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CHAPTER I 

INTRODUCTION 

A second order partial differential equation in 

n-independent variables (xl' x 2 ' , x ) namely 
n 

(1.1) 

where 
2 

\j stands for is known as an 

n-dimensional Laplace's Equation and + .. -t 
2 

L 
2 ax n 

is narned 

as n-dimensional Laplacian oDerator . The co-ordinates 

x ) span n-dimensional Euclidean space. In this 
n 

dissertation we are dealing with case when n = 4. Treatment 

of the LaDlace ' s Equation for dimensions one. two and three 

is well known. However these cases will be considered briefly 

so as to provide understanding to the case of dimensions four. 

The two-dimensional Laplace equation is commonly written as 

( 1 .2) 

where x,y are independent variables . Equation (1.2) is also 

known as the Laplace's Equation in the plane . Similarly, 
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~ ~ = 2 + 2 0 (1. 3) 
ay a z 

is called Laplace's Equation in space . The corresponding 

equation for n = 4 is 

a
2

u + a
2

u + 
a 2u 

+ a
2

u = 0 (1. 4) -2 -2 -2 -2 
a xl d x 2 d X3 a x4 

where (xl' x 2 ' X
3

) are t h e space coordinates given in 

equation (1 . 3). The given four dimensional Laplace ' s Equation 

can be easily transformed to well known three dimensional 

Here x, y, z are the usual space coordinates, c represents 

the wave velocity and t the time . Then the equation (1.4) 

becomes the familiar wave equation or in . other words we can 

say that Four d i mensional Laplace's Equation is closely 

related to the familiar wave equation . 

The non-homogeneous equat ion corresponding to 

Lap l ace ' s Equation i s 

(1. 5) 

called Poisson ' s Equation in the plane . Similarly Poisson 

Equation in the space and in the four dimensions are 

respectively 



'. 

3 

2U 2 ~ 2U 
~ + ~ + ~ = f(x y z) 

2 2 2 " 
(1. 6 ) 

ax ay a z 

and 

The function U is called the Potential function . Also these 

equations are named as Potential Equation. The LaDlace ' s 

Equation occurs in mathematical Physics particularly this 

Partial differential equation is of fundamental importance 

in electrostatics , hydrodynamics and the theory of attraction. 

It evidently arises when we attempt to find a solution of 

the equation of wave propagation . Moreover, in some branches 

of Physics the Field Equation can be reduced to Laplace ' s 

Equation. Thus Laplace's equation is very useful to solve 

various problems of mathematical Physics. 

In chapter II we shall discuss the preliminaries 

for example Gamma Function, hyper-geomatric function, 

Legendre function~ ,Associated legendrce' functions and 

Bessel ' s Functions. Because we obtain the polynomial 

of these functions when we use different parameters to 

solve the Laplace's Equation . The detailed discussion of 

d i fferent co-ordinates is given in Chapter III. And also 

in Chapter III we are concerned with the solution of 

Laplace ' s Equation when n = 2,3. When we use different 



4 

Co-ordinates. General solution of Laplace's Equation for 

three dimensions due to Whittaker is a.lso given. In Chapter 

IV we are dealing with the solution of Laplace's Equation 

in four dimension. We solve this equation by using different 

parameters . 
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CHAPTER II 

"PRELIMINARIES II 

This chapter contain some elementary result which 

will be used later on. 

§ 2 . 1: The Gamma Func tion (r): In the definition of 

Hyper geomatric function, Bessel function and Legender 

function, Associated Legender function we make use of 

Gamma function. Which is considered a generalization of 

a factorial function. We know that if n is a Positive 

Integer then n! = n(n-l)(n-2) ...... 2.1 

If n is not a Positive integer then the above 

equation is not satisfied. This is a function which is 

defined for all values of the variable a and equals (a - I) ! 

Where a is posit i ve integer is known as "Gamma Function II 

r(a) which is defined as 

co 

r(a) = I "'-1 x xu. e- dx ( 2 .1) 

The following formulae are given here for convenience in 

referenc e 



where 

r(x) = lim 
n-+oo 

6 

x 
n! n 

x(x+l) ... x(x+n) 

1 = x e Yx ; (1 + ~ ) e -x/n 
rex) n=l n 

m 1 
y = lim (L 1 - l ®n) = 0 .577 

f]1-tOO 1=1 
r (x+ 1) = xr (x) 

If n i s positive integer, r(n+l) n ! 

and 

r(l) = 1, r(~) = l//IT 

= r ( y)r ( y - a -S ) 
r ( y-a )r ( y-S ) 

(2 . 2) 

(2. 3 ) 

(2 .4) 

(2. 5 ) 

(2 . 6 ) 

(2.7) 

where F(a,S,y,l) is a Hyper Geometric Function and will 

be defined in the next section. Now we also give the 

definition of Beta function which also make use in the 

hypergeomatric function. 

Beta function 

S(p , q) = r (pJIJ.9.l 
rep + q) 

1 

If p , q > 0 , S(p,q) = J xP(l-x)q-l dx 

o 

(2.8) 

§ 2 . 2 : SYSTEM OF ORTHOGONAL FUNCTIONS : A set of functions 

i = 1~2, ... ,n is said to be orthogonal in the interval 
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[a,b] if the scaler product 

if i 1 j ( 2 .9) 

b 

] [<P i (x) ] 2 dx 1 0 if i = j ( 2 .10) 

a 

b 

If J [ <P i (x) ] 2 dx = a i 10 

a 

We can normalize the <Pi ( x) that is find a ne \'l set of 

functions 
<P i (x) 

<P . (x) = 
l .; a

i 

which are said to be orthonormal 

in the interval ra,b] . If 

J b 
<P i (x) <P j (x) dx = o ij ( 2 . 11) 

a 

where o . . = 0 when i 1 j 
lJ 

= 1 when i = j 

Let { <p (x)} be the sequence of orthogonal functions 
n 

then the members of the sequence are mutually 

orthogonal on [a ,b]. If <P is an integrable function 

then the norm of <P is the real number 
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b 

t t ~ t t = [J t ~ (x) t 2 dx 1 " 

a 

II¢II) 0 for any ¢ 

If II ¢n II = 1 n = 1, 2 ,3, . .. then 

(2 .1 2 ) 

{¢ (x)} is said to 
n 

be an orthonormal on [a,b]. Let us attempt to expand the 

arbitrary function f(x) in term of the arthonormal function 

¢ (x) that is, let us write 
n 

00 

f(x) = L: 
n=l 

(2.13) 

where a 's are known constants. Since ¢ (x) are a rthonormal 
n n 

functions . By inner product proper ty 

< 

where 

Taking n 

< f 

<¢ . , 
l 

f , 

8 = nk 

= 

= k 

, ¢k 

¢k 

0 

1 

> 

¢ . > 
J 

> = 

= 

< 

= 

00 

L: 

cS • • lJ 

a 
n=l n 

00 

L: a 
n=l n 

if n =I 

if n = 

00 

= L: a k n=l 

we have 

¢n ' ¢k > 

< ¢n' ¢k 

k 

k 

00 

> = L: a cS 
n=l n nk 

(2.14) 
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Thus (2.13) can be written as 

00 

So we have expressed function f(x) in terms of arthonormal 

function, but we do not always get such expression . Therefore 

when any function can be expressed in term of arthonormal 

functions for all n then arthonormal set of function {¢n(x)} 

is said to be complete over the interval [a,b ] on we can 

say that the sequence {¢n(x)} form a complete arthonormal 

set of over [ a , b ] . 

The trigonometric function sin nx and cos nx , 

t~Q complete exponential functions e inx k = 0,1,2" . . 

the hyper-geometric function, the Bessel Functions~the 

Legendre functions and Associated Legendre Functions 

(discus~in the next section) are examples of complete 

arthonormal set. 

It is very useful that we can expand an arbitrary 

function in term of hypergeometric, Bessel, Legender and 

Associated Legenders , functions, 

Let {¢n(x) } be an arthonormal set on [ a , b ] • If f(x) 

is an i ntegrable function on [a,b ] then the numbers 

an = t f(x) n=1,2,3 , . . . , 
a 
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are called the Four i er co-effi cientsof f relative to {¢n(x)} . 

(X) 

The series E 
n=l 

a (x) is called the Fourier series of f(x) 
n n 

relative to {¢ (x)}. The series need not be convergent, 
n 

however to each integrable function f(x) there correspond 

its Formal Fourier Series. 

§ 2.3 HYPERGEOMATRIC FUNCTIONS 

As the hyper geomatric function is frequently 

employed i n conn ection with the solution of Laplace ' s Equation 

in four dimensions on acc oun t of some of its properties wil l 

be given here. The function is define by mean of the hyper-

geomatric series 

= 1 + ~ x + a(a+ l ) (8+1) x2 + 
1. Y 1 . 2 . y( y+ 1 ) 

a(a+l) (a+2)S(S+1 ) ( /3+2) x3 + . ... 

1 . 2 . 3 . y( y+ 1) ( y+ 2 ) 

which is absolutely convergent of I x l < 1, it converges 

obso lut e l y if y - a - /3 > O. 

Func tion F(a,/3 ,y, x) is a solution of the differential 

equation 

x(l-x)y" + {y-(a+8+l)x } y ' - a/3 y = 0 ( 2 .15 ) 



11 

is known as Gauss's Equation or the Hypergeomatric Equation. 

1- y 
The second solution is given by y = COx F[ a-ytl,S-ytl,2-y,xJ 

where y is an integer if y = 1 the solutions are identical 

and if y tends to any other integral value one of the 

integrals usually ceases to exist. 

The above solution can easily be derived by the 

usual method of Frobenas for solving the differential 

equation in series. 

§ 2 . 4 LEGENDRE AND ASSOCIATED LEGENDRE FUNCTION: The 

differential equation 

2 d
2

" d (l-x ) ~ - 2x ~ - AY = 0 
dx2 dx 

(2.16) 

is called the Legender equation . The end of the interval 

[-l,lJ are singular points of the differential equation if 

we write A = -n(n+l), n being a positive integer the legender 

equation takes the form 

2 d
2 ~ (l-x )---~-2x dx + n(n+l)y = 0 

dx 
(2 . 17) 

On solving legendre equation in series we get two solutions. 

First P (x) .is an algebraic function of x of degree nand 
n 

is given by 



P (x) = 
n 

= 

12 

1 . 3 .5 . . . . ( 2n -1 ) 
1.2.3 ... n 

n(n-l) (n-2) (n-3) 
( 2n -1) (2n-3) 

1. 3 .5 .. . (2n-l) x 1.2.3 ... . n 

n(n-l)(n-2)(n-3) 
+ 2 . 4(2n-l)(2n-3) 

n 

n 
x 

n(n-l) 
- 2 ( 2rJ -1 ) 

n-4 
x - .... 

1 
n(n-l) - 2 (2n-l) 

-4 x 

1 

n-2 
x + 

-2 x 

By definition of Hypergeometric funct i on F(a , S ,y,x )=l+ ~ x 
y 

+ a(a+l)S~ 2 
2 ! y( y+ 1) . x + . . .. (2.18) 

Using equation ( 2 .18) P (x) can be written as 
n 

= i2~)J_ 
2n n!n! 

n n I-n 
x F(-"2' 2 

l-n 
-2- l ) 

2 
x 

(2.19) 

here P (x) is a Polynomial of degree n so bounded at the end n 

po int s that i s at x = +1 and x = -1 therefore PO(x), Pl(x), 

P 2 (x) , ... are called Legendre funct i on of first kind . 

• 

There is a second solution Q (x) of the form 
n 

1 
Qn ( x) = B{ n + 1 

x 

+ (n +l) (n+2) + 

2 ( 2n +3)xn +3 

(n+l) (n+2) (n+ 3) (n+4) + } 
n+5 ... 

2.4(2n +3)(2n+5) x 
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Using equation (2.18) we have 

() B 1 F(n+l n 2n+3 
Qn x = n+l 2) 2 + 1, --2--

x 
1. ) 

2 
x 

(2.20) 

where QO(x) , Ql(x) , ... are called Legender function of 

the second kind. The following results are important 

involving Legendre Polynomials 

P (1) = 1 
n 

P (-1) = ( _l)n 
n 

P (-x) = (_l)np (x) 
n n 

0 
= 

If n is odd 
P (0) 

n 
{ 

(_1)n/2 1.3 . 5 . .. (n-l) 

2.4 ,6 ... 2n 

J Pn(x)dx 
Pn +l (x) - Pn_l(x) 

= 
2n+l 

(2 . 21) 

( 2 . 22 ) 

(2.23) 

} 
if n is even 

(2.24) 

(2 . 25) 

The following recurrance formulae for Legendres function 

are given which will be used in this dissertation. 

(n+l)P +l(x) - (2n+l)xP (x) +nP lex) = 0 n n n-

.. 
= (n+l)P (x) 

n 

(2.26) 

(2 . 27) 
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x P ~ ( x ) - P ~ -1 (x) = nP n ( x) (2 . 28) 

(x 2 
-1 ) P , ( x) = nxP (x) - nP 1 (x) 

n n n-
(2.29) 

(2 , 30) 

ORTHOGONALITY OF LEGENDRE POLYNOMIALS : It is very useful 

that Legendre Polynomials form a complete arthogonal set , 

so that any arbitrary functi on can be e xp anded in terms 

of the Le gen~e Polynomials . We shall show that the 

function { P ex )} are arthogonal in the interval [-1, 1 ] 
n 

and that 

and 

i .e. 

Le t 

r Pg(x) 

-1 

P (x) dx m = ° if m =I n 

where m, n = 0 ,1, 2 , ... 

P (x) dx 
m 

dx 

2 

2n+l 

2 

2n+l 

If m = n 

n = 0,1,2, . .. 

P (x) and P (x) be two Legendre Polynomials then n m 

they satisfy the Legendre equati on 

(a) d 
d x 

[ (1_x2
) d P (x)] + n(n+l)P (x) = 0 

dx n n 
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(b) - ~-- [ (1_x 2 ) d P (x)] + m(n+l) P (x) = 0 
dx dx m m 

Now multiplying (a) by Pm(x) and (b) by Pn(x) and 

substracting we have 

Integrating the whole equation over the interval [-1,1] 

we have • 

+1 

m(m+l)-n(n+l) J p (x) P (x dx = n m 
-1 

+1 

J P (x) d 2 d 
P (x) ] dx [( I-x) dx dx m n 

-1 

+1 

f P (x) d 2 d 
dx [ (l-x ) d P (x) ] dx n x m 

-1 

Integrating by parts we have 

+1 

(m
2

+m_n
2

_n) -I Pm(x )Pn(x) dx = 

+1 
2 d +1 f 2 d d 

P (x) [ (l-x )d- P (x) ] I - [(l-x )dx P (x)] [-d P (x)]dx 
m x n -1 n x In 

-1 
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+1 

- P (x) [ O_X2)dd ? (x) 
n x m I + 

-1 

+1 

J [(1_X2) d p (x)) [~p (x) ) dx 
dx m dx n 

-1 

olVlng R.H.S. we get 

+1 
( m2 + m - >'> 2 - n) J P ( ) P ( ) d 0 

U nX mX x= 

-1 

If we assume that min then n 2 + m - n 2 - n i 0 

+1 

Then clear 1y J P (x) P (x) dx = 0 n m for min 

-1 

Now consider 

+1 

r 
j 

[P (x) ) 2 dx , From the definition of P (x) 
n n 

-1 

+1 +1 
j [P

n
(x )]2 dx 1 

J 
-1 -1 

Integrating by part s R.H .S . we ge t 
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+1 n-1 

J 
2 1 

dn 2 d __ (x2_1)n 
rPn(x) j dx = (x _l)n n-1 

2 2n (n ! ) 2 dxn 
-1 

1 +1 n-1 dn +1 

f 
d_" _ (x 2 _l)n 

2 2n (n ! ) 2 n-1 dxn +1 dx 
-1 

Repeating this for n times we get 

(_l)n 
= 

2 2n (n ! ) 2 

+1 

f 
-1 

+1 

= J (x
2 n - 1) 2n ! dx 

-1 

2.2n! 
= 

2 2n (n ! ) 2 
o 

Let x = Sine dx = Cose de 

( 1 _ 
X 2) n __ ( 1 2) 2 - Sin e = 2 n (Cos e) 

Therefore 2 2n +1 (l-x ) dx = Cos e de 

+1 7T /2 

dx 

(x2_1)n 

Therefore f [P (x) ] 2 
dx 2. 2n ! f Cos 2n+ 1e = de n :f1(n!) 2 -1 -0 

dx 1 

+1 

I 
-1 



• 

= 

= 

= 

Thus we 

where 

18 

2 . 2 n ! 2n ( 2 n - 2 ) 4.2 

2n 2 
2 -- (n !) (? n + 1 ) (2n -1 ) . .. 5. 3 

2.2 n ! 2n. n! 

2 

(2n + 1) 

get the following result 

+1 

J P (x) P (x) dx 
2 

0 = nm n m 2n+l 

-1 

0 If m =i n 
o mn = { } 

1 If m = n 

form an orthogonal set and 12n + 1 
-2-

form an orthonarmal set. Since P (x) and Q (x) are linearity 
n n 

independent. Thus a general solution of the Legendre equation 

is g iven by 

y = A.P (x) + B Q (x) 
n n 

where A and B are arbitrary constants . 
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The differential equation 

(2.31) 

is called Associated Legendre equation, its solution are g iven 

by 

pm(x) (l_x2) m/2 d r1 
P (x) Yl = 

n dx
n n 

( 2.32) 

Qm(x) (1_x 2 )m/2 d n 
Q (x) Y2 

= = 
n n n dx 

(2.33) 

the function pm(x) are called as Associated Legendre function 
n 

of the first kind , and Qrn (x) are known as Associated Legendre 
n 

function of the second kind . 

The Legendre Polynomial P (x), n = 0,1 , 2 , .... are n 

particular solution of the differential equation 

2 

(1_x 2 ) dy _ 2x dy + n(n+l) y = ° 
dx 2 dx 

(2 . 34) 

Here y = P (x) satisfies the above equation differentiating the 
n 

equation (2.34) m times by Leibnitz theorem we have 

(1_x 2 ) dm~~y _ 2 (m+l) xym+l 
dxm+2 +[ n(n+l) - m(m+l)] yrn = ° 

(2 . 35 ) 

• 
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d
m 

Where U = --
dxm 

the equation. 

p (x) 
n 

in equation (2.31) which gives us 

(1-X
2

)U" - 2 (m+l)U' + [n(n+l) - m(m+l) ] U = 0 (2.36) 

. 
Comp~ing equation (2.35) and (2.36) we see that y = (1_x2)m/2u 

is the solution of Legendre Associated equation . 

Thus pm(x) (1_x 2 )m/2 = y = 
n 

and Qm(x) (1_x 2 )m/2 = y = 
n 

are solut ion of equation (2.31) 

Rodrig~es formula for pm(x) is 
n 

dm 

dx 

0 ::; 

dm 

dx 

We also have the fo llowing results 

If m > n 

m 
p (x) 

n 

m ~ n 

m Q (x) 
n 

(2 . 37) 

(2.38) 

(2.39) 



21 

m 
P -m ( x ) = ( -1) (n -m)! pm ( x) 

n (n+m) ! n 

m Recurl'ence formul a.:: fo r P ( x) are n 

( 2. 40) 

(n+l-m)p~+l (x ) - (m+l)x P~ (x) + (n+m)P~_l(x) = 0 (2.41) 

ORTHOGONALITY OF ASSOCIATED LEGENDRE FUNCTI ONS : The Associated 

Legendre funct ions also form an orthogonal set. 

Let and P~(x) be two distinct associated 

Legendre Polynomials sat isfying the Associated Legendre equations 

d 2 d m2 
{ (1 x ) ] pm(x) = - n(n+l) pm(x) 

dx - dx - -2 l-x n n 
(I) 

d 2 d m
2 

m m 
d x { (1-x ) d x - -2 ] P 1 ( x) = - 1 ( 1 + 1) P 1 (x) 

l-x 
(II) 

Mult iply ing eq uation I by P~(x) and II by P~(x) and subst racting 

we get 

1(1+1) n (n+ 1 ) ] pm (x) m 
[ - Pl (x ) = 

n 

m d 2 d pm(x) Pl(x) dx [(l-x ) dx ] ~ 

n 

m d 2 d m P (x) dx [ (l-x ) dx ] Pl(x) n 
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Integrating the whole equation over the interval [-1,1] we have 

+1 

[1(1+1) - n(n+1)] f 
-1 

+1 

J [ P~ ( x ) ~x {(1_x
2

) ~x }P~(x) -

-1 

Pm ( x ) d { ( 1 2 ) d } m ( ) d n dx -x dx P1 x] x 

Integrating by parts R .H.S , which g ives us 

+1 
m 2 d pm(x) } I P1 (x) { (l-x ) dx n 

-1 

+1 

f 
2 ~ pm(x) }SL m {(l-x ) 

dx n dx P
1

(x) dx 

-1 
+1 

m 2 d m 
I p (x) { (l-x ) 

dx P1 (x) } + 
n 

... 1 

+1 

J 
2 d m d pm (x) ] [{ (l-x )dx P1 ( x) } dx dx 

n 
-1 

+1 

Since J pm(x) m 
P1(x) dx = 0 whe n nil n 

-1 

Take n = 1 
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+J1 [ 
pm (x)J 2 dx = 

n 

-1 

(n+m) ! 
+1 

r 
) 

= m (-1 ) (n-m)! 
-1 

+ 1 

J 
m m p (x) P (x) dx 
n n 

-1 

m -m p (x) P (x) dx 
n n 

using the Rodrignes formula fo r we have 

(n+m) ! 
= 

m (-1) (n-m)! 

(1_x2) - m/2 
-m 

[ d P (x) J dx x 
dx 

-m n 

(n+m) ! +1 -m 

f 
d

m 
P (x) d P (x) dx = m 

dx
m n - m n (-1) (n-m)! ) dx 

- 1 

(n+m) ! dm- 1 +1 -m 
-. [L P (x) 

----m=-1 
P (x) 

( -1 ) m ( n -m ) ! dx 
-m n n 

dx 
-1 

+1 
dm- 1 d-m+ 1 

f P (x) P (x) dx ----rn=-1 -m+1 
dx 

n 
dx n 

-1 

(n+m) ! +1 
d-m+1 d m- 1 

[ f P ( x ) = P (x) ----m=-1 n 
(-l)m( n-m) ! -m+ 1 n dx ) dx 

-1 

dx ] 
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Repeating this process m-time we get 

Thus 

Where 

= ( n +m) ! (-1 ) m 

(-l)m(n-m) ! 

+1 

J p (x) P (x) dx 
n n 

-1 

= 
2 (n+m) 

(n-m ) ! (2n + 1) 

+1 

j 
-1 

o n =I 1 
onl = { 

1 n = 1 

2 (n+m)! 0 nl 

(n-m) ! (2n+l) 

} 

§2.5 BESSEL FUNCTIONS : The differential equation 

x 2 d 2
v d 2 2 ~ + x ~ + (x - n ) y = 0 

dx2 dx 

(2.43) 

(2.44) 

is called the Bessel Equation of order n . The solution of this 

equati on are the Bessel Function. Some special solution of this 

equation are t h e Bessel , Newmann and Hankle Functions 

( 1) (2) 
I n ( x) , Yn (x) , Hn (x) , Hn (x) respectively . The later three 

are the linear combination of the first J (x) is define as 
n 

J (x) = 
n 

00 

L 
k=O 

(2.45) 
K! r (n+k+l) 
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and is known as Bessel Function of the first kind of order n . 

J (x) = -n 

00 

L: 
k=O ( 2.46) 

K! r (-n+k +l) 

are a l so soluti on of Bessel equation and are called Be ssel 

Function of first kinds of order -no The function J (x) and 
n 

J (x) are line arly independent provi ded n is not an integer -n 

or zero. If n is a Pos iti ve integer then we have the following 

results: 

J (x) = (_l)nJ (x) 
-n n 

(2 .47 ) 

i.e. J (x) and J (x) are linear dependent for n as an 
n -n 

integer . Thus general solution of the Bessel ' s differential 

equation is 

y A J (x ) + B J (x) 
n -n (2 .4 8) 

where A and B are arbitrary constants. The fo ll owing results 

for Besse l func t ion can be verified . 

(2 .4 9) 

d [ x -n J (x) ] 
dx n 

-n 
-x In +l(x) (2.50) 
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Adding and substracting (2.50) and (2 .51) gives us 

= 2n J (x) 
x n 

2J ' (x) n 

(2.51) 

(2.52) 

(2.53) 

To find the general solution of Bessel equation when n is an 

integer. We have to find a second solution of the equation which 

will be linearly independent to J (x). For this second solution 
n 

Yn(x) valid for all values of n is defined by 

y (x) = 
n 

I
n 

(x) Cos n Tf - J (x) -n 
Sin n Tf 

It is linear combination of J (x) and J (x). If n is an n -n 

(2.54) 

integer or equal to zero~ then In(x) will take an indeterminate 

form thus we can define Yn(x) as 

Y n (x) = lim 
p. + n 

J p ( x) Cos 1 Tf - J -e ( x) 

Sinp Tf 

(2.55) 

called Bessel function of the second k ind of orde r n as weber 

function or Neumann function Function. It is very useful to 

have a third type of Besse l functions whi ch are so lution of 

the Bessel differential equation Imown as the HankIe Function of the 

first and second kind define as 
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( 1) 
H (x) = J (x) + i y (x) -

n n n 
(2.56) 

(2 ) 
H (x) = J (x) - i y (x) 

n n n 
(2 . 57) 

These are called Bessel function of the third kind . 

2 
X y " + 2xy ' + (x - 1(1+1) y = 0 

1 = 0 , 1,2 , 3, .... 

Putting y(x) = 

2 2 d u 2 2 
x d u + x + [ x - ( 1 + ~) ] u = 0 

dx
2 dx 

-r y(x) == C1 Jl+~(x) + C2 J_l_~(x) 

Called Spherical Bessels Functions. 

§ 2 .6 ROOTS OF BESSEL ' S FUNCTIONS AND THEIR ORTHOGONAL PROPERTIES : 

Cons ider 

Se t 

2 
P 

Therefore 

2 
x 

p 

d 2 __ y. 

dp 
2 

= kx 

dy 
+ P dp + (p 2 _-n2 ) Y = 

J (kx) is 
n 

( 2 . 58 ) 

0 

a solution of ( 2 . 58) . 
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From (2.58) 

d d 2 
dx [ x dx In(kX) ] +(k x-

Writting k = A ].1 , 

2 
n 
x 

) J (kx) = 0 
n 

2 
d d 2 

J ( " x) 
n J (Ax) [ x ] + [A x ] dx dx n x n 

d d 2 rf J (].1 x) [ x d J (].1 x) + [].1 x - X ] = dx x n n 

= 0 

0 

Multiplying first by with J (lJ x) and second with J ( \ x) and n n 

substract 

(A2 - ].12) x J (Ax) J (].1x) = 
n n 

ddX [ x J (.Ax) J'(J.lx) - x J (].1x) J'(AX)] 
n n n n 

a 

j x J (AX) J (].1x) dx 
n n 

o 

n=a 

== x (J (A x) J' (].1x) - J (].1X)J'(AX)) I 
n n n n 

n=O 

Now the lowe st power of n in the series for 

is 
2n+2 

x ,that the right hand side vanishes for n == 0 
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Provided n > -1 and we have 

= 

x J (AX) J (flx) dx 
n n 

a 
2 A -fl 

For each fixed -t\. J (t.:) has infinite numbers of -t'\Ve roots and ) n 

these can be ordered 0< t.: 1 < t.: 2< . ••. <t.: < t.: +1 n n nm nm 
< 

If x > -1 settin g 

t.: nm 
A = A = -- and nm a 

t.:nml 
= fl = fl nm' a 

where t.: and nm t.: nm., are two distinct positive roots of In(t.:) 

a 

So J (t.:)=O ,! 
n 

o 

X J (t.: ~) J n nm a n 

Now we evaluate 

a 

J 
o 

(~ x) dx = 0 
"'nm' . a 

m -I m' 
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Multiplying by 2y' 

2 2 2 2 2 
2x y' y " + 2xy ' + 2 (k x - n ) yy ' = 0 

or 

or 

a 

J 
o 

a 

f 
-x 2d 2 ! 2 _y x = x y 

0-

x J (kx)dx 
n 

, 

, 2 
+ { J (kx)} 

n 

Using n I
n 

(x) + x I
n 

(x) = x I
n

_
l 

(x) and 

a 

f 
2 

x J (k x ) dx 
J n 

0 
2 

J~ ( kX ) x - I
n

_
1

(k) = 2 

a 

f 
2 

or x J ( kx ) dx = 
J n 

0 

, 
nJ (x) - x J (x) 

n n 

= x In+l(x) 

In+1 ( k) ] 
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2 2 
J 2(ka) a 

[ 1- ~ 2 ) + = 2" 
k a n 

2 2 a J ( ka) - I
n

_
1

(ka) = 2 n 

If k 
snm 

is a root of J (~) = --
a n 

Therefore I
n

( s ) = 0 

Then 

a 

J x J~ ( ~ nm x ) dx = 
a 

b 

2 I 2 
a2 I n ( ~ nm) ] 

2 2 
= a2 [ J n + 1 ( S nm) ] 

2 
{ J~(ka)} 

I n +1 (ka) ] 
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CHAPTER III 

SOLUTION OF LAP LAC E 'S EQUATION 

IN TWO AND THREE DIMENSIONS: 

In different Co-ordinates system Laplace's Equat ion 

takes different forms. So we have solution of this equation 

in each C o-ord inate sy stem. 

§ 3. 1 SOLUTION OF LAPLACE'S EQUATION IN TWO DIMENSIONS : 

I. CARTISION CO-ORDINATE: In Cartesion Coordinate (x,y) 

the two dimensional Laplaces' Equat ion i s given by 

(3.1) 

Using method of sep~ration s of variables, by assuming 

U = X(x) y(y) , 3U = X aY 
ay ay 

a 2
u 

2 
= xL! 

~ 2 ay ay 

aU = y. ax 
ax ax 

a
2

u 2x 
= Y a , --z ~ 

ax ax 

Hence a
2

u + a2
u = 0 -Z ~ ax ay 
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will take the form 

Devid ing both sides by XY we have 

1 
2 

1 a 2
y a x + = 0 "X -z Y - -z 

ax ay 

or 

a
2

x 
2 

p2 1 1 -<3 Y = - ( s Fiy ) = - ~ X ~ Y ay 

Then 

a
2

x = - p2X ( 3 .2) --z 
ax 

and 
a 2y 

= p2y ( 3.3) --z 
ay 

From (3 .2 ) 

X = A Cos Px + B Sin Px 

~d From ( 3 . 3 ) y = Ce PY + De-Py 

Hence - u =. X(x ) Y( y) = (A Cos Px + B Sin Px) (Ce PY +De Py ) 

( 3 .4) 

Where A, B, C and D are arbitrary constants . On the other hand 
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differential equation 

which we reduce to the canonica l form 

= 0 

By writing x + iy = a, x - iy = 8 

The complete solution of 

' a2u a2u 
-2 + -2 = 0 is U = f(x + iy )+ g(x-iy) 
ax ay 

where f and g are arbitrary f unctions. It is evident that 

i f u + iv = f(x + iy) and u ~ iv = g(x - iy) 

Then U and v are solutions of Laplace 's Equation and they 

also satify the equation 

~ = av 
ax ay' 

au = av 
ay a x and are called ' C.J)Jl.guga te 

Functions. 

II. PLANE POLAR CO'-ORDINATES : Plane Pola r Co -ordinates 

(r, e) are related to Cartesion coordinates by equations 

x = r cose ,y = r S ine 



tane y/x and 
2 + 

2 2 and using So that = x y = r 

chain rule we have 

a 2u a2u a2u l~ 1 a
2u 

( 3. 4) + + +- -- 0 -2 -2 = -2 2 a e2-
ax 3y ar r ar r 

Now we solve this equation by putting U 
n 

F( e) = r 

The above equation gives pl1(e) + n 2 F(e) = 0 

So t hat F(e) = A Cos ne + B Sin ne 

Thus U = rn (A Cos n e + B Sin n e ) (3.5) 

Where A., Bare arbi trary constants. 

§ 3.2 SOLUTION OF LAPLACE'S EQUATION IN THREE DIMENSIONS 
()S/N~CYLINDRICAL POLAR AND CARTISION COORDINATES . 

. 1. Now we are considering Solution of Laplace's 

Equation in three dimensions , using d ifferent coordinates. 

First we use cylindrical coordinates (r , e , z) by using 

the equations x = r Cose y = r Sine and z = z 

The Laplace' s Equation has the form 

( 3 .6) 
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By separation of variables its solution is given by 

RII 1 
R + r 

R ' + 
R 

1 0 
-2 
r 0 

II 

= - Zll 
Z 

R.B .S. con tain only Z. Therefore 

where 

Z" 2 = P (say) 
Z 

P is constant 

Z = A e P Z + Be - P Z 

R" 1 R' 1 
R + r + R +-2 

r 

then 

2 
r R" R' + p2r2 

R + r R 
= 0" 

o 

Since the R.B.S. of the equation given above contain only 0 

Therefore 

2 = m 

Thus o = Al Cos m e + Bl Sin m e 

Now consider the equation 
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or 
2 2 2 2 

r R" + rR I + (P r - m ) R = 0 

This is the well known equation of Besse l function and its 

solution is 

Where J (Pr) and Y CPr) are Bessel ' s Functions. Which we 
m m 

have the already discussed in Chapter 2, and thus the solution 

pz - pz 
of (3.6 ) is U = Rr 8 e Zz = (Ae +Be ) (AICOSme +BISinme) 

II. CARTISION COORDINATES: 

In Cartision Coordinates " Laplace I S Equation 

evidently possesses particular solution of the form 

U = u(x)v(y)w(z) ( 3. 8) 

Then Laplace's Equation takes the form 



Hence, if we write 

Where 

1 
u 
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and 
1 

Equation (3 . 6) will be satisfied. The preceding 

equations may be satisfied by taking 
Ix my u = e ,v=e and 

nz w = e . 1, m, n being constants . Hence 

U = e lx + my + nz 

is a particular solution of the Laplaces ' Equation. The 

usefulness of Particular Solution of Equation (3.6) is 

( 3. 9) 

increased by the fact that s i nce the equation is linear, 

the sum of any number of solutions is also a solution. 

We have in fact 

which is zero i f U, V,W .. , are solution of Laplace ' s Eqn. 

§ 3 .3 SOLU~lDN _ OF LAPLACE EQUATION IN THREE DIMENSION 
----------------------------~~~-----------------
USING SPHERIC AL POLAR COORDINATES . 

We now transform Laplace 's Equation into Polar 

Coordinat~s (r, e , cp ) , where x = r Sin e Cos cp 
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y = r Sine sincp 

z = r .90se 

Let r ~ine = p Then 

x = p 'coscp y = p .sin cp and z = r Icose 

Fir st of all 

Then (3.10) 

Now (a) 

Because z = r cose and p = r s ine and tane = p /z 

2 + 2 2 z p = r 

Then au cose au au -- Sine + (b) 
ap ar r ae 

Putting (a) and (b) in equation (3.10) we have 

a
2

u 2 
a

2
u a

2
u 2 1 a

2
u 1 a

2
u +LQ + au Cote au 0 -2 -2 = --+ -- + - --+ -2- - + 

r 2 sin2 eae
2 = 

a y2 ar2 r ar 2 
ae 2 ax az r r ae 
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2 Multiplying above equation by r Sine 

2 

we have 

2 ,sine a U + 
2u . a U r ,::Hn e--2 + 2r sine~ ar ar ae 

aJ:!.+ 
2U 

+ cose eosece~ a 
de a¢ 

L 2aU 
L ( . aU or sine r -) + slne-

ar dr de ae 

a2u + ,cosece --2 = 0 
a¢ 

Now we solve this equation by method of separation of 

variables. By putting 

U = u(r)v(e)w(</» 

We write C3. 11) 1 sine L (r 2 E ) + as uvw { -u ar ae 

~L 1 2 
( sine ~ ) + c')sece d' w ) } 0 -2 = v ae ae w 

d¢ 

Now separating the variables we have 

2 2 d w + m ¢ = 0 
d</>2 

d 2 du n(n+l)u -(r = dr dr 

(3.11) 



1 

.sine 
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2 
d ( sin e d v) + [ n (n + 1 ) - ~ ] v = 0 
~ de Sin2 e 

Where m, and n are constants. 

dv ) m
2 

de +[n(n+l - ----2 ]V = 0 
sin e 

( 3 • 12 ) 

If we omit v the above equation is called Legendre Operator 

In this equation we put Gose = a 

dv dv da 
-'sine 

dv = -- = 
de da de da 

d
2

v d (- sine dv 2 d
2

v 
~ose 

dv 
and 

de
2 = = sin e 

da
2 -

de da da 

1. e. 

2 d
2

v d sin e -- - c v s e v 
da2 da 

Thus equation (3.12) will take the form 

2 d
2

v dv m
2 

(1- a ) da 2 - 2a da +[n(n+l) - ---2]V = 0 
I-a 

(3.13) 

When m = 0 this reduces to Le gendre 's Equation. The equation 

d (r2 du) = n(n+l) u 
dr dr 

n u = r and u = r 
-(n+1) 

is sati sfied by 
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Hence we have particular solution of Laplace's Equation of 

thi s types 

U(r,e,</» 

U(r,e,</» 

Whe re Cos (m </> +E) is a solution of the eq ua tion uontai ning 

w and P~(0) is a solution of equation ( 3.13 ). A comparison 

of these two solutions suggests the following theorem. 

Theorem (3.1) : If U = F ( r, e , </» i s a sol uti on 0 f Lap 1 ace's 

equation then the function U = l 
r 

1 
F( ,e, </> ) is also a 

r 

solution of Laplace's Equation. 

Proof: Consider the equation 

Sine L 
ar 

2 U U 2U 
r L) + ~ (Sine L) + cosece~ = 0 

ar ae ae a</> 

Putting r = lis it becomes 

Sine 2 2U U 2U 
( s _a -) + L (Sine ~) + cosecea_-

2 
= 0 

as 2 ae ae a</> 

A further substitution U = sV reduces this to the form 

2 a 2V v a 2v 
Sin e ( s 2 + 2 s ~ ) + L (S in e a V) + Cos e c e -2 = 0 

as as ae ae a<p 



Which is t he same as (3.11) but with s, V written in place of 

r and U respectively. Hence the theorem is proved. The pre-

ceding theorem enables us to derive, one solution of Laplace's 

equation from another by mean s of the transformation of Co-

ordinates 

x ' = ~2 ' Y '= ~2 
r r 

z ' = , z 
2 

r 

This transformation is known as inversion. It was applied 

with great success to electrost~tic prob lems by Lord Keluin . 

The p~eceding theorem may also enunciated as fol low s : 

Theorem:- If F(x, y, z) is a solution of Laplace's Equation 

then ~ F( ~2 ' ~2 ' ~2 ) is also a solutbn of Laplace's equation. 
r r r 

On the other hand we can also prove another theorem 

which is as follows: 

Theorem:- If U is any solution of Laplace's Equation of 

degree n then 

is also a solut ion of Laplace 's 

Equation of degree n - (q + r + t). 

Proof : - Since 
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Then differentiatin g the above equation q time, with respect 

to x r times with resp ect to y and t time s with res p ect to 

z we have 

aq +r +t +2 
_---:_U_ + aq +r +t +2 U 

= 0 q+2 r t 
ax ayaz 

'\ q r+2 t + 
aX3Y az 

aq +r +t +2 U 

axq ay r az t +2 

i.e. ';/ ( aq
+r +

t 
U 

axq ayr a zt 
= 0 

which proves the theorem . 

§ 3.4: ORDINARY SOLUTION OF LAPLACE'S EQUATION IN THREE DIMENSIONS 

The most important solution of Laplace ' s Equation of 

degree n, where n is a positive integer are those which are 

Polynomials of degree n :in (x, y ,z). This kind of solution which 

together with the corresponding solution of negative degree 

-(n+l) obtained on multiplication by r-(2n+l) may be spoken of 

as Ordinary or Complete So lution of Laplace ' s Equation will now 

be cons idered . 

The most general homogeneous Polynomials of degree- n 

1 
contains 2 (n+l) (n+2) arbitrary coefficients and if the expression 

be put in Laplace's equation there arises an expression of de gree 

n-2 equated to zero . Since the coefficient of each term, involving 
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zY, where 1 a+S+y-= n-2 must be zero, 2 n(n-l) relation 

must be satisfied between the coefficients of the original 

polynomials ~ n(n+l)(n+2) in number, in order that it may be 

a solution of Laplace ' s equation. If all these relations are 

1 independent of one another, 2 n(n-l) of the Coefficients can 

be determined in terms of the remainder, and thus the most 

general solution of Laplace ' s Equat ion of the prescribed type 

contains ~ n(n+l)(n+2) - ~ n(n-l) or 2n+l, independent solution 

of Laplace's Equation of the prescribed type, any other solut ion 

of Laplace ' s Equation of the type would be a linear function of 

these. For example, three independent solution of Laplace ' s 

Equation of degree1 are x, y, z and of degree 2, the expressions 

y2_Z2, z2_x2 , yz, zx, xy are five independent solution of 

Laplace's Equation. 

By substitution of r sine cos¢ , r sine sin¢ , r cose , 

for x, y, z respectively, in the most general homogeneous poly-

nomials of degree n in (x, y, z), and by expressing the terms 

in cosP¢ sin
q

¢ in cosines and since of multiples of ¢ , and 

rearranging the result in terms each involving only one. such 

mul ti ple. It is seen that if P (x,y,z) is the most general 
n 

2 homogeneous po l ynomial of degree n , for V P (x, y, z) , an 
n 

expression is obtained which employing the transformation of v2 
. 

n 

a2 cote a 1 
"I e2 + -r2 ae + ~2---=-2-
a r sin e 

~2 
;;2 

[ r n {A " +" A } = f-" l.. cosm¢ + B V sinn¢ 1 
o 0 m=¢ n m m m 

(3.14) 
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Where )Jo' )Jl' )J2'···' vI' v 2 '··· are functions of e only 

and Ao' AI'···' 6
0

, 61 , 62'·. · a re 2n+l arbitrary constants . 

This reduce to 

n-2 
r } + n (n+ 1) ] A)J + o 0 

n n-2 d 2 d m2 
L r { [( l-)J ) -} + n ( n + 1 ) - - 2 

m= 1 d)J d)J l-)J 

x (A V co sm cp + 6 V sin m cp) • 
m m m m 

This will have the value zero, if all the constants vanish 

except one, say A , and if 
m 

2 
~2 ] )Jm = 0 

l-)J 

This equation has been shown to have only one solut ion 

a pm ()J) which does not invo l ve logrithmic infinities. It thus m n 

appear that t here exist t he 2n+ l solutions of Laplace's 

t . np ( ) rn pm ( ) cos m 1 2 3 equa lon r n)J , n)J s i n cp , where m = " , .. . n 

a nd these are independent of one another, as no l inear 

rela ti on 

co 

L ( am cos m cp + 6 sin m cp) pm ( )J) = 0 
m n m=l 

( 3 .15) 

can exi st between them. This is seen by multiplying by cos m cp or 
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by sinm¢ and integerating for ¢ over the interval (O,n), 

which would prove that a = 0, 8 = 0 and this fo r all -m . m 

value of m. 

To show that there can not be more than 2n+l 

solution of Laplace's Equation of the type. If we assume 

that P (x, y, z) is a solution of Laplace's Equat ion we 
n 

have 

A U 
o 0 

n 
+ l: 

m=l 
(U A cosm¢ + V 

m m m 
8m sinm ¢) = 0 

where U denote s 
m 

d 2 d 2 
- {(l -~ )ct}+(n(n+l) - ~2) ) lJ m dJl ]J I-Jl 

and for V there is similar expression with V instead of llm • m m 

From this equation, as before, we see that A U = o , 8 V = m m m m 

Since the equation hold for all values of ¢ Hence, if A or m 

8m is not zero. We must have V = 0 or U = 0 and therefore 
m m 

the m 
8 ' pm ( ) and the solution ).lm , V have val ue sa' P (Jl)' so 

m m n m n Jl 

of Lap lac e t s Equation is a linear function of the 2n+l 

independent solutions already found. It has now been proved 

that the number of independent ardinary solution of degree 

is 2n+l. 

o . 
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ANOTHER METHOD OF FINDING 2n+l INDEPENDENT ORDINARY 

SO LUTIONS OF LAPLACES EQUATION OF DEGREE n. 

Let f(ax + by + cz) be a differentiable function 

such that 

a
2 

+ b
2 

+ c 2 = 0, where a , b, c are constants. Then 

we prove that the giv en function f(ax + by + cz) satisfies 

Laplace ' s equation. Therefore 

af = af' (ax + by + c z) , 
ax 

a
2

f a 2fll(ax + by + cz) -2 = 
ax 

a 2f 2 
c z) , Similarly -2 = b f"(ax + by + 

ay· 

a
2

f 2 
cz) -2 = c f "( ax + by + 

az 

Therefore 

bec ause 

Thus the function f(ax + by + cz) satisfies the Laplace's 

equation . In particular let U = (z + ix cose + iy sine )n ( 3.16) 

Where e is an arbi trary constant 



~ U n-l 
~ = n(z + ix cose + iy sine) icose ax 

~ 
2 ax 

Similarly 

Therefore 

n-2 
= - n(n-l)(z + ix cose + iy sine) cose 

( ) 2 )n .... 2 - n n-l sin e(z+ix cose+iy sine 

( )( ) n-2 
n n-l z + ix cose + iy sine 

n-2 
- n(n-l) [z + ix cose + iy sine ] 

Hence the result. If for any value of e we expand the 

expression (3 ~ 16) in power of x, y, z the real and imaginary 

parts will each be a solution of Laplace 's Equation of degree 

n, we have 

(z + ix cose + iy sine )n 
n 

n = r [cos1jJ+isin1jJcos Cp-e) ] 

n 
the expansion of the expression [cos1jJ + isin1jJ cos (¢+e)] in 

cosine of multiples of ¢ - e. Then by writing cos1jJ = ]..l we have 

n 
+ 2 L 

1 • 
e~Trl 

m=l 
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Since the R.H.S. of this equation is an expression which for 

every value of e , satisfies Laplace ' s Equation . The coefficients 

of c os me, sinm e are each separate l y solutions of Laplace' s 

equation . We thus obtain 2n+l solutions of Lap lace' s Equa tion 

Th e se solutions of Laplace's Equation are obviously independents 

and theref ore form a system of the req uired kind . The general 

solution of Laplace ' s Equation of degree n is thus 

Where 

n 
r a o 

n 
L: 

m=l 
a cos m¢ +b m m 

a ,a , b are 2n+l arbitrary constants. This 
o m m 

expression when t he values of r, ~ , ¢ in te r ms of x, y, z 

are substituted, is the most general solutions of Laplace's 

Eq uation of the prescribed type. I f Y (x,y,z) be a solution 
Y n 

of Laplace's Equati on of de gre e n ;aa: is also a solution of 

Laplace's Equation . This follows at once from the last 

expression . 

Since 

aYn 
x --

a y 

ay 
n y -

a z 

- y 

z 

a 
a¢ 

= x 

aYn 

ax 

aYn 

ay 

a a 
ay - y ax ' it fOllows that 

is a solution of Laplace's Eq u ation . Clearly 

and 
ay 

n z -- - x 
ay 

n 

ax az 
are also solutions of 

Lapl a ce's Equation. Further ne gative .solution _yo -1 'of Laplace 
n 
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Equation has the corresponding property . In the next solution 

we discuss the general solution of Laplace's Equation due to 

Whittaker. 

§ 3.6: A GENERAL SOLUTION OF LAPLACE'S EQUATION: 
IN THREE DIMENSIONS. 

Let U(x,y,z) be a solution of Laplace ' s Equation. 

Wh i ch can be expanded into power series in three variables 

valid for points of (x , y ,z) sufficiently n ear a given point 

(x , y , z ), accordingly we write 
000 

x = x + X , Y = Y + Y and z = z + Z o 0 0 

and we assume the expansion 

U = 

is being supposed that this series is absolutely convergent 

when ever 

IXI + 11" 1 + II I ~ a 

where a is some positi ve constant. If this expansion exists, 

U is said to be analytic at (x , y , z ) and the above series o 0 0 

converges uniformely throughout the domain indicated and 
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differentiated term by term with respect to :0( " ¥:, Zany 

number of time at points inside the domain . Now we substitute 

the above expans ion in Laplace's Equation i.e. 

and equate to zero, the coefficient of the various power of 

.x, .y and Z we get an infini t site of linear relation between 

the coefficient of which a 2 + b 2 + c 2 = O. Which is taken 

as typical. 

1 
There are ~(n-l ) of these relation between the 

~Cn+2)Cn+l). Coefficient of the terms of degree n in thE 

expansion of U. So that there are only !Cn+2) (n+l) ... ~ n(n .... l) :: 

2n + 1 independent coefficients in the terms of degree n in U. 

Hence the terms of degree n in U must be a linear combination 

of 2n+l linearly independent particular solutions of Laplace ' s 

Equation. These solutions being each of degree n in x, y and z. 

To find a set of such solution, consider 

(z + ix cos ]l + i y sin]l )n, it is a solut ion of 

Laplace's Equation . Which we expand in a series of sine , and 

cosins of multiples ]l thus, 

n n 
L: gm(~"Y'~) cosmll + Ehm(X,Y,Z) sinm]l 

m=O m=l 
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the function g (~, Y, 4) an d 
m 

h (X, Y, ,Z) are independent 
m 

of ~ . Thus the highest power of in 

n 
L ~ (X, )' , ,Z I 

m=O 
and h (X,Y,Z) m ' 

is zn-m and the f irmer function is an even function of y 

a nd the later an odd function . Hence the functions are 

linearly independent . They therefore form a set of 2n+l 

function of the type sought. 

Now we have 

n 
(z + ix cos~ + iy sin ~ ) 

n n 
= L ~(x ,y,z) cos m ~ + L 

m=O m=O 
h (x,y,z) sin m ~ 

m 

We apply the Fourier ' s rule on the above equation we have 

+n 

ngm(x,y,z) = I (z + ix cos~+ iy s in~) n cosm~d~ 
-'IT 

+n 

nhm(x,y , z) = J (z + ix cos~ + iy sin~)n sinm~d ~ 
-n 

and so any linear combination of the 2n+l solutions can be 

written in the form 
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where f (~) is a rational function of 
n 

i~ e . Now it is 

readily verified that, if the terms of degree n in the 

expression assumed for U be written in this form, the 

series of terms under the integral sign converges 

uniformly if I xl + Iyl + I Z! be sufficiently small. 

So therefore we write 

+ 'IT 
( 00 

U = I L: 
J n=O 

-'IT 

n (z + ix cos~+ iy s in~) f (~) d~ 
n 

But any expression of this form may be' written 

+ 'IT 

U = J F( z + ix cos ~ + iy sin ~ , ~) d ~ 
-'IT 

Where F is a function such that differentiations with 

regard to x,y or z under the sign of integration are 

permissible. And conversely, if F be any function of this 

type. U is a solution of Laplace~s Equation. We write the 

above result also in the form 

+ 'IT 
r 

U = J f (z + ix cos ~ + iy s in ~ , ~ ) d)l 

-'IT 
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- z - ix cos ~ - iy sin ~ 
000 

into the second variable and, if differentiation under 

the sign of integration are permissibles this gives a 

general solution of Laplace's Equation, That is to say, 

"every solution of Laplace·s Equation which is analytic 

throughout the interior of some sphere is expressible by 

an integral of the form give n above. 
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CHAPTER IV 

SOLUTION OF LAPLACE EQUATION IN FOUR DIMENSIONS 

In this Chapter we are concerned with the solution 

of Laplace equation in four dimensions. We solve this equation 

by two different methods, using different parameters . 

§ 4 . 1 SOLUTION OF LAPLACE EQUATION IN FOUR DIMENSIONAL 

USING SPHERICAL POLAR COORDINATES: 

We solve the equation 

2 a2u a2U a2
U 

4 + + + = 0 
~ -2 ~ aXl aX2 aX

3 aX4 

( 4 _ 1 ) 

in four independent variables xl' x 2 ' X3 and x 4 where xl' x 2 and 

x3 are the usual cartesian coordinates x,y and z and x4 may be 

defined as x4 = ict, t being the time coordinate and c the wave 

velocity_ 

We transform the equation by using new variables whic h 

are named as four dimensional polar coordinates (r, \jI , 8 , </> ) 

defined on the sphere 2 2 2 2 2 
X + x + x + x - r '1 2 3 4-

= r sin.tJ; sine cos</> 

x 2 r sin tJ; ,sJ.n8 .sin</> 

•• 
x3 = r ,$in1/! cos8 

xLI = r cos l/J 
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Consider 

Xl = r sin 1jJ sin e cos</> 

X2 = r sin 1jJ . sin e sin</> 

Here we put r sin 1jJ sin e == p 

Then X = p cos,j, 1 'I' 

X2 == P sin</> 

implies that and tan</> 

Then by using plane polar coordinates we have 

a 2u + a 2u a 2u 1 + au + 1 a 2u ( 4 .2) -2 --2 == --+ ap ;2 a</>2 a Xl 
aX 2 

ap2 p 

Again we consider 

a 2u + a 2u + a 2u a 2u + 1. aU 
+ 1 a 2u + a 2u 

az ~ ~ == ap7 ap ;2 a</> 2 -2 P 
xl a X2 

a X
3 

a X
3 

a 2u + 
a?u + 1. au + 1. a 2u ( 4 . 3) == 

ap2 -2 ap a</>2 aX
3 

p :p2 

Now consider a2u + a 2u 
ap2 -2 

a X3 
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P = r sin 1jJ sin e 

x 3 = r s in 1jJ cos e 

Let r sin 1jJ = q. Then we have 

P = q sine 

X3 = q cose 

2 2 
P +x3 = 

These are plane polar coordinates . Therefore 

and au 
ap = au 

aq 
aq au 
ap+ae 

ae 
ap= Sin au + cose ~ 

aq . 11 ae r ,S ln ~) 

Putting these values in equation (4.3), we have 

+ 1 [ sine au + 
c )Se @u 

r sin lJ' sine aq r:s-inlJ' ae-

+ 1 a 2u 
2 ~in2e S in2 1J' acjl2 r 
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+ 1 
r ,.s.ln 1jJ 

2 au + c 0te ·c.)sec ~Iau 
aq 2 as 

r 

+ 

Similarly we have 

a 2u a 2u a 2u a 2u a 2u 
-2 + - 2 + -- + --2 = -2-2 aX l aX 2 aX

3 aX4 dq 

1 a 2u 1 au ·~.)t e + + + 2 8e 2 r gin'ljJ aq q r 

2 
a

2
u + 

1 au + 2 2 . 2 -2 = 2 r Sin e Sln 'W 8 cp aX4 

Considerin g 

and usin g q = r sin 1jJ 

x4 = r c'os 1jJ 

2 2 2 q + x 4 
= r 

tan t/J' 

+ 
1 au 
q aq 

2 Cosec e au 
2 ae 

0 

which are again the plane po l ar coordinates , we have, 

( 4 .4) 
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a 2U a 2u a u 1 + au + 1 a 2u 
-2 + -2 = - + - 2" d \P 2 ar 2 r ar aq aX4 r 

and au a u ar + au a ' ,~ J 
= n . aq aq ar aq 

s'i 1jJ~ + cos ,1jJ au 
= , n . ar n r 

Putting these values in equation ((4) we ge t, 

a 2u + a 2u 
-2 -2 
aX

1 
aX 2 

or 

+ a 2u + -2 
aX

3 

+ 
2 

r Sin 1jJ1 

1 
+ 2 2 

r s in 1jJ 

a 2u 
-2 
aX4 

a 2u + 1 au 1 a
2

u = -2 ar + ---
r r2 a1jJJ2 Ii' 

. ~ au + .sln ', ) ar ~os ~ au) 
r a1jJ 

au = 0 ;;2 

+ _1_ 
2 

r 

, 2, au 1 a 2U 
+ e e>t8c osee\/! as + 2 2 2 - -2 = 0 

r 
2 r S in 8:;?' in '!iJ a¢ 

= a
2

u + 1 au + ! + a2
u 

ar2 r ar r 2 a l/f2 
+ 2 t ' au 

,C'J tjJ V 
1jJ 
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+ 1 a
2u + ,cote aU 

r2stn2lP ae
2 2 . 2 ae r Sln lP 

+ 
1 a

2u 0 = 
2'1 2 i 2 -2 

r s n\jJs n e a<p 
( 4.5) 

We solve the above equation by the method of 

separation of variables . 

Putting 

Then (4.5) takes the form 

R ' 1 , 'oil 2r.c t \II 

-R +-2~+ \JT 
'I' -~ 

r r 

R.H.S. is independent of R, e ,\jJ and is a function of <p on ly, 

2 
therefore each side of (4.6) must be equal to a constant say m . 

Therefore ¢" Constant 2 - = = m 
¢ 

That is, d 2
¢ + m2

¢ 0 
d<p 2 = 

Thus ¢ = A C. os m <p + B sin<p ( 4 . 7 ) 

In order that ¢ b e single valued, m must be an inte ge r for 

o ~ <p ~ 2 TI. After normalizin g the above equation we have 



Putting 

cI> 

L = -
cI> 

R tf 3 
R + r 

= 

2 
m 
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1 e i m¢ 
/2rr 

in (4.6), we have 

R ' 1 \u" 2 .cot \jf ' 2 2 
R + -2 --L-- + 7- .~J ] r ;.sin 1jJ 

r \jf r 

~ ~ [e + .eote e 
2 

m 
-. . -2e 
sln 

( 4.8 ) 

R.H,S. of above equation is called Legendre Operator 

and it must be constant. Hence 

Let cose 

. 2 
Sln e 

= 

~ !L 
2 

- ( + cote ~) = n(n+l) (4. 9) 
e e . 2e sln 

).1 and 8 = V 

~ = d8 s!J.L = - sine ~ de d).1 de d).1 

d 28 d de 

de 2 = - (- sine de d).1 

cose d8 + ·" i 28 d 28 = - .s n - -2 d).1 d).1 

Putting these values in the equation (4.9), we get 

d 28 d 2 
- 2 cose d 8 + [(n(n+l) .. ~2] 8= 0 --::-2d ).1 ).1 . 

1-).1 
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As we have 8 = V) there fore 

d 2V 2 
(i_~2) _ 2~ dV + {n(n+l) - ~ ] V = 0 

d ~ 2 d~ 1_~2 

Eq uation (4.9) can be wr itten as 

1 a [s in e a 8 ] + [ n (n + 1) _ 
de ae sine 

2 
_m__ ] 8= 0 

. 2 e S ln 

This equation is we ll known Associat ed Legend re 

equation whe r e 0 ~ e ~ TI and has a solution 

8(e) = Anm pm(cose) 
n 

The Associated Legendre polynomials are defined by 

Iml 2 Im l /2 
pm(cose) = (-1) (1- cos e) 

n 

an d P ( cos e) = 
n 

1 
n 

2 n! 

n 2 
d (cos e-l) 

d(cose)n 

Iml 
d P (cose) 

n 

d(cos8 )\mf 

is Le gendre ' s polynomial of the . first kind and i s a soluti on of 

Legendre equation 

1 a a8 
ae (s ine a-e) +n(n +l) 8 = 0 sine 
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Y (8, <p) = A eim<p pm(cose) 
nm nm n 

where 0:; <p ~2IT , o~e~IT 

Ynm ( 8, <P) are called spherical Harmonics and are normalized 

by the condition 

2IT IT 2 
A2 r d<p OJ [ pm (c os e) 1 sin e d e = 1 nm ) n 

0 0 

2 
where we calculate A as 

= 

nm 

( 2n + 1) (n - I m I ) 

4rr(n + Iml)! 

The normalized Harmic function is g iven by 

Y nm ( e , <p ) 

Now consider 

R" + 3 RI 
- + R r R 

1 
-

2 
r 

( 2n + 1) (n - I m I ) ! 

4IT(n + Iml) ! 

'!' '' 2cot I/J 
i¥ + 2 

r 

n(n+l) 0 
- 2 2-

r sin '!' 

=;> 
R" + 3 1 '!''' '!' I 

+ 2cot I/J 11/ n (n+l) ) 
2 . 211/ 

r Sln T 
R 

2 Multiplying by r 

= R - 2 
r 

~J T 
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r2RII 
+ 3rR ' = ( ~+ 2cot ,"I> ~ n(n+l) -R R Iji - Iji . 2 Sln l~) 

or 2RII 3rR ' ~ 2cotlfJ ~ n(n+1) ~+ + + = 0 
R R Iji Iji 2 

sin II! 

We put R(r)Iji(1jJ) 2n ' F(Iji) = r 

Then 

By substitut i ng 2 
cos lfJ = ~, we have 

dF dF ~ 2 sinlfJ 
dF = = - coslfJ dlfJ d~ dlJl d~ 

d 2F d dF d (- sin 2 dF) sin 2 d 2F 
-2 = - = lfJ = 2 lfJ -dlfJ dlfJ dlfJ dl; d~2 dlfJ 

since sin 2 lfJ = 2 sinlfJ coslfJ 

sin 
2 

2lfJ 4 . 2lfJ 2 = Sln cos lfJ 

2lfJ 2 2 
-1 cos = cos lfJ 

(4.12) takes the form 

2 2 d 2F 2 2 dF 
4 sin lfJ cos + d~2 - [ 2(2cos lfJ -1)+4cos lfJ 1 dl; 

+ [4n' (n'+l) - n(n+l) 1 F = 0 
2 

sin lfJ 

) 

(4.11) 

(4.12) 

... 2cos 2 dF 
lfJ d I; 
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+ [ n ' (n '+l) 
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n ( n + 1) ] F = 0 
4(1- t) 

n 
Putting F = (1 - t;,)2 K 

n/2 0. _ 1 
dF _ (l _ I:" ) dK n

2 
(l _ I:" ) 2 K 

dt;, - S d~ - S 

K ,then we have 

n(n+1) n 
+ [n'(n'+l) - 4(1-t;,) - 4(1-t;,) 

~nt;, n(n-2)t; 
+4(1-0+ 4(1-0 1 K = 0 

d
2

K + [ ! dK t; (1 - t;, ) 2 2 - t; (n +:E) 1 dl:" 
dt; S 

+ [n ' (n ' +l) - n(1J + 2 )] K = 0 
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It is a Hypergeometric equation whi ch can be written 

in the form 

[ y - ( a + S + 1) ~ ] dK - aS K = 0 
d~ 

( 4 .13 ) 

where a ,S and y a re constants. The solution of the above 

equation can be written as F( a , S , y, ~ ) . 

Thus the solution of the Laplace Equation 

is 

VCr, ljJ, e ,cp) = R(r)'i'(ljJ)8(e)<I>(Cp) 

2n ' 
= r F ( ljJ) Y nm ( 8 , ct> ) 

/ ( 2n+l)(n~ l m l) imih 
= pm (c 0 s e ) e 'Y 

n 47T(n+lml) ! 

2n ' 2 r F( a , S , y, cos ljJ) (4 .14 ) 
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SOLUTION OF LAPLACE EQUATION IN FOUR DIMENSIONS USING 

CYLINDRICAL POLAR COORDINATES. 

Now we solve the Laplace Equation by another method 

using new coord inat es . 

Xl = P cos ¢ X2 = p sin ¢ 

X3 = 0 cos \jJ 

From these coordinates we have 

2 + 2 2 
tan ¢ 

x
2 

xl x 2 
= P = -

xl 

2 + 2 2 tan 
x 4 

x3 x 4 = 0 \jJ = 
x 3 

then we have 

and 

~ L (0 £.Q ) 
o ao ao 

combining these two e quations we have 



( 4 .15 ) 

This equation is satisfied by 

U=cos(m 4> + £ )cos(P 1jJ + n)F(p)G(cr) 

Putting the value of U in equation ( 4 ~' 15 ) , we get 

d 2F 1 dF (K 2 2 
+ m ) F 0 --+ .... = 

dp 2 p dp 2 p 
( 4.16 ) 

d 2G 1 dG (K 2 ' p2 
) G 0 -2 + -- - + - = 

cr dcr 2 
dcr cr 

(4.17) 

where K is a constant. If we p ut Kp = ~ and iKcr = l;; 

we have 

dF dF ~ K dF = = 
d~ dp d~ dp 

d 2F K d 2F ~ = K2 d 2F 
-2 = -2 --2 
dp d~ 

dp 
d~ 

and dG = dG ~ iK dG = dcr dr;; dcr dl;; 

d 2G _ 1\2 d 2G 

dcr
2 = -2 

dl;; 

From (4.16) and (4.17) we get 

1\2 d 2F 1\2 dF (K 2 m2K2 
) F 0 

d~2 
+ - - + = 

~ d~ ~2 
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d
2

F 1 dF + 
2 

+ (1 m ) F 0 -2 - - 2 
= 

d~ ~ d~ 
or 

2 d
2

F dF + (~2 2 
~ -2 + - m ) F = 0 

d~ 
d~ 

(4.18) or 

K2 d 2G K2 dG (1\2 
p2K2 

0 -2 - -- ~ - -) = 
dl;; l;; dl;; l;; 

or 2 d 2G + dG + ( l;; 
2 _ p2) G 0 l;; -2 l;; dl;; = 

dl;; 
(4.19) 

The resultant two equations are the well-known 

Bessel equations. 

Now we make the further substitution 

p = r sin e , a = r cos e 

that is, xl = r sin e cos <P 

x 2 = r sin e sin <P 

x3 = r cos e cos 1jJ 

x4 = r cos e sin 1jJ 

clearly we have 
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Then 

1 U + 1 
p ap cr 
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Then by using cylindrical polar coordinates we have 

1 U 1 ~2U L (r ~) + ~ 
r ar ar -2 2 

r ae 

1:. :aJ2 = 1 .a.Q 
p ap r sin e ae 

p = r sin e , cr = r cos e 

2 = r tane = 

U a QJ2+ 1 ) Q.Q = - 2(Cote tane 
acr r ar r ae 

2 
a

2u Substituting the value of ~+ 2 2 , 
ap acr 

~ aU + ~ QJ2 in equation (4.15) we have 
p ap cr acr 

+ 
1 a 2U 1 

-=2---=2 ---2 + =2--~2-
r sin ea¢ r cos 0 

a 2u = 
2 0 

a1jJ 
(4.20) 

Puttin g U 2n = r cos (m ¢ +( ) cos in equation 

(4 . 20) we have 



72 

d 2F m2 p2 
-2 + 2 c ot 2 e ~: + [ 4n (n+l) - -2- - --2- ] F = 0 
de sin e cos e 

(4.2 1) 

The equation (4.21) is unalte red if we replace n by ~(n+l), 

Hence solution is g iven by 

-2n- 2 U = r cos (m ¢ +s ) cos (P 1jJ +n ) F ( e ) . 

This suggests the following theorem . 

Theorem: If F(r, e ,¢ ,t/J ) is a solution of equation (4.20 ). 

Then U = l2 F( ~ , e ; ¢ , 1jJ) is also a solution. 
r 

This is easily varified by a slight extension of 

the method used i n the case of the corresponding t heorem for 

Laplace ' s equation. 

The theorem can also be stated as follows: 

If U = F(xl , x 2 ' x 3 ' x 4) is a solut ion of equation 

(4.20) , then U 
I 

F ( 
xl x 2 x3 Jt 4 = -2 """""2 , ) is also s olution, -2 , """""2 , 2 a 

r r r r r 

where 2 2 + 2 2 + 2 r = xl x 2 
+ x3 x 4 

The transformation 
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is called ge ner alized inversion. 

If in equation (4. 21 )) we write p2 = m2 and 

cos2 e = II :' Then equation (4.21) can be written as (when 

substitute the values of F, 
dF and d

2
F we 

de -2 

or 

de 

2 
~: + [(n(n+l) - ~2 ~F = 0 

l-ll 

d [ (1- 1, 2) dF ) + [ (+1) 
d ll ~ dll n n 

2 
m ] F = 0 

2 
1 -ll 

The above equation is well-known Polynomial of 

associated Legendr e function. We thus have solution of 

equation (4 .20 ) of the form 

U = r 2 n pm (ll) cos (m <p +s ) cos (P 1/1 +n ) 
n 

and since E andn are arbitrary constants, we may deduce 

that 

2n m 
r P (ll) sin (mcp+1/1), n -

are solution of equation (4. 20) . 
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Now comparing these solutions of (4. 20 ) with the 

corresponding solution (3.11) we have the following theorem: 

Theorem : If U = fer) 8, ¢) is a solutiop of ( 3. 11) then 

2 
the solution fer , 28, ¢ + ~ ) is a s olution of equation (4.20). 

This may be varified by direct comparison of the 

differential equation to be satisfied by the function f in 

two cases. In the g eneral case when p2 t m2 , then substituting 

2 sin ¢ = ~ in the equation 

d
2

F 2 8 dF + 
2 p2 

+ 2 cot [ 4n(n+l) m ] F 0 
d82 - -2- - = 

de 2 
sin 8 cos 8 

we have 
2 

dF p2 2 
sin 2 e d F + 4 cos 28 + [4n(n+1) m ] F=O - - - -~-

d~2 d~ 1 - ~ 

4~(1- ~ ) 
d

2
F 

4 ( 2(1 - ~) - 1 ] 
dF or -- + 

d~2 d~ 

p2 2 
+ ( 4n(n+1) - m ] F 0 - = 

1 ... ~ ~ 

d 2F dF p2 2 
(1 - ~) + (1-2 ~ ) m F=O or ~ 

d~2 
df + [n(n+1) - -- ] 

4 (1-~ ) 4~ 

(4.22) 
p 

Putting F = ~ ~ (1 _ ~)"2 G in eq uat ion (4. 22) we obtain the 
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hypergeometric equation 

(4.23) 

where y = m + 1 

a = n + 1 + ~ (m + P) 

B = -n + ~ (m + P) 

Hence the so l ution of the eq uation (4.23 ) is F(a,B, y, ~ ). 

Therefore we h ave s o lution of (4.1) of the type 

2n m P 2 
U=r cos(m<j>+E:)cos( P 1JJ +n) sin e cos e F(a,B, y,sine ) 

(4 . 2 4) 



[ 2 ] 

[3] 

[ 4 ] 

[ 5] 

[ 6] 

[ 8] 

REFERENCES 

J . S .R . Chisholm and R . M. Morri s "Mathematical 

Methods in Phys ic s " North-Holland Publishing Co. 

Amsterdam (1 966 ). 

Claus Muller "Spherical Harmonics " 

Lecture Notes in Mathematics 17 Spr inger-Verlag 

(1966). 

J.T. Cushing "Appli ed Analytica l Mathematics for 

Physical Scientis ts " John Wiley and Sons , Inc. 

(1975) . 

E . W. Hobson "The Theory of Spherical-and Ellipsoidal 

Harmonics" Chelsea Publ i shing Co . (1965). 

Harry Hochstadt HIntegral Equations" 

John Wiley and Sons, (1973). 

H. & B.S. J effreys "Methods of Mathema tical Physics ll 

3rd Ed. Cambridge University Press (1966). 

T.M . MacRobert "Sp h eri cal Harmonics II 2nd Ed . 

Methuen & Co. Ltd. London (1 9 47). 

W. Magnus and others " Formulas and Theorems for 

the Special Func tions" Sprini,"er-Verlag (1966). 



9 

10 

11 

12 

1 3 

Mathews Jon and R . L. Wa l ber "Mathematical Methods 

of Physics" W. A . Benijamin Inc. (1973). 

G . San son e and others "Orthogonal Funct i ons " 

I n terscien ce Publishers , Inc ., New York ( 1959 ). 

L. I . Schi ff "Quant um Mec h an ics" 

McGr a w-Hil l Book Co., I nc. (1 95 5 ) . 

I. N. Sned d on "Specia l Functions of Mathema tic a l 

Physic s and Chemistry " Oliver and Boyd Ltd. ( 196 1 ) . 

E. T . Whittaker and G . N. Watson t1 A Course of 

Mode r n An alysis " Cambridge University Press (1963) . 


