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PrefAce 

Peristaltic activity has great value in many physiological processes and industries. Peristalsis can 

occur due to contraction and expansion of flexible boundaries. In other words this activity 

includes passing down, mixing and transporting materials through contraction or expansion of 

the waves propagating along the channel walls. It has wide applications in medical industry and 

chemical processes. Typical examples in this direction include in distillation towers and fixed-

bed reactors, urine transport from kidney to bladder through the ureter, transport of lymph in the 

lymphatic vessels, swallowing food through the esophagus, the movement of chyme in the 

gastrointestinal tract, ovum movement in the fallopian tube, transport of corrosive fluids, sanitary 

fluid transport and blood pumps in heart lung machine etc. The worms utilize peristalsis for 

locomotion. Latham [1] and Shapiro et al. [2] initiated works on peristalsis of viscous fluids via 

theoretical and experimental approaches. Later on many researchers put forward their research 

on this topic by considering different kinds of fluid models, no-slip/ partial slip condition and 

one or more assumptions of long wavelength, low Reynolds number, small amplitude ratio, small 

wave number etc. Especially the magnetohydrodynamics (MHD) peristaltic transport of fluid in 

a channel are quite important with reference to conductive physiological materials for example 

the blood, blood pump machines and with the need of both experimental and theoretical research 

for operation of peristaltic MHD compressor. Concept of magnetohydrodynamics is useful in 

Magnetic Resonance Imaging (MRI) when a patient undergoes in a height static magnetic field. 

On the other hand the heat transfer in peristalsis is useful in the oxygenation processes. Such 

concept in further important in the industrial applications like sanitary fluid transport and 

transport of corrosive materials where the fluid contact with the machinery parts is prohibited. 

Having all such aspects in mind many authors in past analyzed the peristaltic flows in detail (see 

[3- 16]). Nadeem and Akbar [17] studied influence of radially varying MHD on the peristaltic 

flow in an annulus. Ellahi and Hussain [18] analyzed effects of MHD and partial slip on 

peristaltic flow of Jeffrey fluid in a rectangular duct. Ali et al. [19] presented numerical 

simulation for peristaltic flow of a biorheological fluid with shear dependent viscosity in a 

curved channel. 



    Mixed convection occurs in vertical channels for improvement of cooling systems in 

engineering. Analysis of heat transfer with MHD and mixed convection in vertical channels has 

great applications in solar energy collection, chemical reactions and cooling systems. 

Sheikholeslami et al. [20] analyzed simulation of MHD CuO-water nanofluid flow and 

convective heat transfer using Lorentz force. Abbasi et al. [21] discussed effects of inclined 

magnetic field and Joule heating in mixed convective flows of non-Newtonian fluids. Mustafa et 

al. [22] analyzed Soret and Dufour effects in the mixed convective peristaltic flow of fourth 

grade fluid. Soret and Dufour effects in mixed convective peristalsis of viscous nanofluids are 

examined by Hayat et al. [23]. Srinivas and Muthuraj [24] addressed mixed convective 

peristalsis in presence of chemical reaction. Heat and mass transfer analysis in mixed convective 

peristaltic transport of viscous fluid in an asymmetric channel is studied by Srinivas et al. [25].    

Peristaltic transport has not been conducted well in connection with elastic behavior of the walls. 

Wall properties such as elastic tension and damping are of immense importance in practical 

situations. Hence this dissertation is designed to explore the slip and Joule heating effects on 

peristalsis of Jeffrey nanofluid in a channel with compliant walls. The organization of 

dissertation is as follows:  

Chapter one describes the fundamental laws and definitions regarding the concepts used in the 

chapters two and three. Chapter two refers to the study of slip and wall properties simultaneously 

on peristaltic flow of nanofluid. This chapter concerns the review of article [13] proposed by 

Hayat et al. Chapter three deals with mixed convective peristaltic flow of Jeffrey nanofluid in a 

compliant walls channel. Analysis has been carried out with compliant walls and slip conditions. 

Thermal radiation effect is present. Joule heating is taken into account. Graphical results are 

plotted numerically to analyze the behavior of sundry parameters on temperature, velocity, 

nanoparticle concentration and heat transfer coefficient. 
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Chapter 1

Definitions and equations related to

flow analysis

1.1 Introduction

The main purpose of this chapter is to explain some fundamental concepts and laws related to

fluid mechanics which are significant in understanding of analysis given in this thesis.

1.2 Basic concepts of fluid

1.2.1 Fluid

A substance capable of changing its shape with position of its particles when shear stress is

applied on it. Even less amount of shear force causes deformation. Liquids and gases are

considered as fluids because of their flow characteristics.

1.2.2 Fluid mechanics

A vast study of fluid (either at rest or in motion) nature and behavior is studied in a branch of

science known as fluid mechanics. It covers an extensive range of applications in engineering,

medicine and environmental sciences where the basic laws of mechanics have been employed to

deal with fluids.

Classification of fluid flows in fluid mechanics is given below:
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Internal flow

When the fluid flow is confined to a solid boundary, the flow is termed as internal flow. Such

flow provides favorable models for heat exchange in chemical processes and energy conversion

technologies.

External flow

The fluid flow around a submerged body is known as external flow. Some examples include flow

over airfoil, sphere, turbine blade and air flow around an aeroplane. All types of flows such as

laminar, turbulent, compressible or incompressible flow can occur in both internal and external

flow systems.

1.2.3 Newtonian fluid

The fluids for which there exists linear and direct relationship between the shear stress and

rate of strain are termed as Newtonian fluids. For such fluids a constant viscosity tensor

relates viscous stress and strain rate. Also Newton’s law of viscosity is obeyed by such fluids.

Mathematically,

  ∝    (1.1)

 ∝ 


(1.2)

 = 



(1.3)

where  is the absolute or dynamic viscosity of fluid,  the shear stress,


the strain rate for

one-dimensional flow,  the flow direction and  the direction at which disturbance occur. For

two-dimensional flow we have

 = 

µ



+





¶


water, glycrine and air shows Newtonian characteristics.
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1.2.4 Non-Newtonian fluid

The fluids for which there exists direct but non-linear relationship between the shear stress

applied and rate of strain are termed as non-Newtonian fluids. The viscosity of non-Newtonian

fluids depends upon shear rate. Also power law model is obeyed by such fluids. Mathematically,

 = 

µ




¶
 (1.4)

 = 

µ




¶−1
 6= 1 (1.5)

where  denotes the consistency index,  the power law index and  the apparent viscosity.

Milk, blood, butter, paint, honey, toothpaste and gels shows non-Newtonian characteristics.

Non-Newtonian fluids are divided into three categories:

Time independent fluids

The class of fluids for which shear rate depends only on the shear stress are known as time

independent fluids. Wet sand, ketchup and concentrated starch suspension are examples of

such fluids.

Time dependent fluids

The class of fluids for which shear rate depends upon shear stress as well as time are known as

time dependent fluids. Gelatine, creams and paints are few examples of time dependent fluids.

Viscoelastic fluids

Viscosity (offers resistance to the flow) and elasticity (ability of a material to come back to its

original position after the stress is removed) are considered as material properties of a substance.

The class of fluids that exhibits both elastic as well as viscous nature are termed as viscoelastic

fluids. Amorphous polymers and biopolymers are few examples of such fluids.
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1.2.5 Rate type fluid models

The viscoelastic response of the fluids along with property of relaxation and retardation time

are classified as rate type fluids. Jeffrey fluids show rheological characteristics of rate type

fluids. It is one of the simplest viscoelastic fluid i.e, the internal structure of such materials

can sustain stress for some time. Instead of time derivatives, the substantial derivatives are

involved in this model. Relaxation/ retardation times are basic advantage of this model.

Relaxation time

Stress forces applied on a system causes disturbance in it. This disturbance results in a deshaped

perturbed system. When the forces are removed the disbalanced system comes back to its

original shape. As the stresses present in the viscoelastic material donot die out immediately

hence the time is required to overcome stress forces, so that the system will come back to its

equilibrium position. This time is called relaxation time.

Retardation time

A time required to create stress within a fluid is known as retardation time. Actually it is the

time scale through which opposing forces are balanced by applied stresses.

1.2.6 Fluid density

It is the material property that explains the relation between mass and unit volume of a fluid at

a particular temperature and pressure. Density has direct relation with pressure while inverse

relation with temperature. The mathematical expression for density is

 =
̄


0  (1.6)

where  denotes the density (measured in

3 ), ̄ the mass (measured in ) and 

0
the volume

(measured in 3).
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1.2.7 Fluid viscosity

The quality of a fluid that measures the resistance of its particles is known as viscosity. Basically

it is a ratio between the stress applied to the resultant strain. Mathematically it can be written

as

 =




 (1.7)

where  denotes the dynamic viscosity (measured in  or 
 sec

).

Kinematic viscosity

When the absolute/ dynamic viscosity of the fluid is divided by its density then the viscosity

obtained is known as kinematic viscosity. Mathematically it can be written as

 =



 (1.8)

It is measured in 2

sec


1.3 Pressure

The magnitude of force acting perpendicularly to a surface area is known as pressure. Its

mathematical description is

 =



 (1.9)

where  is magnitude of force (measured in 
sec2

) and  is the surface area (measured in 2).

1.4 Nanofluids

The traditional fluids comprising of nanometer sized particles are named as nanofluids. It is

basically suspension of nanoparticles such as metals, carbides, oxides or carbon nanotubes in

the base fluid. Water, ethylene glycol and oil are among base fluids. Its major applications

cover vivo therapy, surgery, protein engineering, cancer diagnosis and therapy etc.
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1.4.1 Models for nanofluids

Several models for nanofluids have been reported in the past including Maxwells model (1904),

Hamilton and Crosser’s model (1962), Yu and Choi model (2003), Jang and Choi model (2004)

and Buongiorno model (2009).

1.4.2 Buongiorno model

Jacopo Buongiorno in 2006 reported that among seven slip mechanisms (inertia, Brownian

diffusion, thermophoresis, diffusionphoresis, magnus effect, fluid drainage, and gravity) only

Brownian motion and thermophoresis are prominent and responsible for enhancement of thermal

conductivity. Buongiorno in 2009 found that thermal conductivity of nanofluids enhances upon

enhancement in particle concentration, aspect ratio and reducing base fluid conductivity.

1.5 Fundamentals of heat transfer

Temperature

Temperature is the average kinetic energy of particles in a given sample. It is measured in

kelvin .

Heat

The exchange of energy from one system to another due to temperature difference is known as

heat.

1.5.1 Modes of heat transfer

Heat is transferred from one place to another through three modes named as conduction,

convection and radiation.

Conduction Particle to particle energy transfer through collision takes place in process of

conduction. Its example includes a cold iron skillet placed on a stove and a cube of ice placed

into the man’s hand etc.
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Convection The transfer of energy through the replacement of warmed matter by cold one is

termed as convection. Convection is further categorized as forced, natural and mixed convection.

Cooling a cup of coffee is an example of convection.

Forced convection When some external agent such as fan or a pump forces the fluid to flow

over a surface then such type of convection is known as forced convection.

Natural convection The type of convection in which the density and temperature differences

are responsible for the fluid flow is termed as natural convection. So gravity is major agent for

such type of convection.

Mixed convection The type of convection in which forced and natural convection occurs

simultaneously is called mixed convection.

Radiation The emission of energy in the form of electromagnetic waves from a heated surface

is called thermal radiation. Actually the intensity of the radiated energy is governed by the

temperature of the heated surface. It is seen that radiative heat transfer uses light that is how

the heat from the sun reaches us.

1.5.2 Specific heat

It is the measure of heat energy required to enhance the temperature by one degree celsius.

1.5.3 Thermal conductivity

The extent to which a material can conduct heat is known as thermal conductivity. A good

conductor corresponds to high thermal conductivity which depends on temperature gradient.

It is measured in 
sec3


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1.5.4 Thermal diffusivity

It is the relation between ability of a material to transmit heat energy and to store thermal

energy is termed as thermal diffusivity. Mathematically,

 =



 (1.10)

where  is the specific heat,  the thermal conductivity and  the thermal diffusivity. Its unit

is 2

sec


1.5.5 Joule heating

The loss of kinetic energy of fluid particles in the form of heat is known as Joule heating. The

surface temperature of a body directly relates to heat transfer rate in this process.

1.5.6 Viscous dissipation

It is the irreversible process by which the work done on adjacent layers of fluid results in loss

of energy is termed as viscous dissipation. The work done is basically against viscous forces.

1.6 Peristaltic motion

The mechanism by which contents of mixture moves ahead under the influence of progressive

wave of contraction and expansion is termed as peristalsis. In particular this activity involves

mixing and pushing materials through contraction or expansion of the waves propagating along

the channel walls in response to pressure.

1.6.1 Applications of peristaltic motion

The peristaltic phenomenon works physiologically in the digestive tract, in the bile duct for

transport of bile juice and motion of spermatozoa in cervical canal etc. Also in chemical

processes and medical industry this mechanism covers heart lung machine, noxious fluid trans-

port, roller and finger pumps, novel pharmacological delivery systems and in the locomotion of

worms etc.
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1.7 Streamlines

These are the curves tangential to the instantaneous velocity vector. During fluid flow the

orientation of each particle is shown through these imaginary lines. Thus such lines cannot

cross each other except at points where the velocity magnitude is zero.

1.8 Compliant walls

Compliance means the ability of the vessels to attain original dimensions after the removal

of constricting force. Thus wall compliance refers to the damping, stretching, flexibility and

elasticity of the walls. Physiologically such walls play an important role in cardiovascular

and respiratory system where the increasing pressure of blood causes the arteries and veins to

stretch. Thus the higher compliance deforms easily as compared to the lower compliance blood

vessels. Good results are obtained for less channel width i.e. 0.05 or less.

1.9 Mass transfer

The movement of the fluid from one location to another is called mass transfer. In nanoflu-

ids mass transfer takes place due to phenomena of diffusion and Brownian motion. Blood

purification in the kidneys and liver is an example of mass transfer.

1.10 Dimensionless numbers

1.10.1 Wave number

It is defined as the ratio of half channel width to the wavelength. It basically calculates the

number of waves existing at a specified distance. Mathematically, we write

 =
1


 (1.11)

where 1 represents the half channel width and  the wavelength.
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1.10.2 Amplitude ratio

It is the ratio describing the relation between maximum displacement of wave to the half channel

width. Mathematically

 =


1
(1.12)

where  is the wave amplitude.

1.10.3 Reynolds number

It is defined as ratio of inertial to viscous forces. Mathematically, it can be expressed as

Re =
1


 (1.13)

where  corresponds to the wave speed. The Reynolds number determines that either the flow

is laminar or turbulent. Low Reynolds number (  2300) refers to laminar flow while high

Reynolds number (2300    4000) refers to the turbulent one.

1.10.4 Prandtl number

It can be interpreted as the ratio of momentum diffusivity over thermal diffusivity. Mathemat-

ically one can express it as

Pr =



 (1.14)

Here  is the specific heat,  the kinematic viscosity and  the thermal conductivity.

1.10.5 Eckert number

The expression for the ratio of kinetic energy to enthalpy is called Eckert number. In mathe-

matical form one can write

 =
2

∇  (1.15)

where  =   +  ×  and ∇ the temperature difference

between the walls.
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1.10.6 Brinkman number

It is defined as the ratio of heat produced by viscous dissipation to the heat transferred by

molecular conduction. It can be written as the product of Prandtl number and Eckert number.

 = Pr (1.16)

1.10.7 Hartman number

It is the ratio of magnetic to the viscous force. Mathematically,

 =

s
20

2
1


 (1.17)

Here 0 is the magnetic field strength and  the electrical conductivity.

1.10.8 Schmidt number

It is the ratio of momentum diffusivity to the mass diffusivity.

 =



 (1.18)

in which  is the coefficient of mass diffusivity.

1.10.9 Heat transfer Grashoff number

It is the ratio of buoyancy to the viscous forces acting on fluid with reference to change in

temperature. Mathematically

 =
∗(1 − 0)

2
1


 (1.19)

In the above expression  is the force of gravity, ∗ the thermal expansion coefficient and 1

and 0 are the temperatures at the walls.
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1.10.10 Nanoparticle Grashoff number

This dimensionless number refers to the ratio of buoyancy to the viscous forces with reference

to nanofluid particles. Mathematically

 =
∗(1 − 0)

2
1


 (1.20)

where ∗ is the concentration expansion coefficient, 1 and 0 are the concentration at the

walls.

1.10.11 Brownian motion parameter

Thermal behavior of nanofluids is characterized through Brownian motion of nanoparticles.

Therefore for nanofluids we define Brownian motion parameter as

 =
∗(1 −0)


 (1.21)

in which ∗ is the ratio of heat capacity of nanomaterial to that of fluid.

1.10.12 Thermophoresis parameter

Temperature difference among nanoparticles can cause diffusion of nanoparticles. This phe-

nomenon is termed as thermophoresis. Thus thermophoresis parameter is expressed as

 =
∗ (1 − 0)


 (1.22)

Here  is the thermophoretic diffusion coefficient.

1.11 Slip condition

This condition was proposed by Navier for the cases of fluid-solid interaction. There are many

applications in engineering and biology where no-slip condition is not valid like in artificial heart

valves. Slip effects cannot be ignored especially in the cases when hydrodynamic, viscoelastic,

chemical and gravitational forces acting on the dispersed particles at the walls are negligible.
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Thus slip condition explains the direct relation between fluid-solid velocities and stress at the

bounded surface. Mathematically,

−  ∝ 

−  = ±1 (1.23)

in which  is the fluid velocity,  the walls velocity, 1 the velocity slip parameter, ± signs

correspond to the right and left wall or upper and lower wall respectively.

1.12 Basic flow equations

1.12.1 Continuity equation

Conservation of mass in terms of mass influx and outflux gives the mathematical form of

continuity equation as follows:



+∇(V) = 0 (1.24)

which is satisfied in the absence of source and sink where  represents the time, ∇ =
³



 


´
the operator applied on V = ( ) the velocity components . For an incompressible fluid the

above equation reduces to

∇V = 0 (1.25)

1.12.2 Equation of motion

By law of conservation of momentum we mean that the momentum lost by some fluid particles

is gained by other fluid particles (either by bulk motion or by molecular motion). Thus total

amount of momentum remains constant within a system. Together with surface and body forces

the momentum equation takes the form:


V


= −∇+ div τ+b (1.26)
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where τ denotes Cauchy stress tensor ,  the pressure which is surface force, b the body force

and



the material time derivative defined for two dimensional system as




=




+ 




+ 




 (1.27)

The above eq. (126) infact represents force balance for the flow of fluid.

1.12.3 Energy equation for nanofluids

The energy equation for nanofluids can be expressed as





= −div ∗ + ∗∇∗  (1.28)

in which ∗ represents the specific enthalpy of nanoparticles, ∗ the heat flux and ∗ the diffusion

mass flux of nanoparticles. Writing ∗ from Fourier law of heat conduction as

∗ = −∇ + ∗
∗
  (1.29)

On substituting value of ∗ Eq. (128) becomes





= −∇(−∇ + ∗

∗
) + ∗∇∗ 

= ∇2 −∇(∗∗) + ∗∇∗ 

= ∇2 − ∗∇∗ − ∗∇∗ + ∗∇∗ 

= ∇2 − ∗∇∗

Using

∇∗ = ∇ (1.30)

we arrive at





= ∇2 − 

∗
 ∇ (1.31)
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Splitting the diffusion mass flux for Brownian diffusion and thermophoresis we have

∗ = ∗ + ∗  (1.32)

in which

∗ = ∇ (1.33)

Defining Brownian motion coefficient as

 =
∗
3

 (1.34)

where ∗ is the Boltzmann0 constant and  the nanoparticles diameter. Also

∗ = −  (1.35)

where

 = 026(


2 + 
)




∇


 (1.36)

in above expression  is the thermophoretic velocity,  the thermal conductivity of nanopar-

ticles while  is thermal conductivity of fluid. Writing  = 026(


2+
)

we get

∗ = −
∇


 (1.37)

From Eqs. (133 and 135) we have

∗ = ∇ − 
∇


 (1.38)

Hence the energy equation becomes





= ∇2 + [∇∇ + 

∇∇


]
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In the presence of viscous dissipation and thermal radiation above equation takes the form





= ∇2 + [∇∇ + 

∇∇


] +  +∇ (1.39)

where  is the radiative heat flux.

1.12.4 Concentration equation

By using Fick’s law the concentration of nanoparticles involving diffusion of mass can be ex-

pressed as µ



+V∇

¶
 = − 1


∇∗ 

Using Eq. (138) in above equation we have

µ



+V∇

¶
 = ∇2 + 


∇2 (1.40)

where  and  are the fluid concentration and temperature respectively.

1.13 Solutions methodology

1.13.1 Exact method

The exact solutions for linear boundary value problems can be computed through 

command in Mathematica.

1.13.2 Numerical technique

Numerical technique involves the graphical results obtained through  command in

Mathematica. It gives the approximated results with accuracy controlled upto desired itera-

tions.
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Chapter 2

Simultaneous effects of slip and wall

properties on MHD peristaltic

motion of nanofluid with Joule

heating

2.1 Introduction

Peristalsis of magnetohydrodynamic (MHD) nanofluid in a channel with compliant walls is dis-

cussed here. Joule heating, viscous dissipation and partial slip effects are considered in the

present analysis. System of equations is simplified through long wavelength and low Reynolds

number approximation. Solutions for stream function, temperature and concentration are ob-

tained through suitable approach and are thus used to plot graphs. The physical interpretation

of graphical results is presented in the last section. This chapter provides the detailed review

of a research article by Hayat et al. [13].

2.2 Problem geometry

Peristaltic transport of an incompressible nanofluid is considered in a bounded channel of uni-

form thickness 21 in such a way that − is along channel and − is transverse to it.
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Here 0 1 and 0 1 represent the temperature and concentration at lower and upper walls

respectively. Viscous dissipation effects are retained in the problem. The problem is proceeded

further by using slip conditions for velocity, temperature and concentration. A uniform mag-

netic field 0 is applied in -direction whereas induced magnetic field is considered absent due

to low magnetic Reynolds number. The walls shape can be expressed as

 = ±( ) = ±
∙
1 +  sin

2


(− )

¸
 (2.1)

where  is the speed of sinusoidal wave having amplitude  and wavelength  propagating along

the channel in time . The physical model of the present problem is shown in Fig. 2.1.

Fig. 2.1. Flow geometry.

2.3 Mathematical modeling

For incompressible viscous fluid the Cauchy stress tensor (τ ) is expressed as

τ = −I+Ȧ1 (2.2)
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in which  is the pressure, I the identity tensor and Ȧ1 the first Rivlin Ericksen tensor given

by

Ȧ1 = (∇V) + (∇V) (2.3)

with V and ∇ in two dimensional flows as follows:

V =(  0)

∇ = (







 0)

Hence we obtain

Ȧ1 =

⎡⎢⎢⎢⎣
2




+ 


0



+ 


2


0

0 0 0

⎤⎥⎥⎥⎦  (2.4)

The flow is governed through following equations




+




= 0 (2.5)

µ


̄
+ 




+ 





¶
= − 1






+ (

2

2
+

2

2
)− 20


 (2.6)




+ 




+ 




= − 1






+ (

2

2
+

2

2
) (2.7)




+ 




+ 




= 

µ
2

2
+

2

2

¶
+





"
4(



)2 +

µ



+





¶2#
+

20
2



+∗
"


µ







+









¶
+





(µ




¶2
+

µ




¶2)#
 (2.8)




+ 




+ 




= 

µ
2

2
+

2

2

¶
+





µ
2

2
+

2

2

¶
 (2.9)

In which we have considered mean temperature  because the flow is confined to the flexible

boundaries. The relevant boundary conditions

± 1

µ



+





¶
= 0   = ± (2.10)
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 ± 2



=

µ
1

0

¶
  ± 3




=

µ
1

0

¶
   = ± (2.11)

and compliant wall conditions as

∙
−1 3

3
+1

3

2
+ 

2



¸
 = 

µ
2

2
+

2

2

¶
−

µ



+ 




+ 





¶
−20 (2.12)

where  is the nanofluid density,  the kinematic viscosity,  the thermal diffusivity,  the

thermal conductivity,  the Brownian motion coefficient,  the thermophoretic diffusion

coefficient and ∗ =
()
()

the ratio of effective heat capacity of nanoparticle material to heat

capacity of fluid, 1 the elastic tension, 1 the mass per unit area,  the coefficient of viscous

damping, 1 2  3 the velocity, thermal and concentration slip parameters respectively, 

the mean temperature,  and  the temperature and concentration of fluid and  the fluid

dynamic viscosity.

2.3.1 Non-dimensionalization

Defining the following non-dimensional quantities:

∗ =



 ∗ =




 ∗ =




 ∗ =



1
 ∗ =


1
( = 1 2 3)  ∗ =






∗ =


1
 ∗ =

21


  =

 − 0

1 − 0
  =

 − 0

1 − 0
 (2.13)

Omitting asterisks from Eqs.(26) − (212) and by the definition of stream function  (  )

writing

 =



  = −




the above equations become

Re

∙

2


+ 





2


− 





2

2

¸
= −


+ (2

2

2
+

2

2
)−2 (2.14)

Re 

∙
−2 

2


− 2





2

2
− 2

2



¸
= −


+ (2

2

2
+

2

2
) (2.15)
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Re

∙




+ 




+ 





¸
= 

"
4

µ

2



¶2
+

µ
−2

2

2
+

2

2

¶2
+2

µ




¶2#

+

∙
2







+









¸
+

"µ





¶2
+

µ




¶2#

+
1

Pr

µ
2
2

2
+

2

2

¶
 (2.16)

Re

∙




+ 








− 









¸
=

µ
2
2

2
+

2

2

¶
+





µ
2
2

2
+

2

2

¶
 (2.17)

along with the boundary conditions as




± 1

µ
2

2
− 2

2

2

¶
= 0   = ± (2.18)

 ± 2



=

µ
1

0

¶
 ± 3




=

µ
1

0

¶
   = ± (2.19)
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3

3
+2

3

2
+3

2



¸
 = +

∙
2

3

2
+

3

3

¸
−2



−Re
∙

2


+ 





2


− 





2



¸
   = ± (2.20)

by long wavelength and low Reynolds number approximation we obtain

4

4
−2

2

2
= 0 (2.21)

1

Pr

2

2
+


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


+

µ




¶2
+

"µ
2

2

¶2
+2

µ




¶2#
= 0 (2.22)

2

2
+





µ
2

2

¶
= 0 (2.23)

with boundary conditions




± 1

µ
2

2

¶
= 0  ± 2





µ
1

0

¶
 ± 3




=

µ
1

0

¶
   = ± (2.24)

∙
1

3

3
+2

3

2
+3

2



¸
 =

3

3
−2


   = ± (2.25)
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where  = 
1
is the amplitude ratio  = 1


the wave number  =

∗(1−0)


and  =

∗ (1−0)


the Brownian motion and thermophoresis parameters respectively, Re = 1

the

Reynolds number,  = 


the Schmidt number,  =
q



01 the Hartman number,  =

2

(1−0) the Eckert number, Pr =



the Prandtl number, 1 = − 1
3
1

3
 2 =

1
3
1

3
and

3 =
31
2

the wall parameters

2.4 Solution methodology

2.4.1 Exact solution for stream function

Exact solution of Eq. (2.21) with boundary conditions (2.24) and (2.25) is given as

 =
83

£
3
2
sin 2(− )− (1 +2) cos 2(− )

¤
2∙

sinh

(cos +1 sinh)
− 

¸
 (2.26)

2.4.2 Numerical solution

The exact solutions for (222) − (223) seems difficult to attain since these equations are non-
linear. Hence solutions for temperature and concentration are obtained by substituting  in

Eqs. (222 and 223) with boundary conditions given in Eq. (224) using the built-in command

 of Mathematica.

2.5 Graphical results and discussion

To discuss the influence of various parameters on velocity, temperature, concentration and heat

transfer rate towards different parameters is main interest here. Thus their physical illustration

is made in following subsections.

2.5.1 Velocity distribution

Fig. 2.2 shows the plot of velocity for various values of velocity slip parameter 1 It is due to

less resistance caused by slip which enhances the velocity profile (see Fig. 2.2). Similar behavior

is observed for amplitude ratio parameter  (see Fig. 2.3). As electromagnetic force exhibits
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retarding nature that is why velocity profile reduces upon enhancement in Hartman number

 (see Fig. 2.4). It is observed from Fig. 2.5 that velocity enhances for increasing values of

wall elasticity parameters 1 and 2 while it reduces under wall damping effect 3 Moreover

it is noticed that graph is parabolic in shape and has maximum magnitude near the center of

channel (see Fig. 2.5).

2.5.2 Temperature distribution

Fig. 2.6 displays the combined sketch of Brownian motion parameter  and thermophoresis

parameter  on temperature profile. It is notified that both the mechanisms causes increase

in temperature of the nanofluid (see Fig. 2.6). An increase in temperature is observed for

increasing values of Prandtl number  (see Fig. 2.7). Moreover strong viscous dissipation

effects enhance the temperature that is why Eckert number  is an increasing function of

temperature (see Fig. 2.8). Fig. 2.9 portrays the graph of temperature for variation in wall

parameters 1 2 and 3 It is observed that temperature is an increasing function of 1

and 2 while it is decreasing function of 3 (see Fig. 2.9). Also temperature is an increasing

function of amplitude ratio  and thermal slip parameter 2 (see Figs. 2.10 and 2.11). Fig.

2.12 shows that Hartman number  causes decay in temperature.

2.5.3 Nanoparticles mass distribution

An active motion of nanoparticles from walls to the fluid increases mass flux hence concentration

profile increases for increasing values of Brownian motion parameter  (see Fig. 2.13). Figs.

2.14 and 2.15 shows that concentration is a decreasing function of corresponding slip parameter

3 and increasing function of Hartman number  (see Figs. 2.14 and 2.15). Fig. 2.16 depicts

that elasticity of walls 1 and 2 cause a decay in concentration while damping 3 enhances

it (see Fig. 2.16).

2.5.4 Heat transfer rate

Various illustrations for heat transfer rate  have been made in the presence ( = 1) and

absence ( = 0) of viscous dissipation effects. It is noticed that in the presence of viscous

dissipation heat transfer is not smooth. Heat transfer  is more for increasing values of Prandtl
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number  in presence of viscous dissipation (see Fig. 2.17 (a)) however less heat transfer

occurs in absence of viscous dissipation (see Fig. 2.17 (b)). Also it is noticed from Fig. 2.18

(a) that  is decreasing function of Hartman number  whereas no prominent heat transfer

is observed for  when viscous dissipation is neglected (see Fig. 2.18 (b)). Also heat transfer

rate reduces for Brownian motion parameter  and thermophoresis parameter  for both

cases (see Figs. 2.19 (a) and (b)).

Fig. 2.2.

Fig. 2.2. Sketch of  for different values of 1 when  = 01,  = 02  = 01,  = 01,

1 = 2 = 002 3 = 001
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Fig. 2.3.

Fig. 2.3. Sketch of  for different values of  when  = 01  = 01, 1 = 01,  = 03,

1 = 2 = 002 3 = 001

Fig. 2.4.

Fig. 2.4. Sketch of  for different values of  when  = 02  = 01,  = 01, 1 = 01,

1 = 2 = 002 3 = 001
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Fig. 2.5.

Fig. 2.5. Sketch of  for different values of 1 2 3 when  = 01,  = 02  = 01, 1 = 01,

 = 03

Fig. 2.6.

Fig. 2.6. Sketch of  for different values of   when  = 01,  = 02  = 01,  = 06

1 = 3 = 2 = 01,  = 03,  = 18 1 = 2 = 002 3 = 001
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Fig. 2.7.

Fig. 2.7. Sketch of  for different values of Pr when  = 01,  = 02  = 01,  = 06

 = 05 1 = 3 = 2 = 01,  = 03,  = 18 1 = 2 = 002 3 = 001

Fig. 2.8.

Fig. 2.8. Sketch of  for different values of  when  = 02,  = 02  = 01,  = 06  =

05 1 = 3 = 2 = 01,  = 03, Pr = 18 1 = 2 = 002 3 = 001
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Fig. 2.9.

Fig. 2.9. Sketch of  for different 1 2 3values of when  = 01,  = 02  = 01,  = 06

 = 05 1 = 3 = 2 = 01,  = 03, Pr = 18  = 12

Fig. 2.10.

Fig. 2.10. Sketch of  for different values of  when  = 01,  = 01,  = 06  = 05

1 = 3 = 2 = 01,  = 03, Pr = 18 1 = 2 = 005 3 = 001
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Fig. 2.11.

Fig. 2.11. Sketch of  for different values of 2 when  = 01,  = 02,  = 01,  = 06

 = 05 1 = 3 = 01,  = 03, Pr = 18  = 1, 1 = 005 2 = 005 3 = 001

Fig. 2.12.

Fig. 2.12. Sketch of  for different values of  when  = 01,  = 02,  = 01,  = 06

 = 05 1 = 2 = 3 = 01, Pr = 18  = 1, 1 = 005 2 = 005 3 = 001
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Fig. 2.13.

Fig. 2.13. Sketch of  for different values of  when  = 01,  = 02,  = 01,  = 05

1 = 2 = 3 = 01,  = 02 Pr = 18  = 1, 1 = 2 = 005 3 = 001

Fig. 2.14.

Fig. 2.14. Sketch of  for different values of 3 when  = 01,  = 02,  = 01,  = 06

 = 05 1 = 2 = 01,  = 02  = 1 Pr = 18 1 = 2 = 005 3 = 001
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Fig. 2.15.

Fig. 2.15. Sketch of  for different values of  when  = 01,  = 02,  = 01,  = 06

 = 05 1 = 2 = 3 = 01, Pr = 18  = 1 1 = 2 = 005 3 = 001

Fig. 2.16.

Fig. 2.16. Sketch of  for different values of 1 2 3 when  = 02,  = 01,  = 01,  = 02,

 = 06  = 05 1 = 2 = 3 = 01, Pr = 18  = 1
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Fig. 2.17 (a).

Fig. 2.17 (b).

Fig. 2.17. Sketch of  for different values of Pr when  = 02,  = 01, = 02,  = 06  =

05 1 = 2 = 3 = 01, 1 = 001 3 = 001, 2 = 02, (a)  = 1(b)  = 0.
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Fig. 2.18 (a).

Fig. 2.18 (b).

Fig. 2.18. Sketch of  for different values of  when  = 02,  = 01,  = 1,  = 06

 = 05 1 = 2 = 3 = 01, 1 = 01 3 = 001, 2 = 02, (a)  = 1, (b)  = 0.
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Fig. 2.19 (a).

Fig. 2.19 (b).

Fig. 2.19. Sketch of  for different values of  when  = 02,  = 01,  = 1,  = 2

1 = 2 = 3 = 01, 1 = 01 3 = 001, 2 = 02, (a)  = 1 (b)  = 0
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Chapter 3

Slip effect in peristalsis of Jeffrey

nanofluid in a channel

3.1 Introduction

Influence of mixed convection on peristalsis of Jeffrey nanofluid in a channel with compliant

boundaries is addressed here. This investigation includes the thermal radiation and Joule heat-

ing effects. Whole analysis is performed for velocity, thermal and concentration slip conditions.

Related problems through long wavelength and low Reynolds number are examined for stream

function, temperature and concentration. Impacts of Joule heating, Grashoff number, Hartman

number, thermal radiation, slip parameters, thermophoresis and Brownian motion parameter

are explored in detail.

3.2 Modeling

We consider two-dimensional flow of an incompressible Jeffrey nanofluid in a symmetric channel

of uniform thickness 21. The sinusoidal wave is propagating along the walls of the channel

with wavelength  and constant speed . The slip conditions for velocity, temperature and

concentration are considered. Here  and  describe the axial and transverse directions. Let

 = − and  = + shows the left and right positions of the flexible channel boundaries (see
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Fig. 31). The walls shape can be expressed as

 = ±( ) = ±
∙
1 +  sin

2


(− )

¸
 (3.1)

where  is the wave speed,  the wave amplitude,  the wavelength, 21 the width of channel

and  the time.

Fig. 3.1. Problem geometry

3.2.1 Magnetohydrodynamics

A magnetic field having strength 0 is applied with expression as

B = (0 0 0) (3.2)

with the negligible induced magnetic field effects. Moreover due to small Reynolds number the

electric field is considered absent.

Using Ohm’s law the current density J can be expressed as

J =  [ +V×B]  (3.3)
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Using V = ( ) in the above equation we get Lorentz force as

J×B = −20 (3.4)

Thus the expression for Joule heating comes out to be

1


JJ =20

2 (3.5)

3.2.2 Flow governing equations

Expression of Cauchy stress tensor () for Jeffrey material is

 = −I+ S (3.6)

S =


1 + 1

µ
γ̇ + 2

γ̇



¶
 (3.7)

Here S represent extra stress tensor, 1 shows the ratio of relaxation to retardation times, 2

the retardation time,  the pressure, I the identity tensor,  the absolute viscosity, γ̇ the shear

rate and 

the material time differentiation. The equations governing the flow are given by




+




= 0 (3.8)




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= − 1
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
+
1


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
+
1






− 20


+ ∗ ( − 0)

+∗ ( − 0)  (3.9)
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
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+ 




= − 1
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+
1


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+
1
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 (3.10)
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µ
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+
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¶
+
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 (3.11)
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


+ 




+ 




= 

µ
2

2
+

2

2

¶
+





µ
2

2
+

2

2

¶
 (3.12)

Radiative heat flux  is given by

 = −4
∗

3∗
 4


 (3.13)

where ∗ is the Stefan—Boltzmann constant having numerical value 1380648×10−23−1 and

∗ is the mean absorption coefficient. We assume that the temperature difference within the

flow is sufficiently small. Hence expanding  4about 0 and neglecting higher order terms one

obtains

 4 ∼= 4 30  − 3 40 

The above expression and Eq. (3.13) now yield

 =
−16∗ 30
3∗




 (3.14)

In vector form  can be written as

 =
−16∗ 30
3∗

O (3.15)

The relevant boundary conditions are

± 1

µ
1 + 2

µ




+ 





¶¶µ



+





¶
= 0   = ± (3.16)

 ± 2



=

µ
1

0

¶
  ± 3




=

µ
1

0

¶
   = ± (3.17)

∙
−1 3

3
+1

3

2
+ 

2



¸
 =




+




− 

µ



+ 




+ 





¶
− 20

−∗ ( − 0) + 
∗ ( − 0)    = ± (3.18)

In the above equations  describe the nanofluid density,  the kinematic viscosity,  the thermal

diffusivity,  the thermal conductivity, , ,  the extra stress tensor components, 

the Brownian motion coefficient,  the thermophoretic diffusion coefficient and ∗ =
()
()
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the ratio of heat capacity of nanomaterial to that of fluid, 1 the elastic tension, 1 the

mass per unit area,  the coefficient of viscous damping, 1 2  3 the slip parameters for

velocity, temperature and concentration respectively,  the mean temperature, 1 and 1 the

concentration and temperature at the right wall respectively while 0 and 0 the concentration

and temperature at the left wall respectively.

3.2.3 Non-dimensional quantities

Various non-dimensional quantities related to the problem are:

∗ =



 ∗ =




 ∗ =




 ∗ =



1
 ∗ =


1
( = 1 2 3)  ∗ =




 ∗ =

21




∗ =


1
  =

 − 0

1 − 0
  =

 − 0

1 − 0
  =

1


∗  

∗
2 =

2

1
 (3.19)

3.2.4 Utilization of stream function

Eqs.(3.9)—(3.12) after omitting asterisks and writing stream function  (  ) by the definition

[7]:

 =



  = −




become

Re

∙

2


+ 





2


− 





2

2

¸
= −


+ 




+





+ +−2 (3.20)

Re 

∙
−2 

2


− 2





2

2
− 2

2



¸
= −


+ 2




+ 




 (3.21)
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Re

∙




+ 
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
+ 





¸
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1

1 + 1
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∙µ
1 + ∗2

µ

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


− 







¶¶
Ã
42

µ
2



¶2
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µ
−2

2

2
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2

2
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+

µ

2


+

2

2

¶
+
1

Pr

µ
2
2

2
+

2

2

¶
+2

µ




¶2
+

∙
2







+









¸
+

"µ





¶2
+

µ




¶2#
 (3.22)

Re

∙




+ 








− 









¸
=

µ
2
2

2
+

2

2

¶
+





µ
2
2

2
+

2

2

¶
 (3.23)

with the boundary conditions




± 1 [1 + ∗2

µ







− 2









¶¸µ
2

2
− 

2

2

¶
= 0   = ± (3.24)

 ± 2



=

µ
1

0

¶
 ± 3




=

µ
1

0

¶
   = ± (3.25)

∙
1

3

3
+2

3

2
+3

2



¸
 = (1 + 








)
3

3

+ +−2


   = ± (3.26)

where

=2

∙
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


− 






)

¸
2




=
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
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
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


− 
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


)

¸
2




Implication of long wavelength and low Reynolds number approximations [18] reduce the prob-

lem as follows:


4

4
+




+




−2

2

2
= 0 (3.27)

43



(1 +Pr)
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2
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



µ
2

2

¶
= 0 (3.29)




± 1

µ
2

2

¶
= 0  ± 2




=

µ
1

0

¶
 ± 3




=

µ
1

0

¶
   = ± (3.30)

∙
1

3

3
+2

3

2
+3

2



¸
 = 

3

3
+ +−2


   = ± (3.31)

where  = 1
1+1

  = 
1
represents the amplitude ratio  = 1


the wave number  =

∗(1−0)


the Brownian motion parameter,  =
∗ (1−0)


the thermophoresis parameter,

Re =
1


the Reynolds number,  = 


the Schmidt number,  =

q


01 the Hartman

number,  = 2

(1−0) the Eckert number, Pr =


the Prandtl number  =

∗(1−0)21


the Grashoff number,  =
∗(1−0)21


the Grashoff number for nanoparticles,  =

16∗ 30
3∗

the radiation parameter,  = Pr the Brinkman number,  the Eckert number, 1 =

− 1
3
1

3
 2 =

1
3
1

3
and 3 =

31
2

the wall parameters

3.3 Discussion

The aim of this section is to predict the behavior of velocity, temperature, heat transfer and

concentration of nanoparticles in response to relevant parameters. Thus plots obtained through

built-in command  of Mathematica together with their physical explanations are pre-

sented here.

3.3.1 Velocity profile

This portion represents impact of emerging parameters on velocity. In (Fig. 3.2) it is observed

that for larger velocity slip parameter 1, the velocity increases. As fluid slip is the deviation in

the angle at which the fluid leaves the channel. Therefore an increase in 1 causes non-uniform

velocity distribution inside the channel (see Fig. 3.2). The effect is useful in determining the

accurate estimation of energy transfer between the channel and the fluid. Similar result has been
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obtained by Hayat et. al [13] in their study for nanofluids. The reason behind the increasing

behavior of 1 is that the resistance is reduced due to slip hence velocity increases. Reduction

in drag forces corresponding to Grashoff number  increases the velocity (see Fig. 3.3). It

is seen that velocity enhances for both Jeffrey fluid parameter 1 and mass transfer Grashoff

number  (see Figs. 3.4 and 3.5). The decelerating character of magnetic field compresses the

fluid particles and thus reducing velocity profile for greater values of Hartman number  (see

Fig. 3.6). The elastic wall properties 1 and 2 causes enhancement in velocity while damping

effect 3 decreases it (see Fig. 3.7). For reliability the results obtained for wall parameters can

be compared with the previous analysis of Hina et al. [11] for curved channel and Hayat et al.

[13] for planer channel.

3.3.2 Temperature profile

Physical illustration of the temperature is displayed in this part of the chapter. For larger

thermal slip parameter 2 temperature increases as seen from Fig. 3.8. Fig. 3.9 is plotted

to see the behavior of temperature profile for different values of Brinkman number . Here

viscous dissipation causes enhancement in temperature. It is reasonable to say that rise in

temperature is produced by the stress-reversal process that develops with an increase in 

(see Fig. 3.9). The similar observation for Carreau fluid have been reported by Vajravelu et

al. [15]. Larger values of Jeffrey nanofluid parameter 1 enhances the temperature (see Fig.

3.10). Motion of fluid particles is slowed down due to decreased kinetic energy thus temperature

decreases on application of magnetic force. Thus Hartman number  decays the temperature

(see Fig. 3.11). Here the obtained numerical results are found well matched with the perturbed

results by Hayat et al. [7]. Temperature is more for increasing values of Brownian motion

parameter  (see Fig. 3.12). However for thermophoresis parameter  it decreases (see Fig.

3.13). Since nanoparticles possess strong thermal gradients producing nonlinear dependence

of the drift velocity on the applied gradient for large . Thus nonlinear thermophoresis can

cause contradictory results between thermophoretic and numerical analysis. That is why the

numerical results develops the nonlinear temperature distribution with  similar to the study

of Hayat et al. [13]. Temperature rises for larger Prandtl number Pr (see Fig. 3.14). It is in

view of an increase in specific heat. An increase in thermal radiation parameter  decreases
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the temperature (as noticed from Fig. 3.15). Temperature is the increasing functions of 1 and

2 due to elastance of wall while it decreases for 3 as 3 shows oscillatory resistance (see Fig.

3.16).

3.3.3 Nanoparticle concentration profile

Various illustrations for concentration profile are presented here. It is noticed that by increas-

ing values of concentration slip parameter 3 the nanoparticle concentration decreases (see

Fig. 3.17). Fig. 3.18 portrays a decay in concentration for Jeffrey nanofluid parameter 1.

Nanoparticle concentration is more for Brownian motion (as seen from Fig. 3.19) and less for

thermophoresis (as noticed from Fig. 3.20). Fig. 3.21 depicts that concentration reduces for

1 and 2 while it enhances for 3.

3.3.4 Heat transfer coefficient

The non-dimensional form of heat transfer coefficient is

 = 




¯̄̄̄
=±

 (3.32)

The motion of peristaltic walls is considered responsible for the oscillatory behavior of heat

transfer coefficient. For thermal slip parameter 2 the absolute value of  decreases (see Fig.

3.22). Increasing heat transfer rate is noticed for Prandtl number Pr ( see Fig. 3.23). Also

larger radiation parameter  enhances the heat transfer coefficient  (see Fig. 3.24).
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Fig. 3.2.

Fig. 3.2. Sketch of  for 1 when  = 02,  = 01, Pr = 15,  =  = 01,  = 17,  = 1,

 = 15,  = 02,  = 02, 1 = 3 = 001, 2 = 002, 2 = 01, 3 = 01, 1 = 1,  = 1.

Fig. 3.3.

Fig. 3.3. Sketch of  for  when  = 02,  = 01, Pr = 08,  = 03,  = 02,  = 17,

 = 1,  = 02,  = 1, 1 = 001, 2 = 002, 3 = 001, 1 = 01, 2 = 01, 3 = 01,

1 = 1,  = 1.
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Fig. 3.4.

Fig. 3.4. Sketch of  for 1 when  = 02,  = 01, Pr = 08,  = 03,  = 02,  = 17,

 = 1,  = 05,  = 02,  = 1, 1 = 001, 2 = 002, 3 = 001, 1 = 01, 2 = 01,

3 = 01,  = 1.

Fig. 3.5.

Fig. 3.5. Sketch of  for  when  = 02,  = 01,  = 1,  = 01,  = 01,  = 17,

 = 15,  = 02,  = 02, 1 = 001, 2 = 002, 3 = 001, 1 = 01, 2 = 01, 3 = 01,

1 = 01,  = 1.
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Fig. 3.6.

Fig. 3.6. Sketch of  for  when  = 02,  = 01,  = 1,  = 01,  = 01,  = 05,

 = 03,  = 1,  = 02, 1 = 3 = 001, 2 = 002 1 = 01, 2 = 01, 3 = 01, 1 = 1,

 = 1

Fig. 3.7.

Fig. 3.7. Sketch of  for 1 2 3 when  = 02,  = 01, Pr = 15,  = 01,  = 01,

 = 17,  = 1,  = 15,  = 02,  = 02, 1 = 01 2 = 01, 3 = 01, 1 = 1,  = 1.
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Fig. 3.8.

Fig. 3.8. Sketch of  for 2 when  =  = 02,  = 01,  = 1,  = 1,  = 03, 1 = 1,

 = 05,  = 1,  =  = 01,  = 02, 1 = 3 = 01, 1 = 3 = 001, 2 = 002.

Fig. 3.9.

Fig. 3.9. Sketch of  for  when  =  = 02,  = 01, 1 = 03,  = 1,  = 15,  = 1,

 = 1,  =  = 01,  = 02, 1 = 2 = 3 = 01, 1 = 3 = 001 2 = 002.
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Fig. 3.10.

Fig. 3.10. Sketch of  for 1 when  =  = 02,  = 01,  = 1,  = 15,  = 1,  = 05,

 = 1,  =  = 01,  = 02, 1 = 2 = 3 = 01, 1 = 3 = 001, 2 = 002.

Fig. 3.11.

Fig. 3.11. Sketch of  for  when  =  = 02,  = 01,  = 1,  = 1,  = 15,  = 1,

1 = 03,  = 05,  = 1,  =  = 01, 1 = 2 = 3 = 01, 1 = 3 = 001, 2 = 002.
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Fig. 3.12.

Fig. 3.12. Sketch of  for  when  =  = 02,  = 01,  = 1,  = 15  = 03, 1 = 1,

 = 05,  = 1,  = 01,  = 05, 1 = 2 = 3 = 01, 1 = 3 = 001, 2 = 002.

Fig. 3.13.

Fig. 3.13. Sketch of  for  when  =  = 02,  = 01,  = 1,  = 1,  = 03, 1 = 1,

 = 05,  = 1,  = 01,  = 02, 1 = 2 = 3 = 01, 1 = 3 = 001, 2 = 002.
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Fig. 3.14.

Fig. 3.14. Sketch of  for Pr when  =  = 02,  = 01  = 2,  = 15,  = 03, 1 = 1,

 = 17,  = 01  = 1,  = 02, 1 = 2 = 3 = 01, 1 = 3 = 001, 2 = 002.

Fig. 3.15.

Fig. 3.15. Sketch of  for  when  =  = 02,  = 01,  = 15,  = 03, 1 = 1,  = 17,

 = 1,  = 3,  = 2,  = 02, 1 = 2 = 3 = 01, 1 = 3 = 001, 2 = 002.
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Fig. 3.16.

Fig. 3.16. Sketch of  for 1 2 3 when  =  = 02,  = 01,  = 1,  = 1,  = 1,

 = 1,  = 03, 1 = 1,  = 05,  = 1,  =  = 01,  = 02, 1 = 2 = 3 = 01.

Fig. 3.17.

Fig. 3.17. Sketch of  for 3 when  =  = 02,  = 01,  = 1,  = 03,  = 05,

 =  = 01  = 1,  = 02, 1 = 1,  = 1, 1 = 2 = 01, 1 = 3 = 001, 2 = 002.
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Fig. 3.18.

Fig. 3.18. Sketch of  for 1 when  =  = 02,  = 01,  = 08,  = 1,  = 1,  = 17,

 = 02,  = 1, 1 = 2 = 3 = 01, 1 = 3 = 001, 2 = 002.

Fig. 3.19.

Fig. 3.19. Sketch of  for  when  =  = 02,  = 01,  = 08,  = 03,  = 17,

 = 01,  = 1,  = 02, 1 = 1,  = 1, 1 = 2 = 3 = 01, 1 = 3 = 001, 2 = 002.
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Fig. 3.20.

Fig. 3.20. Sketch of  for  when  =  = 02,  = 01,  = 1,  = 17,  = 03, 1 = 1,

 = 1,  = 03,  = 1,  = 02, 1 = 2 = 3 = 01 1 = 3 = 001, 2 = 002.

Fig. 3.21.

Fig. 3.21. Sketch of  for 1 2 3 when  =  = 02,  = 01, 1 = 2 = 3 = 01,  = 1,

 = 03,  = 05,  =  = 01,  = 1,  = 02, 1 = 1,  = 1, 1 = 2 = 3 = 01.
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Fig. 3.22.

Fig. 3.22. Sketch of  for 2 when  = 02,  = 01,  = 2,  = 03,  = 1, 1 = 1,

 = 05,  = 1,  =  = 1,  = 2 1 = 3 = 01, 1 = 01 3 = 001, 2 = 02.

Fig. 3.23.

Fig. 3.23. Sketch of  for Pr when  = 02,  = 01, 1 = 1,  = 2,  = 03,  = 1,

 =  = 1,  = 2, 1 = 2 = 3 = 01,  = 18, 1 = 01, 3 = 001, 2 = 02.
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Fig. 3.24.

Fig. 3.24. Sketch of  for  when  = 02,  = 01,  = 03,  = 1,  = 04,

 =  = 01,  = 2,  = 08, 1 = 2 = 3 = 01, 1 = 01, 3 = 001 2 = 02.
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3.4 Conclusion

Peristaltic flow of Jeffrey nanofluid in a channel having compliant walls is addressed here. The

effects of partial slip and mixed convection are present. The major observations are listed below:

• Behavior of 1 on velocity and temperature is similar

• Concentration and temperature have reverse effect for 1.

• An enhancement in the velocity is observed for heat and mass transfer Grashoff numbers
 and .

• Qualitatively same effects on temperature is obtained for radiation  and thermophoresis
parameter 

• Effects of 1 and 2 on velocity are similar. Whereas the impact of 3 on velocity is

opposite to that of 1 and 2

• Behaviors of 1 on velocity and 2 on temperature are similar. However concentration

decreases upon increasing slip parameter 3

• Hartman number  reduces the temperature and velocity.

• Both temperature and heat transfer coefficient are increased for Prandtl number Pr 

• Concentration is decreasing function of 1 and 2. However the role of 3 on concentra-

tion is reverse to that of 1 and 2
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