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ABSTRACT 

In this dissertLtion, we have discus sed "r1'11e 

representations of Three and four dimensional Euclidean 

groups". An attempt has been made to introduce three 
~ 1 

bracke t, name ly [ X ,Y,i'], ana l o<Jous to the cummutator [A , B] 

Some simple algebric proper t ies of this b racket are given 

in Chapter Two. It has been shown that the invariants of 

t~e above groups can be represented by three brack ts. 

In Chapter One we have included all the defini-

tions and basic results t hat are needed for the subSgU 0 1t 

deve lopment of the s ubj ect. 

The Second Chapter begins with the definit ion of 

a "Three dimens' onal rota tion group". n this Ch"Ui (J ~ wo 

have L .: roduc edthree brackets and h ave shown tl ct .. t 

which is the invariant of the group. 

The Third Chanter contains a discussion on four-

dimensional Euclidean group and Lorentz Group. It has been 



shown ·that je he invarian ts of these groups are related to 

three brackets. Also we have calculated the matrix rcpre-

Selyta tions of K~ I K+ and K3 . 
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Cll1\P'rER OtH.; 

PREL H1I NAR H': c:; 

We use Dirac's ket and bra notations namely I> 

and ~I for vectors in Eilbert spnce throughout this disser-

tation. .,' 
.: 

§ 1. 1 LINEAR VECTOR SPACES 

Definition: If a set s of all elements I a> I I b> ..• 

satisfies the following properties: 

( A ) ( i) If la> and b > E S. 'l'h e n 

( Ia> + Ib» c s. 

(ii) If la> and Ib > E S. Then 

( I a> + I b» = ( I b> + I a» 

(cummutative law of addition) . 

(iii) ( Ia> -I- \b» -I- \c> = la> -I- (Ib > + Ie» 

- I a> I I b>, ! e > E So 

(associative law of addition). 

( iv) Thoere exists a null element 10> E S 

s + - la> 'c S , we hnve 

la> + 10> = 10 > + la> = la>. 
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(v ) For every la> C S , there exists all. elemen t 

Le. 

( B ) (i ) I a> = ! a> 

= 10> 

,- I i.1 > 
I 

(ii) For any a , S E C (set of complex numbers ) 

(a-S ) la> = a ( Sia» 

(iii) If la> E S and a is a complex number th n 
,"," 

" , 

ala> E S. 

(i v) (a + S) I a> = a I a> + S I a > . 

(Di stribu tive law with respect to addition 

of complex numbers) . 

(v) a ( la> + Ib » = ala> + alb>. 

(Di stributive law with respect to the 

addition of I». 

A set of I> elements that has the proferties (A) 

and (B) is called a linear vector space . . The elomenLs o f 

t he set S is ca lled vectors and the complex nmnbers 

a,S,y •.• are called the scalars. 

If the scalar of a vector space are complex numbers then the 

vector space is called complex vector space and if the 

scalars are re al then the y ec tor space is real. The scalar 

product of two vectors !a> and Ib> is given by <alb> 

and <a lb > = <bla>. 
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Inner Product Space: Let S be a ( comp l ex ) linear space and 
. 

le t < I> : S x S + C' be a lTl.:lp from the cartesian product set 

S x S to tl1e ,se t t, of COlr.p Le x llumbers which has the following 
I 

properties: 

(i) <xix> is real and non-negative where <xix> 

is the s q uare of the length of Ix> c S. 

( ii) <xi x > - 0 iff Ix> = O. 

(i ii) <xIY> = , ~ ' < ylx > for all x ,y c S. 

( i v ) {< x I • ( I' y > + I z > ) >} = < x I y > + < x I z > . 

(v) <ax\y> = a<xI Y> 

Then (S, < \ » is a complex inner product space. 

Completness: A metric space (X,¢) is said to be complete 

if and only if cvury chan hy sc~ucncc convc cges to a point 

of the srace. 

Hilbert Space: 1\11 inner proullct space which is complete \'lhen 

considered as metric space is cal l ed a H~lbert space. 

Note: We shall call the vectors \> of the Hilbert space S 

b y I<:et vectors. 

§ 1. 2 BRA V~CTORS OR DUAL OF RET VECTORS 

Whenever we h~ve a set of vectors in any mathema-

tica l t h eory, we can set up ,a second set o f v ectors called 
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the dual v ctors. 

The proceduie oi'obtaining bra vectors is as follows: 

Let Src) be the vector space. Then the linear 

mapf : S (c) + C is called Q linear functional (operations) 

S* (c ) = {f:S (c ) + Clf is linear}, 
t 

We define addition and sc lar multiplication in 5*(c) by 

the f ollowing: 

(1) ( f l + f 2 ) ( s ) = il l s ) -I- £2 ( s ) - s c S(c). 
". 
" 

a n d i
1

, f 2 c S* (c). 

( 2 ) ( cd ) ( s ) = ex (f(s)) - ex E C. 

Th e n under ( 1) and (2), S*(c) becomes a v ctor space over C. 

The vector-space S*(c) is called a dual space of SIc) and 

the vectors of S*(c) are the dual vectors. So the dual of 

ke t voctors are knovln ilS bra-vee tors, and they are ,.I ~ 

by <,I . 

SCALAR PRODUCT 

The scalar product of a bra-vecttJ1.' >' 1-1 I tlr 1 Ll k t 

vec ·tor I a> is written as <b I a>. A scalar pro llJ t ·IJ 1 iV 

a ppears a complex number and an i n complete bracket ~xpression 

d e note a vector of the bra or ket accordinq to wh0thcr it 

contains a firSt or second, part of bracket. 

The properties of the scalar product of ket and bra vectors 

will be, by definition the fo llowing: 
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( a ) <b la> = <alb>. 

(b ) If Id> = ala> + Si b > 

'. 
then <cl d > = a<c la > + S<clb> 

and <dl c > = a<alc > + B<blc>. 

( c ) <ala> ~ 0, the equality sign appears only 

when I a> = o. 

Defini tion: Two vectors <al and Ib> are said to be orgho-

ganol if their scalar ~~roduct vanishes 

<a lb > ,; O. 

§1.4 LINEAR OPERATORS ON HILEERT SPACE 

L ,t 0: II > 11 bo a nwp and 11 is a Hi iber L sJ?ace 

where vectors are denoted by Ket v ectors or I>. Then 0 is 

said to be a linear opera tor if f 

8 (a I a> + S ib» = a ( 0 I a» + S (8 I b » 

for each cx,G a nd la>, Ib> E H . 

The Adjoint of a n Ope rator 

Let T be a bounded linear operator on a Hilbert 

space H. The n we define 

<xITIY> = <yIT!x> ( 1 ) 

where x,y E: H. 
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-lve call this '1' the adj oin t of T and take the equation (1) 

as its definition. We can easily show that T is not only 

a map on H tOlE ~ut actua lly it is a linear map. 

Definition : If an operator is equal to its adjoint, it 

is ca~led self adjoint operator, we also call it real linear 

operator . 

Adjoint of the Product of Operators a , B . 

. ,
'. 

Now we prove that the adjoining of the product 

the operators a , B is the product of the adjoints 

If <al = <pi and Ib> = SIQ> 

-then <211 = alp> and Ib> = <Q10 

i. e. <plaSiQ> = <alb> = <bla> 

= <QIBa lp > = <QlaBlp> 

Similarly as = S a 

Ib ><a l = la><bl· 

This is an operator which while acting on J k~ t gi v -8 another 

ket. 

If 1\ no [l or operators on II, th n 

( a ) ( aA ) aA. 

(b) (1\+ '3 ) = A+B. 

( c ) (AB) = BA. 
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Theore m 2: If l' in a l.i.near operator n 11, then 

'r heorem 3: Let T be an in~ertible bounded linear operator 
- -1 -1 

on H. The n T is e lso invertible and (T) = (T- ) . 

The proof of the theorems are trivial. 

Unitary Operators 

. ,,' 
Definition: An ciperator A in a finite dimens ional Euclide~n 

space R is said to be ~nitary if it pre e rves the scalar 

product i.e. 

<AxI Ay> = <xl y > for all x , y ~ R. 

- --1 
AA 1 or A = A . 

D1.5 REP RES L:N'l'Nl' I ON S 

Representations of Vectors 

We may decompose a vector with f~g0eGl ~Q werne 

basis vectors \a i > i.e. 

n 
la> l. 

i=1 
a . 1 a. > 

:L 1 
( 1 \ ..... , 

Then we may regard the set of n numbers o ils as representing 

the vector la> ~ith r espect· to the basis l a. > . The decomposi-
1. 

tion (1) is unique with r espect to the given basis. 

Addition of two vectors is rep re sented by the 



addition of their components, e.g. 

la > + Ib> = 
n 
I' (X .. la . > + 

. - 1 l l 
l= 

n 

n 

L 
i =l 

(3. lb. > 
l l 

= \' ( a , + 8. ) la . > L l l I l 
i = l 

and s~milarly the multipli ation of a vector by a number is 

r epresented by the multiplication of its components by this 

n umbe r, e. g . 

xla> = x 
n 
I :~~. I a . > = 

. " 1 l l l = 

n 

I 
i = l 

(xa . ) I a. > 
l l 

Here ' we have first fixed the basis. The question arises 

what h appen s to the set of numbers that r epresents t~e 

vectors whe n one changes the basis? This we will discuss 

later . 

The Representation of a Linear Operator 
in an n-dimensional space 

Let la. > (i = 1,2,···,n ) denote ·the basis vectors 
l 

of Sn' Le t us consider a linear operator F. Then Flai > is 

a lso a vector of S and therefore i t may be written as 
n 

I"I a. > = 
l 

n 

L 
j = l 

F~ 
l 

lil.>. 
J 

Th · c ompone nts of ~' Ia . > havu two indicies one , the super
l 

script, identif~es the components of the vector that is being 

decomposed . The othe r is subscript, identifies the vector 

that is decomposed . Thus F~ is the jth component of the ith 
l 

vector Fla. >. 
l 



9 

N(I\v we cons ider the case of multiplication of F 

of an arbitiary vector la> i.e. no t necessarily a basis 

vector. Let 

where 

a n d 

Th en 

or 

I b > = F I a> 

n 
la> = I 

i =l 
n 

Ib> = I 
i=l 

n 
)' 
L 

i=i 

i 
ex la.> 

l 

Gila. > 
l 

F~ 
l 

n 

I 
i=l 

n n 

I L 
i=i j=i 

i 
ex 

by US.l.llg .t::ins toin conVC ll tioll, we may wri te 

F~ 
l 

i 
ex . 

The set of numbers F1 represents the ope std' V, 

F i 1 Fi Fi 
1 F2 3 n .J... 

F2 p2 2 p ;:! F • . 
1 2 3 11 

F·,n · 
'3 
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§ 1. 6 CH?\NGE 01" BASIS IN AN n-DIMENSIOHAL SPJ\CE 

In the previous section/we have examined the 

~ 

representati dns of vectors and linear operators with respect 

to a fixed basis. Now we consider the case when the basis 

are ~hanged. Let A be a linear operator represe nted in the 
I 

basis l a . > by the matrix A with det (A) ~ O. By considering 
l 

a set of vector I a~> 
1-

la> 
l 

As det (A) =I 0 A-I exists 

A~la.> 
l J 

(i= 1,2,···,n) 

-1 i 
Multiply both sides of equation (1.6.1) by (A ) k 

n - 1 i __ 
L ( A ) I a . > = I a]r> 

i = l k l . ~ 

or 

(1. 6 .1) 

(1. 6.2 ) 

Now we show that la~> are linearly independent. If not, then 
l 

or 

n 

I 
i=l 

n 
L 

j = l 

o.·la~> = 
l l 

o where all a. . 
l 

a. 
l 

A~la. > = 0 
l I J 

=I 0 

linear independence of la.> implies that 
J 

As 

A~ a. . = 0 
l l 

(j = 1, 2 ,· ·· ,n) 

det (A) =I 0 . a. . = O. 
l 
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Therefore lu J > are linearly independent. 

Now we have two basis. Question arises, What is 
t, 

the relation between the representations of a vector or an 

operator in new and old basis? We consider a vector Ib>. 

Then i 
n 

Ib> = L B, I a, > 
i=l 1 1 

(1.6.3) 

n 
and Ib> = I B~la~> 

i ~:~l 
J_ t- (1. 6.4) 

Using equation (1 .6.2) I equation ( 1.6.3) may be written as 

L 
-1 j I b> = B, (A ), I a ~ > 

1 1 J 
(1.6.5) 

by comparing equations (1.6.4) and ( 1. 6.5) 

B~ = B, (l\-l )~ 
1 1 1 

or in matrix form B ~ = BA -1, 

Now we consider the cas~ of change of basis in 

linear ope rator. Let F be any l'near operator which i o 

represented by the matrix F in the old basis. Then from 

equation ( 1. 6.1) 

F la , > = F[jL A~ I a j > J 1 1 

n 
A~ F~ = I lak > 

k=l 1 J 

n 
= I (1.6.6 ) 

m= l 
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In the new basis F is represented by the matrix F~ defined 

J.;y 

I ~ = ~ F~. m la~> F.. a.> L 
1 1m 

by c omp a ring (1 . 6 .6 ) an d (1 .6. 7) 

or in the ma trix form 

FI '" == A- 1 F' A. ., " 
.: 

(1.6.7 ) 
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CUAP'rER 1'111]0 

REPRESE I": T/\TION S OF Tf-:I(EE-Dli'1ENSIONAL ROTATIO N GFW Ur 

§2.1 ROTATION I N THREE-DIMENSIONAL SPACE 

A roation in three-dime n siona l Euclidean space 

is give n by 

~ 

x' 
l 

3 

,\' 

" 

.L giJ' x J' J=l 
(2.1. 1) 

where (x l ,x 2 ,x 3 ) and (x1, x 2, x; ) are the co-ordinates of 

the same point with respect to two orthogonal co-ordinate 

system (Ox l ,Ox 2 , Ox 3 ) and ( oxi,Ox2 ' Ox~ ) having the same 

vertex o. So that 

Equ at ion ( 2. 1.1) may be written as 

x~ = gX 

(2 .1.2 ) 

( 2. 1. 3 ) 

whe r e 9 is a 3 x 3 rotation matrix and it is assumed that 

d t (g ) f O. Sf" be t h e ulu mcn ts of the infintesima_ lJ 
rotation matrix , 9 may b e written as 

whe re 

g , , 
lJ 

cS . . = 
lJ 

0 .. -t c .. 
lJ lJ 

1 i = j 

o 

(2.1.4 ) 

(i, j = 1,2,3) 

'. 
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So 8 .. are th - eleme nt s of the unit matrix. The rotation 
lJ . 

matrix g form a group . Their composi tion is given by the 

law of the P Foduc t of two matrices. 

Substituting the values of X~T and X~ from (2.1.3) in 

X~T x~ = xT x, we get 

'1' T T X g gX = X X 

which is true for all X. Therefore we h a ve 

'I' ; ,," 
g .g = ':1 (2.1.5 ) 

where I is 3 x 3 unit matrix , which becomes the i deritity 

element of the group gT defines the inverse of g , viz 

'1' -1 g = g (2.1.G) 

From ( 2. 1 .5 ), we h ave 

g . . -g . . = 0 . . 
lJ Jl lJ 

(':l. .7) 

Using (2.1.4 ) we obtain 

( 0 .. + £ .. )( 8 .. + £ .. ) = 0 . . 
lJ lJ Jl J1 1J 

By n glecting the squared t rm on ] ft h a n d sido , wo hnv 

E . . + E .. = 0 
J1 lJ 

so that £ . . = - E .. 
1J J1 

From equation ( 2 .1. 6) , ( 2 .1.7) and (2 .1.8), we (Jo ·t 

- 1 
( g ) .. 

1J 
o . . 
1J 

E .. 
1J 

(2.1.8) 

( 2.1. 9) 
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Definition: Let g,h,k are all possible rotations of 

three dimens£ona l " space about a fixed point. Let G denote 

the aggregate of all such rotations. We shall define the 
, t, , 

p roduct hk of two rotations hand k to be the rotation 

obta ine d by s uccessiv e application s , first of k and then 

o f r ot t ion h . I t can be easily proved that the set of 

r o tation s G is a grou p under the defin'tion of tho product 

of rotation s . The unit e l ement of this group will be the ' 

rotation thr ough z~ro a.ngle , and the inverse of a given 
~ f: 

rotati on g is the rotation that returns the space into the 

i niti a l pos i tion . Then G is called the three dimensional 

r o t a 'ti on group 

§2.2 BASIC INFINTESIMAL ROTATION OPERATORS 
REPRESENTING THE GROUP OF ELEMENTS g 

We consider th~ function f(x ) = f (x
l

,x2 ,x 3 ). If we 

substitu te for the x
k 

in f (x) their values in terms of x~ 
l 

as ob t ainable [rom (2. 1 .3 ), we obtain a ne w function fl(X ~ ) 

und 'r x ., x = <.:1)(' 'l 'he trU I1 S£O, jllation 0t erator which Ctt 1' 1(.; 

f (x ) to anothe r f unc tion f ( x~ ) de n ot ed by T, • Thus we have 
9 

a s s o c iate d a t ran sformation operator T with each rotation 
9 

,g . In vie w of t h e definition of T we write g ' 

T f(x) = f(x~) 
g 

-1 
,f (g x) (under the rotation x = gx .... ) 

\ 

Dropping das hes , we have in the transformed co-ordina t e 



system , . 
, , 

T f (x) 
9 

16 

-1 -- f(g x) (2.2.2) 

T form a group of linear operator representing the group 
9 

of rotation matrices g. To prove this we will show that 

the product of the rotation gl and g2 correspond to the 

product of the transformation operator Tg and Tg2 , 
1 

As a result of first rotation, we get 

-1 = f(gl x) 

and as a result of the second rotation g2 we 0ct 

T f (x) 
g',) 

L. 

'1' 'r 
01 g2 

-1 
f(g2 x) 

£(x) -1 
f(g2 

- f (g 1 

-1 x) gl 

g2 ) -1 x) 

Also if r is the identity element of th~ rotation 0rouP, then 

'rr f (x ) = £(x). 

Now we make use of (2.2.2) in order to obtain T 

explicitly with the help of (2.1.9) . We write (2.2.2) in 

the form 

-- £(8 .. - E .. ) x.) 
lJ lJ J 

Expanding the right hand side of the equation by Taylor's 
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theorem. We ' have 

'1' f ( x. ) 
g l ~1 

a 
= f(x.) 0 .. - E .. X. -,,- f (x.) 0., 

1 1 J 1J J oX, ] 1J 
J 

Neg l ecting the terms involving E~ ., we have 
j 1J 

By putting 

vIe get 

T f(x.) = 
g 1 

0 .. f (X . )-- E., 
1J 1 1J 

X a f (x. ) 
j ~ 1 

1 

= [0 .. - E .. 
., 1 J J-J 

x. _d_) f(x.) 
J ax, 1 

1 

'1' 
g 

A .. 
1J 

0', 

a~ , ) 
J) 

+ ••• 
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(2.2.3) 

Then Aij are called the generators of the group represen

tations. To convert the opera 'tor 1'-.,. into hermitian operator 
1J 

we define 

J, 
1 i E , 'k A ' J 1 J J <: 

( 2.2.4 ) 

(i,j,k = 1,2,3) 

where E, 'k 1 S al1'tisymme 'tric tensor in i,j,k so that 
1J 

Thus from (2.2.4) 

o if any two indices are equal 

±l when all different depending on 
even or odd permutation of 1,2 ,3. 

(2.2.5 ) 

(2.2.6) 
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(2 . 2 .7) 

J
1

, J
2 

and J
3 

can be identified as the components of the 
I " 

angrilar momentum operator of a particle. 

§ 2.3 COMMU'I'ATION RELATIONS 

Using the above expression for J
l

, J
2 

and J 3 , we 

can prove the following commutation relations: 

[J
1
,J

2
] 

[ J '2 , J
3

] 

[ J
3
,J

1
] 

[J.,J.] 
1 J 

Aga in we define 

J' = J
1 ± 

RES ULTS 

(I) 

PROOF 

:::: ' i 

= i 

= i 

i 

± i 

J '~' 
3' 

J
1 

J 
2 

E
ijk 

J
2 

J k 

(as [J, ,J,] = 0) 
1 1 

(2.3.1) 

(2.3.2 ) 

( 2 .3 . 3) 

(2.3.4) 

(2.3.5 ) 

(2.3.6 ) 
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Using ( 2.3.1) 

i ( -iJ ) - i ( iJ ) 3 3 

( II ) ( 2 .3.7 ) 

.,. 
0,: 

(III ) (2.3.8 ) 

§ 2 . 4 

J 

In t h is section we de ~e rmine the matrices J 3 , J+, 

2 
and J which satisfy the above 'umnlutation relations . 

First we prove the following l e mma. 

Lemma: Le t 1m> b e an eigen -vector of J 3 with correspond i ng 

ig n-value m, i.~. 

The n 

(i) The vector J+lm> is either the null vector or 

an e i ge n - vector of J 3 wi t.h corresponding eigen-value (m + 1) • 
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( i~) The vector J_lm> is either the null vector 

or an eigen-vectur of J 3 wi tho _corresponding eigen-value (m - 1) . 

PI-WOF: 

We h ave used 

Thu s 

We have 

So we conclude the following two results 

J+lm > = Im+ l > (2.4,1 ) 

J _ lm> = Im-l> (2.4, :.:! ) 

8 'c -1 U S cT J j s h ' nn l L i. -111, .\ 1 -I i L ~j 

Since we are dea ling vii t11 a space of fi nite dimeJ1:;:io , eiyen 

values of J 3 are finite i n numbcr. IIenee by oper'::ltilv n an 

e ig n- veetor of J 3 wi th J .I~ or .. f ~ s u r-· iei ~n t nUlll].) 'J" of tim s 

we can arrive at lililximum or minimum value. 

Note: J2 = J 2 + J2 + J2 commutes with every J and therefore 
1 2 3 

the invariant of the group, 
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§ 2.5 MJlSRIX ELEMEN T S OF J --------------------3 

We assume a r ep r esentation in which J
3 

iB uiagonal 

i.e. 

as 

I .. 
if the base vectors are nor mal ized the matrix of J 3 are 

o ;0 

nun 

Taking trace of both sides, we get 

Tr a.ce J:S = 0 

Therefore the sum of the eigen -value s of J 3 is zero, and we 

can write 

L <m IJ 3 I m> = 0 l. m 
m In 

We have assumed that finite set of vectors 1m> have co res-

ponding fi n ite set of eigen-values runn ing frolll ndniml1111 upto 

maximum m . hlso a 1m > genera-as as oig n-vcctor uf 3 max - l1l<.lX 

wi 1- h e i q Oll - v <'1 111 0s m 
11 1, 1 )( 

1; '["'hu s t he success i ve ei(Wll-V,11 10R 

of J 3 differ by unity. The se t of eigen - values '~ lh r fore 

m, ,m. -I-l,· ·· ,m - 1,111 mln mln max max 

If there are S me mbers of the set the n 

m max m . + S - 1 mln 

If we rewrite the series of eigen ~va 1ue s as 

m m -max ' max 1, ... , D1ma x - (S - 1) 



Since the sun is zero, \rle have 

S'm max 
I 

1 2 S (S - 1) o . 

Discounting the trivial solution S = 0, we get 

1 
mmax = "2 (S - 1 ) 
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As S is a n integer , m and therefore all the eigen-values max 

of J
3 

are e i t h er i n tegers or half int gers. Writing 

,'-
m max j , we'have s = 2j + 1 and m = j,j-l, "', 

Th is gives the number of indepe nden·t eigen-vectors of J
3

" 

When the maximum values is j; the corros onding sc ·t of eigcn 

values is 

j I j - I I j - 2 , • • , , -. j I 2 I _ . i I J , - j 

Note: 'l'h iH is convu n lc n t J-llac ·' to make a small bu 

necessary c il a ll Sic in the llotClti.on. [j ere after we wiLL w i z 

the e ige n - vec tors of J 3 as I j , 111 > ins ·tead of 1m> ·to il1 .~' ca te 

it corresponds to th i<jun - vuluc m of th set whose 

max imum i s j . 

~ 2 . 6 MATRIX ELEMEN~S OF J2 

As J2 = J2 + J2 + J2 
1 2 J 

1 
(J.+J J_J+) J2 = "2 + + 3 

Matrix e l ement will be given .by 
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, " / J 2 / ' ," / 1 ( J J J J ) J2/ , < J , m . J , m> = < J ,m '2 _I- _ + _ + + 3 J, m> 

' ) 

+ < j , m" / J; I j , 111 > 

," ,.: 

+ ~ < j ,m / J _/ j , m+ 1 > < j , m+ 1/ J '+ / j , m> + mZ 

We write 

< j m / J _I , j , m -1 > < j I 1\\ - 1 I J _ / :i , 111 > == (/) (111) 

so t h at 

The r e fo re we h ave 

, / 2/ , 1 () 1 ( 1 ) < J,m J J ,m> -- '2 q) m + '2 q) m + 

Also u sing 

or 

or 

cp (m) - cp (m + 1) = 2 m 

q) (m + 1) - cp (m) = -2m 

6cp (m) = - 2m 

-1 
cp (m) = 6 ( -2 m) + A = A - m (m - 1) 

(2. 6 .1 ) 

(2 .6.2 ) 

( 2 . 6.3 ) 

( 2 . 6 . 4 ) 

(2.6.5 ) 
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I t f ollows f'rom equat ion ( 2.6.1 ) that 

1/' ( j I- 1 ) 0 

I ~ 
The r e fore by p u t ting m = (j + 1) in Equation ( 2.6.4) 

A = j(j + l) 

cp (m) = j (j + 1) m(m + 1 ) 

substi tu,ting the values of cp (111) and cp (m + 1), He ge t 

' § 2 . 7 

where a± are to be determined. Then 

( ;2. 7.1) 

- Lt ± u ± I j ,Ill> J ± J ± I j , In > 

- < ' I -1' 2 ·1,2 - ~ I' = a + a + J 1 n1 LJ ~ tJ:1 .. ,.. ~ J I J , Jn~ 

= a.L a ± (j (j + 1) - n/ + m) 

= a±Ct± ( / ( j + m) (j ± m + 1)) ' 

The right hand si de of the equation (2.7 . 1) should be equal 

to 1 . The r e f o r e 
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1 

I (j + m)(j ± m+l) 

Hence 

I 

J ± I j,m> = IT] --+ m) (j ± m + 1) I j ,m ± 1 > (2 .7 .2 ) 

V-] e )T1 cty now immediately ob-tain the matrix components of J 1 

and J 2 . The ge neral e l ement of the matrix of J 1 is 

< j -- ,m -- I J 11 j ,m> 

(2.7.3) 

'is seen from (2.7.2 ) to be zero unless 

j -- j and m m ± 1 

Equation (2 .7.3 ) reduces to 

= } < j , m+ 11 I ( j -m ) (j +m+ 1 ) -I j ,111+ 1 > 

}/ (j -m) ( j+m+l) (2.7.4) 

or 

1 
= 2" I(j+m) (j-rn+l) (2. 7.5) 

Si~ilarly the non-vanishing components ()f J
2 

arc= found to 

h ave the values 

(2. 7.6) 

<j,m-lIJ2Ij,m> :: ~ i I ( j+m ) (j-m+l) ( 2. 7 . 7) 
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§2 .8 Tl ', E 'J'IrREE DRi\CKE'I'S 

In thj s section We:! introduce the iclGa of 1-bri'lcket 
I 

c ummut a tor an':l LClCJ O U S to 2- I)rilel'.c."'t curnmutc1tor wh i ell in lUlown 

to bG I X , XII I = c X XI I, (ex, ~ -- 1 ,2) 
(t , ((I I, ( t 

= Xo.X(3 - X X 
(3 a 

equi valen·Uy 

[X X ] = X X(3 a ' B "a 
': 

X Xj3 a 

x Xs 
where a is ordinary deterrninan-t of order 2, an 

X Xs a 
it doC's no -t obey the property tha-t if two rows or -two 

columns of a determinant are identical the value of the 

determinant is zero. This property holds only when X 
a 

commutes with Xf:3' for 0. , (3= 1,2. 

Now we define 

[x ' Xj3 ' X ] = E Q X X(3X a y o.~y a y 
(ex , j3 , 1, 2 , J ) 

or [ X , Y,Z] -- X[Y , Z ] + Y[Z,X] + Z[X , Y] 

or [ X,Y,Zl = [X,Y]Z -I- [l~,X1Y -I- [Y,Z l X 

or [ X,Y , Z] = X y 

X Y 

X Y 

but 



~' \. 

2 7 

Propert i~s 01 [ X , Y, i', J 

(1 \ Wh e n o n e of X,Y, Z , say Z, .. is con stan't , the n 

[X,Y,i,] == [X, Y]z. 

( 2 ) ' nterchang c o f any two X,Y,~ changes ~h' ~i~ 

of the three bracket b ecau se the inte rcha nge o f two rows 

r f two oo l umns 0 1 angea t h - sign of -h d torm~nant, i.a. 

[X,Y,Z] 

( 3 ) ~ Ct X , Y , Z ] = a [ X , Y , Z], i. e . 

aX Y n X Y 
.., 

lJ t.J 

U1\ Y. 'L. ''I' 
y. z 

aX Y Z X Y Z . 

b y using the property of Lh e determinant that 

a
1 

+a
l a 2 a 3 l a l 

a 2 
a

3 a l a') 
L. 

bl+ () l b 2 b J == b l b 2 b 3 + 13 1 b 2 
I 

cl+'Y l c 2 c 3 c l c 2 c 3 i 1'1 c 2 

( 5) [x , ax + Y, Z] = [ X ,Y, Zl 

because the value of a d e terminant i s unaltered if to ach 

element of a row (o r column ) is added a con tant multiple 

of 'the corresponding elclT'ent of another ~ow (or column) . 

a 3 

c 3 

c 3 
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Now we apply this three bracket to angular momentum 
. 

operator J __ ,J3 ahd J+ and show that [J_,J 3 ,J+) is an invariant 

of . t h e gro uP I. 

By definition 

Us ing ( 2.3. 6), ( 2.3. 7) and (2.3.8 ) 

;71>. J. J -I- J J. + 2J· J. 
~ - + + - J 3 

which proves that [J_,J 3 ,J+) is an invariant ofth)~rlc 

dimensional rotation group and is equal to 2J 2 , 
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CHAPTER 'i'HR~E 

REPRESENTATION OF FOUR DIMENSIONAL LORENTZ GROUP 

§3.l FOUR DIMLNSIONAL ENCLIDEAN GROUP 

We consider a four dimensional Euclidean ~pc e 
. .,. 

in which a po~nt is given by x - (x l ,x 2 ,x
3

,x4 ). The pu 

rotation group whose 'invariant in the metric 

(3.1.1) 

may be studied in terms of three dimensional rotatiOn y rcup, 

discussed in Chapter Two. Analogous to (2.2.3), we obt~in a 

rotation operator 

T 
g 

1 = 1 -f- -2: l , , 
1J 

A, , 
1J 

eLl.ll l 

Where i,j now take on the values 1 to 4 inst~~~ bt 1 to 

The six infintesimal generators corresponding l~ ~otati n 

are given by 

J 1 -i[X2· ~~ 3 - X3·d~J 

-J2 = -i[X3·d~1 -Xl·a~3) 

J 3 = - i [ x'l . ~ ~ 2 - x 2 . a! J 
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nd 1'11 . [ a x • _ J __ ) = -l x 0_-

4 (lX
1 

1 Clx 
4 

N2 [ U x 2 ° a~J = - l X4 °ax2 -
~ 

1'13 = . [ a -lx4°ax3- x3 ° a~J 
The operator J ~ (J ) and N = (N ) satisfy the following 

• p p 
commutation relations 

[J.,J.] = i Eijk J k l ] 

., ' 
[ 1'1. , 'N . ] i t ijk J k l ] 

and [J . , l'] . ] = 0 j.=1,2/3. 
l l 

2 2 
Her e J,N and J + N commutes with ev ry J and N and are the 

invariant of the 0rouP. 

Now we define 

J.!: J l 1" LT2 

and I'l l = Nl ± iN 2 

By apply ing ·three brackets on t.,_, N3 art 1 N-j W hi;;lV' 

Also we have [N + J _ , N3 + J3 , N+ ~ Ttl 

= 8[J2 
;N2 + JON) 

= 8 ( s um of the invar ian ts of th- group). 
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This resul t I,:a n easily b e rroved by u s· ng the cl f' n~ I: .i on of 

three ')rackw t: uncI CUlIll\lU t LI tion rela tions. 

3.2 LORENTZ GROUP 

The Lorentz transformation differ from the trans-
I 

formation of four-dimensional Euclidean group by reality 

condition, which can be expressed by putting x~ = ix . So 
" 0 

that now Xo is real instead of x 4 . From (3.1 . 1) the Lore ntz 

. 2 2 2 2 ' transformat1on l eaves ~l + x 2 + x] - Xo = 1nvariant 

The six inf e nterimal basic operators are given by 

J are given in (2 .2 .5), (2.2.6) and (2.2.7). 'l'lley generate 

prire rotation and are the angular momentum operator. ~ 

generates pure Lorentz transforma tion. Th e y are given by 

kl · [ a o ) (3. 2. ) -1 X .-- + x .--o ax 1 ax 1 0 

k2 · t a + x ._a_ ) (3.2.2 ) = - 1 x o '()X
2 2 dX 

0 

k3 · [ a x ._a_) (3 .2 .3) = -1 xo' aX
3 

+ 3 ax 
0 

The operators J - (J ) and k - (k ) (p=1,2,3) satisfies p p 

the following commutation re1a ·tions 

. [J J] = i' £ J r (3.2.4 ) p' q pqr 

[k , k ] = -i £ J r (3.2.~ ) p q pqr 

and [J , k ) = l.pqr )(r (3.2.6) 
p C{ 

I 
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J. k and J2 - ,1<2 commu tes with every ~ and ~~ and are therefore 

invariants of the group. We def ine K± = Kl ± iK2 and obtain 

fo llowing r e8ul~s. 

RES ULT: 1. 

-- [J
3

,K
1

] + i[J
3

, .K
2

] 

Simi l ar ly by using (3.2.4 ) , ( 3.2.5 ) and (3.2.6) we llflv~ 

4 . [1 ~J ,T< _ll -- .T 
'I 

5 . [K
3 

, K~, l = J 

6 . [J ,_, K+ ] = -2K 
3 

7 . [ J' _,J
3

] = J 

8. 1< \ 

9. [J , K ] o 

,', 
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10. ' 
2 rJ A oJA,Ku ] r J ,1< 1 

(i. .. 

= JA[JA,Ka ] + [J A ' Ku ] J A 

= i E JA1\ + i E K J\ \ajJ AajJ ]J 

By using (J A KjJ - KjJ J \ ) i cAjJS K8 we have • 

[J 2 ,K] = -c E KO + 2i E KjJJ\ a !lap AjJO AajJ 

= 2K + 2i E KA J 1-1 • 
". a aAjJ 
"': 

In a similar way 

[K2 , K ] = 2K + 2i E K J 
a a aAjJ \ jJ 

J'" 

so (J2 , K ] = [K 2 , K ] 
Ct Ct 

[J 2 2 
0 or K , K ) = a 

(A) 

Also [J2 J ] , a = 0 

and [K 2,J ] 
a 

= 0 

[J 2 - l(2,J 1 
a = 0 ( 13 ) 

From equation s (A) and (B) J2 - K2 commut~a wi~h f;;V~r:y J a nd 
a 

' K and h~nde the invari~nt of the gr6u~. 
Ct 

11. [J " K ,J Q ] = J [K ,J Q ] + (J ,J o ]T< 
. a a I' a a I' a 1-' ~ 

Simil~rly we can prove 



~ . 

[J K ,K (J ] = 0 
Ct ex " 
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so JexKex cOlrunutes with every J
B 

and KB and hence thG invariant 

i of the group. 

§ 3.3 

In this sec tion we ol.:Jera "te three brackets on J = (Jp ) 

and K = (K ) a nd obtain invari~nts of Lorentz gro up. 
p 

1. 

. PROOF: 

= -2 (K -J) . 

(Invariant of the Lorentz Group) 

= 2 (Invariant). 

By using the following property of threo bracket 

[A+X,Y,Z] = [A,Y,Z] + (X,Y,Z] 
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we have 3. r J _ + iK_, J 3 + iK
3

, J + + iK+J = 4 { (J2 - 1<:2) + i (J. K) } 
, 

So 

= [J_,J 3 ,J+ + iK+J + i[J_,K 3 ,J+ + iK+J 

+ i [K _ ' J 3 ' J -I- -I- i K.,J + i 2 [1< _ ' 1<: 3 ' J + + i K + J 

; .,. 

+ ~ 2 [J ~:, K 3 ' K + J + i [K _ ' J 3 ' J + J + i 
2 

[K _ ' J 3 ' K + J 

+ i
2

[K ,K3 ,J-I- J + i
3

[K ,r<:3,K-I-] 

= J _ J+ + J] (2J]) -I- ,J,.J _ + iJ _ l<+ + 2iJ3 1\3 -I- iJ',.J_ 

+ iJ_K+ -I- 2iK3 J3 -I- iJ-+K_ + J_J+ - 2K~ - 1<+K_ + iK_J+ 

2iJ3 I<:3+ iJ+K_ - K_K-I- -I- 2J~ - K,)<:_ - T _', - 21<:~ 

-I- J+J + il< J + 2K3J3 -I- il< J - - + + -

= 2J_J+ + 4J~ + 2J_J+ + 2iJ_K+ + 2iK+J_ + 4iK3J3 

2' K_ - 4K~ - 2K..,1<;- + !2iK_J+ - 2K_K+ + 4LT3K3 
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2 (J J + J J + 2J
2

) - + + - 3 
2 (K K + K 1< + 2 J( 3

2 
) + - - + 

As (J2 - K2) and J.K comlnut s with every J and K, therefore 

sum of the invariants of the group is the invaraint i.e. 

,,\' 

," 
[J + iK_,j3 + iK3 , J+ + iK+] 

is the invariant. 

4. 
2 2 

By using the fact that J - K is .he invarian t 

of the group, we have 

[ J 
2 

, [1<: 
2 

, K ex )) := (K 2 
, ,[ J 2 I 1< ex ) ) • 

~1J\'l'l{ LX J': L.J ',Mj.;t,JiJ' :"; U1" 1< I 1< AND 1\3 
+ -

In this section we evaluate the matrix cl~m n of 

K+,K_ and K3 but we first prove the follovd,fl~ L_ll1ttlEl.. 

Lemma: 

1 ve the sel - ction r u le j" "" j.t l,j. 

PROOF: For the sake of convenienGte we tilL; b:1llBor notation 

h@te anl1 wt'ite 

"'(j that a summation with respect to ,the repea tSQ inde:x in 

, , 



term over the range 1,2,3 is implied. 'Thus 

[J 2,Kp ] - [J ~J i ,Kp] 
t, 

E = 2 <5 Using (3 .2. 6) and En 
I NPq Sl.,qr pr 

we obtain 

2 [J ,K ] = 
p -2 i E SI., 

" P q 
2K 

P 

We shal l us e the above equation to evaluate the doubl~ 

cummutator [J 2, [J2,K
p

]] I which \Ve denote by c. 'Thus by 

(3.4.1 

I. J ') , . J 1\ I - '}, l.J 2 , 1\ J 
J(, Ll l.) 
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(3.4.1) 

Because J2 commutes with J, the first term 'op th@ right h nd 
2 side simplifies to -2i En In[J ,K

q
] . , PNq N 

If we apply (3.4.1) again to this term, we get 

2 2 c = - 4 EnE qr s J n J K + 4 i E n J n K - 2 J 1< + 2 K J px,q N r S PNq N q P P 

Replac ing E a nd c () ~nd using ' p Sl.,q qpN 

<5 0 - <5 <5 pr ~s ps.Q,r 

'vve ob-tain 

c = -4JSI.,(J _KSI., i E K ) + 2J 2K + 2K J2 
P piq q P P 

or C = 2J 2K + 2K J2 - 4J K J (3.4.2 ) 
p P P 
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Also c (3.4.3) 

Therefor e equating the above two equations 

= 2J 2 I< + 2K J2 - 4J K J (3.4.4) 
P P P 

Taking the matrix elements of (3.4.4) referred to the states 
I 

< j,m\ and \j~,m ~> we get 

{j 2 (j + 1) 2 _ 2j ( j + 1) (j ~ + 1 ) j ~ + j 2 ~ (j ~ + 1) 2} 

; ,, ' 

< j,m\K \j" , m~> 
p 

= {2j ( j -\- 1 ) -I- 2j~ (j '" -\- 1 ) }<j,m\K \ j "' ,m"' >· 
p 

(3 . 4.5) 

The l ast term on right side of (3 .4.4) does not cont~ibut 

anything for j~ = j for J K is a scalar and if 

<j,m\K \j"',m"' > :f 0 
p 

we Dbtain from (3.4.5) 

{ (j + j '" + 1 ) L - l } (lj ~ - jf- 1) = 0 

ItJe have supposed j '" :f j and j " , j > o. Therefot'd til@. £ i1'!:it 

bracket is non-zero. The s econd gives 

Also 

j"'=j ±l. 

[J K] =·0 p ' p p=1,2,3 

Therefore we obtain elements for j'" = j. Thi proves the 

lemma. 
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Matrix Elements of K 
----,.,-----

1 ;-r j I 1\ ~ 1 - 1< 

. h r-fore J 3 K_ - 1(~J3 = -~ ( 3.4 . b) 

I 

0pili . ating (j,ml ~n0 Ij',m"30fi both sld@9 of (J.4.0) I we have 

or 

," 
.: < j -- , m -- I J 3 I j -- , m" > :::: - < j , m I K •. i :.i -- 1 m" > 

'rh@fl < j , m I K _ I j -- ,m" :> f 0 => m -- = m + 1 

and hence 

<j ,mIK+lj"',m" > :f 0 ~> m" = m-l 

lienee the non-vanishing components of Kl and K~ ~g~ th~rof re 

m" ~ m ± 1 . Since K3 comnlutes \'-lith J
3

. The only nQii=\Ji;\11i:;thl1'l0 

of ~3 are those for whidh m = m: . 

NOw we sha ll dbtain the matrix of ~_ ~~ l~~,~_J ~ o. 

'rfietefore J K K J and < j , m - 1 I J' _ I j ; ill;:; 

(j ~ m ~- j+l) 

. . 
", 

I 

= <j. m-l IK_l j"lm><j-- ,mIJ_ljlm+l~ 

I ~ 1 .. " I 
, \ 

:, I. I t i J. I. ' 



Qr 

If j" = j 

I, ( j +m ) (j - m + 1 ) < j , m I K _ I j ~ , m + 1 > 

= ITT~ +m+l) fT"'-:rnr < j, m-l l KJ j'" , m> 

< j ,!TIIK .. I j , m-I-I > 

I ( j -m ) ( j +m+ 1 ) 

(j" -j = O,±i) 

<j ,m~'lIK_lj ,m> 

I (j+m) (j-m+l) 

40 

(3.4.7) 

(3.4.0 ) 

As th§ ratio is independent of m, so we shii1: . '. d@fl 1:;0 this 
," 

by <jIK_ lj >. Hence we'find for the dependence on m o f th 

.elements of K diagonal in j 

I(j-·m) (j+m+l <j IF-J j> ( :3 • 11. ) 

If j~ = j-l, then e~uation (3.4.7) becomes 

< j im 11<[ _I j -1 , m+ 1 > <j,th-"ll l{..::!j , m::. 
~~-------------- = 

/ (j :-. -111) Tf;:::-rn + If 

l\~ain thl§ ratio is iridej) t? nt1crtt of tTl. lldhde 

. . 
<J,m!K~!j-i,rtHl~ = I(j-m) (j-m-1) <j!I,_!j- - (J.4.10 ) 

f j" = j+1 the n equation (3.4.7 ) becomes 



I (jl-m ) ( -j-m'll) <j , mlK Ij+l, m+l> = <j ,m-lIKJj+l , m> 

I ( j+m+2 ) ( j+m+l) X 

I 
Mu tip yiny by I (j..(rn+l) (3- r£1+1 ) and rewriting giv s 

;( ~i f m 1 K .. I j +1, mo'-l > 

ITrJ.trt+2 ) (j+m+1) 
== --~==:;~::=;::= 

I ( j +m+ 1) (j +m) 

== < j I K_ lj+l > 

41 

< j , mIK_lj+l , m+l > = l (j +m+1 ) ( j+m-l:2 ) <jIK_ljl 'l> 

Now we shal l d e t ermine t h e dependenc e of motrix 

I<j on m. v'Je have 

b y ~pplying < j,ml , Ij ~ ,rn ~> on both sides 

( 3.4 .11~ 

but:. 1+1; 91 1 " b err 1 to 1\ 1/ ..l~H-I:.I;:lS h'itl=t t l:,hf_'~.'''- ~ _. i.e -_, _ ttl 10U a e 'iua fl1. e,S"3 COllUtll;I.. . __ • ~ •• '-'J' ... -L !=_"-,", 

th~ ohly non- v a nishing components of K3 &f~ lhe~§ E~Y w~ - m. 

I., 

I" .. 

,; I(j+m) (j-m+l) ./ ( j+m) (j-m+l)<j iK _ lj> 

• 
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< j , m 1<3 1 j, m>- == m< j 1 K I j> (3.4.12) 

For j ~ j 1 

(3.4.13 ) 

If j ~ =j j + 1 

( J. 4 .14) 

Since K3 is r e a l 

<jIKlj - 1> = <j--1 IKlj > 

the matrix <jIK_ l j - 1 > a s we have defined above is hermitia1. 

~ifuilar1y for K+, i.e. 

<j+1IK+ lj,f'1> == l{j +m+ l ) ( j+m+2 ) <j+11 ~+Ij ~ 

MlI.T RI X 'P,L EJ1E NT S OF' r J 2 , K 1] ' tj ~ , l{ ] , 
' \ 

( !~~ I j( 1 1 r J __ ~1\ j , J I J 

As ~-~l' - 1'; J.2 == t::I ~ \. + + 

t he r e fore 

<j , ml [J2,K+] Ij~ , ro -. I > 
\ 

= < j , mIJ2 K~l j ~, m-l > - <j,mIK+J2 !j-,m-l> 

= j ( j + 1) < j , m 1 K+·I j ~ , m- l > 

'! 

h • I d . 
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NOW if j--' = ' j 

then the matrix 

I ~ 

<' j,m! [J
2

,K+J !j,m-l> == 0 (:3. .1) 

If j" = j - l 
, 

then 

< j,m! [J
2

,K+J !j-l,m-l> = 2 /(j+m) (j-m+l) <j!K.!.ij> 

Now if j " == j+l 

') 

< j/m l [J"-,I{+J !j+l,m-l> 

== -2(j+l ) / ( j-m) (j+m+l) <j!K+!j+l> 

Similarly we can calculate matrix alem0h t of 

[ J 
2 

, K _ ] and l J" 2 , K 3], i. e . 

= 2j (j+l) /(j+m+l) (j+m+ 2) <j 11<:.;; Ij-l=l> 

aflti S iftll1fLt ly 

• Ii" 

I , 

(J . 5 ,2) 

(3.5.3) 

(3.5.4) 

( :1 • \ 
• I 

(.3.5.6 ) 

(J .5 . 7) 

(J.!5.8) 
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< j ,.' P.1 I [J 
2 

, K J 1 I j -I- 1 , m> = - 2 ( j + 1 ) I ( j + 1)2 - m 2 < j i 1< I j + 1 > 
\0 

(3.5.9) 

As [,j I , K 3" J ) = 2 (J ' 1<) 
r + 

or 

Applying <j,ml 

<j,m l·T 1\ Ij,m > + " j,ml,] T<: Ij,m> + 2<j,mIJ
J

l<3!j ,Ill ;" . - I· -I- - . , 

or ( j +m+ 1) (j -m ) < j 11< I j > -I- ( j +m ) ( j -m+ 1) < j I K I j> + 2 JT\ It < j I J~ I j > 

= 2C (C is any constant) 

( 2 j 'I t· 2 j ) < j I K I j > ;:; 2 C 

C:= j(j+l) <jl!<:lj> (3. 5.10) 

'l'his is Cl convenient place tg mak"" £,1 rHJ 'I,n lliltlL"Y 

Ghan~§ in nbtation. Hend~, after We §h§ll W(1t~ B
j 

inst ad 

of ( ~ lk~lj > j e; inst~ad § f < jIK~lj - l > and jbl inlt~Bd of 

~j IK~lj+l>. Similarly Aj instead af ~j 1~~lj), G
j 

inBtsud of 

<1~ lIK-I-lj > a nd Dj +1 instead of <j+lIK+lj> ~ 

it is easy to Verify that 

A. :;:: B. 
J J 

and C~ ~= -C. 
. J J 

and 

• I 
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53 . 6 DWI'EP-MINATION OF TIlE OPERATOR K+ , 1<_ AND 1\3 

In th~s section we will apply Ij ,m> to the operator 
I 

K+, K_,K
3 

and obtain some vector K+lj,m>, K_l j,m> and 

K3Ij,m> . First we calculate K+lj,m> . As 

operating Ij,m-l> on both sides, we hav 

. ,\ ' 

K + I j,m> < j , m I' J + I j':y m -1 > 

(j '" = j+l,j,j-l) 

= I(j +m) (j -m-l ) Ij - l,m+l ><j-l,m!K+lj,m-l ~ 

+ l ( j-m+l) (j+m+ 2) Ij+l,m+l >< j+l,mIK+ !j,JTl-l> 

By using the results of previous section and by dtvtd4M~ 

+ I ( j+m+l ) ( j+m+2) 

Now we calculate K_lj,m> 

As K J = J K 

D , 11 j+l,m+l> 
J+ 

(3.6.1) 

Operating Ij,m+l> on both sides we have 

I (j - m) (j+m+l) K Ij,m> = I(j-rn) (j+m-l) Ij-l,m-l><j-l , mII<-'j ,m+l :: 

+ I (j +m ) (j-m+ l ) Ij,m-J.><j,rn!KJj ,m+l> 

+!t1+m+l) (j+rn+2) Ij+l,m-l ><j+l,mIK b;n+ 
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Using ( 3.4 ,, 9 ), ( 3.4.1 0) <111<1 (;i.4.ll), we htlve 

K i j ,rh> = -/(j+m ) (j+m- l) C,lj - l,m-J>- /(j+m) (j-m+l) Ajlj,m
J 

- /(j - m+l) (j - m+2) D, llj+l,m-l> 
J+ 

Similarly for K3 we have 

2K3 = [J ,K ] = J K - K J + - + - - + 

(3.6.2) 

Op§~ati"~ jj,m> oh both sides and using ptevlbu ~ ~o8ul 

we have .. )' 

K3Ij,m> = / ( j -m ( j +ffiT C ' I j -1 (m> - m A., I j , m> 
J J ' 

- /(j+m+l) (j-m+ ) Dj +ll j+ltll\ (3. G. 3) 

§ 3.7 DI:'I'8RMINATIOlr 01" A" C, AND D, +] 
J J J ~ 

Defore calculating ~" C" DJ' +l ' 
. J J 

tho G~~S when the ba s is are c hanged. tst UH t 1wt r li ' 

l:J@~i§ v _eten's I j f rr\ > are replaqett \?y vt:i!§ l rq i:;; ( j I HI) :.s II,) (j ) I j,m> 

wl1e.l e w (j) i§ arbll:tafY nlllTIerlta i fae'tor t:1fjPfo?ll([;Lllg on j 01'\ly. 

If one mult i . lies both sides Of ( 3.5,1)~(~.G.3 ) by 

r m- in unchanged, wh'l - C
j 

and D
j

+
l 

go into 

".i= w ( j ) 
j w ( j-n 

0 ) 

;::~- D 
I.v(j+l j+l 

(3.7 . 1) 



\, 

4.7 
'. 

i l,P \leiqht ; ' . 'I'hc f.:'1cto.r (II ( I) may obviously be GO choson 

th.1t C; Eo Dj fb.l:' j ;, Jo-l-i. In fact by (3.7.1) ,this equality 

isequivalen ~ td 

SQ 

w (j-l) 
LV (j) OJ 

r. ~ 

[ 
IJJ ( j ) ) 

W(j - l) 
~ 
C. 

J 

LV (j) 
j Ok 

= I k =1T:)j a+ l Ck 
j > j -t= J.. 

o 

We §hal1 suppose that, this replac e ment o f the basis his 

already been carried out from very beginning so that C j '* OJ 

It f§iliQ ins eo determifie A. and C .. 
J J 

Let Us apply I j ,m > to both side !3 [L~ tH_ , l! 1_1 --- :?J j' 

rr lv~n we have 

2m\j,m> == l(j-m ) (j -m- l) c. K Ij "" l,ri1=fl ~ 
J -

- ;I ( j -·m) (j +m+ 1) A. K I j + 1/ 11I'i-l > 
J -

+ I (j+m+l) ( j-'-n1+2) t:J
j

+1 l(~.1 j4-l,nl+l> 

+ I ( j +m) (j +m - 1) -" C j K + j j -1 , m 1,. 

-I- ;I (j +m ) (j -m+ 1) A. J\' I j , m-l > 
J + 

+ ;I(j-m-l-l) (j-m+2) Dj +
1 

K+ I j+l,m-l> 

By using (3.6.1) and (3.6.2), and then we compare the terms 

involving Ij-2,m> we have 

I . ' ( . ,; .; J \ ~' { 

. '.'.! . 
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2(j+l) 1\ .. C. - 2(j-l) 1\. 1 C. ::::: 0 
, J J J - J 

(3. 7 . 2 ) 

Also comparing the terms involving \j /m > we have 
I ~ 

(3 . 7.3) 

Now we take J' == -J' • '1lhen C . == 0 as J' ~ 1 canno 't app - a . 
. , 0 Jo 0 

Then there are fo llowing two cases: 

(i) Cd j t1g~Ei not vanish for j = jo t\- n 

(ii) (; _1 val'lisli for som$ of ~ti1e values j == j + n. Let us cOh~ider 
J ' 0 

1st case. Then (3.7.2) reduces to 

A. (j+l) - (j -l ) A. 1 == 0 
J J-

for j == j + n 
o 

Mu1tiplyitHj both sides by j and introducing ] (}I .. <I.) l\j ~

'vJe have 

p. _. P. 1 == 0 
J J-

(3.7 .4) 

P 'i I 
oJ 

~j d§@§ ~bt depend on j i.e. a cons·tan·t P. == i j I> . l1enci2 J =- g . 

10 ~ 0 ~~ ~~ j© - 0 then it fo liows from (3 .' . 4) that 

A . - 0 , j > 1,. §tl 
J -

- , 

ij a 
A. a (:3.7 . 5) = j (j+l) J 

~ow let us consider (3. 7. 3 ) a nd multiplying both BiJ1P of 

it by ( 2i+1) and introducincg - ( 

o. 
J 

So we have 

(2j-l) (2j+l)C~ 
J 

(J, -, . Q _~..l' ]_ ~ . (2j+l )Ji,3 := (2j+l) 
J ~~ '" J 

i'l I .~ ~! Ii) i! 1; \ ~: 1 1) l I !! I ~ ,I i , !. :" 'J,1.1 I. il '1. ;1 I· 

I " . I ! I' 

(3..7.6) 
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Using (3.7 .~), we have 
" 

O'. - o. = .) J 
:0 

( .2 .2 )(. 2' 2) J -J J-a 
° '2 J 

ccmbinihg with (3 .7.6 ), we have 

1:F ~ j2 ) ( j2 - 0,2 ) -.. ... ° - 13.7.7) 

{J 9 ing ( 3 . 7 . 5) , (3 .7. 7 ) and the fact that C. = D., WQ hAVA 
] J 

Elrtd 

('i 'f-; ]:Ft:l-rJ7 ~. "~Tl -- -.-- - i ::J o' '.. . 
- v(j=:m ) (j-ttt-l) .-J' I - -=-=~--=~~~ i j"'l,hl t l> 

,:( I ~+ l, rt1+i> 

i f{"-. I j ;m::> = - IT3+m) (j +m-l) J I 

4:\ il ~ 1 

(3.7.1')) 

(F - j ~ ) (j2 ~ eil 
---ii"=;. ~C:;;:\l -:,. - ,b-=-' '-' I j -1 , in-' 1 > 

i '-- . - ij C 

- I ( j+ml ( j - m+l) j (j~l) Ij ,m-l> 

T{ ' (-"j-;,"+"'-l') "'2. -_--:-jr "'02 '"T} 'T{ ...,.(-:1:j-;,"+""'1') -"'2 ----;:;C:-»2 : 
i 

- I(j - m+l) (j-m+2) (j +l ) I 4 (j+l) 2 - 1 

x Ij+l,m-l> (3 • 7 .9) 

~ , :.; ;.' ~ ; j . .: . ,} I '1 ~, ' " 

11 / 

" ' r 
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~. 

i I ( j -m ) (j +m) I j 4j 2 - 1 

- :n{~ 1",1 j ,m> - I(j+m+l) (j - m+l) 
J l+·) 
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Ij ,m-l> 

i 
1 (j+l) 2 - j21{ (j+l) 2 •. c2} . 

4(j+l)? - 1 . Ij+ l,m~ x 
(j + l) .; 

(3.7.1 0 ) 

CONDITION OF BE ING UNITARY 

If the r~prefe htation g + T of the Lorentz Group 
g 

is unitary then the pair ( j , a ) determining it satisfi~ g one 
o 

of the following conditions: 

a is purely imaginary and jo is an arbitral¥ non-

negative intege r or semi-integer. 

n is a real number in the interval 0 < a < 1 Hnd 

~ f == d. 

Cdmbining the relatio~ 

wi t.h (3 . G. 3) and taking accoun t of the mutual orttltlt;:Jotwl t:y 

of !j,m> we have 

-m A. = - m A. 
J . J 

i • A. -- A. 
J J 

• • A iEl real. 

- t' 

I 1.: .. (1 III) { I; 
'J 

ii 

, : II! I I 1 j iI: 
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From (3.7 .5 ) it follows that t his is only possible 

in the follcLwincr. cases: 

( 1) a lis }~ure imaginary and jo is arbitrary.-. 

(2 ) a is arbitrary, jo o 

Similarly combining the relation 

with (3 .6.3 ), we 6bta~n 

I(j-m) (j+m) C. = - I(j-m) (j+m) C. 
J J 

c. = -c. 
J J 

; . C. is purely imaginary. As 
J 

(j 2 - jb) (j 2 - 0. 2) 

4]2 - 1 

1 (j 2_j~ )(j 2-a2 ) 

1 I 4j2 - 1 must be real . 

Th expression under square root si~h fttU §t DE! 

~6§itive. It is possible only when 0. 2 ~s real i El . Wh~h a is 

r~al or purely imaginary. In the second case -0. 2 > O. !n tho 

first case of real a we mu st have jo = O. Therefore the 

@xpreJ 6sion 

1 
j I takes the form 4]2 - 1 

/ 

I' • , .' 

. . i } I ;;:, ! I;. I:. ~f : • • ( : 

; \ 
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~. 

where a~ > ~. This latter expression must be real for all 

j :::; 0, 1 ,2, ·.· . ; Obviously this is possible i f 0. 2 < 1 which 

" 

. , 

,: ) ~ ;. ; !' ., 

;l I!' l: • f 

,~\.: , . -. tip: ~'i , . : ~ i.~ !l ~- .-



~. 

1. 

~. v 

:3 • 

\ 

tll BL I OGRl\PHY 

Chanclra, l1arish, l?roceecling of the Roy 1 soci ty 

A.I. 189 (1947 ) 372. 

Dirac , P.A., The Principles of 

Clarendar Press Oxford (1958). 

Gel Fan~ and Ya Sapiro. American Mathematical 

Society Tr~nslations Series 2, 2 (1956) . 
- I 

G~l Fand ~inlos and ta Sapiro, Repr~ '~ t.~lA~ 

of the Rotatibn and Lorentz Groups ind thoi~ 

Applications, Pergman Press (1963). 

Mairmark, M.A. Linear Representatiort El ~~ - l\~ 

ie; I 

The Theory of Atomic Spectra. Condon an~ ~h . t: y , 

Cambridge University Press (i967). 

:\ " 


