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CHAPTER-l 

INTRODUCTION 

continuous groups form an important branch of 

Mathematics with wide range of applications in Physics. Re­

cently the theory of continuous groups has been applied 

to problems in various branches of Chemistry and Biology [1]. 

Special functions are also related to the theory of group 

representation and their important properties can be derived 

from this theory [3J. The representation of three dimensional 

rotation group , which is a continuous group, is extensively 

used in Quantum Mechanics ,and has been studied by I.M.Gelfand 

and Z.Ya. Shapiro [2] . They parameterize the group elements in 

terms of Euler angles ¢,e,~, where ¢ and ~ vary from 0 to 2TI 

and e varies from 0 to TI. The rotation with Euler angles 

¢,e,~ is the product of three rotations: first rotation about 

axis OZ thrnllryh an angle ¢ followed by a rotation about axis 

OX through an angle e and finally a rotation about axis OZ 

through an angle~. The rotation matrix is given by (2.25) in 

terms of Euler angles ¢,e,~. 

However the parameterization of the rotation group by 

Euler angles ¢,e,~, suffers from a number of significant short­

commings. If e= 0 only ¢+~ is determined while if e=TI 

¢-~ is determined and thus at these singular points in the para­

metric space, ¢and ~ no longer define a rotation matrix uniquely. 

1 
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Singular points arise in any parametrization scheme for the 

rotation matrices . The Euler angle parame~ization is made 

particularly inappropriate by the occurence of the singularity 

about the identity element of the group. 

An a lternate and more appropriate parameterization is 

obtained by making the first rotation through an angle a about 

the axi s OX fo llowed by the rotation through an ang le B about 

the axis OY and fina l ly a rotation t h rough an angl e y about 

t he axis oz. The matri x of rotation is given by (4.14) 

where - TI < a < TI, - TI < B < TI, -TI/2 < Y < TI/2. 

We determined the differential operators corresponding 

to infinitesimal rotations about the coordinate axis in view 

of rotation matrix (4.14) and in this dissertation using these 

differential operators generalized sphe rical functions have 

been derived. 

Second chapter lS concerned with basic concepts abou t 

t he continuous groups. Rotation group in terms of Euler angles 

has been described here . Infinitesimal transformations of t h e 

continuous group and group representations are also d i scussed 

in this chapter. 

In the third chapter spherical functions are defined. 

Differential operator corresponding to infinitesimal rotations 

and differential equation of spherica l functions have been 



derived. An expl icit expression for spherical functions is 

also given. 

3 

In the last chapter we have determined differential 

operators corresponding to infinitesimal rotations. Generalized 

spherical functions and special values of these functions have 

been derived in this chapter. 



CHAPTER-2 

2.1 CONTINUOUS GROUP 

By a group G we mean a set of elements gl,g2' ... 

such that a form of group multiplication may be defined which 

associates a third element with any ordered pair. This mul-

tiplication must satisfy the four axioms: 

1. The product of any two elements of the 

group is a unique element which also belongs 

to the group .. 

2. The associative law holds, that lS, 

for any three elements gl' g~g3£G. 

3. There is an identity element e-such that 

4. 

eg = ge=g for all gEG. 

- 1 There is in the group an inverse, g to 

each element g such that 

-1 -1 
g g =g g=e 

A group having a finite number of distinct elements - g -

is said to be a (finite) group of order g. An infinite group is 

one which contains an infinite number of elements, and our group 

axioms can also be applied to infinite groups. The three dimen-

sional real orthogonal matrices, the rotations in space, consti-

tute a system of objects which satisfy the group axioms. These 

4 
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groups are called infinite groups and we divide all infinite 

groups into two categories : discrete groups and continuous 

groups. 

A continuous group is a system of objects called 

group elements which can be characterized by parameters vary­

ing continuously in a certain region. Every set of values of 

the parameters within the region defines a group element; 

conversely, to every group element corresponds a set of values 

of the parameters within the specified region. These regions 

are called group space. There is one-to-one correspondence 

between the group elements and points in the group space. 

We consider a group whose elements g(~) can be labelled 

by a single real parameter a . For these it must be possible to 

find a unique value y of the parameter, so that 

g(Y) = g (B) g ( a ) (2.1) 

for all possible values of a and B. The group multiplication 

table, therefore, becomes a functional relation to determine y 

from a and B. 

y = f (B, a ) ( 2. 2) 

The associative law imposes a restriction on this function 

since 

f (y, f ( B , a)) = f ( f (y, B), cd 

for all a,B,y. 

( 2.3 ) 

There must also be a value of the parameter denoted bye, 

corresponding to the identity element and hence satisfying 

f ( a , e ) = f (e, a) = a (2.4) 
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Since each group element must have a n inverse, each par ameter a 

. -1 has an assoclated parameter a such that 

f 
-1 -1 

(a , a ) = f (a ,a)= e (2 .5) 

The continuity requirement means that f (S)a ) is a continuous 

function of both variables and t hat a- lis a continuous f unction 

of d . 

Neighbo uring or adjacen t group e lements are those 

which differ by only s mall amounts in the values of a ll the 

parameters. If t he parameter changes continuously, we say that 

the group element changes continuously. Groups whose elements 

can be denoted by n parameters are k nown as n-parametri c groups. 

If we confine oui group elements to those which neigh -

bour the identity we have an infinitesimal group. Such groups 

were studied extensively by Lie and are often called Lie groups. 

Let G be some continuous group. Consider any neighbour-

hood V of t he unit element of this group. We assume that by 

means of m rea l parameters a l , a 2 , ... , a
m

, we can define every 

e lement of the neighbo u rhood V in s uch a way that 

i. different elements g of V correspond to 

different set of values o f the parameters 

ii . as the parameters change continuously, 

the e leme nt g changes continuously and 

conversely as the element g changes conti-

nuously so do its parameters. 



iii. if the elements gl' g2 and glg2 lie in the 

neighbourhood V, then the parameters of 

the product glg2 are continuous and differen­

tiable functions of parameters of the factors. 

7 

If a group satisfies these conditions it is called a 

Lie group. An example of Lie group is the group consisting of 

all matrices of the form 

A (a) = : j 
For a= 0, A (a ) becomes identity. The inverse of 

A (a) is A (-a). The relation between the parameters of the 

product takes the simple form 

y= a +8 

and this can be differentiated any number of times. 

Let us consider a r-parameter Lie group of trans for-

mations 

or symbolically 

x~. = f (x; a) 
1 

(2 .6) 

( 2, 7 ) 

for which the functions f. are analytic functions of the para-
1 

meter a. If the parameters are not essential (by essential we 

mean that for an r-parameter group we cannot find a set of 



continuous parameters aI' a 2 , ... ,a
m 

with m <r ) there exist 

parameter values 

a l +E l ,a2 +E 2 ,··· ,aT+E r , 

where E ' s are arbitrary small quantities which are functions 

f. (x, a) = f. (x; a+E) 
1 1 

(2.8) 

8 

for all values of x. Expanding in terms of the small function 

£k' we have 

r 
o = L Ek (a ) 

k=l 

Clf. (x,a) 
1 + higher terms in the 

i = 1, 2, . .. ,n. ( 2 • 9 ) 

If we let E approaches zero we may write (since t he higher 

terms in the expression (2.9) go to zero). 

for all x and a. 

Clf. (x,a ) 
1 

= O.(i = 1,2, ... ,n) 

where Xk (a) are a set of r functions of the a's. 

(2.10) 

The transformation satisfy all the group requirements. 

Thus given a transformation given by parameters set a (equation 

-Q.7) : we can f ind a parameter set a such that 

'" 
x = f (x;a) 

= f (f (x,a) ; a ) = x ( 2.11 ) 

This means that equations (2.6) must be soluable for the 

in terms of x.~, the condition being that the Jacobian is 
1 

X. 
1 



different from zero: 

af n aX
l 

.. 

t 0 (2.12) 

If we perform in succession two transformations of 

the set 

x~ = f. (xl,··,xn i al , ···,ar 
) (2.13) 

l l 

~ 

~ .- " bl, ··,br ) x. = f. (xl'···' x 
l l n' 

there exist a set of parameter values c
l

' ... , c
r 

such that 

~ 

xi = fi (xl,· ·· ,xn ~ cl'···,cr ) (2 .14 ) 

The parameters c be functions of the parameters a and b . 

c k = <Pk (a l' a 2 ' ... , a k i b l' b 2 ' ... , b r) (2 .15 ) 

We a ssume that the functions <Pk are analytic and that the a 

in equation (2 . 11) are analytic functions of a. 

The re also exist a set of parameter values aO which 

corresponds to the identity transformation 

o 
x = f ( Xi a ) = x (2 . 16) 

o In general argument we shall take a equal to zero. 

9 
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Now writing (2 .13) through (2 .15 ) we obtain 

x: = f. (x;b ) 
1 1 

= f. (fl (xia ) , . . . , f (x ·a ) . b ) 
1 n I I 

= f. (x i c) 
1 

= f . (x,¢ (a i b) ) 
1 

hence symbol i cally 

f(f (x i a ) ib) = f ( X i ¢ (aib ) (2.17 ) 

is an identity in x , a,b. 

Let us look at some examples of continuous groups. 

Consider 

x = ax, a t- o. 

The identity e lement : a = 1 and inverse e l e ment: a- l = 1 
a 

This 

is one parameter a belian group and the product element c=ba. 

c is an analytic function of a and b . 

Let us consider linear group in two dimensions: 

x = 
t- 0 

y 

If we consider x , y as components of a vector r, the transfor-

mations can be written in t he form 

r = Ar 
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or 

x'l [a1 a2 
J ~ 1 

= 
y" a

3 a 4 I 

) 

Here the identity element: A = 
(1 

: J 
= l. The inverse 

lo 
-1 

element: A = A and the product element C = BA. It is a 

four parameter group. 

Consider another group (orthogonal group in two 

dimensions) : 

x = 

y = 

and consider only those transformations which leave x 2+y2 

invariant: 

Now 
"2 
x + 

Since we are considering only those transformations which leave 

x 2 + y2 invariant . Therefore we have 

The four parameters are subjected to three functional relations, 

so that we have a one parameter group. This is a group of rota-

tion about OZ axis and can be written as 

x = x cos cp- y sin ¢ 

y = x sin ¢+ y cos cp 
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where ¢ is the angle of rotation about the OZ axis and 

o '< ¢ < 21T • 

In the next article we shall discuss three dimensional 

rotation group, which is a continuous group. 

2.2 THREE DIMENSIONAL ROTATION GROUP 

All rotations of space that leave a certain point 0 

fixed constitute the elements of the rotation group. Let g,h, ... 

be all rotations of the three dimensional space about the fixed 

point. Let G be the collection of all such rotations. The 

product gh of two rotations g,h is the rotation obtained by 

successive applications first of the rotation h and then of the 

rotation g. With this definition of the product of rotations 

G becomes a group; the identity element of the group G will be 

the rotation through zero angle, while the inverse of a given 

rotation g is the rotation that returns the space into initial 

position. The group G is called three dimensional rotation 

group. 

Let us take a fixed orthogonal system of coordinates. 

Let e
l

, e
2

, e
3 

be the unit vectors along the coordinate axes. A 

rotation g takes these vectors into three mutually orthogonal 

vectors which we denote by gl,g2,g3 respectively. These vectors 

are completely determined by their projections on the axes of 

coordinates. Therefore denoting the projection of the vector 

gk on the ith-axis by gik' the vectors gl,g2,g3 are completely 
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determined by the matrix 

(2 .181 

We denote the matrix (2. 1 8 ) by g and call it the matrix of 

the rotation g. 

The rotation g is completely determined by the vectors 

gl,g2,g3 and therefore by its matrix g. In fact every vectors 

x in three dimensional space may be represented in the form 

x = 

where x
l

, x 2 ,x
3 

are the ' projections of x on respective 

coordinate axes. The rotation g taken the vectors e l ,e2 ,e
3 

into 

vectors gl,g2,g3 and consequently the vector x into the vector 

XI = xlg l + )~2g2 + x
3

g 3 , comp l etely determined by the numbers 

x l ,x2 ,x3 and vectors gl,g2,g3. 

We can express the projection x 1 ,x2 ,x
3 

of the vector 

x on the coordin ate axes in terms of the projections of the 

vec to r x. From the equations 

~ 

x = x1e l + x 2e 2 + x 3e 3 = xlg l + x 2g 2 + x 3
g

3 

= 
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it follows that 

xi = 9 11
x

l + 9 12
x

2 + 9 13
x

3 

x 
,. 

= 9 21
x

l + 9 22 x 2 + 9 23 x
3 2 (2 .19 ) 

x3 = 9 31x l + 9 32
x 2 + 9 33 x 3 

Consequently, the rotat~on 9 is determined by the linear trans-

formation of the projections x l ,x2 ,x
3 

with matrix 9. The 

successive application, first of a rotation h and then by a 

rotation 9 corresponds to the successive application of the 

linear transformation with ,matrix g. The result is the linear 

transformation whose matrix is the product 9h of the rnatrices 

9 and h. Thus the product 9h of two rotations 9,h corresponds 

to the product of their matrices. Let us now determine which 

matrices 9 are the matrices of rotations. The vectors e l ,e 2 ,e
3 

can be transformed into the vectors 9
1

,9 2 ,9
3 

by a rotation if 

and only if the latter three vectors are mutually ortho90nal, 

normalized and have the same orientation as the vectors 

3 1 if i = j 
L 9k i 9k j = { 

k=l 0 if i t j (2.2 0) 

and 9 11 9 12 9 13 

9 21 9 22 9 23 = 1 (2 .2 1) 

9 31 9 32 9 33 
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A matrix g satisfying condition (2 . 20) is called orthogonal. 

So we conclude that the group G can be realized as the group of 

all orthogonal matrices of order three with determinant unity . 

Condition (2.20) means that 

g"g = 1 (2.22 ) 

1 0 0 

1 
where 1 = 0 1 0 

0 0 1 
J 

is the unit matrix , while 

r 

gIl g21 g31 
g = 

g12 'g22 g32 

l g13 g23 g33 

is transposed matrix of g. But then 9 is the inverse matrix 

of g, that is , 

-1 
g = 9 

and -1 
1 so 9 g = 9 9 = 

consequently, also 

3 1 
I gl'k gJ'k ={ 

k=l 0 

if l = j (2.23 ) 

if i -:f j 

(i,j = 1,2,3) 

The Eulerian angle .¢, e and ~ are also very convenient 

as parameters for describing rotations. To define these angles we 

introduce, in addition to the fixed system of coordinates xyz, 

the moving system of coordinates; ,n,s which follows the 
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rotation. The straight line, along which the planes xoy 

a nd ~ 0 n intersect is called nodal axis (Fig.l). We shall 

take the positive direction of nodal axis to be along the 

vector n. Let us denote by 0 the angle between the axes OZ 

and a s (0 < e < TI ), by ¢ the angle be tween the nodal axis 

and the o~ axis and by ~ the a ngle between the ox and the nodal 

axis. The positive sense for meas uring ¢ and ~ is indicated 

by arrows on (Fig.l) . We shall denote by g ( ¢ ,e,~), the rota-

tion characterized by the Eulerian angles ¢,e,~. This rotation 

can be represented as the product of three rotations: the 

rotation g¢ about OZ axis, the rotation g e about OX 

the rotation g~ about OZ ax is, that is, 

axis and 

(2.24) 

Figure-2 illustrate this relation.on it we haVe represented 

the position of the moving coordinate system after the rotat ion 

g¢ (Fig.2,a) and ge g¢ (Fig.2,b ); the final position g~geg¢is 

represented in Figure-l. 

Fig.l Fir,. 2a FiS·2b 
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We now determine the elements of t he matrix of 

rotation g (CP,8,tjJ ) whose Euler angles are cp ,8,tjJ . 'The matrices 

of rotations g¢~ g8 , g tjJhave the form 

cos cp -sincp 0 cos tjJ ·-sin tjJ 0 

gCP = Sin cp cos¢ 0 , gljJ sin ljJ cos ljJ 0 

0 0 1 0 0 1 

:( 0 ° 
g 8 = ° cos 8 -s i n e 

lO sin 8 cos e 

The matri x of an arbitrary rotation g ( CP , 8,ljJ ) i s obtained in 

accordance with (2.24) by multiplying these three matrices . Per­

forming t he ca lculation, we obtain 

g(¢,e,ljJ)=gljJgegcp = 

cos cp cos tjJ - cos 8 sin cp sJ.l1 ljJ SJ.l1 cp cos ljJ - cos 8 cos '.cp sin ljJ sinljJ 

sin ljJ cos cp + cos e cos tjJ sin cp sin cp sin tjJ + cos e cos cp cos ljJ - cos 

sin cp sin 8 cos cp sin e cos 

(2.25 ) 

ljJ 

e 

sin 

sin 

The angles cp and tjJ vary from ° to 2 IT while 8 varies from 0 to IT. 

Distinct triples of numbers , varying within these limits, correspond 

to distinct ro tations, excep t in the cases 8= 0 and 8=n. Fo r e= o, 

our rotation is a rotation about the axis OZ through an angle 

cp +tjJ, and for 8=n it is rotation about the axis OZ through the 

~ 

8 



· " 18 

angle ¢-~. Thus in these cases distinc t pairs of numbers (¢,~ ) 

may correspond to the same rotation. 

From (2. 25 ) it follows that, if the rotation g is given 

by the angles ¢ , e,~ , then the rotation g-l is given by the angles 

TI-~,e and TI-¢. I n fact if ¢ ,~,e are replaced by TI-~ , TI-¢,e, 

the matrix " g changes into the transposed matrix if= g-l . 

2.3 INVARIANT I NT EGRAL OVER THE ROTATION GROUP 

Invariant integral is importan t for the theory of repre-

sentation . We shal l say that t h e f unction w =f (g ) is defined over 

the rotation group G, if for each rotation g~ there corresponds 

some number w. If the rotation g is given by Euler angles ¢, e, ~, 

then f(g) becomes 

where 

f ( g ) = f ( ¢, e, ~) . 

f ( <P+ 2 7T, e ,~) = f (¢, e, ~) , 

f ( ¢, e, ~ + 2 7T) = f ( ¢, e, ~) . 

The integral 

f27T f 7T f2TI f(g) w(g) d¢ded~ 
000 

= f27T f 7T f 27T£ ( ¢ ,e,~ ) w ( ¢ , e ,~) d¢d~de 
00 0 

is called the invariant integral of the function f (g) over t h e 

rotation group G, if the factor w(g) is so chosen that for any 

function f(g) = f ( ¢,e,~), continues with respect to ¢,e , ~ , 

t he following condition is satisfied 



We prove that the function 

satisfies (2.26), that is, the expression 

J2TI J TI J 2TI f (g ) sin ed¢d8d~ 

° ° ° 
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(2.26) 

(2.27 ) 

(2.28 ) 

is an i nvariant integral over the group G. For this purpose 

- - - ... 
put g = ggo and let ¢,e , ~ be Euler angles of the rotation g. 

~ , e, ~ are funct i ons of the Euler ang l es ¢' 0 , ~ of the ' rotation g 

and condition (2.26) for integral (2.28) means that we must have 

J2 TIJTIJ2TIf ( ~,e ,~) sin 8 d¢dOd~ 

° ° ° 
= J2TIJTIJ2TIf ( ¢,e,~) sin 8 d¢d8d~ 

° ° ° 
(2.29) 

If in the integral on the left, we change the variables 

of i ntegration ¢ ,8,~ to the variables ¢,e,~ , we see that it wi l l 

be equal to the integral on the right hand side provided that this 

cha n ge of variable takes sin 8 d¢ded~ into sin e d¢ded~ , that is 

provided that 

- - -
sin e d¢ded~ = sin 8 d¢dGd~ (2.3 0) 

To prove (2.30) let P be the point on the unit sphere 

to which the point N(O , O,l) is carried as a result of the rotation 

-1 
9 

J = g and denote by Q the point on the same sphere to which the 

point (1 , 0,0) is carried as a result of the rotation g . The points 
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P can be chosen arbitrarily on the sphere, and then the point Q 
,.., 

arbitrarily on the great circle K, whose plane is perpendicular 

to the radius OP. The spherical polar coordinates of the point 

'IT 
Pare 2 - ¢,e; consequently sin e d~d e is a spherical surface 

element at the point P. On the other hand d¢ is an element of 

arc of the ci rc le K. In fact, an increment d¢ in ¢, with fixed 

~ and e f corresponds to a rotation through d¢ about OP, that is 

a displacement of d ¢ of the point Q. 

- -
But the points P and Q corresponding to a rotation 

g = ggo' are obtained from the points P and R by the rotation gO . 

This rotation leaves both the surface element sin e d~de and the 

element of arc d¢ of the circle K invariant; it follows that 

their product sin e d¢d~de also remains invariant which proves 

formula (2.30) . 

It is evident that for a ny positive constant C I the 

multiple w(g) = c sin e also satisfies condition (2.26). Let us 

choose c so that the following condition is satisfied: 

f2'ITf'ITf2'ITC sin e d¢dedt~ = 1 (2.31) 
0 0 0 

that 8 'IT 
2 

1 l S C = 

Hence 1 and ttl ( g) 1 sin e . c - -2 = --2 
8 'IT 8 'IT 
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We shall call the expression sin e d<p de d\jJ :. the 

invariant volume element of the gro up G and denote it by dg, so that 

dg 1 = 
8 TI 

2 sin e d<p de dtjJ 

using this notation we can write the invariant integral in the 

form 

range 

Jf (g) 
G 

o ~ ¢ 

dg, where the symbol 1 denotes integration over the 
G 

< 2TI, 0< 8 < TI, 0< tjJ < 2TI. Further we shall drop G. 

The condition (2.26) of invariance will then become 

If(ggO) dg = If(g) dg (2.32) 

We further note that 

If(g-l) dg = ff(g) dg (2.33) 

and If (go g) dg = ff(g) dg (2.34) 

-1 
Further putting fl (g) = f(g ) and using formulae (2.32) and (2.33) 

we have 

= - 1 
ffl (g) dg = ff(g ) dg = ff(g) dg 

Finally we note that by virtue of condition (2.31) 

fdg = 1 



2.4 INFINITESIMAL TRANSFORMATION OF A CONTIN UOUS 
GROUP 

In equation (2 . 15) viz. 

22 

(2.35) 

We have expressed the parameters c of a product of transformations 

in terms of parameters a and b of the factors. 

The transformation x~= f(x;a) takes all points of the 

space from their initial positions x to final positions x; Let us 

consider the gradual shift of the points of the space as we vary 

the parameters continuously from their initial values a=O. This 

leads us to the concept of infinitesimal transformations. We 

illustrate the method first for a one parameter group in one 

variable x. 

Suppose that the transformation with parameter a takes 

~ 

x to x . The neighbouring parameter value a+da will take the 

points x to points x~+ dx~ (since f i s analytic function of a ). 

But we can a l so find a parameter value a very close to zero 

(that i s to the identity) which takes x~to x~+ dx: Thus we have 

two alternative paths from x to x~+ dx: 

x~ + dx ~ = f (x; a+ da) (2.36) 



Now x~ = f(x,a) 

x ~ + dx ~ = f ( x '"; 0 a ) 

Expanding the last equation we have 

dx~ = 

or dx~ = u ( x~ ) oa 

Fr om (2 . 35) we have 

a + da = ¢ (a; oa ) 

So t hat da = .oa 

or oa = ~(a) da 

substituting ln (2.38a) we get 

dx ~ u (x ~) ~ (a) da = 

dx ~ Therefore = ~ ( a ) dct . 
u (x ~ ) 

Now integrating this equation from 

o f x~is x. Calling the integral of 

we have 

a 
U ( x~) - U(x) = f ~(a) da 

o 
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(2.37 ) 

.oa (2.38) 

(2.3 8a ) 

(2.39 ) 

a=O to a. The initial va l ue 

1 the f unc t ion U( x ~), 

If we introduce new variables y=U(x) and let 

fa ~ (a) da = t, we get y - y = t. 
o 
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We now carry out the analogoes expansion in general case. 

Consider an r-parameter Lie group of transformation 

i == l, ••• ,n. 

We can reach a neighbouring point x: + dx: near original point x: 
l l l 

thr ough small variation dak of the parameter a
k 

as 

x~+dx~ == f. (x 1 ' ... , x ; al+da , ... , a +da ) 
l l l n 1 r r 

or we may take 

x:' 
l 

f. 
l 

i==l , ••• ,n 

( ~ ~ 

xl' ... , xn ; 0, ... ,0) 

(2 .4 0) 

which is the identity transformation and take a set of parameter 

variations oa~ such that 

so that 

d f. (xl~ I ••• ,X ~ ; 
l n 

da
k 

(2.41 ) 

From the equations (2.17) r (2.40) and (2.41) we see that 

at + da~ = ~(al"" ,a ; oal' ... , oa ) r . r 



so that 

r r dtPQ, 

1 cam daQ, = L l aT) (al, · ··,ar ; bl,···,br ) 
m=l m 

b=O 

r 
da:R, L r ( a(~o~ 

m=l lI.m 

where (a) = °Q,m 

solving (2.41) for the oa l s in terms of dais, we have 

r 
L \)JkQ, (a) 

Q, =l 
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where the matrices ~r= 1 and \)Jk Q, (8 ) = 0kQ,. Putting in (2 .4 1) we 

get 

or 

dx. = 
1 

r 
L uik (x~) \)JkQ, (a) da· 

k,Q,=l 

= (2.42) 

In equation (2.42) we may consider the XiS as functions of the 

parameters a. The coordinates x are the initial values of the 

Xi S for a=O. 



2.5 INFINITESIMAL OP ERATOR OF THE CONTINUOUS GRO UP 

Any infinitesimal transformation is a linear combina-

tion of the r independent infinitesmal transformations. If we 

examine the change of a function F(x) under the infinitesimal 

transformation 

n 
He find dF = E 

i=l 

n 
= E 

i=l 

r 
= t 

t= l 

r 

aF 
ax. 

1 

aF 
ax. 

1 

oat 

dx. 
1 

r 
E 

t= l 

r 
E 

i=l 

u
i t 

(Ui t 

i=l , ... ,n. 

( x ) oat 

a ( x ) 
ax. 

) F 
1 
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= E oat Xt F (2.43) 
t=l 

n 
a The operator~ X = L u i t (x) 
~ p 

i=l 1 

are called infinitesimal operator of the group. The operator 

1 + E X oat is close to the identity operator. When we choose 
p p 

the function F to be one of the variables X., we find 
1 

x~ = 
1 

E X 
P P 

x. = X. 
1 1 

So we get back (2.41). We note that if we neglect higher order 

terms in the infinitesimals oa r the infinitesimal transformations 
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commute wi th one another. In fact the result of t wo s u c c essiv e 

i nf i nitesimal transfor mat i ons i s just the sum of the two. 

Con sider as an example,the grou p 

x = ax + b 

The identity e l e ment h a s parame ters a= l , b= O. The infini t esimal 

transformations are 

x = (1 + oa) x + ob 

= x + x ; oa + 8b 

Thus t h e in finites ima l operators of the group are 

a 
x -ax ' 

I'Ve note that the c ommuta t or 

[ Xl' X2 ] 
= Xl X

2 
- X

2 Xl 

a a a a = x ax (ax) ax 
(x - ) 

ax ..., 

a - X = ax = 2 

giv es no new o pe r ator . 

As ano the r example , t ake t he gro up 

x := ax 

y by 



The identity element has parameters a = b = 1. The infinite-

simal transformations arc 

x = (l + 6a) x = x + x 6a 

y = (l + 6b) y = y + y 6b 

So the infinitesimal operators of the group are 

a 
x ax ' 

a 
y ax 

[Xl ,x2J = 0 gives nothing new 

'For rotation group in two dimensions 

x = x cos<p -y sin<p 

y = x sin<p +y cos<p 

We obtain the infinitesimal transformations by expanding in<p 

around <p= 0: 

x = x - y 6¢ 

y = x 6<p+ y 

Th e in f i nitesimal operator is 

X = a 
y ax 

28 



2,6 REPRESENTATION OF GROUPS 

By Representation of an abstract group we mean in 

general any group composed of concrete mathematical entities 

which is homomorphic to the original group. However we shall 

restrict our attention to the representation by square matrices. 

The concept of group representation is a far-reaching 

generalization of the concept of exponential function. The expo­

nential function e ax can be defined as the continuous solution 

of the functional equation. 

f (x + y) = f (x) .f(y) (2.44) 

satisfying the initial condition f~(O) = a . 

On generalizing this equation to any group G, we are 

led to consider scalar functions on G satisfying the relation. 

(2.45) 
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However for commutative groups ~here are not many such functions, 

since equality (2.45) implies that they must satisfy the relation 

f (glg2) = f(gl) f(9 2 ) = f(g2) f (gl) 

= £(g2 g 1) 

Therefore scalar functions satisfying equation (2 .45 ) are inade­

quate for the purpose of expanding an arbitrary function F(g) on 

the group G. In order to obtain a sufficiently good supply of 

solutions of equation (2.45) we consider functions whose values 

are the matrices or linear transformations. Therefore we consider 
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solutions of the functional equation 

= 

where gl and g2 are elements of the given group G and Tg is a 

function on this group. These solutions are called the represen-

tat ion of the group. Here we shall require that the operator T 
g 

depend continuously on g and that all operators T be continuous 
g 

, 

in linear space S, tha-t is, lim x = x should imply that lim T x =T x. 
n g n 9 n+oo n+oo 

Further we shall require that the operators T have continuous 
g 

inverses. 

Thus by a representation of the group G, we shall mean a 

continuous function T on this group, taking values in the group of 
9 

non-singular continuous linear transformation of the linear space 

S and satisfying the functional equation 

It follows 

and 

T 
glg 2 

from the 

T g 

T e 

-1 

= 'r T (2.46) 
gl g2 

above equation that 

-1 (2.47) = T 
9 

= E 

where e is the identity in the group and E is the identity operator 

in linear space S . The equations (2 .4 6) and (2 .47 ) shows that T 
9 

is a homomorphic mapping of G of the non-singular continuous 
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transformation of linear space S. 

A representation T is called f a ithful if only for the 
9 

identity element e of G we have T = E and trivial or identity 
e 

transformation if T = E for all elements 9 E G. 
9 

The linear speace S, in which the operator T act, is 
9 

called the space of representation T . 
9 

If this space is finite 

dimensional, then the representation T 
9 

lS also called fi nite 

dimentiona l. The numbe r of rows and columns in the matrix is 

call e d the d i mensionality of the representation. 

A subspace Sl of the ?pace of representation T lS 
9 

called invariant if x ES I implies that for all 9 E G we h ave 

In other words , all operators of the representation 

Tg transform vectors of the subspace Sl into vectors of the same 

subspace. 

For every repres~ntcttion T there a r e at least two 
g 

invariants subspaces, namely the null subspace a nd the whole space 

S of this representation . These invar i ant subspaces are cal l ed 

trivial I f a representation T possesses only trivial invariant 
g 

subspace it is called i rreducible. A r epresentation with non-

trivia l invariant subspaces is reducible, 

Suppose that In Q space S we are given a scalir product 

* (x,y). The operator A is called He rmition-ad j oint relative 

to this scalar product if for any two vectors x and y of S we have 

* (Ax,y) = (x , A y) 



If T is a representation of the group G in the space S, then 
9 
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* Tg-l is also a representation of this group. * * * Since (AB) =B A , 

wer have 

* 
T -1 

9 
1 

T* -1 
9 

2 

* The representation T -1 is called Hermition-adjoint to T . 
9 9 

A representation T of a group G in a space S is called 
9 

unitary re lative to the scalar product (x,y) if the operators 

T leave the scalar product invariant, that is, if all vectors 
9 

x and y of S and all elements 9 of Gone has the equality 

(T x , T y ) 
9 9 

= (x, y) 

* In this case we have T 
9 

* T = E and therefore T 
9 9 

T - 1 
9 



2.7 THE MATRIX NOTATION FOR REPRESENTAT ION 

A representat i on T of a group G has been defined as g 

an operator f unction on this group satisfying the functional 

equa t ion 

= (2.48 ) 
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In order to pass from abstract f unctions taking numerical values, 

we make use of matrix notation for operators. 

We first consider t h e case when the space r presentation 

Tg is finite dimensional. In this space we choose a basis el, ... , e n . 

The operator T transform the basi s element e. into T e .. Decompos-
g J g J 

ing T e . into basis elements, we get 
g J 

n 
Te . = L: T .. (g) e . 

g J i=l lJ J 
(2.49) 

Thus with each operator of representat ion T we associate the matrix 
g 

T = T . . (g) 
g lJ 1 < i, j < n. (2 .50) 

or what is the same thing, a collection of n 2 numerical f unctions 

'.T .. (g) on the group .From the con 't inuity of T i t follows that the 
lJ g 

functions T . . (g ) are continuous. 
lJ 

Since the multiplication of operators means t h e multipli -

cation of corresponding matr ices from the functional equation we get 



2 the system of n equalities 

T .. 
lJ 

1 < i, j < n 
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(2.51 ) 

In this way we can define an n-dimensional representation of the 

G the collection of 
2 

continuous numerical functions group as n 

T .. (g) , g E:G, sat isfying the 
lJ 

and such that det (T .. (g) 
lJ 

system of functional equations (2.51 ) 

I- O. 

The matrix notation depends on the choice of the basis 

{e!} in the representation space. If A is a non-s ingular operator, 
l 

mapping the space S onto itse l f a nd f. = Ae . , then in the basis 
l l 

{f.} the matrix of representation T has t he form 
l g 

T 
g 

(A) (2.52) 

Here A denotes the matrix of operator A in the bas is {e
k

} that 

is the matrix such that 

n 
f. = L: a .. e . (2. 53 ) 

J i=l lJ l 

Thus on going over t o another basis in the space S the matr ix 

T is replaced by another matrix. 
g 

If T . . 
lJ 

( g) i s the matrix of the representation T g 
then 

T . . (g) 
lJ 

is the matrix of certain representation T . T depends not g g 



only on Tg : but also on the choice of the basis in space S. 

If the space of representation T is Euclidean , then 
9 
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we choose an orthogonal normalized (that is orthonormal) basis 

in it: 

( e. I e.) = 0 .. 
1 J 1J 

where 0 .. is the kronecker symbol defined as 
1J 

as o .. 
1J 

= { 
o for i i j 

I for 1 = J 

(2.54) 

In this case the matrix elements are calculated according to the 

formula 

T .. 
1J 

(g) = (T e., e.) 
9 J 1 

(2.55) 

The above formula is obtained by taking scalar product of both 

sides of equation (2.49) with e .. 
1 

We now consider an infinite-dimensional representation T . 
g 

In this case we take the representation space to be Hilbert space. 

In this Hilbert space we choose an orthonormal basis {e.} I 
1 

i = l/ ... ,n , ... In this basis we have 

T e. 
9 J 

00 

= L T .. 
i=l 1J 

( g ) e. 
1 

(2 .56 ) 

On taking the scalar product of both sides of (2 .56 ) with e. , 
1 

we get 



T .. 
1J 

( g) = ( T e., e.), 1 < i, j <00 
g J 1 

(2.57) 

Thus with each operator T we a ssociate the infinite matrix T 
g g 

with element T .. (g) . 
1J 

Now we shall show that in mUltiplying operators , the 

matrices are multiplied accordi ng to the usual rule, that is, 

T .. (glg2) = 'f Tik (gl) TkJ· (g2) 
1J k=l 

(2 . 58) 

From (2.57) we have 

T .. (glg2) = (T e . , e . ) 
1J glg2 J 1 

= (T T e . , e. ) 
gl g2 J 1 

* = (T e. , T e. ) (2.59) 
g'2 J gl 1 
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The scalar product of vectors T 
g2 

* e . and T 
J gl 

e. expressed as follows: 
1 

From (2.59 ) and 

T .. 
1J 

00 

e. ,T e .) = L (T 
J . gl 1 k=l g2 

()() 

e . I 

J 
* e

k
) T e., e

k
) 

gl 1 

2: (T e. , e k ) (T e k Ie. ) 
k=l g2 J gl 1 

()() 

= L Tik (gl) Tkj (g 2) 
k=l 

(2.60 ) we get 

()() 

(glg 2) = L Tik (g 1) Tkj (g 2) 
k=l 

(2.60) 
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Consider an irreducible representation g+ T of weight £ . 
g 

Tmn' the elements of the matrix T 
g where - £<m, n <£ are funcrions 

of g. If we mUltiply g by an arbitrary rotation gl' then T goes 
mn 

into a different function of g, equal to T (ggl)' This transfor-
mn 

ma tion of functions T depends upon gl' We shall denote it by mn 

U, We can write 
g 

T 
mn 

(g) = T mn (gg I) 

We have Ug U Tmn (g) = 
2 gl 

U T (ggl)= T (gg2 g 1) g2 mn mn 

The relation U 
g2 

(2,61) 

(2 .62 ) 

holds for the transformat i on U 
gl 

The f unction T (gg l) is an mn 

element o f the matrix T 
ggl 

Because T form a representation of 
g 

the rotation group ; therefore, 

Equating the elements of the matrices on the left and right hand 

sides of this equality , we find that 



T mn 

This implies that 

£ 
L: T 

s =-£ ms 

38 

(2.63) 

Therefore the transformation U carries an e leme nt of the m-th 
gl 

row of the matri x T into the linear combinati.on of the e12meTl t 
9 

of the same row of Tg wi t h coefficients which depend upon gl. I t 

fo llows from (2. 62 ) and ( 2.63 ) that for every m the transformation 

U comprise a ( 2 £+ 1) - dmen'sional representation of the rotation 
g l 

group. 



CHAPTER-3 

3.1 SPHERICAL FUNC TIONS 

Consider a function 

We write the rotation 9 in the form 

" x = gx 

3 
x:= L gik xk l k=l 

( 3 .1 ) 

If we substitute for the xk in f(x
l

,x2 , x
3

) their values in 

terms of x. as obtainable from (3.1 ) we obtain a new function 
l 

fl ( xi,x2"'x~). We shall say that the function f goes into 

function fl under the rotation g. The transformation which 

carries f into fl will be denoted by Tg . Therefore for every 

rotation 9 there exist a transformation T on the function 
9 

f (x) and this transformation cnrries the function f into f
l

, 

where fl is obtained from f by replacing x by its expression in 

terms of x". We have, therefore, 

- 1 
Tg f (x ) = fl (x) where fl (x ) = f (g x ) 

It is clear that the transformation T is linear 
9 

T 9 f f (x) +g (x) ] = f 1 (x) + 9 1 ( X) 

= T f (x ) + T 9 (x ) 
9 9 
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And T [rn f(x)] = m fl (x) 
g 

= m T f (x ) 
g 

To show that the product of two transformations 

T and T correspond to the product of rot.ations gl and 
gl g2 

consider the two rotations gl and g2 taken consecutively, 

we have 

.-
x = gl ( x ) 

... , 
x = g2 (x) 

By first rotation f(x) goes into 

T f (x) = f (g-l x), 
gl 

and as a result of second rotation, f (x ) goes into 

T T f (x ) -1 x ) = T f(gl 
g2 gl g2 

f [ - 1 - 1 
x) 1 = (gl x g2 

= f (g 2g1 ) x [ -1 

J 
= T f (x ) . 

g2 g l 

Thus we have 

T = T T 
g2 g1 g2 gl 

(3.2) 
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g2' 



Now if we have a sphere with center at the 

origin, it will goes into itself under all rotations. It 

will be convenient to limit ourselves to functions defined 

on the surface of such a 

2 
we shall suppose that xl 

sphere. Because of this reason, 

2 2 + x + x ::: 1, that is, x lies 
2 3 
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on the surface of the unit sphere. It will be convenient to 

suppose that the vector x is given by its spherical coordinates 
and 

8 and ¢ to set 

xl ::: sin 8cos¢ 

x 2 
::: sin 8sin ¢ 

x3 ::: cos 8 

We limit ourselves also to functions f (8,¢), which 

have the property that the square of their absolute values 

is integrable over the surface of the sphere and we define 

scalar product for such fu nctions by the formula 

(f,g) ~ f2Tr f Tr f(8,¢) g (8,¢) sin8 d8 d¢ 
o 0 

If we denote the coordinates of the vector x by 8,¢ a n d 

the coordinates of the vector x by 8;¢~, then we have 

(T f,T g) = f2Tr f Tr f(8,¢) g (18, ¢1 sin8 d8 d ¢ g g 0 0 

f2Tr f Tr I 

g ( 8~() sin8' 
, 

= f(8;$)' d8 d¢ 
0 0 

= (f, g) 



This implies that the transformations T are unitary. By g 
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the transformations just introduced we can construct irreduci-

ble representations with arbitrary integer weights 1. In order 

to do this we construct finite dimensional spaces consisting of 

functions, in which the transformations T are irreducible 
g 

representations of the rotation group with a given w~ight 1 , 

consists of linear combinations of 2 1+ 1 functions f (x) 
m 

(-l<m <1). We sh 11 choose the functions in such a way that 

they are a canonical basis for this representation. Functions 

on the sphere which belong to a space in which an irreducible 

representation of weight 1 is realized are ca lled spherical 

functions of the 1-th order. The functions f (x) which form 
m 

a cano~cal basis in space are cal led principal spherical 

functions of the 1-th order . 

3.2 DIFFERENTIAL OPERATORS CORRESPONDING TO INFINITES­
IMAL ROTATIONS 

In article 3.1 we defined the linear transformations 

T in a cerLaill space of functions on the surface of t h e unit g 

sphere in three dimensional space. We now construct the trans-

formations Al , A2 and A3 corresponding to infinitesimal rota­

tions about the coordinate axes in this space . 

First we find the operator A3 which correspond to an 

infinitesimal rotation aboutOZ-axis. We examine a rotation g 

through the angle a. 

We have T f (x) = f (g- lx) . Therefore, for the 
g 

rotation g around theOz -axis we have 



T f (8 , ¢ ) = f ( 8, ¢- a) • 
g 

Expanding f ( 8, ¢ - a) in powers of 'tt.- we have 

f (8 I ¢ - a ) = f (e, ¢ ) _ .a _a f-::-( 8,-:.',-:.¢-,-)_ 
acp 

Therefore A3 f = af ( 8,cp ) 
acp 

since T g = E + a tA3 + ... 

So the operator . A3 has the form 
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+ ... ( 3 • 3 ) 

(3 .4 ) 

Fo r small rotation g through an angle a around any fixed axis, 

T f ( 8 , ¢ ) = f ( 8~ ,CP~), 
g 

where 8~ and cP~ depend upon the angle ~ and are equal to 8 and cP 

respective l y for ~ = O. 

Expanding T f = f ( 8~, ¢~) in a power series with 
g 

respec ·t to a , we have 

(~ d8~ + af dCP~) I £J. 
ae d ,Ci. atjl. d'-£t rv' + . .. 

<'-"= 0 

( 3 • 5 ) 

Therefore the operator A corresponding to a given infinitesimal 

rotation has the form 

d a 
A = a (8,¢ ) a8 + b ( O,CP ) ~ ( 3 • 6 ) 



where a(e,</» 
de" 

= d 'u I 
a·=o 

b (e, </» 
d(1)'' 

= dcfi I 
a =0 

( 3 • 7 ) 

We now find the differential operator Al which 
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corres ponds to an inf i ni tesimal rotation around the ax-·axis. 

If g is a rotation through the angle a arou nd the OX axis , 

t h e n g - 1 is a rotation t hrough the angle -ca around t he same 

axis . He n ce t h e vector x"= g-lx has the c oordina t es 

xl = x 

= x 2 cos a + x3 sin a (3 • 8 ) 

The functions dXk I --- , therefore, have the form 
d·a 0.= 0 

~xli 
d'CI. u=O 

= 0 

dX21 = x3 ( 3 . 9 ) 
d'd 

f1.=0 

:x31 = -x 
2 

f!- = 0 

Now we h ave 

xl = sine cos</> 

x = sine sin</> 2 

x3 = cose (3.10 ) 
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Differentiating equations (3 .1 0) which connects the cartesian 

coordinates with spherical coordinates and using (3.9), we 

find for a =0, the following equations 

or 

or 

or 

or 

d~ 
=cose coscp de - sine da da 

-a= 0 

cose coscp de sine sincp d~ -

dX 2 =cose sincp d e sine dCt + 
da 

Ct=0 

c ose sin cp de + 
dra sine 

= - sine de 
---era 

a= 0 

- sine de 
d ' Ci. 

de 
da = sin cp 

= - sine 

cos</> 

sin</> 

From (3.11) and (3.13 ) we have 

= cote cos</> 

sincp 

dcp = 
d 'a 

coscp 

dCP 
d ,a "f , 

d CP 
d ,a 

0 (3.11 ) 

dcp 
d ,a 

cos e (3. 1 2 ) 

(3.13 ) 

substituting in equations (3 . 6 ) and (3 . 7 ) the values found 

this way for de 
I d a 

and ~ (a1 We find that Al 
Ct==o tx'-= O 

differential operator defined by the formula 

a as + cotS coscp a 
acp 

is the 

(3.14) 

in 
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The operator A2 which correspond to an infinitesimal rotation 

about Oy axis can be obtained by replacing by 
TI 

</>-"2 for </> 

in (3.14) . Therefore the differential operator A2 is defined 

by the formula 

A2 = -cos</> 
a 
ae + cotS sin</> (3.15) 

We now determine the transformations H ,H and H
3

, 
+ -

using the express ions for Al , A2 and A
3

. We have 

H+ = Hl + i H2 = i Al - A2 

i sin</> a cotS cos</> a cos</> a 
= ae+ 1 a¢ + ae 

-cotS sin</> a 
all 

(cos </> i sin a cotO ( cos</> sin</> a = + </» ae + 1 + 1 )a¢ 

:i.</> (~ + i cotS a = e ae a¢") (3.16) 

H = Hl - i H2 = i Al + A2 

sin</> a cote cos</> a cos</> a = 1 ae+ 1 - as a</> 

+ cotS sin</> a 
all 

- (cos (P i sin</> a i cot e (cos cp i sin a = - )88 + - </» a¢ 

-i</> (- a i cote a 
(3.17) = e 88+ a</> 

And H3 = 1 A3 i a (3 .18 ) = a¢" 



3.3 DIFFERENTIAL EQUATION OF THE SPHERICAL FUNCTIONS 

Functions on the sphere which lie in an invariant 

subspace in which an irreducible representation of weight ~ 

operates are called spherical functi ons of the 2-th order . 
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Functions forming the canonical basis in this subspace (that is, 

the eigenvectors of the transformation H
3

) a re called principal 

spherica l functions of the ~-th order. Principal spherical 

m functions are denoted by Yl ( 8, ep ) where m is the corresponding 

eigenfunction of the operator H3 with corresponding eigenvalue m. 

Using expres sion (3 .18 ) for H3 we obtain 

= -i~ep Y~ ( 8,epl = m 

or 

From this we have 

Y~ (8 , ep ) = eim~ F~ ( 8 ) 

Thus ym ( 8 , ep ) depends on ep. 
~ 

(3 . 19) 

Since ym ( 8 , ep ) a re normalized eigenfunc tions of the 
~ 

t ransformation H3 it fol l ows that 

Y~ ( 8 , "' ) 12 . 8 d8 d'" :Iv 'I' Sln ~' (3.20 ) 
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As f2rr 
1 e im<p 

1 d<p = 2rr , we can set 
0 

ym ( 8,<P) 
1 FIn (8 ) im<p (3.21) = -- e 

~ I27T ~ 

So we can wr ite the normal ization (3.20) as 

frrl Fm (8) 
o ~ 

12 sin8 d8 = 1 (3.22) 

We now derive the differential equations for spherical 

function s and the f unctions F; (8 ). The vectors f in a space 

in which an irreducible representation with weight ~ a cts 

satisfy the equation 

H2 f = ~ ( ~+ 1) f 

where 

We note that substituting 

H+~ H from (3.16) and (3 . 17 ) we get 

H2 H2 1 [ei<P (L i cot 8 a - i ~ a i a + = + a-¢) e ( -a--e+ cot8 a¢" ) 1 2 2 a8 

-i<p ( - a cot8 a ) i<p a i cot8 .L ) ] + e as + 1 a¢"e (as + a8 

• 

1 [ (e i <p a i 
i<p a - i<p ~ ei <Pcot8 a = 2" as + e cot8-) (-e -!l... +i a¢") a <P d8 

+ ( -i ,j., a -i,j., _a ) ( i,j., a i ,j., t8 a) 
-e 'I' a e + e 'I' co·t e a 8 e 'I' as + e 'I' co - a;p 
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3 3 2 32 

= - ae 2 - cote 38 - cot 8 3¢2 

2 2 3 a 2 32 
Thus H + H - c o t 8 t 8 1 2 - - ~:z - as - co a¢ 2 

Adding to this expression H; = a2 2 2 2 --- we get H + H + H = 
a¢ 2' 1 2 3 

d 2 3 
---2 - cot 8 '" 8 Therefore we have 
a 8 0 

1 
sin8 

a 3 1 as- (sin 8 as) + . 2 
Sln 8 

The equation {_H
2 

+ 1 ( 1+ 1) f } takes the form 

1 a af 1 a2 f 
"'G ( s in G --)+ ~ 1 (1+1) f 
o a8 . 2 2 

S ln 8 3¢ 
sin e o (3.23) 

This equation is called the equation o f spherical functions of 

the 1-th order. 

We now turn to p rincipal spherical functions. Putting 

the expression for Y~ ( 8 , ¢ ) from (3.19) into (3.23) we obtain 

1 
s in 

d 
d 8 (sin8 

dF~ ( e ) 

d e 

2 
1 (1+1 ) - ; 

sin 8 

(3.24 ) 

setting a n e w v ariable w= c o s e and replac i ng F~ (G) by P~ (w), 

we get 



5 0 

2 } m 
--2 
l-l1 

(3 .2 5) 

And finally the principal spherical functions have the form 

Y~ (8,¢ ) = 1 
I2TI 

im¢ e (co s e ) (3.26) 

where P~ ( 11) satisfies (3.25 ) 

3.4 AN EXPLICIT EXPRESSION FO R SPHERICA L FUNCTIONS 

We shall obtain here an explicit expression for the 

principal spherical functions. In order to fi nd the canonical 

basis for the irreducible representation of weight ~ ,we begin 

with simultaneous so lution of the equations 

H3 f =R-f (3.27) 

H f= O (3 .2 8) + 

We dete rmine the f unc tion Y~ ( a ,¢) (the e igen functions of the 

tran s formation H3 which has the largest e igenva lue ) , From first 

of thes e equations , we h ave 

l ( e , ¢) 

From this we obtain as In article 3.3, 

Y~ (e,¢) = 1 
R- I~ 

i R-A, ~ 
e 'I' F (e) 

R-
(3 .29 ) 



From (3.29), (3 . 28) and (3.16) we have 

i¢ [ . jL + i cot8 d J 1 i Q,¢ FQ, ( 8) e e Q, = d8 d¢ 12TI 
Q, 

( e ) 
i <P i Q, </J [dF Q, Q, 

( 8) J e e d + i cot8 (i Q, ) F Q, 

dF Q, ( 8) 

~ 
Q, 

Q, cot 8 ( 8) 0 = d 8 

dFQ, ( 8) 
Q, 

- Q, cot 8 d 8 = 0 

Integration yields 

log 

Therefore the genera l solution has the form 

F ~ (8 ) = c sin Q, ( 8 ) 

0 

= 0 

Therefore for every Q, there exists only one irreducible 

_ 1 
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(3 .30) 

representation of we i ght Q" since in the opposite case t he 

equation H+ Y~ ( 8,<P) = 0 would possess for some Q, at least two 

linearly independent solutions of t he form 

iQ,</J e ¢ ( 8 ) 
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m 
Before determining y~ ( O ,~) for m <~, let us 

normalize the function F~ (e) = c sin~ e. Let us choose the 

constant c so that the normalization condition (3 .22 ) is 

satisfied: 

F~ ( e ) 
~ 

2 
I sine de = 1. 

computing this integral, 

2 J7T ' 2~+ I e c Sln de = 1 
o 

We shall use the formula 

Jsinn G dO -- 1 , n-l n-l 
Sln 0 cosO + 

n n 

we have 

rr 
') r 1 ' 2 ~ 'I 2 7T ' 2~-le c l - 2~+1 Sln tlcOS,e + 2~+16 Sln 

0 

2 [ 2~ I 
1 ' 2~-2G cosel7T -l 2~-2 J 7T . , 2~-3e c 

2~+1 
-

2~-1 
Sln - 2~-1' Sln 

0 
0 

de] 

de] = 1 

2 [2~ 2 ~ -2 1 1 ,2~-4 17T 2~ - 4 J7T ' 2~-5e d J 1 c ---- ---- - 2n-3 Sln e COse + 2n-l Sln e = 2~+1 . 2~-1 N N 

o 0 

and so on, therefore we have 

, 2~-5e Sln de] = 1 
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2 [: 2 £. 2 ( .t - 1 ) . 2 ( .t - 2) . . . 2 £. 2 (.t - 1) . 2 ( .t - 2) . . . ] = 1 
c (2.t+l ) (2.t) (2.t-l ) (2 .t-2 ) (2.t-3 ) ... 

or 
2 [ 22.t+l (.t! ) 2 

c (2.t+l) ! 

2 [ 22.t .2 ( .t !)2 
c (2.t+l ) (2.t )! or 1 

2 (2.t+l) (2.t) ! 
or c = 

22.t ( .t !) 2 . 2 

/_2;+1 ' + 1 I2IT or c = 
.t.t! 2 

One ordinarily c hoose the s ign of c so that 

c = 

It follows that 

1 = i .t¢ e 

= c 

12-IT 
i .t¢ e 

/ 

12.t! 

2£+ 1 
2 

. .t 
Sln e 

(3 .31 ) 

£ 
Sir! e 

(3 .33 ) 

m We now find the remaining f unctions f = Yl ( ¢ ,S ) o f the canonical 
m 

basis . For this purpose we e mploy the formula 

where 

H f = a f m m m- l 

a = I ( .t +m) ( Q,-]D.+ 1) m 

(3 . 34) 

(3.35 ) 



We have H = 

It follows that 

-1¢ L+ i a e (- cote 8¢") ae 

we replace ym 
9v 

( e ,¢) by 

-i¢ (- L 1 e im¢ Fm e 
de .; 2"; 9v 

= a m .; 

a cote acp) 

ym ( 8 , <1» = a 
9v m 

1 im¢ ill 
e F ' 

.; 2; 9v 

(e ) + i a 
cote8¢" 

1 e i(m-l)¢ F 
2Tf 
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m-l 
Y9v (e , ¢ ) 

(e ) and obtain 

1 e im¢ Fm (e) ';21T 9v 

m-l ( e ) 
Q, 

a 
ae 

im¢ e Fm (8 ) -I- i cot8 ~ 
9v 

(im) _ l_e im¢ F~ ( ~) 
/27T 

1 i(m-l)¢ m-l 
($) = a e F m /2n 9v 

-i¢ 1 im¢ [ - a F
m 

( 8 ) -m cote Fm 
(8 ) l e -- e 3e /27T 9v 9v 

1 ei(m-l)¢ m- l ( 8 ) = a F9v m ';2Tf 

Dividing by 1 

';27T 
i ¢ (m-l) e we get 

dF~ ( 8 ) 

a 8 
t Fm ( 8 ) Fm

9v
- l ( e) m co e = a 

9v m 

setting cos8 8=U and writing F~ (8) = P~ (u) we get 

-sine d8 = du 

d8 
du = 1 

- sine = 1 

(3.36 ) 
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dpm ( \1 ) d\1 m-l Therefore 
,Q, 

- m cote pm (\1) (\1 ) de = a P,Q, d \1 ~ m 

dpm Ii _\12 
( \1 ) ,Q, \1 pm m-l 

d\1 
- m (iJ) = a P,Q, ( \1 ) ,Q, 

11-\12 

\1 
2 

1-\1 

m 

(3.37 ) 

,Q, 
Since we know P,Q, (\1), this formula gives us possibility of 

computing each P~ ( \1 ) in turn. For this purpose we make the 

substitutio n 

Putting in (3.37) , we 

m 

/1 2 r d 2 
2" 

-\1 GIJ -. (1-1 1 ) 

[ -

2 -~ = (l -\1 ) 2 

get 

( ~.t) U - m 
111 

2 = a (1 -p ) m 

- m 

u (p ) 
m 

\1 

l-p 2 

(m-l ) 
2 u 

m 
2 (l -p ) 

-"2 

m-l ( \1 ) 

( 3.38 ) 

(~ l] U m 

d U (\1) 
m 
dlJ 

(m-l ) 

1 
2 '\ 2 

(11 =am(l -lJ ) 

m-2 
m (1-11 2 ) --2- U ( Jl) 

m 

-~ +. 1 d U ( lJ ) 
(1-1 ) + (1- lJ 2) 2 -Z=----=-m __ _ 

dlJ 

(m- l) 
2 



-~ 1 
d Um( )1 ) 

(1-)12 ) 2 2 = dlJ 

1 um- l (lJ ) = 
2· -a (l-lJ ) m 

a m 

(m-l) 
2 

-~-l 
2 2 (l - lJ ) U m-l 

-~ + 
(1-lJ2) 2 

d U ()1) 
m 

from fo rmula ( 3.3 0) , we have 

But we have 

( lJ ) 

Therefore = 

2 .Q, 
= c (l -)1 ) 2 

= (1 2 
p ) 

Q, 
2-

c (l-p ) Z 

2 9, 
(l -p f2" 

2 .Q, 
= c (l -lJ ) 

I t fo llows from (3.39 ) that 

d 2 
.Q, 

U.Q,_ l (p ) 
c = -- (l - lJ ) 

a.Q, dlJ 

UQ,_2 ( lJ) 
c d 2 2.Q, 

= 
dlJ2 

(l -lJ ) 
aia.Q,_l 
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( lJ ) 

1 
2 d U (lJ) m 

dlJ 

( 3. 3 9 ) 

(3. 40 ) 



and so on . We have 

c 

m 
-2" 

2 (l-W ) 
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(3 .41) 

Here m =£, £-1, £-2, . .. We note that for m< -£- 1, we obtain 

m 
~£ (lJ) = O. We now replace c and a by t heir values as computed 

m 

and put (-l)£under the differentiation sign, we get 

=/ ( £+m) ! 
(£-m) ! 

2£+1 
2 

£-m 
d 

1 

(3 . 41) 

In particular, the function pO (W) 
,£ which is denoted by P£(w) 

has the form 

=/ 2£+1 
2 

1 (3.42) 

The polynomial P£ ( w) is called the normalized legendre ploynomial 

of £- th order, and the functions P~ (1J) are called the normalized 

associated Legendre functions. 

We have therefore proved that the principal spherical func-

tions of the £-th order have the form 

1 
( 8 , ep ) = 

12TI 
(cos 8 ). 
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~here the functions P~ (~) are defined by the formula (3.41). 

Linear combination of the functions y~ ( 8 ,¢) with a given 

fixed £ form a (2 l +l) dimensional space of functions which 

is invariant with respect to rotations of the sphere and in 

which is realized the irreducible representation of the rotation 

group with .weight £. 

3,5 RECURRENCE RELATIONS FOR POLYNOMIALS AND FUNCTIONS OF 
LEGENDRE WITH ONE AND THE SAME VALUE £. 

Two recurrence relations, in which the functions P~ ( ~ ) 

and their first derivatives enter, are contained in the formulas 

of ·;-:. transformation for the- principa l spherical functions: 

H 
m m-l 

y £ (8, ¢) = am Y £ ( 8 , ¢ ) 

= a ym+l 
m+l £ ( e , ¢ ) 

The first of these formul~has been employed already at the 

beginning of articel 3.4, for obtaining a recurrence relation. 

To do this we wrote 

im¢ e 

I 27T 

pIn (cos e). 
£ 

and obtained the formula, viz (3.37) 

dP~ ( 1-1) 

d \.l 

(3.43) 
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The analogous relation H+ Y~ (e,¢)=a
m

+
l 
y~+l (e,¢ ) 

gives a different recurrence formula. Using (3.16) and(3.21) , 

we have 

i¢ d e (38- + i cote d ) 1 im¢ F m ( e~- 1 i (m+l ) 
d '¢ I2TI e £. I -am+ 1 121T e 

1 i (m+l) ¢ -ID+l (e ) 
am+l - e l"£. 

I2TI 

~e F~ ( e ) - m cote Fm 
(e ) = a Fm+ 1 (8 ) 

£. m+ 1 £. 

Se tting cose =~ a n d wri ting F~ (e ) = P~ ( ~ ), we h a v e 

Therefore 

- sine de = dp 

_ d~ = _ sine = ~1_~2 
de 

d ~ 

dP~ ( ~) 
d~ 

m 

d~ te pm ( ) = a pm+l 
de - m co n ~ 

:tv m+l £, 
( e) 

~l (e ) 

_ 11-; dP.Q, ( ~ ) = 
d p 

m ]J P~ (p ) +/ ( £.+m+ l ) (£'-m) p~+ l ( lJ ) 

/ 1_~2 
(3. 4 4 ) 

Combini ng formulas ( 3.43 ) and0.44), we obtai n a con nection between 

thr ee con secutive normalized Legendre f unctions 



/(t+m+l) ( t-m ) p~+l(~) + 2m 

j 2 
l-~ 

+/ (t+m) 
m-l 

( t -m+ 1) P t (~) = 0 
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(3.45) 

Formula (3 .44) can be used to obtain a different and more expanded 

expression for the associated Legendre functions. Setting m=O in 

this formula we obtain 

h ( t+m) pi ( ~) = -~ 
dPt(~) 

t Cfij-

pi (~ ) 1 I 2 - -- (l -W ) 
dP Q, (~) 

In general we set 

= Q, 

m 
2 2" = (l-w ) 

Putting ln (3 .43 ), we h ave 

m 

a
l dW 

\) ( ~) 
m 

-/l-w 2 d (l _~2 ) 2" \) ( w ) m~ 2 
dW 

= ( l-~ ) 
m 

+ 

Il-w2 

m+l 

i ( Q, +m+l) ( Q,-m) 
2 

(l -~ ) 
-2-

m 
2 2" 

(l--w ) 
d \) (~) m . 

( -2W ) - 1 ] 

\)m+l 

m+l 

+/ ( Q, +m+l) ( t~m) (1 _w 2 )--2- \)m+l ( ~) 

( W ) 

v m 

(3. 46 ) 

(W) 



or 

Or 

We have 

vI (W) 

m-l 

= mw (1 _ W2 ) --2- v (W) + /(~+m+l) ( ~ -m) 
m 

m+l dv (W) 
(l_W 2 )--2- ____ m ___ + mw 

dW 

m-l 
2 - 2-

(1-1.1 ) 
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- mp 

m-l 
2 -2-

(l-W) vm (W) 

m+l 
2 ~ = / ( ~ +m+l) ( ~-m) (l-W) vm+l (W) 

= I 

= 

1 
= 

a
1 

= 

2~+ 1 
2 

1 
a 1 

~/ 
dW 

1 / a 1 

= /(~+m+l) ( ~-m ) 

m+l 

(1 -W 2 )--2-
Vm

+
1 

(p) 

m+l 
2 -2-

- (1 -w ) 
2 m+l 

a m+ 1 (1-w ) --2-

1 

dv O 

1 
a 
·m+l 

(W) 

dW 

2W+l 1 
2 2~~ ! 

2~+1 1 
2 2~ ~ ! 

dv (p) 
m 

d~ 
(W 

dw~ 

d~+l 

dw~+l 

(3 .4 7) 

~ 2 - 1 ) 

(1.1 
2 -1 ) ~ 



\!2()..l)= 
1 d 1 I- 2 ~ + 1 
a 2 d)..l - <\ 2 

/ 2 ~+1 (_1)2 1 1 = a l a 2 2 2 Q,Q, ! 

and so on. 

Therefore we have 

1 

1 d~+l 

2 ~~ ! d& ~+l 

d Q, +2 
()..l ---

d)..l 
Q,+ 2 

dQ,+m 

d 
Q,+m 

jJ 
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()..l 2 - l) ~ 

2 -1) Q, 

2 Q, 
(p -1 ) . 

substituting \! ()..l) is (3.46) and replacing a by their values m m 

we obtain the following e xpression for associate d Legendre functions: 

pm ( )..l ) ( - 1) m I (,Q,-m) ! I 2 Q, +1 1 = Q, ( Q,+ m) ! 2 2Q,Q, 

dm+ ~ 
( )..l 2 - l) ~ (3.49 ) 

d)..lm+ ~ 

Comparing (3 . 41) and (3.49), we see that, e xcept for a constant 

factor , one of them goes int o the other when m is replaced by -m. 

It follows that 

That is, the normalized associated Legende r functions with value m 

di f fering in s ign a re p ropor tional to each other. Finally we note 

that if we r e place 



2+ 1 
2 

1 

in (3.49) by P2 (~)' then we obtain 

( 2-m) ! 
( 2+m ) ! 
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2 2 
(~ - 1) 

(3.50) 

This formula is well -known expression of the normalized 

associated Legendre functions by means o f the normalized Legendre 

polynomial o f the same order. 



CHAPTER -Li 

4.1 DIFFERENTIAL OP ER ATORS CORRESPONDING 
TO INFINITESIMAL ROTATIONS 

First we f ind the transformations I l ,I 2 and I3 which 

correspond to infinitesimal rotations about the coordinate axes. 

We take gl as the rotation through an angle (Xl around a fixed 

axis and then expand U T (g ) = T (gg 4- ) in powers of <Xl' • 
gl mn mn 

We take the axis OZ as the axis of rotation a nd 

suppose that g is an arbitrary rotat ion, with Euler ang l es ¢,e,W. 

Also we suppose that gl i s the rotation through an angle \ 

around the axis OZ. Then the rotation ggl has Euler angles 

¢+~, e ,W. Consequently we have 

T mn 
T 

mn 

= '1' ( ¢ , e , W) + a. 
mn .1 

ClT mn 
Cl¢ + ..• 

and the transformation I3 is the differential operator 

= 

The expansion 'r mn 

h a s the form, 

64 

T mn 

( 4 .1 ) 

( ¢;e;~" in general, 



T mn T mn 

aT 
+~ 

al/J + 
ex. =0 

1 

We shall now determine 

ex. = 0 1 

aT mn 
--ae-
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( 4 . 2) 

I ' when g is the rotation through an angle ~ l 

(l = 0 
1 

around the axis OX. As was in article 2 . 2 , we have 

g (¢ , e , l~) = g ik (¢ , e , I/J) = 

Cos¢ cosl/J - cosS sin¢ sinl/J -sin¢ sinl/J - cose cos¢ sinl/J sinl/J sine 

sinl/J cos¢ + cose co sl/J ~i n¢ -sin¢ sinl/J + cose cos¢ cos l/J -cosl/J sine 

sin¢ sine cos¢ sine cose 

( 4 .3) 

The ang l es ¢ and I/J vary from 0 to 2n and t he angle e 

var ies from 0 to n. The matrix of rotation 9g1 is given by certain 

values of Euler angles ¢~ , e~,I/J~. These values depend upon the 

rotat ion angle ~ and for ~l=O, they are equal to ¢,e , 1/J • Expand­

ing the matrix gg 1 in powers of ~, we have 

( 4 .4 ) 
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Since gl is the rotation through an angle a
l 

around 

the axis OX, its matrix is equal to 

(4.5) ... 

Now equating the expressions (4.4) and (4.5) for the 

matrix ggl and equating the coefficients of a
l 

in these two 

expressions, we obtain equations from which 

dCP'" de'" 
dal J =0 ' d~ll~ = 0 

1 1 

are defined. 

and 
dlj;" 
dct - I 

1 d. =0 
1 

We take g33 from (4.4), (4.5 ) and corresponding expre­

ssions from (4.3) and differentiating these we have 

= -cos~ sine 

or ~ d~ I = coscp 
1 a 1=0 

( 4 . 6 ) 



or 

d</>" Now take, g3l' to determine d--- I , we have 
til {j. =0 

1 

~~} sin</> sine = 0 

a =-0 
1 

d¢" 
sine cos</> d n + sin¢ cose 

1 

de" I 
d~ll 

= 0 

ct1=0 () = 0 
1 

dd~l" I --sine cos</> u. -s in</>cose cos</> 

~LI 
da I 

1 a =0 
1 

ct =0 
1 

= sin</> cos e cos</> 
- sine cos</> = -sin </> cote 

d . d~)" I . d h To etermlne du- we conSl er g13' we ave 
1 a =0 

1 
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( 4 .7) 

a sin~ sine = cos~ sin</> + cose sin~ COS t 
~} 

de" 
cose sin~ --I dQl

l 
0.

1
=0 

+ 

a =0 
1 

cos~ sine d~" d<lll 
Ct =0 

1 

=cos~ sin</> + cose sin~ cos </> 

or cos e sin~ cos</> + cos~ sine d~" dtl1 1 = cos~ sin </>+ cose sin~ cos</> 

ct =0 
1 

d~" or cos~ sine --I =cos~ sin</> + cose sin~ cos</> -cose sin~ cos</> 
dOl 

ct l =O 

= cos~ sin</> 



or 
dltJ" I 
dOl I 

a =0 
1 

= cosltJ sin ¢ 
cosltJ sine = sin¢ 

sine 
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(4 .8) 

Putting expressions (4.6), (4.7) and (4.8 ) in (4.2), 

we have the differential operator corresponding to an infinitesional 

rota t i on about t he axi s ox: 

d a s in¢ a 
Il = - cote sin¢ a¢ + cos¢ ae + si n e ~ ( 4 .9 ) 

Simi l ar l y we can compute the operator A. I t h as the form 

= a . a cos¢ a 
I2 -cote cos¢ a¢ - sln8 as + sine altJ (4.10) 

The operators A
l

,A2 ,A3 ca now be determined: 

= e-
i

¢ (cote ~¢I i a a ae - sine ~) 

( 4 .11 ) 

-iA iI
l
+I

2 
i¢ a .a a 

A = Al = = e (-cote- + laG + si n e ~) 2 a<jl 
(4.12 ) 

A3 i a = a¢ (4.1 3) 

We produce the operator 

from the above relations 

we have A~ + A~ = + A 



Therefore we have 

1 
. 2e sln 

Since A2U + ~ (£.+l )U . 

a</JaljJ 

There fore the above equat ion has the form 

a2u au 
--2 + cote "i\"e + 
a e a 

1 
. 2e Sln 

+ 2 ( 2+ 1) U = O. 
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We have found the differential operators corresponding 

to infinitesimal rotations, in terms of Euler angles </J,e,ljJ . Now 

for e = 0, our rotation is a rotation about the axis OZ through 

an angle </J+ljJ and for e= IT, it is a rotation about the axis 

OZ through an angle </J-ljJ. Thus in these cases, the distinct 

pair of numbers ( </J ,ljJ) correspond to same rotation. 

Now an alternate parameterization is obtained by making 

the first rotation through an angle a about the axis ox followed 

by a rotation through an a ngle 6 about t he axis OY and finally 

a rotation through an angle Y about the axis OZ, where 

-IT < a < IT , -IT < 6 < IT , - ~ < Y < 
2 -

IT 
2" 

The matrices of rotations g ,g6' g have the form 
'Ct y 



1 0 0 

g a = 0 cosa -sina ,9
S 

0 sina cosal 

Icosy -siny 0 

= siny cosy o 

o o 1 

There fore the matrix of rotation 

cosS cosy 

cosS 

= 0 

-sinS 

9 ( ~, S ,yy 

- cosS siny 

7m 
0 sinS 

1 0 

0 cosS 

= 9 gog is give n by 
(X, I-' Y 

sinS 

g (0: '1 S, y ) = s i na sinS cosY+ COSa cosy sina s inS siny+cosa cosy -sinn cos S 

-Cosa sinS cosy+ sina siny cosa sinS siny+sino: cosy cosa cosS 

(4. 14 ) 

where '- 0: and S vary from -TI to TI and S varies from 
-TI TI 
2 to -2-

Now we shall find t he d ifferential opera t or corresponding 

to infinitesima l rot a tion about the coordinate axe s, using the 

matri x of rotat ion (4 . 1 4 ) . Fi r st we shall find the operator A
l

,A 2 

and A
3

. We take gl as the rotation through an angle ~ and expand 

U9 1 Tmn (g) = Tmn (ggl) in powers of G 2 , we have 

Tmn (a .- , S'- , y '- ) = Tmn (0: , S , y) +0: 2 
aT 
{~ 

aa. 

+ 
aT mn 
ay d Y } 

d 0. 2 0: = 0 
2 

+ ••. 

a'r mn , 
, a.t~ 

(4.15 ) 



do. -I Now we find 
d a 2 / 

0. 2= 0 

dB--- I 
da 2 / 

a = 0 
2 

dy_-­
and 

da 2 
1 

10. = 0 
2 

71 

and consider g as the function of a , B, y , which is given by (4.1 4 ) . 

Expanding the matr ix ggl in powers of 0.
2

, we have 

d y-- I 
d 0.;-

Gi- =0 
2 

+ ... (4.16) 

cons ider the matrix gl' whi ch correspond to the infinitesimal 

rotation through an angle 0.2 about the axis OX. Its matrix is 

equal t o 

1 0 0 
\1 

0 0 0 0 0 

9 = 0 cosa 2 
-si na

2 = 0 1 0 + 0.
2 

0 0 -1 + .. . 
1 

0 sina
2 cos~ 0 0 1 0 1 0 

Therefore 
0 g13 - g12 

ggl = g ik (a, S ,y) + 0. 2 
0 g23 -g22 + ... 

0 g33 -g32 

(4.17) 

Let us take g13 from (4.16 ), (4.17) and taking the 

corresponding expressions from (4.14 ) and differentiating these 

we have 

~} sinB = cos B 

dYa =0 
2 

siny 
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dS 

la 
8 siny cos 

da2 
= cos 

=0 2 

d 8 sin (4.18) or da2 
= y 

a2=0 

Now take g23 from (4.16), (4 .17) and taking the 

corresponding expressions from (4.14) and differentiating 

these we have 

a d8" ad" a - + -- -- + ~ -} -sina cosS = sina sin8 siny + cosa cosy 
aa da2 a8 da2 ay a

2
=0 

-cosa <;::os8 '~~" +sin8 
2 

sina ~~: I = sina sin8 siny -cosa cosy 

a =0 

da" 
-cosa cos8 da

2 

da" 
da 2 

a =0 2 

a =0 
2 

a =0 
2 

2 

= sina sinS siny -sinS sina siny -cosa c~sy 

= _c.::...o::..:s::..:a~-=c-=o.:=.sy+- = cosy 
cosa cosS cosS 

dv" 
Now take g32' to determine.:.:..L­d a 2 

(4.19) 

a dY a 
dB + da2 dy I cosa sinS siny + sina cosy= cosa cos8 

a = 0 
2 



73 

-sina sin8 siny cosa cosy d a.... + cosa cos8 siny --d Q(.' I d8' 
i. da2 a = 0 a =0 

2 
2 

dy' 
+ cosa sin8 cos y~ 

2 
a =0 

2 

d ' 
- sina siny dY 

a 2 
I = cosa 

la =0 
2 

cos8 

or -sina sin8 siny cosy + 
cos8 cosa cosy cosy , 2 

cos8 + cosa cos8 Sln y 

+ (cosa s in S cosy -sina s in y: dy' 
d a 2 

= co so:. cos 8 

or cos 8 (co sla cosS cosy -sin 

a = 0 
2 

d ' 
asinY )d y 1 = coso:. 

a 2 I 
a =0 2 

, ' Q ' 2 2 , 2 + Slna Slnp Slny cos y - cosa cos y - cosa cos S Sln y 

2 
cos 8 

= cosa cos28 (1- sin2 y) + sina sin8 siny-cosy - cosa cos2y 

a 2S 2y , ' Q ' 2 ::;: cos cos cos + Sln a Sln iJ Sln y cos y - cos a cos y 

= - cos a cos2 y (1-cos2 S ) + sina sin S siny cosy 

rv 2 y ' 2 S ' ' S ' = - cos~ cos Sln + Slna Sln SlnY cosy 

= - cosY sin8 (cosa sinS eOSy - sina siny 

or d YI da2 a =0 
2 

- tan '8 cos y (4.20 ) 



Substituting the expression (4 .18 ), 4. 19) a nd (4 .2 0) in 

(4.15) we obtai.n 

= cosy 
cosS 

d d aa + siny as - tanS d 
cosy ay 
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(4.21) 

Now the operator A2 is the differential operator which 

corre s pond to infinitesimal rotation abou t t he axis oy, and is 

c omputed in much the same way. It has the form 

A = - siny d + Y d + tan Q siny d 
2 cosS aa cos as fJ dY 

Simi larly, we find 

d 
dY 

We now determine t he operators H+, Hand H
3

. We have 

H+ = HI + iH2 = iA
l 

-A 
2 

H = HI - iH2 = iA
l 

+ A2 

H3 iA3 i d = = ---ay 

. : . 

Therefore 

-iy 1 i d a i tanS 
d 

H+ = e (cosS aa - as - ay) 

iy 1 i d d i tan S d 
H = e (cos S - + as - a-y) dCi. 

H3 i d = ay 

(4.22 ) 

(4.23 ) 

(4.24 ) 

(4 .2 5 ) 

(4 . 26) 
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In the next article we sha ll use these operator to determine 

generalized spherical functions. 

4.2 GENERALIZED SPHERICAL FUNCTIONS 

For every value of m, the functions T (a , B,y) are eigen-
mn 

" functions of the operator H3 with correspondi ng eigenvalue n. In 

particular the functions Tm£ (a , B,y) correspond to maximum eigenvalue £ . 

These functions must satisfy the equation 

T n ( a , B,y) 
mN = o 

From equation (4.24), we have 

= e-i y ( __ 1_ 
cosB l 

From (4.27) and (4.28), we get 

- i 

- i y (1 i d d _ i tan B d ) T ( B ) = 0 
e cos B da - as ay m£ a, , y 

(4 .2 7) 

(4 .28) 

(4.29) 

substituting Tm£ (a , B,y ) 
-ima = e Um£(B ) 

-i£yin equation (4.29) e 

we obtain 

e- iy (_1_ i d 
cosB da 

-iy 1 or e (-- l 
cosB 

- itanB 

a 
aa 

d 
ay 

l tan B d e- ima U n ( B) e-i£y = 0 ay) . mN 

e-imau (B)e-i£y_ d -ima 
Um Q, ( B) 

- i Q,y 
dB' e e 

mQ, 

-ima 
UmQ, (B) 

-if, y 
) 0 e e = • 



-iy rn -irna -i~y a -i rna 
or e (cos6 e Urn~(6) e - as e Urn~ (6) 

-irna Cancelling out the cornmon factor e -iy 
e 

d U ~ (8 ) rn rn 
+ (-- - ~ tan8 ) urn~ ( 8) = 0 d8 cos8 

d Urn~ (8 ) 
( 

rn - ~tan8 ) urn~ ( 8 ) or -d6 cosS 

or rn - ~sin 6 
cosS ) dB = 0 

Integrating, we get, 

6 Tf 
log Urn~ (S ) - rn log tan ( ~ + i) + ~ log secS = log 

or l og Urn~ (B ) = m log tan (~+ 1) - £. log sec6 + log 

~ 

= log crn + log tan
m (? + i) - log sec6 

= l og c m 

Therefore Urn~ ( S ) = c m 
m B 'IT 

cot ('2' + i 

Let u s consider again equation (4.30), we have, 

= 0 

c rn 

c rn 
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,we obtain 

( 4.3 0) 

(4.31) 
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Integrating, we also have, 

u .Q, ( S) = c (sec S + tan S) m 
m m .Q, 

sec S 

l+sin S 
m 

co sB 
) 

c m .Q, 
sec S 

= c (1+ sinS )m 
m 

~-m cos S (4.32 ) 

For l ater computation it is convenient to introduce the var iable 

u = sin S. Denote the function Um~ (arc sinU ) by the symbol Pm~ (u) . 

Since U = sinS 

Therefore cosS = /1 - u 2 

and ~-m S cos 

Hence we have 

or 

c m' 

I 

~ -m 

(U) m 2 -P = c (l- ~) ( l -U ) 2 
m~ m 

~-m 
~+m 

Pm ~ (U) = c (l - U) - 2- (l+U) -2- (4 . 33) m 

In thi s way we have defined, except for the constant factor 

all of the elements of the right - hand column of the matrix T , 
g 

that is , T~ ~ ( a,S,y). Leaving c for the moment undetermined, we m 

find all of the other elements T (a,S ,Y) . To do this , we apply mn 



the pperator H to the functions T (a,S,y) and make use of 
m 

the fact that 

H Tmn (a , S,y) ::: an Tm, n-I (a, S ,y) 

where 

and 

a := 1 (£+ n) (£- n+I) 
n 

We substitute t he operator 

-i"( 1 a a 
H ::: e ( -- 1 - + as . cos S aa 

T (a , S , y ) 
-ima 

U ( (3 ) = e mn mn 

in the equation (4 .34) , we have 

- itanS 

e 
- iny 

a 
Cly ) . 

iy (1 l' a a _ l' :tanS a ) 
e cosS aa + as 3Y 

-ima -iny e Umn (S) e 

= -ima a e 
n um,n-l (3 ) 

-i (n - I)y e 

1 1 a -ima 
e (cos S 1 aa e Umn «(3 ) 

-in y 
e + 

a - ima 
- 1 tan S "'y e U a mn 

- ima ::: a e U 
n mn ( S ) -i ny e 

-ima e 
- iny e 

ima e -iy (n-I) e (m U ( B ) +~ U «(3 ) - ntan(3 U «(3 )) 
cosS mn 3S mn mn 

::: 
-ima - iy(n-I) 

an e e Um,n-I (S) 
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(4.34 ) 

• 



or 

or 

d U
mn 

( B ) 

dB + ( c~sB - n tanB) Umn (B) = an Um,n- l (B) 

d u
mn 

(B) 

d B + 
m- n sinB 

cos 
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(4 .35 ) 

Upon introducing the variable ~= sinB and t he notation U ( B) mn 

= P ( ~), we have mn 

s l n B = ~ 

cosB dB = d~ 

or = cosB 

Equation (4 .35) becomes , using, 

d P ( ~l) mn = 
d~ 

Il_~2 
d Pmn(~) 

+ m- n~ 
Pmn( ~ ) = a Pm,n- l (~) dl1 n 

/ l -~ 
2 

We set 

. n-m n+m 

P ( ~) 
-~ 

(l+~ ) 
-2-

\!mn(~ ) = (l-~ ) 
mn 

s ubstitut ing thi s expression for P ( ~ ) in (4 . 36) , we have mn 

n -m n+m 

/1_ jJ2 ~lJ ( 1_~ )-2- ( l+lJ) -Y \! (11 ) + 
mn 

m - n~ 

2 -p 

( 4 . 36) 

(4.37) 



or 

or 

n-m n+m 
(1 -]..I)-2- (I+]..I)-2-V (]..I) = a 

mn n 

n-m-l 
2 

n+m _ 1 
n+rn - -2-

- -2- (1+]..1) 

n-m n-m n+m 
- -2- -2- - -2-

(1-]..1) v (]..I) + (1-]..1) (1+]..1) 

m-n + --
! 2 1-]..1 

/ 1-]..12 

n+m 
- -2-

mn 

n-m n+m 
- -2- -2-

(1-]..1) (1 +]..1) 

n-m-l 
2 = 

n-m+2 

(1+]..1) . 

n+m-l 
2 

n+m 
[ n;m (1-]..1 ) 2 (1+]..1) 

-2-
Vmn (]..I ) 

n+m+2 n-m 

(1+]..1) 2 (1 -]..1 ) 
-2-

Vmn (]..I) 

n-m n+m 
-2- -2-

+ (1- ]..1) (1+ ]..1) 
d v mn 
-dil + (m-n]..l ) 

n-m+l 
2 

n+m+l 
2 

\) ( ]..I ) 
mn 

n+m-l 
2 

n-m+l 
2 

n+m-l 
2 

n-m+l 
2 v (]..I).+ (1-]..1) mn 

v (]..I ) n+m mn - -2-

n-m-l 
2 +]..1) 

n+m-l 
-2--

n-m-l 
2 

n+m+l 
2 

d v ( lJ) mn 
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or 

or 

or 

or 

o r 

n-m+1 n+m+1 

+ (m- n j.1 ) (1 -j.1) 2 (l+p ) 2 \) ( j.1 ) 
mn 

n-m- 1 n+m+ 1 

(1 -j.1 ) 2 ( 1+j.1 ) 2 
\)mn (j.1 ) = a n 

- 1 n+m - 1 d V mn (j.1 ) n - m (1-j.1 ) \)mn( j.1 ) (1+j.1 ) \)mn (j.1 ) + --2- - 2- dj.1 

- 1 
+ (m- n11 ) 

- 1 
( 1- j.1 ) ( 1+j.1 ) \)mn ( j.1) = an \)m,n - 1 ( j.1 ) 

n - m ( 1+j.1 ) \) (11 ) - n+m (1 - j.1 ) \) ( j.1 ) + (1 -11 2 ) --2- mn --2- mn 

2 
+ (1- 11 ) 

d \) mn ( j.1 ) 
d j.1 

n-m n-m 
--2- \) mn( j.1 ) + --2-

n+m 
+ --2-

- n 11 \) (p ) == 
run 

+ m \) 
mn 

+ m \) mn 

- m \) (p ) + n P\) (11 ) + m \) (11 ) - njJ \) ( j.1 ) mn mn mn mn 

2 
d \) ( j.1 ) 

2 mn 
\) m,n- 1 (11 ) + (1 -11 ) = (l - j.1 ) a dp n 

d v (j.1 ) 
mn \) 1 ( j.1 ) = an d11 m, n-

81 

( 4.3 8) 
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The f unctions Pm ~ ( ~ ) have already been determined in 

equation (4 .33). Rewriting these functions in form (4 .37 ), 

we obtain 

This shows that 

c m 

c m 

~-m 
- 2-

~- m 
( l -~ ) 

(l+~ ) 

From this andforrnula (4.38 ) I we have 

1 d vrnn(~) 
v (~ ) = m,n- l a d~ n 

~-m ~+m 1 d 
v -1 (~) = 

a~ d~ 
c (1 -]1 ) (l+~) 

m, ~ m 

and so on, therefore , 

or 

vm, ~_ ( Q,- n ) ( ~ ) = 

v mn ( ~ ) = 
c 

m 

c 
m 

~-n 
d 

~- n 
d]1 

~-m 

(1 - ]1 ) 

(4 . 39) 
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Therefore the functions P ( ~) which we shall also 
mn 

designate as P (~) have the form mn 

n+m 2-n 
~ d 

2-n 
d~ 

(4.40) 

substituting now in T 
mn (a , S ,y ) -iny e , 

p2 (sinS ) for U (S), we obtain the function T (a ,S,y) for mn mn mn 

all values of the indices m and n. 

T mn (a,S,y) 

n+m 
-2-

-imov = e 

2-n 
d 

2-n 
J~ 

n-m 
-iny (1 _ ~)-2-

Now we deternine the constant c in the expression for 
m 

T (a,S,y) from the condition that the rotation with angles 
mn 

(a,S,y ), zero; go = g (0,0,0), correspond under the representation 

to the matrix E. This implies that T (0,0,0) = l. Therefore mn 

p~ 
c 2-m 

(0 ) m d . (l-~ re -m(l+~) Q,+m 1 = = mm a a 2 ... a £-m 
2 m+l dp 

2-m 
Now we shall calculate d 2- m (1_~)2-m (1+~)2+m 

d 

(4.41) 
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We have 

d 
~-rn 

d 
~-m 

~-m 
= ( 1-~) ~-m ( 1 ) ~+m (1+l-J) ~+m ~+~ (l-p ) 

d ~-m ~-m 
~ . d~ 

or 

+Cj ~-m-1 
(1 - ) ~-m ~ ( l+~ ) !I.+rn d 

~-m-1 ]J dp 
d~ . 

, 1 

+(J !I.-m-2 
(l-]J ) ~-m d 2 

( 1 +~ ) ,Q, +m d 
i-m-2 djJ2 

d~ 

+(J !I.-m-3 
(1-jJ) !I.-m ~(1 )~+m d 

~-m-2 djJ3 +]J 
dp 

~ d~-m !I. 
+ + (1 ) -m (l+jJ) +m • • • -jJ Q,-m 

djJ 

~ m 1 ~ +m-1 
+ ( -1 ) - - (,Il,-m) (!I.-m) (~-m-1 ) ' "2 ( 1 - jJ) ( !I.+m ) ( 1+~) 

+ ( ~-m ) ( ~-m- 1) ( _1)~-m-2 ( ~-m ) ( ~-m-1) "' 3 (l -]J ) 2 ( ~+m ) ( ~+m-1 ) 
2 ! 

(1 +]J ) ~+m-2 + (,Q,-m) (~-m- 1 ) ( ~-m-2) ( -1 ) ~-m-3 ( !I.-m) ( ~-m- 1) ••• 4 
3 ! 

3 ~+m-3 
· ( 1-]J ) (Q,+m ) ( ~+m-1) ( ~ +m-2 ) (1-]J ) + ••• + 

£-m 2m 
(1-]J) (~+m) ( ~+m-l) (!I.+m-2) ••• ( 2m+l) (1+jJ) 
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Therefore for ~ = 0 , we have 

or 

or 

d£-m £ £ £-m £-m-l ( 1-~) -m (1+~) +m = (-1) (£-m)! + (-1 ) ( £-m) ! ( £-m) 
d~i-m 

( £+m ) + ( -1 ) £-m-2 ( £-m) (£-m-l) ( £-m)! ( £+m ) ( 9,+m ..... 1) 
2 ! 2! 

+ ( _1)£-m-3 (9,-m) ( 9,-m-1 ) ( 9,-m-2 ) ( £-m)! ( 9,+m ) ( 9, +m- l) ( 9,+m-2 ) 
3 ! 3 ! 

+ ••• + ( 9,+m) \ 9,+m-l) ( Q,+m-2 ) ••• ( 2m+l ) 

£-m £-m- l 
( - 1) (£ -m) ! + ( -1) ( £-m ) ( Q,-m ) ! 

(£+m)! + (£-m) ( £-m-l ) 
( £+m- l) ! 2! 

( _1 ) £-m-2 ( £-m)! ( £+m)! 
2! ( Q,+m-2 ) ! 

( £-m) ( £-m- l ) (£-m-2 ) 
+ 3! (-1) 

£-m-3 ( £-m)! ( £+m)! ( £+m) ! -'---"'-- ~---,:::-.,-- +. • • + 
3lt' ( £+m-3 ) ! 2m ! 

£-m 

I 
r=o 

( -1 ) £-m-r ( £-m)! ( 9, +m) ! 
r! (9, +m-r) ! 

Hence 

As we hav e 

C 
TIl 

a = 1 ( 9,+n ) ( 9,-n+l) 
n 

(- 1) £-m-r ( £-m)! ()] 
(4.42) 



Therefore aQ, = ill , aQ,_l = 1(2Q,-1)-2 and so on. 

a
m

+
l 

= I ( Q,+rn+l) ( Q,-rn) 

Thus we get 

= /29,! (Q,-rn) ! 
aQ, aQ,_l ••• a rn+ l ( Q,+rn ) ! 

Replacing aQ,aQ,_l···arn+ l by their known values, we have 

a Q,aQ,_ l " 'aIT\+l 

Crn = "';-~-~-(---l-) "'"1 ---rn---r~c-;:~-~-rn-)-(-Q';:"'v ~-:-)~' --(-Q,---rn-)-.-' 

= (2Q, ! ( Q,-m)! 
( Q,+m ) ! 

1 
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(4 .43 ) 

(4 .44) 

Finally substituting the known values for Crn and aQ,aQ,_l·"an+ l 
Q, 

in the expression for P (1') we have mn 

= /29,! ( 9,-m)! 
( 9, +m) ! 

-;:--______ ,-l_,---r-~ ____ I ( 9, +n) ! 
Q,-m (Q,- m\ YQ,+m . QQ,l ( 9,-n) 
rIo (_l) 9,-m-r rJ\~)(Q,-m) l 



or 

1 
Q,- m I (-1) Q,-m- r 

r =o 

!(Q,-m) ! ( Q,+n ) ! 
( Q,+m) ! (Q,-n ) ! 
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9-- n 
(1_U)-(n-m)/2 (1+U) - (n+m)/2 d (l _U)9,-m (l+u)9,+n 

dUQ,- n 

(4.45) 

Thus the matrix corresponding under the irreducib le representation 

with weight Q, to the rotation with angles a ,S, y is wr itten in 

the canonic a l basis as follows: 

T~ = (T;n (a , S , y)) , ( n , m = - Q, , - Q, + 1 , ••• , 9, ) 

where 

and 

where 

Q, 
T (a,S, y) 

mn 

A = Q,- m 

I 
r=o 

- ima 9- ( . = e P Sln S) mn 

1 

- iny 
e 

I ( 9- f-n ) ! 
( 9- +m) ! ( 9-- n ) ! ( 9--m ) ! 

(4.46) 

(4.47) 

The function s T!n (a,S,y ) wi l l be referred to in the sequel as 

generalized sphericaJ functions. For 9- an integer and m = 0, the 

9-
function Tmn(a,S,y) have the form 



~ 
Ton(atB,y) 

-ina = e 

In particular, for ~ = 0, 

1 

1 I ~+n! 
~ !(; l 2 / (!(;-n ) ! 
I ( -1) -rCr),t! 

r=o 

[1 ( -1 ) t-r ejJ 

~ 
1 I 

r=o 
= 

~ (r~) % n! I ( -1) ~-r :tv 

r=o 
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(4.48) 

~ Therefore P ( ~), for ~ = 0, that is , sin B = 0 or B = 0 is 1. 
00 

We now look at the functions p!n(~) for m = ~, we have 

p~ I ( ~+n) ! 
~ n =2~! (.Q,-n)! 

=/ ( ~+n)! (1- ) ( ~- n)/2 (1 ) ( -~- n) /2 2~! (l+ \1)~+n 
( ~+n)!( ~- n)! ~ +\1 ( ~+n)! 

I 2~1 

= ( ~+n ) i ( ~- n) ! 
( 4.49 ) 

and 
)!, 

p!(; !(; (\1) (l+l.J) !(; ( 4.50) 

)!, 9-
P£,- £ (~) = (l-~) (4.51) 

9- (}_ 2)£/2 P9-o (p) /2/ ( )!, !) , . ~ ( 4.52 ) 
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