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, 
TO THE BEST TEACHER OF THE WORLD 



SEEK KNOWLEDGE FROM THE CRADLE TO THE GRAVE 

SEEK AND YE SHALL FIND 

KNOCK IT SHALL BE OPENED 

ASK IT SHALL BE GIVEN UNTO YOU 
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PREFACE 

For an inquisitive mind, life is prickly 

with why's, what's, if's and but's . This 

fundamental questionnaire has always urged the 

human mind to make an unending quest in the realm 

of the unknown and invisible. The ardent 

purposefulness has always led to the opening of new 

vistas of panoramic expanse which has thereby 

stimulated the quester to go on adding to the depth 

of his vision and the height of his intuition. 

This inquisitiveness led T.S. Frank [10] 

in 1967 wherein he put forward the question, 

whether or not can there exist a subtractive group . 

Obviously operations of sUbstraction and division 

are non-associative and as such any structure based 

upon them would be non-associative. 
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It was much later when Q. Mushtaq and S. 

Kamran [18] in 1987 succeeded in defining a "non­

associative group" which they called an "LA-group" 

and can 

subtractive 

be equally manipulated with as a 

group. We genuinely acknowledge that 

much of the spade work has been done by M.A. Kazim 

and M. Naseerudin, and Q. Mushtaq and S.M. Yusuf, 

in this field. The introduction of an LA-group is 

an important offshoot of an LA-semigroup. 

In ternary operations the commutative law 

is given by abc = cba . M.A. Kazim and M. Naseerudin 

[20] in 1972, introduced braces on the left of this 

equation to get a new pseudo associative law, that 

is, (ab)c = (cb)a . This they called the left 

invertive law. A groupoid is called the left almost 

semigroup, abbreviated as LA- semigroup, if its 

elements satisfy the left invertive law. Similarly, 

a groupoid is called a right almost semigroup, 

abbreviated as RA-semigroup, if its elements 

satisfy the right invertive law, that is, a (bc ) 

c(ba ) . A groupoid is called an almost semigroup if 

it is both an LA-semigroup and an RA-semigroup. 
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An LA-semigroup is an algebraic structure 

midway between a groupoid and a commutative 

semigroup. Despite the fact that the structure is 

non- associati ve and non- commutative, it neverthe­

less possesses many interesting properties which we 

usually find in commutative and associative 

algebraic structures. 

This t hesi s comprises five chapters. The 

first chapter contains a brief history of semi 

group ~nd LA-semigroup, preliminaries of these 

structures and of those definitions and fundamental 

results which are directly related to our study of 

LA-semigroups. We have mentioned in this chapter 

the results without proofs in order to avoid making 

the t hesis unnecessarily voluminous . We have also 

avoided giving the definitions (which are available 

in text books) by presuming that t he reader is 

familiar with these . Nevertheless, one can refer 

for references to several text books, and one of 

them is: A. H. Clifford and G. B. Preston, The 

algebraic theory of semi groups, Amer . Math . Soc., 

Vols.I, 1961 and II, 1967 . 

In chapter 2, we have established a 

condition for an LA- monoid to be a commutative 
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g r oup . I t i s o f ten impor tant t o u se t he behaviour 

and character of one algebraic structure and study 

another for the sake of having more and bet ter 

informative results . But it is not always 

c onveniently possible . In the beginning the 

definition of an LA-monoid G is given and later by 

dropping an element, left zero, from a finite LA-

monoid a condition has 

discovered and established 

commutative group . 

been investigated, 

to convert it into a 

In chapter 3 , a system known as l eft 

pseudo-inverse quasigroup has been defined and the 

question of the possibility of its closest possible 

resemblance with an LA- group has been investigated. 

A left pseudo-inverse quasigroup is a more 

generalize d str uct ure. The technique a dopted fo r 

the purpose i s t hat of mapping the syst em homo ­

morphically into an LA- group and then e xamining the 

kernel of the homomor phi s m. I ntu i t i vely, the 

smaller the kernel, the more LA- group like , the 

system is . A suitable LA- group has been found such 

that, if the system is mapped homomorphically into 

it, the kernel is the smallest and hence in our 

sense the LA- group resembles the system most 

closely . 
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Prior to that, in 1967, T.S. Frank [10] 

def ined an inverse quas igorup (Q, 0) . He has given 

what amounts to an elegant construction of the 

universal group of (Q,o ) . This i mplies, in 

particular, when (Q, 0) is obtained from a group G 
-1 

by taking Q = G and aob = a b. 

Later P. Singh and N.S. Yadev [42] 

generalized the definition of an inverse quasigroup 

and defined a homomorphism of the system, called a 

pseudo- inverse quasigroup into a group. They 

exhibited a group that had the smallest kernel when 

the system is mapped homomorphically into i t. 

We have generalized the notions discussed 

in [10] and [42] to the case of left pseudo-inverse 

quasigroups. 

In chapter 4 , we have discussed the 

elements of an LA-monoid with their · powers. Q. 

Mushtaq and S.M. Yusuf in [33] defined a locally 

associati ve LA-semigroup G to be an LA-semigroup 

wherein for every a in G (aa ) a = a(aa). T~ey showed 

that a locally associative LA-semigroup does not 

necessarily have associative powers. They also put 
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an extra condition on a locally associative 

LA-semigroup that it should possess a left 

identity. Thus for a locally associative LA- monoid 

they proved most of the results contained in this 

chapter. 

The condition for LA- monoid to be locally 

associative is sufficiently strong. We have dropped 

this condition and without imposing any extra 

condition on an LA- monoid have established most of 

the results, proved by Q. Mushtaq and S.M. Yusuf, 

in [34] and by Q. Mushtaq and Q. Iqbal in [30]. Of 

t he vital i mportance is our result that "the left 

identity becomes right identity for every element 

with even positive integral index". We have shown 

that every positive integral index can be added 

provided the odd positive integral index falls to 

its left. It has been shown that odd powers commute 

with odd and even powers with even . During this 

course, it is worth mentioning that the 

generalization of results is not quite straight 

forward, rather sometimes it becomes tedious. A 

relation p has been defined on an an LA-monoi~ and 

it is shown that p is a congruence relation. We 

have shown that the relation p is separative and 

that if G is an LA- monoid, then G/p is the maximal 
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separative homomorphic image of G. It has also been 

shown that a subset Q, consisting of even powers of 

elements, of an LA- monoid G is a commutative 

semigroup. 

Lastly in chapter 5, the concept of a 

left almost group; abbreviated as LA-group, has 

been introduced. It is a non- associative structure 

with interesting properties. It has been shown that 

if G is an LA-group and H is an LA-subgroup then 

G/H is an LA- group. The partitioning of an LA-group 

has been done with the remark that an LA- group can 

be decomposed into right cosets only and an 

RA- group can be decomposed into left cosets. 

Further, Lagrange' s t heorem f or LA- groups 

has been proved, that is, if G is a finite LA- group 

and H is an LA- subgroup of G then the order of H 

divides the order of G. In the end we have 

investigated that every finite set G, n ~ 3, is an 

LA- group under a binary operation * and that there 

is a bijection between this LA- group and the group 

of cyclic permutations of the elements of G. 

The work 

submitted for 

contained in this thesis has 

pUblication in the form of 

papers in international professional journals. 
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CHAPTER ONE 

BRIEF HISTORY, PRELIMINARIES AND SOME 
FUNDAMENTAL RESULTS 

As the time rolls on, the idea of Left Almost 

Semigroup is capturing the attention. This is 

because of its peculiar characteristics and 

applications, especially in the theory of Polyadic 

groups and Flocks. 

The term 'semigroup ' first appea.req in 

mathematical literature on page 8 of J.A. de 

Seguier's book,Elements de la Theorie des Groupes 

Abstracts (Paris 1904 ) and the first paper about 

semigroups was a brief one by L.E . Dickson [8] . But 
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t h e t h e ory really bega n i n 1928 with the 

pUbl icat ion o f a p aper of fun dame nta l imp ortan ce by 

A. K. Suschkewitsch . He showed that every finit e 

semi group contains a Kernel 

completely determined the 

(a simple ideal) and 

structure of finite 

simple semigroups. His result was not in a readily 

usable form. This flaw was removed by D. Rees [40 ) , 

in 1940 with the introduction of the notion of a 

rna tr i x over a group with z ero · and moreover , the 

doma in of val i di ty wa s e xtended t o infin i t e s imp l e 

semigroups containing primi tive i d empotents. 

since 1940, the number of papers appearing 

each year has grown fairly steadily to a little 

more t han thirty on the average and now more than 

that. Ma t hema t ical Jour n a l s lik e 'Semigr oup For um' 

are continually c ontr ibuting t o t he s ubject. 

The first book which deals predominantly with 

the algebraic theory of semigroups is of 

A. K. Suschkewitsch, "The Theory of Generalized 
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Groups" (Kharkow, 1937) . This is in Russian and is 

now out of print [6] . 

Many authors, including most of those writing 

in French, use the term "demigroup" for an associa ­

tive groupoid, these authors reserve "semigroup" 

for what we shall call a cancellati ve semigroup . 

Ot her terms a r e "monoid" (Bourbaki) and "associa­

tive system" (Russian aut hors) . The present 

terminology is standard i n Engli sh a nd German 

literature [3 ] . 

These 

e n t hus ias m 

seminal 

a mongst 

papers generated 

mathemat i c i a n s who 

enough 

l a t e r 

developed it as an independent theory . After the 

advent of t he theory of semigroups, mathematicians 

continued gener alizing the algebraic notions and 

introduced new notions such as quasi - groups, loops, 

nets, polyadic groups, flocks, Moufang loops, 

exponential semigroups, weakly exponential groups, 

duo - semigr oups, hypergroups, free semigroups, 
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order ed 

groups, 

medial 

and biordered semigroups, regular semi ­

orthodox semigroups, fuzzy semigroups, 

semigroups and almost semigrups etc . [1 J , 

[4J, [13J, [34J, [35J, [37J and [44J can be referred to 

in this regard . 

Some concepts and facts are collected from 

(20) , [22J, [3 3 J and [36J a nd t hey are sta t ed 

(wi t hout pr oofs ) in t hi s c hapter because t he y are 

essent i al for t he growt h of t he s ubj ect matter o f 

this thesis . These results f~ash back in our 

discussion throughout. Of the i mmense i mportance is 

t he medial law, which has been frequently used 

along with t he left invert ive law . 

It would be interesting to know that during 

the last five years, that is, f r om 1988 to 1992 

nearly 1283 papers appeared on semigroups, and 

there were as much as 4 50 papers exclusively on 

group generalization . 

This state of affairs indicates a fair 
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tendency of research in the field of semigr oups and 

group generalization . 

T . S . Frank [10] in 1967 put forward the 

question, whether or not can there exist a 

subtractive group . Plainly speaking, operations of 

subtraction and division are non- associative and as 

such any structure based upon them would be 

non-associative. 

It was much later when Q.Mushtaq and S.Kamran 

[18] in 1987 succeeded in defining a "non-associa­

tive group" which they call an "LA- group" and can 

be equally manipulated with as a subtractive group. 

They successfully checked the validity of the 

structure and . verified some import na t and known 

results of group theory. In addition, they also 

found that some of t he group theoretic results are 

redundant for this structure and that some more or 

new 

The 

interesting results appeared as off 

definition examples and results 
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structure will be given later in this chapter at an 

appropriate place. 

We should genuinely acknowledge that much of 

the spade work has been done by M.A.Kazim and M. 

Naseerudin, and Q. Mushtaq and S. M. Yusuf , in this 

field. The introducton of an LA-group is an 

important offshoot of an LA-semigroup. 

In 1972, M.A.Kazim and ~.Naseerudin [20J 

introduced a new pseudo associative law. In ternary 

operations, commutative law is given by abc = cba. 

M.A.Kazim and M.Naseerudin put braces on the left 

of this equation, that is, (ab)c = (cb)a and thus 

set aside the associative law. with the help of 

this new law, they successfully manipulated 

subtraction and division as binary operations, 

introduced new non-associative structure and proved 

several interesting results. 

A left almost semigroup, 

LA-semigroup, is an algebraic 

6 
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between a groupoid and a commutative semigroup. An 

LA-semigroup is a non-commutative and non-associa­

tive algebraic structure. This structure has been 

defined in [20] and [36] as a groupoid G in which 

the left invertive law: 

(ab)c = (cb)a for all a,b,c in G holds . (1. 1) 

M. Naseerudin has investigated some basic 

characteristics of this structure in his doctoral 

thesis [36] . He has generalized some rudimentary 

but useful and important results of semigroup 

theory. Relations between LA-semigroups and 

quasigroups, semigorups, loops, mono ids and groups 

have been established. 

M.A.Kazim and M.Naseerudin, in their paper on 

almost semigroups [20], have shown that G is 

medial. That is, 

(ab) (cd) = (ac) (bd) for all a,b,c,d in G. (1. 2) 

Right almost semigroups can be dually defined. 
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That is, a groupoid (G, . ) is called a right almost 

semigorup, abbreviated as an RA- semigroup, if it 

satisfies the right invertive law : 

a(bc) = c(ba) for all a,b,c in G. 

EXAMPLES 1 . 3 

The set l of integers , 0 of ra t ionals, ~ 

of reals are LA-semigroups under binary operation 

, * , defined below and RA-semigroups under the 

binary operation 't' defined below. For more 

examples one can refer to (33 ] 

(i) (l,*): a*b = b-a for all a,b in 7l 

(l,t) : atb = a-b for all a,b in l 

'- , being ordinary subtraction. 
. 

(ii) (ID , *): a*b = b-a for al l a,b in 0 

a*b = b+a for all a,b in 1D\{o } 

(O,t) : atb = a-b for all a,b in 0 

atb = a+b for all a,b in O\{o} 

8 



, - , and ' +' being ordinary s ubtraction and 

division. 

(iii) (~,*) : a *b = b - a for all a,b in ~ 

a*b = b+a for all a,b in ~\{o} 

(~,t) : atb = a - b for all a,b in ~ 

atb a +b for all a,b in ~\{o} 

EXAMPLE 1.4 

The set E of even integers is also an LA-

semigroup under '*' and RA-semigroup under 't' 

def ined by a* b = b-a a nd a tb = a-b f o r a ll a ,b i n 
, 

E . Where ' - ' is ordinary subtraction . 

EXAMPLE 1.5 

The set ~ of complex numbers is an LA-

semigroup under '*' and RA- semigroup under 't' 

defined below: 
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a*b = b - a for all a,b in !C 

atb a - b for all a,b in !C 

a*b = b+a for all a,b in !C \ {o} 

atb = a+b for all a,b in !C \{ o } 

Where ' - , and ' + ' are the ordinary operations 

of subtraction and division . 

This implies that the set of complex numbers 

is an LA- semigroup under '*' and RA- semigroup under 

't' defined above with usual subtraction and 

division of complex numbers . 

EXAMPLE 1.6 

The set G = {a,b,c}, under C. ) , defined below 

in the form of Cayley's table is an LA- semigroup: 

10 



I a b c 

a a b c 

b c a b 

c b c a 

Further to add that, under (0) G is an RA -

semigroup: 

0 a b c 

a a c b 

b b a c 

c c b a 

We may po i n t out t hat it can be easily seen 

from these examples that the structure LA- semigroup 

(RA-semigrou p) is non-assoc i at i ve. 

For ins tance, in example 1 . 6 

(cb)a = ca b and 

c(ba) = cc = a imply that 

(cb)a :f:. c(ba) 

Example 1 . 6, is reproduced from [20J, because 

we may need to refer to it later . The non- associa ­

tivity shown above is different from that shown in 

11 



[20], wherein (bb)c * b(bc) . 

As we have mentioned in the beginning of this 

chapter that an LA-semigroup is medial . It has been 

proved in [20] that G is medial, that is, 

(ab) (cd) = (ac) (bd ) for all a,b,c,d in G. 

EXAMPLE 1.7 

Consider the set G = {a,b,c,d}, which is an 

LA- semigroup under , , as shown below: . 

a b c d f 

a a b c d f 

b f a b c d 

c d f a b c 

d c d f a b 

f b c d f a 

(ab) (cd) (b) (b) = a Then 

and (ac) (bd} = (c) (c) = a which implies that 

(ab) (cd) = (ac) (bd) 

It can be verified that the result holds for 
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all elements in G. 

In [ 2 0 ], it has also been proved that in an 

LA- semigroup G the following conditions are equiva ­

lent for all a,b,c in G: 

( i ) 

( ii ) 

b (ac) 

b (ca) 

(ab ) c 

(ab ) c 

The structural properties of LA- semigroups are 

studied in a number of important papers that have 

appeared since the introduction of this structure. 

In one of these papers, M.A.Kazim and M.Naseerudin 

[20] have tried to find out a condition under which 

an LA-semigroup can be converted into a group . They 

assert that an LA- semigroup G with left identity e, 

will become a group if for each a in G, there exist 

band c in G such that, a(bc) = e = (ac)b holds in 

G. In [ 26 ] , Q. Mushtaq has shown that their assertion 

was defective. He provided a counter example to 

support his claim. 
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M.A.Kazim and M.Naseerudin in [20] have 

extensively used the identity a(a(bc)) = e and 

(a(bc))a = e, which is not necessarily true as 

Q.Mushtaq [26], has shown that a(bc) = e does not 

necessarily imply that 

a ( a (be)) = e and (a (bc )) a = e 

Consider for instance, the following example 

of an LA-semigroup which satisfies the hypothesis 

of the theorem by M.A.Kazim and M.Naseerudin but 

which is not a group . 

EXAMPLE 1.8 

Let G = {a,b,c,d} be a groupoid and a binary 

operation ( . ) be defined in it as shown below: 

a b c d 

a a b c d 

b d a b c 

c c d a b 

d b c d a 

14 



Then (G,.) is an LA-semigroup with left identity a 

because all the elements of G satisfy the left 

invertive law and ax = x for all x in G. Moreover, 

all the elements of G satisfy the identity 

a(a(bc)) = e and ( a (bc) ) a = e . 

Thus, for each x in G, there exist y and z in 

G, such that, x(yz) a = (xz)y . But (G,.) is not a 

group. It is not even a semigroup because we find 

( bc ) d :I; b ( cd) . 

Q.Mushtaq and S.M.Yusuf in [23], have defined 

an LA-semigroup def ined by a commutative inverse 

semigroup. Let (G,.) be a commutative inverse 

semigroup. Define a binary operation * in G as 

follows: 

a*b = b.a- 1 for every a,b in G. 

They have proved that (G, * ) is an LA-semigroup 

and referred to this as an 'LA-semigroup defined by 

a commutative inverse semigorup'. In [31), the 

authors have described the structure of LA-
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semigroups defined by commutative inverse semi -

groups , by means of LA- semigroups defined by 

commutative groups and certain homomorphisms 

between them. Specifically, they have shown that if 

a commutative inverse semigroup G is a semi lattice 

of the inverse semigroup G then the LA- semigroup 

defined by G is also a semi lattice of LA-

semigroups . Conversely, they have shown that given 

a semilattice of LA- semigroups and a f am i ly of 

homomorphi s ms wi t h certain p r operties, a n LA-

semigroup can be defined, which is a union of the 

given LA- semigroups. 

Q. Mushtaq in [25], has shown that conversely , 

provided that a neces s ary and sufficient condition 

is satisfied by an LA- semigroup, it can induce an 

Abelian gr oup satisfying the condition - 1 
a.b = b*a 

for all a,b in G. He also observed some additional 

characteristic of such LA- semigroups. Specifically, 
I 

the author proved that in (G, . ), the following 
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conditions are equivalent: 

(i) a = (cc.ab)b for all a,b,c in G, 

(ii) there exists an Abelian group (G,*) such 

(i ii ) 

(iv) 

-1 that, a.b = b*a for all a,b in G, 

(G,. )is cancellative, where G is an LA-

monoid with left identity e and 

for all a in G, 

2 · a = e 

2 (G,.) has left identity e and a = e for 

all a in G. 

The notion of a left (right) translative 

mapping (which is called a left(right) translation 

in semigroup theory) is natural and very useful. It 

is well - known [6J that each element of a semigroup 

induces a left and right translation. These trans-

lations play an important role, for example, in the 

theory of ideal extensions. A system of mappings 

T : x ~ T (x) of a non-empty set G into itself, 
u u 

where u ranges over elements of a set u, is called 

commutable if T T (x ) = T T (x ) holds for all u, v 
u v v u 

in U and x in G. A system of mappings T :x ~ T (x) 
u u 
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is transitive if T (x ) = G for all x in G, where 
u 

the set of e lements T (x ) for all u in u, is 
u 

denoted by T (x ) . A system of mappings T :x ~ T (x ) 
u u u 

of G into itself is called right translative 

according as T (xy ) = x T ( y ) , T (xy ) = T (x ) y 
u u u u 

or 

T (xy ) = x T (y ) = T (x ) Y holds for every x , y in G 
u u u 

and u in u. 

In [27] , Q.Mushtaq has defined translative 

mappings on LA-semigroups, and besides other 

things, he has shown that if there is a transitive 

system of translative mappings on an LA- monoid then 

the structure is necessarily commutative semigroup 

with i denti ty. It has been s hown also that a 

mapping T of a transitive system o f mappings over 
u 

an LA-semigr oup G is injective if the right 

cancellative law holds with respect to every 

element of T (G) . Also, every transitive system of 
u 

transitive mappings over a mu ltiplicative LA- monoid 

G has the form x ~ T (x ) = x + ~ ( x ) , where '+ ' is 
u 
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an Abelian group operation on G and ~: U ~ G is a 

mapping of U onto G. 

Q.Mushtaq and S . Kamran [31], have shown that a 

cancellative LA- semigroup is a commutative semi ­

group if a(bc ) = (cb ) a for all a,b,c in G. Further, 

it has been shown that an LA- monoid G, is a 

commutative monoid if and only if (ab ) c = b(ca), 

for all a,b,c in G. 

E. Hewitt and H. S. Zuckerman [14], surveyed 

the field of ternary 

giving rise to them . 

operations 

M. Iqbal 

and 

in 

semigroups 

[16], has 

generalized their results to invertive operations 

and studied the LA-semigroups connected with t hem . 

Apart from several interesting results, the main 

result he has proved is that an LA-semigroup is 

isomorphic to the direct product of a group, all of 

whose elements are of order two, and a semigroup 

under a special binary operation . 
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Analogous to Vagner - Preston Representation 

Theorem (6), M.Iqbal in (16), has proved that every 

inverse LA- semigroup has a faithful representation 

as an inverse LA-semigroup of partial one- one 

mappings. M.Iqbal has also shown that the given 

partial ordering relation is the maximum idempotent­

separating congruence of an inverse LA-semigroup. 

In [16], a ternary operation on an LA­

semigroup was introduced and the author generalized 

the results of E.Hewitt and H. S . Zukerman [14] . Some 

useful properties of this structure were studied 

and a relationship was established between LA­

semigroups (S, . ) and (S,o), defined on the same set 

S, such that x. (y.z) = xo(yoz) for all x,y,z in S. 

If in (S, .) and (S,o), x. (y .z ) = xo(yoz) then we 

say that (S,.) and (S,o) are in relation R with 

each other. M.Iqbal (16) has shown that if (S,.) 

and (S ,o ) are related by R then (S,.) and (S,o) are 

isomorphic under certain conditions. 
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M. Khalid in [21 J has investigated the 

division LA-semigroups. He has extensively used 

medial law of LA-semigroups and has proved some 

rsults for division g-LA-semigroups and linear 

forms of LA-semigroups. He has also shown that 

under certain conditions an . LA-semigroup can be 

converted into a division g-LA- semigroup, it has a 

linear form and it is a commutative group. 

M.Khalid in [21J, has also considered the left 

and right translations for LA- semigroups. He has 

specifically shown that an LA- semigroup becomes a 

commutative semigroup under certain conditions . He 

has used the translations to obtain an LA-semigroup 

from an LA-group. By making use of these 

translations, he has 

commutative monoid 

commutative monoid. 

obtained from an LA-group a 

and an automorphism of the 

s. Reinhard in [41J, has constructed medial 

semigroups. A semigroup is said to be medial if it 
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satisfies the identity uxyv = uyxv. Let (H,+) be a 

commutative semigroup and ¢, 1/1 endomorphisms of H 

satisfying (* ) ¢2 = ¢, 1/1 2 = 1/1, ¢1/1 = 1/1¢. Define the 

product on H by (1) ab = ¢ (a ) + 1/1 (b) . The (H, . ) is 

a medial semigroup and satisfies ( ** ) a,b,c,d, 

x E Hand ab = cd imply axb = cxd. Suppose that a 

medial semigroup (X,. ) is given satisfying ( ** ) . 

Then the a method for c onstructing a commutative 

semigroup (H,+) and endomorphisms ¢,1/1 of H 

satisfying (*) such that, (X,. ) is isomorphic to a 

subsemigroup of the medial semigroup (H, . ) obtained 

from (H,+) by defining the mul tiplication by ( 1 ) . 

P. Corsini and T. Vougiouklis in [7], have 

introduced a method for constructing new algebraic 

structures from old ones, obtaining stronger 

properties; for example, it is possible to obtain 

semigroups from groupoids, gaining associati vi ty, 

or Abelian groups from non- commutative groups. 
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The method consists of two steps; (a) uniting 

elements: this means putting together every pair of 

elements for which a certain property <Cd" fails; 

the quotient set becomes a hyperstructure A with 

the property <Cd"; (b) making quotients: in a 

standard way it is possible to obtain from A a 

strict algebraic structure satisfying property <C d " . 

Q. Iqbal in [17], has described the structure 

of LA- semigroups by means o f LA-semigr oups a nd 

certain homomorphisms between them. It has been 

specifically shown that an LA-semigroup G is a 

semi l a tt ice o f LA-s emigr oups. Converse ly , i t has 

been shown that 

semigroups and a 

certain properties, 

given a semilattice of LA­

family of homomorphisms, with 

an LA- semigroup can be defined 

which is a union of the given LA- semigroups . 

It has also been shown in [17], that an LA­

semigroup G, which has a left regular band of LA ­

groups as an LA- semigroup of left quotients, is 
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shown to be the LA- semigroup which is a left 

regular band of right reversible cancellative 

LA-semigroups. An alternative characterization has 

been provided by unique spined products. These 

resul ts have been applied to the case where S is 

super abundant and where the set of idempotents 

forms a left normal band. 

Translations and transformations play a vital 

role in the theory of semigroups. In [18J, s. 

Kamran,has shown that under certain conditions the 

set of left translations on an LA- semigroup forms 

an LA- semigroup . A parallel result to Cayley's 

theorem for the set of left translations defined on 

an LA- sernigroup has been proved in [18J . In [18J, 

the concepts of zero ids and idempoids in LA­

sernigroups are also discussed in detail and some 

interesting results have been proved. 

Q.Mushtaq [28J, has proved that if an LA-

sernigroup contains the left cancellative 
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LA- subsemigroup such that, the LA- subsemigroup is 

contained in the centre of the LA- semigroup then it 

can be embedded in a commutative monoid whose 

cancellative elements form an Abelian group and the 

identity element of this group coincides with the 

identity element of the commutative monoid . 

In order to def ine associative powers in an 

LA- semigroup G, we impose the condition that 

b(ac) (ab)c 

or b (ca ) = (ab ) c for al l a,b,c in G. 

As already me nt ioned above t hat t hese c onditi ons 

are equivalent, we call them a weak associative law. 

Notice that, if a = b = c in the first, then LA­

semigroup with weak associative law becomes a 

locally associative · LA- semigroup, that i s , an LA ­

semigroup with the condition (aa)a = a(aa) for all 

a in G. 
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In [34J, Q.Mushtaq and S.M.Yusuf have defined 

a locally associative LA- semigroup G and on one 

hand, have verified the notable results of 

semigroup theory and on the other hand, have 

derived some new results of vital importance. 

In [44J, T. Tamura and T . Nordhal have called 

the semigroup satisfying the identity 

m m 
X y (m~2 ) as exponential m- semigroup. 

It is important to note that an LA-semigroup G 

with weak associative property is exponential. One 

can refer to [34J and [31J for more details about 

this theory. 

In [34J, it has been proved that locally 

associative LA- semigroups are exponential. Several 

structural theorems are proved in this paper . 

The following results are fundamental and 

essential for our subsequent discussion of the 

subject matter and are frequently referred to, 
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whenever and wherever found imperative. These 

results are proved in [18],[29] and [31], and here 

we are 

proofs. 

that an 

enlisting and mentioning them without 

To begin with, at this juncture we recall 

LA-semigroup G is a groupoid which 

satisfies the left invertive law viz: (ab)c = (bc)a 

for all a,b,c in G and that an LA-monoid G is an 

LA-semigroup with left identity. 

THEOREM 1 . 9 

In an LA-monoid the identity is unique . 

THEOREM 1.10 

In an LA-semigroup the right identity becomes 

a two sided identity. 

It would not be out of place to mention here 

that the converse of the above theorem is not 

necessarily true. That is, the left identity does 

not become the right identity. 
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Thereupon as a consequence to the above 

theorem, we have the following important results. 

THEOREM 1.11 

An LA-semigroup with right identity is a 

commutative monoid. 

THEOREM 1. 12 

In an LA-monoid G a(bc) b(ac), for all a,b,c 

in G. 

THEOREM 1. 13 

An LA- monoid with left(right) inverses has two 

sided inverses. 

THEOREM 1.14 

A left cancellative LA-semigroup is a cancell­

ative LA-semigroup. 
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THEOREM 1.15 

In an LA- monoid G ab 

for all a,b,c,d in G. 

THEOREM 1.16 

cd implies that ba = dc 

A finite LA- semigroup G is a group provided 

that a(bc) = (cb)a, for all a,b,c in G. 

THEOREM 1.17 

If (G,.) is a commutative group then (G,*) is 

an LA- semigroup under *, where * is defined by: 

a*b = a'.b = b'.a 

for every a,b in G, and by a' we mean the inverse 

of a . 

THEOREM 1.18 

A subset containing all the idempotent 

elements of an LA-monoid is a commutative subsemi-
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group with identity. 

In view of Theorem 2.6, Corollary 2.2 [32], we 

have the following useful results. 

THEOREM 1.19 

In a right cancellative LA- semigroup G,ev~ry 

right identity of an idempotent element is its 

identity. 

In Theorems 3.10 , 3.11,3.12, [33] the follow­

ing significant results have been proved. 

THEOREM 1. 20 

If in an LA- semigroup G, ax = b has a unique 

solution for every a,b in G, then yc = d ha s also a 

unique solution for every c,d in G. 

THEOREM 1.21 

If in an LA- monoid G, yc = d has a unique 
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solution for every c,d in G, then ax 

unique solution for every a,b in G. 

b has also a 

THEOREM 1. 22 

If in an LA-semigroup G, ax = b has a unique 

solution for every a,b in G, then G is a commuta­

tive group. 

An LA- semigroup may have more than one 

idempotent which has been reflected by the follow ­

ing example. 

EXAMPLE 1. 23 

Let G {a,b,c} with binary operation ( . ) 
defined in G as follows: 

a b c 

a a a a 

b a a a 

c a a c 

Then G is an LA-semigroup with more than one 
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idemptotent. Thus an LA- monoid can have idempto­

tents other than the identity. 

EXAMPLE 1.24 

Let G = {e,f,a,b,c} and the binary operation 

( . ) be defined as follows: 

e f a b c 

e e f a b c 

f f f f b c 

a a f e b c 

b c c c f b 

c b b b c f 

Then G is an LA-monoid with e as the left identity 

and f as an idempotent. 

Note that ef = fe = f implies that f ~ e. 

In [29], the following results have been proved. 

THEOREM 1.25 

An LA-monoid. with left identity e contains no 
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idempotent such that e ~ f. 

THEOREM 1.26 

A subset containing all the idempotent 

elements of an LA- monoid with left identity e, is a 

commutative subsemigroup with e as its identity . 

EXAMPLE 1.27 

Let G = {a,b,c} with binary operation (.) in G 

defined as follows: 

a 

a c 

b b 

c b 

b 

c 

b 

b 

c 

b 

b 

b 

Then (G, . ) is a locally associative LA-semigroup. 

This example shows that we can not define associa­

tive powers in G, as we do in semigroup. Thus in 

order to define associative powers in a locally 

associative LA-semigroup, we introduce the left 
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identity. 

A brief description about the powers of 

elements is given here but to a sufficient length 

we have discussed in chapter 4. 

Q.Mushtaq and S.M.Yusuf [34], have proved the 

following results in this connection. 

THEOREM 1. 28 

Every locally associative LA-monoid has 

associative powers. 

Q.Mushtaq and S.M.Yusuf in [34], have also 

defined a relation p on a locally associative 

LA- monoid G. It has been proved in [34] that 

relation p is a congruence relation on a locally 

associative LA-monoid. 

Further to that, a relation (J" on a locally 

associative LA-monoid G is separative if and only 

if 
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and implies acrb . 

It was also proved in [34] that the relation is 

separative. 

In [32], Q. Mushtaq and S. M. Yusuf have shown 

that if an LA- semigroup is defined by a commutative 

inverse semigroup [commutative group] , then by 

defining a binary relation in the LA- semigroup, we 

can recover the c ommutat ive inverse semigroup 

[commutative group]. 

In [18] S. Kamran, has defined a left almost 

group abbreviated as an LA- group 

A gr oupoid (G, . ) i s c alled a n LA-group, i f 

( i) (G, • ) is a l e f t a lmost s emigroup , 

(ii) e.a = a, for all a in G and left identity 

e in G , 

(iii) a' .a e for all a, at in G, where at 

denotes the left inverse of a . 

Recall that at is two sided . 
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EXAMPLE 1.29 

Let G {e,a,b,c,d} and ( . ) be the binary 

operation in G deifned as follows: 

e a b c d 

e e a b c d 

a d e a b c 

b c d e a b 

c b c d e a 

d a b c d e 

The structure is non-associative as 

(bc)d * b(cd) 

Then G is an LA- group with left identity e and each 

element of G has a left inverse and the elements 

satisfy the left invertive law . Incidently in this 

example every element is self inversive, that is, 

its own inverse, since, a . a = e , for every a in G. 

It is to pe pointed out here that despite a . a = e 

for every a in G, the structure is neither 

commutative nor associative -- as remarked earlier. 

The structure LA-group contains certain 
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peculiar characteristics. In [18], homomorphisms 

for an LA-group have been defined and the well 

known ismorphism theorems have been proved . Cosets 

play an important role in the theory of groups and 

similarly in the case of LA-groups, one can see in 

chapter five that their role is no less 

significant. 

Much of the spade work done by Q.Mushtaq and 

S.M.Yusuf [25],[26],[29],[32],[33] and by M.A.Kazim 

and M. Naseer udin [19], [20], [36] has been utilized 

in [18] and some of the results have been 

reproduced with a different mode of proof. We are 

mentioning few of these without proofs as we may 

need to use them later. 

THEOREM 1.30 

An LA- group with right identity is an Abelian 

group . (One may also refer to [33]) 
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THEOREM 1.31 

An LA- group is cancellative . 

(One may also refer to [3 3J ) 

REMARK 1.32 

An RA-group can be defined on a parallel track 

to that of an LA- group, that is, a group?id (G, . ) 

lS an RA- group if: 

(i) 

( ii ) 

( iii ) 

a.e = a, for every a in G and right 

identity e in G, 

a.a ' = e for every a in G, 

a (bc ) = c(ba) for all a,b,c in G. 

EXAMPLE 1.33 

Let G {e,a,b,c} and ( . ) be the binary 

operation defined as follows: 
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e 

e e 

a a 

b b 

c c 

a 

c · 

e 

a 

b 

b 

b 

c 

e 

a 

c 

a 

b 

c 

e 

The structure is non - ass ociative as a(bc) * (ab) c. 

It can be verified that for all a,b,c in G , we have 

a(bc) c(ba). Then G is an RA- group with right 

identity e and each element has a right inverse and 

the elements satisfy right invertive law . 

THEOREM 1.34 

An LA- group can be decomposed into right 

cosets and an RA- group into left cosets. 

THEOREM 1.35 

If H is an LA- s ubgroup of an LA- group G then 

(aH) (bH) = (ab ) Hand (Ha ) (Hb) = H (ab) 

for all a,b in G. 
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COROLLARIES 1. 36 

If H is an LA-subgroup of an LA-group G then 

for every a,b in G and left identity e in G: 

(i) 

(ii) 

(iii) 

LEMMA 1. 37 

( i) 

GG = G 

eG Ge = G 

(ab)H = H(ba) 

(ab)' = a'b' 

(ii) (abc )' = a'b'c' 

for all a,b,c in an LA-group G and primes 

denote the inverses of elements. 

REMARK 1.38 

It is important to note that there is no 

concept of group theoretic normality in an LA­

group. We can factor an LA-group by any of its 

LA-subgroups. We know that if G is a group and H is 

its subgroup then (aH) (bH) ;t:. (ab ) H, unless H is 
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normal in G. Here we have no such condition because 

of the medial property, that is, if aH, bH belong 

to G/H, then (aH) (bH) = (ab)H, without having an 

extra condition on H. 

In chapter 2, we have established a condition 

for an LA-monoid to be a commutative group. For 

commutativity, the condition proved in [31] has 

been utilized. In this regard various results 

proved in 

frequently 

[20], [29], [31] and [33] have been 

non-used. 

associative and 

"LA-semigroup" 

As the structure is 

new in semigroup 

theory) , the 

theory (rather 

condition so 

established is not straight forward in manipulating 

with algebraic craftsmanship. Anyhow tediousness is 

a necessary evil for mathematical products . 

In chapter 3, a system (Q,o) called left­

inverse quasigroup has been defined. The left 

pseudo-inverse a' of an element a of Q has also 

been defined. This structure is a generalization of 
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the concept of pseudo-inverse quasigroup defined in 

[42]. It has been shown that Q is right cancellative 

and that for a,b in Q, there exists a unique d in 

Q, such that, doa = b. 

A homomorphism f from Q to a given LA- group 

( G, • ) and t he kernel K of f have been defined~ 
r 

It 

has been proved that ( K ,0 ) is a left pseudo-inverse 
r 

sUb-quasigroup of (Q,o). The nucleus N(Q) of Q and 

an element x called invertor for an ordered triple 

(a,b,c) and denoted by <abc>, have also been 

defined. The set A(Q) of all invertors , in Q has 

been defined and it is shown that N(Q) U A(Q) ~ K. 
r 

A condition for a subset S of Q to partition (Q,o) 

has been proposed and it is shown that K parti ­
r 

tions (Q,o ) . The set (H,o ) intersection of all left 

pseudo- inverse sUb-quasigroups of (Q, 0) which 

partition (Q,o ) and containing N(Q) U A (Q) has been 

defined and shown as left pseudo-inverse sUb- quasi-

group of Q. It has been proved that there is a 
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homomorphism F from a left pseudo- inverse quasigroup 

(Q,o) t o t he LA- group (G,*), where G = {Hoa : a E Q}, 

defined by F(a) = Hoa with kernel K = H. Finally 
f 

it is shown that H is the smallest kernel of the 

homomorphism F and so (G, * ) is the most closely 

resembling LA-group to the left pseudo-inverse 

quasigroup (Q,o). 

In chapter 4, the powers of elements of an 

LA- monoid have been de f ined and discussed in 

detail . Some i mportant a nd interesting resu lts h a v e 

been established . In [43], T. Tamura and N. Kimura 

proved that any commutativ e semigroup G is un i q uely 

expressible as a semi lattice of archimedean semi -

groups . Later in [14], E.Hewitt and H.S.Zuckerman, 

proved that the following conditions are mutually 

equivalent: (i) G is separati~e, (ii) the archi ­

medean components of G are cancellati ve, ( iii) G 

can be embedded in a union of groups. In [3 4 ], Q. 

Mushtaq, and S.M. Yusuf extended their results to a 
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locally associative LA- semigroup G, which is not an 

associative structure. They defined a locally 

associative LA-semigroup G to be an LA- semigroup 

wherein for every a in G, (aa)a = a(aa). 

in [34J, put an extra Q.Mushtaq, and S.M.Yusuf 

condition on a locally associative LA-semigroup. 

They showed that a locally associative LA-semigroup 

does not necessarily have associative powers. Later 

Q. Mushtaq and Q.Iqbal in [30] and Q.Iqbal in [17J 

discussed the decomposition of 

associative LA-semigroup. Most of 

heavily hinge upon the results 

a locally 

our results 

deduced and 

established in [17J, [34J and [40 J • We have 

abolished the condition of local associativity on 

an LA-semigroup with left identity. The results 

proved in chapter 4, are independent of this 

condi tion and have been proved for an LA-monoid. 

During this course, we came across with the problem 

of odd and even powers. To establish our main 
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results we had to overcome this difficulty and some 

basic results have been proved in different cases, 

considering the even and odd powers separately. A 

very important result stating that "the left 

identity becomes the right identity for every 

element with even posi ti ve integral index", has 

been proved and using another important result from 

[j3], it has been shown that if G is an LA-monoid, 

then a subset Q of G, consisting of elements of G 

with even powers, is a commutative monoid. 

A relation p such that, 

n+l = a for 

apb 

all 

if and only if 

a,b in an LA-

monoid G, has been defined and it is proved that p 

is a congruence relation. Later it has been shown 

that p is separatiye and that G/ p is the maximal 

separative homomorphic image of G. Few more related 

results have also been proved in the end of 

chapter 4. 

Several authors, for example, B.M. Henry [13], 
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M.A. Kazim and F . Hussain [19] and D . C . Murdock 

[24] have generalized the concept of a group and 

have investigated the structural properties of 

these generalizations . In chapter 5, we have 

introduced the concept of a left almost group, 

which is a non- associative structure with 

interesting properties. Here specifically, it is 

shown that if G is a left almost group and H is a 

left almost subgroup then G/H is a left almost 

group. Further, we have proved Lagrange's theorem 

for left almost groups, that is, if G 1s a finite 

left almost group and H is a left almost subgroup 

of G then the order of H divides the order of G. 

In the end, we have discussed a finite set as 

how to become an LA- group. It has been shown that 

every finite set G, n ~ 3, under a binary operation 

* is an LA- group. It has been discovered that there 

is a bijection between the group of cyclic permuta ­

tions of elements of G and such an LA- group. 
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CHAPTER TWO 

A CONDITION FOR AN LA-MONOID TO BE A 

COMMUT A TIVE GROUP 

We recall that a left almost semigroup [20], 

abbreviated as LA-semigroup, is a groupoid G whose 

elements satisfy the left inverti ve law: (ab) c = 

(cb) a. It is a non- associative structure midway 

between a groupoid and a commutative semigroup. The 

structure is medial [20], that is, (ab) (cd) = 

(ac) (bd) for all a,b,c,d in G. It has been shown in 

[32] that if an LA-semigroup contains a left 

identity, it is unique . It has been proved also in 

[33] that an LA-semigroup with right identity is a 

commutative monoid. An element a of 
o 

group G is called a left (right) zero 

(aa = a) for all a in G. 
o 0 
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We call an LA- semigroup with left identity an 

LA-monoid . Leta,b,c and d belong to an LA- monoid 

and ab = cd . Then it has been shown in [33] that 

ba = dc . An element a of an LA- monoid, with left 

2 identity e, is called an involution if a = e. 

An element 

left inverse if 

-1 
a 

-1 

of an 

a a = e, 

LA-monoid is called a 

where e is the left 

identity. It has been shown in [32] that if a- 1 is 

a left inverse of a then it is unique and is also 

the right inverse of a. I t has been proved in [33] 

that every left cancellative LA- semigroup is right 

c ancellative and every r ight cancellative LA-

semigroup is left cancellati ve only if it is an 

LA- monoid. 

It is often important to use the behaviour and 

character of one algebraic structure and study 

another for the sake of having more and better , 

informative results. But it is not always 

conveniently possible. Then the question arises 
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under what circumstances can it be achieved? K. 

Verma in a paper [45] has established a sufficient 

condition for a monoid to be a group. He has con­

sidered a monoid and converted it into a group 

under certain conditions whereas we have general­

ized his result by converting a non - associative 

algebraic structure, namely an LA- monoid, into a 

commutative group under weaker conditions. 

For sake of convenience, we reproduce here a 

simple but useful result, namely Theorem 2.1 from 

[31] . 

THEOREM 2.1 

A cancellative LA-semigroup G is a commutative 

semigroup if a(bc) = (cb)a for all a,b,c in G. 

PROOF 

since G is an LA-semigroup, therefore by left 

invertive law, 
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(cb)a = (ab)c 

= a(bc) 

Thus (ab)c 

semigroup. 

a (be) and hence LA- semigroup is a 

Further, if a,b,c,d belong to G, then by the 

medial law: 

(a b) (c d) = (ac ) (bd) . 

This i mplies t hat «ab)c)d = «ac )b)d ; so (ab) c = 

(ac ) b because G is cancellative. Thus a (bc ) = a (c b) 

because G has been shown associative. This implies 

t hat be = c b as G is cancellative. This proves that 

G i s a commut a t ive s emigroup . 

COROLLARY 2 . 2 

A finite, cancellat ive LA- semigroup G, wherein 

a(be) = (cb)a for all a,b,e in G is a commutative 

group . 
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THEOREM 2 . 3 

If (G,o) is a finite LA- monoid with a left 

zero a, then GO = G\{ a } is a . commutative group 
o 0 

under 0 provided there is binary operation * such 

that: 

(i) (G,*) is an LA- monoid with left inverses; 

(ii) 

( iii) 

(iv) 

a * a = a, for all a in G; 
o 

(a*b)oc = (aoc)*(boc), for all a,b,c in G; 

aob = a implies t ha t either a = a or b = a 
o 0 0 

for all a,b in G and 

(v) ao(boc) = (c ob ) oa for all a,b,c in G. 

PROOF 

Let us suppose tht (G,o) is a finite LA- monoid 

and G = {a,a,a, . .. ,a}, where m is a positive 
012 m 

integer and all e lements of G are distinct and 

further let us s uppose that one of the elements of 

G is the identity element of G under the operation 

o. Let it be denoted bye . It is certainly 

different from a because of (ii) and because a is 
o 0 
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the left zero under o. It can be seen that a is 
° 

also the right zero because 

a oa = a = eoa implies that aoa = a oe = a 
° ° ° ° ° ° 

Thus, in LA-monoid, 

a oa = aoa = a (1 ) 
° ° ° 

Let us now consider the subset GO of G which is 

obtained from it by deleting a , 
° 

so that = 

{a : 1=1,2, ... ,m}. In view of the facts that a is a 
1 ° 

zero under 0 and it is left identity under * and 

that (G,o) is a finite LA-monoid, (Go,o) is also a 

finite LA-monoid having the same e as the left 

identity in which all elements are distinct. 

Let us examine whether an element a of GO has 

an inverse in GO under 0 or not. Let us form a set 

H = {a oa , a oa , ... , a oa }, where a "* a. If 
k 1 k 2 k m k ° 
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a = a then because a is a zero in Gunder 0 and 
k 0 0 

the left identity under * , the ultimate form of the 

set H will be {a} . Therefore it has been supposed 
o 

that a '* a 
k 0 

We assert that all the elements of Hare 

distinct . Suppose otherwise and let 

aoa = aoa 
k r k s 

( 2 ) 

for r,s = 1,2, .. . ,m and r '* s. Since H is an LA-

monoid under 0, therefore (2) implies that 

aoa=aoa 
r k s k 

( 3 ) 

(in an LA-monoid ab cd implies that ba = dc) 

for r , s = 1,2, ... , m and r '* s. Consider now the 

element (a 
s * 

- 1 a ) oa , 
. r k 

which is certainly an 

element o f the set G, where a-1 is the left inverse 
r 

o f a in G with respect to * (because (G, * ) is an 
r 

LA- monoid with left inverses. NOw, 

-1 -1 (a * a ) oa = (a oa ) * ( a oa) 
s r k s k r k 

-1 = (a oa ) * ( a oa ) , 
r k r k 

because of 3. 
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-1 - 1 
Thus (a *a ) oa = (a *a ) oa 

s r k r r k 

because of (iii) 

= a oa 
o k 

= a 
o 

and the facts that -1 a is the 

inverse of a under * and a is a left zero under 
r o 

o. Thus, 

-1 (a*a )oa =a . 
s r k 0 

since a ~ a , therefore because of (iv) 
k 0 

a *a -1 = a 
s r 0 

Next, -1 
(a *a ) *a = a * a implies that 

s ' r r 0 r 

-1 
(a *a ) *a = a 

s r r r 
because a is the left 

o 

identity in Gunder *. Hence by the left invertive 

law, 

-1 
a = (a *a) * a 

r s r r 

- 1 
= (a *a ) * a 

s r s 

= a * a 
o s 

= a 
s 
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This proves that a = a . 
r s 

But since a
o

' a
1

, ••• , am are distinct elements 

of the set G and so are also the 

distinct elements of the set GO. In no case any 

element of the set GO will be equal to the other. 

Therefore the result a = a contradicts our assum-
r s 

ption; this proves our assertion that H contains 

distinct elements. 

Next s ince H c ont ains dist i nct e l e ments a nd 

the number of elements of the set H is equ al to the 

number of the elements of the s e t GO a nd eac h 

element of H is an element of GO, therefore H = GO . 

Also , since GO is an LA-monoid under 0 with 

the left i dentity e, so is H and hence H contains 

the left identity e. So e will be of the form 

a oa, so e = a oa showing that a is left inverse 
1 j 1 j 1 

o f a under o. Bu t i n an LA- monoid (if it contains 
j 

left inverses) every left inverse i s a right in-

verse. Thus a is the right inverse of a under o . 
j 1 
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It can similarly be shown that each element of 

GO has unique inverse under 0 by constructing 

different sets just like H, by choosing other 

elements of the set GO instead of a Thus, we have 
k 

shown so far, that GO is an LA- monoid with inverses 

under o . Meaning thereby that GO is an LA- group 

under o . 

If a a a be l ong t o GO s uch t hat: 
1 ' J ' k 

a 0 a = a oa then using the left 
1 k J k 

invertive law 

-1 -1 (a oa ) oa = (a oa ) oa 
1 k k J k k 

implies that -1 -1 ( a oa) oa = ( a oa) oa 
k k 1 k k J 

This implies that a = a 
1 J 

Thus GO is right cancellative under o. But GO being 

right cancellative LA-monoid under 0, i s a left 

cancellative LA-monoid also, therefore GO is a 

cancellative LA-monoid. Since GO is a cancellative 

LA-monoid whose elements satisfy condition (v), 
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therefore by applying Theorem 2.1, we conclude that 

GO is a commutative group under o. 

COROLLARY 2.4 

If (G ,o ) is a finite LA- monoid with a left 

zero a , then (G\{a },o) is a cancellative LA-monoid 
o 0 

with inverses provided there is another binary 

operation * such that: 

(i) (G,*) is an LA-monoid with left inverses 

(ii) 

(iii) 

and 

(iv) 

PROOF 

2.3. 

a * a = a for all a in G 
o 

(a *b)oc = (aoc) * (boc) for all a,b,c in G, 

aob = a implies that either a = a or b = a 
000 

for all a,b in G. 

The proof is analogous to the proof of theorem 
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CHAPTER THREE 

LA- GROUPS AS HOMOMORPHIC IMAGES OF LEFT 

INVERSE QUASIGROUPS 

In [ 12 ] , U. C. Guha a nd T .K. Hoo h a v e d ef ine d a 

CA- element of a quasigroup Q. They call an element 

x of a quasigroup Q a CA- element if x satisfies the 

two condit ions 

( 1) a (xb) = b (ax) and 

(2) (ax )b = (xb)a , where a,b are any two 

elements of Q. Further, they call Q a CA- Quasigroup 

(or CA- loop) if it has at least one CA- element . If 

Q has at least one CA- element, then Q is a loop and 

is called a CA- loop. Let A(a) denote the subset 
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containing all t he CA- elements of Q. Then Guha and 
I 

Hoo hav e pr ov ed a CA- loop Q may be decomposed into 

mutually exclusive cosets of A(Q) . 

In 1967, T . S . Frank [10] has defined an 

inverse quasigroup (Q,o) . He has given what amounts 

to an elegant construction of the universal group 

of (Q,o) . This applies, in particular, when (Q,o) 

is obtained from a group G by taking Q = G and 

aob = a - lb . 

Later, P. Singh a nd N.S. Yad ev [ 42] have 

generalized the definition of an inverse quasigroup 

and defined a homomorphism of the system, called a 

pseudo- inverse quas i group into a group . They have 

e xhibited a group t hat has the smallest kernel when 

the system is mapped homomorphically into it. 

M. A. Kazim and M. Naseeurdin [20] have defined 

a non- associative structure, called an 

LA- semigroup, which is midway between a groupoid 

and a commutative s emigroup. They have e stablished 
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the condit ions under which the structure is a 

commutative 

group . The 

Mushtaq and 

semigroup, 

structure 

8 . M. Yusuf 

a quasigroup, a loop or a 

was later studied by Q. 

[ 32 ] , Q . Mushtaq and 8 . 

Kamran [ 31 ] and Q. Mushtaq and Q. Iqbal [ 30 ] . 

In this chapter, a system known as a left 

pseudo-inver se quasigroup has been defined and the 

question of t h e possibility of its c los est possible 

resemblance with an LA-group has been investigated . 

A left pseudo- inverse quasigroup is a more 

generalized structure than those considered in 

[10], [12] and [43] . 

The t echnique adopted f or t he pur pose i s t hat 

of mapping the system homomorphica1ly into an 

LA- group and then examining the ker nel of the 

homomorphism. Intuitively, the s maller the kernel, 

the more LA-group like the system is . A suitable 

LA- group has been found such that, i f t he system i s 

mapped homomorphically into i t, t he kernel is t he 
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smallest and hence in our sense the LA- group 

resembles the system most closely. 

Recall that LA- semigroup [20], is a groupoid 

whose elements satisfy the left invertive law . 

(ab) c = (cb) a (1) 

An LA- semigroup is medial, that is, 

(ab) (cd) = (ac) (bd) (2) 

and, if it possesses left identity then 

ab = cd implies that ba = dc (3) 

it is left cancellative, if ab = ac implies t hat 

b = c ( 4 ) 

and r ight cancellat ive if ba 

b = c 

ca implies that 

(5 ) 

A subset H of an LA- group G is called an LA­

subgroup if H is an LA- group under the same binary 

operation. Notice that (aH) (bH) = (ab)H for all a,b 

in G implies that we do not need the concept' of 

'normality' as we do in group theory, to obtain a 
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factor LA-group G/H [18] . 

If a - 1 is the inverse of a in an LA-group G, 

then for all a in G, it is easy to check that 

-1 -1 
(a) = a (6) 

and for all a,b in G, 

(7) 

It is important to note that because of the left 

invertive law during the course of discussion 

hereafter the braces essentially fall to the left 

wherever occur. Further to that, S . Kamran in [18] 

has proved that an LA-group can be decomposed into 

right cosets only and RA- group into left cosets 

only. 

3. PSEUDO-I~VERSE QUASIGROUPS AND LA-GROUPS 

Let Q be a non empty set and '0' a binary 

operation defined in it. The system (Q,o) is called 

a left pseudo- inverse quasigroup if for any a in Q, 
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their exists an element a' in Q such that 

(boa)oa' = b (8) 

for every b in Q. The element a' is called a left 

pseudo-inverse of a. It is a generalization of the 

concept of pseudo- inverse defined in [43J . 

Let us have an example of a left pseudo-inverse 

quasi-group. 

EXAMPLE 3.1 

Let (G, . ) be an LA-group. Def ine a binary 

operation '0' in G as follows. For every a,b in G, 

let boa = b .a', where a' = a -I Then (G,o) is a 

left pseudo-inverse quasigroup, because 

(boa)oa' = (b .a' )oa' = (b .a' ) .a" (by virtue 

of (6)) it is (b.a').a = (a.a') .b = e.b = b, by 

the fact that e is left identity in (G,.). 

We shall need the following results for our 

main result, namely, Theorem 3.9. 
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THEOREM 3.2 

I n a left pseudo- inverse quas igr oup (Q, o ), t h e 

right cancellat ive law holds . 

PROOF 

For every a,b,c in Q, boa = coa implies t hat 

(boa ) oa' = (coa ) oa' and so py (8 ) , b = c. 

THEOREM 3.3 

If a' is a left pseudo- inverse for a , then a 

is also a left pseudo-inverse for a'. 

PROOF 

By (8) and (5), 

{(boa')oa}oa' = boa' implies that 

(boa')oa = b = (boa)oa ' . 

Thus, if a' is a left pseudo- inverse for a, then a 

is also a left pseudo- inverse fo r a' . 
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THEOREM 3.4 

If (Q,o) is left pseudo-inverse quasigroup, 

then for every a,b in Q, their exists a unique d in 

Q such that doa = b. 

PROOF 

By (8) and theorem 3 . 2, (boa') oa = b implies 

that doa = b where d = boa' . 

For uniqueness, let doa = band d oa = b . Then 
1 

by Theorem 3 . 2, doa = d10a implies that d = d1. 

THEOREM 3.5 

If (Q,o) is a left pseudo-inverse quasigroup 

and a', a" are left pseudo-inverses of a belonging 

to Q, then boa' ~ boa" for every b in Q. 

PROOF 

since (boa') oa = b = (boa") oa therefore by 
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Theorem 3 .2 , 

boa' = boa" . 

(boa ') oa = (boa")oa implies that 

A homomorphism f from a left pseudo- inverse 

quasigroup (Q,o) to a given LA- group (G, . ) is a 

mapping from Q to G such that, f(aob) = f(a).f(b) 

for all a,b in Q. 

It is important to mention here that if a' is 

a pseudo-inverse of a in (Q,o) then, 

f(a') = (f(a» -1 
(9) 

because (boa)oa' = b implies that 

feb) = f «boa)oa') 

= (f (b) .f (a» .f (a') 

= (f( a') .f (a » .f (b), by left invertive law . 

Since (G,.) contains the left identity and it is 

right cancellat ive, 

e = f (a' ) .f (a ), 

that is 

f ( a ' ) = ( f (a) ) -1 • 
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The kernel K of f is defined as: 
£' 

{x e Q: f (x) = e, where e is the left identity of 

(G, . )} . 

THEOREM 3.6 

In the above notation (K ,0) is a left pseudo­
£' 

inverse sUb-quasigroup of (Q,o) . 

PROOF 

Let k be in K . Then there exists k' in Q such 
£' 

that, (aok')ok = a for a in k. Now operating f on 

it we get f«aok')ok) = f(a) and because k belongs 

to K and because of (1) and e is left identity of 
£' 

(G, . ), 

(f(a) . f(k'» . f(k) = (f(a) .f (k'» .e 

= (e .f (k'» .f (a) = f(k').f(a). 

This implies that 

f(k ') .f (a) = f(a) . 
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Thus f(k') . f(a) = e.f(a) and so f(k') = e because e 

is the left identity in (G,.) and because of (5). 

Hence k' belongs to Q and so (aok')ok = a implies 

that K is a left pseudo-inverse sUb-quasigroup. 
f 

The nucleus N(Q) of (Q,o) is the set 

{xox': x E Q} . It is obvious from Theorem 3.3 that 

N(Q) {x'ox: x E Q}. 

If (a, b, c) is any ordered triple of elements 

of Q, then by Theorem 3.4 there exists an element x 

in Q such that, (aob)oc = xo{(cob)oa}. 

We call x an invertor and will denote it by <abc>. 

Let A(Q) be the set of all invertors in (Q,o). 

THEOREM 3 . 7 

In the above notation, N(Q) U A(Q) ~ 

PROOF 

K. 
f 

Recall that N(Q) consists of the elements of 
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the form xox' or x'ox and A(Q) contains the 

elements x = <abc> where (aob)oc = <abc>«cob)oa) . 

Now a = (aox')ox implies that 

f(a) = f«aox')ox) 

= (f(a) .f (x'».f(x) 

= (f(x) .f (x'» .f (a), . by virtue of (8) 
and (1) . 

Thus because of (5), 

e . f(a) = (f( x ) . f (x '» . f(a) implies that 

e = f(x).f(x') 

e = f (xox'). 

that is, N(Q) ~ K 
f 

since (aob)oc 

Hence xox' beiongs to K 
f 

<abc>o « cob)oa), therefore 

f«aob)oc) = f«abc>o«cob)oa». Then by (1), 

( (f (a) . f (b) ) . f (c) = f «abc» . ( (f (c) . f (b) ) . f (a) ) 

= f«abc» . «f(a) . f (b») . f(c» 

NOw, by (5), we get 

e = f«abc», 

which implies that <abc> belongs to K . That is, 
f 
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A(Q) ~ K . Hence N(Q) U A(Q) ~ K . 
r r 

A subset S of Q is said to partition (Q,o ) if 

and only if: 

( i ) for any a, b in Q, the sets Soa and Sob are 

either identical or disjoint . 

(ii) if x E Soa and y E Sob, then x oy E So(aob). 

THEOREM 3.8 

PROOF 

The kernel K partitions (Q,o). 
r 

Let K oa n K ob * cp, for some a,b in Q. r r 

we show that K oa = K ob. Let k ,k E K such r r 1 2 r 

k oa = k ob. Then f (k oa) = f (k ob) implies 
1 2 1 2 

f(k ) . f (a) = f (k ) .f (b) or f (a) = f (b) . 
1 2 

Now f (( Krob )oa' ) = ( f (Kr) .f (b) ) . f (a' ) 

(f( a ') .f (b)) .f (Kr ) 

e.f (K ) 
. r 

= e 
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implying that (K ob) oa' ~ K . Thus 
f f 

K oa implies that K ob ~ K oa as (( K ob) oa / ) oa 
f f f f 

K ob. 
f 

Similarly K ob ~ 
f 

K oa 
f 

and so K oa 
f 

= K ob . 
f 

Further, let x E K oa and y E K ob. 
f f 

Then x = k oa and y = k ob for k, k in K • 
1 2 1 2 f 

Then f ( x ) = f (k oa) 
1 

= f ( k ) .f ( a ) 
1 

and similarly f(y) = f(b). Thus 

f(x).f(y) = f(a).f(b) 

or f(xoy) = f (aob) . 

= e.f ( a ) = f ( a ) 

Thus, because of (9) and the fact that f is a 

homomorphism, 

-1 
e = f ( xoy ) . (f(aob)) 

f ( xoy ) . f ( (aob) I ) 

f (( xoy ) 0 (aob) ') 

This shows that ( x oy)o(aob)' belongs to K . 
f 

Hence 

(( x oy)o(aob)')o(aob) belongs to Ko (aob), that is, 
f 

( x oy) belongs to K o(aob) by virtue of ( 1 ) . Thus K 
f f 

partitions (Q,o ) . 
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Let H denote the intersection of all left 

pseudo- inverse sUb- quasigroups of (Q,o) which 

partition (Q,o) and contain N(Q) U A(Q). Then, one 

can check easily that (H,o) is left pseudo-inverse 

sUb-quasigroup of (Q, 0). Also, the kernel of any 

homomorphism from (Q,o) into any LA-group must 

contain (H,o) . 

In the next two theorems, we shall show that 

there is a homomorphism from (Q, 0) to a sui table 

LA- group constructed with the help of H as the 

kernel of the homomorphism . 

THEOREM 3.9 

The collection {Hoa: a E Q} forms an LA-group 

under the binary operation * defined b (Hoa ) * (Hob) = 

Ho (aob ) , where H is the intersection of all left 

pseudo-inverse sUb-quasigroups of the left pseudo­

inverse quasigroup (Q,o). 
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PROOF 

Let Hoa = Hoa and Hob = Hob. Let a e H. 
1 2 1 2 1 

Then a oa' e H, because N(Q) ~ H. Also, 
1 1 

(a oa') oa e Hoa implies that a e Hoa or a e Hoa 
111 1 1 1 1 2 

as H partitions (Q,o). similarly, b e Hob and So, 
1 2 

again because of the fact that H partitions (Q,o), 

Hob 
2 

imply that Ho (a ob ) 
1 1 

= Ho (a ob ) . 
2 2 

Thus the 

operation * is well-defined. Now, 

H*(Hoa) = Ho(aoa')*(Hoa) 

= Ho( (aoa' )oa) 

= Hoa because aoa' e H. 

N(Q) ~ Hand Ho(aoa') = H. Thus, H*Hoa = Hoa, that 

is, H is t he left identity of Hoa under *. 

Since A(Q) ~ H, we have H = Ho<abc> and so 

H*«Hoc*Hob)*Hoa)) = Ho<abc>*«Hoc*Hob)*Hoa) 

= Ho<abc>*«Ho(cob))*Hoa) 
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= Ho<abc>*(Ho«cob)oa» 

= Ho<abc>o«cop)oa) 

= Ho ( (aob) oc) 

= (Ho(aob»*Hoc 

= (Hoa*Hob)*Hoc 

Hence, {Hoa: a E Q} is an LA-semigroup with left 

identity, which one can show easily, is unique . 

since a oa ' E H. Therefore (Hoa)o(Hoa') = 

Ho( aoa ') = H. Al so, (Hoa ') o( Hoa ) = Ho (a ' oa ) = H 

as aoa' E Hand N(Q ) S; H. Thus, the collection 

{Hoa: a E Q} is an LA-group under the bina r y 

operation * defined by (Hoa)*(Hob) = Ho(aob). 

THEOREM 3.10 

There is a homomorphism F from a left pseudo-

inverse quasigroup 

where G = {Hoa: a E 

kernel K = H. 
F 

(Q,o) to the LA-group (G,*) 

Q}, defined by F(a) = Hoa with 
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PROOF 

since F(a) = Hoa for all a E (Q,o), therefore 

F(aob) = Ho(aob) 

= (Hoa)*(Hob) 

= F(a)*F(b) 

implies that F is a homomorphism . 

Let a E K. As K ~ Q and H is the left 
F F 

ident ity of (G, * ), therefore, F(a) = H. But F(a) = 

Hoa and so Hoa = H implies that a E H. Thus KF ~ H. 

Conversely, let a E H. Then H = Hoa = F (a) 

implies that a E K . Hence H S; K . Combining the 
F F 

two inclusions, we conclude that KF = H. 

Thus H is the smallest kernel of the homomor-

phism F and so (G,*) is the most closely resembling 

LA- group to the left pseudo- inverse quasigroup 

(Q,o) . 

We may point out that H can be regarded as the 

measure of the degree to which (Q,o) is like an 

LA-group . 
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CHAPTER FOUR 

LA- MONOID WITH ELEMENTS AND THEIR POWERS 

T. Ta mura a nd N. Kimura in [ 43 ] , proved t hat 

any commutative semigroup G is uniquelY expressible 

as a semi l attice of archimedean semigroups. Later 

E. Hewi t t and H. S . Zuckerman i n [ 14], proved that 

t he following condit ions are mut ually equivalent: 

(i) G is separative, (ii) the archimedean components 

o f G are cancellative, ( i ii) G can be embedded in a 

union of groups . 

Q. Mus htaq and S.M. Yus u f i n [3 4 ), have 

e xtended their r esults to a locally associative 

LA- semigroup G, which we know, is not an 
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associative structure . 

They defined a locally associative LA-

semigroup G to be an LA-semigroup wherein for every 

a in G, (aa)a = a(aa). They have also shown that a 

locally associative LA-semigroup does not necess -

arily have associative powers. 

EXAMPLE 4.1 

For example, in a locally associative LA-

semigroup G = {a,b,c}, defined by the table: 

a 

b 

c 

a 
c 

b 

b 

b 
c 

b 

b 

c 
b 

b 

b 

a(a(aa)) = c ~ b = (a(aa))a 

Q . Mushtaq and S . M. Yusuf in [34] , put an 

extra condition on a locally associative LA-

semigroup that it should possess a left identity. 

Thus for a locally associative LA- monoid they 

proved most of the results contained in this 
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chapter. 

Q. Mushtaq and Q. Iqbal in [30] and Q. Iqbal 

in [17] have discussed the decomposition of a 

locally associative LA-semigroup. They have defined 

a relation n on a locally associative LA-semigroup 

G such that, for a,b in G, anb if and only if each 

of the elements a and b divides some power of the 

other. Then they have proved that the relation n on 

G is the least semi lattice congurence on G and that 

Gin is a maximal semilattice homomorphic image of 

G. 

They have also shown that G with left idenity 

is separative if and only if its archimedean 

components are cancellative and that the G can be 

embedded in a semigroup which is a union of groups 

if and only if G is separative. 

The condition for an LA- monoid to be locally 

associative is sufficiently strong. In this chapter 

we have dropped this condition and without imposing 
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any extra condition on an LA-monoid have estab­

lished most of the results, proved by Q. Mushtaq, 

and S.M. Yusuf, in [34) and by Q. Mushtaq, and Q. 

Iqbal in [30). The results proved independently in 

this chapter heavily hinge upon some fundamental 

resul ts and pre- requisites, proved and deduced in 

the earlier section of this chapter. These pre­

requisi tes have provided a strong foundation for 

our subsequent discussion of theorems. Of the vital 

importance is our result that "the left identity 

becomes the right identity for every element with 

even positive integral index ". We have shown that 

every positive integral index can be added, 

provided the odd positive integral index falls to 

its right and the even positive integral index 

falls to its left. It has been shown that the odd 

powers commute with odd and even with even. During 

this course, it is worth mentioning that the 

generalization of results in not quite straight 
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forward, rather sometimes it becomes tedious. There 

are enormous results which one would like to prove 

and continue the study in this thesis, but we have 

restricted ourselves to a few results. 

Nevertheless, the study is interesting and gives 

enough insight for further study. To start with, we 

are giving the def ini tion of a posi ti ve integral 

index of an element of an LA- monoid and shall 

gradually go on deducting the minor and major 

results. 

DEFINITION 4.1 

If G is an LA- monoid and a belongs to G, then 

we define 

follows: 

m a for every positive integer m as 

( i) 
m a = (((( aa )a )a ) a m times. It implies 

( ii ) 

that 

m-l 
a a 

2 3 a a = a 

m 

3 a a 

m m+l a a a = a 
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LEMMA 4.2 

If G is an LA- monoid then for positive integer 

, 2 m m+2 m and for every a In G, a a = a . 

PROOF 

2 m 
a a = (aa ) a m by definition and by left 

invertive law = 

definition given above. 

LEMMA 4.3 

(am+1)a = m+l+l a m+ 2 = a by 

If G is an LA-monoid and a belongs to G, then 

for every positive integer m, 

( A ) 

( B ) 

PROOF 

m m- l m-3 3 m-S 5 m-7 7 a a a a a=a a=a a 

m 2 m-2 4 m-4 6 m-6 a =aa =aa =aa = 

By definition 4.1(ii ) and by left invertive 

law we have, 
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m m-l a = a a 

(a m- 2 a)a. = 

(aa)a m-2 2 m-2 (i) = = a a 

since G is an LA-monoid, it possesses left identity 

2 m-3 (ea ) (a a ) , 

which by definition, by medial law and since e is 

the left identity 

2 m - 2 a a = 

m-3 2 = (ea ) (a a) 

m-3 3 
a a 

m-3 3 
= a a . Thus 

Now, by definition and by left invertive law 

m-3 3 m-4 3 3 m-4 4 m-4 a a =(a a)a = (aa)a =aa (iii) 

(ii) 

Further, by left invertive law and since e is the 

left identity, 4 m-4 a a = 

m-5 (ea ) a = 

( 
4) m-4 ea a = 

m- 5 5 a a 

4 m-5 (ea ) (a a) = 

(iv) 

Repeating the above process, we conclude the 

results given in Lemma 4 . 3 . 

REMARK 4.4 

If anywhere occurs o a , 
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as l eft i dentity e. 

THEOREM 4.5 

If G is an LA- monoid and a belongs to G, then 

for every positive integer n, 

PROOF 

2n a 

By Lemma 

2 n - l 
a a 

4 • 3 , 

2 n-l aa 

we have m a 
m- l 

a a 
m- 3 3 

a a 

m-S 5 
a a = Generalization of the results gives 

m m-l 
a = a a = m- 2n+l 2 n-l = a a where m ~ 2n, m 

a nd n b e ing p os i t i ve i n tegers. Now for m 2n, it 

implies t hat 

2 n 2 n - l 2 n-l a = a a = aa 

COROLLARY 4. 6 

For m = 2n+l, 2n+l 2 n a = a a 
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THEOREM 4.7 

If G is an LA- monoid and a belongs to G, then 

for every positive integr m and n, 

m 2n-l m+2n-l a a = a 

PROOF 

By induction, the theorem is true for m 1, 

Now, because of theorem 4.5, that is, 

2n-l 2n aa = a 

Therefore, by definition, by left invertive law, by 

theorem 4.5 and by induction 

arn+la2n-l = ( ama ) ( a 2n- 1 ) = (a2n-1 a ) ( am ) 

= (aa2n-1
) (am) = (ama 2n-1

) a 

m+ 2n- l m+2n-l +l m+l+ 2n- l 
=a a = a = a 

Thus m+l 2n-l m+l +2n- l a a = a 

LEMMA 4.8 

If G is an LA- monoid and a belongs to G, then 
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for every positive integer m and n, 

a 2na m = a 2n
+

m 

PROOF 

Also follows by induction [34] . But we are 

giving here a simpler proof . We have by theorem 4.7 

m 2n-1 a a = 

( 
m 2n- 1) a a a = 

m+2n- 1 a t herefore, 

(am
+2n - 1 ) a which by 

i t implies that 

left invertive law 

to the L.H . S. and by definition to the R. H. S . 

yields 

implies t hat, 

REMARK 4. 9 

m+2n-1+1 = a 

2n m m+2n 2n+m a a = a = a 

By lemma 4.5 it 

The odd powers with odd and even powers with 

even of an element of an LA- monoid commute for all 

positive integral powers, that is, 2k-1 2n-1 a a = 

2n- 1 2k-1 a a by virtue of theorem 4 . 7 and by virtue 

of lemma 4 . 8, 2n 2k a a a 2ka 2n where k and n are 
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positive integers. 

REMARK 4.1 0 

2n-l m 2n-l+m a a ;to a 
I 

when m 1S a positive even 

integer. The result does not hold true for m 2. 

The even powers can only be added when they fall to 

the left, by lemma 4.8. Hence the odd and even 

powers of an element do not commute. 

COROLLARY 4.11 

If m is positive even intger, then in an LA-

monoid G for all a in G and for every positive 

integer n, 

left identity of G. 

PROOF 

2n-l+m 
a where e is the 

Now by left invertive law and the theorem 4 . 7 

( 
2n-l m) a a e 
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2n-1+m a 

LEMMA 4.12 

If G is an LA-monoid and a belongs to G, then 

for every positive integer m and n, 

m 2n-1 m+2n-1 2n-2 m+1 m+2 2n-3 aa =a =a a =a a _. 

2n-4 m+3 a a = 

PROOF 

By theorem 4.7, 
m 2n-1 m+2n-1 a a = a so it implies 

that ( m+2n-l) a e. Therefore, by left 

invertive law to the L.H.S. we have (ea2n-1)am = 

( m+2n-l) a e. 

2n-1 m a a = 

since e is the left identity in G so 

(am+
2n-1 ) e and thus = 

(am+2n- 1
) e which due to left inverti ve law renders 

= (am+2n- 1
) e and so by def inition 

m+1 2n-2 a a = ( m+2n-l) a e, therefore we easily have 

(a2n-2am+l)e = (am+2n - 1 )e. Thus by right cancella-
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2n-2 m+ 1 m+2n - 1 m 2n- l 
tion, a a = a = a a 

Further, 2n-2 m+ 1 a a = 
m 2n- l a a 

m 2n- l = a a whic h by 

(i) 

it implies that 

l eft invertive law 

to the L.H.S. gives (am+la)a2n- 3 = a ma 2n- 1 and thus 

m+2 2n-3 a a m 2n- l a a 

The other results follow similarly . 

LEMMA 4.13 

(ii) 

If G is an LA-monoid and a belongs to G, then 

for every positive integer m and n, 

2n m m+2n m+l 2n- l 2n-2 m+ 2 
aa=a = a a =a a = 

m+3 2n-3 a a = 

PROOF 

NOw, by lemma 4.8, 
2n m m+2n 

a a = a implies that 

(a2n- 1a) am = a m+2n which due to left invertive law 

m+2n 
= a and thus, 

m+l 2n-l m+2n 2n m 
a a = a = aa (i) 
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Further, 
m+l 2n-l a a 2n m a a implies that 

(am+1 a 2n- 1
) e = (a2na m) e which due to left · inverti ve 

law to the L.H.S. renders (ea2n-l)am+l = (a2na m)e 

and since e is the left identity in G 
2n-l m+l 

so a a 

2n m ( a a ) e. Then by left invertive law to the L.H.S. 

m+2 2n-2 a a 

(a2na m) e which by definition yields 

(a2na m) e which enables us to have 

( a 2n - 2 am + 2) e 

cancellation 

2n-2 m+2 a a 

2n- 2 m+ 2 
a a = 

and 

2n m a a 

The other results follow similarly. 

thus by 

Hence 

right 

2n m 
a a 

( ii) 

We now come across with a very important and 

crucial result of LA- semigroup theory which is a 

key note for our subsequent theorems in general and 

for our theorem 4.14 in particular. 

THEOREM 4.14 

If G is an LA- monoid with left identity e and 
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a belongs to G, then for every positive integer n, 

2n 2n a = a e 

PROOF 

We have from theorem 4.5 

which implies that 2n 
a e = 

2n 2n-1 a = a a = 
2n-1 aa 

2n-1 (aa )e. 

Then by left inverti ve law, by theorem 4.5 and 

since e is the left identity (ea) a 2n
-

1 = 2n-1 (ea ) a = 

aa 2n- 1 = a 2n-1 a. Hence 2n 2n 
a e = a 

THEOREM 4.15 

A necessary and sufficient condition for a 

subset Q of an LA-monoid G with left identity e to 

become a commutative monoid is, that each of its 

elements should consist of even powers of some 

element of G. 
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PROOF 

The condition is necessary. Suppose each b in 

Q is an even power of some a in G. Then Q is non-

2 empty for e = ee = e belongs to Q. Further every b 

in Q is of the form b 2n 
a = 2n a e by 

theorem 4.14. Thus every b in Q implies that b = be 

which implies that e is also the right identity of 

Q. Hence by [33J , Q is a commutative monoid. 

Conversely, if Q is a commutative monoid of an 

LA-monoid G with left identity e then Q consists of 

even powers of elements of G. Since Q is a commuta -

ti ve monoid it contains two sided identity. Thus 

for every b in Q we have b = eb be. As Q is a 

subset of G therefore, each b in Q is an element of 

LA-monoid G. Hence each b in G wherein b = eb = be, 

by virtue of theorem 4.14 implies that b = a 2n for 

some a in G and positive integer n. 
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COROLLARY 4.16 

The subset Q defined in theorem 4.15 being 

commutative monoid satisfies every result and 

property of a semigroup or a commutative semigroup. 

REMARK 4.17 

If G is an LA-monoid, then for every a~b,c in 

G and positive integers k,m and n, we have the 

following immediate results: 

2b2 b2 2 a = a 

2kb2k b2k 2k a = a 

2mb2n b2n 2m a = a 

THEOREM 4.18 

(1 ) 

(2 ) 

( 3 ) 

(4 ) 

(5) 

If G is an LA- monoid then for every a,b in G 

and positive integer n, (ab ) n = anbn 
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PROOF 

The result can be proved by induction (29) . 

But we are giving here another mode of proof based 

on successive application of medial law . 

2 Now by medial law (ab ) = (ab ) (ab ) (aa ) (bb ) 

a 2 b 2
• Also by medial law again and by defintion 

(ab) 3 = (ab) 2 (ab) = (a2 b2
) (ab) = (a2a) (b2 b) = a 3b3. 

Further more , by medial law and by de f ini t ion again 

4 3 33 3 3 44 (ab ) = (a b) (ab ) = (a b ) (ab ) = (a a ) (b b) = a b . 

Hence the generalization cUlminates at the required 

resu lt, namely , (ab ) n = anbn . 

THEOREM 4.19 

If G is an LA- monoid and a belongs to G, then 

(ak)m = a km for every positive integer k and m. (A 

straight forward proof based on induction is given 

in (34) . ) 
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PROOF 

Here two cases arise so we discuss them 

separately. 

CASE I 

When k 

implies that 

is odd say k = 2n-1. 

(a2n-1 )m = (2n-1)m 
a By 

result is true for m = 1. 

Then 

induction 

km a 

the 

Now, by induction and by theorem 4.7 (a2n- 1 )m+l = 

(2n-l) (m+l) 
a 

CASE II 

2n-l a = (2n-l )m a 

When k is even say 

implies that (a2n) m 

result is true for m = 1. 

Now, by induction and 

(a 2n) m 2n (2n)m 2n a = a a 

Thus (ak ) m km whether k = a 

2n-l a = (2n- l)m+2n-l a 

k = 2n. Then (ak)m = 
(2n )m 

By induction a 

by lemma 4.8 (a2n )m+l 

km a 

the 

, -

(2n )m+2n (2n ) (m+l) 
a a 

is odd or k is even. 
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DEFINITION 4 . 20 

Let G be an LA-monoid . Qefine a relation p on 

G as follows: 

THEOREM 4.21 

n+l 
a 

If G is an LA-monoid and there exist positive 

integers m and n · such that bma bm
+

1 and anb = 
n+l a then apb . 

PROOF 

Here again two cases arise and we deal with 

them separetely. 

CASE I 

When the positive integers m and n simultan-

eously both are odd or both are even . For definite-

ness we ' assume that m < n, then it implies that n - m 
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is even. We can multiply bma = by and 

thus we have by lemma 4.8 = = 
b n - m+m+1 = Also, by theorem 4.14, = 

Then by medial law 

(bn-mbm) (ea) = bn
+

1
• Since e is the left identity, 

therefore b
n

+
1

• b 1 Hence y emma 4.8 

b n - m+ rna = Hence = 

implies = since = which 

implies that apb . 

CASE II 

When one of the m and n is even the other is 

odd . To be definite let m be even and n be odd and 

that m < n, then it implies that n - m is odd. We can 

mul tiply billa = bm
+

1 by bn-m and thus by theorem 4.7 

and as m+1 is odd we have bn-m (bma ) 

b n - m+m+1 = n+1 b . Also, since e is the left identity 

= implies that 

Then by medial law (ebm) (bn-ma) 
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Now, by theorem 4 . 14 and since m is even 

(bme) (bn-ma) bn+1 , which due to medial law gives 

(bmbn-m) (ea) bn+1 • Then by lemma 4.8 ( bm+n-m) (a) = 

b n+1 which implies that bna = bn+1 • Hence bma = 
bm+1 implies that bna bn+1 • Since anb n+l a 

which implies that apb. 

Thus in all the cases whether m and n are both 

odd, both even or one is odd other is even we have 

apb . 

THEOREM 4.22 

The r elation p de f ined above on an LA- monoid 

is a congruence relation. 

PROOF 

Now apb implies that bka 

Clearly p is reflexive and symmetric. 

k+l 
a 

For transitivity we have to examine the 
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situation in two cases, namely, when k is odd and 

when k is even. 

CASE I 

When k is odd, let apb and bpc so t hat there 

exist positive integers nand m such that, 

(i,ii) 

( iii,iv ) 

Suppose that e is odd, so that, e = ( 2n ) ( 2m ) - 1 = 

(2n-1 ) (2m) + (2m- 1) . Therefore we have 

e 
c a { 

(2n-l) (2m) + (2m-l ) } 
C a. Now, by theorem 4.7 

and by theorem 4.14 
e 

ca { (2n-l ) (2m) 2m-l } 
C C a = 

{ ( c 
(2n-l ) (2m) 2m-l e)c }a. Then repeatedly by left 

invertive law e 
{ (c 

2m-l 
e)c 

(2n- 1 ) ( 2 m)}a ca = = 

{ac(2n- lJ (2m)} (c2m- 1e) . Thus by theorem 4 . 19, by 

(ii i) and by theorem 4 . 18 e c a = 

Since e is the 
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left identity and also by medial 

{(ea) (C(2m-1) (2n- ll b2n-l) } (C2m-1 e) 

{ (eC( 2m- l)(2n-1l (ab2n-1) } (C2m-1e) 

{c (2m-1 ) (2n-l ) (( b2n-1a ) e )} (C2m-1e ) . 

because of theorem 4.14 

= {c (2m-l) (2n-l) b2n } (C2m-1 e ) . 

= 

= 

Now, 

Then 

law, theorem 4.7 and t heorem 4.14 

by 

law 

( i ) 

by 

£ c a = 

and 

medial 

{ C (2m-1) (2n-1) + 2 m - 1 } b2n • Then by theorem 4 . 18 

and because of (iii) we have, 

£ 
c a 

by 

= 

our 

2n( 2m)-1+1 
C 

CASE II 

C (2m-1) (2n ) b2n = 

supposition in the 

£+1 = c 

= 

beginning 

Hence 

£ ca = 

When k is even, let apb and bpc so that there 
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exist positive integers n and m such that, 

b
2n

a b 2n+1 
a

2n
b 

2n+l 
(v,vi) = = a 

c
2m

b 
2m+l 

b
2m

c b 2m+1 
(vii,viii) • = c = 

suppose that t is even, so that t = 2n(2m+1 ) +2m. 

h eta -_ {C2n (2m+l)+2m}a T erefore, we have, Now by 

lemma 4 . 8, theorem 4 . 19 and by (vii) we have, 

t 
ca = { 

2n(2m+1) 2m} 
C C a = 

2m 2n 2m 
{(c b) c }a . Then by theorems 4.18, 4.19 and 4.14 

eta = {( (c2m ) 2nb2n) c 2m }a = {(c2m (2n) b 2n ) (c2me) }a . 

Therefore by medial law, by theorem 4 .14 and by 

lemma 4.8, 
t 

ca = 

= Further 

since e is the left identity, by medial law and by 

theorem 4 .14, we have 
e 

ca = 

= C(2n+l)2m (b2na) • 

= 

Again by (v) , 

b . . eta = c(2n+l)2m (b2n+1 ) y theorem 4.18 and by (Vll) 

= (c
2mb)2n+l = (C2m+1) (2n+l) . h b th T us y eorem 4.19 

t (2m+l ) (2n+l) 
ca = c 

the beginning eta 

Hence by our supposition in 

c2n (2m+l) +2m+l 
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whether k is odd or even, the transitivity of 

relation holds. Thus apb implying bka = bk+1
, akb = 

k+l 
a implies p is an equivalence relation. 

We define the compatibility of p as follows. 

Assume that apb is such that for some positive 

integer k, bka bk+1 and akb k+l 
Let belong = = a c 

to LA-monoid G. Then we show that ( i) bcpac and 

(ii) cbpca. Now, by theorem 4.18 and by medial law 

k (bc) (ac) 
k k 

(bc)(ac) 
k ·k 

(ba)(cc) . Again by 

definition and by theorem 4.18 k (bc) (ac) 

= (bC)k+l. Similarly by theorem 4.18, by 

medial law and by definition, k 
(ac) (bc) 

k+l k+l a c = (ac)k+l . 

= 

This implies that bcpac (A) 

k Also by theorem 4.18 and by medial law (cb) (ca) = 

(ckbk) (ca) = (eke) (bka) , which by definition and by 

theorem 4.18 renders k (cb) (ca) = (Cb)k+l . 

In the same way, by theorem 4.18 and by medial law 
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k (ca) (cb) 

definition 

= (ckak) (cb) = (cke) (a kb) . Again 

k and by theorem 4 .18 (ca) (cb) 

This implies that cbpca. 

by 

= 

(B) 

From (A) and (B) we conclude that p is 

compatible . Thus p is a congruence relation on G. 

DEFINITION 4.23 

A relation ~ on an LA-monoid G is called 

"separative" if and only if a2~ab and b2~ab implies 

that a~b. 

REMARK 4.24 

It is to be noted that the def ini tion of a 

separative relation in an LA-monoid has the 

following implication. That is, a2~ab and b2~ab 

implies that a~b, can be restated as a2e~(ab)e and 

2 
be~(ab)e, which means that a2~ba and b2~ba, 
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implying that b~a by virtue of t~e fact that e is 

the left identity in an LA- monoid , left invertive 

law and theorem 4 . 14 . 

THEOREM 4.25 

The relation p is separative. 

PROOF 

Let a, b belong to an LA- monoid G with left 

identity e . Then by definition of p, there exist 

positive integers m and n such that, 

Now, by theorem 4.19 and 4 . 14, by medial law and by 

the fact that e is the left identity, (a2 )m(ab) = 

2m (a e) (ab) 2m 
(a a) (eb) = Thus by 

definition of p and by theorem 4 .19, (a2 )m(ab) = 

(a 2 )m+l. 

1 0 3 



Similarly, by theorem 4 . 19, by the fact that e 

is the left identity and by me~ial law (b2)n(ab) 

(ea) (b2nb) = ab2n
+

1
• Again 

since e is the left identity and by definition we 

which by 

definition of p and by theorem 4.14, yields 

b 2n
+

2 . Thus = 

b2n+2 , whence by theorem 4.19 

2 n+l (b) . Hence by theorem 4.21, apb and therefore p 

i s separative . 

THEOREM 4.26 

If G is an LA- monoid, then G/p is the maximal 

separative homomorphic image of G. 

PROOF 

We know that p is separative. Hence G / p is 

separati ve. We now show that p is contained in 

every separative congruence relation ~ on G. 
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Let apb so that there exists positive integer 

n such that 

and 

We have to show that acrb, wh€~rE~ cr is separative 

congruence on G. Let k be any positive integer such 

(i) 

Suppose now k ~ 2, then by theorems 4 . 18 and 4 . 19 

b
2k- 2 2 . a = 

(bkbk- 2
) (aa), whether k is odd or even and if k = 

2, bO will denote e the left identity of G. Thus by 

medial law (bk-1a) 2 = (bka) (bk-2a), which i mplies 

Now two cases ar ise, 

that is, k is even or odd. 

CASE I 

Let k be odd. Then because k+1 is even, by 

theorem 4.14 and because of medial law; 
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= 

Again by theorem 4 . 7, by lemma 4 . 8 and by medial 

law = = (b2k- 1
) a = 

= (bk- 1e ) (bka) . Th b th 4 14 en y eorem • , 

(ii) 

Further by medial law and since e is the left 

identity 

bk(bk-1a) . 

Hence (bk-1a ) 20-bk (bk-1a) 

NoW, b
k+1 bk 0- a, implies that 

=(ebk ) (bk-1a) 

(iii) 

(i v) 

= 

which because of k-1 is even and because of lemma 

4 8 b (k-l)+(k+ll""bk-l(bka) . means v 

Therefore, by theorem 4.19, (bk )20-(bk- 1) (bka). But 

bk-1(bka) = bk(bk-1a ) from (ii) and (iii) and this 

. l' k 2 k b k- 1 
lmp les that (b) o-b ( a ) (v) 

Thus from (iv) and (v) we conclude that 

106 



CASE II 

Let k be even. Then because e is the left 

identity and because of medial law we have, 

= = 

b k
-

2 (bk
+

1a) • Now since k-2 is even so by theorem 

4.14 and by medial law, ( b k+1
) ( b k-2a ) = 

(bk- 2 e) (bk+1 a) = (bk-2b k+1
) (ea) . Further, by 1 emma 

4.8 and since k-2 is even, we have, 

(b(k- 2)+(k+U ) (ea) 

Again by 

(bk
+

1
) (bk

-
2a) 

b k (bk
-

1a) . 

medial 

= 

law and by 

= 

theorem 4 . 14, 

(bke) (bk-1a ) = 

( i) 

Now by medial law and since e is the left identity 

(bk+1) ( b k- 2a) = (ebk ) (bk-1a ) (ebk- 1
) (bka ) 

b k-1 (bka) (i i ) 

Hence by virtue of (i) we have, 

(i i i) 
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h ' h b(k-l,+(k+l'ry-bk-1(bka). w lC means v Again . because 

k+1 is odd and because of the.orem 4.7 it implies 

that Then by theorem 4 . 19 

from (i) 

and ( ii), and this implies that 

(bk) 2crbk (bk-1a) 

Thus we conclude from (iii) and (iv) that 

(iv) 

Hence the relation is true whether k is odd or even. 

k k-l Let x = band y = b a, then from 

(b k ) 2crbk (bk-1) and (bk-1 a) 2crbk (bk-1 a) 

2 we have x crxy and 2 Y crxy . Since cr is separative 

therefore, by virtue of remark 4 . 24, bk-1acrbk. It 

can be similarly shown that ak-1bcrak. Therefore if 

holds for k, it holds for (k- l). By induction down 

from k, it follows that (A) holds for k = 1. There-

fore, by use of left identity a straight forward 

imp~ication of (A) yields bacrb2, abcra2
• Since cr is 
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separative a~b. Thus p ~ ~ and Gjp is the maximal 

separative homomorphic image of G by virtue of [6, 

Proposition 1.7~ p - 18] . 

THEOREM 4.27 

Let p and ~ be separative congruences on an 

LA- monoid G. If P n (GxG) ~ ~ n (GxG ) , then p ~ ~. 

PROOF 

Let apb, then since p is separative 

obviously [ a 2 (ab) ] 2 , (a 2 b2
) 2 E G and by medial law, 

by left invertive law and by the fact the e is the 

left identity, 

3 4 = b ( a a) 

E G. Also ~ is separative, therefore, 2 2 [a (ab)] ~ 

2 2 2 a (ab ) ~ (a b ) 

because 2 2 
X ~xy~y i mplies that x~y since p is 
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separative 4 2 2 a pa b , b 4 2b2 pa . Obviously 2b2 a , 4 b 4 a , 

belong to G, we have t her efore 4 2 2 a (Ja b . 

since by theorem 4.18 = 
2 (ab ) , therefore 

2 2 2 2 2 ( a ) (Ja (ab ) (J (ab ) . Th u s we have a (Jab becau se 

2 2 X (JxY(JY implies that X(JY 

Finally, 2 2 2 2 apb and a ,b belong to G, we obtain 

COROLLARY 4.2 8 

The subset Q defined in theorem 4.15 is 

separative. 

PROOF 

Self evident --- as Q is a commutative monoid 

by theorem 4.15, hence it is separative. 
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CHAPTER FIVE 

LEFT ALMOST GROUPS 

Several authors, for example, B.M. Henry [13], 

M.A. Kazim and F. Hussain [19] and D .C. Murdock 

[24] have generalized the concept of a group and 

have investigated the structural properties of 

these generalizations. A left almost group which 

though is a non- associative structure has 

interesting resemblance with a commutative group. 

Here specifically, it is shown that if G is a left 

almost group and H is a left almost subgroup then 

G/H is a left almost group. Further, we have proved 

that if G is a finite left almost group and H is a 

left almost s ubgr oup of G then the order of H 

divides the order of G. 
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In this chapter we have also investigated as 

to how a f ini te set G under a binary operation * 

becomes an LA- group. It has been shown that there 

is a bijection between the group of cyclic 

permutations of elements of G and this LA-group. 

DEFINITIONS AND EXAMPLES 5.1 

Let us recall here the definition of an 

LA- group . A groupoid G is called a left almost 

group, abbreviated as LA- group, if 

( i ) t here exists e E G s uc h t hat ea = a f o r 

every a E G, 

(ii) for every a E G there e x ists a 'EG such 

that a'a = e 

(iii) (ab)c = (cb)a for every a,b,c E G. 

Throughout this chapter, by e we shall mean the 

left identity. It is not very hard to see that the 

left identity e and the left inverses are unique. 

The condition (iii) is known as the left invertive 
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law. For details of this law see [20], [25] , 

[32], [33] and [34] . It is i mportant to note that 

if a' is the left inverse of a t hen aa' = (ea)a' = 

(a'a)e = e implies that a' is the right inverse 

of a . 

Suppose (G , . ) is a commutative group. Then it 

is easy to see that (G, *), where * is defined as: 

a*b = b . a - 1 for all a,b E G, is an example of an 

LA- group . 

RESULTS 5.2 

Now we prove some results concerning an 

LA- group G. By a' we shall mean the inverse of 

a E G. 

THEOREM 5.3 

An LA- group is cancellative. 
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PROOF 

Let G be an LA-group and a, b, c be arbitrary 

elements of G such that ba = ca. Then, by left 

invertive law, (ba ) a' = (ca ) a' implies that 

(a'a)b = (a'a) c. This shows that b c as a'a = e 

and e is the left identity. Thus G is right 

cancellative. 

Now let ab = ac. Then (ab) e = (ac) e implies 

that (eb)a = (ec)a. This shows that ba = ca. Since 

G is right cancellati ve, therefore b c. This 

shows that G is left cancellati ve as well; thus 

implying that G is cancellative. 

It is important to note that if G is an LA ­

group and a', a" are the left inverses of a and a' 

respectively then a" = (a ' ) ' = a. Also if a,b E G 

then (ab)' = a'b'. Another important fact is that G 

is medial, that is, (ab) (cd) (ac) (bd) for every 

a,b,c,d E G. 

A non-empty subset H of an LA-group G is said 
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to be an LA-subgroup of G if H is itself an 

LA-group under the same operation as defined in G. 

We denote this fact by H ~ G. 

THEOREM 5.4 

If G is a n LA-group, then 

( i ) GG = G , 

( i i) eG Ge = G . 

PROOF 

(i) If a E G then a = ea implies that a EGG. Thus 

G S;; GG. Conversely, if a E G then a = bc where 

b, c E G. Since G is a groupoid therefore bc E G. 

Hence a E G implies that GG s;; G. Thus G = GG. 

(ii ) Ge = (GG ) e = (eG ) G = GG. This implies that 

Ge = GG = G eGo Hence eG = Ge = G. 

THEOREM 5.5 

If H is a non-empty subset of an LA-group G 
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then H ~ G iff ab' E H, for all a,b E H. 

PROOF 

Suppose H ~ G. Then a, b E H implies that 

a,b' E H and so ab' E H. 

Conversely, suppose for every a,b E H, ab' E H. 

Since H s; G therefore for every a,b,c E H, (ab)c 

(cb)a . If we let a = b then aa' a'a = e implies 

that e E H. Also if we let a = e then eb' E H 

implies that b' E H. Moreover, a, b' E H implies 

that a(b')' E H. Hence ab E H as (b')' 

H ~ G. 

LEMMA 5.6 

If G is an LA- group and H ~ G, then 

(i) aH = (Ha)e and 

(ii) (ab)H = H(ba) 
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PROOF 

(i) aH = (Ha ) e is trivially true because ah 

(ea )h = (ha )e for all h E H. 

(ii) If x E (ab)H then x = (ab ) h for some h 

in H. This means that x = (hb) a = (hb) (ea ) 

(he) (ba ) because H is medial. But he E H because 

h,e E H. Thus x E Hba and so (ab)H £; H(ba ) . 

Conversely, let x E H(ba) . Then x = h(ba) for some 

hEH. Since ba (ab ) e, x = h ( (ab) e) = (eh) ( (ab) e ) = 

(e (ab)) (he) = (ab ) (he) . As e, h E H, he E H and so 

(ab) (he) = x E (ab)H. This shows that H(ba) £; (ab)H . 

Combining the two inclusions we conclude that 

(ab)H = H(ba) . 

Let G be an LA- group and H :s G. Then for 

a,b E G, we say that a is congruent to b mod H if 

and only if ab' E H. We denote this fact by 

a == b (mod H) . 
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LEMMA 5.7 

The relation a - b (mod H~ is an equivalence 

relation. 

PROOF 

As H ~ G, aa' = eeH implies that a 5 a (mod H) • 

Therefore the relation '5' is reflexive. 

Suppose a b 

ab' E H . Since H :S 

(mod H) . This implies t hat 

G therefore (ab')' E H. But 

(ab' )' = a' b" = a' b implies that a' b E H and so 

ba' = (eb)a' = (a'b)e e H. This shows that b == a 

(mod H). Thus the relation is symmetric. 

Lastly, let a == b (mod H) and b - c (mod H) . 

These relations imply that ab' and be' belong to H. 

Now since the relation is symmetric ba' E H. As H 

is an LA- subgroup (ba')' E H and so b'a E H. 

Further ac' = e(ac') = (b'b)( ac'). By the medial 

law (b'b) (ac') == (b'a) (be') and so b'a E H, . bc' E H 

implies that ac' = (b' a ) (be') E H. That is a - c 

(mod H). This proves that the relation is 
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transitive. 

By Lemma 5.7, the relation a = b (mod H) is an 

equi valence relation and so it partitions G into 

non-empty and disjoint classes. Let C denote the 
a 

equivalence class {x: x = a (mod H)}. A right coset 

H in G is defined as the set Ha = {x: x = ha for 

h E H}. 

LEMMA 5.8 

In the above notation C Ha for all a E G. 
a 

PROOF 

I f x E C then x = a 
a 

(mod H) and so xa' E H. 

This implies that xa' = h where h E H. Now (xa ')a = 

ha implies that (aa') x = ha. That is ex = x = ha 

and this implies that x E Ha. Thus for every 

X E C , we have x E Ha. That is C ~ Ha . 
a a 

Conversely, if x E Ha, then x = ha for some 

h E H. This implies that xa ' = (ha ) a ' = ( a 'a)h = h 
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and hence xa ' E H. Consequently, x = a (mod H) and 

so X E C. Thus every x E Ha implies that x E C . 
a a 

That is, Ha ~ C 
a 

Combining the two inclusions we 

conclude that C Ha. 
a 

REMARK 5.9 

An LA- group can be partitioned into right 

cosets only and an RA-group into left cosets only, 

as such we do not require two sided decomposition 

In case of LA-groups (RA- groups). For details in 

this connection, we can refer to [18J . 

THEOREM 5 .10 

If H is an LA-subgroup of a finite LA-group G 

then the order of H divides the order of G. 

PROOF 

Using lemma 5.8 and following the group 

theoretic technique it lS easy to prove the 
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theorem. 

It is interesting to note that we can factor 

an LA- group G by any of its LA- subgroups. We know 

that if G is a group and H is a subgroup then 

H(ab ) '* (Ra ) (Hb) unless H is normal in G. Here, in 

the case of LA- groups, there is no such 

requirement . Hence we have the following theorem. 

THEOREM 5. 11 

If G 1S an LA-group and H ~ G then 

G/ H = {Ha: a E G} is an LA-group. 

PROOF 

Let x E (Ha) (Hb) . Then x = (h1a) (h
2
b) for some 

h ,h E H. By the medial law x = (h h ) (ab) and s o 
1 2 1 2 

X E H(ab) . This implies that (Ha) (Hb) ~ H(ab) . 

Conversely, if x E H(ab) then x = h(ab), for 

some h E H. Since H contains the left identity, . we 

1 2 1 



can write x = (eh) (ab) and so x = (ea) (hb) by 

medial law . Because ea E Ha and hb E Hb, therefore 

x = (ea) (hb) E (Ha) (Hb) . Hence H(ab) S;; (Ha) (Hb) and 

the two inclusions imply that H (ab) (Ha ) (Hb) . 

Thus G/H is closed under the multiplication of 

right cosets of H in G. 

Rest, it is easy to show t hat eH = H = He is 

the left i denti t y i n G/H , Ha' is t he left inverse 

o f Ha and t h e l eft i nvert ive law holds in G/H . 

REMARK 5.12 

The isomorphism theorems wi th a careful 

manipulation have been proved in [18] . It is to be 

pointed out that we do not need the concept of 

group theoretic normality and we can factor every 

LA- group G with its LA- subgroup H. We know that if 

G is a group and H is its subgro~p then (aH) (bH) * 

(ab)H, unless H is normal in G. Here there is no 

such condition because of the medial property . That 
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is if aH, bH belong to G/H, where G :s an LA- group 

and H is an LA- subgroup, t hen (aH) (bH) (ab)H 

without having extra condition on H. 

THEOREM 5.13 

Every f ini te set G, n 2: 3 forms an LA- group 

under the binary operation * where 

PROOF 

and 

a *a 
1 j 

a and k == (j+1) - 1 (mod n ) 
k 

The set G is non-associative because 

(a *a ) *a = a *a 
1 j t j+1-1 t 

= a = a t+1- j-1 + 1 t+l- j 

a *(a *at ) = a * (a ) 
1 j 1 t+1- j 

= a = a 
t+1-j+1-1 t-l-j+2 

which implies that (a *a ) *a D '* a * (a *a n ) • On the 
1 j <. 1 J <. 

other hand G is an LA-semigroup as 

a *a 
j+1-t 1 

(ae*a
J

> * 

= 

a . 
1 

a = 
1+1-J-1+t aD· 

1 +<.- J 
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Thus 

(ao *a > *a 
<. j 1 

(a *a ) *a n 
1 J {. 

= 

= 



G possesses the left identity a as we can see 
1 

that a *a 
1 

a 
1+1-1 

a and a *a 
1 1 1 

a 
1+1-\ 

a 
2-\ 

Hence a is the left identity in G. Also G contains 
1 

inverses because for every a *a a = a 
\ +1- 1 1 

which implies that every a in G is its own inverse. 
1 

So G is an LA- group. 

THEOREM 5 .14 

There e x ists a bijection between the LA - group 

G, defined in theorem 5 . 13 and the group of cyclic 

permutations of the elements of G. 

PROOF 

Since both the structures are finite, it is 

suff icient to show that mapping between the two 

structures is one- one. 

Now G {a ,a , ... , a } and 
1 2 n 

T = {a ,a , ... ,a} where each a 
1 2 n 1 

in T is a cyclic permutation of the elements of G 
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and a 
1 

I. Define a mapping ¢: G ~ T such that 

( 
a a a a 

1 2 3 a~_J . a = 
1 a a a a a 

1 1+1 1 + 2 n 1 

Then ¢ (a ) = ¢ (a ) implies that a a which 
1 J 1 J 

implies t hat 

( 
a a a 

:~-J 1 2 3 a = 
1 a a a a a 

1 1+2 1 + 2 n 1 

( 
a a a 

:~-J 1 2 3 

a a a a a 
J J+1 j + 2 n 1 

and thus in particular a a So ¢ is a one to 
1 J 

one mapping . 

REMARK 5.14 

Thus the above theorem establishes a bijection 

between the cyclic group of permutations and an 

LA-group. 
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EXAMPLE 5.15 

Let S {a ,a ,a ,a ,a }, then under binary 
12345 

operation * defined in theorem 5.13, ( G, * ) is an 

LA-group. Completing Caley's table for (G, * ) 

* a a a a a 
1 2 3 4 5 

a a a a a a 
1 1 2 3 4 5 

a a a a a a 
2 5 1 2 3 4 

a a a a a a 
3 4 5 1 2 3 

a a a a a a 
4 3 4 5 1 2 

a a a a a a 
5 2 3 4 5 1 

It is to be noted that the group of cyclic 

permutations is displayed with mathematical 

symmetry in the form of rows ln Caley's table. Tne 

result of table can easily be generalized to n 

elements. 
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