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Abstract

We often come across nonlinear systems and their associated nonlinear equa-
tions and both pure and applied mathematics play a vital role in dealing
with such kind of equations.

When we talk about non linear analysis, its fundamental importance in
physical, biological, engineering and technological sciences can be seen in
the formulation and analysis of various classes of equation.

As far as fixed point theory is concerned, its extensiveness can be seen by
its applications in various fields. Theorems that are concerned with the ex-
istence and properties of fixed points are known as fixed point theorems.
These theorems play a very important role for proving the existence and
uniqueness of solutions for various mathematical models. Metric fixed point
theory has taken on new dimensions since the inception of the well known
Banach contraction principle, and this contraction principle gives us a really
suitable base to find fixed point for self mappings. The main aim of this

thesis is to add some more widely applicable results to the literature.
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Preface

This thesis is organized in six chapters and each of them has a brief intro-
duction.

Chapter 1 is a survey aimed to fix notions and notations. Therefore,
it collects basic concepts and significant facts in the existing literature re-
lated to fixed points, some classical fixed point theorems, weaker form of
contraction and some generalized versions of metric space.

Chapter 2 deals with the advancement of fixed point theory in some
generalized versions of metric space such as gauge and b-gauge spaces and
results are proved for both single-valued as well as multivalued mappings
using different contraction condition and an application for integral equation
of Volterra type is discuss to validate the given results.

Chapter 3 is devoted to fixed point theorems in the settings of generalized
version of metric spaces precisely the vector-valued or generalized metric
space, using different kind of contraction conditions for single-valued as well
as multivalued mappings.

Chapter 4 is a dedicated to the enhancement of fixed point theory to
obtain results for the existence and unique-ness of fixed point. The results
are obtained for single-valued mapping using the uniform metric spaces en-
riched with the concept of graph. Different kind of contraction conditions
are used to obtain some new and interesting results.

In Chapter 5 we have obtained fixed points and common fixed points
for the family of bounded multivalued mappings as well as for the family
of closed multivalued mappings. We have concluded our findings with an
existence theorem for a system of integral equations.

Chapter 6 deals with the existence of proximity point for different kind
of contraction-type conditions in metric spaces. New proximity theorems

are proved for multivalued mappings.
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Chapter 1

Introduction and

Preliminaries

In this chapter we will present some of those results which will be essential
for the later chapters. This chapter has been solely dedicated to those
definitions and theorems which will govern this dissertation, and a detailed
survey in this chapter is aimed on fix notions and notations, and collections
of basic concepts and significant facts in the existing literature.
Throughout this chapter F' — P represents a fixed point, M — S repre-

sents a metric space, C' — S represents a Cauchy sequence.

1.1 Fixed points

Given a non-empty set X4 and a map T from X into itself, the problem
of finding a point e € Xy, such that T (e) = e is considered as a fixed point
problem, and the point e € Xy is called a fixed point of T%.

A natural question is, under what conditions on Xy and Ty does a fixed
point exist? Theorems which establish the existence (and uniqueness) of
such points are called F-P theorems. Fixed point theorems enable us to find

the existence of solutions for operator equations satisfying certain conditions.



1.1.1 Fixed point for single valued mappings

Let Xg # ¢ and T} be a map from X to itself. Then we can say that a
point e € Xy is called a F' — P of T if Tye = e.

Example 1.1.1. Let X3 = R and T} ,T},, Ty, be self mappings of Xg.
Then,
(i) Tt e =exp(e), Ty, hasno F — P.

(ii) Tpe= <L, Ty, has unique F — P.

(iii) Ty,e = [e], Ty, has infinite many F — P’s.

1.1.2 Fixed points for multi valued mappings

Let Xg and Yy be two M — S’s and Ty : Xq — P(Yy), where P(Yy) is the
power set of Y. Then for each element e € X4, Tre is a non-empty subset

of Yy, and we call Ty from Xy to P(Yy) a multivalued mapping.

Example 1.1.2. Let X; = [0,1] and Ty, : Xg — Y = P(Xy) where P(Xy)
is the power set of X; and T, be defined as,

[0, 1] if e=0,1;
Tpe=
{e} otherwise.

Then each e € Xy is a F' — P of T}.

Example 1.1.3. Let X4 = [0,1] and T, : Xq — Y = P(X,4) where P(Xg)
is the power set of X) and T, be defined as,
[0, 1] if e=0,1;
Tfle =
{e2,\/e} otherwise.

Then 0 and 1 are F' — P’s of T}, .

If T} is a multivalued mapping and e € X; is a point such that e € T}e
and Tye = {e} then e is the end point of T}.



1.2 Banach and Nadler fixed point theorems

Banach and Nadler are considered as pioneers of metric F' — P theory for
contractive type mappings. They both, with their exceptional contributions,
have given new dimensions to F' — P theory for single and multivalued con-
tractive type mappings. Their work has laid new foundations in the field of

F — P theory, and research has moved into a whole new era.

1.2.1 Contraction mappings

Let X4 be a complete M — S and Ty a self mapping of X, into itself, then

the operator T is called contraction mapping if
d(Tfe,Tfé) < afd(e, €) (1.1)

for any element e, & € X4 and ay € (0,1).

1.2.2 Banach contraction principle

By a metric F' — P theorem we mean an existence result for a F' — P of map-
ping T, under conditions on a metric d, and which are not metric invariant.
The most important and fundamental metric FF — P theorem is the Banach
F — P theorem, also known as the contraction mapping principle. It will
not be false to state that the inception of the Banach contraction princi-
ple has opened many doors in metric fixed point theory. Experts in various
fields have been continuously generalizing this famous contraction condition,
which is quite promising. This theorem assures that every contraction from
a complete M — § into itself has a unique F' — P.

Stefan Banach (1892-1945) was a Polish mathematician and founder of
the great Polish School of Functional Analysis. This theorem first appeared
in explicit form in Banach’s PhD thesis (1922), which states that:

Theorem 1.2.1. Let X; # ¢ be a complete M — S with the metric d and
let Ty from Xy to itself be a contraction on Xy, that is,

d(Ty(e), Ty(€)) < awdl(e, €) (1.2)

where 0 < o,y <1 and V e, e € X4. Then T has a unique F' — P.



In 1969 Kannan obtained unique F' — P for mappings Ty from X into
itself satisfying:
d(Tfe,Tfé) = k[d(e,Tfe) +d(e, Tfé)] (1.3)

Ve, éee Xy, where 0 < k <1/2 and Xy is a complete M — S.

In 1972, Chatterjea quoted unique F' — P of a mappings T from X, to
itself satisfying:

d(Tfe,Tfé) = k[d(e,Tfé) + d(é,Tfe)] (1.4)

Ve, é e Xy, where 0 < k <1/2 and Xy is a complete M — S.

Mappings satisfying contractive conditions (1.3) and (1.4) are called
Kannan and Chatterjea mappings, respectively. It is observed that (1.3)
and (1.4) do not imply continuity of a mapping 7" on its domain, which
differentiates the nature of these mappings from the Banach contraction
mapping. It is important to note that both of these F' — P result have great

importance in modern fixed point theory for contractive type mappings.

1.2.3 Hausdorff distance

Let (Xg,d) be a M —S. Let N¢(Xg4) be the set of all nonempty subsets
of Xg, Cly(X4) be the set of all the nonempty and closed subsets of Xy,

By (X4) be the set of all nonempty and bounded subsets of X and CB(X)
as the set of all the nonempty, bounded and closed subsets of X;. For an
a < Xd,AQf S Nf(Xd),

d(a, A2y) = inf{d(a,b) : b€ Ny(Xq)}.

For Alf,AQf S Bf(Xd),
0(A1y, Agy) = sup{d(a,b) : a € Ay, b€ Aay}.

Note that J satisfies all of the conditions of a metric, except A1y = Aoy =
0(A1y, Azy) = 0. For A1y, Az € CBy(Xy), the Hausdorff metric on CBf(Xy)

is given as,

Hy(A1y, Aoy) = max{ sup d(e, Azy), sup d(é, Aif)}.
EEAlf éEAQf
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Thus the Hausdorff distance is a metric between two point sets.

Example 1.2.2. Let Xd =Rand Alf = [0, 1], Agf = [2, 3] then Hm(Alfa Agf) =
2

For Ays, Aoy € Cly(Xq), the generalized Hausdorff metric on Cly(Xy)
is given as,
Ho(Arj, Asy) — max{supeeAlf d(e, Azy), SUDze A, d(é,A1y)} if the maximum exists

oo otherwise

Many researchers working on this metric have made some exceptional contri-
butions. Recently Czerwik [43] defined Hausdorff b-metric for the space of all
nonempty, bounded and closed subsets of the b-M — S (X4, d, s), which is an
extension of the notion of a b-M — S (Xg4,d, s). Consider that (Xg4,d, s) as a
b-M — S. For e € Xgand A1y C Xy, d(e, A1) = inf{d(e,a) : a € A1}. For
Ay, Azp € OBy(Xg), the function H,, : CBy(Xq) x CBy(Xq) — [0,00) can
be defined by H,,, (A1, A2f) = max { SUDg, e, A(a; Azf), SUDg,e 4, d(az, Alf)}
is called a Hausdorff b-metric influenced by the well known b-M — S (Xg4, d, s).
All the properties of Hausdorff b-M — S are the same as that of a Hausdorff
metric, except the for triangle inequality, which in Hausdorff b-M — S takes
the form H,, (A1, Aay) < s[Hp(Ary, /13) —i—Hm(/ig, Azy)]. Czerwik [43] also
succeeded in extending the famous Nadler’s F' — P theorem to the setting
of Hausdorff b-M — S.

1.2.4 Nadler’s fixed point theorem

In 1967 Nadler initiated the idea for multi-valued contraction mapping, and
made use of the Hausdorff distance to give a multivalued version of the Ba-
nach contraction principle, which states that every multivalued contraction

mapping defined on a complete M — S has a F — P.

Theorem 1.2.3. Let (X4, d) be a complete M — S and T} : Xq — CB(Xg)
be a mapping such that

H,, (Tfe’ Tfé) < awd(67 é)v

Ve, é € X4 where o, € [0,1). Then Ty has a F — P.



Note that H,, is not a metric on the set of bounded subsets of X, which
is illustrated below through an example.

Let Xq = R, endowed with usual metric then H,,(A1s, A27) = 0 but
Arp # Agy for Aryp = [0,1) and Az = [0,1]. This implies that H,, is not a

metric on Bounded subsets of R.

Lemma 1.2.4. Let (Xg,d) be a M — S and Ayy € CLy(Xg). Then, for
each e € X4 and p > 1, there exists a b € Ay such that d(e,b) < qd(e, By).

1.3 Some generalizations of a metric space

Since the axiomatic interpretation of a M — S by French mathematician
M. Frechet, in the year 1906, advancements in mathematics in general, and
functional analysis in particular have taken new directions. Inspired by
this natural idea, several researchers have tried different generalizations of
this notion. In this section we shall limit our discussion to some of the

generalizations which are essential for this dissertation.

1.3.1 b-metric space

Another important generalization of M — S, which will be the center of our
discussion in one part of this dissertation is the b-M — S, which was intro-
duced by Czerwik [42]. For more details regarding the definition, conver-
gence and cauchyness in b-M — S please read [42] and it would be important

to note here that every M — S is a b-M — § but the converse is not true.

1.3.2 b-gauge spaces

In the recent past the Banach contraction principle has played a vital role
in the advancement of metric fixed point theory. Several generalizations in
different directions have proved the fruitfulness of this fundamental princi-
ple. One important concept in this regard is that of gauge spaces.

A Gauge space can be characterized by the fact that, if we consider two dis-
tinct points, then the distance between them may not be zero. This simple
concept has been the center of interest for many researchers world wide. For

more details on gauge spaces see [46]. The Banach contraction principle was



generalized to gauge spaces by Frigon [51] and Chis and Precup [38]. And
for more details and recent developments in b-gauge spaces please check Ali
et al.[21].

1.3.3 Vector valued metric space

Let X4 be a non-empty set and R™ is the set of all m-tuples of real numbers.
If (,7 e R™, { = (&1,62,...,67,1), 1= (M1,M9.--,7,,) and ¢ € R, then by
¢ <7 (vesp., ¢ < 7)) we mean ; < 7; (resp., ¢; < #;) for i € {1,2,...,m}
and by ¢ < ¢ we mean that é“l < ¢ fori € {1,2,...,m}. A mapping
dy: Xg X Xg — R™ is called a vector-valued metric on X, if the following

properties are satisfied:
(dy,) dy(e,€) >0V e, &€ Xg;if dy(e,€) =0, then e = ¢;
(dy,) dy(e,€) = dy(é,e) Ve, ée Xg;

(dys) do(e, &) < dyle, &) + dy(é,6) YV e,é,é € Xy.

A set X4 equipped with a vector-valued metric d, is called a generalized-
M — S and it is denoted by (Xg4,d,). The notions that are defined in the
C-M-S§ are similar to those defined in usual M — S.

1.3.4 Uniform space

Consider Xy as a nonempty set. The nonempty family ¥, which is actually
the family of subsets of X; x Xy is said to be the uniform structure of Xy,

if the following properties are satisfied:

(i) if Gy € ¥y, then the diagonal {(e,e)|le € X} is contained in Gy;

(ii) if G¢ € ¥y and Hy is contained in Xy x X4 which contains G, then
Hy € vy

(iii) if Gy and Hy € 9y, then Gy N Hy € ¥y;

(iv) if G; € ¥y, then 3 Hy € 9, such that, whenever (e, €) and (&, ) € Hy,
then (e, ¢€) € Gy;



(v) if Gy € ¥y, then {(€,¢e)|(e,€) € Gy} also € Vy.

Then we call the pair (Xg,9) a uniform space and the element of ¥y is
said to be the neighborhood. The pair (Xg4,7y) is said to be quasi-uniform
space (see e.g. [31, 100] ) if we omit property (v). Let A, = {(e,e)le € X4}
be the diagonal of a non-empty set Xy4. For Vi, Vo € X x X4, we shall use

the following setting in the sequel
VioVa = {(e,&)| there existsé € X, : (e,é) € Vo and(é, ) € V1}

and
-1

Vit ={(e.®)le) € Vi}.

For a subset V; € ¢ , a pair of points e and € are considered to be Vi-close
if (e,€) € V} and (é,e) € Vi. Furthermore, a sequence {e,} in Xy is said
to be a C — § for ¥y, if for any Vl € Uy, there exists Ny > 1 such that e,
and e, are Vi-close for n, m > Ny. For (Xg4,79¢), there is a unique topology
74(97) on X4 generated by Vi(e) = {é € X4|(e,é) € V1} where V} € 9f. A
sequence {ey} in X is convergent to e for ¥, denoted by 71151;0 en = e, if for
any Vi € ¥, 3 ng € N such that e, € Vi(e) for every n > ng. A uniform
space (Xg,7;) is called Hausdorff if the intersection of all the Vi € 9, is
equal to A, of Xy, that is, if (e,é) € Vi V V| € vy implies e = €. If
‘71 = Vfl then we shall say that a subset ‘71 € vy is symmetrical. We

shall assume that each V; € ¢ ¢ is symmetrical. For more details, see e.g.

[4, 3, 2, 10].

1.4 Weaker forms of contractions

As we know, without any doubt, the Banach contraction principle is con-
sidered the most fundamental entity in metric /' — P theory and, from the
point of view of research, this contraction principle is considered as an im-
portant tool both in pure and applied mathematics. Researchers worldwide
have been constantly using different methods and techniques to generalize
this famous contractive condition.

In this section we will discuss some of the weaker forms of contractions

which will be useful in the later chapters.



1.4.1 F,-contraction

Recently Wardowski in his work [ see [99]] introduced a new family of map-
pings called F), or §, family. Making use of these mappings from §y, family,
Wardowski succeeded in introducing a new contraction condition, which he
named as the F,-contraction. And which generalizes the Banach contraction
in a different and nice way. Later on, many researchers worldwide general-
ized this result, see for example, [83, 41, 65, 85, 72, 76, 23, 67, 25, 66, 56].
Wardowski [99] introduced the §, family as: Fy is the class of all functions

F, : (0,00) — R satisfying the following three assumptions

(Fw,) Fy is strictly increasing, that is, ¥V by,be € (0,00) with by < be, we
have Fy,(b1) < Fy(ba).

(Fuw,) For each sequence {0, } of positive real numbers we have lim,, o, 0, =

0 if and only if lim,,_,o0 Fiy (0y) = —00.
(Fus) There exists k € (0,1) such that lim,_ o+ 9¥F () = 0.
Here we have highlighted some of the examples of such functions.
e F,,=lneVec(0,00).
e Iy, =e+1IneVeec(0,00).
o Fy. = —ﬁ Vee (0,00).

Further, Wardowski [99] introduced F,-contraction and related F' — P

theorem as given below:

Theorem 1.4.1. [99] Let (Xg4,d) be a complete M — S and let Ty : X4 —
Xy is F,-contraction, that is, 4 I, € §w and a 7 > 0 such that Ve, e € Xy
with d(Tye,Tt€) > 0, we have

Tf+ Fw(d(Tfe,Tfé)) < Fy(d(e, €)).
Then T has a unique F' — P.

This theorem reduces to Banach contraction principle if Ty is F,-

contraction.



Many researchers have made some exceptional contributions and have fur-
ther generalized Wardowski’s F,-contraction. For further details please con-
sider [65], [85], [40]

1.4.2 «,— &-contraction

The notion of the oy, — @—contraction principle is another contribution in
the developments of metric ' — P theory. This technique was introduced
by Samet et. al. [84], which generalizes the well known Banach contraction

and is considered as unique in its own way.
awd(Tye, Ty) < 9(d(e, €))

Where ¥ denote the family of all non-decreasing functions, 1 : [0,00) —
[0,00), such that, > > zﬂn(t) < o0,V t >0, where ¢ is the n' iterate
of ¢. If ¢ € W then ¢(t) < t, V¢ > 0. And also if Ty : Xqg — Xq and
ay : Xg x Xq — [0,00), we say that T is a,-admissible, if for e,é € X,
and ay (e, €) > 1, we have o, (Tye,Tfé) > 1. With this break through re-
search in metric F' — P theory has widened to many different directions.
The ay,-admissibility condition used by Samet [84], has been used quit
frequently to discuss existence and uniqueness of F' — P’s by different re-
searchers in different ways. These two conditions introduced by Samet have
been uploaded in a number of occasions by different experts, please see
[11, 21, 23, 67, 25, 66, 56, 20, 24, 22, 57, 58|.

Note that by taking oy, = 1V e,é € Xy and 1)(t) = at where a € [0, 1],

the a, — 1-contraction reduces to

d(Tre, Tre) < d(e,é€).

1.4.3 Perov-contraction

Another generalization of our interest in this dissertation was initiated by
Perov [74] in 1964, who generalized Banach contraction principle for contrac-
tion mappings on spaces enriched with vector-valued matrices. We denote 0
by the m x m matrix with all zero entries. A matrix A is said to be conver-
gent to zero if and only if A1} — 0 asn — oo (see [96]). Also for some basic

definitions and notions regarding Perov-contraction please se[[50], [78], [95]]
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Theorem 1.4.2 ([74]). . Let (X4,d) be a complete generalized-M — S
and the mapping Ty: Xq — X4 with the property that 3 a matrix A;; €
Mym(Ry) such that d(Ty(e), Ty (€)) < Aiyd(e,€) Ve, é € Xg. If Aryis a

matrix convergent towards zero, then
(1) Fiz(Ty) = {e"};
(2) the sequence of successive approximations {e,} such that, e, = f"(eq)
is convergent, and it has the limit e*, V ey € X§.

1.4.4 Presic¢ contraction

In 1965 Presi¢ [75] also made a successful attempt to generalize the Banach

contraction. His work is stated in the following theorem.

Theorem 1.4.3. [75] Let (X4,d) be a complete M — S, k be a positive
integer and T : X{; — X4 be a mapping such that

k
d(Tf(eb €2, " aek)a Tf(€2a €3, " 7e/€+1)) < Z a’id(ei7 e’i+1) (15)
i=1
for every eq,ea, - , ek, ex11 € Xy, where by, ba, - - - , aj are nonnegative con-

stants such that Zle a; < 1. Then 3 a unique point e € Xy such that
Ty(e,e, - ,e) = e. Moreover, if er,eg,- -, e, are arbitrary points in Xy
and V n € N we have

En+k = Tf(eny En+tl," " 76n+k—1) (16)

then the sequence {e,} is convergent and lime,, = T¢(lim ey, lim ey, - - - ,limey,).

Note that a point e € X4 is known as F' — P of Ty : Xg — Xy, if
Ty(e,e,--- ,e) =e.

Ciri¢ and Presi¢ [37] further generalized the above result, please see [37].

1.4.5 Proximal contraction

Fixed point theory focuses on the techniques to solve non-linear equations
of the kind T'ye = e, where T} is self mapping. But if T’ is not a self map-
ping, i.e Tf : A1y — Azy where A1y and Asy are non-empty subsets of a

11



M — S Xg4, then the equation Tre = e does not necessarily have solution.
Consequently, it becomes the target to find out such an element e which is
in any sense nearest to Tre. In fact best approximation theory establishes
an approximate solution to the equation Tre = e. Best proximity theorems
provide sufficient conditions for the existence of an element e such that the
error d(e,Tre) is minimum. As it can be seen easily that best proximity
point theorems are simple generalization of the F' — P theorems. Some best
proximity theorems may also melt down to F' — P theorems, if the map-
ping is considered as a self mapping. In this regard Fan[48] proved a best
proximity theorem considering a continuous self mapping. Many authors
have extended this theorem in various directions and in this context Jleli
et al. [54] introduced the notion of aw—{ﬂ—proximal contractive type map-
pings and proved some best proximity point theorems. Later on, Ali et al.
[22] extended these notions to multivalued mappings. Many authors ob-
tained best proximity point theorems in different settings, see for example
[5, 6, 7, 13, 14, 15, 16, 44, 47, 45, 62, 77, 79, 97, 101]. Abkar and Gbeleh [7]
and Al-Thagafi and Shahzad [14, 16] investigated best proximity points for
multi-valued mappings.

Let (Xg,d) bea M — S. For A1y, A2y C Xg, we use the notions: d(A1y, Aay) =
inf{d(a,b): a € A1y, b€ Ass}, Ag = {a € A1y : d(a,b) = d(A1y, Azy) for someb €
Az}, Bo = {b € Azp : d(a,b) = d(Aiy, Asy) for some a € Ay}
A point e* € Xy is considered to be a best proximity point of mapping
Ty : Ay — CLj(Agy) if d(e*, Tre*) = d(A1y, Aay). When Ay = Ay, the
best proximity point reduces to F' — P of the mapping 1.

Definition 1.4.4. [101] Let (A;f, A2¢) be a pair of nonempty subsets of a
M — S (Xq,d) with Ag # (). Then the pair (A, Azf) is considered to have
the weak P-property if and only if for any e1,e2 € A1 and €1,€3 € Aay,

d(ey,€1) = d(A1y, A
O

Lemma 1.4.5. Let (X4,d) isa M — S and Ay € CLf(Xg). ThenVe € Xqy
and g > 1, there exists b € Ay such that d(e,b) < qd(e, Aay).
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1.4.6 Jachymaski contraction

Jachymaski [52], generalized the Banach contraction principle on a com-
plete M — S enriched with a graph. He introduced the notion of Banach

G-contraction as follows:

Definition 1.4.6 ([52]). Let (M,d) be a M — S, let A be the diagonal of
the Cartesian product Xy x X4, and let G be a directed graph such that
the set V(G) of its vertices coincides with Xy and the set E4(G) of its
edges contains loops; that is, E¢(G) O A. Assume that G has no parallel
edges. A mapping Ty: Xq4 — Xy is called a Banach G-contraction if (¢)
e, € X4 ((e,€) € Eg(G) = (Tre,Tre) € Ey(Q)), (13) Ty, 0 <y < 1
such that, e, é € X4, (e,€) € Ey(G) = d(Tre, Tre) < ayd(e, €).

Further note that a mapping Ty: Xq — Xy is called G-continuous, if V
sequence {ey,} in Xg with e, — e and (ey, en+1) € Ey(G) V n € N, we have
fen — fe.

For some other interesting extensions of Banach G-contraction we refer

to [98, 81, 55, 81, 28].
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Chapter 2

Fixed Point Theorems in

Gauge Spaces

Throughout this chapter F' — P represents a fixed point, M — S represents
a metric space, C — S represents a Cauchy sequence. This chapter is aimed
on the development of F' — P theory for single-valued and multivalued map-
pings in gauge and b-gauge spaces, where we will use different contraction
type-conditions. This chapter has two sections. In the first section, we
will introduce some F,-type-contractions in the setting of gauge spaces and
obtain some F — P theorems for such mappings. We will utilize ideas like
a—admissibility and Hardy-Rogers contraction mapping to prove our re-
sults.

We will derive some F' — P theorems for mapping in gauges spaces with a
graph as the consequences of our results. To support and claim the validity
of our results, we will discuss an application of our results by discussing a
Volterra integral equation at the end of this section.

In the second section we will introduce some new F' — P theorems for multi-
valued operators satisfying an «,,—contraction in b—gauge spaces. We will
make use of the Hardy-Rogers contraction frequently to prove our results.
At the end of this section we will discuss a possible application by discussing
a Volterra integral equation, and we will also provide an example to support

our results.
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2.1 Fixed points of F,-contractions in Gauge Spaces

In this section we generalize the results of Wardoski [99] on gauges space by
involving the ideas of Samet’s [84] on a-admissibility and the Hardy-Rogers
contraction mapping.

Through out this section & is directed set and X, is a nonempty set
enriched with a separating complete gauge structure {d, : p € &}.
We now present our first result of this section which is a generalization and
modification of the well known F,,-contraction presented by Wardowski[99].
We generalize the F,-contraction by omitting the property (F,) of Defini-
tion 1.4.1, in Chapter 1 of this dissertation.

Theorem 2.1.1. Let Ty : X3 — Xy be a mapping for which we have F, in
G and a 7y > 0 such that

ay(e,€) > 1= 715+ Fyu(d(Tre, Tr€)) < Fpy(M(e, €)YV pe &,  (2.1)

where M (e, €) := max{d,(e, €),d,(e,Tt€),d, (e, Tsé), [d,(e, Tré)+d, (€, Ts€)]/2}, ¥V 11 €
6, Ve, e € X4, whenever d,(Tye,T¢é) # 0. Further, assume that the fol-

lowing conditions hold:
(i) 3 an eg € X such that o, (eo, Treg) > 1;
(ii) Ve, e € Xg with a(e, €) > 1, we have a(Tye, Ty€) > 1;

(iii) for any sequence {e,} in Xy such that a,(en,ent1) > 1V n € N, and

en—>easn—>oo,then0z(e;,e)21Vn€N.

Then Tt has a F' — P.

Proof. By hypothesis (i), 3 an eg € X with ay,(eg, e1) > 1, where e; = T'ep.

From (2.1), we have

T+ Fu(du(er, e2)) = 75+ Fu(du(Treo, Trer))
Fu(M(e, €))
Fyy(max{dy(eo, 1), dy(eo, Treo), duler, Tyer), [dy(eo, Trer) + dy(er, Treo)]/2
Fyy(max{d,,(co, e1) + dy(e1, e2), [dyu(co, e2) + 0]/2})

(

= Fy(max{d,(eo,e1),du(e1,e2)}) Vi € &.

VAN
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If the maximum is d,(e1,e2) for all 4 € &, then we have a contradiction.

Therefore we have
Tf+ Fw(du(el,eg)) < Fw(du(eo,eﬁ), Yue &

which, since Fy, is increasing, implies that d,,(e1,e2) < d,(eg,e1) for all p €
6. Continuing the argument we obtain the fact that d, (e, enq1) forall pe &
is a monotone decreasing nonnegative sequence with limit v > 0. Suppose

that v > 0. Then from Theorem 2.1.1, for all n € N,

Fu(v) < Fu(du(en, Tren)) < Fu(du(en—1,Tren—1)) =75 Vu €&
< Fw(du(en_g,Tfen_g)) — 27'f Yue 6
< - < Fyldu(eo, Treg)) —nty, Y € 6.

Furthermore,
Fy(d,(en,ent1)) < Fy(dy(eo,e1)) —nry VneNand pe 6. (2.2)

Since limy, oo [Fiw(dyu(en, Tren) — n7¢] = —oo for all p € &, 3 an integer
n1 € N such that

Fy(du(en, Tren)) —nty < Fy(y),Vn > nq and p € &.
Then, for all n > nj, we have
Fy(v) < Fy(du(eo, Treo)) < Fu(y) Vi € 6,
a contradiction. Therefore
v = nll)rgo dy(en,ent1) =0V € 6.

Let (dy)n = du(en, ent1) Vo € 6V n € N. From (F,,) there exists k € (0,1)
such that
lim (d,)FFy,((dy)n) =0 VY € 6.

n—oo

From (2.2) we have

(d)hF((dp)n) = (d)iFuw((dy)o) < —(du)inTy <0V neNand p € 6.
(2.3)
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Now if we let n — oo in (2.3), we get

lim n(d,)* =0Vu e 6. (2.4)

n—oo

This implies that 3 n; € N such that n(du)f; <1Vn>mnjand u € &. Thus,
we have

1
(dy)n < 7% Vn>ng and p € 6. (2.5)

To prove that {e,} is a C-S. Consider m,n € N with m > n > n;. By

making use of triangle inequality and (2.5), we have

d,u(ena em) < d,u(ena €n+1) + du(enJrl, 6n+2) + -+ du(emflv em)

m—1 00 00
= Z(du)i < Z(du)i < Z 21% Yy € 6.

As we know that ) .7, 11% is convergent series. Thus, lim, o0 dy(en, em) =
0 Vi € &. Which implies that {e,,} is a C-S. By completeness of X, 3 e* €
Xy such that e, — e* as n — oo. By condition (iii), we have ay, (e, e*) > 1
vV n € N. We claim that d,(e*,Tfe*) = 0 Vu € &. contradictory suppose
that d,(e*,Tre*) > 0 for some p, 3 ng € N such that d,(e,,Tre*) > 0V
n > ng. Thus V n > ng by making use of triangular property and (2.1), we

have

du(e”, Tre™) < du(e”, enyr) + dulenta, Tre")
= du(e*,ent1) + du(Tren, Tre")

< du(e”, ent1) + apdy(en, €) + budy(en, ent1) + cudu(e”, Tre"),

+eud,(en, Tre*) + Lyd, (€%, entr). (2.6)

Now if we let n — oo in (2.6), we have
d(e*,Tre") < (cpu+eu)du(e”, Tre™) < dy(e*, Tre").
Which is a contradiction. Thus d,(e*,Tfe*) =0V p € &. As X, is separat-

ing we have e* = Te*. O

Consequences

Now, we derive some F' — P theorems for mappings on gauge space with

a graph defined on X4. Throughout this subsection we assume that G is
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a directed graph, such that the set of its vertices V; coincides with X,
(i.e., V; = Xg4) and the set of its edges E, is such that £, O A, where
A ={(e,e): e € X4}. Let us also assume that G has no parallel edges. We
can identify G with the pair (Vj, E,).

The following corollaries can be obtained from our results by defining an
ay @ Xg X Xg — [0,00) as:

1 if (e,€) € E,

(e, é) =
0 otherwise.
Corollary 2.1.2. Let Ty : Xy — X4 be a mapping for which we have an

F, in §y is continuous and a 7y > 0 such that

(e,6) € By =1, + QMAQWQWgﬁme%MaQQ@JﬁwMaﬂa

d#(e, Tfé) + du(é, Tfe)
2

} n Ldu(é,Tfe)> Ve

Ve, e € X whenever d,(Tye,Tté) # 0, where L > 0. Further suppose that

the following conditions hold:
(i) 3 an eg € X4 with (eo, Treo) € Ey;
(ii) Ve, é € X4 with (e, €) € E, we have (Tre, Ty€) € Eg;

(iii) for any sequence {e,} C X, such that e, — e as n — oo and

(en,ent1) € Eg ¥ n € N, we have (ey,e) € E; ¥V n e N.

Then Tt has a F' — P.

2.1.1 Application

Consider the Volterra integral equation of the form:

0
u(t) = /0 R(t, 5, u(s))ds, t € I = [0, 00) (2.8)

where f : I — R is a continuous function with 0 < f(¢t) V ¢t € I and
R: IxIxR — Risa continuous and nondecreasing function(nondecreasing
in the third coordinate). Let X; = (C[0,00),R) be the space of all real

valued continuous functions. Define the family of pseudonorms by ||ull, =
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maxe(on){|u(t)| exp(—|7st])}, V n € N. By making use of this family of
pseudonorms we get a family of pseudo metrics as d,(u,v) = |u — v|y.
Clearly, §w = {d, : n € N} defines a gauge structure on X4, which is
complete and separating. Define the graph G = (V,, Xg), as V; = X4 and
E; = {(u,v) s u(t) <o(t) Vt}.

Now we will introduce an existence theorem for the solution of ?77.

Theorem 2.1.3. Let Xy = (C[0,00),R) and suppose the operator Ty :
X4 — Xy is define by

0
Trult) = /0 R(t, s, u(s))ds, t € I = [0, 50),

where f : I — R is a continuous function with 0 < f(¢t) V ¢t € I and
R:IxIxR — Risa continuous and nondecreasing function. Assume that

the following conditions hold:

(i) 3a7f > 0and ak : Xg; — [0,00) such that, V (u,v) € E; and

t,s € [0,n], we have

exp(—7y)
_ < 2PN T .
|R(t,s,u) — R(t,s,v)| < F(u+v) dp(u,v) VneN;
moreover,
‘ /f(t) 1 p -
s| < exp|Tt
o k(u(s) +v(s)) !
Vtel,

(ii) 3 a ug € Xgq such that (ug, Trug) € Eg;
(ili) V u,v € Xq with (u,v) € E4 we have (Tyu,Tv) € Eg;

(iv) for any sequence {u,} C X, such that w, — w as n — oo and

(Un,unt1) € Eg ¥ n €N, we have (up,u) € Eg ¥V n e N.

Then the integral equation (2.8) has at least one solution.
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Proof. For any (u,v) € Eg and t € [0,n] V n > 1, we have

f@)
Tyut) = Tyoe) < [ IR uls) = Rt o(s)lds
T _ew(=Ty) u,v)ds
< ) T ey
f®) 1
= exp(—Tf)dn(u,v)/o mds
< eXp(|Tft|)eXp(—Tf)dn(u,U).

Thus, we have
Tru(t) — Tro(t)| exp(—|7yt]) < exp(=7f)dn(u,v).
Equivalently,
dn(Tru, Tpv) < exp(—7)dn(u, v).

Since the natural logarithm belongs to §w, applying it to the above inequal-
ity, we get
In(dn (T, Ty)) < In(exp(—77)dn(u, v).

After some simplification, we get
7¢ +In(dp(Tyu, Tyv)) < In(dp(u,v)) ¥ n e N.

Thus Ty satisfies (2.1.2) with a, = 1, and b, = ¢, = €, = L, = 0V
n € N and Fy,(u) = Inu. As R is nondecreasing, for (u,v) € E,, we have
(Tyu, Tyv) € E4. Further, all of the other conditions of the above Corollary
2.1.2, follows immediately from the hypothesis of the theorem. Thus, 3 a
F-P of the operator Ty; that is, integral equation (2.8) has at least one

solution. 0

2.2 Fixed points of o,,~contractions in b-gauge spaces

In this section we introduce some multivalued «,,-contractions on b-gauge
spaces. We also prove the existence of F' — P’s of multivalued mappings
satisfying one of these conditions. The applicability of our results is shown

at the end of this section.
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Through out this section, & is directed set and X4 is a nonempty set
enriched with a separating complete bs-gauge structure §n = {d, : p € G}.
Further, a,, : X4 x X4 — [0,00) be a mapping. For each d, € §n, CL,(Xq)
denote the set of all nonempty closed subsets of Xy with respect to d,.
For each € & and A;y, Ay € CL,(Xy), the function H, : CL,(Xy) x
CL,(Xq) — [0,00) defined by

max { SUPee A, ; dule, Azf), Subsca, ; du(é, Alf)}, if the maximum exists;
H,(Arg, Azy) =

0, otherwise

is a generalized Hausdorff bs-pseudo metric on C'L,(Xy4). We denote by
CL¢(Xg) the set of all nonempty closed subsets in the bs-gauge space (X4, T(Fw))-

Theorem 2.2.1. Let Ty : X3 — CL;(Xg) be a mapping such that, V 1 € &,

we have

H,(Tye,Tye) < aydy(e, €)+bud, (e, Tre)+cudu(€,Tré)+e,d, (e, Tré)+L,d, (€, Tre) ¥ auy(e, €) > 1
(2.9)

where, a,, by, ¢y, e, Ly, > 0, and 52% + s2bu + SQCM + 233(3“ < 1.
Further, assume that the following conditions hold:
(i) 3 an eg € X4 and an e; € Treg such that ay(eg,e1) > 1;
(ii) if vy (e, €) > 1 then, for a u € Tye and a v € Tyé, we have o, (u,v) > 1;

(iii) if {e,} is a sequence in X, such that a,(en,ent1) > 1V n € N and

en — € as n — 00, then ay(e,,e) > 1V neN;
(iv) V{qu : qu > 1}ece and e € Xy 3 € € Tre such that
dy(e,€) < qudu(e,Tre) V pe 6.

Then Tf has a F — P.

Proof. By hypothesis (i), 3an eg, e; € Xy such that ey € Treg and ay,(eg, €1) >
1. Now, it follows from (2.9) that

H# (Tfeo, Tfel) < a#du(eo, 61)+bud#(60, Tf’€0)+0#d# (61, Tf€1)+€#d#(60, Tf@l)‘i‘Lud#(el, Tfeo) A ne G.
(2.10)
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Since dy(e1,Tre1) < Hu(Treq,Tre1) and dy(eo, Tre1) < s[du(eo,e1) +
du(e1,Tyer)], from (2.10), we get

1
du(el, Tfel) S —d#(eo, 61) (2.11)
Su
where, £, = mﬁ > 1. Using hypothesis (iv) 3 an ex € Tre; such that

61,62 A / d el,Tfel (2.12)

Combining (2.11) and (2.12) we get
1

N

Hypothesis (ii) implies that a,(e1,e2) > 1. Continuing in the same way, we

du(61,62) < du(60,61) A n e S. (2.13)

get a sequence {e,,} in Xy such that oy, (€m,em+1) > 1 and
1

VEu

For convenience we assume that 7, = f V p € &. We shall now show
n

that {e;,} is a C-S. For each m,p € N and p € &, we have

dy(€ms em+1) < ( ) du(eo,e1) V p € .

m+p—1
dy(ems €mtp) < Z s'dy(ei, eit1)

i=m
m—+p—1

< S S da(eoer)

i=m

< Z 877# (€0, e1) < oo (Asweknowthat sn, < 1).

i=m

This implies that {e,,} is a C-S in X;. By completeness of X4, we have an

e* € X; such that e,, — e* as m — oo. By making use of hypothesis (iii),
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triangle inequality and (2.9), we have

IN

d,(e*, Tre") e’ em—1) + sd,(em—1,Tre")

sd,(
sdy(€*, em—1) + sH(Trem, Tre")
s

IN

IN

e’ em—1) + saud,(em,e) + sbud,(em, Trem) +
scudy (¥, Tre*) + seudy(em, Tre*) + sLydp (€, Trem)

IN

sdy (€, em—1) + sapdy(em, ") + sbud,(€m, emy1) +

scudy (¥, Tre*) + seydy(em, Tre™) + sLyud, (€%, emy)

IN

sdy (e, em—1) + sapd,(em,e”) + sbud,(€m, ems1) +
scudy (e, Tre*) + seylsdy(em, e*) + sd,(e*, Tre*)]
+sLyudy(e emyr) ¥V pe 6.

Letting m — oo, we get
du(e*, Tre*) < (sc, + s2e,)dy(e*, Tre*) ¥V p € G,

which is only possible if d,(e*,T¢e*) = 0. Since the structure {d, : p € &}

on Xy is separating, we have e* € Te*. ]

In case of single valued mapping Ty : X4 — X4, we have the following

result:

Theorem 2.2.2. Let Ty : Xy — X, be a mapping such that V y € &, we

have

d.(Tre,Tre) < a,d,(e,€)+bud, (e, Tre)+cud, (€, Tre)+e,d, (e, Tre)+L,du (e, Tre) ¥V ay(e,€) > 1
(2.14)

where, a,, by, ¢y, e,, L, > 0, and sa, + sb, + sc, + 2826M < 1.
Further, assume that the following conditions hold:

(i) 3 an eg € X4 such that o, (eo, Tre0) > 1;

(ii) if (e, €) > 1, then ay,(Tre, Tré) > 1;

(iii) if {e,} is a sequence in Xy such that a(en,enr1) > 1V n € N and

en — € as n — 0o, then ay(e,,e) > 1V neN;
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Then Tt has a F' — P.

W2 denotes the family of nondecreasing functions 1 : [0,00) — [0, 0)

such that:

(1) $(0) = 0;

() P(pt) = pi(t) < pt ¥ p,t >0 ;

({bg) > SQi?ZJi(t) < 00, where s > 1.

Note that in the following theorems we have used the gauge structure

with s > 1.

Theorem 2.2.3. Let Ty : Xq — CL¢(X,4) be a mapping such that V € &

we have

. y . ooy L . .
HM(Tfe’Tfe) < wu(max{dﬂ(eae)adu(ea Tf€),du(6,Tf€), %[dﬂ(e’Tfe) + dﬂ(evae)]})
+L,d, (€, Tre) ¥V ayle,€) >1 (2.15)

where, 121” € \I/Sz and L, > 0. Further, assume that the following conditions
hold:

(i) 3 an eg € X4 and e; € Tyeq such that o, (eg,e1) > 1;
(i) if (e, €) > 1,V u € Tre and v € Tyé, we have ay(u,v) > 1;

(iii) if {e,} is a sequence in Xy such that o (en,entr1) > 1V n € N and

en — € as n — 0o, then ay(e,,e) > 1V neN;

(iv) V e € X4, we have é € Tre such that

dy(e,€) < sd,(e,Tre) ¥V € 6.

Then Tt has a F' — P.
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Proof. By hypothesis we have an eg € Xg and e; € Teg such that o, (eg,e1) >
1. From (2.15), we get

du(el,Tfel) < HM(Tfeo,Tfel)
< &u(max{du(emel)’du<607Tf€0):d#(el>Tfel)>

1

%[du(eo, Tfel) + du(el, Tf@o)]}) + L#d“(el, Tfe())

Wy, (max{d, (o, €1), dy(eo, 1), dy(er, Trer),

o-ls(dueo,e1) + dyer, Tren)J}) + 1,0

= P,(dule,e1)) V€ G. (2.16)

IN

Otherwise we have a contradiction. By hypothesis (iv), for e; € X4, we have

an ep € Treq such that
dy(er,e2) < sdy(er, Trer) < S@#(du(eo,el)) Ve 6. (2.17)
Applying 1}#, we have

Dy ler,e2)) < B, (50, (duleo,e1))) = ss(du(eo,er) V¥ p € .

By hypothesis (ii), it is clear that o, (ei,e2) > 1. Again, from (2.15), we

obtain the following inequality after some simplification.
du(eg,Tfez) < Hu(Tfela Tf@g) < KZJM(du(el, 62)) A n e S. (2.18)
By hypothesis (iv), for ea € X4, we have an e3 € Tyes such that

~ ~2
d,(e2,e3) < sdy(e2, Trea) < sqb#(du(el,ez)) < S2w#(du(60,61)) VueGo.
(2.19)
Clearly, ay, (€2, e3) > 1. Proceeding in the same way, we get a sequence {e, }

in X4 such that oy (em, em+1) > 1 and
du(em»€m+1) < Sm&;?(du(emel)) VueG6.

We now show that {e,,} is a Cauchy sequence. For m,p € N, we have

m—+p—1
du(ema €m+p) < Z Sld“(€i7 ei-‘rl)
i=m
m—+p—1 )
S~
Z sglwu(d#(eg,el)) < 00.

t=m

IN
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This implies that {e,;,} is a C-S in Xy. By completeness of X4, we have
an e* € X, such that e,, — e* as m — oco. Using hypothesis (iv), triangle

inequality, and (2.15), we have

dy(e*, Tre*) < sdy(e,em—1) + sdy(em—1,Tre")

< sdy(€*,em—1)+ sHu(Trem, Tre")

< sdy(€e*,em—1) + s{bu(max{d“(em, e*),dy(em, Trem), dyu (e, Tre™),
1 * * *
?S[du(emvae ) + du(e >Tf6m)]}) + Ludu(e vaem)

< sdy(€*, em—1) + smax{d,(em,e"),du(em, ems1),du(e*, Tre*),
1 * * *
?S[d#(eﬂ% Tfe ) + d#(e >em+1)]} + Lﬂdﬂ(e 7em+1)

< sdy(€*, em—1) + smax{d,(em,e"),du(em, em+1),du(e", Tre*),

1 * * * *
%[sdu(em,e )+ sd(€*,Tre*) + du(e”, ems1)]}
+L,d, (e ems1) V peB.

Now if we let m — oo, we get
d,(e*,Tye*) < sdy(e, Tre").

This is not possible, if d,(e*,Tre*) > 0. Thus, d,(e*,Tre*) =0V p € 6&.
As we know that the structure {d, : p € &} on X, is separating, we have
an e* € Tre™. O

By considering Ty : X4 — X4 in above theorem we get the following one.

Theorem 2.2.4. Let Ty : X4 — Xy be a mapping such that V u € 6, we

have

~ 1
dﬂ(Tfev Tfé) < w,u(max{dﬂ(ev é)v d“(e, Tf€)7 d,u(é7 Tfé)> ?8 [d#(ev Tfé) + d#(év Tfe)]})

+L,d,(e,Tre) V ay(e€) >1 (2.20)
where 1 u € W,>. Assume that the following conditions hold:
(i) 3 an eg € X4 such that o, (eo, Tre0) > 1;
(ii) if cuy(e, €) > 1, then oy (Tre, Tre) > 1,

(iii) if {e,} is a sequence in Xy such that a,(en,enr1) > 1V n € N and

en — € as n — 0o, then ayy(e,,e) > 1V neN
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Then Tt has a F' — P.

We shall now introduce a F' — P theorem containing Feng-liu type ay,-

contraction:

Theorem 2.2.5. Let Ty : X4 — CL¢(X4) be a mapping such that V 1 € S,

we have
du(€,Tpe) <, (dule, &) ¥ awle,€) > 1 with e € X4 and é € Tre (2.21)
where, {bu € U,». Further, assume that the following conditions hold:

(i) 3an eg € X4 and ey € Tyeq such that o, (eg,e1) > 1;

(i) Ve € Xq and € € Tre with ay(e,€) > 1, we have a,(é,v) > 1V

v e Tye;
iii) V e € X4, we have é € Tre such that
f

dy(e,€) < sdy(e,Tre) ¥ € 6.
Then Ty has a F' — P, provided that d,(e, Tte) is lower semi continuous,
VueG.

Proof. By hypothesis (i) we have an eg € Xy and e; € Tyep such that
ayw(ep,e1) > 1. From (2.21), we get

dyu(er,Trer) < ¥, (du(eo, e1)) ¥ p € &. (2.22)
By hypothesis (iii), for e; € X4, we have an ey € Tre; such that
dy(e1, e2) < sdy(er, Trer) < s, (du(eo, e1)) V p € &. (2.23)
Applying QZJ#, we have

Dlder, e2)) < 0, (59, (dyeo, €1))) = st (dyleo,e1)) ¥ i € 6.

By hypothesis (ii), it is clear that a,(e1,e2) > 1. Again from (2.21), we
have
du(eg,TfGQ) < {Du(dﬂ(el, 62)) VueG. (224)
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By hypothesis (iii), for ea € X4, we have an e3 € Trea such that

~ ~2
du(ez,e3) < sdy(ez, Trea) < s, (du(er,e2)) < 52¢“(du(eo,el)) Ve 6.
(2.25)
Clearly, au,(e2,e3) > 1. Proceeding in the same way, we get a sequence {e, }

in Xy such that ay(em, em+1) > 1 and
du(em7€m+1) < Smizl(du(emel)) VwpeG6.

We shall now show that {e,,} is a C-S. For m,p € N, we have

m—+p—1
du(emaem—&-p) < Z Szd,u(eiyei-‘rl)

i=m
m+p—1

< Z sQi@L(du(eo,el)) < 0.

i=m
This implies that {e,,} is a C-Sin X;. By completeness of Xy, we have an
e* € Xgsuch that e,, — e* asm — oo. Thus, we have lim, oo du(€m, Trem) =
0. By lower semi continuity of d,(e,Tye) and last fact, we conclude that
dy(e*,Tre*) =0V u € 6. As we know that the structure {d, : p € &} on
X, is separating, thus e* € Tye*. O

For singlevalued mapping the above theorem reduces to following:

Theorem 2.2.6. Let Ty : X; — X4 be a mapping such that V u € & we

have
du(Tfe,TJ%e) < @M(du(e,Tfe)) YV ay(e, Tre) > 1, e € X4
where, {ﬁ# € \Ifsz. Further, assume that the following conditions hold:
(i) 3 an eg € X such that o, (eo, Treg) > 1;
(ii) V e € Xq with (e, Tre) > 1, we have ay, (T¥e, T]?e) > 1;

Then Ty has a F' — P, provided d, (e, Tre) is lower semi continuous, V

ue 6.
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2.2.1 Application and Example

Consider the Volterra integral equation of the form:
t
u(t) :/ R(t,s,u(s))ds, t € I =[0,00) (2.26)

where R : I x I x R — R is a continuous and nondecreasing function(i.e
nondecreasing in the third coordinate).

Let X4 = (C[0,00),R). Define the family of ba-pseudo norms by |jul|,, =
maxye(o,n) (u(t))?, n € N. By making use of this family of by-pseudonorms
we get a family of be-pseudo metrics as d,(u,v) = |u — v|,. Clearly, §n =
{d, : n € N} defines a bp-gauge structure on Xy, which is complete and

separating. Define a,, : Xg x X4 — [0,00) by

1 ifu(t) <wo(t) Vtel
(U, v) =
0 otherwise.

Theorem 2.2.7. Let Xy = (C[0,00),R) and let the operator T : Xq — X4
is define by

Tru(t) = /0 R(t,s,u(s))ds,t € I =10,00)

where R : I x I xR — R is a continuous and nondecreasing function. Assume

that the following conditions hold:

(i) V t,s € [0,n] and u,v € X4 with u(s) < v(s), 3 a continuous mapping
p: I x I — I such that

|R(t,s,u(s)) — R(t, s,v(s))| < \/k(t,s)dn(e,€) VneN;

(i) supi Jo v/k(E 5)ds = a < 75

(iii) 3 a up € X4 such that
t
wolt) < / R(t, 5, u0(s))ds.
0

Then the integral equation (2.26) has at least one solution.
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Proof. We shall first show that V a,,(u,v) > 1, the inequalities (2.9) holds.
For any au,(u,v) > 1 and ¢t € [0,n] ¥ n > 1, we have

(Tru(t) — Tyo(t))? < /0 |R(t,s,u(s)) — R(t, 5,v(s))|ds)2

(
< ([ VHES It as)
([ VrEsgis) o

2dp (u,v).

Thus we get dn(Tru, Tfv) < a?dy(u,v) V ay(u,v) > 1 and n € N with a? <
1/2. This implies that (2.9) holds with a,, = a?, and b, = ¢, = e, = L, =0
V' n € N. As R is nondecreasing, V u < v, we have Tru < Tyv. Hence for
ayw(u,v) > 1, implies o, (Tru, Tfv) > 1. Therefore, by Theorem 2.2.2, 3 a
F-P of the operator T; so that, the integral equation (2.26) has at least one

solution. O
We now give an example to support of our result:

Example 2.2.8. Let X; = C([0,10],R) is the space of twice differentiable
functions, enriched with the d,(e(t),é(t)) = maxyep ,j(e(t) — &(t))* V n €
{1,2,3,---,10}. Consider the operator T : Xq — X is defined by Tre(t) =

df;gt) and oy, : Xg X Xg — [0,00) is defined by

1 if e,é are linear or constant functions

ay(e, €) =
0 otherwise

It is easy to see that 2.20 holds with a, = 1/2 and b, = ¢, = e, =L, =0V
ne€{1,2,3,---,10}. For eg =t and e; = Teg = 0, we have ay,(eo, Treq) =
1. Further, ¥ ay, (e, €) = 1, we have a,,(Tye,T¢€) = 1. Moreover, V sequence
{em} in X4 such that a(em,ems+1) =1 m € N and e,, — e as m — oo,
then ayy(em,e) = 1V m € N. Therefore, all of Theorem 2.2.2 conditions
hold. Thus T has a F' — P.
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Chapter 3

Fixed Point Theorems in

Vector-Valued Metric Spaces

Throughout this chapter F' — P represents a fixed point, M — S represents
a metric space, C' — S represents a Cauchy sequence. This chapter consists
of two sections. In the first section we have proved some F' — P theorems
for mappings in generalized M — S enriched with graph. In this section we
have proved theorems for a single metric and for two metrics as well. Along
with results for singled valued mapping, We have also obtained results for
multi-valued mappings for both, single metric and two metrics. To show the
validity of our results, we have also constructed an example in this section.
In the second section we have used a different approach to extend Perov’s [74]
F — P theorem. We have used the Presic [75] type contraction condition in
this section to prove our results. We have proved Perov’s F' — P theorems
for single and two metrics. An example is also constructed to show the

importance of our results

3.1 Generalized metric space enriched with graph

This section deals with the generalized M — S. We will prove some F — P
theorems in this space with the help of graph.

Throughout this section, (Xg4,dy) is a generalized M — S and we will
denote G = (Vy, E,) as a directed graph such that the set Vj of its vertices
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coincides with Xy and the set Fj of its edges contains loops; so that, F; O A,
where A is the diagonal of the Cartesian product Xy x Xjg.

Theorem 3.1.1. Let (Xg4,d,) be a complete generalized M — S enriched
with the graph G and let Ty: X; — X4 be an edge preserving mapping with
Argp, A2y € Mypm(Ry) such that

dg(Tfe,Tfé) < Alfdg(e,é) —I—Agfdg(é,Tfe) (31)
V (e, €) € E4. Assume that the following conditions hold:

(i) the matrix A;; converges toward zero;
(ii) 3 an eg € X4 such that (eo, Treg) € Ey;

(ili) a. T is a G-continuous;
or
b. V sequence {e,} € X4 such that e, — e and (en,ent1) € Ey V
n € N, we have (e,,e) € E; VneN.

Then Ty has a F' — P. Moreover, if V e, € € Fixz(Ty), we have (e, €) € E,

and Ajf + Aay converges to zero, then we have a unique F' — P.

Proof. By hypothesis (i), we have (eg,Treo) € Ey. Take ey = Trep. From
(3.1), we have

dg(el, 62) = dg(Tfeo, Tf@l) < Alfdg(e(), 61) + Agfdg(el, Tfeo)
= Alfdg(eo,el). (3.2)

As Ty is edge preserving mapping, then (e1,e2) € Eg4, again from (3.1), we

have

IN

dg(eg, 63) = dg(Tfel, Tf@g) Alfdg<61, 62) + Agfdg<62, Tf€1>

Alﬁcdg(eo,el) (by using (3.2))

IN

Proceeding in the same way, we get a sequence {e,} C Xy, such that e, =

Tren—1, (én—1,€n) € B4 and
dg(en,ent1) < Al?dg(eo,el), ¥V neN.
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Now V n,m € N. By making use of triangle inequality we get

n+m—1
dg(ensenim) < Z dg(ei,eir1)
i=n
n+m—1 '
< Z Ar'pdg(eo, e1)
i=n
<

o0
Ay (Z A19> dg(eo, €1)

i=0

= Al?(l — Alf)_ldg(eo,el).

Now if we let n — oo in the above inequality we get, dy(en,€ntm) — O.
As we know that Ay is converging towards zero. Thus, the sequence {e,}
is a C-S. As X is complete. Then 3 an e* € Xy, such that e, — e*. If
hypothesis (iii.a) holds, then we have Tye,, — Tye*, so that e 11 — Tye*.
Thus, Tye* = e*. If (iii.b) holds, then we have (e,,e*) € E; Vn € N. From
(3.1), we have

dg(eny1,Tre*) = dg(Tren, Tre™) < A1pdg(en, €*)+Aspdg(e*, Tren) = Arpdg(en, €*)+Azpdg (e, eny1)

Now if we let n — oo, in the above inequality, we obtain d4(e*,Tre*) = 0.
This shows that e* = Tye*. Further, suppose that e,é € Fiz(Ty) and
(e,€) € Ey, then by (3.1), we have

dg(e, é) < Alfdg(e, é) + Agfdg(e, é).

So that,

(I = (A1f + Azy))dg(e,€) <0

As we know that the matrix I — (A ;+ Az ) is nonsingular, then dy(e, €) = 0.
Thus, we have Fiz(Ty) = {e}. O

Remark 3.1.2. If we assume that E;, = X4 X X4 and Ayy = 0 then the

above discussed theorems reduces to Theorem 1.4.2.

Example 3.1.3. Let X; = R? enriched with a generalized-metric defined by

e1 —¢€
dy(e,€) = < :el 61: ) Ve = (e1,es),é = (é1,62) € R% And an operator
2~ €2
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defined by

(%—5—1—1,g 1) for (e,€) € Xy with e <3

Tp:R? - R Tyle,e)=4 > 2 7% ~
(2 -2+1,-%+2+1) for (e,é) € X, with e > 3.

and

€41 ife<3
- 3 =

Tf2(eve) = ~
—%+E+1 ife> 3,

then it can be easily seen that
R 2 N 1 .
[Ty (er,e2) = T (Br,2)| < Sler — &1l + glez — &
and
l’62 — ég’ if 61,51 S 3
|Tf2 (61762) - Tf2(61>62)| < 3

g|€1 —él+ %’62 — é9| otherwise.

V (e1,e2), (€1,62) € Xg4. A graph defined by G = (V,, E,) such that V, = R?
and E; = {((e1,e2), (é1,€2)) : e1,e2,é1,& € [0,3]} U{(,€) : é € R?}. Now
V (e, €) € E4, we have

S wiv
W= W=

Ty, (e1,e2) — Ty, (€1, € er—e -
[T, (e1, €2) f1(~1 ~2)| < le1 ~1| — Ay pdy(e,9).
Ty, (€1, €2) — Ty (€1, €2)| ez — éa

Moreover, it can be easily seen that all the other conditions of Theorem

3.1.1 hold, thus, Ty has a ' — P, So that e = Tre = (Ty,e,T},e), where
e = (1.5,1.5).

dg(Tye,Tré) = (

We shall now prove some results which deal with a mapping on two
C-M-S.

Theorem 3.1.4. Let X; be a non-empty set enriched with the graph G
and two metrics dg,0. Let Ty : (Xg4,0) — (Xg4,0) be an edge preserving
mapping with A1y, Asy € My, ;n(R4) such that

o(Tre,Tyé) < Arpo(e, &)+ Azpo(€,Tre) V (e, €) € Ey. (3.3)

Assume that the following conditions hold:
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(i) the matrix A;; converges towards zero;
(ii) 3 an eg € X4 such that (eg, T'req) € Ey;
(ili) Tr: (Xq,dy) — (Xq,dy) is a G-contraction;

(iv) 3 an A3 € My, (Ry) such that dy(Tre, Tyé) < o(e, €).As, whenever,

d a path between e and ¢;
(v) (X4q,dg) is complete generalize-M — S.

Then Ty has a F' — P. Moreover, if, V e, € € Fiz(T}), we have (e, €) € E,

and Ajy + Aay converges to zero then we have a unique F' — P.

Proof. By hypothesis (ii), we have (eg,Treg) € E4. Take an e; = TYep.

From (3.3), we have,

o(e1,e2) = o(Tyeg, Tre1) < Aijo(eg,er) + Azpo(er, Treo)

= Ao(eg,e1).
As Ty is edge preserving, then (e, e2) € E,;. Again from (3.3), we have

0'(62, 63) = O'(Tfel,Tfeg) S Alfo(el, 62) + Agfa(eg,Tfel)

= Al?cO'(eo, 61).

Proceeding in the same way we get a sequence {e,} in Xy such that e, =

Tren—1, (en—1,en) € Egy, and
o(en,ent1) < Ar'o(eg,e1) Vn € N.

We will now show that {e,} is a C-Sin (X4,0). By making use of triangle

inequality, we get

n+m—1
Semensm) < S oleneir)
i=n
n+m—1 ‘
< Z Alo(eq, e1)
i=n
<

Ar} (Z Aﬁ}) o(eo,e1)
=0
= Al?(f — Alf)*la(eo,el),
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as we know that A;y converges towards zero. Thus {e,} is a C-Sin (Xg4,0).
By the construction of this sequence, ¥V n,m € N, we have a path between

en and e, 4. Now, if we use hypothesis (iv), we will obtain

dg(€n+1a6n+m+1) = dg(Tfenan€n+m)

IN

o(en, entm).C

< Alch(I — Alf)*la(eo, 61).A~3

This shows that {e,} is also Cauchy in (Xg4,dy). As (Xg,dy) is complete,
so 3 an e* € Xy, such that e, — e*. By hypothesis (7ii) we will have
limy, o0 dg(T'en, Tre*) = 0. As ept1 = Tpe, ¥V n € N. Thus, e* is a F-P of
Ty. Further suppose that e,é € Fiz(Ty) and (e, €) € E4, then by (3.3), we
have

o(e,€) < Ajjo(e,€) + Axjo(e,e).

So that,
(I — (Alf + Agf))a(e, é) <0.

As we know that, the matrix [ —(A; s+ Az ) is nonsingular, then o (e, €) = 0.
Thus, we obtain Fixz(Ty) = {e}. O

We can also extend theorem 3.1.1 for multivalued mappings in the fol-

lowing way.

Theorem 3.1.5. Let (Xg4,d,) be a complete generalized M — S enriched
with the graph G and let Ty: X; — Cly(X4) be a multi-valued mapping
with Ay, A2y € My m(Ry), such that V (e, €) € B, and a u € Tye, there

exists a v € T yé satisfying
dg(u,v) < Ay ydg(e, €) + Az pdg(E,u). (3.4)
Assume that the following conditions hold:
(i) the matrix A;; converges towards zero;
(ii) 3 an eg € X4 and e; € Trep such that (eg,e1) € Eg;

(iii) Vu € Tye and v € Tyé with dy(u,v) < Ay pdy(e, €) we have (u,v) € E,

whenever (e, €) € Eg;
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(iv) V sequence {e,} in Xg such that e, — e and (en,enq1) € Eg Vn €N,
we have (ep,e) € E; ¥V n e N.

Proof. By the above hypothesis (i), we have an eg € X4 and e; € Treg with (eg,e1) €
E4. From (3.4), for (eg,e1) € Ey4, we have an ey € Tre; such that
dg(er,e2) < Argpdg(eg,e1) + Aapdg(er,er)

= Aiydg(eo, €1). (3.5)
By hypothesis (4i¢) and (3.5), we have (e1,e2) € E;. Again from (3.4), for
(e1,e2) € Eg and an ey € Treq, we have an e3 € Trep such that

dg(eg, 63) < Alfdg(el, 62) + Agfdg(eg, 62)
< Alicdg(eo,el) ( by using (3.5)).

Proceeding in the same way, we will get a sequence {e,} in X, such that

en € Tren—1, (en—1,6n) € Ey and
dg(en, 6n+1) < Al?dg(eo, 61), vV eN.

For each n, m € N. By making use of triangle inequality we will have,

n+m—1
dg(enaen—i-m) < Z dg(eiaei-i-l)
i=n
n+m—1

< ) Avidg(eo, )

< A} (Z Alif) dg(eo, €1)
=0
= AJ}(I — Arp)dg(eo, e1).

As we know that the matrix Ay converges towards 0. Thus the sequence
{en} is a Cauchy sequence in X;. As Xy is complete. Then 3 an e* € X,
such that e,, — e*. By hypothesis (iv) we have (e,, e*) € Ey4, V n € N. From
(3.4), for (en,e*) € By and ep41 € Tre, we have w* € Tre* such that

dg(€n+1a w*) < Alfdg(en, 6*) + Agfdg(e*, 6n+1).

Now, if, we let n — oo in the above inequality, we get d4(e*,w*) = 0, so

that, e* = w*. Thus e* € Tye*. O
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Theorem 3.1.1 is extended for multivalued mappings for two C-M-S in

the following theorem.

Theorem 3.1.6. Let X; be a non-empty set enriched with the graph G
and two metrics dg,0. Let Ty: Xg — Cly(X,4) be a multi-valued mapping
with A1y, A2y € My (R4 ), such that V (e, €) € E; and u € T e there exists
v € T e satisfying

o(u,v) < Arpo(e, €) + Azpo(€,u). (3.6)

Assume that the following conditions hold:

(i) the matrix Ay ; converges towards zero;

(i) 3 an eg € X4 and ey € Treg such that (eg,e1) € Eg;

(iii) Vv € Tye and v € Tyé with o(u,v) < Ajo(e, €) we have (u,v) € E,
whenever (e, €) € Eg;

(iv) (Xq,dg) is complete generalize M — S

(v)Jadse My, m(R4) such that dy(e, €) < o(e, ¢).As, whenever, 3 a path

between e and €;

(vi) V sequence {e,} in X4 such that e,, — e and (en,ent1) € Ey V n € N,
we have (en,e) € E; Vn e N.
Then Ty has a F' — P.

Proof. By hypothesis (ii), we have an ey € X4 and e; € Tyep such that
(eo,e1) € E4. From (3.6), for (eg,e1) € Eyand e; € Treg, we have e; € Treq
such that

0'(61,62) < A1f0(60,€1)—|—A2f0(61,61)
= AlfO'(Co,el).

By hypothesis (iii) and above inequality, we will obtaian (e, e2) € E4. Again
from (3.6) for (e1,e2) € Ey, and an ey € Tyeq, we have an e3 € Trey such
that

o(ez,e3) < Ajgo(er,ez) + Azpo(ea, ez)

A

Alfca(eo, 61).
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Proceeding in the same way, we will obtain a sequence {e,} € X such that

en € Tren—1, (en—1,6€n) € By and
o(en,ent1) < Ai'fo(eg,e1) Vn €N

We will now show that {e,} is a C-Sin (Xg4,0). Let n,m € N, then by

making use of triangle inequality we get

n+m—1
o(ensenim) < Y oleieir)
i=n
n+m—1 .
< ) Aljo(e,er)
=n
<

Ary (Z Alév) o(eo, e1)
=0
= A}(I - Ary)oleo,er). (3.7)

As we know that the matrix A;y converges towards zero. Thus {e,} is a
C-S in (X4,0). Clearly, ¥V m,n € N 3 a path between e, and e,t,,. By

making use of hypothesis (v) we get,

dg(en7en+m) < U(enaen+m)-143

AN (I = Arp) ' o(eo, e1)-As ( by using (3.7)).

AN

Thus {e,} is also a C-Sin (X4,dy). As (Xq4,dg) is complete, 3 an e* € Xy,
such that e, — e*. By hypothesis (vi) we have (e,,e*) € E; V n € N. From
(3.4), for (en,€*) € By and ep41 € Tre, we have a w* € Tye* such that

o(ens1,w*) < Aypo(en, ) + Aago(e”, eny1).
Now, if, we let n — oo in the above inequality we get o(e*,w*) = 0. This
implies that e* € Tre*.
O

3.2 Presic-Perov type fixed point theorems

In this section we introduce a new generalization of a generalized M — S.

Then we use our generalized M — S to prove F' — P theorems for mappings

39



satisfying a contractive condition, which is a mixture of Perov and Presic
contractions.

Throughout this section, we use the following vector-valued/generalized M — S.
Let X4 be a non-empty set and 4™ is the set of all m-tuples with non-
negative real numbers. If {,n € [0,00)™, such that ¢ = ({y,(s,-..¢;,,), and
n = (11:M2; - Nym), then ¢ < n(¢ < n) means 3370, ¢; < 350 0, (3770 ¢ <
>, m;), respectively. Further, for ¢ € [0,00), ¢ < ¢ means » ;" (; < mc.

A mapping d : X4 x Xg — R4™ is called a vector-valued /generalized-metric

on X in the sense of summation, if the following properties are satisfied:
(d1) dy(e, &) >0V e,é € Xy; if dy(e,€) =0, then e = ¢;
(do) dy(e, &) = dy(E,e) V e, 8,6 € Xg;
(d3) dy(e, &) < dy(e,€) 4+ dy(¢,8) V e, é,¢ € Xg.

Then the pair (Xy,d,) is called vector-valued/generalized M — S in the

sense of summation.

Remark 3.2.1. Note that every vector-valued/generalized M — S in the
sense of Perov is also a vector-valued/generalized M — S in the sense of
summation but converse is not true in general. To see, we consider the

following most simple example.

Example 3.2.2. Let X; = {(1,0), (0,1), (0,2)}. Define the vector-valued/generalized-
metric d, : Xq x Xq — R4 2 as d,((1,0),(0,1)) = ( (1) > =d,((0,1),(1,0)),

4,((0,1),(0,2) = ( X ) = 4,((0.2), 0,1)), (1,0, (0,2) = ( X ) -
dy((1,0),(0,2)) and dy((1,0),(1,0)) = dv((0,1),(0,1)) = dy((0,2),(0,2)) =
( 0 ) . It is easy to see that d, is generalized-metric on X  in the sense of

0
summation, but not in the sense of Perov.

We now prove some results regarding the extension of Perov’s F' — P

theorem in the light of Ciri¢ and Presi¢ contractive type condition.
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Theorem 3.2.3. Let (X4,d,) be a complete generalized M — S, k be a
positive integer and let Ty : X} — X4 be a mapping with Ay ; € My, (R5)
such that

dy(Ty(e1,e2,- - yex), Ty(ez, €3, - erq1)) < Arpmax{dy(e;eiy1):i=1,2,-(38)

V ((e1 €2, ,ex), (€2,€3, + ,exp+1)) € X5 x XK. Assume that the following

conditions hold:

(i) 3 a nonsingular matric Dy such that Ay = D;ﬁ;

(ii) the matrix Ay converges toward zero.

Then 3 a point e € X, such that e = Ty (e,e,--- ,e). Moreover, for any

arbitrary e, ea, -+ ,er € X4, 3 a sequence {e,} in Xy such that ey, =

Tf(en,ent1s - sekin—1) V1 € Nand {e,} converges to a fixed point of T%.

Proof. Let (e1,e9,--+ ,e) € X(]j, we construct a sequence {eg.,} such that

ektn = Tr(en,ent1,+ ,€hyn—1) ¥V n € N. From (3.8), we have

dv(ekJrna €k+n+1) = dU(Tf(ena En+1," " 7ek+n71)7 Tf<en+17 En+42," " 7€k+n)>
< Ajpmax{d(e;,eiy1) i =mn,n+1,---n+k} VndN)

Thus, from (3.9), we obtain
d(€ktn, ekynt1) < A1y max{d(e;, e;41) 14 =1,2,---k} YneN. (3.10)
We denote d, = d(en,ent1) ¥V n € N. We will show by induction that
dy <D}V neN

where, Ay = D’; and 0 = max{DEldvl,DEdeg, e ,D;kdvk}. Consider
dy1 < D6, dyy < D30, dymi—1) < DFTF70. We will show that the
above inequality also holds for m + k € N. From (3.9), we have

dv(erk) < Alf maX{dvma dv(erl)v T 7dv(m+k71)}
< Dmax{Dy0,Dyt9,. - Dy Vg
o k+m
= Dy 0.
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Thus, we have d,, < D?H Vv n € N. For n,p € N, by making use of triangular

inequality, we have

IN

dy(€n,ent+1) + do(€nt1, eni2) + -+ dv(en—f—p—l, en—l—p)

< D} 4+ D 4 DY

< D}(I—Dy)7'6.

dv(eny en-‘,-p)

Now, if, we let n — oo, in above inequality, we obtain d, (e, eptp) — O.
Thus, {e,} is a C-S in Xy. As we know that X, is complete, we have

e* € X4 such that e, — e*. By making use of triangle inequality, we have

dy(e*, Tp(e* e, ---,e")) < dy(e”, epqn) + do(€pin, Tr(e*, e, ,€"))
= dv(e* ek—f—n) d (Tf(en,€n+1,'-' a6k+n—1)7Tf(6*76*7"' ,6*))
S dv(e* ek—i—n) d (Tf(ena €n+1, " 7ek+n—1))Tf(e’n+1a oty Chk4n—1, 6*))

+do(Ty(ent1,- s kin-1,€"), Tt(€ns2,+ ,€hin-1,€",¢€%))
+ -+ dy(Ty(eppn—1,€ - ,€%),Tp(e,e",--- ,€))

< dy(€”, epqn) + Arpmax{dy(en, eny1), du(eni1, €ng2), -,
dy(€rtn—1;€k+n—2), dv(€ptn—1,€")}
+A1y max{dy(ent1,ent2), dv(€nt2,€ns3), - dv(Cpin—1,€")}
+-o + Arpdy(epgn—1,€").

Now, if, we let n — oo in above inequality, we get d,(e*, T¢(e*, e*, -+ ,e*)) =
0. Thus, e* = Ty(e*,e*,--- ,€¥). O

Example 3.2.4. Let X; = R be enriched with a generalized-metric define

by dv(ea é) = (

X4 such that

e—eé
| l ) Ve, e € Xg. Consider the operator T : Xgx Xgq —

e — e

(&

Tr(e.d) =7 — 7 +1

B~ ™

It can be easily seen that

1 1
|Tt(e1,e2) — Tr(ez, e3)] < 1\61 —ea| + 1\62 —e3
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Thus, V (e1,e2), (e2,e3) € Xg x Xy, we have

T €1, €2 -T €2, €3 le — €2 —|—162—63
d’u(Tf(el,eQ),Tf(€27€3)) = ( ‘ f( ) f( )| ) < < 4| 1 | 4’ ‘

Ty (e1,e2) — Ty(e2, e3)] iler — ea] + flea — es

11
1 1
_ 11 le1 — ez
- 4 4
|e2 — €3]
1
5 0
2
e —e e
< 0 1 | max ler — ea| ’ ez
le1 — e €2
= Alfmax{dv(el,eg),dv(eg,eg)}
1
—= 0
V2
where, we have Dy = | 0 % such that Ay ; = D]%. Thus, by Theorem

3.2.3, we have an e € X, such that e = Ty (e, ).
We now extend our above results for two C-M-S.

Theorem 3.2.5. Let X; be a nonempty set enriched with two C-M-S d,,, o,
and let k be a positive integer, T : XC’lC — Xy be a mapping with Ay €
My, m () such that

ou(Ty(er,e2, - sep), Tr(ea, 3, ,ep1)) < Arpmax{oy(ei,eir1) :1=1,2,(3.14)

V ((e1,e2, - ,ex), (€2, €3, ,exs1)) € XX x X¥. Assume that the following

conditions hold:

(i) 3 a nonsingular matric Dy such that A;; = D;ﬁ;

(ii) the matrix Ay converges toward zero;

(iii) (Xg4,dy) is a complete generalized M — S,

(iv) 3 a matrix C' € My, m(R) such that dy(e,€) < Coy(e, €) Ve, é € Xy.

Then 3 a point e € Xy such that e = Ty (e,e,--- ,e). Moreover, for any
arbitrary e, es, - - ,er € Xy, 3 a sequence {e,} in Xy such that ey, =

Tr(ensentt1s - > epin—1) V1 € N and {e,} converges to fixed point of T}.
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Proof. Let (e1,e2, - ,ex) € X¥ we construct a sequence {ej,} such that

ektn = Tr(en,ent1, -+, €pyn—1) ¥V n € N. From (3.11), we have

oy(ekins rint1) = ou(Tr(ensent1, s ehin—1); Tr(ent1, ent2, ;s €hin))
< Aypmax{oy(eeir1) it =n,n+1,---n+k} V r3&IN)
Thus, from (3.12), we get
v (€ktn, €hintl) < Asf max{o,(e;,eit1):i=1,2,---k} VneN (3.13)
We denote o, = 0y(en,ent1) ¥V n € N. We will show by induction that

oun <DFO Y neN

where, A1y = D’]f and 6 = max{D?lavl,DEQUvg, e ,D;kavk}. Consider
op1 < Dygb, 02 < D?Q,--- s Ou(mtk—1) < D}'Hk*lﬁ. We will show that

above inequality also holds for m + k € N. from (3.9), we have

Optmek) < Arpmax{Oum; Oy(m+1)" " > Co(m+k—1) )
< Dfmax{D}0, D70, DF+16}
_ k+m
= Df 0.

Thus, we have 0., < D?H Vn € N. For n,p € N, by making use of triangular

inequality, we have

IN

ou(en, ent1) + ou(eni1,enya) + -+ op(enyp-1, en—i—p)
< D+ DT 4+ DY
< D}(I—-Dy)7'6.

Uv(ena en-‘,—p)

Now, if, we let n — oo, in above inequality, we get oy(ep,entp) — O.
By making use of hypothesis (iv), V n,p € N, we have dy(epn,entp) <
Coy(en,entp). Thus, {e,}isa C-Sin (Xg,d,). As we know that (Xg4,d,) is

complete, we have an e* € X, such that e, — e*. By making use of triangle
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inequality, we have

ou(e”, Tp(e" e, -, €")) < ou(€", ehin) + ov(€rin, Ty(e”, €+ €%))
= ou(€", ehin) + ou(Tr(ens €ntt,  €han—1), Ty(e’ €%+, €7))
< oy(e’, erin) + UU(Tf(env €nt1" " s Chtn—1), Tf(en—Ha o €ktn—1,€"))
+ou(Tr(ent1, s ektn—1,€"), Tr(ens2,  + , €hyn—1,€",€"))
+ -+ ou(Tr(epqn—1,€" - ,€),Tf(e", e, --- "))
< ou(e”, epyn) + Arpmax{o,(en, ent1), 0v(€nt1, enia), -+,
0y(€ktn—1,€ktn—2), 0v(€kin-1,€")}
+A1ymax{oy(ent1,ent2), Ov(€nia, €ni3), -+, 0v(€hin—1,€)}
++ Arpoy(eppn-1,€").
Now, if, we let n — oo in above inequality, we will obtain o, (e*, Tr(e*, €*,--- ,€*)) =
0. So that, e* = Ty(e*,e*,--- ,€¥). O
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Chapter 4

Fixed point theorems in
uniform spaces enriched with

Fs-distance

Throughout this chapter F' — P represents a fixed point, M — S represents
a metric space, C — S represents a Cauchy sequence. In this chapter we
introduce the concepts of an F,,-contraction and a thg-contraction in uni-
form space enriched with a graph, to discuss the existence and uniqueness
of fixed points for mappings satisfying these conditions. We shall also intro-
duce a common F — P theorem for pair of mappings satisfying the notion
of a @G—Contraction in uniform space enriched with a graph.

This chapter has two sections. In the first section we have investigated
the existence and uniqueness of fixed points for F,,-contractions in uniform
spaces. Using the concept of an Fy,,-contraction mappings results are proved
in the setting of S-complete Hausdorff uniform spaces enriched with a graph
and an F.-distance.

The second section deals with the investigation of F' — P theorems and com-
mon F — P theorems satisfying the @G—contraction condition in uniform
spaces. Results in this section are also proved in the setting of an S-complete
Hausdorff uniform space enriched with graph and F,-distance. An example
related to our results is also constructed towards the end of this chapter.

The following play a very important role in this chapter:
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Definition 4.0.6. Let us consider a uniform space (Xg,v). A function

pp Xgx Xqg — [0,00) is considered to be an F,-distance if
(i) ps is an A-distance,
(ii) pys(e,€) < s[ps(e, &) + ps(&,€)],Ve, &, é € Xy for some s > 1.

Example 4.0.7. Let us consider a uniform space (Xy,v) and let a b-metric
on X4 be d . Then it can be clearly seen that, (Xg4,v4) is a uniform space
where v is a set of all subsets of X4 x X containing a "band" U, = {(e, é) €
X2|d(e, €) < €} for some € > 0. Moreover, if v C v, then d is an E,-distance
on (Xg,v).

Throughout this chapter G = (V, Ey) is considered as a directed graph
such that the set of its vertices Vj coincides with Xy (i.e., V; = X;) and
the set of its edges Ej is such that £, O A, where A = {(e,e) : e € Xy}
Further, assume that G has no parallel edges.

A mapping Ty : X4 — Xq4 is py,-continuous if V sequence {e,} C Xg
with (en,ent1) € Eg ¥V n € N and lim, . pr(en,e) = 0, then we have
limy, oo pf(Tren, Tre) = 0.

4.1 Fixed point theorem for F,-contractions on

uniform space

This section deals with F' — P of Fj,,-contraction mappings in the settings

of S-complete Housdorff uniform space enriched with graph and E,-distance.

Definition 4.1.1. Let (X4, v) be a uniform space enriched with the graph
G and py, is an Es-distance on Xy. A mapping Ty : Xg — Xy is a Fy-
contraction, if 3 F, € §ns and a 74 > 0, such that, V (e,€) € E,, we
have

7f + Fu(sps(Tre, Try)) < Fu(pyg(e,€)), (4.1)
whenever min{py . (Tre, Tty), ps (e, €)} > 0.

Theorem 4.1.2. Let (X4, v) be an S-complete Hausdorff uniform space en-
riched with the graph G and py , is an Es-distance on Xg4. Let Ty : Xg — Xg

be an F,,,-contraction satisfying the following conditions:
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(i) Ty is edge preserving, So that, for (e, €) € E,, we have (Tre, Try) € Ey;
(ii) 3 an eg € X4 such that (eg, Teg) € E4 and (T'teg, €9) € Ey;

(ili) Ty is py EG—continuous, or, for any sequence {e,} C Xy such that
en — easn — 0o and (ey,ent1) € Eg Vn €N, we have (e, e) € E,
VneN.

Then Tt has a F' — P.

Proof. By hypothesis (ii), 3 an eg € X such that (e, e1) = (e, Treo) € Ej.

From (4.1), we have

Ty + Fy(spppler,e2)) = 75 + Fu(spyp(Treo, Tre1)) < Fu(psp(eo,e1))(4.2)

As T} is edge preserving, for (e, e1) € Ey,, we have (e, e2) € Ey, From (4.1),

we will get

Ty + Fu(splez, e3)) = 75 + Fu(sp(Tre1, Trez)) < Fy(pyp(er,e2))  (4.3)

Moving forward with same procedure, we would get a sequence {e,} C Xy

such that
en =Tren—1, en—1 # ep and (en—1,€n) € By V€ N.
Furthermore,

T¢+ Fy(splen, ent1)) < Fu(pfp(en—1,en)) ¥V n € N. (4.4)

Here we can use the property F,,, and get

Tf+ Fw(s"pr(en, en—i-l)) < Fw(sn_lpr(en—la en))'

Now, if, we let Pfg, = Pfp(en,ent1), ¥ n € N and after small simplification,
we would get

Fy(s"pE,) < Fu(pfg,) —nty VneN. (4.5)
Now if we let n — oo in (4.5), we get lim,, o Fiy(s"pg,) = —oo. Thus, by

property (Fy,), we have lim,_,o s"pg, = 0. From (Fy,) 3a k € (0,1) such
that

lim (s"pEn)ka(s"pEn) =0.

n—oo

48



From (4.5) we have

(S”pEn)kF(S”pEn)—(s”pEn)ka(prO) < —(s"pEn)kan < 0 for each n € N.
(4.6)
Now, if, we let n — oo in (4.6), we get

lim n(s"pg,)* = 0. (4.7)

n—oo

This implies that 3 an n; € N such that n(s"pg,)* <1V n > ny. Thus, we
have

1
s"pp, < 7% Vn>mn. (4.8)

To show that {e,} is a py - C-S, consider

n

1
i=n1
As we know that ) 2, 11% is convergent series. Thus, 3 S € [0,00) such
that lim,, . S, = S. Consider m,n € N with m > n > n;. By making use

of triangle inequality and (4.8), we have

m—1

prp(enem) < s"ppen,ent1) + 8" psplentt, ensa) + -+ 8™ prplem—1, em)

m—1 n—1
_ % 7
= D sm =) spm,

1=n1 i=n1

< Smfl - Snfl-

Thus, limy, ;m—c0 Pf p(€ns €m) = 0. In a similar way, we show that limy, ;oo Pf (€m, €n) =
0. Thus, {e,} is a py,-C-S. As (Xg4,v) is S-complete, 3 an e* € X4 such
that lim, oo pf z(en, €*) = 0. By condition (iii), when 7' is prG—continuous,
we have lim, oo pfp(ent1, Te*) = 0. As lim, oo pyp(en,e*) = 0 and
limy, o0 Pf g(€n, Tre*) = 0. Thus by Lemma-(a)[4, 3] we have an e* = Tye*.
By condition (iii), when we have (e, e*) € E; V n € N. From (4.1), we have

7f + Fu(spe(Tren, Tye")) < Fu(pyglen, €)).

This implies that spg(eni1,Tre*) < pyp(en,e*). Now, if, we let n — oo,
we have lim, o0 py (ent1, Tre*) = 0. Again, by Lemma-(a)[4, 3] we obtain
e* =Tye". O
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4.2 Fixed and common fixed point theorems for

Y -contraction in uniform space

In this section we will investigate the existence and uniqueness of F' — P’s
as well as common fixed points for @G-contraction mapping in the setting of

S-complete Housdorff uniform space enriched with a graph and Fs-distance.

Definition 4.2.1. Let (Xg4,v) be a uniform space enriched with the graph
G and py, be an Fg-distance on X4. A mapping Ty : Xg — Xy is a @LG—

contraction mapping if V (e, €) € E,, we have
prp(Tre, Try) < ¥(ps (e, €)) (4.9)
where {b ev.
Note that throughout this section ¥ be the family of functions ) :

[0,00) — [0, 00) satisfying the following conditions:

(I1) 4 is nondecreasing;

+o0
(‘ifg) Z s"{bn(t) < ooV t>0, where {Dn is the n'" iterate of {D

n=1

Theorem 4.2.2. Let (X4,v) be a S-complete Hausdorff uniform enriched
with the graph G and py,, is an Fs-distance on X4. Let T': Xy — X be a

1 g-contraction mapping satisfying the following conditions:
(i) T is edge preserving, So that, for (e, €) € E4, we have (Tye,Try) € Ey;
(i) 3 an eg € X4 such that (eg, Treo) € E, and (Treg, o) € Ey;

(ili) Ty is py EG—continuous, or, for any sequence {e,} C X, such that
en — easn — 00 and (ey,ent1) € Eg Vn € N, we have (e, e) € E,
VneN.

Then Tf has a F — P.

Proof. By hypothesis (ii) of the above theorem we have an eg € X, such
that (eg,Treq) € E4. Define the sequence {e,} in Xy by enp1 = Tre, V
n € NU{0}. If ey, = eny41 for some ng, then e,, is a F-P of Ty. So, we
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can assume that e, # en,4+1 ¥V n. As we know that T} is edge preserving, we
have

(60,61) = (eo,Tfeo) € Eg = (Tfeo,Tfel) = (61,62) S Eg.

Inductively, we would have
(€n,ent1) € Eq, ¥V n e NU{0}. (4.10)

From (4.9) and (4.10), it follows that for all n € NU {0}, we have

P p(enttsent2) = pfp(Tren, Trent1) < Yoy p(en, ent1))- (4.11)
Proceeding with the same steps, we obtain

Pfplen, ent1) < Q;yl(pr(eo,el)), for all n € N.

As we know that p;, is an Es-distance then for an m > n, we have
Prplensem) < s"plensent1) + 8" prplentt, enta) + o+ 5™ pp plem—1, em)

50" (s geo,e1)) + 8" (pg pleo, 1)) + -+ 5™ (py pleo, 1))
(4.12)

IN

To show that {e,} is a py - C-S, consider

n

Sn=>_ 50" (ps p(eo, e1)).

k=0

Thus from (4.12) we have

Prplen,em) < Sm-1— Sn—1. (4.13)

As we know that ) € U, 3 S € [0,00) such that lim,, o Sp, = S. Thus by
(4.13) we have

lim pyp(en, em) = 0. (4.14)

n,m—00
As we know that py, is not symmetric then by repeating the same ar-
gument we have limy ;0o Pf p(€m,en) = 0. Hence the sequence {e,} is
a pyp-Cauchy in the S-complete space X4. Thus, 4 an e* € Xy such
that limp oo ps(€n, €*) = 0. By condition (iii), when we have T" a pyp, -

continuous, we get limy, oo py (Tren, Tre*) = 0, which implies that limy, oo py p(ent1, Tye*) =
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0. Hence we have lim, .o pf z(€n,€*) = 0 and lim,, o (en, Te*) = 0. Thus
by Lemma-(a)[4, 3] we have e* = Te*. By condition (iii), when we have
(en,e*) € E4 ¥V n €N, then from (4.9)

P glentt, Tre*) = ps p(Tren, Te*) < Y(pfplen, €)) < pyplen,€*). (4.15)

Now, if, we let n — oo in the inequality above, we have lim,, .o pf (€nt1, Tre*) =

0. Thus by repeating the same arguments as above we have e* = Tye*. [

Example 4.2.3. Let X; = [0, 1] be enriched with a graph G' = (Vy, E,;) with
V, = Xy and E, = {(e,é) ce,ee{tyin eN}u{o}} U{(ee) : e € Xyl
and b-metric d(e, é) = (e — €)% with s = 2. Define v = {Uc|e > 0}. It is easy

to see that (Xg4,v) is a uniform space. Define T : Xq — X4 by

0 ife=0
Wlﬂife:%:n>1 (4.16)
Ve otherwise.

Tre =

Take @(t) = % V't > 0. It can easily be seen that T is edge preserving

and a tpg-contraction. Also for an ey = 3 we have (e, Treq) € E, and

(Treo,eq) € E4. Moreover for any sequence {e,} in X; with e, — e as
n — oo and (en—1,en) € Eg V n € N we have (e,,e) € E;, ¥V n € N.
Therefore by Theorem 4.2.2, Tt has a ' — P.

We consider the following condition to discuss the uniqueness of a F' — P:
(H) For all e,é € Fix(T}), 3 é € X, such that (¢,e) € B, and (¢,¢€) € E,.

Here, Fix(7Ty) denotes the set of all ' — P’s of T.

The following theorem guarantees the uniqueness of a F — P.

Theorem 4.2.4. Adding the condition (H) in the hypothesis of Theorem
4.2.2, we obtain the uniqueness of F' — P of T}.

Proof. Suppose, on the contrary, that c1,co € Xy are two distinct F-P’s of
T¢. From (H), 3 é € X4 such that

(¢,c1) € E; and (6, ¢2) € E,. (4.17)
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By making use of fact that 7 is edge preserving, from (4.17), we have
(T}é,c1) € Eg and (T}é,c2) € Eg, ¥V n € NU{0}. (4.18)

We define the sequence {én} in Xg by épp1 = Tfén = T}léo vV n e NuU{0}
and éy = é. From (4.18) and (4.9), we have

P g(Ent1sc1) = ppp(Trén, Trer) < (pyg(en, c1)), (4.19)

V' n e NU{0}. This implies that

pfp(En.c1) < &n(pr(éo,Cl)% VneN

Now if we let n — oo in the above inequality, we obtain

nlLr&pr(én,cl) = 0. (4.20)
Similarly, we have
nlerolopr(én,Cg) = 0. (4.21)

From (4.20) and (4.21) together with Lemma-(a)[4, 3], it follows that ¢; = ca.
Thus, F-P of T} is unique.
In the following definition we will define W-contraction for pair of map-

pings O

Definition 4.2.5. Let (X4, v) be a uniform space enriched with the graph
G. A pair of two self mappings T, Sy : X4 — Xy are considered to be a

@G—contraction pair if V (e, €) € E,, we have
max{py p(Tye, Spy), vy p(Sre, Try)} < V(py (e, €)), (4.22)
where ¢ € U.

Theorem 4.2.6. Let (X4,v) be a S-complete Hausdorff uniform space en-
riched with the graph G and py, is an Fs-distance on Xy. Suppose that
the pair of T, Sy : Xq — Xg is @G—contrac‘uion pair satisfying the following

conditions.

(i) (T%,Sy) is edge preserving pair, So that, V (e,é) € E,, we have
(Tre, Spy) € Eg and (Sye, Try) € Eg;
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(ii) 3 an eg € Xg such that (eg,Treo) € E4 and (Tyeg, eq) € Ey;

(iii) for any sequence {e,}in Xq with e,, — easn — oo and (ey, eny1) € Ey
V n e NU {0}, then (en,e) € E; ¥V n e NU{0}.

Then Ty and Sy have a common F' — P.

Proof. By hypothesis (ii) of the above theorem, we have an eg € X4 such
that (eo, Treo) € Ey and (Teg,e0) € Ey. As we know that (T, Sy) is an

edge preserving pair, then we can construct a sequence such that
Tf@gn = ean+1, Sf62n+1 = egn42 and (en, 6n+1) S Eg, (6n+1, en) € Eg, Vne NU{O}
From (4.22) V n € NU {0}, we have

Pfpeantt, eany2) = ppp(Trean, Speantt)

< max{pr(Tf62n7 Sfe2n+l)’pr(Sfe2n) Tf€2n+1)}

< Y(prplen; eani1))-

Hence, we conclude that

Py p(€ant1, eanta) < V(Df p(e2n, €2n41)). (4.23)

Similarly, we obtain

Prpleant2, eony3) = prp(Sresnyt, Treant2)

IN

max{ps p(Trean+t1, Sreant2), psp(Seant1, Treant2)}

V(s p(e2nt1, €2n42))-

IN

Hence, we have

Py g(€2n42, €2n13) < V(Df p(€ans1, €2n42)). (4.24)

Thus, from (4.23) and (4.24), and by induction, we get

Prplen,ens1) < &n(pr(eo, e1)), VneN. (4.25)
We now show that {e,} is a py - C-S. As we know that py , is an E,-distance
then for m > n, we have

pr(en, em) < s"pr(en, ent1) + 5n+1pr<en+1v eny2) + -+ Sm_lpr(emflv em)

9" (pr p(eor e1) + " (prp(ense1)) + - + 5™ (ps e, 1))
(4.26)

IN
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We shall now consider

Sp = Sk{ﬁ (pr(eo, e1))
k=0
Thus, from (4.26) we have
Prplen,em) < Sm-1— Sn-1. (4.27)

As we know that ¢ € ¥, 3 S € [0,00) such that lim, ., S, = S. Thus, by
(4.27) we have
lim  prp(en, em) =0. (4.28)

n,Mm— 00
As we know that py , is not symmetric then by repeating the same argument
we have

lim  prp(em,en) = 0. (4.29)

n,Mm— 00

Hence the sequence {e, } is a py ,-Cauchy in the S-complete space Xg. Thus,
Jane* € Xgsuch that lim, .o py (en, €*) = 0 which implies limy, .o Tre2, =
limy, o Sfeant1 = €*. By assumption (iii), we have (ey, e*) € E,. Thus, by

making use of triangle inequality and (4.22), we have

Prplen, Tre*) < spp(en,eami2) + spe(eante, Tre®)
= spe(en, eant2) + spe(Sreantt, Tre™)
< spe(en, any2) + smax{psp(Trean i1, Spe”), py p(Seani1, Tre)}
< spp(en, eny2) + sU(ps g(eant1, €”)) (4.30)

Now, if, we let n — oo in (4.30), we have py (en, Tre*) = 0. Hence we have
limy, o0 Pf p(€n, €*) = 0 and limy, oo pyp(€n, Tre*) = 0. Thus by Lemma-
(a)[4, 3] we have an e* = Te*. Analogously, we can derive e* = Sye*.
Therefore e* = Tre* = Syre*. O

Remark 4.2.7. Note that Theorem 4.2.6 is valid if one replace condition
(i) with

(ii)” 3 ep € X4 such that (eg, Syeo) € Ey4 and (Syep, eg) € Ey.

Example 4.2.8. Let X; = [0, 1] be enriched with a graph G = (V, E,;) with
Vg = Xq and E, = {(6,6) 1€, € {n%_l 'n € N}U{O}} U{(e,e) : e € X4},
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and dislocated M — S d(e,€) = max{e,é}. Define v = {Uc|e > 0}, where
Ue = {(e,€) € X3 : d(e,€) < d(e,e) + €}. It is easy to see that (Xg,v) is a
uniform space. Define T : Xg — X, by

0 ife=0

Tre = Tlﬂife:%:n>l (4.31)

€2 otherwise

and S: Xg — X4 by

0 ife=0
Se = %ife:%:n>1 (4.32)

Ve otherwise

Take ¢(t) = £ V t > 0. Further, it can be easily seen that (T}, Sy) is edge
preserving and @G—contraction pair. Also for ey = % we have (eg, Treo) € Ey
and (T'req, e0) € E4. Moreover for any sequence {e,} in X, with e, — e as
n — oo and (en,ent1) € By ¥V n € NU{0} we have (e,,e) € E; Vn € N.
Therefore by Theorem 4.2.6, T and Sy have a common F' — P.

We use the following condition, to discuss the uniqueness of a common
F—P.

(I) Foreache,é € CFix(Ty,Sy), we have (e,€) € E,, where CFix(Ty, Sy)
is the set of all common F' — P’s of Ty and Sy.

Theorem 4.2.9. Adding the condition (I) in the hypothesis of Theorem

4.2.6, we obtain the uniqueness of common F' — P of Tt and Sj.

Proof. On the contrary suppose that c¢i,co € X4 are two distinct common
F-P's of Ty and Sy. From (I) and (4.22) we have

prp(crsea) = max{ps o (Trers Stes)s s p(Spers Trea)} < (0 (e, e2)) < pyplerser),

which is impossible for py . (c1,c2) > 0. Consequently, we have py .(c1,c2) =
0. Analogously, one can show that ps(c1,c1) = 0. Thus we have ¢; = ca,
which is a contradiction to our assumption. Hence Ty and Sy have a unique

common F-P. O]
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Chapter 5

Common Fixed Point
Theorems for Family of

Mappings

Throughout this chapter F' — P represents a fixed point, M — S represents
a metric space, C' — S represents a Cauchy sequence. The purpose of this
chapter is to introduce a new contraction conditions for a sequence of mul-
tifunction and prove corresponding F' — P theorems. We will also give a
common F' — P theorem for sequence of bounded multifunctions by making
use of d-distance. To conclude our findings we establish an existence theo-
rem for a system of integral equations.

This chapter consists of three section. In the first section we have discussed
common F' — P theorems for family of closed multivalued mappings satisfy-
ing F,-type contraction. Our results are proved in a complete M — S and
the sequence of mappings under consideration satisfy the Fy,, - contraction
of Hardy-roger type. An example towards the end of this section shows the
validity of our results.

In the second section, we have proved results for the family of bounded mul-
tivalued mappings satisfying the F,-type contraction. Here also, we have
considered a complete M — .S and the sequence of mapping considered in
this section are also Hardy-Rogers type. We have also constructed an ex-

ample in this section to validate our results.
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As a consequence of our results we have established an existence theorem

for volterra integral equation in the third section.

5.1 Family of closed multivalued mappings satisfy-
ing F,, type contractions and related common

fixed point theorems

In this section we will prove some common F — P theorems for F, -
contraction and F{;aw -contraction mappings for Hardy-roger type in a com-
plete M — §.

We begin this section by introducing definitions for sequence of mapping,

which would be useful regarding the proofs of our results in the sections.

Definition 5.1.1. Let ay, : Xg x Xg — [0,00). A sequence of mappings
{Ty,: Xq— Ny(Xq)}2, is ay-admissible sequence if Ve € Xgand € € Ty e
for some i € N such that a,(e, &) > 1, then we have a,(é,6) > 1V é €
Ty, €. A sequence of mappings {7y, : Xg — Nyp(Xq)}72; is ay,-admissible
sequence if V e,é € Xy with (e, €) > 1, we have Cw, (T,eTs ) > 1V

i,7 € N, where Q. (Ty,eTs) = inf{a(u,v) :u € Tyeand v e Tij}.

The sequence of mappings is considered to be strictly au,-admissible and

strictly ay,,-admissible if we have strict inequality in the above definition.
Remark 5.1.2.

1) Note that if a sequence of mappings {T'r. : Xg — N(Xg)}$2, is strictly
fi f =1

aq, ~admissible sequence, then it is strictly aw,-admissible sequence.

(ii) When {T'y}22, is a constant sequence Definition 5.1.1 coincide with de-
finition of a,-admissible and ay,,-admissible given in [67, Page 4] and
[25, Page 1] respectively. Furthermore, if T' is a singlevalued mapping

then these definition 5.1.1 coincide with [84, Definition 2.2].

Definition 5.1.3. Let (Xg4,d,) be a M — S and «y, : Xg x X4 — [0,00)
be a function. A sequence of mappings {T'y, : Xq — Cly(Xg)}2; is an
Fy,,,-contraction of Hardy-Rogers-type, if 3 F}, € §n and a 74 > 0 such
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that V 4,7 € N, we have
T+ Fu(ow(e, é)Hm(Tfie,Tij)) < Fy(Ny¢(e, €)), (5.1)
Ve, é € X4, whenever min{ov, (e, €)Hp(T's e, Tij), Ny¢(e,€)} > 0, where
Ny(e,€) = bid,(e, €)+bad, (e, Ty e)+b3d, (€, Tij)+b4dr(e,Tij)—i—Ld,n(é, Ty.e),
with b1, ba, b3, by, L > 0 satisfying by + ba + b3 + 2b4 = 1 and bs # 1.
Now we will prove a result for Fy,, -contraction of Hardy-Rogers-type.

Theorem 5.1.4. Let (X4,d;) be a complete M — S and let {T'y, : Xq —
Cly(Xq)}2, be an F,, -contraction of Hardy-Rogers-type satisfying the

following conditions:
(i) {Ty,}52, is strictly ay-admissible sequence;
(ii) 3 eo € Xq and e1 € Ty eq for some i € N with ay, (e, e1) > 1;

(iii) for any sequence {e,} C X, such that e, — e as n — oo and

ay(en,ent1) > 1V n €N, we have ay(en,e) > 1V neN.

Then the mappings in the sequence {1'f,}$°, have a common F — P.

Proof. By hypothesis (ii), we assume without loss of generality that 3 ey €
Xgq and e; € T'p e with ay(eg,e1) > 1. If ey € Tp.er Vi € N, then e is a
common fixed point. Let e; ¢ T'p,e1, as ay(eg,e1) > 1 3 ex € Tyyeq such
that

dr(e1,e2) < awleo, e1)Hm (T f e0, T rq€1). (5.2)

As we know that F), is increasing, we have

Fy(dr(e1,e2)) < Fy(ay(eo, e1)Hm (T, eo, Terl)). (5.3)
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From (5.1) we have

T+ Fy(de(er,e2)) < 7p+ Fulaw(eo, er)Hn (T e0, Tqe1))
< B, (bldr(eo, e1) + bady (0, Ty €0) + badr(e1, Tpper) +
bady(co, Trye1) + Ldy (€1, T, €0))
< Fy (bldr(eo, e1) + bady(eo, €1) + bsdr(e1, e2) +
byd,(eg, e2) + L.())
< B, (bldr(eo, e1) + bady(eo, €1) + bsdy(e1, e2) +

ba(dy(eo, e1) + dv (e, 62))

= Fy <(b1 + by + ba)d,(eg, e1) + (b3 + ba)d, (e, 62)> (5.4)
As we know that F}, is increasing, we get from above that
dr(e1,e2) < (b1 + b2 + ba)d,(ep, e1) + (b3 + ba)dy(e1, e2).

So that,
(1 — b3 — ba)dr(e1,e2) < (b1 + b2 + ba)dr(eo, €1).

As by + by + b3y + 2by = 1, thus we have
dy(e1,e2) < dy(eg,e1).
From (5.4), we have
Tt + Fu(dr(e1,e2)) < Fy(dr(eo, e1)).

If eg € Ty.ea Vi € N then eg is a common F-P. Let eg ¢ Tyqea. As we
know that {17y }22, is strictly c,-admissible, we have a.,(e1,e2) > 1. There

exists eg € T'g5eg such that
dr(e2,e3) < auler, e2) Hy(Tyqe1, T pqe2). (5.5)
As we know that F), is increasing, we have

Fy(d,(e2,e3)) < Fy(aw(er, e2) Hp(Tyye1, Tf362)). (5.6)
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From (5.1) we have

IA

T+ Fu(dr(e2,e3)) T¢ + Fy(aw(er, e2) Hy (T fqe1, T3e2))

Fy (bldr(el, e2) + bady(e1, T yye1) + badr (e, Trq4e2) +

IN

bady (€1, Tfqe2) + Ley (e, Tf2el))

IN

Fy, (bldr(el, e2) + bad,(e1,e2) + bad,(e2,e3) +

b4dr(€1, 63) + L.O)

IN

Fy, (bldr(eh e2) + bad,(e1,e2) + bad,(e2,e3) +
ba(dy(e1,e2) + dr (e, 6’3))

= Fy <(b1 + by + b4)dr(€1, 62) -+ (b3 + b4)dr(€2, 63)> .(5.7)
As we know that F}, is increasing, we get from above that
dr(e2,e3) < (b1 + b2 + ba)d,(e1, e2) + (b3 + ba)dy(e2, e3).

So that,
(1 — b3 — ba)dr(e2,e3) < (b1 + ba + ba)dr(e1, €2).

As by + by + b3y + 2by = 1, thus we have
d,(ea,e3) < dy(e1,ea).
Now from (5.7) we have
Tt + Fu(dr(e2,e3)) < Fy(dr(er, e2)).

So we have

Fy(d,(e2,e3)) < Fy(dr(er,e2)) — 7 < Fy(d,(eo,e1)) — 277.
Proceeding in the same way we get a sequence {e,} C Xy such that

en €Ty en-1, en1 7 en and aylen_1,,) > 1V n €N,

Furthermore,

Fy(dr(en,ent1)) < Fy(dr(eo,e1)) —nty Vi eN. (5.8)
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Now if we let n — o0 in (5.8) we get limy, o0 Fiy(dr(en, €nt1)) = —00. Thus
by property (Fy, ), we have lim,_,o0 dy(en, €n+1) = 0. Let d,., = d,(ep, €nt1)
vV n € N. From (F,,) 3 k € (0,1) such that

lim d¥ Fy,(d,,)=0.

n—oo

From (5.8) we have
d* F(d,,) —dF Fu(dy,) < —df ntp <0VneN. (5.9)
Now if we let n — oo in (5.9) we get,

lim ndf = 0. (5.10)

n—oo

This implies that 3 ny € N such that ndffn <1V n>nq. Thus we have

d Vn>n. (5.11)

< —
Tn — nl/k’
To prove that {e,} is a C-S. Consider m,n € N with m > n > n;. By

making use of triangle inequality and (5.11), we have

dr(ena em) < dr(ena en+1) + dr(€n+1a €n+2) + -+ dr(emfla em)
m—1 o) 0o 1
= < < —_—.
Ddn <) dn <)
i=n i=n i=n

As we know that > 2, zl% is convergent series. Thus, lim, .. dy(en, em) =
0. Which implies that {e,} is a C-S. As (Xy,d,) is complete, there ex-
ists e* € Xy such that e, — e* as n — oo. By condition (iii) we have
aw(en,e*) > 1V n € N. We claim that d,(e*,Ty.e*) = 0 Vi € N. contra-
dictory suppose that d,(e*, sz.oe*) > 0 for some 79 € N, 3 ng € N such that

d,(en, Tfioe*) > 0V n > ng. For each n > ng and for above iy we have

dp(e", Ty, €) < dr(e, ent1) +drleny1, Ty €")
< dy(e*,ent1) +ozw(en,e*)Hm(Tanen,Tfioe*)
< dp(€", ent1) + bidr(en, €*) + bady(en, €ny1) + bady (€5, Ty, €¥)

+bady(en, Ty,€*) + Ldr (€, eny1). (5.12)
Now if we let n — oo in (5.12) we have
dp(e*, Ty, ") < (b3 + ba)dy (e, Ty €*) < dr(e", Ty, €").

Which is a contradiction. Thus d,(e*,Tf,e*) =0 Vi € N. O
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Example 5.1.5. Let X; = N be enriched with the usual metric d,(e,é) =
le —é| Ve,éc Xq. Define {Ty, : Xg — C(Xq)}i2; by

0,1} ife=0,1
Tye= o1}

{2¢ — 2,2¢} ife>1

and a,, : Xg x Xg — [0,00) by

\]

ife,e € {0,1}

ap(e,€) =<1 ifeé>1
0

otherwise.

Take F\y(e) = e+1Ine Ve € (0,00). Under this F, condition (5.1.1) reduces
to

aw(67 é)Hm(szeu Tij)
Nf(ea é)

exp(aw (e, &) Hm(Ty.e,Tyy) — Nyle,€)) < exp(—7y)
(5.13)
Ve €€ Xg with min{ow(e, &) Hn(T's,e,Ty;y), Ny(e,€)} > 0. Assume that
by =1,by =bg=by =L =0and 7 = 1. Clearly, min{a,(e, e)Hm(T's,e,Ty,y),dr(e,€)} >
0Ve,é>1with e#é. From (5.28) V e,é > 1 with e # & we have

1 1 1
1 exp(—§]e —e|) < exp(—§).

Thus {T£}52, is an ay,-F,-contraction of Hardy-Rogers-type with F,(e) =
e+ 1Ine. For eg = 1 we have e; = 0 € Ty eq such that a(eg,e1) > 1.
Moreover, it is easy to see that T’y is strictly a,,-admissible sequence and for
any sequence {e,} C Xy such that e, — e as n — oo and ay(ep, ent1) > 1
V n € N, we have ay(en,e) > 1V n € N. Therefore, by Theorem 5.1.4 T'¢

has a common F' — P in X,.

Definition 5.1.6. Let (Xg4,d,) be a M — S and «a,, : Xg x Xg — [0,00)
be a function. A sequence of mappings {T'y, : Xq — Cly(Xg)}2, is an
Fy,,, *-contraction of Hardy-Rogers-type, if 3 F}, € §w and a 75 > 0 such
that V 4,7 € N, we have

T+ Fw(aw*(Tfl.e,Tij)Hm(Tfie,Tij)) < Fiy(Ny(e, €)), (5.14)
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Ve, é € X4, whenever min{aw*(Tfie7Tij)Hm(Tfie,Tij)7 Ny¢(e,€)} > 0, where
Ny(e,€) = bid,(e, €)+bad; (e, Ty e)+b3d, (€, Tij)+b4dT(e,Tij)+Ldr(é, Ty.e),
with by, b9,b3,b4,L >0 satisfying b1 4+ by + b3 + 2by = 1 and b3 75 1.

Now prove a theorem for F,L’;aw -contraction of Hardy-Rogers-type satis-
fying.
Theorem 5.1.7. Let (Xg4,d;) be a complete M — S and let {T'y, : Xq —
Ny(Xa)}72y be an Fyj,  -contraction of Hardy-Rogers-type satisfying the fol-

lowing conditions:
(i) {Ty,}52, is strictly ay,-admissible sequence;
(i) 3 an eg € Xg and e1 € Ty o for some i € N with (e, e1) > 1;

(iii) for any sequence {e,} C X, such that e, — e as n — oo and

ay(en,ent1) > 1V n €N, we have ay(en,e) > 1V neN.

Then the mappings in a sequence {T'; };*; have a common F — P.

Proof. The proof of this theorem runs along the same lines as the proof of
Theorem 5.2.2. O

Remark 5.1.8. Theorems 5.1.4 and 5.2.5 can be further generalized, if
we use the following contractive condition instead of the one used in these
theorems. Let (X4,d,) bea M — S and oy, : Xgx X4 — [0,00) be a function.
A sequence of mappings {1y, : Xq — Cly(Xg)}52, is an I, -contraction
of Roades-type, if 3 Fy, € §w and a 7y > 0 such that V ¢, 5 € N, we have

ale,é) >1=71¢+ Fw(Hm(Tfie,Tfjé)) < Fy(Mf(e,€)), (5.15)

Ve,é € X4, where M(e, €) = max{d.(e,€),d,(e,Ty.e), dT(é,Tfjé), [dr(e,Tfjé)+

4 (&, Tr;e))/2}.
The above mentioned theorems can be proved in a similar fashion as
that of Theorem 2.1.1.
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5.2 A Family of bounded multivalued mappings
satisfying F), type contractions and related end
point theorems

In this section we will discuss common F' — P theorems for sequence of

a bounded multivalued mappings satisfying F%, -contraction and F;aw—

contraction in a complete metric space.

Definition 5.2.1. Let (X4,d,) bea M — S and «a, : Xg X Xg — [0,00) be
a function. A sequence of mappings {7y, : Xg — By(Xq)}2, is an Fy, -
contraction of Hardy-Rogers-type, if 3 F,, € §p and a 7y > 0 such that V
1,7 € N, we have

7t + Fu(aw(e, €)0(Ty,e, Ty ,y)) < Fu(Ng(e, €)), (5.16)
Ve, € € X4, whenever min{aw (e, €)6(T's,e, T ;y), N(e,€)} > 0, where
Ny(e,€) = bidy (e, €)+bady(e, Ty,€)+bsdr (€, Ty y)+badr(e, Ty y)+Ldr (€, Ty e),
with by, ba, bs, bg, L > 0 satisfying by + by + b3 + 2b4 = 1 and b3 # 1.

It would be interesting to see whether the conclusions of Theorem 5.1.4
hold for bounded subsets of X,;. We will show that the conclusions of The-
orem 5.1.4 still hold for bounded subsets of X; provided that the Housdorff
distance H,,(A1yf, Aaf) in definition 5.1.3 is replaced with §( A1, A2¢) and
the strict inequality in (ii) of Theorem 5.1.4 is replaced by the soft inequal-
ity. More precisely we have the following result. Now we will prove a result

Fy,,, -contraction of Hardy-Rogers-type satisfying.

Theorem 5.2.2. Let (Xg4,d;) be a complete M — S and let {T'y, : Xq —
B¢(Xaq)}2, be an Fy, -contraction of Hardy-Rogers-type satisfying the fol-

lowing conditions:
(i) {Ty,}52, is aw-admissible sequence;
(ii) 3 eo € Xg and e1 € Ty eq for some i € N with (e, e1) > 1

(iii) for any sequence {e,} C X; such that e, — e as n — oo and

ay(en,ent1) > 1V neN, we have ay(en,e) > 1V neN.
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Then the mappings in the sequence {1'f,}$°, have a common F — P.

Proof. As we know by hypothesis (ii), we assume without loss of generality
that 3 eg € Xy and e; € Ty eq with ay(eo,e1) > 1. If e; € Ty.e1 Vi € N,
then e; is a common F-P. Let e; ¢ Troe1r. As ay(eo,e1) > 1, Fex € Tyoeq
such that

dr(e1,e2) < auleq,e1)d(Tpien, Tyqe1). (5.17)

As we know that F), is increasing, we have
Fy(dr(e1,e2)) < Fy(aw(eo,e1)d(Tf e0, Tqe1)). (5.18)
From (5.16) we have

T¢ + Fy(dy(e1,e2))

IN

Tt + Fy (o (e, 61)5(Tf160,Tf261))
F, (bldr(eo, e1) + bad,(eq, Tfleo) + bgdr(el,Tf2€1) +

IA

bad,(eo, Tpoe1) + Ld,(e1, Tf1€0)>

IN

Fy, <b1dr(607 e1) + bad,(eo, e1) + bad,(e1, e2) +

b4dr(€0, 62) + L.O)

IN

Fy <b1dr(607 e1) + bad,(eg, e1) + bsdy(e1, e2) +
ba(dr(co,e1) + dr(er, e2) )

= F, ((bl + by + b4)dr(€0, 61) + (bg + b4)dr(€1, 62))5.19)
As we know that F), is increasing, we get from above that
dr(el, 62) < (bl + by + b4)dr(€0, 61) + <b3 + b4)d7~<61, 62).

So that,
(1 —bg — ba)dy(e1,e2) < (b1 + ba + ba)dr(eo, €1).

As by + by + bz + 2by = 1, thus we have
dr(e1,e2) < dr(eg,e1).
Now from (5.19), we have
Tf + Fu(dr(e1,e2)) < Fy(dr(eo, e1)).

66



If e € Ty,e2 Vi € N then ez is a common F-P. Let eg ¢ Tyqe2, As we
know that {Tf,}2, is au,-admissible, we have ay,(e1,e2) > 1. There exists

ez € T'yqeq such that
dy(ea,e3) < aw(el,eg)é(Terl,Tfseg). (5.20)
As we know that F), is increasing, we have
Fy(dr(e2,e3)) < Fy(aw(er, e2)d(Trqe1, Trqez)). (5.21)

From (5.16) we have

IN

T+ Fu(dr(e2,e3)) T¢+ Fy(aw(er, e2)0(Tpqe1, Trqe2))

Fy <b1dr(€1, 62) + deT‘(ela Terl) + b3dr(€27 Tf362) +
b4dr(€1, Tf3€2) + LdT(eg, Tf2€1))

Fy, <b1dr(e1, e2) + bad,(e1,e2) + bad,(e2,e3) +

IN

IN

b4d7«(€1, 63) + L.O)
Fy (bldr(el, e2) + bady(e1, €2) + bady (€2, €3) +
by(d,(e1,e2) + dr(e2, 63))

= Fy, ((61 + by + ba)dr(e1, e2) + (b3 + ba)d,(e2, 63))5.22)

IN

As we know that F}, is increasing, we get from above that
dr(e2,e3) < (b1 + b2 + ba)dr(e1, e2) + (b3 + ba)d;(e2, e3).

So that,
(1 — bg — b4)dr(62, 63) < (bl + by + b4)dr(61, 62).

As by + by + b3 + 2by = 1, thus we have
dr(e2,e3) < dr(e1,e2).
Now from (5.22) we have
7§+ Fu(dr(e2,e3)) < Fy(dr(e1,e2)).
So we have
Fy(dr(e2,€3)) < Fy(dr(e1,e2)) — 75 < Fy(dr(eo, e1)) — 275.
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Proceeding in the same way we get a sequence {e,} C X4 such that
en €Ty en1, en1 7 en and aylen_1,6,) > 1V n €N,
Furthermore,
Fy(d,(en,ent1)) < Fy(dr(eg,e1)) —nty VneN. (5.23)

Now if we let n — oo in (5.23) we get lim,, o0 Fiy(dr(€n, €nt1)) = —00. Thus,
by property (Fu,), we have lim,_,oo dy(€n, ent1) = 0. Let d,, = d(ep, €n+1)
vV n € N. From (Fy,) 3 k € (0,1) such that

lim d¥ F,(d,,)=0.

n—o0

From (5.23) we have
¥ F(d,,) —dF Fu(dy,) < —df ntp <0VneN. (5.24)
Now if we let n — oo in (5.24) we get

lim nd® = 0. (5.25)

n—o0

This implies that 9 ny € N such that ndffn <1V n>ni. Thus we have

d Vn>n. (5.26)

< —
Tn — nl/k7 -
To prove that {e,} is a C-S. Consider m,n € N with m > n > n;. By

making use of triangle inequality and (5.26) we have

dr(ena em) < dr(ena en+1) + dr(€n+1a €n+2) + -+ dr(emfla em)
m—1 o) 0o 1
= < < —_—.
Ddn <) dn <)
i=n i=n i=n

As we know that ) 2, 21% is convergent series. Thus lim,, o d,(ep, €m) =
0. Which implies that {e,} is a C-S. As (Xy4,d,) is complete so 3 e* € X
such that e, — €* as n — oo. By condition (iii) we have au,(en,e*) > 1V
n € N. We claim that d.(e*,T.e*) = 0 Vi € N. contradictory suppose that
dr(e*,Tine*) > 0 for some 79 € N, 3 ng € N such that dr(en,Tine*) >0V
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n > ng. For each n > ny and for above iy, we have

dr(e*, Ty, €")

IN

dr(e*,ent1) + dr(ent1, Tfioe*)

dr(€”, ent1) + aw(en, €)0(Ty,  en, Ty, €F)

dr(€", en+t1) + brdr(en, €°) + bady(en, €nt1) + badr (5, Ty, €7),
+bady(en, Ty,€*) + Ld. (€, eny1). (5.27)

VANVAN

Now if we let n — oo in (5.27) we have

dr(e*, Ty €") < (b3 + ba)dp (e, Ty €*) < dr(e", Ty, €").
Which is a contradiction. Thus d,(e*,Tf,e*) = 0 Vi € N. O
Example 5.2.3. Let X3 ={0,1,2,3,...} and

0 ife=e
dr(e, €) =
et+e ife£e
. Define {T'y, : Xq — By(Xq)}2, by

{0} ife=0
{0,1,2,3,....¢} ife#0

Tie =

and a,, 1 Xg x Xg — [0,00) by

[y

ife=e=0

ap(e €) =47 ifeé>1
0

otherwise.
Take F,,(e) = e+1In(e) V e € (0,00). Under this F,, condition (5.16) reduces
to
ay(e, €)0(Tye, Ty ,y)
Nf(ea é)

exp(ay (e, é)é(Tfie,Tij) — Ny(e,€)) < exp(—7y)
(5.28)
Ve e € Xq with min{aw(e,€)6(T's,e,Ty;y), Ny(e,€)} > 0. Assume that
by =1,by=bg=by =L =0and s = 3. Clearly min{a,(e, é)d(Tfie,Tij),dr(e, €} >
0Ve,é>1with e#é. From (5.16) V e,é > 1 with e # &, we have
1 1 1

5 exp(—i(e +é)) < exp(—i).
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Thus T is an F,, -contraction of Hardy-Roger-type with F,(e) = e +Ine.
For eg = 1, we have e; = 0 € T'f,eq such that a,(ep,e1) > 1. Moreover, it
can be easily seen that T’y is a,,-admissible mapping and for any sequence
{en} € X such that e, — e as n — oo and ay(en,ent1) > 1V n €N, we
have au,(en,e) > 1V n € N. Therefore by Theorem 5.2.2 Ty has a F' — P in
X,

Definition 5.2.4. Let (X4,d,) bea M — S and ay, : X4 x Xg — [0,00) be
a function. A sequence of mappings {1y, : Xg — B(Xq)}2; is an Fy,  *-

Qw

contraction of Hardy-Rogers-type, if 3 F}, € §w and a 75 > 0 such that V
1,7 € N, we have

Tf + Fw(aw*(Tfie,Tij)é(Tfiev Tij)) S Fw(Nf(e, é)), (5.29)
Ve, é € Xy, whenever min{aw*(Tfievajy)5(Tf2.e, Tij), Ny¢(e,€)} > 0, where
Ny(e,€) = bid,(e, €)+bad; (e, Ty e)+b3d, (€, Tij)+b4dT(e,Tij)+Ldr(é, Ty.e),
with b1, bg, b3, bs, L > 0 satisfying by + by + bg + 2bgy = 1 and b3 75 1.

Now we will prove a result F),, *-contraction of Hardy-Rogers-type sat-

isfying.

Theorem 5.2.5. Let (Xg4,d;) be a complete M — S and let {T'y, : Xq —
By(Xaq)}2, be and F,,  *-contraction of Hardy-Rogers-type satisfying the

following conditions:
(i) {73}, is aup,-admissible sequence;
(ii) 3 e € Xy and e; € Tieq for some i € N with ay,(ep,e1) > 1;

(iii) for any sequence {e,} C X, such that e, — e as n — oo and

ay(en,ent1) > 1V n €N, we have ay(en,e) > 1V neN.

Then the mappings in a sequence {7’y };*; have a common F — P.

Proof. The proof of this theorem runs along the same lines as the proof of
Theorem 5.2.2. O

70



Remark 5.2.6. Theorems 5.2.1 and 5.2.5 can be further generalized if we
use the following contractive condition instead of the one used in these the-
orems.

Let (Xg4,d,) be a M — S and ay, : X4 X Xq — [0,00) be a function. A
sequence of mappings {1y, : Xg — Bp(X4)}52; is an Fy,  -contraction of

Roades-type, if 3 F,, € §n and a 75 > 0 such that V ¢, € N, we have

o (€,8) 2 12 7y + Fu(8(Tp,e.T1,2)) < Fu(M(e,8)), (5.30)

Ve, é € Xy, where M (e, €) = max{d, (e, €),d(e, Tye),d(&, Ty €), [d(e, Ty €)+

d(e, Tye)l/2}.
The above mentioned theorems can be proved in a similar fashion as
that of Theorem 2.1.1.

5.3 Application

In this section, as a consequence of our result we establish an existence
theorem for a system of integral equations. Let X4 = (Cfa,b],R) be the
space of all real valued continuous functions defined on [a,b]. Note that
Xq is complete [69] with respect to the metric d;, (e, €) = sup;c(, 5{le(t) —

é(t) exp(=|7st[)} -
Consider the system of integral equations of the form

b
e(t) = F(t) + / Ki(t, 5, e(s))ds, (5.31)

for t,s € [a,b] and i € {1,2,3,--- , Ny} with Ny € N. Where K; : [a,b]

[a,b] x R — R and f : [a,b] — R are continuous functions.

Theorem 5.3.1. Let Xy = (C[a,b],R) and let {T'y, : X4 — Xd}i-v:fl be the

operators defined as

b
T e(t) = f(t) + / Ki(t, s, e(s))ds, (5.32)

for t,s € [a,b]. Where K; : [a,b] X [a,b] x R — R and f : [a,b] — R are
continuous functions. Assume that 3 v : Xg — (0,00) and oy, : Xg X Xg —

(0, 00) and following conditions hold:
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(i) Vi,j€{1,2,3,--- ,N¢g} 3 74 > 0 such that

Ki(t,s,e) — Kj(t,s,6)| < L1

<SP je—

Vt,s € la,b] and e, é € Xy Moreover,

‘/ exp ITfS\ < exp(l7st))

(e +é) T ayle, €)

vVt e la,bl;

(ii) for e,é € X4, aw(e,€) = 1 implies a(Ty,e,Tyiy) 2 1V 1,5 €
{172737"' 7Nf}a

(iii) 3 eo € Xg such that (e, T'y,e0) > 1 for some i € {1,2,3,--- , Ny}

(iv) for any sequence {e,} C X, such that e, — e as n — oo and

ay(en,ent1) > 1V n €N, we have ayy(en,e) > 1V neN.

Then the system of integral equations (5.31) has a solution in X,.

Proof. First we show that {T';.} is an Fy, -contraction of Hardy-Rogers-
type. For each i,j € {1,2,3,---, Ny}, we have

Tyie(t) = Try)] < [ Ki(t, 5, ¢(5)) = Kj(, 5,€(s))]ds

)
b exp(omy)
/av(e(s)Jré(s))’() (s)ld

- " exp(ry) expllrys) e(s) — é(s)| exp(—|7rs|)ds
B /a ) é(s)) ’ () ()‘ p( ‘ f ’)d

B . 6 bm s
< exp(—7y)ds, (e, )/ v(e(s) + é(s ))d
)

eXp(le)t! (=)o

Thus we have
ay(€,8)[Tp,e(t) = Tpy(t)| exp(—|7yt]) < exp(—=7y)dr,(e,é€).
Equivalently,
(e, €)dr, (Tfie,Tij) < exp(—7y)d-, (e, €).
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Clearly natural logarithm belongs to §w. Applying it on above inequality
we get
In (o (e, é)de (Tfie’ Tij)) < hl(@Xp(—Tf)de (e,€)),

after some simplification we get
Ty +In(aw(e, e)dr, (Tr,e,Tyy)) < In(dr; (e, €)).

Thus {Tfi};\[:f1 is an F),, -contraction of Hardy-Rogers-type with b; = 1,
by = b3 =by = L =0 and Fy(e) = Ine. Therefore by 5.2.2 it follows that
the system of operators (5.32) have a common F-P, So that, the system of

integral equations (5.31) has a solution in Xj. O
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Chapter 6

Existence of Best proximity
points for F,-proximal

contractions

Throughout this chapter F' — P represents a fixed point, M — S represents
a metric space, C — S represents a Cauchy sequence. In this chapter we
introduce the notions of an F,, -proximal contractions for Hardy-Rogers
type mappings as well as for Ciric-type mappings. We also discuss the exis-
tence of best proximity for nonself multivalued mappings satisfying at least
one of these conditions, along with few other conditions.

This chapter is divided into two section. In the first section, we will discuss
best proximity point theorems for Hardy-Rogers type an Fl,, -proximal
contraction. We will discuss our results on the closed subsets of a com-
plete M — §S.

In the second section we will prove some best proximity point theorems for
Ciric type an Fy, -proximal contraction. Towards the end of this chapter,
we will prove theorems as a consequence of our results in this chapter.

We begin this chapter with the following definitions.

Definition 6.0.2. Let A;; and As; be two nonempty subsets of a M — §
(X4,d;). A mapping Ty : A1y — CLy(Xq) is called strictly ov,-proximal
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admissible if 3 a mapping ., : A1y x A1y — [0,00) such that

ay(er,e2) > 1
dr(ul,él) = dr<A1f,A2f> = aw(u1>u2) > 1,
dr(ug,€2) = dr(A1y, Azy)

where e1, e2,ur,uz € A1y and €1 € Tyreq, €2 € Tyes.

6.1 Best proximity point theorems for Hardy Rogers
type F,-proximal contraction
In this section we will investigate a best proximity point for an F, -

proximal contraction of Hardy-Rogers type among the non-empty closed

subsets of a complete M — S.

Definition 6.1.1. Let (Xg,d;) bea M — S, A1y, A2y € Xg and @ A1y X
Aiy —[0,00) be a function. A mapping Ty : A1y — CLyg(Aszy) is an F,, -
proximal contraction of Hardy-Rogers-type, if 3 an F, € §p and a 77 > 0
such that

75+ Fulaw(e, &) Hp(Tye, Try)) < Fu(Ny(e, €)), (6.1)
Ve, é € Ajy, whenever min{ay, (e, €)Hy, (Tre, Try), N¢(e, €)} > 0, where

Nf(e, é) = bldr<6, é) + bQ[dr(e, Tfe) - dT(Alf, Agf)] + bg[dT(é, Tfy) — dr(Alf, AQf)]
+bald, (e, Tyy) — dr(Ar g, Aap)] + Lids (2, Tye) — dr(Arg, Asp)],
with b1, bg, b3, by, L > 0 satisfying by + by + bg + 2b4 = 1 and b3 75 1.

Now we will prove a theorem for a F,, -proximal contraction of Hardy-

Rogers-type.

Theorem 6.1.2. Let A;; and Aoy be nonempty closed subsets of a com-
plete M — S (Xg4,d;). Further suppose that Ag is nonempty and 7" : A;; —
CLjs(Azy) is an I, -proximal contraction of Hardy-Rogers-type satisfying

the following conditions:
(i) Tre € By ¥V e € Ag and (A s, Asy) satisfies the weak P-property;

75



(ii) Tt is strictly ou,-proximal admissible;

(ili) 3 e, e1 € Ag and é; € Tyeg such that

ozw(eo,el) >1 and dr(elaél) = dr(A]_f,AQf).

(iv) Ty is continuous, or, for any sequence {e,} C A; s such that e, — e as

n — 00 and ay(en, ent1) > 1V n € N, we have oy (en,e) > 1V n €N,

Then T has a best proximity point.

Proof. As we know by hypothesis (iii), 3 ep,e1 € Ag and é; € Trey such

that

dr-(e1,€1) = dr(A1y, Aay) and au(eg,e1) > 1, (6.2)

If &1 € Treq, then ey is a best proximity point of Ty. Let é; ¢ Tre;. As

aw(eo,e1) > 1, by Lemma 1.4.5 3 é; € Tyey such that

dr(él,éQ) S aw(eo,el)Hm(Tfeg,Tfel). (63)

As we know that F}, is strictly increasing, we have

Fw(dr(él, ég)) S Fw(aw(eo, el)Hm(Tfeo, Tfel)). (64)

From (6.1), we have

T+ Fy(dr(€1,€2))

As we know that

IA

IN

IN

Tt + Fy(ouw(eo, e1)Hy(Treq, Trer))
Fw <bldr(eo, 61) + bg[dr(eo, Tfe()) — dT(Alf, Agf)] + b3[dr(€1, Tfel) — dr(Alf.

b4[dr(€0, Tfel) — dr(Alf, Agf)] + L[dr(el, Tf@o) — dr(Alf, Agf)])
Fu(bid(eo, 1) + bady (o, e1) + bad (é1, ),
bad(eo, e1) + dp(61, 82)] + L.o)

Fy ((bl + by + b4)dr(€0, 61) + (bg + b4)dr(é1, 52)) .

dr(eo, Treo) < dr(eq,e1)+d,(e1,é1)+d (€1, Tre) = dr(eq, e1)+d, (A1 g, Azf)=+0,

dr(e1,Tre1) < dr(er, €1)+d, (€1, E2)+d (E2, Tre1) = dr(A1 s, Aay)+d, (€1, E2)+0,
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dr(eo, Tre1) < dr(eq,e1)+d;(e1, €1)+d- (€1, €2)+dy (€2, Tre1) = dp(eo, e1)+dr(Ary, Aay)+d, (€1, E2)40
dr(e1,Treo) < dr(e1,€1) + dr(€1,Treq) = dr(A1y, Azy) + 0.
As we know that F,, is strictly increasing, we get from (6.5) that
dr(€1,€2) < (b1 + by + bs)d,(eg, e1) + (b3 + bg)d, (€1, €2).

So that,
(1 —bg — b4)dr(él, ég) < (bl + by + b4)d7~(€0, 61).

As by + by + b3 + 2by = 1, thus we have
d,(é1,€2) < dr(eg,e1).
Now, from (6.5), we have
T¢+ Fy(dr(é1,62)) < Fy(dr(eo,e1)). (6.6)
As é; € Tre; C By, 3 an ez # e1 € Ag such that
dr(e2,€2) = dr(A1y, Azy), (6.7)

for otherwise e; is a best proximity point. As (A1, Aay) satisfies the weak
P-property. From (6.2) and (6.7), we have

0 < dr(e1,e2) < d,(€1,€2).
By applying F,, we get
Fy,(dr(e1,e2)) < Fy(dy(€1,€2)). (6.8)
Thus from (6.6) and (6.8), we have
Tr+ Fy(dr(e1,e2)) < 7¢ + Fy(dr(€1,€2)) < Fy(dr(eo,e1))- (6.9)

As T} is strictly o,-proximal admissible, and we know that (e, e1) > 1,
dr(el, 51) = dr(Alf, AQf) and dw(eg, ég) = dr(Alf, Agf), then aw(el, 62) > 1.

Thus we have

dr<62,é2) = dr(Alf,AQf) and aw(el,eg) > 1. (610)
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If é; € Tyey, then ey is a best proximal point of 7. Let é3 ¢ Trep. As

ay(e1,e2) > 1. There exists an é3 € Tyep such that
d,(€2,€3) < auy(er, ea)Hp(Trer, Trea). (6.11)

As we know that, F), is strictly increasing, we have
Fy(dy(€2,€3)) < Fy(ow(er, e2) Hn(Trer, Trez)). (6.12)

From (6.1), we have

T+ Fy(de(€2,€63)) < 75+ Fylaw(er,e2)Hm(Trer, Tre2))
< F, <b1dr(e1, e2) + baldy(e1, Trer) — dy(Ar 7, Agp)] + bsldy(e2, Trea) — dr(As
baldy(e1,Tye2) — dr(Ary, Aag)] + Lldr(e2, Trer) — dr(Asy, A2f)])
< Fu(bidi(er,e2) + bads(e1, e2) + bady (6, 5),

baldr (1, €2) + (22, 5)] + L.0)
= (b + ba + ba)dy(e1,2) + (b + ba)dy (62, 3) ).
As we know that F), is strictly increasing, we get from above that
d,(€2,€3) < (b1 + by + bg)dy(e1,e2) + (bs + by)d, (€2, €3).

So that,
(1 — b3 — b4)dr(é2, ég) < (b1 + by + b4)dr(€1, 62).

As by + by + b3y + 2by = 1, thus we have
dr(é2,€3) < dr(e1,e2).
Now from (6.13), we have
7§+ Fu(dr(€2,€3)) < Fy(dr(e1,e2)).
As é3 € Treg C By, J e3 # e € Ag such that
dy(es, ) = dp(Arp, Agy), (6.14)

for otherwise ez is a best proximity point. As (A1, Aay) satisfies the weak
P-property. From (6.7) and (6.14), we have

0 < d(e2,e3) < d,(é2,€3).
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By applying F,,, we get
Fu(dr(e2,e3)) < Fy(dy(é2,€3)).
Thus, we have
T+ Fu(dy(e2,e3)) < 7¢ + Fy(dr(€2,€3)) < Fy(dy(e1,e2)). (6.15)
So we get
Fy(dr(e2,e3)) < Fy(dr(€2,83)) < Fy(dr(er,e2)) — 75 < Fy(dr(eo, 1)) —27y.

As T} is strictly ou,-proximal admissible, As we know that ay(eq,e2) > 1,
dr(e2,€2) = dr(A1y, Aay) and d;(e3, €3) = d(A1y, Aay), then ay(e2,e3) > 1.
Proceeding in the same way, we get sequences {e,} in Ay and {é,} in By,

where €, € Tre,—1 V n € N such that
dr(en,€n) = dp(Ary, A2yp) and ay(en—1,e,) > 1. (6.16)
Furthermore,

Fy(dr(en,ent1)) < Fu(dr(€n,éng1)) < Fu(dr(eg,e1)) —nty Ve N.
(6.17)
Now if we let n — oo in (6.17), we get limy, 00 Foy(dy(€n, €nt1)) = limy oo Fiy(dr(€ny €nt1))—
oo. Thus, by property (Fy,), we have lim, .o dr(epn,enr1) = 0. Let
dy, = dr(en,ent1) V n € N. From (F,,) 3 k € (0,1) such that

Jim d* Fy,(d,,) = 0.
From (6.17) we have
d* F(d,,) —df Fy(dy) < —dF ntp <0V neN, (6.18)
Now if we let n — oo in (6.18), we get
lim ndfn =0.
n—00

This implies that 3 an n; € N such that nd’ﬁn <1V n > ny. Thus, we have
1
drn S W’ Vn 2 ni. (619)
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To prove that {e,} is a C-Sin A;y. Consider m,n € N with m > n > nj.
By making use of triangle inequality and (6.19), we have

dr(en; em) < dr(€n7 en+1) + dT(en+17 €n+2) +---+ dr(em—la em)
m—1 0o 00 1
= < < —_.
DA< dn <Y o
i=n i=n i=n

As we know that > 2 11% is convergent series. Thus, lim,, . d;(€n, em) =
0. Which implies that {e,} is a C-S in A;y. Similarly, we see that {é,}
is a C-Sin Agy. As we know that A ¢ and Agy are closed subsets of a
complete M-S, 3 e¢* in A and €* in Ays such that e, — €* and €, — &*
as n — oo. By the (6.16), we conclude that d,(e*,é*) = d.(A1y, Azy) as
n — o0o. By hypothesis (iv), when T is continuous, we have é* € Tye*, As
we know that &, € T'e,—1. Hence d, (A1, Aay) < dp(e*,Tpe*) < d.(e*,€%) =
dr(A1f,Azs). Therefore e* is a best proximity point of the mapping T7.
By hypothesis (iv), when ay,(en,€*) > 1V n € N, then by using triangular

property, we have

dr (6*, Te*) < dT(€*7 én+1) + dT’(énJrlv Tfe*)
< dp(e, éng1) + awlen, ) Hpy(Te,, Tre™)
< dr(e*, én+1) + bldr(en, 6*) + by [dr(en, Tfen) — dr(Alf, Agf)] +

ba[d(e*,Tre*) — dp(A1y, Azyp)] + bald,(en, Tre*) — dp(Ary, Aay)]
+L[dr (e, Tyen) — dr(A1y, Azy)]

dr(€*, Eny1) + brdr(en, €*) + baldr(en, Eny1) — dr(A1y, Aap)] +
ba[d(e*,Tye*) — dr(A1y, Azyp)] + bald,(en, Tre*) — dr(Ary, Aay)]
+L[dr(€", én+1) — dr(Ary, Azy)]. (6.20)

Now if we let n — oo in (6.20), we have

dr(e*,Tfe*) S dr(Alf, Agf) + (b3 + b4)[dr(6*,Tf€*) — dT’(Alf7A2f)]

This implies that

dr(e*,Tfe*) S dT(A1f7 Agf)

Thus, we conclude that d.(e*,Tre*) = d.(A1y, Aay). O
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6.2 Best proximity point theorem for Ciric type
F,,~-proximal contraction

In this section, we will investigate a best proximity point for a F,, -proximal

contraction of Ciric type on the nonempty closed subsets of a complete M — S.

Definition 6.2.1. Let (Xg,d,) bea M — S, Ay, Aoy are nonempty subsets
in X4 and oy, : A X Ay — [0,00) be a function. A mapping T : Aj; —
CLyf(Azy) is a Fy,, -proximal contraction of Ciric-type, if 3 continuous F,

in §yw and a 74 > 0 such that
T+ Fy(aw(e, €)Hn(Tre, Try)) < Fuy(M(e, €)), (6.21)
Ve,é € Ary, whenever min{ay, (e, €)Hy (Tre, Try), M (e, €)} > 0, where

M(e,&) = max {dr(e, &), dy(e, Tre) — dy(Ar s, Agp), dr(&, Tyy) — dy(Ar s, Asy),

dr(e,Try) + d,(&,Tye) — 2d, (A1 s, Azy)
2

b+ Llde (2, Tpe) — dr(Au g, Aay)]
and L > 0.
Now we will prove a result for a Fy, -proximal contraction of Ciric-type.

Theorem 6.2.2. Let A;; and Aoy be nonempty closed subsets of a com-
plete M — S (Xg, d,). Further suppose that Ag is nonempty and Ty : A1y —
CLjf(Azy) is an Fy, -proximal contraction of Ciric-type satisfying the fol-

lowing conditions:
(i) Tre € Bo ¥V e € Ag and (A1, Aay) satisfies the weak P-property;
(ii) T is strictly o,-proximal admissible;
(ili) 3 e, e1 € Ag and é; € Teg such that

aw(eo,e1) > 1 and d,(e1,é1) = d,(Ary, Aay).

(iv) Ty is continuous, or, for any sequence {e,} C A such that e, — e as

n — 00 and au,(en, ent1) > 1V n €N, we have oy (en,e) > 1V n eN.

Then T has a best proximity point.
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Proof. As we know by hypothesis (iii), 3 ep,e1 € Ag and é; € Trey such
that
dr(e1,€1) = dp(A1y, A2y) and ay(eg,er) > 1, (6.22)

If €1 € Tyeq, then e is a best proximity point of 7'. Let é&; ¢ Trey. As
aw(ep,e1) > 1, by Lemma 1.4.5 3 é; € Tyeq such that

dr(él,ég) S aw(eo,el)Hm(Teg,Tel). (623)
As we know that F), is strictly increasing, we have
Fy(dy(€1,€2)) < Fy(ow(eo, e1)Hm(Treo, Trer)). (6.24)

From (6.21), we have

Tp+ Fy(dy(61,62)) < 75+ Fy(aw(eo,e1)Hpy(Treo, Trer))
< Fy(max {d,(co,e1), dr(co, Tyeo) = dr(Avy, Azg),dr(er, Tper) = dr(Avy, Azg
d(eg, Trer) + d,(e1,Treq) — 2d, (A1 ¢, A
(0, Tyer) @ 2f 0) (A Qf)}+L[dr(elny60)_dr(A1f>A2f
dr (o, dr(é1,€
< (max{dr(eo,61),dr(60,61),d7~(é1,é2), (€0 el);— @ 62)} —|—L.0>

F,
= By (max{dy(co. 1), dr (61.22)) )
Fw(dr(e()vel))’ (6

for other choose of max, we have a contraction. Note that, we use the

following facts in above inequalities:

dr(eo, Treo) < dr(eo, e1)+dy(e1,€1)+d, (€1, Treo) = dy(eo,e1)+d (A1, Azy)+0,

dr(e1,Tre1) < dr(e1, €1)+d, (€1, E2)+d (62, Tre1) = dr(A1f, Aaf)+d, (€1, E2)+0,

dr(eo, Tre1) < dr(eq,e1)+d;(e1, €1)+d (€1, €2)+dy (€2, Tre1) = dy(eo, e1)+dr(Ary, Aay)+d, (€1, E2)+0
dr(e1,Treo) < dr(e1,€1) + dr(€1,Treq) = dr(A1y, Azy) + 0.

As éy € Tey C By, d eg # e1 € Ag such that

dr(eg,ég) == dT(A1f7A2f)7 (626)

for otherwise e; is a best proximity point. As (A1, Aay) satisfies the weak
P-property. From (6.22) and (6.26), we have

0 < d,(e1,e2) < dp(E1,€2).
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By applying F,,, we get
Fy(dy(e1,e2)) < Fy(dy(é1,€2)). (6.27)
Thus from (6.25) and (6.27), we have
Ty + Fuldr(er,e2)) < 7 + Fu(dr(ér, €2)) < Fu(dr(eo, €1)). (6.28)

As T is strictly au,-proximal admissible, As we know that oy, (ep,e1) > 1,
dr(el, él) = dr(Alf, Agf) and dr(eg, ég) = dr(Alf, AQf), then aw(el, 62) > 1.

Thus we have
dr<62, ég) = dr(Alf, AQf) and aw(el, 62) > 1. (6.29)

If é; € Treg, then ey is a best proximity point of Ty. Let é3 ¢ Trea. As
ay(er, e2) > 1. There exists é3 € Trea such that

dr(ég, ég) S aw(el, eg)Hm(Tfel, Tf@z). (6.30)
As we know that, F}, is strictly increasing, we have
Fw(dr(ég, ég)) S Fw(aw(el, eg)Hm(Tfel, Tfeg)). (631)

From (6.21), we have

IN

Tf + Fw(dr(éz, 53)) Tf + Fw(aw(el, 62)Hm(Tf61,Tf€2))

IN

dr(el,Tf62) + dr(EQ,Tfel) - QdT(Alf,Agf)
2

Fw<maX {dr(€17 e2),dr(e1, Tre1) — dr(A1y, Aay), dr

(e2,Trea) — dp(Arg, Aoy

} + L[d;(e2, Tre1) — dr(A1y, Azy
d,(e1,e2) + dr(é2,€3)

< Fw<maX {dr(eh e2),dr(e1,e2),dr(€2,€3),

= F, < max{d;(e1, e2), d, (2, é3)}>
= Fw(dr<61; 62))1

otherwise we have a contradiction. As é3 € Trea C By, 3 e3 # e2 € Ag such
that
dr(€3aé3) = dT(A1f7A2f)7 (6.33)

otherwise e is a best proximity point. As (Aiy, Azy) satisfies the weak
P-property. From (6.26) and (6.33), we have

0 < d(e2,e3) < d,(é2,€3).
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By applying F,,, we get
Fu(dr(e2,e3)) < Fy(dy(é2,€3)).
Thus, we have
T+ Fu(dy(e2,e3)) < 7¢ + Fy(dr(€2,€3)) < Fy(dy(e1,e2)). (6.34)
So we get
Fy(dr(e2,e3)) < Fy(dr(€2,83)) < Fy(dr(er,e2)) — 75 < Fy(dr(eo, 1)) —27y.

As T} is strictly ou,-proximal admissible, As we know that ay(eq,e2) > 1,
dr(e2,€2) = dr(A1y, Aay) and d;(e3, €3) = d(A1y, Aay), then ay(e2,e3) > 1.
Proceeding in the same way, we get sequences {e,} in Ay and {é,} in By,

where €, € Tre,—1 V n € N such that
dr(en,€n) = dp(Ary, A2yp) and ay(en—1,e,) > 1. (6.35)
Furthermore,

Fy(dr(en,ent1)) < Fu(dr(€n,éng1)) < Fu(dr(eg,e1)) —nty Ve N.
(6.36)
Now if we let n — oo in (6.36), we get limy, o0 Foy(dy(€n, €nt1)) = limy oo Fiy(dr(€ny €ny1))—
oo. Thus, by property (Fy,), we have lim, .o dr(epn,enr1) = 0. Let
dy, = d(en,en+1) Vn € N. From (Fy,) 3 k € (0,1) such that

Jim d* Fy,(d,,) = 0.
From (6.36) we have
d¥ F(d,,) —dE Fy(dy) < —dF ntp <0V neN, (6.37)
Now if we let n — oo in (6.37), we get
lim ndfn =0.
n—00

This implies that 9 ny € N such that ndffn <1V n >ny. Thus, we have
1
drn S W’ Vn 2 ni. (638)

84



To prove that {e,} is a C-Sin A;y. Consider m,n € N with m > n > nj.
By making use of triangle inequality and (6.38), we have

dr(ena em) < dr(en; €n+1) + dr(€n+17 €n+2) + -+ dv‘(emfla em)

m—1 o) 0o 1
= 2 dn <) dn<)
i=n i=n i=n v

As we know that » ;2 ﬁ is convergent series. Thus, lim, .o d,(en, €m) =
0. Which implies that {e,} is a C-Sin A;y. Similarly, we see that {é,}
is a C-Sin Ayyr. As we know that A;; and Asy are closed subsets of a
complete M-S, 3 e* in A1y and €* in Ayy such that e, — e* and &, — €*
as n — oo. By the (6.35), we conclude that d,(e*,é*) = d.(A1f, Azy) as
n — oo. By hypothesis (iv), when 7' is continuous, we have é* € Tye*, As we
know that &, € Tre,—1. Hence d,.(A1y, Azy) < dp(e*,Tye*) < dy(e*, &%) =
dr(A1y,Ass). Therefore €* is a best proximity point of the mapping T7.
Now if we consider hypothesis (iv), when au,(en,€*) > 1V n € N. We claim
that d.(A1 ¢, Aay) = d,(e*, Tye*). contradictory assume that d,.(Ayf, A2y) #

d.(e*,Tre*). By making use of triangle inequality, we have

T+ Fu(dr(€ng1,Tre")) < 7p+ Fulow(en, ) Hy(Tren, Tre®))
< Fw<max {dr(en, €*), dy(en, Tren) — dr(Arf, Az ), de(e”, Tye*) — dy(Ay,
dr(e*, Tren) + dr(en, Tre*) — 2d, (A1 s, Aay) }
2
+L[d-(e", Tren) — dr(Asy, Azf)])
< P max{dy(en, ), dp(n,ni1) = dr( A1y, Azg), dole”, Tye") = do( A

dr(e*, én+1) + dr(€n,Tf€*> — 2dr(A1f7 Agf) }
2

H L (€%, Ens1) — dp(Ar 4, A2f>]).

Now if we let n — oo in the above inequality, we have

dy(e*, Tye*) — dy (A7, A
Tf+Fw(dT(é*,Tfe*))SFw(max{dT(e*,Tfe*)de(Alf,Agf), (¢, Tye") > (Aiy 2f)})6.39)

As
d,(e*,Tre*) < d,(e*,€%) + dp(e", Tre).

Thus, we have

de(e*,Tre") — dp(A1y, Aay) < d(€¥, Tye").
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By making use of above inequality, (F,,) and (6.39), we get

IN

Ty + Fy(d(e*,Tre") — dr(A1y, A2y)) T¢ + Fu(de (€%, Tre"))
Fw(max {dr(e*,Tfe*) —d, (A1, Aay),

(€, Tpe*) — dy(Ar 7, Aay)
d(e Tfe)2 (Ary gf}).

IA

This implies that
dr(e*, Tfe*) — dr(Alfa Agf) < dr(e*, Tfe*) — dT(A1f7 Agf)

This is a contradiction to our assumption. Thus, we conclude that d,.(e*, Te*) =
dr(A1g, Azy). O

Example 6.2.3. Let X; = RxR be enriched with a metric d,.((e1, e2), (€1, €2)) =
leg — €1 + |ea — &2 V e,é € X4 Take Ay = {(0,e) : e € R} and
Azp ={(1,e) : e € R}. Define Ty : Ay — CLy(Azy) by

{(1,e?)} ife<0
Tr(0,e) = < {(1,0),(1,1)} if0<e<1
{(1,e—=1),(1,e)} ife>1

and ay, @ A1y x A1y — [0,00) by

\)

if e, € € [0, 1]

aw((ove)v (0> é)) = ife,e e N— {1}

S Nl

otherwise.

Take Fy,(e) =e+1ne Ve € (0,00). Under this Fy, condition (6.1) reduces

to

aw<€7 é)Hm (Tf@, Tfy)
Ni(e, )

exp(auw(e, ) Hp(Tre, Try) — Ny(e, €)) < exp(—7y)

(6.40)
Ve, & € Ay with min{o,(e, &) Hy(Tre, Tyy), Ny(e,€)} > 0. Assume that
bi=1,bp=bg=bs=L=0and7; = % Clearly, min{ o, (e, €)Hpn (Tre, Try), dr(e, €)} >
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O0VeéeeN—{1} with e # é. From (6.40) V e,é € N — {1} with e # &, we

have
1 1 1
5 exp(— e — &) < exp(~3).

2
Thus, Ty is a F,,  -proximal contraction of Hardy-Rogers-type with I, (e) =
e +1Ine. Note that Ag = A1y, By = Aay and Te C By V e € Ag. Also, the
pair (Ay s, Aoy) satisfies the weak P-property. If eg,e; € {(0,e) : 0 < e < 1},
then T'eg,Te; = {(1,0),(1,1)}. Take &1 € Teg, é2 € Tey and ui,up € Ary
such that d,(u1, 1) = dr(A15, Aoy) and d,(ug, €2) = d,(A15, Az¢). Then we
have ui,us € {(0,0),(0,1)}. Hence T} is strictly au,-proximal admissible
mapping. For ey = (0,1) € Ag and é; = (1,0) € Treg in By, we have
e1 = (0,0) € Ag such that d,(e1,€1) = d (A1, Azy) and (e, e1) =2 > 1.
Moreover, for any sequence {e,} C Ajs such that e, — e as n — oo and
ay(en,ent1) > 1V n € N, we have ayy(ep,e) > 1V n € N. Therefore, by
Theorem 6.1.2, T has a best proximity point.

Consequences

When we take Xq = A1y = Aoy, we get the following F' — P theorems from

our results:

Theorem 6.2.4. Let (Xg,d,) be a complete M — S. Assume Ty : Xq —
CL¢(Xg4) is a mapping for which there exist Fy, € Fp and a 75 > 0 such
that

Ty + Fu(ow(e, €)Hy(Tye, Tyé)) < Fu(Ny(e, €)),

Ve, é € X4, whenever min{cv,(e, €)H,,(Tre, Tf€), Ns(e,€)} > 0, where
Nf(e, é) = bldr(e, é) + bgdr(e, Tfe) + bng(é, Tfé) + b4dr(6, Tfé) + Ldr(é, Tfe),

with b1, ba, b3, by, L > 0 satisfying by + bs + b3 +2b4 = 1 and bs # 1. Further
suppose that the following conditions hold:

(i) T is strictly ay,-admissible, So that, if a.,(e,€) > 1, then ay(a,b) > 1
Vae€Treand b e Tye;

(ii) 3 eo € Xq and e; € Tyeg such that a, (e, e1) > 1;
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(iii) T is continuous, or, for any sequence {e,} C X, such that e, — e as

n — oo and (e, ent1) > 1V n € N, we have oy (e,,e) > 1V n eN.

Then Tt has a F' — P.

Theorem 6.2.5. Let (Xg4,d,) be a complete M — §. Assume Ty : Xg —
CL¢(Xg) is a mapping for which there exist a continuous F,, in §y and a

7 > 0 such that
Tf+ Fw(aw(evé)Hm(Tfea Tfé)) < Fw(M(eaé))a

Ve, € € Xg4, whenever min{o,(e, €)H,,(Tre, T¢€), M(e,€)} > 0, where

d; (6, Tfy) + dr(éa Tfe)
2

M(e,é) = max {dr(e, €),d, (e, Tre),d.(€,Try), } + Ld,(¢,Tye)

and L > 0. Further suppose that the following conditions hold:

(i) Ty is strictly ou,-admissible, So that, if a, (e, €) > 1, then oy (a,b) > 1
Va€Treand b € Tye;

(ii) 3 an eg € X4 and ey € Treg such that oy, (e, e1) > 1;

(iii) T is continuous, or, for any sequence {e,} C X, such that e, — e as

n — 00 and ay(en, ent1) > 1V n € N, we have aiy(en,e) > 1V n €N,

Then Tf has a F — P.
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