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CHAPTER I

INTRODUCTION

A second order partial differential equation in

n-independent variables (xl, x 3 xn) namely

25

V2U s (1.1)
5 2 52
where y stands for Q_2 F s un M is known as an
9Xq %,
2 2
n-dimensional Laplace's Egquation and 3—2 + ..t &_2 is named
Ui %y

as n-dimensional Laplacian operator. The co-ordinates
(xl, Xos wee xn) Span n-dimensional Euclidean space. In this
dissertation we are dealing with case when n = U4, Treatment

of the Laplace's Eqguation for dimensions one, two and three

is well known. However these cases will be considered briefly
so as to provide understanding to the case of dimensions four.
The two-dimensional Laplace equation is commonly written as

U fu
2
39X oy

=0 (1.2}

where x,y are independent variables. Equation (1.2) is also

known as the Laplace's Equation in the plane. Similarly,



3 U 9 U, U .
2+ 2+ 0 (1.3)

is called Laplace's Equation in space. The corresponding

equation for n = U is

= 0 | (1.4)

where (xl, X5 x3) are the space coordinates given in
equation (1.3). The given four dimensional Laplace's Equation
can be easily transformed to well known three dimensional
wave equation if we change Xy > X, X

+y, X,=>2 and Xy > iet

2 3
Here x, y, 2z are the usual space coordinates, ¢ represents
the wave velocity and t the time, Then the equation (1.14)

becomes the familigr wave equation or in.other words we can

say that Four dimensional Laplace's Equation is closely

related to the familiar wave equation.

The non-homogeneous equation corresponding to

Laplace's Equation is
> 4 S = VU= f(x,y) (1.5)
called Poisson's Equatlion in the plane. Similarly Poilsson

Equation in the space and in the four dimensions are

respectively



a [2J+a g+a U:_-f(x’y’z) (1.6)

2 2 2 2
and a2 U <+ a3 U + 9 U + 9 g Plxe o Bns Xy Kgp)
2 2 X2 X2 p IR 3 4

9X]  8X;  9X3 93X

The function U is called the Potential function. Also these
equations are named as Potential Equation. The Lanlace's
Equation occurs in mathematical Physics particularly this
Partial differential equation is of fundamental importance

in electrostatics, hydrodynamics and the theory of attraction.
It evidently arises when we attempt to find a solution of
the equation of wave propagation. Moreover, in some branches
of Physics the Field Equation can be reduced to Laplace's
Equation. Thus Laplace's equation is very useful to solve

various problems of mathematical Physics.

In chapter II we shall discuss the preliminaries
for example Gamma Function, hyper~geomatric function,
Legendye functions,Associated legendee functions and
Bessel's Functions. Because we obtain the polynomial
of these functions when we use different parameters to
solve the lLaplace's Equation. The detailed discussion of
different co-ordinates is given in Chapter III. And also
in Chapter III we are concerned with the solution of

Laplace's Equation when n = 2,3, When we use different



Co-ordinates. General solution of Laplace's Equation for
three dimensions due to Whittaker is also given. In Chapter
IV we are dealing with the solution of Laplace's Equation
in four dimension. We solve this equation by using different

parameters.



CHAPTER II

"PRELIMINARIES"

This chapter contain some elementary result which

will be used later on.

B2 . 1¢ The Gamma Function (T): In the definition of

Hyper geomatric function, Bessel function and Legender
function, Associated Legender function we make use of
Gamma function. Which is considered a generalization of
a factorial function. We know that if n is a Positive

Integer then n! = n(n-1)(n-2)... ... 21t

If n is not a Positive integer then the above
equation is not satisfied. This is a function which is
defined for all values of the variable o and equals (a-1)'!
Where o 1is positive integer is known as "Gamma Function"

I'(a) which is defined as
: a-1 =X
F'(a) = l X e dx £ s

The following formulae are given here for convenience in

reference



X

B nt n
PO = 1im Ty K Cxtn) (2:2)
71—) - x e 7 (14 X) e¥/n (2.3)
AT - n=1
where Y= 1im ( % %-— logm) = 0.577
m>o =1
riz+l) = zrix) (2.4)
If n is positive integer, r(n+l) = n! (2:5)
r1) =1, r(%) = 1//« (2.6)
_ L (y)r(y-a-B)
and F(d,aB)'Yyl) T (y-a)T (Y-B) (2.7)
where F(o,B,Y,1) is a Hyper Geometric Function and will

be defined in the next section. Now we also give the
definition of Beta functlon which also make use 1in the

hypergeomatric function,

Beta function

g(p,q) = g.gg).}(q) .
1
If p,g > 0, B(p,q) = J xp(l_x>q_1 )
0

§ 2.2 SYSTEM OF ORTHOGONAL FUNCTIONS : A set of functions

{¢i(x)} i=1,2,...,n 1is said to be orthogonal in the interval



[a,b] if the scaler product

b
(¢4 q;j) = i ¢4 (%) ¢J.(x) dx = 0 if 1 # (2.9)
b
j [¢i(X)12 dx # 0 if 1 = (2.10)
a
b
If J [¢i(x)]2 dx = a; 70
a

We can normalize the ¢i(x) that is find a new set of

functions

¢ (%)
¢i(x) - 1 4hich are said to be orthonormal
J a
|

in the intePwval fa;bj. If

b
j ¢i(x) ¢j(x) dx

Il
O

13 (2,31)

where S 0 when i # 3]

1 when i

1]
e

Let {¢n(x)} be the sequence of orthogonal functlons

then the members of the sequence are mutually
orthogonal on [a,b]l. If ¢ is an integrable function

then the norm of ¢ is the real number



b
ll<1>l|=[['q’(x)|2 ax 1% (2.12)
a
[1el] = 0 for any ¢
If l|¢n|| = 1 n = 1,2:3,... then {¢n(x)} is said to

be an orthonormal on f[a,b]. Let us attempt to expand the
arbitrary function f(x) in term of the arthonormal function

¢n(x) that 1s, 1let us write
f(x) = E a ¢ (x) {2.,13)

where an‘s are known constants. Since ¢n(x) are arthonormal

functions. By inner product property

<hy > ¢j > = Gij we have

<y ¢k >=< T a o

- n s n nk
where 6nk =0 if n # k
= 1 if n = k
Taking n = k
< f, ¢, >=13a (2.14)



Thus (2.13) can be written as

f(x) =
n

(f5 ¢ ) (9 (x))

e 8

1

So we have expressed function f(x) in terms of arthonormal
function, but we do not always get such expression. Therefore
when any function can be expressed in term of arthonormal
functions for all n then arthonormal set of function {¢n(x)}
is said to be complete over the interval [a.,b] or we can

say that the sequence {¢n(x)} form a complete arthonormal

set of over [asb] .

The trigonometric function sin nx and cos nx

M

the complete exponential functions einX k = 0,1,2,,..

the hyper-geometric function:, the Bessel Functions)the
Legendre functions and Assoclated Legendre Functions
(discussedin the next section) are examples of complete

arthonormal set.

It is very useful that we can expand an arbitrary
function in term of hypergeometric, Bessel, Legender and

Associated Legenders,functions,

Let {¢n(x)}be an arthonormal set on f[a,b] , If f(x)

is an integrable function on [a,b] then the numbers
b

an = J Pix) g . x) dx, B=21,2,3,...,
5 n
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are called the Fourier co-efficientsof f relative to {¢n(x)}.
w

The series ¥ a n(x) is called the Fourier series of f(x)

relative toﬂiin(x)}. The series need not be convergent,

however to each integrable function f(x) there correspond

its Formal Fourier Series.

§ 2.3 HYPERGEOMATRIC FUNCTIONS

As the hyper geomatric function is frequently
employed in connection with the solution of Laplace's Equation
In four dimensions on account of some of its properties will
be given here. The functlon is define by mean of the hyper-

geomatric series

= o algtl) (B+1) .2
P I TN T T i Y

alatl) (at+2)B(B+1) (B+2) 5
1.2,3,y0yHL) (y+2)

+

which i1s absolutely convergent of |x|< 1, it converges

obsolutely if ¥y - o = B > 0.

Function F(a,B,Y,x) is a solution of the differential

equation

x(1-x)y" + {Y=(a+B+1)x } y' =aBy = 0O (2.15)
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is known as Gauss's Equation or the Hypergeomatric Equation,
The second solution is given by y = CO%*YF[cx—y+1,3~y+1,2—y,x]
where vy is an integer 1f y = 1 the solutions are identical

and if vy tends to any other integral value one of the

integrals usually ceases to exist,
The above solution can easily be derived by the
usual method of Frobenas for solving the differential

equation in series.

§ 2.4 LEGENDRE AND ASSOCIATED LEGENDRE FUNCTION: The

differential equation

2
(1x*) L - ax L -y =0 (2.16)
a2
is called the Legender equation. The end of the interval
[-1,11 are singular points of the differential equation if
we write A = -n(n+l), n being a positive integer the legender
equation takes the form
2.4° d y
(1-x")S=f-0% + n(n+l)y = 0 (2.17)
2 dx
A
On solving legendre equation in series we get two solutions.
First Pn(x).is an algebraic function of x of degree n and

is given by
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.2....(2n—1) e n(n-1) ne2,

3...n ( - 3(2n-1) *

n(n-1) (n-2) (n-3) Xn—u

~(2n-1) (2n-3) = uErn |
. 1,3.5.,. {2n=1) n n(n-1) _-2
N I B i

n(n-1)(n-2) (n-3) -4

* e i1 * T

By definition of Hypergeometric function F(o,B,vy,x)=1+ g§§ E

e 7 = e S L

Using equation (2.18) Pn(X) can be written as

1=

_ (2n)! B g n l-n
Pn(X) =2 '-r‘l—‘—m X T‘(-— -2— I’ —2‘* 5 3 2) (2-19)

l-n
2 nin! é b d

here Pn(x) i1s a Polynomial of degree n so bounded at the end
points that is at x = +1 and x = -1 therefore PO(X), Pl(x),

Pg(x),... are called Legendre function of first kind.

There is a second solution Qn(x) of the form

B i (n+1) (n+2)
Q (x) = B{ + +
? xn+l 2(2n+3)xn+3

(nt1)(n+2) (n43) (ntd)
2 M (O3 (2ne5) 12
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Using equation (2.18) we have

_ 1 n+l n 2n+3 XL
Wx) =B 54 F&5 5+ 1, 5=, =) (2.20)
X X
where Qo(x), Ql(x),... are called Legender function of

the second kind. The following results are important

involving Legendre Polynomials

P (1) =1 (2.21)
n
Pn<—l) = (-1) (2.22)
B n
P (0 = (-1)"P_(x) (2.23)
( ; 0 If n is odd )
P (0) =
& (-1)?/2 L:3:5...00-1) 40 44 even
2.4.6.,.2n
(2.24)
P (x) - P (x)

f' P (x)dx = -ntl n-1 (2.25)

2 2n+1

The following recurrance formulae for Legendres function

are given which will be used in this dissertation.

(n+1)P

n+l(x) - (2n+1)xPn(x)+nPn_l(x) = 0 (2.26)

P!

1’1+1(X) - XPY;(X) = (n+1)Pn(x5 (2.27)
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xPé(x) - Pﬁ_l(x) = nPn(x) (2.28)

(x°-1)P!(x) = nxP_(x) - nP__ (x) (2.29)

Pl (x) = B! 1(x) = (2n+1) P (x) (2,30)
ORTHOGONALITY OF LEGENDRE POLYNOMIALS: It is very useful

that Legendre Polynomials form a complete arthogonal set,
so that any arbitrary function can be expanded in terms
of the Legendre Polynomials. We shall show that the

functilon {Pn(x)} are arthogonal in the interval [-1,1;

and that
+1
l Pn(x) Pm(x) dx =0 ifm # n
where myn = 0,1,2, ...
and 1
T Pu(x) P (x) dx = 2 IPm=n
H = on+1
-1
+1
i.e [Pn(x)]2 dx = -3 y % D le@ sy
o 2n+1
Let Pn(x) and Pm(x) be two Legendre Polynomials then

they satisfy the Legendre equation

(a) _d(i{ [(1_x2) (—% P (x)1 + n(n+1)Pn(X) = @
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d

(0) Qo (%) P (x)1+ m(n+l) P_(x) = 0

Now multiplying (a) by Pm(x) and

substracting we have

[ m(m+l) - n(n+l); Pn(x)Pm(x) =

(b) by Pn(x) and

d 2+ d d 2,d
P g 1R gy Felxiy oRuin) G tll=xlam Bl
Integrating the whole equation over the interval [-1,1)
we have N
+1
m(m+1l)-n(n+1) j Pn(x) Pm(x) dx =
-1
o]
d 2y d
J Pm(x) EE'[(l_X ) T Pn(x)] ax
S
+1,
d 2, d
J P (x) g% 1(1-x7) ax Pp(x)1 ax
-1
Integrating by parts we have )
+1
(m2+m—n2—n) P (x)P_(x) dx =
m n
P (0 [ (1) (x)) | - [ (1-x)3— P (1)1 1% P (x)14
m dx n 1 [Vi=xax Fa'®1 [5% m X/ 10X

1
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+1
_ 2,d_ o,
- Pn(x) [ (1-x )dleéx) +
-1
+1
2y d d
J [(1-x) d—fpm (x)] s Pn(X)] dx
-1
Solving R.H.S. we get
+1
(m2 $ @ o- w° - n) P {x) P (%) dx = ©
n m
il

If we assume that m # n then n2 + m - n2 -n #0

+1
Then clearly j Pn(x) Pm(x) dx = 0 for m # n
-1
Now consider
+1

[ [Pn(x)]2 dx s From the definition of Pn(x)
J

=3
+1 e S B
J [Pn(xn2 dx = ‘2711_— 5 ( q—n(xg-l)n d—n(x2-1)rl dx
2= (nl) J dx dx
= -1

Integrating by parts R.H.S. we get
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+1
+1 n-1
1 n 2 n
j [Pn(x)]2 dx = —s———p, | g—h (X2_1)n dxn—l(x el
2 (n!) " dx -1
-1
+1
3 S J gn-1 (Xg_l)n gntl (X2_l)n dx
22n(n!)2 dxn—l dXn+l
-1
Repeating this for n times we get
el n +l 2n
| gy o e el (el L Rl 4
25 1) dx
=7 -1
(—1)“ +1 2 :
= —21’1————2 j (X - 1) 2n! dx
25 m)
=1
2.2n! L 5o
= (1-x7)" ax
2n 2
2 el )
0
Let x = Sing dx = Cosg dg

{1 g it (1-Sin%g) % = (Cos®g)™

Therefore (1—x2) dx = 0052n+16 dg
+1 w/2
on!
Therefore f [P (x)]2 dx = 2. n-2 J Cos2n+le a8
i 5n(n!)

=k =0
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2.2n! 2n(2n-2) A b, 2
) 21§ (2091} (2n-1)... 5.3
22wl 2%
9B (0 1Y 5 (on#1) (2n-1). .. 5.3
2
¥ (2n+1)

Thus we get the following result

+1
B "
j Pn(x) Pm(x) dx = SnFT O nm
-1
0 Ifm#n
where Smn = | 1 Ifm=n }
So Po(x), Pl(x) gy form an orthogonal set and v2n + 1
2

form an orthonarmal set. Since Pn(x) and Qn(x) are linearity

independent . Thus a general solution of the Legendre equation

is given by

y= AF(x) +B Q, (x)

where A and B are arbitrary constants.
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The differential equation

s, 2

(l—x2) 87 - 95 5L 4 [ n(n+tl) - - 51y =0 (2.31)
dx 1-x

no

dx

is called Associated Legendre equation, its solution are given

by
_ ol o 2 .mf2 d>
¥y = Pn(X) = (1-x") den Pn(X) (2.32)
- Q") = 1xD™2 L g () (2.33)
y2 n X = X dxn n X %

the function Pg(x) are called as Associated Legendre function
of the first kind, and Q?(x) are known as Associated Legendre

function of the second kind.

The Legendre Polynomial Pn(x), n=20,1,2,,.., are

particular solution of fhe differential equation

2
(1a22) 322 L o %% + n(ntl) § = 0 (2.30)
X

Here y = Pn(x) satisfies the above equation differentiating the

equation (2,34) m times by Leibnitz theorem we have

5 dm+2y -
(1—X ) é;.ﬁ;g o 2(m+1) Xy

L4l n@Hl) - m(mt1)] y™ = 0

{2.35)

Putting y = (l—xg)m/2 U



20

dm

Where R Pn(x) in equation (2.31) which gives us

dx
the equation.

(1—x2)U" - 2(m+1)U' + [n(n+l) - m(m+1l) 10U

Compqéing equation (2.35) and (2.36) we see that y

is the solution of Legendre Associlated equation.

m
Thus Pm(x) =y = (1—){2)m/2 Si-——-P (x)
n m n
dx
0 € mgn
m
and Qng(X) =y = (l—x2)m/2 g——m— Q (x)
n
a:x
are solution of equation (2.31)
Rodriguwes formula for Pﬂ(x) 18
5 5 ntm 5
PReE) = (1-x°) W £ (#F)P
I dxm

We also have the following results

0 -
Pn(x) = Pn(x)
Pg(x) = 0 Ifm > n

I

0 (2.36)
(1—x2)m/2U
£2.37)
(2.38)
(2.39)
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-m (- nem) ! om
A (x) = —m PI’I(X) (2.40)

m
Recurrence formulae for Pn(x) are

(n+1—m)P$+l(x) - (m+1l)x PS(X> i (n+m)P2_l(x) = 0 (2.41)
P2 (x) - 2mEL) ey 4 (nem) (nemr1)PT(x)=0 (2. 42)
(1-x7)"

ORTHOGONALITY OF ASSOCIATED LEGENDRE FUNCTIONS: The Associated

Legendre functions also form an orthogonal set.

Let Pﬁ(x) and PT(X) be two distinct associated

Legendre Polynomials satisfying the Associated Legendre equations

BRI S n”_ PP(x) =-n(n+l) P™(x) (1)
( dx - dx 1__)(2 ] n = n HEA
2
r L raxhH - T 1 PO =S PIG0 .. aD
-

Multiplying equation I by PT(X) and II by Pg(x) and substracting
we get

[ 1(1+1) - n(n+l) 1 PL(x) PY(x) =
[(1-x°)

P (x) ] PL(x) -

QJ'QJ
s

d_
X

PR(x) S5 0 (1-x%) S 1 PT(x)

Q«IQ:
-
QICL
>
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Integrating the whole equation over the interval [-1,1] we have

+1
(1(1+1) - n(n+l); J Pﬂ(x) Pril(x) dx =
il

+1
m d 2y d m
| oo & cam®) Gt -
.
d

m 2 d m
PH(x) G ((1-x%) S-1PT(x)) ax

Integrating by parts R.H.S, which gives us

+1
Pl {(1x%) §5 PR(x) )
=1
+1
2, d m d m
- s Gtk PTeo ax
-1
+]1
- L) SRl |+
2
+1
s | m d m
| a5 B 1 g oo ax
&1
el
Since { PE(X) PT(X) dx = 0 when n ¥ 1
-1

Take n =1
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+1 +1
J [ Prg(x)]2 dx = j P?(x) PE(X) gz
=1 -l
(n+m) ! 1 =
= — [ Pm(x) P m(x) dx
(-"(n-m): 4 - 2

using the Rodrignes formula for Pg(x) we have

+1
(n+m) ! m
- Tom, J (1—X2)m/2 Q_h P (x)
(-1) " (n-m)! dx
-1
-m
x [ (1 2)—m/2 d P (x) 1 ax
gx ™ D
(n+m) ! L gm —-m
B { —— Pp(x) =, P (x) dx
(-1) (n-m)! J dx dx
-1
(b 4o gm-1 &
- m [ -m Pn(x) m-1 Pn(X) ]
(-1)" " (n-m)! dx dx =
i dm—l d—m+l
= J dxm_l Pn(X) (i_;:_+1 Pn(x) dx
4
+1 m-—1
(n+m) ! -m+1 d
= —— -] p 0 w1 Tal® dx
(-1)" (n-m)! ) axm 2 £
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Repeating this process m-time we get

. +1
(n+m) ! (=1) J P (x) P (x) dx
(-1)™(n-m) ! & "
-1
2(n+m)

(n-m) ! (2n+1)

i 2(n+m)! Sni1
Thus j P™(x) P?(x) dx = (2.43)
- (n-m)!(2n+1)

-1

Where sgnl = { }

g2.5 BESSEL FUNCTIONS: The differential equation

2
X d )2 + x gl - (X2 — n2) y = O (2.)-“4)
dx "

is called the Bessel Equation of order n. The solution of this
equation are the Bessel Function. Some special solution of this

equation are the Bessel, Newmann and Hankle Functions

Jn(x) s yn(x) 3 B (x), H (x) respectively. The later three

are the linear combination of the first Jn(x) is defilne as
2K+

(-1 (5)

0 K!T (n+k+1)

J (x) = &
n k=

(2.U45)
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and is known as Bessel Functlon of the first kind of order n.

(_1)k(§)2k-n

J__{x)] = I

" (2. 46

0 K! T (-n+k+1)

are also solution of Bessel equation and are called Bessel
Function of first kinds of order -n. The function Jn(x) and
J_n(x) are linearly independent provided n is not an integer
or zero, If n is a Positive integer then we have the following

results:
J_ () = (-1 () (2.47)

i.e. Jn(x) and J_n(x) are linear dependent for n as an
integer. Thus general solution of the Bessel's differential

equation is
y = AJ (x) +BJ_ (x) (2,48)

where A and B are arbitrary constants, The following results

for Bessel function can be verified.

(x" I (x) 1

1}
kel
ey

(x) (2.49)

Q!Q—a
=

(x77 3 (x)1 = =xT T (%) (2.50)

Q’Qa
>
]
5
oy
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2 JA(X) = Jn(x) - X Jn+l(x) (2.51)

Adding and substracting (2.50) and (2.51) gives us

I ) 3 (%) = R (x) (2.52)

&4

Jn_l(x) 2 QJA(X) (2.53)

n+1l
To find the general solution of Bessel equation when n is an
integer. We have to find a second solution of the equation which
will be linearly independent to Jn(x). For this second solution
yn(x) valid for all values of n is defined by

J(x) Cosnm - J n(x)

y (%) = - (2.54)

ST Ry

It is linear combination of Jn(x) and J—n(X)' B A-dgan
integer or equal to zero, then Jn(x) willl take an indeterminate

form thus we can define yn(x) as

Jp(x) Cos lm= J_,(x)

yn(x) = 1im {2:.85)

! Sinpg w
called Bessel function of the second kind of order n as weber
function or Neumann function Function, It is very useful to
have a third type of Bessel functions which are solution of
the Bessel differential equation known as the Hankle Function of the

first and second kind define as
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==

P

>
i

J (x) + 1y (x) - (2.56)

I
—~~
b
N
Il

Jn(x} -1 yn(x) (2.57)
These are called Bessel function of the third kind,

x y" + 2xy' + (x2 - 1(1+41) y = O

1= 0,1,2:3, 0 c0s

Putting y(x) = ulx)
vV X
2 d2u du 2 2
X ==+t x =+ X «~(14% Ju=0
dx2 dx

(x) + ¢, J

+ y(x) =Cy J 2 J_1-3
-1-%

1+%

Called Spherical Bessels Functions.

ROOTS OF BESSEL'S FUNCTIONS AND THEIR ORTHOGONAL PROPERTIES:

2
Consider x° S L+ x W 4 (k2x2 - n2) y =0 €2.508)
ax° dx

Set p = kx

L+ oW 4 (o2 y =0

Therefore y=J (p) = Jn(kx) is a solution of (2.58).
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From (2.58)

2
3, (kx) F(k%x - =) I (kx) =0

QJIQJ
"
QIQ:

X

Writting K = A,

2

d d 2 n

= A A o et =
Sl .4 ax Jn( A x) ] *q X =" ] Jn(XX) 0
d d 2 5

L EEG PR x - JplEE) =0

Multiplying first by with Jn(ljx) and second with Jn(k x) and

substract

(A% - w®) x 3 (%) T (ux) =

%; [ X Jn(Ax) JA(UX) - X Jn(Ux) JA(AX)]

a
2

G50 [ % 3,000 3, ax

0

1 — 1
% (Jn(AX) Jp (ux) Jn(MX)Jn(AX))
Now the lowest power of n in the series for

x 3, (x) JiGux) - J (ux) J!(Ax)

2n+
x 1 2, that the right hand side vanishes for n =

0
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Provided n + -1 and we have

a
I X Jn(Ax) Jn(UX) dx

a

: i t
D § ]
. IUJn(Aa) I (Ha) Jn(Ua) I (ra)
For each fixed‘ﬂ/Jn(E) has infinite numbers of #\we roots and

these can be ordered 0 < <

E;nl < gn2 e <€nm . gnm+1 : 6w

If x > -1 settin g

g
R T g and
nm a
_ _ Enm'
H H nm' a

where §E and &

s nm! &re two distinct positive roots'of Jn(g)

a
p' = B
So Jn(€)=O’J X Jn(f‘;nm é‘) Jn (gl’lm'_ -y ) dx = 0
D
m ¥ m!
Now we evaluate
a
X . 2
j x 13 (5 2)1° dx

D
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" 2
X2 y" + xy' + (k2x2 -n)y=20
Multiplying by 2y'
2x2y'y" + 2xy'2 + 2(k2x2 - n2) yy'" =0
or d . .20y 2 232 pag @ 3
= 5L ) =By +kwy ] 2k“x 'y
a
i 2k2 J Xdex N X2y,2 ~ n2y2 " k2x2y2
o
a 5 5
x J_(kx)dx = 2~ [ (1- . ¥ & 2(kx)
n 2 2 2 n
k™ x
0
; 2
+{ I (kx)} ]
1 1
Using rlJn(x) + x Jn(x) = X Jn—l(x) and rlJn(x) - X Jn(x)

S Jn+l(x)
a
2
T x J _(kx) dx
Jj.o . B
0
x2 2
=T B = dy () T U T
a
2
or j = Jn(kx) dx =

0



Ef)

a2 n2 2 i 2
S 8 R T I, (ka) + { J (ka)}
k a
5" &

i

5 Jn(ka) = J,_1(ka) Jeq (ka) )

3
if k = %rg 1s a root of Jn(g)

Therefore Jn( E) =0

a

2 5d =
Then j p s Jn( E’nm : ) dx =
b
a2 . 2
= 1 Jn( E;nm) ]
2
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CHAPTER IIT

SOLUTTON OF LAPLACE'S EQUATION
IN TWO AND THREE DIMENSTIONS:

In different Co-ordinates system Laplace's Equation
takes different forms. So we have solution of this équation

in each Co-ordinate system.

§ 3.1 SOLUTION OF LAPLACE'S EQUATION IN TWO DIMENSTONS :

I. CARTISION CO-ORDINATE: In Cartesion Coordinate (x,y)

the two dimensional Laplaces' Equation is given by

2

L

e o U _

BX?. S = 0 (3.1)
3y

Using method of separations of variables, by assuming

U = X(x) Y(y) » U _ 3y
oy oy
g—gﬂ% * 2%y _ %Y
E- 1
oy oy
32U =y 32X,
3% ax2
2 2
Hence Q_g + 3 U _ 0
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will take the form

3 X 9y
Y __?.+ X Sy 0
X Y

Deviding both sides by XY we have

)i 32X + 1 32Y =0
Wi ¥ T2
09X oY
or
> °y >
1 g% X 3.? = — P (8ay)
x
Then
2
9 X _ 2
5 X
and
: 32Y 2 :
S = P%Y S
oy
From (3.2)
X = A Cos Px # B Sin Px
and From (3.3) Y = ot 4 P EF
Hence U= X(x) Y(y) = (A Cos Px + B Sin Px)(Ce Y+pe¥)
(3.4)

Where A, B, C and D are arbitrary constants. On the other hand
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differential equation

By writing x + iy = a , x - 1y =8

The complete solution of

§ 82U
y

@
e

+%— =01s U= f(x + 1y)+ g(x-iy)
]

(o5
>
no

where f and g are arbitrary functlions. It is evident that
if u+iv=1~F(x+ 1y) and u - iv = g(x - iy)
Then U and v are solutions of Laplace's Equation and they

also satify the equation

u - g_;’ : % = - 2¥  and are called Congugate

Functions.

II. PLANE POLAR CO-ORDINATES: Plane Polar Co-ordinates

(r, 6 ) are related to Cartesion coordinates by equations

x =r Cos® , y =1r Sinod



o
\Jl

2 :
So that fane = y/x and x2 + y2 = r and using
chain rule we have
32U 82U 82U | 82U
S+ = =+ ;»%; + 5 A 0 (3.4)
X oy or r

Now we solve this equation py putting U = r' F(g)

The above equation gives F"(g) + n2 F(g) = 0

So that F(p) = A Cos ng + B Sin nbs

Thus U= r  (ACosneg+ BSin npg) (%.5)

Where A, B are arbitrary constants.

§ 3.2 SOLUTION OF LAPLACE'S EQUATION IN THREE DIMENSIONS
UsindCY LINDRICAL POLAR AND CARTISION COORDINATES.
LI Now we are considering Solution of Laplace's
Equation in three dimensions, using different coordinates.
First we use cylindrical coordinates (r , 6, z) by using

the equations x =r Cosd , y=m7r Sing and z = %

The Laplace's Equation has the form

(e3)
n
(=

3% 3y 9z 3r .25 p

+ = 0

E2
B

v
) 2

Q
N
PO

(3.6)
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By separation of variables its solution is given by

Ule, & 5 =) = Beyy 8¢g) %(a)

o

1k - B 0
B 4 = 2= ¥ Y = _ 7zn
R r R r2 0 7
R.H.S. contain only Z. Therefore
A £ '
— = P (say)
whe re P is constant
% = fel® 4 BeT%  fhen
R L LR 1 @ o _ p2
ETF TR T 2 g P
r
2 RU R! 2.2 2o
r B + r R + P p- = o

Since the R.H.S. of the equation given above contain only 0

There f ore

1"
T s
€]

Thus 0 A. Cos mg + B

1 Sin m ¢

ol

Now consider the equation



2
r R" rR' 2.2 2
+ =S ial oS 3
R R + P m 0
or rER" + rR' + (P2r-2 - mg) R=20

This 1s the well known equation of Bessel function and its

solution is

A Jm(Pr) + B

5 Ym(Pr)

2
Where Jm(Pr) and Ym(Pr) are Bessel's Functions. Which we
have the already discussed in Chapter 2, and thus the solution

of (3.6) .is U=R, 0, 2, = (he' C +Be‘PZ)(AlcOsme +B

" Sinmo)

1
x ( A, Jm(Pr) + B, Ym(Pr) £3.T]

IT. CARTISTION COORDINATES:

In Cartision Coordinatesi:Laplace's Equation

evidently possesses particular solution of the form

U = ul(x)v(y)w(z) (3.8)

Then Laplace's Equation takes the form



38

2 - 2
\

lsi__é_ul_fl_?J,l 9_22&=0
Y ax vV oay W4z
Hence, 1f we write
2 2 2
dx ki dy dz
Where 12 + m2 + n2 = 0

equations may be satisfied by taking u = e ™™, v=e and
w o= enz. 1, m, n being constants. Hence
+ +
U= ettt Iy TNz (3.9)

is a particular solution of the Laplaces' Equation. The
usefulness of Particular Solution of Equation (3.6) is
increased by the fact that since the equation is linear,
the sum of any number of solutions is also a solution.
We have in fact

VAU + V W+ ... ) = VOU + VIV + vOW +

which 1s zero if U,V,W ... are solution of Laplace's Eqgn.

§ 3.3 SOLUTION OF LAPLACE EQUATION IN THREE DIMENSTION
USING SPHERICAL POLAR COQORDINATES .

We now transform Laplace 's Equation into Polar

Coordinates (r, 6, ¢ ), where x = r Sin 6 Cos ¢

2



)
O

y = r 8inp sing

z = r oSO clearly x2 + y2 + 22 = r2
Let r 8ine6 = p Then
X = p'cosd y= psing¢ and 2 = r @os6
First of all
ki N S S R I [ O T
2 AT e e
dX Ay ap P 9p p 93¢
2 2 2 2 2
men  2U4 20, SU_2°W .1 U, 10%W FU (5
99X Ay 9% ap o) ap o 3¢ 4
2 2 2 2
Now g g 5 & g =9 g + % %g + ig g_g (a)
op 9Z ar r 96
Because z = r cosf and p = r sing and tane = p/z
Z2 s p2 - r2
FHen 51U oU Coso oU
op or 165 06

Putting (a) and (b) in equation (3.10) we have

)

s &y - ge 30 1 3°%U , Coto 3U , 1 55y :
B ) 2 [ ] 2 g
3x° 9y 97 ar Pop© 9 r 36 r°sin“e096
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Multiplying above equation by r2 5ineg

2 . 32U
r- Slng*~——=

3T

2 a.[l+5’
+ 2r Sinear ing

2

5= 2

+ cosg %g-+ cgsecod
¢

U
or =) & &

3
sing g r2 g

yT 5T ( sine

90

2°U _
2

¢

+ cosecp

Now we solve this equation by

variables . By putting

U = u(r)viglw(y)

We write (3.11) as g ¢

1
uvw { —
u or

sing

5
L D rma v 1 . A
v 30 (Sing 20 )+ Coseco -

Now separating the variables we have

2
Q_%_+ m2¢ = 0
d¢
d , 2 du .
dr( a;—) = n(n+l)u

we have

2
d

2
90

LA

method of separation of

2. 31
S B
< )
W ) } =0

(3.11)
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2
1 d dv m
—g (5iné —) +[ n(n+l) - 1 v=0
gin® ¢ e S1n°0
Where m, and n are constants.
2 2
9—%-+ cot 0 %% +n(n+l) - =& 5 1v =0 (3.12)
dae sin~6

If we omit v

In this equation we put Coso

the above equation is called Legendre Operator

= 0
dV = g_! gi = =t gy_
36 ~ do ade ST e
d2 d d 2 d2 dv
and ~—% = 38 (-8in8d ag—) = sin“0 —L - ¢osH o
de do
l.e.
2 2
Y = sin®e &% - cos 0 I¥
de do
Thus equation (3.12) will take the form
2 2
(1= 6"y &% - 50 ¥ iinfns1) - B4y = 0 (3.13)
2 do 2
do 1-0
When m = 0 this reduces to Legendre's Equation. The equation

d 2 dus _
ar (r e n(n+1l
u=r and u = r

Y A is satisfied by

~(n+1)
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Hence we have particular solution of Laplace's Equation of

this types
. U(r,0,¢) = r Cos(m¢ +e) Pg(o)
U(r,0,0) = v ™ oosm ¢ + &) Po)
Whe re Cos(m<p+e) is a solution of the equation wvontaining

w and Pﬁ(o) is a solution of equation (3.13). A comparison

of these two solutions suggests the following theorem.

Theorem (3.1): If U= F(r,0,¢) is a solution of Laplace's
equation then the function U = % - % > 6 »¢ ) 1is also a
solution of Laplace's Equation.
Proof : Consider the equation
Sing & ( p? QH) + 2 (Sing @H) + Cosec QEH = 0
ar ar a6 a6 ¢
¢
Putting r = 1/s it becomes
- 250 2l 22U
Sing (s ——5) + (Sing } + Cosecg?—== 0
s 26 296 3¢

A further substitution U = sV reduces this to the form

e 2
2 9 P D
Sine (S v + 25 V)+ (Sine @1)4. Coseceu = 0
o 35’ 30 36 592
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Which 1s the same as (3.11) but with s, V written in place of
r and U respectively. Hence the theorem is proved. The pre-
ceding theorem enables us to derive, one solution of Laplace's
equation from another by means of the transformation of Co-

ordinates

=
=
=

This transformation is known as inversion. It was applied
with great success to electrostatic problems by Lord Keluin.

The preceding theorem may also enunciated as follows:

Theorem: - If F(x, y, 2z) 1is a solution of Laplace's Equation
then %»F( 52 % Z? s Eg ) is also a solution of Laplace's equation.

r & R

On the other hand we can also prove another theorem

which is as follows:

Theorem: - If U is any solution of Laplace's Equation of
degree n then
dy

r B
a’U ., 50,3l

a

= is also a solution of Laplace's
aX oy a2

Equation of degree n - (g + r + t).

Proof: - Since Q_g_+ Q—g + 3—% = 0
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Then differentiating the above equation q time, with respect
to x r times with respect to y and t times with respect to

z we have

8q+r'+t+2 U . aq+r'+t+2 U ) aq+r+t+2 s i
3xq+§ygzt 3x%yr+§zt axqayrazt+2
a+r+t
i.e. V2( i—.q—l"—qt ) =0
0X 93y 92

which proves the theorem.

§ 3.4: ORDINARY SOLUTION OF LAPLACE'S EQUATION IN THREE DIMENSIONS

The most important solution of Laplace's Equation of
degree n, where n is a positive integer are those which are
Polynomials of degree n in (x,y,z). This kind of solution which
together with the corresponding solution of negative degree
-(n+1) obtained on multiplication by r—(2n+1) may be spoken of

as Ordinary or Complete Solution of Laplace's Equation will now

be considered.

The most general homogeneous Polynomials of degree. n
contains %(n+1)(n+2) arbitrary coefficients and if the expression
be put in Laplace's equation there arises an expression of degree

n-2 equated to zero. Since the coefficient of each term, involving



b5

o B

x y z Y

, where o+B+y= n-2 must be zero, % n(n-1) relation

must be satisfied between the coefficients of the original
polynomials %—n(n+1)(n+2) in number, in order that it may be
a solution of Laplace's equation. If all these relations are
independent of one another, % n(n-1) of the Coefficients can
be determined in terms of the remainder, and thus the most
general solution of Laplace's Equation of the prescribed type
contains %—n(n+1)(n+2) - %~n(n—l) or 2n+1l, independent solution
of Laplace's Equation of the prescribed type, any other solution
of Laplace's Equation of the type would be a linear function of
these. For example, three independent solution of Laplace's
Equation of degreel are x, y, 2z and of degree 2, the expressions
2 2 22

y -2 , 2 -X , yZ, 2x, Xy are five independent solution of

Laplace's Equation.

By substitution of r sing cos¢ , r sing sin¢ , r cose ,
for x, y, 2z respectively, in the most general homogeneous poly-
nomials of degree n in (x, y, z), and by expressing the terms
Sl cosp¢ sinq¢ in cosines and since of multiples of ¢ , and
rearranging the result in terms each involving only one such
multiple. It is seen that if Pn(x,y,z) is the most general

homogeneous polynomial of degree n, for V2 Pn(x, ¥Ys 2)5 8n

expression is obtained which employing the transformation of V2.

2® y2o .1 2% Lcotea , 1 9
2 2
or r dr r 862 r oe r231n28 a¢2
. n
= [ {Aouo+ I A, cosmp + B8 V. sinng 11 (3.14)

m=dg
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Where Bg* His Wgs=x=a Vis Voo are functions of ¢ only
and AO, Al""’ Bo’ Bys Bos-e- are 2n+1l arbitrary constants,
This reduce to
n-2 d 2 d
r [ a; { (1-y) au }+ n(n+l) Aouo 4
n 2
- d 25 d m
% l"n 2 { a_' [ (l—u ) EE}-*- n(n+l) - —— 5 ]
m=1 H 1=y

% (Ame cosm ¢ + Bth sinm ¢).

This will have the value zero, if all the constants vanish

except one, say Am, and if

2
a 2. @ m .
(—i_Ll_ [{(1—“ ) 'd—u-} +n(n+l) - 1:;2 ] B = 0

This equation has been shown to have only one solution

- Pg(u) which does not involve logrithmic infinities. It thus

appear that there exist the 2n+l solutions of Laplace's

COs

n n .m
equation r Pn(u), r Pn(u) sdm

mg¢ , wherem-= 1,2,3,...n
and these are independent of one another, as no linear

relation

o Pn(u) +

5 ] (am cos m¢+ B sin m¢ ) Pg(u) = 0 (3,15)

™ 8

1

can exist between them. This is seen by multiplying by cos m¢ or



7

by sinm¢ and integerating for ¢ over the interval (0,rn),
which would prove that o = 0, g = 0 and this for all

value of m.

To show that there can not be more than 2n+l
solution of Laplace's Equation of the type. If we assume

that Pn(x, y, Z) is a solution of Laplace's Equation we

have
n
AOUO + £ (UmAm cosmy + V. B sinmg¢ ) = 0
m=1
where Um denotes
d 2.d m2
— {(l-p7)==}+(n(n+l) - —,)] n
[ 3y o +t 1,2 B

and for Vm there is similar expression with Vm instead of Mo

From this equation, as before, we see that Am Um = 0, BmVﬁ =
Since the equation hold for all values of ¢ . Hence, if Am or
B is not zero, We must have Vﬁ = 0 or Um = 0 and therefore

w. > V_ have the valuesa'mPE(p), B,

m
- & Pn(“) and so the solution

of Laplace's Equation is a linear function of the 2n+l
independent solutions already found. It has now been proved
that the number of independent ardinary solution of degree

is 2n+l.



48

g &5 ANOTHER METHOD OF FINDING 2n+1 INDEPENDENT ORDINARY
SOLUTIONS OF LAPLACES EQUATION OF DEGREE n.

Let f(ax + by + cz) be a differentiable function
such that
2 2 2
a +b + ¢ = 0, where a, b, ¢ are constants. Then

we prove that the given function f(ax + by + cz) satisfies

Laplace's equation. Therefore

§§ = af'(ax + by + cz),
2
2_% = a2f"(ax + by + cz)
90X
82f 2
Similarly —= = b f"(ax + by + cz),
Ay
2
é—g = czf”(ax + by + cz)
9%
Therefore
2 2 2
3 P
? g + g + g = (82 + b2 + cz)f"(ax + by + cz) =0
0 X L4 3z
necause 32 + b2 + 02 = 0

Thus the function f(ax + by + cz) satisfies the Laplace's

equation. In particular let U = (z + ix cose + iy sing )" (3:%6)

Where 6 1s an arbitrary constant
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al o n(z + 1x cosg + 1y sing )n—l icosg

5X
27U _ . no?
5 = - n(n-1)(z + ix cosp + iy sing ) cose
9 X
2
Similarly Q—g = - n(n-1) sin26(2+ix cosp+iy sfme)n"2
By.
QEQ n-2
5 = n(n-1)(z + ix cosg + 1y sing )
3z
Therefore
2 2 2
32 U, a3 U, 3 U_
- ke B
9X oy 9%

n-2
- n(n-1) [ 2 + 1x cosg + 1y sing]

(00529 + singe - 1) =0

Hence the result. If for any value of g we expand the
expression (3,16) in power of x, y, z the real and imaginary

parts will each be a solution of Laplace's Equation of degree

n, we have

n
(z + 1x cosg + iy sing )" = r" [ cosy+isingcos($-p)]

n
the expansion of the expression [ cosy + i1siny cos (¢+6)1 in

cosine of multiples of ¢ ~ 6. Then by writing cosy = U we have

n 1
(z + ix cose + iy sing )n = rn{ Pn(u) + 2 ¥ e/zmTTi
1 m=1
nt(1-u®)™ a" (n)
(n - m)! e cosm( ¢ -6 )1}
du
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Since the R.H.S. of this equation is an expression which for
every value of g , satisfiles Laplace's Equation. The coefficients
of cos mg, sinmg are each separately solutions of Laplace's
equation. We thus obtain 2n+l solutions of Laplace's Equation

o Pn(“)’ rnPg(u) cosmd , rnPg(u) sin m¢ , where m = 1,2,,,,,n.

These solutions of Laplace's Equation are obviously independents
and therefore form a system of the required kind. The general
solution of Laplace's Equation of degree n is thus

n

m
Pn(p) + mfl a_ cos m¢ +b_ sinmd¢ ) Pn(u)]

n
ro[a
0

Where a a , b are 2n+l arbitrary constants. This

o’ ™m m

expression when the values of r, ¢ , ¢ in terms of x, y, 2
are substituted, is the most general solutions of Laplace's

Equation of the prescribed type. If Yn(x,y,z) be & solution

Y
of Laplace's Equation of degreen>%%§ is also a solution of

Laplace's Equation. This follows at once from the last

expression.
Since 8 =3 i -yl 1t Pollews that
¢ oy 9ix 7
ayn ayn
% -y —— 18 a solution of Laplace's Equatiecn, Clearly
ay dxX
dy oy oy oy
y — B el 0% MM | S e are also solutions of
9z oy aX 02z

Laplace's Equation. Further negative solution —yh—l ‘of Laplace
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Equation has the corresponding property. In the next solution
we discuss the general solution of Laplace's Equation due to

Whittaker.

§ 3.6: A GENERAL SOLUTION OF LAPLACE'S EQUATION:
IN THREE DIMENSIONS.
Let U(x,y,z) be a solution of Laplace's Equation,
Which can be expanded into power series in three variables
valid for points of (x,y,z) sufficiently near a given point

(xo, > zo), accordingly we write

and we assume the expansion

2 2

= - 2
U= a_  +a,X + bly + cl; + a2x + be + C2Z +

0 i

24 0% ¥ 26BN 4 2L XF + s

is beling supposed that this series is absolutely convergent

when ever

x| + [¥] + |2] & a

where a is some positive constant. If this expansion exists,

U is said to be analytic at (xo, y ZO) and the above series

O)

converges uniformely throughout the domain indicated and
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differentiated term by term with respect to X, ¥, Z any
number of time at points inside the domain. Now we substitute

the above expansion in Laplace's Equation i .e.

2 2 2
u.q. LE.{.a_U:O
2 2 2
X oy 92

and equate to zero, the coefficient of the various power of
X, Y and Z we get an infinit site of linear relation between
the coefficient of which a, + b2 tc, = 0. Which is taken
as typical.

There are %ﬂ(n—l) of these relation between the

%(n+2)(n+1). Coefficient of the terms of degree n in the
expansion of U, So that there are only %(n+2)(n+1) - %—n(nvl) =
2n + 1 independent coefficients in the terms of degree n in U.
Hence the terms of degree n in U must be a linear combination
of 2n+l linearly independent particular solutions of Laplace's

Equation. These solutions being each of degree n in x, y and %.

To find a set of such solution, consider

(z + 1x cosuy + iy sin14)n , 1t i1s & solution of
Laplace's Equation. Which we expand in a series of sine, and

cosins of multiples u thus,

M3

n
%n(X,X,Z) cosmuy + I hm(X,Y,Z) sin m u

m=0 m=1
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the function gm(X,Y,Z) and hm(X,Y,Z) are independent

of yy . Thus the highest power of in

is "™ and the fairmer function is an even function of y

and the later an odd function., Hence the functions are
linearly independent. They therefore form a set of 2n+l

function of the type sought.
Now we have

(z + 1x cosy + iy sin11)n

n
. gm(x,y,z) cos m y + Zo hm(x,y,z) sin.m y
m:

Il
[ o e

m

We apply the Fourler's rule on the above equation we have

o

TTgm(x,y,z) I (z + 1x cos p+ 1y sinu)rl cosmydy
=

+

mh (x,y,2) J (z + ix cosy + iy siny )" sinmyd y

=

and so any linear combination of the 2n+l1 solutions can be

written in the form
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+
. n
J (z + ix cosy + 1y siny ) fn(u) d u

-

where f (u) is a rational function of e ", Now it is

readily verified that, if the terms of degree n in the

expression assumed for U be written in this form, the

series of terms under the integral sign converges
~uniformly if |X| + |Y] + |2 be sufficiently small.

So therefore we write

™ 8

(z + 1x cosu+ iy sin11)nfn(u) du

0

+7
u= |
/'n
T

But any expression of this form may be written

+7

U = J F(z + ix cosp+ iy sinp,u) du

=TT

Where F 1s a function such that differentiations with
regard to x,y or z under the sign of integration are
permissible. And conversely, if F be any function of this
type. U is a solution of Laplace's Equation. We write the
above result also in the form
T
U = j f(z + 1x cosp+ iy sinpu,u) dyu

1}
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On absorbing the terms - Zy " ixo cos Y - iyo sin p
into the second variable and, 1f differentiation under
the sign of integration are permissibles this gives a
general solution of Laplace's Equation, That is to say,
"every solution of Laplace's Equation which is analytic

throughout the interior of some sphere is expressible by

an integral of the form given above.
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CHAPTER IV

SOLUTION OF LAPLACE EQUATION IN FOUR DIMENSIONS

In this Chapter we are concerned with the solution
of Laplace equation in four dimensions. We solve this equation

by two different methods, using different parameters.

§ 4.1 SOLUTION OF LAPLACE EQUATION IN FOUR DIMENSIONAL
USING SPHERICAL POLAR COORDINATES:

We solve the equation

2 2 32U a2
. " + ~;2 + Ly = 0

(4.1)

in four independent variables x x. and X), where X X, and

12 %ga Rq 1.2 53

X, are the usual cartesian coordinates x,y and z and X) may be

3

defined as X) = ict, t being the time coordinate and c¢ the wave

velocity.

We transform the equation by using new variables which

are named as four dimensional polar coordinates (r, ¥ , 0, ¢ )

2 2 2 2 2
defined on the sphere x, + %X. + x_ + %, = P
1 2 3 it 2
X, =r sin¥ $in@ cos¢

Xy =T sin¥ sin6 sin¢
%
X, = r 8$iny coso

Xy =T cos Y



2U 2U
Consider 3—§ 4 &—§
axl 3X2

Xl =r sinw

>
]

27

sin 0 cos¢

Here we put r sin V¥ sin ©

Then X, = P cos¢
X, = P sing

2
implies that Xq 7

no O

Then by using plane polar

r sinV: sin & sin¢

= P

2

P° and tan$ = ‘2

1

coordinates we have

2y , 2°U _ 2°%u, 1,8V, 1 3%
ax2 8x2 5 p2 P op P2 a¢2
1 2
Again we consider
3°y . 3°y & 3%y 8 5 P S 32y
Sa- G2 Bx- 3pe P P ;2 gé?
1 2 3
_3°u, 2y, 1 ey, 1 23°
i Gt Sl S Sy T |
opP 3x3 P” 93¢
2 2
Now consider i + 9"y
2 2
9P 8x3

(4.2)

(4.3)



Let

i)
]

r sin ¥ sing

r sin ¥ cos6

have

P = q sin6
x3 = q cosH
P2+x§ = q2 and tanf = —

These are plane polar coordinates. Therefore
2%y , 3%y _ 2%0 , 18U, 1 2%y
2 - JRRu- BN T -
oP Bx3 g q 96
TR S W RS e
Putting these values in equation (H.3), we have
50 . 5°p . 9%y ~8%U . 18U .~1 °m
T e et Saliecn Slh-G - S
axl 3x2 8x3 9q q~ 906
1 y oU Cors® 98U
e EinTeIne - T 5o tahv 3g !
1 3°y

|

o+

no

r2 %in2651n2W d¢



gty 10 % 8°p
T a2 g 9q @ 2 n.2
aq q 90
2
% 1 oU , cotecosec ¥aU
rsind  3q r2 20
+ I 32U
2

a0, #Uduea sty 1w
5% 9% sx- bx.. o 8g- 9 94
Xq X5 X3 Xy q
2 | 2
1l 237U ik oU ¢ote Ccosec 6 U
ooy ke e 5 30
q° 96 giny od r
2 " |
+ . A+t o=l (4.4)

r2Sin2981n2¢ 8¢2 Bxﬁ

2 2
Considering Q_% + 9 g

d aXu
and using q=1r 3in vy

tan J = —2=

which are again the plane polar coordinates, we have,
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22y , 32y _su , 1 ,8u,1 2%

- B —a 2 r 3r -3 2

9q 9X), dr r v~
and ?._g = ?_U_ 8_1’.. - aU g.i!’

9q r dq oV’ 3g

= .S'in.lbé-—q + Cgs 1’-’ _g_.[{p

Putting these values in equation (ll-_-ll) we get,

2 2 2 2 2 2

8+l§_8[2}
= 3V

@

= rola
n Nl
il
+
B
3
=

2

Cos ¥ aU )
r Sin Y’

Y oU
( Sin'war i r 3w

£

% 1 0°U 4 cotb Cosec” ¢ 09U
2 2 2 2

r sin Y 96 r a6

i 3u

T YR
r s1n29 sing‘w 8¢2

= 0

or ?
d

— hajel
N N

3 ok 20 + 2icoty gU % 9°U

r° 3P e Vo 2sinly 502

2
+ _(‘,l)_t',e)coseczll)ag + : L 0

2 ® r%sinesin’V 3¢2

+ 2 ooy 30
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+ 1 32U + cote aU
PQSlngw 362 rzsingw a6
2
+ 1 9. U _ g (4.5)

r2Sin2wsin2e a¢2

We solve the above equation by the method of

separation of variables.
Putting U(r,y,6,¢) = R(r)yplyle(e)e(s)

Then (4.5) takes the form

R" 3 B! 1y 2Coty Y!
[5— + = —— + =, o— + =5 .
R r R r2 (/ 2 (7
n 1 CD 1"
+ 5 L @_ ; gotp . 1 r2$in%zsin26='“ T (4.6)

r sin2w 0 r231n2¢ 0

R.H.S. is independent of R, 0, and is a function of ¢ only,

therefore each side of (4.6) must be equal to a constant say m2.

%" 2
Therefore - T = Constant = m
d2® 2
That is, = +m¢ =0
dé¢
Thus & = Acdos m ¢ + B sing (4.7)

In order that & be single valued, m must be an integer for

0 < ¢ £ 2 m. After normalizing the above equation we have

r
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o = ——}— elm¢ (Ll.8)
Ven
. " 2
Putting s - - m in (4.6), we have
R" , 3 R' . 1 y" ,2coty L'
[R—+; §-+——2$—+——2w—\y]1’»51nq)

r r

1" 1
= [9—+ cotoe R ]
0 sin 0

R.H,S. of above equation is called Legendre Operator

and it must be constant. Hence
2 ' _ m°
- { §—+ goby B = S ) = nilnkl) (4, 9)

Iet cosg = y and 6 =V

do _do  dy . _ g de
2

da o d : do

—5 = = (= s8ind =— )

d82 do du
do 2 d29

= — (C0SH -7 + &in @ —

U du

Putting these values in the equation (4.9), we get

2 2
sinze g—g-— 2 cos8 g@-+ [((n(n+l) - E__Q] 0= 0
du H 1=
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As we have O = V, therefore
2. a°%y av m°
(1-u"7) = 2u a—-+ fn(n+l) - 5] V=20
du H 1-u
Equation (4.9) can be written as
1 ) 30 m2
: =~ [sin® =— 1+ [ n(n+l) - 10= 0
8in6 906 0 Sin26

This equation is well known Associated Legendre

equation where 0 < 06 < w and has a solution
e(B) = Anm Pg(cose)

The Associated Legendre polynomials are defined by

| |lm|/2 |m]

|m
Pg(cose) = (-1) (1- cos°e) 4 Fgloaal
d(cosH) [m]
n 2
and Pn(cose) = 1 d (cos 6;1)
g%ﬂ d(cos®)

is Legendre's polynomial of the firstkind and is a solution of

Legendre equation

1.
sine P}

l(v

]
L)

(sino %%) +n(n+l) 0

D

Now we denote

i

Yom- (0,4) by Y . (0,0) A 0(e) o(¢).

nm



64

¥ (8.8) =4 oo

m
- Pn(cose)

nm

where 0 £ ¢ <27, 06 <7

Ynm( ©, ¢ ) are called spherical Harmonics and are normalized

by the eondition

2m i 2
8- d¢ | (P™(eos0)] sinede= 1
nm n
0 0
2
where we calculate A as
nm
5 (2n+1) (n =|m|)
A =
nm

ba(n + |m|)!

The normalized Harmic function is given by

(2n+1) (n=|m|)!

Yon (8, 4)

. P™(cos 6 ) ei"1¢(u,10)
bo(n + |m|) ! c

Now consider

3
— + = — 4 — + L —— - =0
R r R r2 ¥ r2 i 1,)ZSinE\y
n 1" 1
= %— + % = = ig ( y— t 2coty - - n§n+l%)
2 rsin Y

Multiplying by r2
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"
PRR" + 3ER' A g ppigrap 15 Blntl)
¥ sin
2
o PRR"+ 3§R' ¢ oy ggory Lo o Qiggl)’= 0
¥ sin Y
2n'
We put R(r)y(y) =r F(y) . (h.21)
4°F dF n(n+l)
Then =g 2eaby 5= & Liptintel) - ~e=C) P g (4,12)
dy v siny
By substituting cos2¢ = ¢, we have
dF _ aF dg _ _ aF
dy = df © dy 2 siny cosy e
d2F d daFr d dF 2 d2F dF
— = — ( = ) = =— (- sin 2 ——) = sin® 2 y—= <« 2cos 2 y=—
a2 W dy dy LTS ‘Pdgz Y ag
since sin 2¢ = 2 sinw cosy
sin2 2y = 4 singw cos2w
2
cos 2y = 2 cos Y ~1
(4.12) takes the form
2 2 d2F 2 2 dF
4 sin“y cos® + T [2(2cos Y =1)+Ucos Y 1 ==
dg 4%

B n(n+l)]

+ [ 4n'"(n'+1) 5
sin vy

F=20
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2 I
da F 1 dar
E(l -g) g—§ + (5 - 2¢) it
1 1 n(n+l) .
+[1’1(n+1)—~&—(—1~:‘g)]F—0
n
Putting F = (1 -g)2 K
n/2 LS.
dF _ dK n 2
-—E——(l—g) a’é""é'(l F,) K
2 o 2 L]
d F 24K n 2 dK
=== (1l -~ E]) -5(1-8) =
d£2 d€2 2 el
2y 2 B 9 Sroe=1
S0 -2 =B 6? k- (-0 S ena-)?
dg
2-2
%% * QL%:E) (1-£)° K , then we have
e (1-8) LK1 ng s Lo
e 2 at
n(n+l) n

SR e T T R 6

Ung n(n-2)g i
R T Rl o

2 .
d“K 1 dK

E (1l -E) =—=+[5~-E (n+2) | =5
o 2 at

+[n'(n'+l) -

n(n+2)] K = 0
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It 1is a Hypergeometric equation which can be written

in the form

2

8(1—5)9—%+ w—(a+8+1)g]%—}é—asx=o (4.13)
ag

where o , B and vy are constants. The solution of the above

equation can be written as F(a, B, v, §).

Thus the solution of the Laplace Eguation

is

Ulr, v ,60,d¢) = R(r)¥(yp)o(e)e(e)

=2 F@) Y (0, 0)

" (2n+1) (n-|m|)

= Pg (cos 0 ) eim¢
b (n+|m|) !
r ' Flo,B, v, costy) (4.14)
5 1L
T oq
/
ok - - 4 D
7
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g 4.2 SOLUTION OF LAPLACE EQUATION IN FOUR DIMENSIONS USING
CYLINDRICAL POLAR COORDINATES .

Now we solve the Laplace Equation by another method

using new coordinates.

X, =p COS ¢ X, =p sin ¢

P
I

o cos X = o sin y

From these coordinates we have

2 2 2 =t e
Xq + Xo T p tan ¢ = oy
1

2 2 _ 2 y
XB + Xy =0 tan ¢ = ;g

no
no
N

9 U 9 U 13 o U 3 U
—— it Y- = = - _— —_, —
g2 ax? ¥ Bp (b 55 ) * =2 .
3 2 L
and
a2U 32U _ 1 3 93U = 32U
o liieww -5 R R Rl T
8x3 axu g oY
combining these two equations we have
3% . a%u, 2% cofo afu c1aw 1 3%
5 5 - Sk St SN2l ~a iy Wae
9X 8x2 ax3 axu ap p- 29
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2l , L
90 2

This equation is satisfied by

Putting the value of U in equation (4.15), we get

where K is

we have

and

U=scos(m¢ +¢ Jcos(P y + n)F(p)G(o)

4°F

2

1
p

Q-

=
]
s
=~

m‘ﬁ
=
4

=
no
!

Q
aat

2
.

2

©

1]

g and iKg

(4.15)

(4.16)

(4.17)
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2 2
or S 4o 88 gy o 5 ) F
2
2
or g2 g—g + %g + (¢ - m") F
dg
e a’c _ x° aa _ (K% -
ir° & 4t
C
2
or 2 &G daG 2 2
4 gzg tegpt o -F) @

(4.18)

(4.19)

The resultant two equations are the well-known

Bessel equations.

Now we make the further substitution

p =r sine , o
that is, X, =71 sin 6 cos
Xy = T sin o sin ¢
X, = I CcOS § COS P

Xy = 7r cos @ sin y

clearly we have

=1 COoSg
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Then by using cylindrical polar coordinates we have

2 2 2
a__g+a__lzl___£a_(ra£>+£2i_2!
op 20 ik .. L r 3506
10 _ 1 (23U 38,3V ar,
p 9p r sing 00 op or op

180 . 1 (30 3o .30 or;
g 90 r cosg 20 90 or 90
As g = gln g ;s g = I cos §
Then 92 + 52 = r2 s, tang = £
L U 1 U_3 30 1 gl
= —= 4 = — =2 + =, (Cotg - tan £—
o o 90 r ar r2( Oxe ang ) 90

2

2 .
Substituting the value of 2-9 + B_g )
ap 90

iU 4 13U in equation (4.15) we have
p 3p o 90
2°U , 33U , 1 g 52U
e BT 2 542 Lcﬁx—a 2
2 2

rgsinzea¢2 r2c0529 Y
Putting U = r2n cos(mg+e) cos (P y+n) F(g) in equation

(4 .20) we have



2

2 2 2
g—%—+2cot26%§+[“n(n+l)— LI P2]F=O
de sin™® cos 0

(4,21)

The equation (4.21) is unaltered if we replace n by -(n+l),

Hence solution is given by

-2n-2
T

U = cos (m¢ +e)cos(PY+n)F(9).

This suggests the following theorem.

Theorem: If F(r,0 ,¢ ,¢ ) 1s a solution of equation (4,20),

e F( & », 0,60 ,9) is also a solution.

Then U = 5 -

=

This 1s easily varified by a slight extension of
the method used in the case of the corresponding theorem for

Laplace's equation.

The theorem can also be stated as follows:

If U = F(Xl’ Xos X XU) is a solution of equation

2
g n ! ¥ X X
(4.20), then U = P F( =5 - y —% 3 —%-) is also a solution,
r v
r r r
- 2 2 2
where roo= Xy + X5 + x3 + Xy o

The transformation



N
b
(O8]
I><
| =

is called generalized inversion.

m2 and

Il

If in equation (4.21), we write P2

cos2 g =y . Then equation (4,21) can be written as (when

2
we substitute the values of F, %E and g_g )
6 ds
2 2
b1 - p®) F L g 9F L oqnmme1) - B WP =0
2 du 2
du 1-n
d 25 df &
or =— [ (1= u7) =14+ [ n(n+l) - n_1F=0
du du 1 —U2

The above equation 1s well-known Polynomial of
assoclated Legendre function. We thus have solution of

equation (4.20) of the form

U = r2n Pg(u) cos (m¢ + )cos(Py +n)

and since € and n are arbitrary constants, we may deduce

that

r2n P:(u) cos (m¢+y ) and

r? P sin (mgty),

are solution of equation (4,20).
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Now comparing these solutions of (4.20) with the

corresponding solution (3. 11) we have the following theorem:

Theorem: 1f y = f(r) 0, ¢) is a solution of (3.,11) then

the solution f(r2, 20, ¢ +¢v ) 1s a solution of equation (4.20).

This may be varified by direct comparison of the
differential equation to be satisfied by the function f in
two cases. In the general case when P2 # m2, then substituting

sin2¢ = ¢ 1in the equation

p) p) 2
g——g—+2cot29g—F—+[Mn(n+l)— m— - P21F=O
de 6 sing cos @

we have

2 0 0
sin 26 g_g + 4 cos 29 %E + [4Un(n+1l) - 3 - g 1 F=0
dE 2 1-¢
a°F aF
or ng(l—g)——§+1&[2(1—&;)—1]-——
e dg
- p)
+ [ Un(n+l) - - o] B =
1 -¢ £
P 2 2
or E;(l—g)d——g+(l—2§)g—g+[n(n+l)——P— - By p=o
dg h(1-g) Lg
(4.22)
p

m —
Putting F = g2 (1 - 5)2 G in equation (4.22) we obtain the
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hypergeometric equation

d2G

£ (1 -¢) 5+ (y= (a+B+1)E) =% =—aBG = 0
ag

1l
=
+
=

where Y

n+1+% (m+ P)

Q
Il

-n+ % (m + P)

o~
]

Hence the solution of the equation (4.23) is F(a,B,Y, £ ).

Therefore we have solution of (4.,1) of the type

U=r2n cos(mo+e)cos(P p +n)sin™e cosPe F(a,B,Y,sing )

(4.2h)
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