed

frame and moving frame of reference.
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Chapter # 2

Phase flow study of MHD nanofluid with slip effects on
oscillatory oblique stagnation point flow in view of inclined

magnetic field

2.1 Introduction

In second chapter we studied oblique stagnation point flow of MHD nanofluid over the
oscillatory and slip surface. We compared three different nanoparticles namely, Alumina
(Al,03), Copper (Cu), and Titania (Ti0,) by assuming water as a base fluid. Mathematical
equations were formulated by applying magnetic field in the direction of dividing stream line.
The complicated coupled system of differential equations is transformed into non-dimensional
form via a suitable similarity transformation. The numerical results have been obtained by
using the midpoint method with Richardson extrapolation enhancement. The effects of
different involved parameters on the flow characteristics are presented in tables and showed
graphically.

' :»‘ll' .

ﬁ:ﬁ(éus(ae1i+sm(eez)}

Fig. 2. 1. Geometry of the problem
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2.2 Problem description and governing equations

Consider the problem of stagnation point flow over an oscillatory surface with velocity
Uycoswt. The x-coordinate is taken horizontally and the jy-coordinate is considered
perpendicular to horizontal direction and is pointed in outward direction towards the fluid as
shown in Fig. 2.1. It is assumed that the fluid impinges obliquely to the oscillatory surface.

The governing equations of fluid flow can be written as

aV
HngV?V = pup === (V- V)V + p (T x H) x H+ V5 =0,

_._ 0T _ _ _
aanZT ——=-W-NT=0, (2.1)
VxH=o0,(E+pV xH),
v-Vv=0, V-H=0, VXE=0, V-E=0,
where i, ¢, pnyr and a, ¢ are defined in Table 1.1. H and E = 0 are the magnetic and electric
fields and are defined as
H = H(cos i+ sindj),9 = arctan(—2a/b)

Consider the boundary conditions to system (2.1) as

ou
v =0, u— Mﬂ—u—Ucoswt
pr 0y L _
ke OT aty=0 2.2)
_ n _ _ _ o ]
- 2.2 Ea__’)_/ = TW + E(TW - Too)Re[e‘wt]J

v=—ay, u=ax+by, T=T, as y- oo,

where A, and 4, are the velocity slip and thermal jump parameters.

The free stream velocities in system (2.2) shows that the streamlines are hyperbolas. The
asymptotes of these stream lines, also known as degenerate streamlines, can be obtained from

the free stream velocities as
X. (2.3)

We consider a more general case of free stream that the fluid imping obliquely on the plane
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y = A by letting
VX€ERandy > A = v=—a(y—A), u=ax+b(y —B),
The stagnation point become in this case is (b(B — A)/a, A) and the asymptotes of the

hyperbolic streamlines are

And
_ 2a _
y = —TX'FZB—A.

Further [73] stated that “the oblique stagnation point flow exists if, and only if, the external

magnetic field is parallel to the dividing streamline” and shown that

_ Hy(—=bi + 2aj
i, = ol ])_ 2.4)
ViaZ + b2
After neglecting the induced magnetic and electric field, we can write
(VxH)xH=o,u,(VxH,) xH,, (2.5)
and by assuming
v =—af(y), @ =axf'(y)+bg(D), (2.6)
the Egs. (2.1),, and (2.2) reduce to
= 712 ryall o 2 O-f BOZ rall}
ax (af”™ —aff" —vpf'" + 4a Eélaz—-l-bzf
+b lg_f +a(gf' —fg") — vneg” 2.7)
By’ 1 dp
2 _J 7 — -
t2a p 4a2+b2(‘g f)l Pnr 0%’
2 _
2 £ £ £ i BO 21w f! 2 g __La_p
aff +vpraf Hoo 4a2+b2(2a bif" + ab?(2g - f)) = v (2.8)

31



.unf

m
U . _
50D -1 50,0 =Re|ze,
Uy b

9_'()7»D=1' fl()_})zl, as }_/—>00 )

f(0)=0,f(0)—24 — f"(0) =0,

(2.9)

From the free stream velocities (2.9), 5, we can easily find the solutions g and f for large

y as
g~V—B, f~y—A4, as y - oo. (2.10)
In consideration of Eq. (2.8), the pressure field takes the form

2
o _a®
ﬁ(x; :V) = —Pnf | Unf af’ + 7f2

o By (2.11)

y
+E4a2—+bz ab? f(Zg‘(it_)—f(s‘))ds‘ +2a2bff
n
0
+ P(X),

where P (%) is determined by assuming that p and free stream velocities have same behavior

as given in system (2.2). Thus, from equations (2.10) and (2.11), we get

a? < or 4a’B,’

_ b
7)) = —p | L0 72— 2— (B — A)X| + p,. 2.12
P(x) Pnf > Py 407 1 b7 + 1) [x 2 " (B—-A)x|+ py (2.12)

Finally, Eqg. (2.11) imply that
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2

_a b _
= BET) = puy |vuy of + 5 (22 =228 - DT+ 2)

L9 B ), (,zz 2o A)f) +2a2b%f  (2.13)
pnf 4a2 + bZ a .

y

+ ab? f (Zg‘(s‘,t‘) - f(s?)) ds

0

In Eq. (2.13), py is the stagnation pressure and represent that it is the maximum pressure
throughout the field. By using Eqg. (2.13), Egs. (2.7)-(2.9) takes the form

1 I + i 712 O-f 4‘aBOZ cro_ O-f 4aB02 )
avnff ff f pnf 4a2 + b2 - pnf 4a2 + bz

1 _ _op 4aBy® . 1

~Un g+ -G+ (f-g)——gi= 2.14

avnfg fg —gf Pnf4a2 + b2 (f g) agt ( )

o; 4aB,’
1+—— ] (B —A4).
( Pnr 4a? + b2 ( ) J

The following similarity variables are presented to make simpler the mathematical analysis

\
fy'f(y)_f t=(1)f,
g(y,t)—jv:f§<\/:y, ) 9o(¥) +eg1(y)e™t,

of the problem

~~

(2.15)

oo

T, — Teo J
Using the above similarity variables, Egs. (2.7)-(2.8) together with (2.9) (2.1), and (2.2)3¢

O(y,t) = = 0p(y) + €6, (y)e'.

reduce to
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M p 144 ! ! p p
LT 0" + fgh — gof | +—LM2(f — go) — <1 +—fM2>(IB% —A) =0,
Uf Pnf Pnf Pnf

‘unf pff/l/+ffll f12+1+pf M2(1 f)—O
Hf Pnf Pnf
Unf P ' , , P ,
L gt fgi— guf ——L-M2g, — iQg, =0,
Hf Pnf Pnf (2.16)
N (16 )nf
—06, +Pr f@o =0,
kf ( p)
1k (pCy) (pCy)
o+ pr— g, —iapr——Lg, =
P kf ( p) (pCp f
.unf " 'unf 1 )
f(0) =0, f'(0)- lef (0) =0, gO(O)_ENl 90(0) =0,
Unf

g91(0) — ,u_Nl g1(0) =1,
oy ! oy 2.17)
60(0) — Nz 60,(0) =1, 6,(0) — k—sz 6:(0) =1,

g =1, f' (y) = 1, 91(¥) =0, 6;(y) =0, 6,(y) =0, y = o,
o) =y-B, f(y)=y—A, as y = o, J

FB A FA Nz_z,zf f
(2.18)
M=4—Q=—p=_ N

pr4a? +b?’ a T € \/v:b'

where N, and N, are the velocity slip and thermal jump parameters.

where

Furthermore, the skin-friction coefficient (Cf), local wall shear stress t,,, local Nusselt
number (Nu) and surface heat flux gq,, are defined as

Tw

Cf = 1 2,

?prw
Xqw

k(T — Too)
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[ ou

T ,Ll f__ )

w n a o
" oT

qW nf a}—] _

y=0
By making use of (2.15), the above equations reduced

1 n b .
2 ReeCy =L | [Ref " (0) + 2 (g6(0) + egi (0)e™)]
Uy a

Nu k k .
= ——26,'(0) — 7 £6,'(0)e™,
.

 Rex ke

At the surface y = 0, three points carry significant importance: the stagnation point

towards which the separating streamline far away from the surface are directed, the position
where maximum pressure is exerted X = X,, and the position of zero tangential stress x =

Xs. The equation of separating streamline which intersect the boundary is

y
X = \/:iff, xf(y) + gf (go(s) + ge't gl(s)) ds = 0. (2.19)

0
From Eqg. (2.13) and wall shear stress, we see that

%, = S(T;f)” (B - A)
(2.20)

o _Q(v_f)l/z [90'(0) + g, (0)e"]
T ala £ (0)

We note that X,, does not depend on M? and the ratio

% g m £(0)

Xs [90'(0) + £g,'(0)et]

is same for all angles of incidence.
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2.3 Solution procedure

Numerical solutions of (2.16), and (2.17), , ; 1, have been solved numerically by means
of midpoint method with Richardson extrapolation enhancement. Notice that we have coupled
system of governing equations in which f(y) is coupled in 6,(y), go(y¥),6:(y) and g;(y)
but not vice versa. Thus, we can find the solution for g,(y)-flow as

9Go() = Cif "+ Cf"A) + (A—-B)f' + go;;()’);
with

g ® )
B O MR O}

Unp

Cz=No— > 95 (" () ny + (B - A O (") “nf

y _,0f s
A(y) =jo (f”(s)) 2Unf.Exp (—%Lf(n)dn)ds,

-1 $ \

f A(s) - f(S)(f”(S))( onf )'Exp <U—ff f@) d77>dS |
Jop(¥) = ppf M?f" (y ){ (Zv_f_l) U;f Os

" k—é\()’)f fFEU" ) o /- Exp (ﬁfo f@m) dn) dS)

Furthermore, the series solutions of equation (2.16); and (2.16)s for small value of Q
have been obtained

70D = ) (")
n=0

[0e]

0,0) = ) (100,

n=0

In present problem, the real part of solutions is

91(0) = o (¥) = Q2 (y) + Q*hs(y) . }
0:(y) = 0,0(y) — Q2912(}’) + 94914(}’)

where
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ﬂnf pf

" ' ’ Pr 2 h
— — LM%, =0
ir Pur —a¢o +fdo— bof o bo
Hnfr PF . 1 , P
o of ¢m +f¢m qbnf __fMZ(.bm = ({bm—l
#r Prr Pnf L, m=123
ll ) ) ) e
Bo(0) = M2 il SH0 =1 go() =0
,u
(0 = M= s = tn(©) =0, () =0
and
knf 0 (pcp)nf , ( Cp)nf _ O\I
1 1( -1) =
k n (p P) ( ) " }’ n= 1’2’3
k
01,(0) — Nzkiff 01,(0) =0, O1n(0) =0 J
in which 6,,(y) = 6,(y) which can be obtained from (2.16),
1
80 (y) = (Jng (00, PT) = Juy (v, Pr) )
Jup (0, PT) + N Koy
nf y 2 kf
where
y kf (pCp)nf S
Jnr (v, P1) =] Exp| ——————=—Pr | f(mdn |ds
i 0 knf (Pcp) 0
and

Jng (00, Pr) = ;i—{go]"f (y, Pr).

The above systems have been solved numerically using midpoint method with Richardson

extrapolation enhancement and the numerical integration for g, (y) and 6,(y) can be executed

easily with aid of any mathematical software.

2.4 Results and Discussion

The numerical results of the modeled equations are obtained for three types of different

nanoparticles namely Titania (Ti0,), Alumina (Al,05) and copper (Cu) having water as a base

fluid and the thermophysical properties of nanoparticles and base fluid are given in Table 1.2.
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The solid volume fraction ¢ of the nanoparticles represent up to what fraction of whole liquid,
solid concentrations are incorporated. Keeping the fluid nature of base material, it is kept less
than 0.2. We have used constant Prandtl number for water, Pr = 6.2, throughout in
computation. The values of the skin friction components and boundary layer thickness are
obtained and compared with previously published results [73] as given in Table 2.1,2.2. It is
seen that the comparison is in good agreement and thus gives us confidence to the accuracy of

the numerical results presented in this chapter.

We illustrate the effects of the parameters M, ¢, N;, N, and Q on dimensionless stream-
function, velocity profile, temperature profile, velocity gradient at the surface, temperature
gradient at the surface and boundary layer thickness. Generally, the flow over an oscillatory
surface is driven by the combine effect of free stream parameter and magnetic field. Fig 2.2
shows that normal component of velocity profile satisfies the boundary constrains which also
shows validity of obtained results. Furthermore, from this figure, we depict that f(y) =y —
0.393589 and the velocity gradient decreases gradually when it goes far away from the
surface. The maximum value of velocity gradient is found at the surface and from this figure
we illustrate that f"(0) = 2.346663. The steady part of shear velocity g,(y) changes its
direction for positive and negative values of B — A and the same behavior is seen for g,'(y)
as shown in Fig. 2.3. Furthermore, the magnitude of g,(y) is gradually increase whenever it
achieves the free stream g,(y) = y — B. The normal velocity component f'(y) increases
against both parameters M and N; whereas the boundary layer thickness decreases. Figs. 2.5
shows the effects of different involved flow parameters M, N; and B — A on the steady part of
shear flow g,(y) and its gradient g,'(y). Fig. 2.6 depicts velocity profile u(y,t) in the
unsteady domain. Generally, free stream velocity drives the flow due to the plate oscillation.
At the plate nanofluid velocity is minimum and gradually it approaches the free stream

velocity. It observes that the amplitude of oscillation is maximum at the surface and regularly
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increase until it achieves the free stream velocity. We know that temperature equation does not
influence the momentum equations therefore, the effects of thermal jump parameter N, does
not affect the velocity components and hence velocity components are identical against thermal
jump parameter N,. Moreover, the thermal boundary layer thickness decreases for higher
values of M and N, as shown in Fig. 2.7. Fig. 2.8 are plotted for stream lines in the case of
impinging fluid at different angles B — A and Hartmann number M. It intersects the wall y =
0 at the point i, which is the point of zero skin friction. The location of this point depends on
B — A and we observed that for positive values of B — A, the stagnation point appears at the
right side of the plate from the origin whereas the opposite can be seen for negative values of
B — A. Fig. 2.9 is constructed for the comparison of different nanoparticles. These results
show that Alumina (Al,0;) are definitely small, while Titania (Ti0,) and copper (Cu)
distinctly under estimate the Nusselt number. The numerical values of skin friction coefficient
components and Nusselt number components are given in Table 2.3-2.6. From these tables we
observed that momentum boundary layer thickness decreases against all physical involved
parameters whereas Al, 05 produce highest value of boundary layer and Cu has the lowest.
The values of f"'(0) increases for higher values of M and decreases against velocity slip
parameter N;. Also, the values of f"'(0) is maximum for Cu — water nanofluids and
minimum for Al,0; — water nanofluids. From Table 2.4 we observed that the values of
steady part of shear component g,’(0) change its sign against B — A that is for B — A < 0 the
values of g,'(0) are positive and for B — A > 0 it is negative. It is due the change of direction
of velocity profile for B — A = 0. Furthermore, the values of g,'(0) decreases for higher
values of M and N;. Also, g,'(0) is maximum in the case of Cu — water and minimum for
Al,0; — water. Table 2.5(a, b) represents the values of @, (0),®, (0) and @,(0) for
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different values M, ¢ and N;. Table 2.6(a, b) shows that Nusselt number enhance against the
Hartmann number M and reduce for higher values of N, and ¢. Also Cu — water produce the

highest Nusselt number whereas Al,0; — water produce the lowest.

Fig. 2.2. £, '), f"(y)when M =2, N; = 0.0, ¢ = 0.0,

(a) (b)
Fig. 2. 3. go (), go'(y) for different B — A when M = 2, N, = 0.0, ¢ = 0.0.
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Fig. 2. 4. Influence of f'(y), (a) ¢ = 0.0,N; =0.0and (b) M = 0,9 = 0.0
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N]=0, 0.5, 1.0, 1.5

(©)

Fig. 2. 5. Influence of g,(y) and g,'(y) (a)-(b) ¢ = 0.0,N, = 0.0 and (c)-(d) ¢ =

0.0,M = 0.0.

M=0, 2, 5, 10

(b)

N,=0, 0.5, 1.0, 1.5

(d)



Fig. 2. 6. Time dependent flow u(y, t) at different locations from the surface when ¢ =
0.1,N; =00,M=1.0e=020=02,B—-A=-Ax=1.

1_
0.8
= 0.61
=
s | ]
0.4 M — 0, 2, 5 ' NZ = 003 0-5$ 1'5
0.2
ol | .
0o 1 2 3 4 5 6 ¢ 3 4 5 6
y ¥
(@) (b)

Fig. 2. 7. Variation of 6(y,t) (@) ¢ =0.1, N, =0.0,N; =0.5,¢ = 0.0 and (b) ¢ =
0.1,M = 2.0,N; = 0.5, = 0.0.
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(d) (€) ()

Fig. 2.8. Streamlines pattern for Cu — Water nanofluid when t = O,g =1,Q0=05N, =

0.5, e = 0.2 for B — A = —5A, 0, 5A respectively. (a), (b), (c) for M = 1 and (d), (e), (f) for
M = 5.
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Fig. 2. 9. Bar graph comparison of various nanoparticles.
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Table. 2. 1. Validation of results for f"(0) and A when ¢ = 0 and N; = 0.

M f'(0) A

Present results [73] Present results [73]
0 1.232588 1.2326 0.647901 0.6479
1 1.585331 1.5853 0.541007 0.5410
2 2.346663 2.3467 0.393589 0.3936
5 5.147964 5.1480 0.190729 0.1907
10 10.074741 10.0747 0.098774 0.0988

Table. 2. 2. Validation of results for g,’(0) when ¢ = 0 and N; = 0.

90'(0)
M B—A [73] Present results
—A = —-0.647901 1.4065 1.406545
0 0 0.6080 0.607950
A =0.647901 0.1906 -0.190645
—A = —-0.541007 1.4240 1.423990
1 0 0.5663 0.566316
A = 0.541007 -0.2913 -0.291360
—A = —0.393589 1.4541 1.454064
2 0 0.5304 0.530442
A = 0.393589 -0.3932 -0.393181
—A =-0.190729 1.4880 1.488171
5 0 0.5063 0.506303
A =0.190729 -0.4754 -0.475564
—A = —-0.098774 1.4970 1.496769
10 0 0.5016 0.501643

A = 0.098774 -0.4937 -0.493483
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Table. 2. 3. f"(0) and A for different values of N;, M, ¢ and nanoparticles.

o | w | n| e | Cewaernanofii | w0 R
£"(0) A £"(0) A £"(0) A
0.0 | 0.0 [ 0.0 1.232587 | 0.647900 | 1.232587 | 0.647900 | 1.232587 | 0.647900
0.1 1.231074 | 0.648697 | 1.447977 | 0.551523 | 1.244317 | 0.641792
0.2 1.178253 | 0.677777 | 1.501345 | 0.531918 | 1.198801 | 0.666160
01110 1.509640 | 0.561376 | 1.691074 | 0.494686 | 1.520451 | 0.556870
5.0 4550725 | 0.214712 | 4.613509 | 0.210182 | 4.554289 | 0.214448
10.0 8.850999 | 0.112272 | 8.883376 | 0.111603 | 8.852829 | 0.112233
1.0 | 0.5 | 0.801948 | 0.246579 | 0.851419 | 0.200339 | 0.805091 | 0.243368
1.0 | 0.531899 | 0.154881 | 0.552730 | 0.122968 | 0.533255 | 0.152631
1.5 | 0.396376 | 0.112573 | 0.407669 | 0.088472 | 0.397119 | 0.110861

Table. 2. 4. g,'(0) and B — A for different values of N;, ¢, M and nanoparticles

Ny

M

Cu-Water nanofluid

Al,05;-Water
nanofluid

TiO,-Water
nanofluid

B-A

9o’ (0)

B-A

9o’ (0)

B-A

9o’ (0)

0.0

0.0

0.0

0.647900

1.406544

0.647900

1.406544

0.647900

1.406544

0

0.607950

0

0.607950

0

0.607950

0.647900

0.190644

0.647900

0.190644

0.647900

0.190644

0.1

0.551523

1.406544

0.648697

1.406544

0.641792

1.406544

0

0.607949

0

0.607950

0

0.607950

0.551523

0.190644

0.648697

0.190644

0.641792

0.190644

0.2

0.531918

1.406544

0.677777

1.406544

0.666160

1.406544

0

0.607949

0

0.607950

0

0.607950

0.531918

0.190644

0.677777

0.190643

0.666160

0.190643

1.0

0.1

0.494686

1.416619

0.561376

1.420283

0.556870

1.420010
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0

0.580068

0

0.572806

0

0.573315

0.494686

0.256482

0.561376

0.274670

0.556870

0.273379

5.0

0.210182

1.480522

0.214712

1.485147

0.214448

1.484872

0

0.510844

0

0.508050

0

0.508212

0.210182

0.458832

0.214712

0.469045

0.214448

0.468447

10.0

0.111603

1.494335

0.112272

1.495843

0.112233

1.495757

0

0.502917

0

0.502124

0

0.502169

0.111603

0.488500

0.112272

0.491595

0.112233

0.491419

0.5

1.0

0.200339

0.580021

0.246579

0.621280

0.243368

0.618665

0

0.409448

0

0.423537

0

0.422731

0.200339

0.238875

0.246579

0.225793

0.243368

0.226798

1.0

0.122968

0.355580

0.154881

0.388140

0.152631

0.386037

0

0.287611

0

0.305759

0

0.304646

0.122968

0.219643

0.154881

0.223378

0.152631

0.223254

1.5

0.088472

0.255542

0.112573

0.281223

0.110861

0.279551

0

0.219474

0

0.236602

0

0.235525

0.088472

0.183407

0.112573

0.191980

0.110861

0.191500
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Table. 2. 5(a). Numerical values of—@,'(0), @,'(0) and @, (0).

Cu-Water nanofluid Al,05-Water nanofluid
N, | M Q
—B80'(0) | @,(0) | @,(0) | =B, (0) | @, (0) | @, (0)
0.0 0.0 | 0.0 0.811301 | 0.094676 | 0.011705 | 0.811301 | 0.094676 | 0.011705
0.1 | 0.953073 | 0.111221 | 0.013751 | 0.810305 | 0.094560 | 0.011691
0.2 | 0.988200 | 0.115320 | 0.014258 | 0.775538 | 0.090503 | 0.011189
1.0 [ 0.1 ] 1.270471 | 0.065327 | 0.004642 | 1.169800 | 0.047055 | 0.002793
5.0 4.463166 | 0.002545 | 0.000003 | 4.440694 | 0.001369 | 0.000001
10.0 8.805590 | 0.000344 0 8.794587 | 0.000181 0
05] 1.0 0.765688 | 0.027499 | 0.002707 | 0.722477 | 0.022119 | 0.001778
1.0 0.518612 | 0.012595 | 0.001418 | 0.498804 | 0.010703 | 0.000990
15 0.389577 | 0.007080 | 0.000847 | 0.378456 | 0.006179 | 0.000611
Table. 2. 5(b). Numerical values of —@,’(0),®,’(0) and @, (0).
Ti0,-Water nanofluid
MM o 2,0 2,'(0)
0.0 0.0 0.0 0.811301 0.094676 0.011705
0.1 0.819022 0.095577 0.011817
0.2 0.789063 0.092081 0.011384
0.1 1.0 1.175675 0.048140 0.002895
50 4.441957 0.001426 0.000001
10.0 8.795207 0.000189 0
1.0 05 0.725143 0.022478 0.001833
10 0.500059 0.010838 0.001017
15 0.379170 0.006246 0.000626
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Table. 2. 6(a). —6,'(0), 8;,'(0) and 8,,'(0) when N; = 0.5.

Al,05-Water nanofluid

Cu-Water nanofluid

I R ~6,'(0) | 61,'(0) | 614'(0) | ~00'(0) | 612°(0) | 614"(0)
0.0 | 0.0 | 0.0 1.518447 | 0.615987 | 0.239294 | 1.518447 | 0.615987 | 0.239294
0.1 1.374020 | 0.467158 | 0.155804 | 1.420924 | 0.427659 | 0.128054
0.2 1937966 | 0.368580 | 0.110049 | 1.291484 | 0.330620 | 0.086582
011 10 1.418100 | 0.432202 | 0.131229 | 1451223 | 0.406570 | 0.114632
5.0 1.613428 | 0.320890 | 0.068744 | 1.615178 | 0.319486 | 0.068152
10.0 1.671431 | 0.300534 | 0.059955 | 1.670761 | 0.300222 | 0.059866
1.0 | 0.5 0.967924 | 0.376784 | 0.290370 | 0.999085 | 0.354113 | 0.255369
1.0 | 0.871449 | 0.276243 | 0.288779 | 0.903134 | 0.258399 | 0.251649
1.5 | 0.829395 | 0.215670 | 0.260087 | 0.861412 | 0.201215 | 0.225352
Table. 2. 6(b). —6,'(0), 8;,'(0) and 8,,'(0) when N; = 0.5.
Ti0,-Water nanofluid
L L ~8,'(0) 6, (0) 6,4'(0)
0.0 0.0 0.0 1.518447 0.615987 0.239294
0.1 1.399510 0.475001 0.158319
0.2 1.281369 0.381109 0.113856
0.1 10 1.443460 0.440112 0.133775
50 1.641117 0.327016 0.070167
10.0 1.700527 0.306012 0.061082
10 05 0.988548 0.386194 0.294901
10 0.889490 0.284371 0.295033
15 0.846134 0.222513 0.266708
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2.5 Conclusion

This chapter is based on study of slip conditions and MHD effects on the oscillatory non-

orthogonal stagnation point flow of water based nanofluids for three different type of

nanoparticles, namely, Cu, Al,0; and TiO,. The governing coupled system is solved

numerically by using BVP solution method with the aid of midpoint method with Richardson

extrapolation enhancement. Moreover, a detailed analysis is presented for the magnetic,

velocity slip and thermal jump effects on the flow behavior. The important finding of the

current study can be summarized as follows:

Velocity profile changes its direction for B —A > 0and B — A < 0.

The momentum boundary layer thickness becomes thinner for higher values of M, ¢
and N,.

The thermal boundary layer thickness decreases for higher values of N, and M.

The velocity amplitude of oscillation is maximum at the surface and gradually decrease
when it goes away from the surface

The stagnation point appears on the right side of the plate, from origin, for B — A > 0
and on the opposite side for B — A < 0.

The momentum boundary layer thickness decreases against all physical involved
parameters whereas Al,05 produce highest value of boundary layer and Cu has the
lowest.

The values of f"'(0) increases for higher values of M and decreases against velocity
slip parameter N,. Also, f"'(0) is maximum for Cu — water nanofluids and minimum
for Al,05 — water nanofluids.

Nusselt number enhances against the Hartmann number M and reduce for higher values
of N, and ¢.

Cu — water produce the highest Nusselt number whereas Al,0; — water produce the

lowest.
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Chapter # 3

Impact of external magnetic field and metallic particles on
oscillatory oblique stagnation point flow of a micropolar
fluid

3.1 Introduction

The present chapter is made to envision the characteristics of magneto-hydrodynamic
oscillatory oblique stagnation point flow of micropolar nanofluid. The applied magnetic field
is assumed parallel towards dividing streamline. A comparative study is executed for copper
Cu and Alumina Al,05; nanoparticles while considering water as a base fluid. To be more
specific, in the presence of both weak and strong concentration, the physical situation of
micropolar fluid is mathematically modeled in terms of differential equations. The transformed
coupled system is finally solved by midpoint method with the Richardson extrapolation
enhancement and shooting mechanism with fifth order R-K Fehlberg technique. The obtained
results are compared with existing published literature. An excellent match has been found

which yields the validity of the current analysis.

v4

Fig. 3. 1. Flow description of the problem.



3.2  Problem description and governing equations:

Consider the problem of stagnation point flow of an electrically conducting micropolar
nanofluid over an oscillatory surface with velocity U cos w t. The fluid impinges obliquely on
the oscillatory surface y = 0. By neglecting external mechanical body force and body couple

the flow rheological equations become

V-V=0 )
v _ 1 _ 1 e Ue = = —
—_+(V-V)V)=——Vﬁ+—u +x)VV +—(VxH) xH
<6t Pnf pnf( M ) Pnf
" o
+—(VxN)
pnf

NN
Pnfl (ﬁ + (V- V)N> = Vs V2N + #(V X V) — 2xN e (31

For system (3.1) we append the boundary condition:

ou \

oy’

T =T, +e(T, —T.)Re[e?t] at y=0 (2.2)

#=Ucoswt, =0, N=—-n

— 1 _ _ _
i = ax + by, ©v=—ay, NZE(VXV)' T=T, as y- o]

It is interesting to note that the concentration of micropolar fluid is controlled by the value
of micro gyration parameter n (0 < n < 1). Forthe case of n = 0, we have N = 0 at the
wall which shows strong concentration [74]. Physically it means that microelements near the
surface are unable to rotate [75]. Further, for the case n = %, narrates the vanishing of anti-
symmetric part of the stress tensor and indicates weak concentration [76] of microelements.

On the other side, at n = 1, flows indicate turbulent boundary layer flow [77]

Conditions (3.2) mean that at infinity, N = %(V x V), the micropolar fluid behaves like a

classical fluid.
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The equations of degenerate streamlines, also known as asymptotes of streamlines, can be

expressed as:

x and y = 0. (3.3)

_ 2a
Y=

Considering a more general motion as reported by [73]
v=—a(y—A), u=ax+ b(y —B).

In this way, the stagnation point is (S(B — A), A) and the asymptotes of the streamlines

becomes
_ 2a _ _
y= —7x+2B—A, and y = A.
Further, [73] show that
_ 1
H, = H,y(b? + 4a%)"2(=bi + 2aj). (3.4)
Neglect the influence of induced magnetic field, we have
(VX H) X H~o.u.(V x Hy) xHy, E=0, (3.5)

and by consideration of

N =xF(y) + G(¥,1t) )
v =—af(¥),u = axf (7) + bg(7,t)
Yoy = (kg +3) g (3.6)
. a
] = ; )

Egs. (3.1) and (3.2) can be written as
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_ __ )\ - n o o B,2 .
af[aluz_aff”_<Unf+p—)f”'——F'+4a2ifo’l

nf APnf Pnf 4a? + b?
= — r = " =/ " ~/
+b|ge+a(gf' —fg) = \vnp+——|9" =5 —G (3.7)
Pnf Pnf
onr  Bg? 1 dp
2 2 nf P20 25 — - ___
+ea pnf4a2+b2( g-71) Pnf 0X

2fF + <unf +i>f~ " F

Pnr Pns
(3.8)
Ins _ Bo 2b7F + ab?(24 — 7)) = — 9P
+ Py 427 1 D2 ( 2a°bxf' +ab (Zg f)) = onr 37
n _ - x = _, 2x
Ung + (xF" +G") + — (—axf" —bg') —— (xF + G)
2png JPng JPns (3.9)
= G+ (axf' + bg)F — af (xF' + G)
_ _ _ U - \
f(0)=0,f'(0)=0,g(0,8) = ERe(e””t).
F(0) = —anf"(0), G(0,t) = —bng'(0,t), (3.10)
_ _ _ b I
fO=1 gG0=1 FG)=0, GGD=-5 as y-o |
From (3.10), we can find the asymptotic solutions for large y
g¥)~y—B and f(F)~7 - A (3.11)

From Egs. (3.7-3.8), we find the pressure field as
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a? _ b
n
5
+L F(8)ds
pnfo
(3.12)

Ins _ Bo

————{2a?bxf + 4a® (fz — 29(3 — A)JZ)
Pnr 4a% + b? a

y
+av? [ (20650 - ) as ]|

0

in which p, is the stagnation pressure. From Eq. (3.12), it is clearly seen that maximum

pressure occurs at the stagnation point in through-out the flow domain. Thus Egs. (3.7) -(3.9)

implies that
1( + " >flll f,2+ff”+ " F/
— v — —
a i Pnf a? nf
O'nf BO =,
—4a —_— -1)+1=0
Pnr 4a% + b? (f )
1 + n =1 —r/ 1 = + _—r+ ér
~\ Vns pnf 9" —9f" —-9et /g abpns
) (3.13)
By
4q— 144a———|(B—-A
+ap 4a2+b2(f g) = ( + ap 4a? + b2>( )
o\ _ __ _ _
Vpr + F"+afF —af'F —- af”— F=0
<”f anf> JPn JPn
( += )a‘"+ G~ bgF — G- by — X G =0
v afG’ —bglk —Gg——bg —+ =
M 2png © jpns JPns )

The following similarity variables are presented to make simpler the mathematical analysis

of the problem
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_ a — Uy _ i— _1 ﬁ— & o
f(y)—\/:—ff< ;y>,y—\/;y, F(}’)—a\/:F<\/:y>,t—wt,
go()’)+3g1()’)elt_g(y,t)—\/vzt (\/% >
6((Zy.2)
a’w

—T,
T, — To,’

SIPF

(3.14)

@Ir—\

Go() + G, (et =Gy, b) =

0o (y) + €6, (y)e™ = 0(y,t) =

Using the above similarity variables, Egs. (3.13) and (3.14) together with boundary
conditions (3.10) and (3.2)4g reduce to

<“"f+K> i f”’—f’2+ff”+Kp—fF’ Tnr B 2 A-fH+1=0,
Ur Pnf Pnf Of Pnf

p p ¥ p p
<nf+’(> L g0 + Fgb—gof ' + K2 Gy — TP (g — ) =

Ur Pnf Pnf Of Pnf
<1+ nf P\ )(IB—A),
pnf
Hng ) Pr g , Pr Onf Pf 1»
+ K +fg1—9.f —iQg; + K—G ———Mg =0,
<.Uf Pnf ! ! ! Pnf ! Of Pnf !

K
(“ﬂ+ > Prpn _pr g — k2L (pr —2m) = o,
e 2)pnr Pnf (3.15)

Hnf K) Pr " ’ Pr /
—+=|—G, —goF+fG —K—(g —2Gy) =0,
(llf 2 Pnf 0 0 0 Pnf 0 0

K
<lﬂ - E)p—fGl" Gy - g:F —i06, — KL (g, —26) = 0,

Us Pnf Pny
( Cp)
L6, Y £, =0,
kf ° (pcp)f ’
k ( ») (pCp)
"f 91” M ofg," — i0Pr——2 g, =

(pp)“ (G, " )
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f(O) = 0! gO(O) = O,f,(()) = 0) gl(o) = 1' 90(0) = 1' 01(0) = 1: ]
F(0) = —nf"(0), Go(0) = —ng,(0), G1(0) = —ng;(0),

91 =0,90(») =1L () =1LFQ) =0, Go(y) = —5 G(y)=0, y- °°J

6(¥) =0, 6(0) =0, g~y —-B, fW~y—A4A, y = oo,

Where

The surface shear stress (Cy) and heat transfer rate (Nu) in dimensionless form can be

expressed as

Ty

=3 :
5PrU%
(3.17)
Xqwy
Nu, =,
kf (Tw - Too)
where 1,,, is the wall shear stress and g, the surface heat flux defines as

[(unf + K)— + KN” .

B (3.18)
oT
Qw = _knfa_}—]

By using of (3.14), (3.17) and (3.18), we may write it as

1

ERefcf=(” (1 )K)[JR—exf”mH 94(0) ~ e tg; 0)

_1 kg kny
(Rez) ZNu = ——90 0) — —ee‘tel(O)
ky ky

At the surface ¥y = 0, three points carry significant importance: the stagnation point

towards which the separating streamline far away from the surface are directed, the position
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where maximum pressure is exerted X = Xx,, and the position of zero tangential stress x =

Xs. The equation of separating streamline which intersect the boundary is

y
b .
X = /%f, xf(y) + Ef (go(s) + et gl(s)) ds =0, (3.19)

0

From Egs. (3.12) and (3.18), we see that

H=2(0)" -0,
b o2 1 | (3:20)
X; = _E(Z) ]T(O)(gol(o) + 88”91'(0))-

We note that x,, does not depend on M whereas X depends on M. The ratio

% _m_n £(0)

Xs [90'(0) + getg;"(0)]

(for a fixed time) is same for all angles of incidence.
3.3 Solution procedure:

Numerical solution of (3.15); , 4 5 together with their boundary conditions in (3.16) have
been deliberated by means of shooting technique with fifth order R—-K—Fehlberg method and

midpoint method with the Richardson extrapolation enhancement.

Furthermore, the series solutions of equations (3.15)3 ¢ for small value of frequency Q

have been obtained, that is
NOEDNCIENEH
n=0
and
63 = ) (")
n=0

In this problem, the real part of solution is
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91(¥) = ©o(y) — 2P, (y) + Q*Dy(y) ...,

where
“pr_fq;o” + fDy — Dof + Kp—fyo —p—fMZCID0 =0 )
Ky Pnf Pnf Pnys
Hnfr P 4 ) ' P P
T o, + Dl — Opf + KLy — L M20, =y b p=123..
Hf Pnf Pnf Pnys
CDO(O) = 1) cDO(OO) = 0
©,(0) =0, @,(0)=0 J

The above system has been tackled numerically using midpoint method with the
Richardson extrapolation enhancement.

Similarly, for a small value of Q, equation (3.15)5 becomes

0,) = ) (0)"6,().
n=0

0:(y) = 010(y) — Q2@12(}’) + 94@14(}’) (3.21)

From (3.15),, we have

Ly (Pr,00) — I (Pr, y)

6o (y) = T (Pr, ) (3.22)
where
y ke (PCo),p (9
by Pry) = [ Exp (—Pré Gy | f(n)dn> ds
f
and

Ly (Pr,) = lim I,¢(Pr,y).
y—00
Making use of Egs. (3.21) and (3.15)5, we may write

1 g n (pcp)nf
Pr kf in (pCp
Gln(o) =0, ®1n(o°) =0

n

(feln’ - 91(n—1)) =0 , n=123..
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Where 0,,(y) = 8,(y) is given in (3.22)

The numerical integration for the above system can be executed easily with aid of any

mathematical software.
3.4 Results and Discussion:

Numerical assessment is carried out towards model equations by way of water based
micropolar nanofluid containing metals and oxide ceramics nanoparticles named as Alumina
(Al,03) and copper (Cu). The range of solid volume fraction ¢ for the nanoparticles is
maintainedas 0 < ¢ < 0.2 along with the upper limit of Prandtl number is 6.2 for base fluid
i-e water. Table 1.2 is used to present the thermos-physical properties of Copper, Alumina and
water. The numerical scheme is validated by constructing discrete case of Hartmann number
by ignoring the effects of nanoparticles shown in Table 3.1 and Table 3.2, we have found that

our obtained results are agreed perfectly with [73].

The influences of involved physical parameters on velocity distributions are portrayed in
Figs. (3.2-3.6). The combined impact of free stream and magnetic action claims the fluid flow
past an oscillatory sheet. The velocity of nanofluid is minimum near the plate and gradually
increases until it attains the free stream condition and satisfying the prearranged endpoint
condition. Fig. 3.2 depicts the behavior of f(y), f'(y),f" (y) for M = 1077, ¢ = 0.0, K =
0.0. Fig. 3.4 displays the alterations in f'(y) for distinct values of K, ¢, n and different
nanoparticles when water is considered as base fluid. In Fig. 3.4(a), it is detected that thickness
of momentum boundary layer increases by increasing the material parameter K. In Fig. 3.4(b),
it is seen that the momentum boundary layer thickness decreases with increasing the
nanoparticle volume fraction ¢. The strength of Fig. 3.4(c) is drawn to discuss the impact of
an imperative parameter n, the micro gyration parameter, which indicates the concentration of
micropolar fluid. From this figure, it can be observed that momentum boundary layer thickness
is thin just in case of weak concentration as compared to strong concentration. It is interesting
to note that Al,05; — water nanofluid produce a thicker momentum boundary layer than Cu —
water as illustrated in Fig. 3.4(d). Fig. 3.3 indicates the profile of F(y), F'(y) when M =
1077,K = 1.0 and , @ = 0.0. In Fig. 3.5, demonstrates the change in g,(y) for dissimilar

Hartmann number M and micro gyration parameter n along with the condition i.e. B — A =
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—5—Aand B— A =5 — A. The flow field is unaffected by Prandtl number because flow
equations and temperature are uncoupled. To be more specific, the fact is that for every value
of Pr, functions i-e f(y), go(v), g1(y) and their derivatives are found to be identical. In Fig.
3.6 the impact of time t on u(x, y, t) is reported. It is seen that u(x, y, t) shows an oscillation
performance with maximum amplitude at the surface and gradually decreases away from the
surface. Fig. 3.7 depicts the attitude of the temperature distribution 6(y,t) towards
nanoparticle volume fraction ¢ and Hartmann number M when Pr = 6.2. The influence of
increasing Hartmann number on temperature profile, the decreasing nature of temperature field
can be observed neat the surface, while it shows a rise in behavior with the enhancement in
nanoparticle volume fraction. The impact of time t on 6(x, y, t) is shown with the aid of Fig.
3.8. It is noticed that 8(x,y,t) exhibit waving nature and the amplitude of wave is found
maximum near the surface and decreases far away from the surface. Further, it is examined
that the temperature is maximum at the surface, that is y = 0, and decrease away from it. The
oblique flows are presented by way of streamline patterns in Figs. (3.9-3.11). The streamline
meets the wall y = 0, at x,. It is concluded from these figures that their location depends on
Hartmann number M, B — A and time t. Fig. 3.12. shows the bar graph comparison of both
Copper and Aluminum oxide nanoparticles. It demonstrates that Copper has higher surface

temperature gradient when contrasted with the Aluminum oxide nanoparticles.

Table 3.3-3.6 delineate the impacts of the involved parameter on the physical quantities
near the wall for both Copper and Aluminum oxide nanoparticles when water is treated as a
base fluid. We comment that the estimations of A and f''(0) rely on upon M, ¢ and, K, as
should be obvious from Table 3.3(a, b). More precisely, f"'(0) increases and a decreases as
@ and M are increases. Moreover, increases in material parameter K cause increase in A and
decrease in f''(0). Table 3.4(a, b) shows the numerical values of velocity gradient at the
surface against M, ¢, K and B — A = —A, 0, « and it is noticed that the magnitude of g,(y)
does not depend on ¢. As far as the variation of g,(y) against M and K are concerned, we
found its magnitude shows increments when M increases while shows decline nature for all
B — A when K increases. The rapid increase is found for Cu-water nanofluid as compared to
Al,05-water. The numerical variation of @,'(0),®,'(0),®, (0) against M, ¢, and K are
revealed in Table 3.5(a, b). In Table 3.6(a, b), it is found that temperature gradient is
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decreasing function of both material parameter K and nanoparticle volume fraction ¢. Thus,
the heat transfer rate increase near the surface. It is important to note that Cu-water remarks
higher heat transfer rate as compared to Al, 05;-water nanofluid. Furthermore, it is also noticed
that the temperature gradient shows inciting attitude when we increase Hartmann number M

which brings enhancement in heat transfer rate near the surface.

5_

1 f'®
0 1 2 3 4 5 6
¥
Fig.3.2. f(y), f'(), f"(y)when M =1077, ¢ = 0.0, K = 0.0
0.051 F'(y)
0-
-0.05 Fy)
-0.10;
-0.15;
-0.20;
-0.25;
0 1 2 3 4 5 §

y

Fig.3.3. F(y), F'(y)whenM = 10"7,¢ = 0.0,K = 1.0.
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Fig. 3. 4. Plots showing f'(y) when M = 1077 (@) 9 = 0.0,n =0,M =107, (b) n =
0.1,K=00and(c) K=0,0=00()n=0K=0, ¢ =0.1.
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(@) (b)

Fig. 3. 5. Influence of g, (v), (a) for various M when ¢ = 0.0, K = 0.0 and (b) for various
nwhen M =10"7,¢ = 0.0,K = 0.
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Fig. 3. 6. Time dependent flow u(y, t) at different locations from the surface when Cu —
Water,¢ = 0.1, K =0.0,M = 1077,e=02,0=02,B—A=—-Ax=1.
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Fig. 3. 7. Influence of 6(y,t) for various parameters when (a) ¢ = 0.0,K = 0.0 and
(b) M =1077,K = 0.0.
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Fig. 3. 8. Time dependent flow 8(y, t) at different locations from the surface when Cu —
Water,¢ = 0.1,K =0.0,M =107, = 0.2, =02, x = 1.
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Fig. 3. 9. Shows the streamlines for Cu — Water nanofluid when S =1,M=10"7,K =
1,0=05=02t=n.8)B—A=-5—A,(h)B—A=0,(c)B—A=5—A.

()

(b) (©)

Fig. 3. 10. Shows the streamlines for Cu — Water nanofluid when Zz 1,B—A=-5-
AK=10=05=02t=m.(a)M=10"7,(b) M =107% (c) M = 1075,
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(©) (d)

Fig. 3. 11. Shows the streamlines of Cu — Water nanofluid when g =1, B—-A=-5-
3

AK=10=05e=02t=0@t=0,(b)t==()t=m(dt==-
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Copper @ Alluminium Oxide

0.05 0.15 0.2
Nanoparticle volume fraction

Fig. 3. 12. Bar graph comparison of two nanoparticles concentrations 5%, 15% and 20%
respectively.
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Table. 3. 1. Validation of results for "' (0) when ¢ = 0 and K = 0.

M A f"(0)
Present [73] Present [73]
0 0.647901 0.6479 1.232588 1.2326
1 0.541007 0.5410 1.585331 1.5853
2 0.393589 0.3936 2.346663 2.3467
5 0.190729 0.1907 5.147964 5.1480
10 0.098774 0.0988 10.074741 10.0747
Table. 3. 2. Validation of results for g,"(0) when ¢ = 0 and K = 0.
Table 3.2.
M B—A 90" (0)
[73] Present
0 —A = —0.647901 1.4065 1.406545
0 0.6080 0.607950
A = 0.647901 -0.1906 -0.190645
1 —A = —0.541007 1.4240 1.423990
0 0.5663 0.566316
A = 0.541007 -0.2913 -0.291360
2 —A = —0.393589 1.4541 1.454064
0 0.5304 0.530442
A = 0.393589 -0.3932 -0.393181
5 —A =-0.190729 1.4880 1.488171
0 0.5063 0.506303
A = 0.190729 -0.4754 -0.475564
10 —A =-0.098774 1.4970 1.496769
0 0.5016 0.501643
A =0.098774 -0.4937 -0.493483
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Table. 3. 3(a). Numerical value of A and f"'(0).

Cu — Water
n=0.0 n=0.5
M K Q
A f7(0) A (0

1077 1 0.1 0.722568 1.069269 0.647978 1.233009

107° 0.644688 1.264293 0.573809 1.440364

1075 0.142575 6.935249 0.116581 7.227920

1077 2 0.848297 0.868343 0.732395 1.09084

3 0.950844 0.742678 0.808043 0.988713

4 1.039219 0.655790 0.877179 0.910772

1 0.05 0.782726 0.972330 0.696955 1.140483

0.15 0.680741 1.139190 0.615133 1.293535

0.2 0.657732 1.185850 0.599389 1.327287

Table. 3. 3(b). Numerical value of A and f"(0).
Al, 05 — Water
n=0.0 n=0.5
M K @

A f(0) A f(0)
1077 1 0.1 0.846878 | 0.903951 0.762347 1.047950
107° 0.770550 1.040532 0.689359 1.194029
1075 0.185034 | 5.324346 | 0.152298 5.584560
1077 2 0.990380 | 0.730675 0.861656 | 0.927134
3 1.107115 0.623266 | 0.950585 0.840333
4 1.207568 | 0.549524 1.031693 0.774098
1 0.05 0.861087 | 0.877879 0.769082 1.033635
0.15 0.835022 0.919714 | 0.756813 1.050349
0.2 0.833913 0.925333 0.753188 1.061526

71




Table. 3.

4(a). Numerical value of g,'(0).

Cu — Water
n=0.0 n =05
M K Q
B-A 90'(0) B-A 90'(0)
-0.722568 | 1.271410 | -0.647978 | 1.406550
1077 1 0.1 0 0.498790 0 0.607587
0.722568 | -0.273830 | 0.647978 | -0.191375
-0.644688 | 1.294936 | -0.573809 | 1.408199
107 0 0.479861 0 0.581705
0.644688 | -0.335214 | 0.573809 | -0.244789
-0.142575 | 1.459372 | -0.116581 | 1.366378
1073 0 0.470574 0 0.523735
0.142575 0.518223 0.116581 | -0.318907
-0.848297 | 1.185937 | -0.732395 | 1.406516
1077 2 0 0.449325 0 0.607585
0.848297 | -0.287287 | 0.732395 | -0.191346
-0.950844 | 1.126700 | -0.808043 | 1.406519
3 0 0.420537 0 0.607598
0.950844 | -0.285624 | 0.808043 | -0.191322
-1.039219 | 1.083121 | -0.877179 | 1.406571
4 0 0.401646 0 0.607674
1.039219 | -0.279829 | 0.877179 | -0.191222
-0.782726 | 1.253428 | -0.696955 | 1.406544
1 0.05 0 0.489102 0 0.607715
0.782726 | -0.275223 | 0.696955 | -0.191113
-0.680741 | 1.253428 | -0.615133 | 1.406544
0.15 0 0.489102 0 0.607715
0.680741 | -0.275223 | 0.615133 | -0.191113
-0.657732 | 1.253428 | -0.599389 | 1.406544
0.2 0 0.489102 0 0.607715
0.657732 | -0.275223 | 0.599389 | -0.191113




Table 3.4(b). Numerical value of g,'(0).

Al,0; — Water

n=0.0 n=05
M ¢
B-A 90'(0) B-A 90'(0)
-0.838110 | 1.263658 | -0.754251 | 1.406554
1077 0.1 0 0.497639 0 0.607660
0.838110 | -0.268379 | 0.754251 | -0.191234
-0.763937 | 1.282825 | -0.683338 | 1.407946
1076 0 0.481221 0 0.585292
0.763937 | -0.320383 | 0.683338 | -0.237360
-0.184939 | 1.450722 | -0.152254 | 1.371608
1075 0 0.465719 0 0.520896
0.184939 | -0.519283 | 0.152254 | -0.329814
-0.980384 | 1.171577 | -0.852508 | 1.406571
1077 0 0.447083 0 0.607713
0.980384 | -0.277409 | 0.852508 | -0.191145
-1.096144 | 1.109010 | -0.940504 | 1.406727
0 0.418007 0 0.607960
1.096144 | -0.272996 | 0.940504 | -0.190805
-1.195780 | 1.063927 | -1.020783 | 1.407090
0 0.399428 0 0.608598
1.195780 | -0.265071 | 1.020783 | -0.189894
-0.861087 | 1.247827 | -0.769082 | 1.406550
0.05 0 0.488260 0 0.607789
0.861087 | -0.271306 | 0.769082 | -0.190972
-0.835022 | 1.247827 | -0.756813 | 1.406550
0.15 0 0.488260 0 0.607789
0.835022 | -0.271306 | 0.756813 | -0.190972
-0.833913 | 1.247827 | -0.753188 | 1.406550
0.2 0 0.488260 0 0.607789
0.833913 | -0.271306 | 0.753188 | -0.190972
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Table. 3. 5(a). Numerical value of —®,'(0), ®,'(0) and ®,'(0).
Cu — Water
n=20.0 n=20.5
M K @
—D,'(0) | P,'(0) ®,'(0) | —Po'(0) | P,'(0) ®,'(0)

1077 | 1 0.1 | 0.691779 | 0.085912 | 0.010277 | 0.813191 | 0.093913 | 0.011531
10~ 0.945615 | 0.050471 | 0.003659 | 1.083458 | 0.055256 | 0.003881
107> 6.877988 | 0.000465 | 0.000018 | 7.116813 | 0.010491 | 0.000744
1077 | 2 0.551502 | 0.069872 | 0.007756 | 0.719432 | 0.083075 | 0.010198
3 0.466232 | 0.058929 | 0.006346 | 0.652080 | 0.075288 | 0.009240
4 0.408703 | 0.051265 | 0.005471 | 0.600686 | 0.069334 | 0.008499
1 | 0.05 | 0.625838 | 0.078389 | 0.009190 | 0.751624 | 0.087123 | 0.010723
0.15 | 0.625838 | 0.078389 | 0.009190 | 0.751624 | 0.087123 | 0.010723
0.2 | 0.625838 | 0.078389 | 0.009190 | 0.751624 | 0.087123 | 0.010723

Table 3.5(b). Numerical value of —®,’(0), ®,'(0) and ®,'(0).

Al, 05 — Water
n=0.0 n=0.5
M K Q
—D,'(0) | P,'(0) ©,'(0) | —Py'(0) | P,'(0) ®,'(0)

1077 | 1 0.1 | 0.589384 | 0.073201 | 0.008584 | 0.698279 | 0.080806 | 0.009934
10~ 0.766655 | 0.047268 | 0.003592 | 0.888616 | 0.051682 | 0.003936
1075 5.270802 | 0.000533 | 0.000015 | 5.491650 | 0.006956 | 0.000369
1077 | 2 0.467838 | 0.058713 | 0.006477 | 0.617781 | 0.071474 | 0.008779
3 0.394924 | 0.049220 | 0.005321 | 0.559961 | 0.064732 | 0.007922
4 0.346119 | 0.042662 | 0.004559 | 0.515870 | 0.059506 | 0.007218
1 | 0.05 | 0.567381 | 0.071016 | 0.008240 | 0.685102 | 0.079566 | 0.009805
0.15 | 0.567381 | 0.071016 | 0.008240 | 0.685102 | 0.079566 | 0.009805
0.2 | 0.567381 | 0.071016 | 0.008240 | 0.685102 | 0.079566 | 0.009805
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Table. 3. 6(a). Numerical value of —8,"(0),0,,'(0) and ©,,'(0).

Cu — Water

n = 0.0

n=0.5

—6,'(0)

0:,'(0)

0:4'(0)

—6,'(0)

0:,'(0)

014'(0)

0.1

0.976002

0.625531

0.894378

1.010236

0.511496

0.817287

1.014206

0.502684

0.810538

1.047785

0.415034

0.743960

1.416020

0.094820

0.374691

1.434746

0.087727

0.361806

0.926816

0.852550

1.026503

0.976897

0.628893

0.895597

0.891638

1.077594

1.138896

0.950471

0.746466

0.965929

0.864509

1.301745

1.238182

0.928661

0.864375

1.030293

R wl N

0.05

1.003951

0.899119

1.094526

1.043860

0.713781

0.987421

0.15

0.903354

0.596328

0.841090

0.938019

0.479655

0.762802

0.2

0.857919

0.490484

0.741267

0.890235

0.397167

0.674087

Table 3.6(b). Numerical value of —8,'(0),©,, (0) and B, (0).

Al,0; — Water

n = 0.0

n = 0.5

—6,'(0)

0:,'(0)

©14(0)

—6,'(0)

0:,'(0)

©14(0)

1077

0.1

0.932422

0.834821

1.016303

0.966518

0.675214

0.924473

10-°

0.964089

0.686724

0.931296

0.997735

0.559994

0.850331

1075

1.360115

0.111887

0.405929

1.380663

0.102134

0.389729

1077

0.884116

1.152682

1.172595

0.933797

0.838537

1.017006

0.849870

1.468078

1.304933

0.907950

1.002624

1.100002

0.823621

1.782222

1.421429

0.886673

1.167569

1.175876

=R W N

0.05

0.976038

1.077483

1.185520

1.015805

0.849488

1.066400

0.15

0.878960

0.709963

0.908840

0.913561

0.567020

0.821797

0.2

0.835014

0.581655

0.799721

0.867296

0.467622

0.725061

75




3.5 Conclusion

In this exploration the we characterize the flow and heat transport in micropolar nanofluid
along oblique stagnation point over an oscillatory plate. Two different metallic nanoparticles
are considered (Alumina and Copper) in base fluid water. The governing coupled system is
solved numerically by using BVP solution method with the aid of Maple software shooting
scheme along with fifth order Runge—Kutta— Fehlberg algorithm. Analysis has been made in
order to report the influence of different parameters namely, nanoparticles volume fraction ¢,
Hartmann number M, and material parameter K on velocity, temperature, local wall shear
stress and heat transfer rate are examined fixing the Prandtl number Pr (i.e. 6.2) for water. The

key finding of current analysis is itemized as follows

e Itisobserved that the momentum boundary layer is thicker in the case of Al,04/ water
as compared to Cu/water. In addition, Al,0;/water results show more surface
temperature while Cu/water generates the lowest surface temperature.

e Thickness decline is found for momentum boundary layer against increasing value of
nanoparticles volume fraction while inverse trend towards material parameter is
observed. Further, the thickness of momentum boundary layer is thin for the case of
weak concentration as compared to strong concentration.

e The local wall shear stress is the increasing function of Hartmann number and material
parameter while it shows opposite attitude towards nanoparticles volume fraction. It
was also noticed that Cu — water with the comparison of Al,0;- water gives
maximum local wall shear stress.

e The magnitude of heat transfer rate is significantly large for Cu — water as compared
to Al,05;- water. On the other hand, the heat transfer rate near the plate surface is
decreasing function of Hartmann number while opposite trend is found for both
material parameter and nanoparticles volume fraction.

e The zero-skin fraction and stagnation point remarkably depend on B — A and time t.
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Chapter # 4
Model based study of SWCNT and MWCNT thermal

conductivities effect on the heat transfer due to the

oscillating wall conditions

4.1 Introduction

In this chapter, different proposed theoretical models for the thermal conductivity of
Carbon nanotubes are analyzed. Both SWCNT and MWCNT are discussed in three types of
base fluids namely ethylene glycol, engine oil and water. By using the fundamental governing
laws and their modifications for the presence of solid concentrations are used to
mathematically model the differential equations. The complicated coupled system of
differential equations is transformed into non-dimensional form via a suitable similarity
transformation. Then numerical results have been obtained by using the midpoint method with
Richardson extrapolation enhancement. The numerical results can be computed when the

length “L” and diameter “d” of CNT’s are 3um < L < 70um and 10nm < d < 40nm.

ﬁ=ai+b()7—B) ‘vA
gl d) ’

Z u=Uycoswt

Fig. 4. 1. Functional Diagram.
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4.2  Problem description and governing equations:

Consider the problem of stagnation point flow over an oscillatory surface with velocity
Uycoswt. The x-coordinate is taken horizontally and the jy-coordinate is considered
perpendicular to horizontal direction and is pointed in outward direction towards the fluid as
shown in Fig. 4.1. The fluid impinges obliquely to the oscillatory surface. It is assumed that
free stream velocity is of the form V = (ax + b(y — B), —a(y — A),0), where a and b are
constant. The governing equations of fluid flow can be written as

V=

V-
< —+ (V- V)V> - ——Vp + B g,
Prs (4.1)

(a + (V- V)T) = an V7T,

where ¢, pnr and a,y are defined in Table 1.1. For system (4.1) we append the boundary

condition:

i=Ucoswt, 7=0, T=T,+e(T, —To)Re(ei®)) at y=0,
u V —

~ 4.2
=ax+b(y—B), v=—a(y—A), T=T, as (42)

From (4.2),5, the stagnation point is (S(B — A),A) and hyperbolic streamlines

asymptotes are

_ 2a
Y=

X+2B—4A, y=4 4.3)

They are also well known as degenerate stream-lines. Now, consider
v =—af(y), u=axf'()+b3g(¥ D, (4.4)

Eqgs. (4.1), and (4.2)1 2 4,5 Can be written as
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_ _ _ - 10
ax|af”* = aff" = v f"| + b|gi + a(gf = 3') = vard"] = ‘Ea_i—' (45)
o e 0P
Pff' +vnf" = P (4.6)
_ _ B U -
f(0) = 0,£'(0) = 0,3(0,8) = --Re(e™"), 4.7)

gEH=1 f'0=1, a F-oo
From (4.7), 5 the values of f(¥ ) and g(¥, t) can be calculated as
fGI~y-4A g@.D~y-B. (4.8)
From Egs. (4.5-4.6), we find the pressure field as

a2

_ _ b
Do — P(X,y) = pny {Unf af’ + 7(9?2 +f% - ZE(B - Aﬁ)}, (4.9)

in which p, is the stagnation pressure. From Eq. (4.9), it is clearly seen that maximum pressure

occurs at the stagnation point in through-out the flow domain. Thus Egs. (4.5)-(4.6) imply that

) ) (4.10)

vnrg" = 9f ——ge+fg' = (B-A).

The following similarity variables are presented to make simpler the mathematical analysis
of the problem

_ | %7 /”_f _ fﬂ— _ . F
fly) = vff( ay), y = vfy, t = wt,
_ ’i— /v_f ) _ it
gy, t) = vfg< ay.w>—go(y)+£gl(y)e,

(4.11)
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1o

T .
6(y,t) = = 0o(y) + €6, (y)e.

T, — Too

Using the above similarity variables, Egs. (4.10) and (4.1); together with boundary
conditions (4.7) and (4.2)3 ¢ reduce to

uﬂp_fflll—f’2+ffll+120,
.uf pnf
ll p 144 ! !
L L g0 + fgb — gof ' — (B—A) =0,
Hr Pnf
Mp—fgl” +f91—9:1f — Qg1 =0,
Hr Png (4.12)
Ly, (pcp)nffe '=0
0 o =Y,
kf (pCp)f
oty Ot gy P
91 fgl 01 - O
(p P) (pCp f

f(0) =0£"(0), go(0) =0, g;(0) =1, 6,(0) =1= 6,(0),
91 =0,f"0)=1=go(y), 6,(y)=0, 6,(3) =0, y— oo, (4.13)
gW)~y—B, fO)~y—a, as y - o,

B =B A=A Q—w = —U 4
a _k'E_b s

The different models of effective thermal conductivity are

where

4.2.1 Hamilton and Crosser model [59]:

knp ks + (n—Dks+ (n— Dp(ks — k)
ks ket (n— Dks+ (m—1D)pks — k)

(4.14)

in which n represents the empirical value of particles shape.

Hamilton and Crosser simply correlate n as
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n = 3A79, (4.15)

where 6§ is an empirical parameter and A is the sphericity defined as

L 2=l ) RZ+y
= e(Y)= [1——5—.
e(y)yJ1 — e2(y) + arcsin(e(y)) (L/2)* +y

4.2.2 Yamada and Ota model [60]:

ka 0.2 kf L o2 ks ks+kf
1+k—sﬁ<p +(1—k—s)<p§<p +2(pks_kf1n( Zkf )

ks
ke 1= g+ 20— | (ks + kf) 449
CT Pk T "\ 2k;
where R and L are the radius and length of the nanotube, respectively
4.2.3 Xue model [62]:
ks +k
K, 1mo+20y ‘“( 2% f)
nf s If f
= : (4.17)
b1 gt 29 1n(ks+kf>
PP =K "\ 2k,
The surface shear stress (Cy) and heat transfer rate (Nu) can be expressed as
R
2Pr%w (4.19)
X
Nu = #,
kf(Tw - TOO)
where q,, t,,, are the surface heat flux and the wall shear stress, define as
ou
Ty = ,u f__| ]
R 4.20
qw = nf a}_] }_}zo.

By the use of Egs. (4.11), (4.19) and (4.20), we can write
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1

~RegCp =22 “f[JR_exf"<0)+ 54(0) + e e g (0)]

1 ks
(Rez) 2Nu = —k—HO (0) — ee‘t01(0)
f f

At the surface y = 0, three points carry significant importance: the stagnation point
towards which the separating streamline far away from the surface are directed, the position

where maximum pressure is exerted X = X,, and the position of zero tangential stress x =

Xs. The equation of separating streamline which intersect the boundary is

y
x = \/v:‘ff' xf(y) + goj{go(s) +ee't gi(s)}ds =0, (4.21)

From Egs. (4.9) and (4.20), we see that

; (4.22)
% = —Z(U;{) : ]%(90’(0) +2e%g,'(0))

We note that x,, does not depend on ¢ whereas x; depends on ¢. The ratio

x—p fII(O)
P _(B-A .
X ( ) (90'(0) + geitg,'(0))

is same for all angles of incidence.
4.3  Solution procedure:

Numerical solution of (4.12), together with their boundary conditions in (4.13) has been
solved numerically by means of midpoint method with the Richardson extrapolation

enhancement.

For Eq. (4.12), the solution is in the form [73]

90(y) = (A-B)f" + C,f"A(y), (4.23)
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with

C; = f"(0)[go(0) + (B —a)f"(0)],

y s -2
Mw=wa({%fﬂmmOU%@)ds

Furthermore, the series solutions of equations (4.12)3 5 for small value of frequency Q

have been obtained [66]

7 = ) (@"9,0),
n=0

and

0, = ) (10)"0:().
n=0

In present problem, the real part of the solution is

91(y) = @ (y) — 2P, (y) + Q*Dy(y) ...,

6,(y) = 010(y) — 0201, (¥) + 2*014(¥) ...,

where
#pr_fqpo” — qpof’ +fq)6 =0
Ur Pnf
M p 143 1A !
T @, —Dpf +fPy=DPpy . n=123..
.uf pnf
CD()(O) =1, (DO(OO) =0
®,(0)=0, @,(0)=0 J
and
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1 knf " (pcp)nf , _
Prk, O t (oC, . (fOrn' = Osn-1)) = 0 , n=123.. (4.25)

@1n(0) =0, ®1n(oo) =0
where 0,,(y) = 6,(y) which can be obtained from (4.12), as [23]

Ly (Pr,00) — I (Pr, y)

Oo(y) = T (Pr ) , (4.26)
where
y kf (pcp)nf S
oy 1) = [ Bxp (i3 [ panan | ds
0 nf (Pcp)f 0
and

Ly (Pr,) = lim I,¢(Pr,y).
y—)OO

The systems (4.19, 4.20) have been solved numerically using midpoint method with the
Richardson extrapolation enhancement and the numerical integration for (4.18, 4.21) can be

executed easily with aid of any mathematical software as [78].
4.4  Results and Discussion:

Numerical evaluation of the model equations for SWCNT and MWCNT is performed for
three different base liquids namely engine oil, ethylene glycol and water. The solid volume
fraction ¢ of the nanoparticles represents up to what fraction of whole liquid solid
concentrations are incorporated. Keeping the fluid nature of base materials, it is kept less than
0.5. For water the value of the Prandtl number of water is kept constant at 6.2. The thermos-
physical properties of base fluids and the nanoparticles are shown in Table. 1.2. In order to
validate the numerical algorithm, the comparison of data is made for the particular case of Cu-
Water nanofluid as shown in Tables 4.1-4.2. These results are in excellent agreement with the
already reported results by [79]. It is convenient to mention that in the original Hamilton &
Crosser model, the empirical parameter § was set as § = 1. However, in the later studies by

Yu et al. [80] and Jiang et al. [81], it was found that § = 1.55 was more suitable for CNT's
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nanofluid. Therefore, in this study, 6 is set as 1.55 and the ratio of length to diameter (L/d) is
500.

Figs. 4.2 depict velocity profiles of nanofluid flow in the unsteady domain when, ¢ =
0.1,B—A=-A ¢=0.2,x=1,Q = 0.2. Generally; free stream velocity drives the flow
due to the plate oscillation. At the surface the nanofluid is zero and gradually it approaches the
free stream velocity as approaches infinity. It satisfies the boundary constraints which also
show validity of obtained results. It is observed that u(x, y,t) depicts the same oscillatory
behavior as it was in source. Moreover, it is noticed that the amplitude of the oscillation has
peak value at the wall and gradually it decreases as move away from the surface. Figs. 4.3-4.5

are plotted for stream lines in the case of impinging fluids at different angles when Z =1 Q=

0.5, = 0.2,t = m. It intersects the surface y = 0, at the point x, , which is the point of zero
velocity that is stagnation point. Its location depends on the value of B — A, base fluid and
time t. From Fig. 4.3, it can be observed that for positive value of B — A, the stagnation point
appears on the right side of the plate form origin whereas the opposite behavior can be seen
for negative value of B — A. Figs. 4.4 predict that for some constant number B — A = —2A,
the stagnation point location appears in the neighborhood of -2 in case of SWCNT-Water
nanofluid, whereas, it appears in the neighborhood of 0 for both SWCNT-Ethylene Glycol and
SWCNT-Engine Oil nanofluid. The same situation can be seen for the consideration of
MWCNT. Furthermore, the stagnation point has the oscillatory behavior w.r.t time t as seen in

Fig. 4.5. Isotherms are plotted in Figs. 4.6 when Z =1, Q= 0.5¢e=0.2. It can be seen that

Yamada and Ota model gives the highest temperature as compare to Hamilton & Crosser and
Xue model. Figs. 4.7(a-c) represents the skin friction coefficient for different base fluids and
time t. It can be observed that skin friction coefficient has sinusoidal variation with respect to
time and furthermore, engine oil overrated the skin friction coefficient as compared to water
and ethylene glycol. Figs. 4.8-4.10 are constructed for the comparison of different thermal
conductivity models. The comparison results show that Yamada model are definitely
overrated, while Hamilton & Crosser model and Xue model distinctly underestimate the
Nusselt number of CNT nanofluid. It is also seen that Nusselt number has sinusoidal variation
with respect to t. It is observed from Table. 4.4 that MWCNT produce higher skin friction
coefficient than SWCNT. Furthermore, Ethylene glycol produced highest skin friction
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coefficient followed by water while engine oil produced the lowest skin friction. Table. 4.5
shows the numerical value of a and it is observed that @ and skin friction has same behavior.
Tables. 4.5-4.8 shows the numerical value of Nusselt number for different base fluid and
nanoparticles. From these, it is noticed that SWCNT produced the highest value of Nusselt
number than MWCNT. Furthermore, ethylene glycol produced highest value of skin friction
as compared to that of values for water while engine oil produced the highest Nusselt number.
The thermal conductivity of Yamada model is overrated the Nusselt number as compared to

Xue and Hamilton & Crosser models.
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Fig. 4. 2. Time dependent flow of the velocity field u(y, t) at different locations from the
wall. The time period is t € [0, 107] for (a) SWCNT — Water. (b) MWCNT — Water.

(@) (b) (©)

Fig. 4. 3. streamlines pattern for SWCNT — Water nanofluid. (a) B — A = —6A, (b) B —
A=0,(c) B—A = 4A.
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Fig. 4. 4. Streamlines pattern for nanofluids when B — A = —2A. (a) SWCNT — Water,
(b) SWCNT — Engine 0il, (c) SWCNT — Ethyline Glycol (d) MWCNT — Water, (e)
MWCNT — Engine 0il, (f) MWCNT — Ethyline Glycol.
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Fig. 4. 5. Streamlines of SWCNT — Water nanofluidwhenB—A =0.(a)t =0,(b)t =
n/2,(c)t =m(d)t =3m/2.
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Fig. 4. 6. Variation of isotherms for different nanofluid models, (a) SWCNT, Hamilton &
Crosser model, (b) SWCNT, Xue model, (¢) SWCNT, Yamada & Otta model, (d) MWCNT,

Hamilton & Crossor model, () MWCNT, Xue model, (f) MWCNT, Yamada & Otta.
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Fig. 4. 7. Shows the skin friction coefficient vs time for different value of SWCNT —
Water nanofluid, (a) B—A =—-5A, (b)) B—A=A, (c) B— A =5A. Solid lines for
MWCNT and dotted lines for SWCNT
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Fig. 4. 8. Shows the Nusselt number vs time for, (a) Ethylene Glycol, (b) Engine Qil, when
Q = 0.5, = 0.2. SWCNT as nanoparticles.
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Fig. 4. 9. Comparison of different thermal conductivities models for CNT’s nanofluids. (a)
SWCNT-Water nanofluid, (b) MWCNT-Water nanofluid.
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Table. 4. 1. Validation of results for ' (0).

A (0
¢
[79] Present [79] Present
0.0 0.647900 0.647900 1.232587 1.232587
0.1 0.551523 0.551523 1.447977 1.447977
0.2 0.531918 0.531918 1.501345 1.501345
Table. 4. 2. Validation of results for g,’(0).
) B — A 90 (®)
[79] Present
-0.647900 1.406544 1.406544
0.0 0 0.607950 0.607950
0.647900 -0.190644 -0.190644
-0.551523 1.406544 1.406544
0.1 0 0.607949 0.607949
0.551523 -0.190644 -0.190644
-0.531918 1.406544 1.406544
0.2 0 0.607949 0.607949
0.531918 -0.190644 -0.190644
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Table. 4. 3. Skin friction variation when ¢ = 0.5, =0.5,t =0, B— A = —A

7 Water Ethylene Glycol Engine Oil
SWCNT MWCNT | SWCNT MWCNT | SWCNT MWCNT
0 1.840537 | 1.840537 | 1.840537 | 1.840537 | 1.840537 | 1.840537
0.002 | 1.842736 | 1.845192 1.84341 1.845608 | 1.841921 | 1.844688
0.004 | 1.844963 | 1.849873 1.84631 1.850707 | 1.843337 | 1.848865
0.006 | 1.847218 | 1.854583 | 1.849235 | 1.855836 | 1.844785 | 1.853069
0.008 | 1.849501 1.85932 1.852187 | 1.860995 | 1.846265 | 1.857299
0.01 | 1.851812 | 1.864085 | 1.855165 | 1.866183 | 1.847776 | 1.861555

Table. 4. 4 Numerical values of « when ¢ = 0.5, =0.5,t =0, B— A = —-A

Water Ethylene Glycol Engine Oil
v SWCNT MWCNT SWCNT MWCNT SWCNT MWCNT
0 0.647900 | 0.647900 | 0.647900 | 0.647900 | 0.647900 | 0.647900
0.002 | 0.648482 | 0.649131 0.64866 0.649241 | 0.648266 | 0.648998
0.004 | 0.649071 | 0.650368 | 0.649427 | 0.650588 | 0.648641 | 0.650102
0.006 | 0.649667 | 0.651611 | 0.650200 | 0.651942 | 0.649024 | 0.651212
0.008 | 0.65027 0.652861 | 0.650979 | 0.653302 | 0.649415 | 0.652328
0.01 | 0.65088 0.654116 | 0.651765 | 0.654669 | 0.649814 | 0.65345
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Table. 4. 5. Numerical values of Nusselt number when water is considered as a base fluid

ande =05 Q=05 t=0.

7 H-C model Xue model Yamadda model
SWCNT MWCNT SWCNT MWCNT SWCNT MWCNT
0 1127964 | 1.127964 | 1.127964 | 1.127964 | 1.127964 | 1.127964
0.002 | 1.135721 | 1.135432 | 1.151727 | 1.149193 | 1.498869 | 1.488021
0.004 | 1.143456 | 1.142877 | 1.175238 1.17021 1.906997 | 1.882497
0.006 | 1.151171 | 1.150301 | 1.198505 | 1.191022 | 2.302384 | 2.264089
0.008 | 1.158865 | 1.157701 1.22154 1.211636 | 2.681222 | 2.629316
0.01 | 1.166539 | 1.165081 1.24435 1.232059 | 3.044395 | 2.979113

Table. 4. 6. Numerical values of Nusselt number when Ethylene Glycol is considered as a

base fluid and € = 0.5,Q0 = 0.5,t = 0.

H-C model Xue model Yamada and Ota model
v SWCNT MWCNT SWCNT MWCNT SWCNT MWCNT
0 1.127964 1.127964 1.127964 1.127964 1.127964 1.127964
0.002 | 1.135754 1.13552 1.154279 1.151799 1.504277 1.499455
0.004 | 1.143524 1.143054 1.180285 1.175371 1.919267 1.908311
0.006 | 1.151275 | 1.150568 | 1.205996 | 1.198691 | 2.321604 | 2.304388
0.008 | 1.159007 1.158062 1.231424 1.221768 | 2.707324 2.68388
0.01 1.16672 1.165535 1.256583 1.244613 | 3.077293 | 3.047685
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Table. 4. 7. Numerical values of Nusselt number when Engine Oil is considered as a base fluid
ande =0.5 Q=05,t=0.

Table 4.7. Numerical values of Nusselt number when Engine Oil is considered as a base
fluidand e = 0.5, Q =0.5,t = 0.

Hamiliton & Crosser

Xue model Yamada and Ota model
7 model

SWCNT MWCNT | SWCNT MWCNT | SWCNT | MWCNT
0 1.127964 | 1.127964 | 1.127964 | 1.127964 | 1.127964 | 1.127964
0.002 | 1.136149 | 1.135874 | 1.156284 | 1.153761 | 1.506449 | 1.503488
0.004 | 1.144319 | 1.143767 | 1.184271 | 1.179273 | 1.924321 | 1.917567
0.006 | 1.152474 | 1.151644 | 1.211942 | 1.204512 | 2.329807 2.31913
0.008 | 1.160614 | 1.159506 | 1.239313 | 1.229491 | 2.718867 | 2.704247
0.01 | 1.168741 | 1.167353 | 1.2663985 | 1.254222 | 3.092342 | 3.073788

4.5 Conclusion

This chapter is based on the comparison of three different models of effective thermal
conductivity and density of nanofluid for three different base fluids namely; Ethylene Glycol,
Water and Engine Oil in the presence of carbon nanotubes. The mathematical modelling is
being done by using the fundamental governing laws of motion and heat transfer in the form
of partial differential equations. A detailed analysis is presented for the unsteadiness effect on
the velocity and temperature profiles by considering the oscillating boundary condition for the
wall velocity and wall temperature. The important finding of the current study can be

summarized as follows:

The isotherms pattern suggests that for both the cases of SWCNT and MWCNT the heat
penetration depth proposed by Hamilton & Crosser and Xue model is almost equal, but the
heat penetration appeared in isotherms by using the Yamada & Ota model is larger. When
comparison is made among the SWCNT and MWCNT for the same model the heat penetration
depth for the MWCNT is deeper. In the transient domain, the skin friction produced by
Ethylene Glycol Carbon-nanofluid is higher as compared to the water and Engine Oil. Engine
oil Carbon-nanofluid has the least skin friction coefficient. The Nusselt number prediction for
the CNT’s nanofluid is highest for Yamada & Ota model and was lowest for Hamilton &
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Crosser model. A big difference is observed between the values of Yamada model and
Hamilton & Crosser model. The skin friction behavior prediction is similar for all the three
models and it shows decreasing trend with the increase in nanotubes volumetric concentration.
Once again, the prediction by Yamada model is higher as compared to the other two models.
Overall the skin friction offered due to the presence of MWCNT is higher as compared to the
SWCNTSs. It can be observed that the stagnation point location appears in the neighborhood of
-2 in case of SWCNT-Water nanofluid, whereas, it appears in the neighborhood of 0 for both
SWCNT-Ethylene Glycol and SWCNT-Engine Oil nanofluid. The same situation can be seen
for the consideration of MWCNT. Furthermore, the stagnation point has the oscillatory

behavior w.r.t time t.
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Chapter #5

Unsteady stagnation point flow of viscous nanofluids over

the curved shrinking sheet: Existence of multiple solution

5.1 Introduction

This chapter examines possible existence of reverse flow situation in unsteady nanofluid
flow over a curved surface. Alumina (Al,03;) and Ethylene glycol are considered as a
nanoparticles and base fluid, respectively. Mathematical form of the problem is obtained by
using the fundamental form of governing equations for motion and heat transfer when solid
concentrations are added to an ordinary liquid. The complicated coupled unsteady system is
transformed into non-dimensional form by use relevant transformations. The solution of the
nonlinear problem is produced by use of numerical scheme available in the form of BVP4C
package in MATLAB. In the case of surface shrinking towards the surface a reverse flow
situation is also developed and requires careful selection of solution by examining the stability
of solution. Detailed stability analysis is done, and critical values are determined for possible
existence of dual solutions. Various parameters variation is analyzed by plotting graphs and
tables. The numerical values are also calculated for the reduced Nusselt number and skin
friction due to variation in values of different flow parameters.

+5

Boundary laver

-
e

s 1, (1) *

[2) Cunrature sheet. [B) Mane shrinking surface.

Fig. 5. 1. Geometry of the surfaces (a) Curved surface (b) Boundary layer shrinking surface.
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5.2  Problem description and governing equations:

The geometry of the problem is based on the assumption that the flow is generated due to
the motion of the curved surface of radius R and the nanofluid is considered above the curved
surface. The curvilinear coordinates © and § are chosen as it is shown in Fig. 5.1(a), the
variation in values of R defines the curvedness of surface, the large values of R depict the slight
curvedness in surface. The boundary layer formation in shrinking case is shown in Fig. 1(b).
However, the free stream velocity in 1(b) is %.(5)/1 — ct. The shrinking velocity of the
surface is assumed to be %, (5)/1 — ct along the § direction. Mass flux velocity is denoted by
v, (t) , where 7,,(t) < 0 is for the case of suction and v,,(t) > 0 is for the case of injection,
respectively. Under the boundary layer assumption, the fundamental governing laws for
motion and thermodynamics are given by, [57],

ou 9
UL O (i RVD) = 5.1
=t 5= ((+R)D) =0 (5.1)
1 dp u?
— = 5.2
1 R odp aza+ 1 ou i ou _ou Ru ou
pnyr+Ros W \o@ TF+RoF G+RZ) o oF 7+R0s
(5.3)
uv
T+ R
62T+ 1 or\ 0T _9dT Ru 6T_0 (5.4)
“nf\o2 "F+Ror) ot "o T+RO5 '

According to the physical model the mathematical form of boundary constraints is

t<0:u=0 v=0, T=T, foranyrand3

_ av u,,(S) bs
_ _ f _ w —
t=>0:v= t) = — —S, u= — = -, T=T, atr=0
w(®) 1—ct 1—ct 1-ct w (5.5)
u,(s as u
u— 6(7— -0, T->T,asr »> ©

1—ct 1—ct 95
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where ¢ > 0 for an accelerated sheet and ¢ < 0 for a decelerated sheet, respectively. S is the
constant wall mass transfer parameter, with S > 0 for suction and S < 0 for injection,

respectively.
5.2.1 Steady-state case

Following similarity variables are used to non-dimensionalize the problem, where the
primes symbol represents the derivative w.r.t to non-dimensional variable r, the use of

transformation given below produce the non-dimensional form Egs. (5.1)—(5.5).

_ u, , - R Ufl_L U, _
u_l—ct_f(r)'v__F+R a-s P 7= [va-mos <o G5

5= 2 ), 06) =
(1— szr O e )
Pr Op 1,
Pnf ar r+Kf (5.7)
'D_f 2K _ ﬂ( " "o_ 1 I> _ 12 "
pnfr+Kp_vf ! r+Kf (r+K)2f r+Kf ++r+Kff
(5.8)
K ! Q(’ r II)
Torre/ oy
L Fny (pcp)f<" 9)+ K o _ale =0 5.9
Pr ks (pCy), . TK +x S0 = (5.9)

where K =R \/a/[vf(l — cf)] is the unsteady curvature parameter. Mukhopadhyay and

Andersson [82] assumed R in terms of characteristic radius of curved surface i.e. R =
RoV1 — ct, where R, is the characteristic radius of the curvature sheet. Thus, K = R./a/vf is
the constant dimensionless curvature parameter and Q = c/a, Pr = vs/as, p = b/a are the

unsteadiness parameter, Prandtl number and stretching/shrinking parameter, respectively, with

B < 0 forshrinking and £ > 0 indicate stretching. In this chapter, we assume only decelerating
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shrinking sheet with O < 0 and 8 < 0. Also, the constants relating to the properties of the

nanofluids are given in Table 1.1-1.2.

Simultaneously solving Egs. 5.7-5.8 to eliminate the pressure term

. 2 1 ’I 1 !
A= ® ~er ) s
vf K mr__ grett K "o __ 2
+U—nf[—r+ R U =1+ e (17 =) (5.10)

K ' Q r Q .
_(r+K)3ff _r+K(f,+Ef”)_§(3f”+rf )]:0

r
— ”+—0’)+—f9’—n—9’=0 (5.11)
Pr k¢ (pCp)nf( r+K r+K 2
and corresponding boundary constraints are
fO =S 7'(@=p 60 =1
(5.12)
f'r)=1, f"(r)y=0, 8(r)=0asr - o
Eqg. (5.8) can be used to calculate the pressure
-1
— ’D_f 2K vﬂ( " 1 "no_ 1 I) _ K 12
p_<pnfr+K> lvf f +r+Kf (r+K)2f r+Kf
(5.13)
K " K ’ .Q,( 1 r II)
+r+Kff+(r+K)2ff f+2f

In flow along the surface the important parameters to determine the flow and heat transfer
behavior are the skin friction coefficient Cr and the local Nusselt’s number Nu,,. The shear
stress at the curved surface is given by t,, and heat flux through curved surface is denoted by
q,, and are defined below

C == , Nu, = ————
e MR ou
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aT
qw = _knfﬁ L (5.15)

_ (611 Uu )
w= M\ T F AR

=0
Using transformation in Egs. (5.6), (5.14) and (5.15) takes the following form
unf( i B) knf i
Cr=— 0)—=], Nu=--—=6'(0) 5.16
i U O kf (5.16)
where C; = (1 — ¢ £)%?(Res)Y? C¢,, and Nu = (1 — ¢ £)*2(Res)™*/? Nuy, are the
reduced skin friction coefficient and reduced local Nusselt number. Reg = #, (S) §/v¢ is the

localized Reynolds number.

If the curvature parameter K — oo & Q = 0, the case of plane surface flow is obtained,

and the governing equations takes the following form

Mﬂp_ff”’—f’2+ff”+1:0
Hr Pnf

5.17)
—_—— "+ f6'=0
Pr ks (pCp)nf )

fO =5, O =, 00) =1
ffmM =1, 6(n)=0asr »

(5.18)

5.3 Stability analysis

The Weidman et al. [23] and Rosca & Pop [82] showed the possible existence of multiple
solutions. Stability analysis needs to be carried out to determine which one of them are stable
and for what range of parameters. A dimensionless time variable 7 is introduced to model the

problem for stability analysis. Non-dimensional parameters in terms of t are given below
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— = )
_ U _ R Vru,
=1 0D =g [T/
e S (5.19)
—_—7, <0
r Uf(l—cagr ¢
=2
_ pfu T—Too —
p=( jZp(rt) 0(r,7) = T T T=CtJ

so that Egs. (5.3,5.5) can be written as

64f+ 2 0%f 1 0% f 1 of
or* r+Kord3 (r+K)?dr? (r+K)3or

v [ K (.0°f ofd%f
Ve |r + K\ 073 ~ or ar?
K 92f  (Of K of
+(r+K)2< 52 (5r) )‘(r+1<)3f5 (5:20)
QO (of rof\ af 0*f 9%
r+K<6r+26r2> 2(36r2+rﬁ
_Q-cto*f f | _
r+ K 0rot (1_Cf)ar261 B
1 kyp (PCp), 0%, 1 96\ K 96 708
Pr k¢ (pCp)nf or? r+Kor) r+K or ~20r (5.21)
00
—(1—ct_)—=0
of (o,
f0,7) =5, f( T)—ﬁ 6(0,7) =1

(5.22)

of (r,7) 0% f(r,1)
ar =1, T—O, H(T‘,T)—OGST‘—)OO

In order to examine the stability of the solution the steady flow solutions are f(r) = f,(r)
and 6(r) = 6,(r) satisfying the boundary-value problem (5.10-5.12), the complete solution

can be written as

f(r,0) = fo(r) + e *F(r,7) (5.23)

0(r,t) = 0y(r) + e 0,(r, 1) (5.24)
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where a is an unknown eigenvalue parameter. the unsteady part of solution F(r, t) and 6, (r, )
are relatively small compared to f, (r) and 6, (). using Egs. (5.23-5.24) into Egs. (5.20-5.22),

the linearized form of the equations is obtained as follows

84F+ 2 0°F 1 0°F 1 oF
or* r+Kor® (r+K)20r? (r+K)3or

N Uf K 63 62F ”,
Unfr+Kfoa3 anZ f fO

0°F oF

K 11
+(r+K)2<f06r2 Zf"a o F)

K oF Q (0F ra’F
‘—<r+1<)3(f05+f0F)‘T+K<E+§a7>
_9(302F+ra3F>+(1—cE)< 62F>
2\ o0r? ar3 n+K ar  orot
+(1—ct_)<aaz—F— o°F >l=0

ar? 0dr?ot

1 ks (PG), (0%, L1 oo K (f
Pr kf (pCp)nf or?  r+K or T‘+K 0

r 0o, 20,
—Qza—+(1—ct_)<a01—¥)—0

0F(0,7) _
=0 8,(0,7) =1

(5.25)

o ) (5.26)

F(0,7) =0,

(5.27)

oF (r,7) . 0%F(r, 1)

5 =0, 5,2 =0, 6,(r,1)=0asr > ©
r r

By putting T = 0 the steady state f, and 8, are achieved, F = F,(r) and 6; = 0(r)
determines the growth or decay of the solution for examining the stability of solution (5.23-
5.24).
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Fiv+ 2 F.'"— 1 F. — 1 F."
0 r+K° (r+K)2° (r+K)3°

vf K 1244 rn n s
Uy r+K(f0FO —foFo" — fo'Fo' + fo'"'Fo)

(T‘ + K)z (fOFOH ZfO’FO’ + fOHFo) (528)

K FI IF Q FI rFII
—m(fo o +fo 0)_7‘+—K( oty 0)

a
— —(3F5’ +rF)") + — KFO + aFO"] =0

1 knf (PCp)f ( " 1 G)') + K
Pr ks (pcp)nf +K r+K
+a0 =0
F,(0) =0, F,’(0) =0, 6(0) =1

!/ !/ _ I !
(fo®" + Fy6,") QZ 0 (5.29)

(5.30)
Fo(r)=0, Fy(r)=0, O(r)=0asr > o

It should be stated that for specific values of S,K,Q and g, the stability of the steady
solution f,,(r) and 8, (r) is analyzed by using the smallest of the eigenvalues . According to
Rosca [83], the range of possible eigenvalues can be obtained by relaxing the condition on
Fo(r) to Fy(r) = 0 as r — oo and an additional condition F;,'(0) = 1 for solving Eq. (5.28).

Infinite number of eigenvalues a; < a, < - < a,, < -+ are obtained when satisfying the

boundary condition Fy (r) = 0 as r — oo.

It is found that for shrinking curved surface case § < 0, offers dual solutions when a; >
0 and T — oo (steady-state solution). In this case the upper solution branch is found to be stable
and physically possible. However, a; < 0 causes disturbance in the solution and the lower
branch of solution shows instability as T — oo. This solution is not found to be stable and hence

not possible in the current flow situation.
5.4 Results and discussion

The system of governing equations for the nanofluid flow over a curved
stretching/shrinking surface have been solved by implementing bvp4c package available in
MATLAB for a range of parameter values involved in the mathematical equations. This

package is based on the finite difference scheme by implementing three-stage Lobatto Illa
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scheme having fourth-order accuracy. The error control is based on the residual error appearing
during continuous solution. The tolerance level is set to the order of 10~7. A good initial guess
IS important to start the process because of the existence of dual solution. The guess is chosen
in such a way that it should satisfy the boundary constraints given in Eq. (5.12) and show
asymptotically convergent behavior. Any reasonable initial guess can be taken for the upper
solution branch because the scheme is ultimately producing the convergent solution. However,
any guess is not able to produce the convergent solution for the case of f < 0. In order to
avoid this problem a suitable set of parameter values are chosen by trial approach to choose
suitable guess for obtaining the second solution. This solution is taken as an initial guess to
produce solution for different variations in parameter values. The suitable values of boundary
layer region are taken to make sure that the infinity condition is satisfied at faraway from
surface. Here r = r,, = 20 to produce the upper solution branch and r = 1, is taken to be
in the range of 40 —80 to produce lower solution branch. The solution is verified against all the
boundary constraints and tolerance level of 10~7. The validation of code is done by comparing
the results for the reduced case by Nazar et al. [84] in Table 5.2, which shows and excellent

agreement.

The effects of the important parameters £, ¢, S and (Q are presented in the form of graphs
against the dimensionless velocity, shear stress profiles and temperature profiles see Figs. 5.2—
5.5. It can be clearly seen that for the case of lower branch solution the boundary layer
thickness is larger as compared to the one for upper branch solution. It is also observed that
the wall shear stress shows increasing behavior against the increasing values of S when upper
branch solution is considered. However, a different behavior is observed for g (< 0) (Fig.
5.2(a)). (Fig. 5.2(b),5.3(b),5.4(b)) show the behavior for the lower branch solution. Finally,
Figs. 5.5 display the temperature profiles for decelerating shrinking sheet with Q < 0 and
mass transfer parameter S. The thermal boundary layer has decreasing trend against both the
parameters. All the conditions at the surface are satisfied as well as the asymptotically
converging behavior is observed for far field boundary condition. The terms upper (first) and
lower (second) branch solutions is being taken from the figures (5.7-5.13) It was expected that
the upper solution branch will be stable as compared with the lower solution branch. From

Figs 5.6-5.8 It is seen that there exists more than one solution for different range of S values.
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Two solutions exist for § > B, , unique solution for § = B, and no solution exists for § < g,
the subscript c represent the critical value. The critical point of 8 changes with the variation in

|©2], ¢ and S. Fig. 5.9 shows the variation of C; with respect to Q for several values of S when

K = 200,88 = —0.5,¢9 = 0.2. It can be observed from this Fig that there are two solutions
when Q > Q, one solution when Q = Q. and no solutions when Q < Q.. Its critical point
value also increases with increase in S. The suction parameter S plays an important role in

delaying the separation near the surface. The variation of Cr with respect to K for several values

of £ is shown in Fig. 5.10. It is observed from this figure that dual solutions will exist for
different ranges of curvature parameter as well. Once again two solutions appear when K >
K. , one solution for K = K. and no solutions for K < K_. The critical point value of
curvature also changes with change in |S]|. Figs 5.11-5.13 show the dual solution and critical
value of Nusselt number for range of parameter values involved in equation. It is found that
the consideration of upper branch solution results in higher value of Nusselt number as
compared to that of produced by using lower branch of solution. Further it is also noticed that
the suction parameter is causing the wideness in the range of Nusselt number values for which
the solution exists. At the end of graphical section streamlines are plotted to analyze the flow
pattern if the upper or lower branch solutions are considered. The streamline pattern suggests
for the upper branch (stable) solution a normal stagnation point flow was occurring (Fig. 5.14a
(1-3)). While streamlines suggest the situation of reverse flow when the lower branch solution
is considered (Fig. 5.14b (1-3)). The stream lines are clearly showing that flow region is
divided into two sub-regions one where flow is like a normal stagnation point flow and other
showing the reverse flow region. The isotherms for the nanofluid flow over curved surface are
shown in Fig.5.15 for a range of different parameters. Finally, a tabular form of eigen values
(for selected values of S and ) are given in Table (5.2-5.3) for which stability analysis is
performed. It is noticed that for the case of upper branch solution all the smallest eigen values
are positive while they are negative for the lower branch solution. This concludes that the upper

branch solution is more stable compared to the lower branch solution.
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14. Stream lines pateren for several values of. f when S = 2,K = 50,9 = 0.2,Q =
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(b)

Fig. 5. 15. Isotherms for several values of. K when S =2, =-15¢=0.2,0=
—2,Pr = 6.2.
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Table. 5. 1. Numerical Values of C; with K = 0,5 =0and ¢ = 0 (regular fluid),
Results in parenthesis () are the second (lower branch) solutions.

8 o
Present Nazar et al [84]
0.2 1.37389 -
-0.25 1.40224 1.40224
0.3 1.42758 -
-0.35 1.44975 -
0.4 1.46861 -
-0.45 1.48399 .
0.5 1.49567 1.49567
-0.55 1.50344 -
-0.6 1.50703 -
0.7 1.50036 -
-0.75 1.4893 1.48930
-0.8 1.47239 -
-0.9 1.41808 -
-0.95 1.3786 -
1 1.32882 1.32882
-1.05 1.26623 -
1.18668 1.18668
o (0.049229) (0.04920)
1.08223 1.08223
-1.15
(0.116702) (0.116702)
0.932477 0.93247
2 (0.23365) (0.23363)




Table. 5. 2. Comparison of eigenvalues « for different S when S = 0,¢ = 0.0,K = o0,Q = 0.

Upper branch solution Lower branch solution
d [84] Present [84] Present

-1 1.3690 1.369044 - -

-1.1 1.0463 1.046348 —0.8437 -0.843697
-1.2 0.5780 0.577960 —0.5173 -0.512109
-1.24 0.2121 0.212053 -0.2036 -0.203639
-1.245 0.1030 0.102975 -0.1010 -0.100958
-1.246 0.0622 0.062157 —0.0614 -0.061418

Table. 5. 3. Smallest eigenvalues « at selected values of Sand g when ¢ = 0.2, K = 200,Q =
—2.

S B Upper solution branch Lower solution branch
0.0 1.492433 -
-0.1 1.181180 -0.180752
1.5
-0.2 1.037085 -0.114800
-0.3 0.947922 -0.046200
0.0 2.171598 -0.481961
-0.1 1.514339 -0.46323
2.0
-0.2 1.313345 -0.436906
-03 1.198322 -0.404290
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5.5 Conclusion
A theoretical study of unsteady viscous nanofluid flow over a curved shrinking surface
with mass suction has been analyzed. Alumina (Al,05) and Ethylene glycol are considered as
nanoparticles and base fluids, respectively. The corresponding flow equations are reduced to a
system of nonlinear coupled ordinary differential equations which contain the flow parameters,
curvature parameter, mass suction parameter, unsteadiness parameter, nanoparticles volume
fraction, shrinking parameters and Prandtl number Pr. The reduced system of ODE’s is solved
numerically by using bvp4c scheme in MATLAB. The numerical results are obtained for the
physical parameters the reduced skin friction and the reduced local Nusselt number against
different values of flow parameters. From this study we get the following remarks:
1. Dual solution exists for shrinking curved surface.
2. The critical values S, of shrinking parameter (8) depends upon ¢, K, Q and S.
3. The mass suction parameter S decrease the range of shrinking parameter, 3, and
unsteadiness parameter, £, for which solution exist.
4.  The range of solution interval for curvature parameter K found compatible with
lesser values of shrinking parameter (Q).
5. The critical point |8.| decrease for nanoparticle volume friction (¢).
6.  The streamline pattern for the upper branch (stable) solutions is similar to normal
stagnation point flow.
7. Reversed flow is appearing in the case of the lower branch solutions.
8.  The upper branch solutions have positive eigenvalue while all the lower branch

solutions have negative eigenvalue.
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9. The upper branch solution is physically realizable (stable) while the lower branch is not

physically realizable (unstable).
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Chapter #6

Analysis of unsteady non-axisymmetric Homann stagnation
point flow of nanofluid and possible existence of multiple

solutions

6.1 Introduction

This chapter examines the unsteady 3D non-axisymmetric Homann flow of an electrically
conducting nanofluids in the presence of buoyancy forces. We consider the uniform external
magnetic field, By, by neglecting induced magnetic field and examines the three possible
directions of By which coincides with the direction of axes. A similarity solution is derived
which involve the dimensionless parameters ¢, M, w,y and A. We have treated the case for
forced convection when A = 0 which arise from the singularity y = +1. We found that, for
large y and A, the leading terms of the solutions are independent of M and w, and the effects
of ¢ in that solutions are negligible. Numerical results are found for illustrative values of all

the flow parameters by using bvp4c scheme in MATLAB.
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6.2 Problem formulation
Consider the unsteady MHD asymmetric Homan stagnation point flow of a homogeneous,

electrically conducting and incompressible inviscid fluid over a flat vertical wall. It is assumed

that the external flow is

_ 1
(ax + by), v(t,%,y) = 1——cf(bf + ay),

_ 1
ﬂ(t;x;Y) = 1 _ CE
(6.1)

o —2az
wt2) = 1—ct

¢ > 0 represent an accelerated flow and ¢ < 0 a decelerated flow, and, y — axis measured in
the gravity direction and Z — axis measured in the normal direction to the Xy — plane.

The horizontal velocities % and ¥ in system (1) can be written as in matrix form
u 1 b (f)
= - _ 6.2
(17) 1—ct (b a) y (6.2)

To obtain the principal axis of the system, we diagonalized the coefficient matrix in (6.2)

by using the results from linear algebra. The velocity components (1?,17’) in the direction of

principal axes (x', y') is then given by

(IZ) - 1—1cf (/})1 10) (;:) (6.3)

v

Rotating the coordinates (%, ¥, Z) to the principal axes (x',y’, z'), we get the outer potential

flow

— o 1 — o __ _ 1 —
(t! ;Y)—l_cf(CH‘b)X, (t,x, )_1_Cf(a_b)y'
(6.4)

It is difficult to find the asymptotic behavior of solutions by considering the outer flow

(6.1). For this purpose, we preferred to formulate the problem along the principal axes, without

loss of generality, and after dropping the prime notation in (6.4), we arrive at
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L (14DF FEET) = e (- 7)F, BED = s
1—ct v vbnY) =T vy, WhE =TT

u(t,x,y) = (5)

where y = b/a represent the ratio of shear-to-strain rate
6.2.1 The flow of an inviscid fluid

The equations overseeing such a flow within the existence of the gravity forces are:
av _ 1
Po (—_+ (V-V)V) = —-Vp+—(VxB) X B+ pygo
at Ke
1 6.6
'u—(VXB)=0'e(E+V><B) (6.6)

e
V:-Vv=0, VXE=0, V-E=0, V-B=0 }

where g, is the gravity acceleration.

We suppose that a uniform external magnetic field B is impressed and that the electric field
is absent. Further we assume that the magnetic Reynolds number is very small, so that the
induced magnetic field is negligible in comparison with the imposed field. Then

(VX B) X B = 0,u,(VXxBg) X By

In the results, we will use the modified pressure p* given by p* = p + pogoy. As in [20]
one can prove that the steady three-dimensional stagnation point flow is possible if, and only
if, By is parallel to one of the axes.

If By = By, we deduce

. d r_n_ . VZ _ _
Do — P =po(5fu<?X+7)+po%ﬁ((1—y)y2—222)+

(6.7)
1 _ _
0oy B0’ (1 —1)y* —22%).
If By = Byj, we obtain
. O 0 . VZ _ _
Po— " = po (55 07 + %) +p0 5 ey (1L + 172 — 222) + 65

a

0o > =By ((1 + y)x* - 22%).

If By = Byk, we arrive at
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. d .  V
Po—P =po(§fw62+ 2)+;—(1 (A +NF+ 1 -1y*) +
(6.9)

05— =Bo*((1 + )% + (1 - )7?).

From Egs. (6.7-6.9), we notice that the modified pressure along the wall Z = 0 takes its
maximum value in the stagnation point.
6.2.2 Newtonian nanofluids: analysis of the flow

In order to study the electrically conducting Newtonian nanofluids we neglect the induced
magnetic and apply the Boussinesq approximation. Consider that oxy plane is vertical (oy

vertical upward), then the flow equations can be written as

puf (3 + (V-VIV) = =5 + 1t/ V2V + 0, (V X Bo) X Bo — (pB)nr (T — To)go)
oT T = 27
(pCp) .y (Gi + (V- OIT) = ke V2T L (6.10)
#ie(VxB)=oe(E+V><B)
V-V=0, VXE=0, V-E=0, V-B=20 J

As for as we concerned, the condition at boundary (wall) for V and T, we propose:

27 47, (6.11)

Vl|z=0 =0, le‘:O = Tw(t_,f’) = 1_ci

where D is constant. If the constant D is negative (positive), then the wall Z = 0 is colder
(hotter) than the surroundings at ¥ > 0, while it is hotter (colder) than the surroundings at y <
0.

Assume the steady state behavior of solutions

a — a
Uu=7_- —(1 +y)xf'(2), v=1— —(1 -yg' (2,

(6.12)
~[A+Nf@+ QA -NG@]T - Ty = 2=T(2).

w =
1-ct

where £(2), §(2), T(2) are sufficiently regular unknown and prime represents derivative with

respect to z.

124



From Egs. (6.7-6.9), we found that it is more suitable from a physical point of view by
applying the external magnetic field normal to the wall. Therefore, we begin with By = Bk
so that Eq. (6.10), become

525

2

+(1fct-)2<1+y>2x<f> ~ony (7=

—— L+ Ef")

(6.13)

2

- (1:1—65)2 A +y2xf"|A+nf + A -]

O-nf 2 a =
—B -(1
+Pnf 0 1—ct( +V)xf}

ap ca a )5
a}—/ pnf (1 _ CE)Z Y)yg

2

a 2 2
ta—co? (1 -y)*y(g") _Unf(

L T—1-17 g")

1-
(6.14)

a2

~ G e [+ nf + - pg]

O-nf 2 D:)_/
—B 1-— _T
+Pnf 0 T ( Y)yg' +.8nf1 go}
7

b |G+ + =g

2

* (1_a—ct—)z [ +nf+@-nglla+nf (6.15)

+(1- V)g’] +Uns ( ilcf [(1 )+ (1 - )/)g”])}

1

Further the conditions (11) provides

f(0)=0,f(0)=0,5'(0) =0, g(0)=0,T(0) = 1. (6.16a)
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Furthermore, as usual, when studying the stagnation point flow for viscous nanofluids, we
presume that the free stream flow has the similar behavior as for an inviscid fluid flow at the
temperature T, whose velocity is specified by (6.5). Thus, to solve (6.16a) we add the

subsequent conditions
fl=1 g@=1 T =0 as Z - oo, (6.16b)
To find the pressure field we integrate (6.15) and suppose that, the pressure p away from

the surface has the similar behavior as for an inviscid fluid (see (6.5)) and same modified

pressure as in section (6.2.1). We then obtain the modified pressure field as

p" = Do pnf{(l D2[(1+V)ffdz+(1—y)fgdzl

2

+ ﬁ [A+y)f+Q- V)§]2+Unf (1

_act-[(1+y)f’

+1-7g])

2

AN+ gz + 77 617

ca
¥ l(1 — o2

Onf  , @ 2
+2p _(1+9)|=
Py 0 1—ct( Y)l >

2

ca__ . a L
+[m( —Y)+m( —-v)

B

where p* is modified pressure and p,is stagnation pressure. In consideration of (6.17) we

2

LI
Pnf 1

obtain a system of ordinary differential equations
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1—c

fr+Frla+nf+a-ngl-a+n | -1]

(6.18)
o F Onf Pr o 02 0
ol = 1] = 22w - 1] =0
1—ct - _
Unf g"+3'lA+nf+A-ygl-a-nI@H)*-1]
; (6.19)
—olg —11- 22 2y — )+ 2L —par =,
wlg' —1] o pnfM [g" —1] + B, 1-v)
1 ks (pCp)f (1 —ctvy _
T" —wlT —(1—-y)3'T
Pr ke (pC ) a (6.20)
+[A+nf+A-pg|T" =0,
where
(A-cDoB,® . DBrge(1—ch ¢ (pCy) vy
Mz—a—pf,/l— az(l—y)z , CU—E, Pr = kf
__ Boo __ Do
htliee s Ta-a

For the current study we assumed a decelerated flow with w < 0. Now it is suitable to write

the flow equations in dimensionless form. For this, we use

B a _[ |vs(1 —ct)
f(2) = /Uf(l_ct-)f / —z,
B a [ v —=ct)
g(z) = /Uf(l—ct_)g / — 7z, (6.21)

Thus, Egs. (6.18-6.20) transformed to
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=L prIGIH A0 — (1 4+ [ = 1] = lf ~ 1]

¥
(6.22)
0.
—pr—fMZ[f’ -1] =0,
Of Pnr
V.
—Lg" + g A — (1 -)[(g)? ~ 1] - wlg' - 1]
¥
(6.23)

0.
_I P parg 1+ B (e =0,
O Pnf Br

Pr kf (pCp)nf

0" —wb—-—A-y)go0+[A+y)f+(1—-y)glé'=0. (6.24)

The boundary conditions in dimensionless form become

£(0)=0,f®=0,g(0) =0,g'(0) = 0,0(0) = 1,}

6.25
f@=1, g@=1,00)=0 as z-w. %

The solution can be easily obtained for the other two cases of MHD by the same calculation
procedure. Once we get the solutions then the two-dimensional boundary-layer displacement

thickness & and &5 can be computed from the relation [85]

a ) , )
/vf(l——ct_)(gfzjo [1-f'(2)]dz=4,
! o (6.26)

a , _

Uf(].——CE)Sy=JO [1—g (Z)]dZ—B.J

We can find the three-dimensional boundary-layer displacement thickness &; at the

stagnation point [9], from the following expression

a _(A+pA+(Q-y)B
’vf(l —D 8, = 5 = C. (6.27)

The main quantities of attention are the values of f'(0), g’ (0) and 8'(0) which evaluate

the skin friction coefficient in x and y direction and the surface temperature gradient. Our aim
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is to see, how the values of f"(0),g''(0),68'(0),A,B and C vary in term of the flow

parameters? We have taken the fixed Prandtl number (Pr = 6.2) in the present computation.

6.3 Results

The boundary value problem given by (6.22-6.25) have been solved numerically using
bvp4c in MATLAB [20]. We start with the case of forced convection by considering 4 = 0,
because of the singularity in Eq. (6.23) at y = 1, to find the solutions in the neighborhood of
y = 1. We have considered water as a base fluid and Cupper (Cu) as a nanoparticle whereas

the thermophysical properties of base fluid and nanoparticles are given in Table 1.1-1.2.
6.3.1 Forced convection, A =0

To find the solutions to (6.22-6.25) for A = 0, which arise from singularities y = +1, we
consider y = 1 — & and look for a solution valid for small § by writing g = §71G. Eqgs (6.22-
6.23) and (6.25) becomes

%ff”’ F 1@ = 8 +6] - @2 -8 —1] - wlf — 1]
(6.28)
- g - =0,
Of Pnf
l;ifc;"' + G2+ 8)f + G - [(6)? = 58] — w[G' — 5]
f
(6.29)
_I P g — 8] = o,
Of Pnf
f(0)=0,f© =0,6(0)=0,6'(0) = 0,}
f@=1 6'P=5 as z— oo, (6.30)

Comparing the like powers of 6 in Egs. (6.28) to (6.30), the leading terms f, and G,
satisfying
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2 fy £y 12y + Gol = 2[R = 1] = wlfy’ — 1]

Uy
(6.31)
0.
- LI y2ffy — 1] = o,
Of Pnf
U 1244 rn 14 ! O— p !
LfGo + Go"'[2fo + Go] — (Go")? — wGy —Lf_szGo =0, (6.32)
Uy Of Pny
1(0) ’
0) =0, =0,G,(0) =0,G,(0) =0,
f0(0) fo 0(0) 0(0) (6.33)

£P=1 62 =0 as z - o,

Now suppose Gy (0) = —a, for some constant a, > 0; then we can find G, = a,G, to

obtain
Unf " " ~ N2 1]
?fo + 0" [2fo + aoGol — 2[(fo)* — 1] — w([fp" — 1]
(6.34)
o
-2 P pepgy -1 =,
Of Pnf
U ~ Il ~ Il ~ ~ I ~ I o— p ~ I
LfGo +Go"'[2fo + agGol — ag(Go")? — wGy —Lf—fMZGo =0, (6.35)
Ur Of Pny
f0(0) =0,£3(0) = 0,G,(0) =0,G¢(0) =0,  G¢'(0) =-1,
@) _ 4 F@ _ (6.36)
fo 7=1 G, =0 as z — o,

The problem given by (6.34)-(6.36) is an eigenvalue problem for a,. Foro = w = M = 0,
Merkin el. al [21] found that a, = 1.78068 and f;'(0) = 1.66588. We are interested the
solution of Egs. (6.34) to (6.36) for different ¢, w, and M. Generally, we can write

') =£'0+-, g"(0)=-al-y)"++ asy-1l (637
We now exploit the symmetry, given in [19], of y - —y,g = f and f — g to extand this
analysis to show that there is also singularity as y — —1. Taking the same procedure, we find
f'(0)=—a,(1—=y) 1+, g"(0) =G+ asy » —1. (6.38)

To generate further numerical solutions close to y = +1 we use the integration of
expression in (6.37) and (6.38).
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Fig. 6. 1. Forced convection: Plots (a) f”(0) and (b) g’ (0) against y for different w
obtained from the numerical integration of (6.34)-(6.36).

The singular nature of f and g are clearly seen in Fig 6.1. The asymptotes of f"(0) and
(b) g"”(0) against large |y| are in the neighborhoods (—0.2,0.2) when w = —0.5 and
(—0.3,0.3) when w = —1.5. It is seen that w influence the solution behavior but there is no

longer variation in the solutions against ¢ and M, so we cannot discuss it.
6.3.2 Numerical results

In this section we have discussed the solution to Egs. (6.22)-(6.25) against different flow
parameters for representative values of y > 1 and y < 1 nothing for y = 1 that the solution is
independent of A as discussed in section 6.3.1. The important highlight of these consequences
is the existence of critical values A, of 4 which separate the solution branches by making
saddle-node at 1 = A.. These critical values depend on y, ¢, w and M. The upper branch
solutions of g"' (0), as seen in Fig 6.2(b), continues to large 1. Also, " (0) and —8'(0) increase
for positive A. It is found that the critical point |A.| rapidly increase its value when y enters in
the neighbouhood of 1. To increase the value of decceleration the flow physical parameters
f£"(0),g"(0) and —6'(0) show its decreasing behaviour as we expect. The critical values A,
also depend on the unsteadiness parameter w and found that the critical point changes from

opposing direction (4 < 0) to assisting direction (A > 0) if we increse the rate of decceleration
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(w), as shown in Fig 6.5. Fig 6.7 exhibits the two dimensional displacement thickness A and
B and the three dimensional displacement thickness C over the range —10 <y < 10. The
thickness A and B are always positive and achive the maximum values A = 0999 and B~0.85
at yma~ — 2.47 and y,,5~4.5, respectively. Beyond these points it appear that A and B

decrease monotonically with increasing |y/|.
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Fig. 6. 2. Plots (a) f"'(0), (b) g" (0) and (c) —8'(0) against A for different y obtained from
the numerical integration of (6.22)-(6.25).
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Fig. 6. 3. Critical values:.a plot of A, against y.
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Fig. 6. 4. Plots (a) f"'(0), (b) g''(0) and —6'(0) against A for different w obtained from
the numerical integration of (6.22)-(6.25).
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Fig. 6. 6. Plots (a) f"'(0), (b) g"'(0) and —6'(0) against A for different ¢ obtained from
the numerical integration of (6.22)-(6.25).
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Fig. 6. 7. Variation of the displacement thickness A, B and C with y when ¢ = 0.2,4 =
—2,w = —0.5,M = 1077, obtained from (6.26)-(6.27).
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6.3.3 Free convection limit, 4 large
We assume that y # 1 and to obtain a solution for 1 > 1 we put [21]

f =240, g =2V, n = 1Y%y (6.39)
Egs. (6.22)-(6.25) becomes

o 4 &"[(1+ )P+ (1—P)W] — (1 + P)[(@)7 — 171]

v
f
(6.40)
P Pt ) L AL Ay p e VEN sy I
O Pns
(V)
e A (RN OL R C LR RO (C DL
f
g,
— wfarayr 301 - 2L e fasag o] (6.41)
O Pns
LTS
Br
1 ky, (PCp)
L " — wa 20— (1—-y)g' 0+ [(L+ 1)+ (1—y)glo' =0 (6.42)
Pr ke (pCy),.

®(0) = 0,®'(0) = 0,¥(0) = 0,%'(0) = 0,0(0) = 1 } (6.43)
d'(m) =272, W) =272 6(n) =0 as n - o

where prime denotes differentiation with respect to .

An expansion in power of 171/2 (see [21]) we obtain the leading order terms

l;LchOH/ + (1 =)W, =0, (6.44)
f
Unf " " ~n2 | Bnf _
?q’o + (1 -pPP¥" — 1 -py)(F)* + B, (1-y)6 =0, (6.45)
1 knf (p p)f "o _ , _ ;L
Py g, 00~ (BT 00+ (1= 1) =0, (6.46)
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©o(0) = 0,2¢'(0) = 0,¥,(0) = 0,'%¥,(0) = 0,6,(0) = 1} (6.47)
q’o’(’?) =1, L}’0’(77) =0, 6,(m) =0 as n—->ow )

Further, we can remove y from Eqgs. (6.44)-(6.48) by writing

Wo=1=-N""%, =0A-n"* if y<y (6.48)
and
W= —(-A=1) T, = (- if y>1, (6.49)
to obtain
i)iffq’om + P dp" = 0, (6.50)
UUL;LTJOW + P %, — (Pp)? + 88—179 =0, (6.51)

1 knf (pcp)f
pr kf (Pcp)nf

60” + LT’QBOI - lT’olgo = 0, (652)

®,(0) = 0,9,'(0) =0, lT’o(O) = O,KTIO’(O) =0,00(0) =1
, ) | (6.53)
Do'(m) =1, ¥o'(n) =0, 6,(n) =0 as 1 - o
here prime denotes differentiation with respect to 7.
To find solution for y < 1, we set
1 3 1_
£(0) = (1= y)a2s®g (0) +++, g"(0) = (1= P)AT (0) + } (6.54)
00'(0) = (1 —Y)/221/*64(0) + -,
and fory > 1
> 3 " " 1_H

1@ = (A =NPECGO) +-, ¢"O) = L =yIET O+ oo

8,'(0) = (=(1 — 1)) /*A1/46(0) + ---,

A numerical integration of Egs. (6.50)-(6.53) gives for ¢ €[0,0.2], ®5(0) =
0.230955, P/'(0) = 0.517641 and 6;(0) = 1.024012 so that, when y < 1
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1 3 1
f"(0) =0.230955(1 — y)2A+ + ---, g"'(0) = 0.517641(1 — y)A+ + } (6.544)
6,'(0) = 1.024012(1 — y)¥/2A1/* + ..., |
and wheny > 1
13 1
£"(0) =0.230955(—(1 —y))22% + -,  g"(0) = 0.517641|1 — y|A% + --- (6.55a)

8y'(0) = 1.024012(~(1 — 1)) “ 2% 4 .,

as A — oo. These results are consistent with the values seen in Fig 2.
6.3.4 Asymptotic for large y
The asymptotic behavior of solution for y > 1 is obtained by the change of variables
fO)=€F@), g=€H(@), {=¢€'z (6.56)
where e = y~1/2 « 1. By making use of these transformation, we obtain from (6.22)-(6.25)

’:}LfF"' +F[(€? + 1)F + (€2 — DH] — (€% + D[(F)? — 1] — we?[F' — 1]
f

(6.57)
P pzerpp — 1] =0
Of Pny
[
ULffH'” + H"[(e? + DF + (62 — DH] — (€2 — D[(H)? — 1] — we?[H' — 1]
(6.58)

0.
_IEPE ey —q) 4 @(62 - D160 =0
Of Pnf Br

1k (PCp)
— TV T 9 we?h — (e2—1DH'O9+[(e?+1)F + (e?—1)H]0' =0 (6.59)
pr kf (,OCp)nf

F(0) = 0,F'(0) = 0,H(0) = 0,H'(0) = 0,6(0) = 1} (6.60)

Fi(O)=1 H(@ =1 6()=0 as ¢ —

where prime denotes differentiation with respect to ¢. Positing the regular perturbation

expansion (see [21]), we get the lowest order system
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Un nr n ! n
U_ffFo + Fy'Fy — (Fy")> + 1 = Fy'Hy = 0, (6.61)

’;Lfng' — Hy'Ho + (Hy')? — 1+ Hy'Fy — BB—’;"AH =0, (6.62)

1 knf (pcp)f
pr ky (pCp),

90” - Hoeol + Holeo + F090' == 0, (663)

Fy(0) = 0,F,"(0) = 0,H,(0) = 0,H,'(0) = 0,0,(0) = 1} (6.64)
F'(©)=1, Hy(Q) =1, 6,(0)=0 as {—o ) '
This furnishes the large y leading behavior for the shear stress parameters
1 1
f71(0) ~ VAR5 (0) + -+, g"(0) ~ y2HE (0) + } (665
65(0) ~y265(0) + -

and found that

Table. 6. 1. Numerical values of physical parameters obtained from Eqgs. (6.61)-(6.64) when
@ =0.2

A F (0) 15 (0) ~65(0)
2.0 1.546306 -1.39591 1.289627
1.5 1.540641 -1.21789 1.248234
1.0 1.534529 -1.03243 1.201338

0 1.52027 -0.62871 1.06969

-1.0 1.470081 0.267444 0.140489
-1.5 1.465408 0.454667 0.353976
-2.0 1.464168 0.592279 0.521576

Also, for A-large we can apply transformation (6.39) in Egs. (6.61)-(6.64) to obtain EQs.
(6.50)-(6.53) at leading order, giving in the limit of large y and 4,
1 3 1 1
f"(0) = 0.230955y24s + -+, g"”(0) = 0.517641y2As + ---,

1 ) (6.66)
6,'(0) = 1.024012y2AY* + .-,
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And for displacement thickness one finds

1
A~vyidy )
1
B ~y2B, } (6.67)
C~ (1+V)Ao+(1—V)BoJ
1
2y2

where A, and B, should be find by solving Eqgs. (6.61)-(6.64) and defined as,

f0°°0£1 — f1(D]dg = A, } (6.68)
Jy [1=g'(D]d¢ = B,

Thus when y — oo, then the shear stress parameter grows without bound and the
displacement thickness A and B tends to zero. Also, the leading behavior for C tends to

negative infinity as y — oo as

C~ —2(By— A7, (6.69)
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6.4 Conclusion
A theoretical study of unsteady non-axisymmetric Homann stagnation point flow of

nanofluids has been analyzed under the assumption of buoyancy forces and external magnetic
field. The corresponding flow equations are reduced to a system of nonlinear coupled ordinary
differential equations which contain the flow parameters, the nanoparticles volume fraction ¢,
the unsteadiness parameter w, the buoyancy parameter A, Hartmann number M, Prandtl
number Pr and shear-to-strain ratio y (represents the strength of the potential flow of inviscid
fluid). Since the reduce system of ODE’® contain a singularity at y + 1, so first we treated the
case of forced convection flow by taking A = 0 and get the numerical results by using bvp4c
scheme in MATLAB. The numerical results are obtained for the physical parameters
f""(0),9"(0) and —0'(0) against different values of flow parameters. Finally, we use the
perturbation to see the behavior of flow for large values of buoyancy parameter A and for large
strength of potential flow y. From this study we get the following remarks:
1. Dual solution exists for the opposing flow.
2. In free convection flow, the singular nature of f and g at y = +1 is observed for all

values of unsteadiness parameter w while the impact of nanoparticle volume friction

¢ and Hartmann number M are negligible.
3. The critical values A, of A1 depends upon ¢, y, w and M.
4.  The critical point |A.| rapidly increase its value when y enters in the neighborhood

of 1.
5. The nanoparticle volume fraction ¢ increase the range of A for which the solution

exist.
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Againsts the unsteadiness parameter w, the critical points A, changes from opposing
(A < 0) to assisnting flow (1 > 0).

The boundary layer thickness A and B are always positive and achieve its maximum
valuesA = 099 aty~ —2.47 and B = 0.85 at y~ — 4.5.

The three-dimensional boundary layer thickness C intersect the boundary layers A
and B at approximately y~ — 0.594 and also at that point, C attain its maximum
value.

The impacts of nanoparticle volume fraction ¢, Hartmann number M and
unsteadiness parameter w are negligible in the solution of free convection limit (4

large) and large asymptotic behavior of y.
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