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ABSTRACT

In this dissertation, we have discussed "The
representations of Three and four dimensional Fuclidean
groups". An attempt has been made to introduce three
bracket, namely [i,Y,f], analogous to the cummutator [A,B].
Some simple algebric properties of this bracket are given
in Chapter Two. It has been shown that the invariants of

the above groups can be represented by three brackets.

In Chapter One we have included all the defini-
tions and basic results that are needed for the subsguent

development of the subject.

The Second Chapter begins with the definition of
a "Three dimensional rotation group". In this chapter we

have i. “roduced three brackets and have shown that

-
[J_IJ3lJ+] i J

which is the invariant of the group.

The Third Chapter contains a discussion on four-

dimensional Euclidean group and Lorentz Group. It has been



shown that ‘he invariants of these groups are related to

v

three brackets. Also we have calculated the matrix repre-

sentations uf K", K, and K3.



CHAPTER ONIL .

L]

PRELIMINARIES

We use Dirac's ket and bra notations namely |>

and <| for vectors in Hilbert space throughout this disser-

tation. ; -
§1.1 LINEAR VECTOR SPACES
Definition: If a set s of all elements la>, |[b> «--

satisfies the following properties:

(A) (i) If |a> and 'b> e S. Then

(la> + |b>) ¢ S.
(ii) If |a» and |b> ¢ S. Then
(la> + |b>) = (|b> + |a>)
(cummutative law of addition).

(i11) (|a> + |b>) + |e> = |a> + (|b> + |c>)

— la>, |b>, le> € 8.
(associative law of addition).

(iv) There exists a null element |o0> € S

s + — |la> & S, we have

la> + o> = |o> + |a> = |a>.
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(v) For every !a> £ S, there exists an element
a”> such that 4> + |a”> = |a"> + |a>
, S
i.e. la’> = -|a>
(B) (i) J|a> = |a>

(ii) For any a,B € C (set of complex numbers)
(a:B) la> = a(Bla>)

(iii) If [a> e S and a is a complex number then
a!a>h€ S;
(iv) (o + B)|a> = ala> + Bla>.
(Distributive law with respect to addition
of complex numbers) .
(v) a(la> + |b>) = ala> + alb>.
(Distributive law with respect to the

addition of |>).

A set of |> elements that has the properties (A)
and (B) is called a linear vector space. The elements of
the set S is'called vectors and the complex numbers
a,B8,y *++ are called the scalars. |
If the scalar of a vector space are complex numbers then the
vector space is called complex vector space and if the
scalars are real then the vector space is real. The scalar

product of two vectors |a> and |b> is given by <a|b>

and <a|b> = <bla>.



Inner Product Space: Let S be a (complex) linear space and

let <|>:8§x 8 » C be a map from the cartesian product set
Sx S to the set+of complex numbers which has the following

properties:
(i) <x|x> is real and non-negative where <x|x>
is the sauare of the length of [x> e S.
(ii) <x|x> = 0 iff [x> = 0.
(iii) <x|y> =y<y|x> for all x,y € S.
(iv) {<x|+([y> + |2>)>} =<x|y> + <x|z>.

(v) <ax|y> = a<x|y>

and <x|ay> = a<x|y>.

Then (S,<|>) is a complex inner product space.

Completness: A metric space (X,¢) is said to be complete

if and only if every chanchy sequence converges to a point

of the space.

Hilbert Space: An inner product space which is complete when

considered as metric space is called a Hilbert space.

Note: We shall call the vectors |> of the Hilbert space S

by Ket vectors.

§1.2 BRA VECTORS OR DUAL OF KET VECTORS

Whenever we have a set of vectors in any mathema-

tical theory, we can set up .a second set of vectors called



the dual vectors.

The procedure ol obtaining bra vectors is as follows:

Leit S(c) be the vector space. Then the linear
map f£:5(c) - C is called a linear functional (operations).
Let S*(c) = {£:S(c) - C|f is linear}. |
We défine addition and scalar multiplication in S*(c) by

the following:

(1) (fl <+ fz?(s) = fl(s) + fz(s) — 5 £ S(c).
and rl,fz £ S*(c)
(2) (af)(s) = a{f(s)) — o € C.

Then under (1) and (2), S*(c) becomes a vector space over C.
The vector-space S*(c) is called a dual space of S(c¢) and
the vectors of S*(c) are the dual vectors. So the dual of

ket vectors are known as bra-vectors, and they are denoted

by <|.
§1.3 SCALAR PRODUCT

The scalar product of a bra-vector <b| and a ket
vector |a> is written as <bla>. A scalar product <bla>

appears a complex number and an incomplete braclket expression
denote a vector of the bra or ket according to whether it
contains a firgt or second part of bracket.

The properties of the scalar product of ket and bra vectors

will be, by definition the following:



(a) <bla> = <alb>.

(b) If |a> = ala> + B|b>

then <c|d> = a<cla> + B<c|b>

1l

and <d|c> = a<alc> + B<ble>.

: (c) <ala> > 0, the equality sign appears only

when |a> = 0.

Definition: Two vectors <a| and |b> are said to be orgho-

ganol if their scalar)product vanishes

<a|b> = 0.

§1.4 LINEAR OPERATORS ON HILEERT SPACE

Let O0:H » H be a map and H is a Hilbert space
where vectors are denoted by Ket vectors or |>. Then 0 is

said to be a linear operator iff

6(aja> + B|b>) = a(0]a>) + B(06|b>)

for each a,f and |a>, |b> € H.

The Adjoint of an Operator

Let T be a bounded linear operator on a Hilbert

space H. Then we define

T:H » H such that

y|T]x

<x|T|y> = <y|T|x> (1)

where x,y € H.



We call this T the adjoint of T and take the equation (1)

as its definition. We can easily show that T is not only

a map on H to!H but actually it is a linear map.

Definition: If an operator is equal to its adjoint, it

is called self adjoint operator, we also call it real linear

operator.

Adjoint of the Product of Operators ao,B.

ne

Now we prove'that the adjoining of the product
the operators a,f is the product of the adjoints
EE <a| = <p] and |b> = glo>
<Q| B
i.e. <plaB]Q> = <al[b> = <bla>

= <0|Balp> = <Q|aB|p>

i

then <al = a|p> and |b»>

Bimilarly . . aB = B a
|b><a| = |a><b].
This is an operator which while acting on a ket gives another

ket.

Theorem 1: If A and B are operators on I, then
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Theorem 2: © If ' in a linear operator on Ii, then
(1) =T
| L
Theorem 3: Let T be an invertible bounded linear operator
e = =] =
on H. Then T is also invertible and (T) = (7T l).
J
The proof of the theorems are trivial.
Unitary Operators
Definition: An dpera{or A in a finite dimensional Euclidean

space R is said to be unitary if it preserves the scalar

product i.e.

<Ax|Ay> = <x]|y> for all x,y & R.

8 = 1 or B =a"t,

§1.5 REPRESLENTATIONS

Representations of Vectors

We may decompose a vector with regpect to some
basis vectors |a,> i.e.

a> =

a.la,> (1)
. 1 I
X

I o~

L
Then we may regard the set of n numbers oi's as representing
the vector |a> with respect:to the basis [ai>. The decomposi-

tion (1) is unique with respect to the given basis.

Addition of two vectors is represented by the



addition of their components, e.q.

¥

la> + |b>

b o
J;}—; ”‘!ai> + i

1 i
i L
n
= .5 (o, + Bi)!ai>

and similarly the multiplication of a vector by a number is
represented by the multiplication of its components by this
number, e.g.

x|la> = x°
i

e
o~
=

‘o, la;> = (xa;) |a,>
1 X
Here~» we have first fixed the basis. The question arises
what happens to the set of numbers that represents the

vectors when one changesthe basis? This we will discuss

later.

The Representation of a Linear Operator
in an n-dimensional space

Let |ai> (i=1,2,+++,n) denote the basis vectors
of S, Let us consider a linear operator F. Then F|ai> is

also a vector of Sn and therefore it may be written as

lic—s

Fla,> = ) la.>.
i i 199

=1
The components of F}ai> have two indicies one, the super-
script, identif;es the comgonents of the vector that is being
decomposed. The other is subscript, identifies the vector

that is decomposed. Thus Fg is the jth component of the ith

vector F|ai>.



Now we consider the case of multiplication of F

of an arbitrary vector |a> i.e. not necessarily a basis

vector. Let‘ X
|b> = Fla>
n .
where la> = ¥ a*]a,>
! i=1
n .
and |b> = ] gtla;>
i=1
noo. n .
Then Y gtla,>= ¥ Flatla,>)
=l ot 4=l
n n ;
= ¥ Y Ord at|a.L>.
i=1 j=1 * J
. n o
or gd = 7 rd ot
o, 2 k|
i=1

The set of numbers Fg represents the operator I.

The numbers F} can be arranged ih a table

(1 1 1 kL4
Fl F2 F3 . . . . . . Fl‘]
2 2 2 2
Fl E2 F3 . . o . . . Fn
n n n n
\Fl F2 I3 o ® w % . @ nj
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1.6 CHANGE OF BASIS TN AN n-DIMENSIONAL SPACE

v

In the previous section,we have examined the
representatidns of vectors and linear operators with respect
to a fixed basis. Now we consider the case when the basis
are changed. Let A be a linear operator. represented in the

]

basis [ai> by the matrix A with det (A) #¥ 0. By considering

a set of vector |a1>

n ‘
laj> = ala;> .= ) Ai[aj> (1.6.1)
: 1g=1

As det (A) # 0 . . A"l exists

. k x
i ~1 1
A A = &
( k)( )j i
.
Multiply both sides of equation (1.6.1) by (A l)k
n o
Z (A 1) !ai> = ‘a]'>
1= k )
. n i i
or ‘ak> = ) (A j . |a;> {1.6.2)
pig k - A

Now we show that Iai> are linearly independent. If not, then

ui|a£> = 0 where all a, # 0

n :
or b my Aifa.> =0
linear independence of }aj; implies that

Z\i a; =0 (3=1,2,+++,n)

s gl (A);to..ai;o.



Therefore |a;> are linearly independent.

v

i

Now we have two basis. Question arises, What is

the relation between the representations of a vector or an

operator in new and old basis?. We consider a vector

Then

|b> = ? B

n
and |b>'= 2 Bila;>

| b>.

{163}

(l.6.4)

Using equation (1.6.2),; eguation (1.6.3) may be written as

el 3
|b> =} B, (A l)i‘a3>

by comparing equations (1.6.4) and (1.6.5)

=% .3
BY = @ (K Ly
e 53 1

ar . in matrlx form B” = BA T,

(1.6:5)

Now we consider the case of change of basis in

linear operator. Let F be any linear operator which is

represented by the matrix F in the old basis. Then from

equation (1.6.1)

n j \
Plags = ¥ £ A7 |a.>1

k=1 3k

n im s
= ¥ (A l)] Al ¢

& g 4 9

(1.6.6)



In

by

by

or

12

the new basis F is represented by the matrix I, defined

3

I F».|a£> = 2 F

.1 ,
. la”>
4 m

cbmparing (1.6.6) and (1.6.7)

(1.6.7)
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CHAPTER TWO

REPRESENTATIONS OF THREE-DIMENSIONAL ROTATION GROUP

§2.1 ROTATION IN THREE~DIMENSIONAL SPACE

A roation in three~dimensional Euclidean space
is given by

xi = ) g.. X. e {2;341)

where (xl,xz,x3) and (xl,xz,x3) are the co-ordinates of
the same point with respect to two orthogonal co-ordinate
system (Oxl,Ox2,0x3) and(Oxi,Oxé,Oxé) having the same

vertex O. So that

+x2 = x7?2 + x2% 4+ x22 (2.1.2)

* 3 1 2 3

SRl

2
1
Equation (2.1.1) may be written as

X" = gX . (2.1.3)

where g is a 3* 3 rotation matrix and it is assumed that
det (g) # 0. If gij be the clements of the infintesimal

rotation matrix, g may be written as

g.. = &, . S ' (2
glj élj + blj ) (2.1.4)

where di. =
b0 i#3
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So Gij are the elements of the unit matrix. The rotation

matrix g form a group. Their composition is given by the
il

law of the product of two matrices.
Substituting the values of X’T and X~ from (2.1.3) in

T g = %' X, we get

L ]

xT g7 gx = xT X

which is true for all X. Therefore we have

gllg =% (2.1.5)

where I is 3 x 3 unit matrix, which becomes the identity

element of the group gT defines the inverse of g, viz

g = gt (2.1.6)
From (2.1.5), we have

! i - & 7 S

8540 5s Oij (2:s1:7)

Using (2.1.4) we obtain

By neglecting the squared term on left hand side, we have

E.. + .. =0
JZ 1]
so that €. = —Ea. (2.1.8)
ij ji
From equation (2.1.6), (2.1.7) and (2.1.8), we get
- L .
(g "Vus = 6., = €. (2.1.9)

1] 1] 1]
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Definition:  Tet g,h,k are all possible rotations of

three dimensi‘onal-space about a fixed point. Let G denote
the aggregate’of all such rotations. We shall define the
produpt hk of two rotations h and k to be the rotation
obtained by successive applications, first of k and then
of rotation h. It can be easily proved that the set of
rotations G is a group under the definition of the product
of rotations. The unit element of this group will be the
rotation through zero apgle, and the inverse of a given
rotation g is the rotation that returns the space into the
initial position. Then G is called the three dimensional
rotation group

8242 BASIC INFINTESIMAL ROTATION OPERATORS
REPRESENTING THE GROUP OF ELEMENTS g

We consider the function f(x) = f(xl,xz,x3). If we
substitute for the X in f(x) their values in terms of xi

(x7)

as obtainable from (2.1.3), we ohtain a new function fl
under x » x° = gx. The transformation operator which carries
f(x) to another function f(x”) denoted by Tg. Thus we have

associated a transformation operator Tg with each rotation

g. In view of the definition of Tg’ we write

T f(x) = £(x7)

i
h
W
»

(under the rotation x=gx~)

Dropping dashes, we have in the transformed co-ordinate
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system

T f(x) = f(g ~ x) (2.2.2)

Tglform a group of linear operator representing the aroup
of rotation matrices g. To prove this we will show. that
the product of the rotation 9q and g, correspond to the

product of the transformation operator Tgl and ng.

As a result of first rotation, we get

N

H ‘_': =
T Filx) = £ X
g, | ) (ql )

and as a result of the second rotation g, we get

]

P £ (x) .
9192

Also if I ig the identity element of the rotation group, then

'I‘I f(x) = £(x).

Now we make use of (2.2.2) in order to obtain T
explicitly with the help of (2.1.9). We write (2.2.2) in

the form

Expanding the right hand side of the equation by Taylor's



17
theorem. We 'have
T OF(x,) = £(x.) 8,.-€.. X: = E(%.) 6,.
g, | i ij 0 - ij x| ij
(Clj Xj)z 82
Neglecting the terms involving Eij’ we have
T OF(x,) = 6,. Fx,) ~€.. X, o £(x.)
g i o B [ A =h) Dxi i
N B d
= L(Sij €19 %y Bxi) £l )
g S B s e
By putting Aij = [Xj Dxi X, ij}
ve get
— 1. 5
'1g = 1 + 5 i4 14 (2.2.3)

Then Aij are called the generators of the group represen-
tations. To convert the operator Aij into hermitian operator
we define

A (2.2.4)

i - Bi4k P9k

(iljlk = 11213)

where Byan is antisymmetric tensor in i,j,k so that

0 if any two indices are equal
i3k
1l when all different depending on
even or odd permutation of 1,2,3.

Thus from (2.2.4)

, d o )
J, = —1(x . - X, (2.2.5)
1 { 2 8x3 3 szj
. ) ‘a)
Jy = —ilx.,» - X, e (2.2.6)
2 t 3 Bxl It 8x3
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Jl’ J2 and J3 can be identified as the components of the

L

|
angular momentum operator of a particle.

§2.3 COMMUTATION RELATIONS

Using the above expression for Jl’

can prove the following commutation relations:

[J,005] =id Jy (2.

[3,,3,1 =i Ji - ¥

[J3,Jl] = i J2 (2
where [J,,J,] = JyJp = Jody ete. Or in the compact form

[Ji,Jj] = i & J 2.

1k "k

Again we define

J, = J, 173, (2.
RESULTS
(1) [3,,3_1 = 234 (2.
PROOF (3,00 ] = [3y 443, 3, =idsl
= [Fq03y 1 = 200,050 + B 00500, 1 4 [3y.3,]

1[J2,Jl] - 1[J1,J2]

(as [Jl’Ji] = 0)

J2 and J3, we

(U]

7 . 9 .9
J = =1 xl BN X, ———} (2.2.7)

)

.6)
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Using (2.3.1)

= i(=iJ4) - i(idy)
- = J, + J, = 20,
(xn) [0_,34) = J_ (2.3.7)
= (3, -1i3,,05] = (31,351 = 113,,7,]
| = ~iJ, ~ i{idy) = -iJ, + J; = J_
(ITT) [J3/J+] . J+ﬁ (2.3.8)
[34,3,1 = [35,3; + id,]
= [3,,0,] + 1134,3,]
= 13, + i(-3)) =3, + 17, = 3
§2.4

In this section we determine the matrices J3, J+,
J_and J2 which satisfy the above cummutation relations.

First we proVe the following lemma.

Lemma : Let |m> be an eigen-vector of J3 with corresponding

eigen-value m, i.e.

.J3|m> = m[m?.
Then
(i) The vector J+|m> is either the null vector or

an eigen-vector of J3 with cbrresponding eigen-value (m+ 1).
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(ii) The vector J_|m> is either the null vector

or an eigen-Vector of J, with corresponding eigen-value (m-1).

3
PROOF : I3, [m>) = T3, [m>
= (T, T4 + J+)|m>
i
We have used
Thus J3(J+|m%) =JE+J3|m> + J, |m>

(et 1) J+lm>

Similarly from [J—’JB] = J

We have

J3(J_|m>) = (m=1) J_|m>

56 we conclude the following two results

J |m> = |m+ 1> (2.4.1)
J_|m> = |m=- 1> | (2.4.2)

Because J 4 is hermitian, all its eigen-values aru roal,

Since we are dealing with a space of finite dimengion, eigen
values of J3 are finite in number. llence by operating on an
eigen-vector ol Jq with J,or J_a sufficient number of times

we can arrive albt maximum or minimum value.

Note: J2 = Ji + Jg =t J§ commutes with every J and therefore

the invariant of the group.
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§2.5 MATRIX ELEMENTS OF J

3

We assume a representation in which JB is diagonal
rmaed B 2 ! . :
i.e. if the base vectors are normalized the matrix of J3 are

<m”[Jy|m> = 8 -

s k g
as J3 G (J+J‘ J_J+)

Taking trace of both sides, we get

Trace Jy = 0

Therefore the sum of the eigen~values of Js is zero, and we

can write

L, <m|Jiim> = 0 ) m
m m

We have assumed that finite set of vectors |m> have corres-
ponding finite set of eigen-values running from minimum upto

maximum m . Also U_|m___ > generates as eigen-vector of J.
: max =S max 3

with eigen-values m - 1; Thus the successive eigen=values

(PRI 4

of J, differ by unity. The set of eigen-values ip therefore

Wipor o g s ok ik oo 3200 = 1;m
min’ min nax max

If there are S members of the set then

m = m_. + S-1
max min

If we rewrite the series of eigen-values as

m m - ], e - -
max’ max ) ’mmax (5 1)



22

Since the sun is zero, we have

1 = o
5 mmax 7 S(..) l) = 0,
Discounting the trivial solution S = 0, we get
 srailx
i Moax = 7 '8 1)

As S is an integer, Mmoo and therefore all the eigen-values
of J3 are either integers or half integers. Writing

$ N
4

m = 3, we'have s = 29 + 1L and m = j,j~1,¢++,

max

This gives the number of independent eigen-vectors of J,.
<
When the maximum values is j; the corresponding set of eigen

values is
jt.j_lrj”'zl"‘r"jlzl",j|lr"‘j

Note: I'his is convenient place to make a small but
necessary change in the notation. Here after we will write
the eigen-vectors of J, as |j,m> instead of |m> to indicate

it corresponds to the eigen-value m of the set whose

maximum is j.

§2.6 MATRIX ELEMEN7TS OF J2
L 2 2
As q = Jl + J2 + J3
B o : 2
= 5 (qu + J_J+) + J3

Matrix element will be given by
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N

<j‘m'|J2|j,m>= j,m'[%(J+J_4-J_J+)%—Ji!j,m>

w

. - 2 l 2 = e y J i ¢
S 13,9 5,m + L <3 w10, 15w

PO =

N,

g ¥
+ <j,m’]J§lj,m>

!
M| =

<j,m‘]J+lj,m”3<j,m”lJ_|j,m>

l ' - op . 4ot 2 2.5 am . .
+ 5<i,m T |9,m™ s<q,n fd+fj,m>+-m2

= 3 <3.m|3,]3,m-1><3,m-1]3_|9,m>
) + % <j,m[J_[j,m+l><j,m+l!J+]j,m>+m2

We write

<5m{J+!j,m—l><j,m—l{J_!j,m> = ¢ (m) (2:6.1)
so that

<j,m|J_|j,m+l><j,m+l]J+|j,m> = ¢ (m+1) {2-.852)
Therefore we have

<j,m|J2]j,m> = % ¢ (m) + % p(m+ 1) + m?
Also using | dd = T8, = 24

<3m|3 J_|j,m> - <J,m|I_J |F,m> = 2m
or ¢(m) = ¢(m+ 1) = 2m (2.6,3)
or p(m+ 1) - ¢(m) = -2m . (2.6.4)

A¢(m) = -2m

I

¢(m) = A" (=2m) + A = A - m(m- 1) (2.6.5)
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It follows from ecuation (2.6.1) that
p(j+1L) =0
L
Therefore by(putting m = (j+ 1) in Equation (2.6.4)
A= j(3 + 1)
. 1
p(m) = j(j + 1) - m(m + 1)
substituting the values of ¢(m) and ¢(m+ 1), we get
. 2 . N’ ' .
<j,m|IfG,mw = §(3 + 1)
62 1 MATRIX ELEMENTS OF J+,J_
Let |j,m+ 1> = a, (J, |3,m>)
where a, are to be determined. Then
|, m7 T>|3,m1 1> =x, 9, ]3,m> «, J,|3,wp (2.7.1)

- w, w, | Jeme dtdilj'm>

= Gy Oy <j’m|.(Jl ¥ lJ‘?) (Jl + iJZ) lj,m>

= &iui<j,m|J2ffJ§ - Jgfj,m?

-

=0, g (Gt 1) e T )

—~ 2

= 0.0 (/(j Fm)y(j £tm+1))"

£

The right hand side of the equation (2.7.1) should be eqgual

to 1. Therefore
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v a
U.l‘ =
A V(O3 Fm) (3 £ m+ 1)
Hence
[ L
I l3m = V3 Fm (3 faFrl) |j,ms 1> §24742)
We may now immediately obtain the matrix components of Jl
‘
and J2. The general element of the matrix of Jl is
<j’,m’|Jl|j,m>
1.4q4- w |, | F,m> + Ly m’|J |j,m> (2.7.3)
) J 4 J ) J s ¥ plie
‘is seen from (2.7.2) to be zero unless
j* = j and m  =m * 1
Equation (2.7.3) reduces to
<j,m +l|Jl|j,m>v= 5 <J,m+l|J |3, m>
- % <§,mt+l | V{T=m) (FHmFi) |4, mels
1 : : ;
= 5/(j—m)(j+m+l) (2.7.4)
= . . S .
or <j,m~l|Jl[j,m> = <j,m=1]J_|j,m>
l 0  §
= &z V(3+m) (Fj-m+1) (3759
Similarly the non-vanishing components of J2 are found to
Vhave the values
<Jom+l]I, |3 me= - %j_/(j~m5i§¥ﬁ137' (2.7.6)
and <Gum-1]3,|5,m = 2 1 /T3 (3-mkD) TN



2.8 TI'E THREE BRACKETS

v
In this section we introduce the idea of 3-bracket
f
_ !
cummutator analagous to 2-braclet cummutator which is known

to be ‘Xu'x[’.] = rul"- Xu XI"' (e, R = 1,2
: a xaxﬁ - XBhu
equivalently
XO‘ XB
X XB ’
where o is an ordinary determinant of order 2, but
X X
a B

it does not obey the property that if two rows or two
columns of a determinant are identical the value of the
determinant is zero. This property holds only when Xu

commutes with X for a,p = 1,2.

B’

Now we define

(EgotgeXod = &0 KeBehy e BpE ™ ko dyatd
or X, ¥,2] = X[y,z] + Yi{Z,X] + Z21X,Y]
oF (X,Y,2] = [X,Y14 + [2,X]Y + [Y,2]X
or [X,Y,2] = |X Y y
X Y A
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Properties of [X,Y,4]
(1Y when one of X,Y,%, say 7, is constant, then

(X, ¥,21 = [X;¥1%.

i (2) Interchange of any two X,Y,% changes the sign
of the three bracket because the interchange of two rows

or of two columns changes the gign of the determinant, i.e,
[X,%,2] = ~™,X,;2].

(3) fax,¥,2] = alX,Y,2], i.e.

aX Y 2 | X Y g ;
on P4 2 = !X Y Y4
aX Y 7 X Y Z1.

(4) [X +X2IYIZ]. = [Xl,Y,Z] + [X

i )Y, Z)

2

by using the property of the determinant that

a, +oy a, aj lal a, a, !ul a,
. o R

bl+ﬁl b2 b3 = bl b2 b3 + !Bl b2

Bty . ®y - Gy By Hy Oy 1Yy = @9

(5) [X,aX+Y,2] = [¥X,Y,2]

because the value of a determinant is unaltered if to each
element of a row (or coclumn) is added a constant multiple

of the corresponding element of another row (or column).
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Now we apply this three bracket to angular momentumnm

operator J_ ,J, and J+ and show that [J_,J3,J+] is an invariant

3

of the group,. "
By definition

(J_,34, 3,0 = [J_,3510, + (34,3, 19_+ (3,3 134

3

Using (2.3.6), (2.3.,7) and -(2,3.8)

w J_J, +J J_+20,0,

24 s 2
= (J_J,+J,J ) + 204

2
3

2432 4 J§>+2J

=N

which proves that [J_,J3,J+] is an ‘invariant of three

. . . ; , L2
dimensiocnal rotation group and is ecqual to 2J7 .



29

CHAPTER THRTE

¥

REPRESENTATION OF FOUR DIMENSIONAL LORENTZ GROUP

3.1 FOUR DIMENSIONAL ENCLIDEAN GROUP

We consider a four dimensional Euclidean 8pace
in which a point is gfven by x = (xl,xz,x3,x4). The pure

rotation group whose invariant in the metric

(3.1.1)

may be studied in terms of three dimensional rotatién group,
discussed in Chapter Two. Analogous to (2.2.3), we obtain a

rotation operator

where i,j now take on the values 1 to 4 .instead 6f 1 to 3.
The six infintesimal generators corresponding t@ ¥rotatlons

are given by

Ja T =1iX. e B = X d
. 2 Dx3 3 8x2

J d
J = —l{X e - X e )
2 3 axl 1 3x3
. 5 )

J, = =1[X,°*5x—=X,*

3 [ 1 ux2 2 Bxl}
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. Nt ) )
and M, = =1|X,°*= - - X ’r““J
l; 4 dxl 1 dx4
) 0 9 J
Ny = —~1[X,* - X,
2‘ % 4 3x2 2 Dx4
' ( 5 5
Ny = =L[X,;vm—— = X -——~)
3 4 3x3 3 Dx4

The operator J = (Jp) and N = (Np) satisfy the following

L
commutation relations

[Ji,Jj] = i Eijk Jk
[N, ,N.] = i ... J
b 1jk "k
and [Ji,Ni] =0 i=1,2,3

D

Here J,N and J2 + N commutes with every J and M and are the

invariant of the group.

Now we define

|+
’_l

and N = N, + iN

|+
—_—

By applying three brackets on N_,Ny and N we have
[N_,N4,N ] = 2:J+N (Invariant of the Group).

Algo we have [N+ J_, N3 + Jj, N+ + J+]

2 2
g[I24NT | 5y
- J

1

= 8 (sum of the invariants of the group).
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This result ¢an easily be proved by using the definition of

three bracket and cummutation relations.

#

; |
3.2 LORENTZ GROUP

The Lorentz transformation differ from the trans-
formation of four-dimensional Euclidean group by reality
condition, which can be expressed by putting Ky = ixo. So
that now X is real instead of Xyg- Prom (3.1,1) the Lorentsz

2

transformation leaves‘xi tox, xg - xé = invariant

The six infenterimal basic operators are given by
J = (Jl,J2,J3), k & (kl,kz;kB)

J are given in (2.2.5), (2.,2.6) and (2.2.7). They generate
pure rotation and are the angular momentum operator. Kk

generates pure Lorentz transformation. They are given by

—_— ) 0
kl = l[xo'ax + Xq tne ) (3edel)
1 (®)
- 9 e
(o)
% — -—. . a . 8
L3 = 1[xo X + Xgta— ] } (3.2.3)
3 0

The operators J = (Jp) and k = (kp) (p=1,2,3) satisfies

the following commutation relations

[Jp’Jq] = l'qur Jr (3.2.4)
[k ,k*] = - qur Jr (3.2.5)
and [Jp’kq] = 1 qur kr (3.2.6)
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J+k and F%= b2 commutes with every J and K and are therefore

¥

invariants of the group. We define K, = Kl t iK2'and obtain

following results.

RESULT : 3B [J3,K+] = [JB,Kl + 1K2]
'
& [JB,KlJ + 1[J3,k2]
= Ky + ik, = K,
2. [KL,J3I = [Kl 1K2,J3] = [Kl,J3] - 1[K2,J3]
= Ky = Ky = K
3. [K~,K+] =] [Kl - 1K2,Kl + 1K2]
= [K.,K i[K,,K,] - il (] = 4%
[Yl,bl] - 1[kl,k2] ilK,, Ky 1° [K

= 21[K1,K2J 2J3.

Similarly by using (3.2.4), (3.2.5) and (3.2.6) we have

4 [By, K] = =3,

5 [Ky K] = J_

6 [J_ K] = 2K,

7 [3_,35] = J_

8 (T_,Ky] = K_ \

3l

K

2]



10 .+ [J2,K ]
‘ o
By uS}ng (JAKU - LUJA)
2
(3K, ]
In a similar way
2
(K", K, ]
I=1e) [J2,KA]
o
or [J2 = K
2
Also (07,3 1
a
and. [KZ,J 1
o
[J2 - K
From equations (A) and

il

I

il

Il

iJ

i

i

nckuu

2K

2K
o}

[K

]
a

(B)

'Ku and hence the invariant

1l.

3 2K /3,

"

Similarly we can prove that =

= =]

v
Ekau J)\Ku 1 €

Ckue Ke we have

Eaxuo “o

N + 2i Eaku KAJ

+ 21 Eaku KAJ

,Ku]

Il
(=]

It
o

J2"-K2

of the group.
UOL[KOL'JR] +

JK +1Jh
Y

u

K. + 21 ¢

[JW,J

Ao

G]Kﬂ

=0 97

“JL'{S <) [fj )pxl(d

.

1 V. X
egsw < K 26 °<|3')‘ i
- 1%?7T;k} Fpa Jr

K
TR
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(A)

(B)

commuters with every Ja

and
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'JuKm’ [

SO JuKa commutes with every JB and KB and hence the invariant

L

of the groub.

§3.3
1
In this section we operate three brackets on J==(Jp)
and K = (Kp) and obtain invariants of Lorentz group.
I. [ 3\,1\ ] = '—2(K'J)
PROOF : = K_[Ky K] + Ky[K,,K_ 1 + K _[K_,Kq]
=R ot=d ) + Ky (=204) + K (-J3_)
= -K_J+ = 2}(3..']'3 - K+d_

- 3 2
(K_J, + 2K,J

3J3 + K,J)

= {(K~J+ + K, J_) + 2K, }-{2R1Jl-k2K2J +*2K3J3}

T i W T

T Kl o

= —2{K1J

1 2

= =2(K-J).

(Invariant of the Lorentz Group)

2. Also [J_ = 2(J<K)

3[ ]

2 (Invariant).
By using the following property of thres bracket

[A+X,Y,2] = [A,Y,2] + [X,Y,2Z]
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we have 3.'|’J_+iK_,J3+ iK3,J++ iK+] = 4{(.]'2-I<2) + 1 (J+K)}

v

So bl HAK_, Ty 1Ky, 4 iK, )

'
"

= [J_,J3 + J_K3,J + iK ] +i[l<_,J3+1K3,J+ 4 :LK+]

_. = [J_,35,3_ +iK,] +i[J_,Ky,J, +iK,]

, y 2 s
¥ I8, J3,J +1K ]+ i [K_,K3,J++1I\+]

= [J J3,J ]+1[J_,J3,K+] +i[J_,K3,J+]

: i : .0 R
+ i [J (Kq K1+ 4[K_, 35,31 +i%[K_,35,K,]

3
J+]+1 [(K_.K K]

2
[K_,K "

3’

= J_[3,5,3,1 +94[3,,3_1 +3,[3_,34) +1iJ_[J,K,]

+ 1J3[I<+,J_] +- iK+[J_,J3] + :_J__[K3,J+] o4 :LT\ (J,,J_

+ i, [Ky,J_1 - J_[Ky,K,] - KylKyd,. 1 =K [Ky,J_]

+ 1K_[J3,J+] + 1J3[J+,K_] + lJ+[K_:J3]

- K_[J4,R, ) + T 0K, ,K ] +K _[K_;dq]

3

= Ko [Bged ] =BT sK ] ~ 0, [B_ (Kl

- iK_[Kq,K,] - iKg[K, ,K_] = iK, [K_,K4]

+ 3

= ¥ 5 . " -»': ,..,. ‘-‘_A.,.
J_ I T (205) +0,0_ + 10 K 4 200K, + 1K, T

+ 1J_K, +2iKJy +iJ K_+J_J - 2K3 - K. K_+iK_J

33 +
- 2iJ.K +'1‘JI( - K K %2J2—KK - K K ~21<2
373, T4 = - 3 - - 3
t J.J_+ 11<_J+.+ 21<3J3 +iK, J_
: 2 i i .
= 2J__J++4J3+2J_J++ 21J_K++21.K+J_+41K3J3

2
217 K_ - 4K

3~ 2K K_+2iK_J_ - 2K_K_+4iJ4K

33
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¥

LR . 3 _ 2
= 2(3_0, 4 I, + 235) - 2(K K_+K K _+2K3)

A . B
+ 2i(J_K, + I K_+2J,K

3Kg) + 21 (K J_+K_ I+ 2K,J

3)

= 43% - 4%% + 41T+K + 4iR+J

S PP < K7Y + LUOHR) + (R}
As (J° - K") and J+K comnmutes with every J and K, therefore

sum of the invariants of the group is the invaraint i.e.

we
'

[0+ iK_,J

3 + 1K g, 1K+]

30

is the invariant.

4, By using the fact that J2 - K2 ig the invariant

of the group, we have
s it = A )
[J IR ,Ku]) = [K ;[ ,Ka]).

hy.d MATRLIX LLEMENTS OF K, K_ AND K.

In this section we evaluate the matrix elements of

K, K_ and K3 but we first prove the following lemma,

= . 7 3 - = vz |l & & L =
Lemma : For non-zero tlatrix elements <j,m!hlj s>, we
Have the selection rule j* = j+ 1,7,

PROOF ¢ For the sake of convenieénhee we use tensor notation
here and w¥ite
2

2 . @
. 2 JQ

86 that a summation with respect to the repeated index in a



term over the range 1,2,3 is implied. Thus

[J ,Kp] = [JQJQ’KP]
= JR[JQ’KP] 5 [JQ’KP]JQ
Usng (3.2.6) and Eﬁpq E%qr = 2 dpr
we obtain
[J2,K ] = =21 ¢ J, K. = 2K
By Pl "% g p

n*

We shall use the above equation to evaluate the double

cummutator [J2,[J2,Kp]], which we denote by C. Thus by

(3.4.1

2 2
£ 1 = 213%, K
g [J%,0 K ] [J%, 1

37

(3.4.1)

Because J2 commutes with J, the first term on the right hand

; i -y ] : 2
side simplifies to =-2i Epzq JQ[J ,Kq].

If we apply (3.4.1) again to this term, we get

C = —4ep2q Egrs JQJrKS o 4lEp2q Jqu

Replacing ¢ and using

and €
PLqg ¢

D

®qpt “qrs ~ Gpr Sps ~ Gps Sor

we obtain

e L - 2
W= ~40, (TR, - fe_, - K

2J2K + 2K J2—-4J K J
P P : j2

or (@

) + 207K _+ 2K J
P P

2

2

P P

2

(3.4.2)
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Also G = J4K - 2J2K J2 + K J4 (3.4.3)
; je P P

Therefore equating the above two equations

i L]
o

J4K -—2J2K J2-FK J4 = 2J2K + 2K J2-4J KJ_ (3.4.4)
P p P p P P

Taking the matrix elements of (3.4.4) referred to the states
i

<j,m| and |37, m > we get

)~ %3

{323+ 1)%-25(GG+ 1) (37 +1)3° + 327 (5° + 1)

<jlm|kpljflm’>

= {29(3+1) +23° (5" +1)}<j,m|1<p[j’,m‘>' (3.4.5)

The last term on right side of (3.4.4) does not contribute

anything for j° = j for J K is a scalar and if
<Jom|K |37 %> # 0

we obtain from (3.4.5)

. . 2 : . X
{(G+37+1)° -1} " -3)-1) =0

We have supposed j” # j and j°,j > 0. Therefore the first

bracket is non-zero. The second gives

5 S -
Also ’ [Jp,Kp] = -0 p=1,2,3
Therefore we obtain elements for i = j. This proves the

lemma .
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Matrix Elements of K_

A | K 1 ~-K

J' oy 3 -
Therefore | J K = K J, = —&:/’/’A—-#’/ﬂ\\ (3.4.6)

/
Operating <j,m| and |37,m"2on beth sides of (3.4.6), we have

<J,mlI4K_[37,m*> - <Jym|K_Jq[]",m">

;
& —<j,m|K~|j‘,m’> (;j
or | <j,miJ3|j,m><j,m|Km{j’,m’> - <jm|K_|§7,m">
<37 m 34037 m s = =<3 m|K_|37,m7>
‘or (m~m’+lR5ﬂMKJj‘mf>= 0
Then <j,ml|K_|37,m"% # 0 => m” =m+1
agd hence
<j,m|K+|j‘,m’> #0-=>m" =m-1

Hence the non-vanishing components of Ky and %, are therefore

m° = m+* 1. Since Ky comiutes with J,. The only nen=vanighing
of K, are those for which m = m’.

Mow we shall obtain the matrix of K_as [J_,K_] = 0.

Thefefore J_K_ = K_J_ and <j,m=1|J_|J,ms

Y SES NS el

(f>m> = §+1)

_ <j,m;l|J_K_|j’,m+l> = <j,m=1|K_J_|3",m+l>

oF €Jyf=1|d_|J;mee5,m|K_ |57, ntl>

= <j,m~l]K“|j‘,m><j‘,m{J;|j:m*lé
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or /(j+m)(j—m+l) <j,m|K_|j7,m+1l>
= /(37 +m+1) (37-m) <j,m-1|K_|j",m> (3.4.7)
| (37=3 = 0,%1)
i S LR
i <jm|K_|j,m+l> <j,m~1|K_|3j,m>
: : = ' (3.4.0)

/' (3-m) (F+m+1) /(3+m) (j~m+1)

As the ratio is independent of m, so we shall denote this

N

by <j|K_|j>. Hence we 'find for the dependence on m of the

.elements of K_ diagonal in j

<jm|K_|j,m+l> = /(F-m) (JHm+l <3|E_|3> (3.4.9)

If 47 = j=1, then equation (3.4.7) becomes

Y{3+m) (J=m+1) €j,m|K_|j=1,m+ls

s Y{J=m=1) (J+m) <j,m=1|K_|j=1,m>

Multiplying both sides by v{Jj-m)/(j+m) and rewriting, we get

<J,m|K_|J=1,m+l> <y m=1|K_|],m>

=M n=T /G mGen D

Again this ratie is independent of m. Hence

<j,m=1|K_|j=1,m>

Il

<j|K_|3-1>

<§,m|K_|§=1,m+1s = /{I=m) (J=m=1) <3|k _|9=1> (3.4.10)

If 37 = j+1 then equation (3.4.7) becomes



V(5+m) (G-m+D) <j,m|K_[§+1,m+l> = <j,m-1|K_[3+1,m>

v

/(+m+2) (G+m+l) X

L]

; |
Multiplying by v (j+m+l) (J~n+l) and rewriting gives

<j,m|K_|3+l,mel> < m=1|K_|Jj+1,m>

Y2 (JFm+1) VL) (3+m)

<J|K_|3+1>

<jm|K_|3+1,mel> = /(GHFD) (GHmt2) <j|K_|4+1>  (3.4.11

Now we shall determine the dependence of matrix

K3 on m. We have

T 7 — g
[s-_*_,]:\__] = 2K3

J,K_~K_J, = 2K,

by applying <j,m|, |j”°,m > on both sides
2x Jam| Ry J m s - <jim] (dyk, = kd, )37 s

but #” should be equal tb m. As Ky

conifiutes with J., therefore
the ohly non-vanishing components of Ky are thege for n” = m,

/T3] (J=mel] <3,m=1lK |3%,m>

$i 1§ 2<j,m|K3|j‘,m>

=/ FI) (37=m) <j,m|XK_|j",m+1l>

= /{j+m) (J-m+1) «/ (J+m) (I-m+1) <3 |K_|3>

~/1§=m)(j+m+l)-/?§4m5(j+m+l)<jtK~|j>

i

2m<jLK;lj>

T



5 42
: <j,th3|j;m> = m<i|K_[3> (3.4.12)
For - = j - 1
. | !
<j,m|K3|j—l,m> = (3% - m®)<j|K_|3-1> (3.4.13)
If 37 5 3 + 1
<j,m|K3[j+l,m> = /(3+1)2 = m2 <j|K_|j+1> (3.4.14)

Since K3 is real ‘

<j|K|j-1> <j-1|K|3>

the matrix <j|K_|j-1> as we have defined above is hermitian.

Bimilarly for K, i.e.

(i) <j=l,m+l|K_|j,m> = V{F-m) (3-m-1) <j-1]|K_|3>

(ii) il K, |, = /EE) GFD) <3|k, 3>

(214} <j+i|K+|j,m> = V{§+m+1) (§+m+2) <jJ'r1|,i—’f,flj‘i-w

e : c B 2

§3.5 MATRIX TLEMENTS OF [J2,K+], [F=K_ ], (3% Ry1 [T _1Kq,T,]
e g . o R o B
As [a fK+] = d k+v_ K,d

therefore

<j,m|[szK+]|j’,mﬁl>

\

\

it

<j,m|J2K;|j’,m«1> - <j,m!K+J2]j’,m*l>

j(j+l)<j,m|K+1j’,m—l> - <j‘(j’+l)<j,m!K+[j‘,m-l>
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Now if 37 =13
then the matrix
| )
<3,m[ (3%, X, 1]j,m-1> = 0 (3.5,
If §j°7 = j-1
theﬁ
<j,m|[J2,K+]|j-l,m-l> = 2 V(3+m) (7-m+1) <j1K+}j>
ka5
Now if 37 = j+1 i
:
<jm|[[3%,K _1|3+1,m-1>
= ~2(3+1)/(F-m) (FHm+l) <j|K |3+1> (3.5.
Similarly we can calculate matrix element of
[JZ,K_] and [J2,K3], £ ol
; 2 e i
<j,m|[J%,K_]|j,m+l> = 0 {358,

<3m|[3%,K_1[5-1,m+1> .

Il

1)

3)

4)

24 /TTRTTFeIT < [K_|4=15

{3.5.5)
and <j;m|[J2,K_]|j+l,m+l>
= 2j (F+1) /(I m+I) (J+m+2) <3 |K_|J+l» (3+5.6)
and similarly
g <2 Lo
<j,m|[J ,K3]|j;m} =0 (3:5.7)
<j,m![J2,K3Hj—i,m> = 23/9%2-m? <j]K3!j—l> {3.5.8)

ang
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<j¢m|[J2,K3]!j+l,m> = =2(j+1)/(3+1)2 = m2 <j|K|j+1>

Al

As [T}, Bowd, T = 2(J*K)

3ot

20K

or Tl &R+ 20K,

Applying <j,m|

<j,m|J_K+|j,m>4»“j,mlJ+K_]j,m>-L2<j,mlJ3K3!j,my
= 2<j,m|JT+K|j,m>

or (j+m+1)(j—m)<j|K|j>-f(j+m)(j—m+l)<j]K|j>4—Zma<j|K[jb

= 2C (C is any constant)

= (23% + 23) <j|K|d> = 2¢
€ = j(I+1) <3|K|j> (3.5.10)

Note 1: This is a convenient place to make a neceagary
-change in notation. Henee, after we shall write Bj instead

of <j|K_|35; C; instead 6f <j|K.|j=1> and Di,y lnstead of

<3 |K_|3+1>. similarly Ay instead of €3 |%, |93, C; instead of

<9=1

K+|j> and Dj+l instead of <j+l|K+‘j>{

Note 2: It is easy to verify that

J J
and L. e =@,
) ]

and Diy1 = Dy
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3.6 DETERMINATION O THE OPERATOR K+, K_ AND KB

.

In thjis section we will apply |j,m> to the operator
K

v, B

3 and obtain some vector K+|j,m>, K_|j,m> and

K3|j,m>. First we calculate K _[j,m>. As

K+J+ = J+L+
operating |j,m-1> on both sides, we have

K, |3,m><3,m[3, [§im-1>

.

=J, |37 m><j",m|K _|j,m-1> (37 =3+1,3,3-1)

/(3+m) (J-m-1) |j—l,m+l><j~l,m!K+!j,m—i%

+ V(j-m) (J+m+1) |j,m+l><j,m]K+!j,m=l?

+ /A (342 | 3+1,m+l><3+1,m|K, | §,m=1>

By using the results of previous section and by dividing

V(3+m) (5-m+1) we have

K, |3,m> =/(F-m) (F-m-1) cj|j-1,m+1>-/(j-mif5¥a%1i Ajlj,m+1>

+ /O GAd2) Dy |3+, mels (3.6.1)
Now we calculate K _|j,m> .

As KJ =JK

Operating |j,m+1> on both sides we have

V(3-m) (3+m+1l) K_|j,m> = /(F-m) (3+m-1) | j=1,m=1><j=1,m|K |5, m+1

* V(3Fm) (F=m+1) |, m=1l»<i,m{K_|j,m+l>

+ (GHmF1) (G+m+2) | J+1, m=1><+1,m|K_|j o
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Using (3.4 9), (3.4.10) and (3.4.11), we have
. e : : ; : . A.|lj,m-
K |§,m> = =/(3+m) (F+m-1) cjlg—l,m—b-/(3+m)(3-m+1) j
i
= — —— . ) 9
VY (§-m+1) (7-m+2) Dj+l|3+l,m 1> (3.6.2)

Similarly for K3 we have

2K. = [J

3 K] =J,R ~«KJ

+! += =

Operating |j,m> on both sides and using previous results,

we have i s

K3|j,m> = vV (j-m(7+m) Cj|j—l,m> - m Ajlj,m>

- /IFFD) (3=mt ) Dy [341,m2 (3.6.3)
§3.7 DETERMINATION OF Aj, Cj AND Dj+1 /
Before calculating Aj, éj' Dj+l' we first consider

the case when the basis are changed. Let us supposa that the
basis veeters |j,m> are replased by veesters (§,m) = w(j)|j,m>

where w(j) is arbitrary numeriecal faector depending on 9 only.

If one multiplies both sides of (3.6.1)=(3.6.3) by

w(j) and goes over the veetor (J,m) then the ce-efficient Aj

remain unchanged, while Cj and Dj+l go into

AP | - L wl(d)
€9 TO=IY ©y 0 PieL T G0I Py (3.7.1)
or C: DL =, O,
i 33

i.e, the product remains uﬁchangéd;‘Lat‘jo be the least of



the weight §. The factor w(j) may obviously be so chosen

2

that C; = Dﬁ for 3 > jo+1. In fact by (3.7.1) this equality

is equivalenf to

w(3) - wli-l)
GOI=IT €3 = wT Dy
' ; 12 D
1@ et p __‘M .
Hence [w(j"l)) 631
j Dy
i L . E; - j@*=l
"k

/%]<=Ej@+l
We shall suppose that this replacement of the basis has

‘already been carried out from very beginning so that Cjﬁle

Cj+1 = P31

It remains to determine Aj and Cj'

Let us apply |j,m> to both sides ef [K_,K, ] = 27 4.

Then we have

2m|y,m5 = /{3=m) (j-m-1) ¢, K_|4=1,m+1s

ASEDNSETARS K_|4+1,med>

+ /TIFrD) (3=m%2) Dy, K_|4+L,mels

J#1

S FI) (T Iy ey 5

+ /(3+m) (j-m+1) Aj Kyl3,m=1>

V(F=+1) (J-m+2) D

-+

41 K+|j+l,m—1>

By using (3.6.1) and (3.6.2), and then we compare the terms

involving ‘| j-2,m> we have
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2(9+1) A, C.=2(j-1) A, C. = 0 3.722
[0, Rg08y = 2WS0 Bang %y ( :
Also comparing the terms involving |3j,m> we have
o A :
(= 45 G By ~ Cpq By = 8% = 2 (3.7.3)

3l T4+l 9

Now we take j = jo. Then gl 0 as jo;-l cannot appear.
. - ,

Then there are following two cases:

(i) Cj does not vanish for j = joﬂ-n (n=1,2,¢«+,m)
Cj vanish for some of jthe values J=3J,*tn. Let us consider

lst case. Then (3.7.2) reduces to

Aj(3+l) e ) Aj—l = 0 fox J=i #n E3a7.4)

Multiplying both sides by j and introducing j(j*l)ﬂ3 = P,

= =

we have

Pj dees not depernd on j i.e. a constant Pj=fi .. Hence

i, # 0 as of Jg = 0 then it follows from (3.7.4) that

oo Mgt | |
%3 7 I3 ik

“'Now let us consider (3.7.3) and multiplying both sides of

it by (Zjﬁl) and introducing

0y = (2j—1)(2j+1)c§ (347.8)
50 we have |
: D - ima
(jj- ™ Dj”:l :W‘ ('2j+l).’Aj §i— (2]+l)



K |j,m> = =

X
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Using (3.7.5), we have
' (5% = 32) (5% = a?)
Ty oo s
Jo 4 J
as C., = 0 and o = 0 so we have
(jz-jé)(jz-uz)
] ﬁj = & - jz
combining with (3.7.6), we have
po HE=JI g g £h -
C. = ‘j“:/ T‘ == : (3.7.7)
8 (432 = 1)
" Using (3.7.5), (3.7.7) and the fact that cj = Dj,'we have
A hied R
K ‘j mz = t/éj m ]r 1) = / I S f=1 m+l>
) ﬂjﬁ |
. ,ijgs_ | 4 a']?,
= VI3 (QFFL) gD 19
i {m‘l}-;ﬁ}{(jﬂ)z-
+ V(GFmFL) (JFm+2) ¢ T——jf S
T/ fi(,)nnf—x,
| 341,113 (3.7.8)
and

(32 _je) 3% « 02)
Aj*”jﬁf'“' |§=1,m=1>

R T i
/(34m) (§+m-1) T /

lj {Cige

/(j‘f‘l“) (j—m+]_ “IW l:] nm-= l>

{(3+1)2-jg}{(5+1)2-C77
4(3+1)7 - 1

i

(3+1) v

V(3-m+1) (3-m+2)

|3+1, m~1> (3,7 .9)
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and :
v
_ _ _ i (jz-jg)(jz-cz) =
K3|],m> I= /(ﬂj—m)(j+m) ¥ e e |, m=1>
- ;%f%rylj,m> - V(3+m+l) (J-m+1)
i {IFRE =g e e ———
(3474 10)
§3.8 COKDITION OF BEING UNITARY

Theorem: If the repre8entation g - 'I‘g of the Lorentz @Greup
is unitary then the pair (jo,a) determining it satisfieg one

of the following conditions:

(1) 0 is purely imaginary and jo is an arbit¥ary non=

negative integer or semi-integer.

(2) a@ is a real number in the interval 0 < a < 1 and
1g E 0.
BROOF i Combining the relation

53

(Bg |3 m2,|jm>) = (fj,m?,ﬁa!j,m>}

with (3.6.3) and taking account of the mutual orthegonality

of |j,m> we have

-m A, = -m A.
i J .

il

« « A 1B Peal.



o

From (3.7.5) it follows that this is only possible

in the follewing cases:
(1) a jis pure imaginary and jO is arbitrary.

(2) a is arbitrary, jO = 0

Similarly combhining the relation

(Ky|3,m>, |3-1,m>) = (]],m>,Ky|3-1,m>)

with (3.6.3), we obtajn

/(j-m)(j+mf Cj = = V(j-m) (F+m) Ej

Cj is purely imaginary. As

(3Z=32) (37 = o7).
/ 297 = 1

@)
il
-

(37=32) (37 = 50

/ T e must be redl.

| =

The expression under square root Sign fust be

po8itive. It is possible only when o? is real i.e. when o is

real or purely imaginary. In the second case -o® > 0. In the

first case of real o we must have j, = 0. Therefore the
expression
" ka__jé)(jzl.uz)
TV 137 =1 takes the form
E

Vo431l



where a® > 0. This latter expression must be real for all

J = O,l,2,f?-.iébviOusly this is possible if uzri 1 which
proves the thé@r@m‘

=3

Bl IR 2o 52
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