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COSET DIAGRAMS FOR A TWO GENERATOR GROUP 

ABSTRACT 

We study the actions of the group G (2, n ) 

with presentation 

on the projective 

with the help 

2 n 2 2 2 <X ,y,t: x =y =t = (xt) = (yt) 1 > 

lines over the Galois Fields F 
q 

of coset diagrams D('lJ,q,n) . 

Specifically, we show that associated to these 

actions there are coset diagrams D(t'J-,q , n ) . These 

coset diagrams are graphs whose vertices belong to 

the projective lines over a Galois field F. We 
q 

have parametrized these actions also. Finally, 

u sing the coset diagrams D( t'J-,q , 6 ) we have proved 

the following result: Let n = p + 1, where p is a 

prime such that 6 and 12 are squares in F and n 
p 

2(1 + r), for a prime r. Then f or all such n, both 

the alternating group A and symmetric group S 
n n 

occur as homomorphic images of the group ~(2,6,6) 

with presentation 

2 6 6 2 2 2 <x ,y , t:x = y = (xy ) = t = (x t ) = (yt ) = 1 > • 
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PREFACE 

A coset diagram is a graphical 

representation of a permutation action of a 

finitely generated group. Graham Higman propounded 

the idea of coset diagrams for the (2,3,7) triangle 

group. He used these diagrams fo prove that the 

alternating group A is a Hurwitz group for all but 
n 

many positive integers n. 

Q. Mushtaq has studied extensively coset 

diagrams· for the actions of the extended modular 

group on the proj ecti ve lines over Galois fields 

and has laid the foundations for the study of such 

diagrams. I have generalized many of the results 

contained in his D.Phil. thesis. 

The thesis comprises five chapters. 

Chapter 1 gives a brief discussion about the coset 

diagrams and also contains some discussion of the 

polyhedral groups and the coset diagrams related to 

them. 

In Chapter 2, we have proved that associated 

to an action of G(2,n) <x ,y,t: 

iii 

2 
X y 

n 



2 (yt) 2 the projective lines = (xt ) = = 1 > on over 

Galois fields F , there is a coset diagram. We have 
q 

in fact parametrized, with 

the actions of G (2, n) on 

lines over f~nite fields 

the elements 

PL (F ), the 
q 

F. Also · for 
q 

~ of F , 
q 

projective 

each such 

action we have developed a method to construct a 

coset diagram D(~,q,n) . 

A fragment 0 of a coset diagram is a pair of 

closed connected paths in the coset diagram which 

share a common vertex. We study the coset diagrams 

for the actions of the group G(2,n) on PL (F ) 
q 

and 

we f ind condit ions for the existence of suitable 

fragments in such diagrams. 

Coset diagrams arising from t he 

non- degenerate actions of G(2,n) on PL(F) may be 
q 

thought of as being composed of fragments, these 

fragments themselves being composed of a single 

circuit, or a number of circuits. These fragments 

are very useful in determining the group actions. 

In Chapter 3, we have found conditions for 

the existence of certain standard 
, 

simple circuit's 

in D(~,q,n) , which occur quite 
---/ 

-frequently in 

D(~,q,n ) . We have also considered the circuits in 

iv 



D('t3,q,n) having fixed points of x, y, xy and t, 

where x, y, t are all in PGL(2,q). 

The cases for the existence of more than one 

circuit in the coset diagrams 0 ('l9- , q, n) have been 

discussed In Chapter 4. We have in fact proved 

that: given a fragment 0 of a coset diagram, there 

is a polynomial f in ~ ( z ) such that if 0 occurs In 

D('l9-,q,n), then f('l9- ) = O. A converse is obtained by 

considering the actions of G( 2,n) on F 2 U { oo }. 
q 

The group G (2, 6) is an important one. We 

have shown applications of theorems, proved in the 

preceding chapters, by considering an action of 

G(2,6) on PL(F ), where q is an odd prime. We have 
q 

discussed some standard fragments of the coset 

diagrams for these actions in Chapter 5. Existence 

of some special types of fragments in D('l9-,q,n) can 

be very useful. Conditions for the existence of 

some special types of fragments in D (ir, q, 6) have 

been used to study an action of ~(2,6,6) 2 = <x ,y : x 

6 
Y 

6 (xy ) 1> on PL (F ) . Finally, by using 
q 

coset diagrams for the triangle groups ~(2,6,6), we 

have proved the following result: For a family of 

positive integers n, both the alternating and 

v 



symmetric groups occur as homomorphic images of the 

group b.(2,6,6) . 

A paper containing results from Chapter 2 

has been submitted to a journal for consideration 

of pUblication. Another paper containing the 

results in Chapter 3 has been accepted in Japonica 

Mathematica. 

The results embodied in Chapter 4 have 

recently been accepted in Journal of Algebra. One 

separate paper, comprising results of Chapter 5 has 

been accepted for publication in Discrete 

Mathematics. 
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CHAPTER ONE 
GROUPS WITH GRAPHICAL REPRESENTATIONS 

1.1 Introduction 

The theory of graphs has a wide application 

in several branches of mathematics. Graphs provide 

methods by which various algebraic and topological 

structures can be visualized. Graphical methods 

have been explicitly used to study the finitely 

generated groups. The graphs have proven themselves 

as an economical mathematical technique to prove 

certain important results (see e. g. [2], [3], [4], 

[9], [14J and [20J). For finite groups of small 

order the graphs can be used instead of 

multiplication tables; they give the same 

information but in a much more efficientway (see 

e . g ., [ 3 ], [ 22 J and [ 24 ]) . 

The method of representing group actions by 

1 



graphs has a long and rich history . The first paper 

that appeared on this subject in 1878 was by 

A.Cayley [3]. Later, mathematicians like W.Burnside 

[ 2 ] , H. Coxeter 

A.Hurwitz [14], 

and W.Moser [9], M.Dehn 

O.Schreier [22], J.Whitehead 

[10] , 

[ 28] , 

etc. , contributed seminal papers containing 

graphical representations of groups. In 1978, 

G.Higman propounded the idea of coset diagrams for 

the modu lar group. M.Conder [ 4 ] and Q.Mu shtaq [1 9 ] 

in their separate works, have used these diagrams 

to solve certain 'Identification Problems' 

concerning Hurwitz groups. 

In our next section we give a brief 

discussion about the coset diagrams and the works 

that have been done to prove certain important 

results using these diagrams. 

1.2 Coset Diagrams 

A coset diagram is, in fact, a graph whose 

vertices are the (right) cosets of a subgroup of 

f ini te index in a f ini tely generated group. The 

vertices representing cosets v and w (say ) , are 

2 



joined by an S. - edge, 
~ 

directed from v to w, 

wh enever v Si= w. It may well happen that v Si= v, 

in which case the v-vertex is joined to itself by 

an S.-loop or a fixed point. 
~ 

Formally a coset diagram , corresponding to 

a subgroup H of finite index in a finitely 

genera ted group G, is a directed edge , coloured 

graph, whose vertices are the (right ) cosets of H 

in G and whose edges are def ined as follows: we 

take a specific set of generators for G, and for 

each generator x and each vertex Hg, for some g in 

G, draw an edge of colour EX from Hg to Hgx. This 

lS of course a generalization of the Cayley colour 

graph corresponding to a (finite ) presentation for 

G. These diagrams may be drawn for any f ini tely 

generated groups depicting actions on any arbitrary 

sets or spaces. For example, take the group <x ,y,z 

2 3 5 
X = Y = Z =1 > , and consider a transi ti ve 

permutation representation (on 15 points ) given by 

assigning permutations 

x acting as (5,7) (10,12 ) 

y acting as (1, 6,11 ) 

3 



z acting as (1,2,3,4,5) (6,7,8,9,10) 

(11,12,13,14,15) 

This can be represented by the following diagram. 

4 

"'-
"'-

"-
"'-

"
"-

"-
7 

8 

/ 

9 

Figure 1 

/ 
/ 

/ 
/ 

/ 

A. Cayley [3] used graphs to study certain 

groups in 1878. He represented the multiplication 

table of a group with given generators by a graph, 

and proposed the use of colours to distinguish the 

edges of the graphs associated with different 

generators. The Cayley diagram for a given group is 

a graph whose vertices represent the elements of 

the group, which are the cosets of the trivial 

subgroup. O.Schreier [22] generalized this notion 

4 



by considering a graph whose vertices represent the 

cosets of any subgroup. In 1965, H. Coxeter and 

W. Moser [9] used both Cayley and Schreier diagrams 

to prove some results on finitely generated groups. 

Then in 1978, G.Higman introduced the coset 

2 diagrams for the modular group PSL(2,~) = <x ,y :x = 
3 

Y = 1>. This diagram is, in fact, a graphical way 

of representing a permutation action of the groups 

PSL ( 2,~ ) or PGL(2,~ ) with presentation 

2 3 2 2 · 2 
<x, Y ,t : x = y = t = (xt ) = (yt) = 1 >. 

K,:ery connected coset diagram for a 

f ini tely-generated group G on a set of n points 

corresponds to a transitive permutation 

representation of G on that set, which is in fact 

equivalent to the natural action of G on the cosets 

of some subgroup H of index n . Coxeter and Moser 

[9] attribute these diagrams to Schreier. G. Higman 

has considered the special case of the modular 

group and has found that coset diagrams for this 

particular group could be used to show that for all 

n, large enough, the alternating group A can be 
n 

generated by the elements x and y satisfying the 

5 



relations x 2 3 
Y (xy ) 7 = 1. 

We define coset diagrams for the two 

generator group H(2,n), with presentation 

2 <x ,y : x n = y = 1 > (1.2.1) 

as a graph which consists of a set of edges and 

n - gons. They are called coset diagrams because the 

vertices of the n-gons can be identified with 

cosets of the group. The act ions of x and yare 

best illustrated by a coset diagram, in which the 

n-cycles of yare represented by n-sided polygons 

(whose vertices are permuted in an anti-clockwise 

fashion), and with the remaining edges indicating 

the cycles of the involution x. The fixed points of 

yare denoted by heavy dots; and to make the 

diagram less complicated, the loops representing 

the fixed points of x are omitted. 

In our s ubsequent work, we have defined 

coset diagrams for the group H(2,n) defined by 

(1. 2.1 ) or the extended group -G(2,n) with 

presentation 

2 n 2 2 2 < X , Y , t: x y = t = ( x t ) = (yt) = 1 >. (1.2.2) 

Note that " in this case the action of t is 

6 



represented by reflection In the vertical a x is of 

symmetry. 

steinberg [24 J has proved that all f ini te 

simple groups of Lie type are two generator groups. 

It is also generally known that many, if not all, 

known finite s imple groups are groups of Lie type. 

This means that all but a finite number of finite 

simple groups are t wo generator groups. The coset 

diagrams, defined for the group H(2,n) or G(2,n ), 

thus can be useful In studying certain finite 

simple groups. 

In the following, the notation ~(k,l,m) 

shall indicate the triangle group with presentation 

kIm <X,y :X = y = (xy) = 1> as defined by Coxeter and 

* Moser in [9J. Also by ~ (k,l,m), we shall mean the 

extended triangle group with presentation 

In 1977, W. Stothers [25J has worked on 

subgroups of the triangle group ~(2,3,7) using 

coset diagrams. with a subgroup of finite index in 

~( 2,3 ,7), he associates a quintuple of non-negative 

integers (u/p,e,f,g) with u ~ 1 and u = 84(p-1 ) + 

21e + 28f + 36g. He has shown that, with three 

7 



exceptions, each quintuple satisfying the 

condi tions corresponds to a subgroup. The proof 

uses coset diagrams and an analogous method of 

\ composi tion' of similar or different diagrams by 

h a ndles. 

It is well-known now that the Finite Simple 

Groups are classified into four categories, namely; 

(i) Sporadic Groups, (ii) Groups of Lie type, (iii) 

Cyclic groups of prime order and ( iv) Alternating 

groups of degree n, where n ~ 5. 

In 1978, G.Higman discovered that for all 

sufficiently large integers n the alternating group 

A can be generated by elements x,y satisfying the 
n 

relations 2 3 
X = Y 

7 (xy) = 1. He proved this by 

using a method for . construction of transitive 

permutation representations of the triangle group 

~(2,3,7) of arbitrarily high degree , together with 

a clever argument based on a theorem of Jordan 

[ 29 ]. The work was never properly published. In 

1980, then M.Conder [5J generalized this problem 

and proved certain results using coset diagrams. 

Specifically he proved that for n > 167 , the 

symmetric group S lS a homomorphic image of .the 
n 

8 



infinite group 

2 3 2 7 2 2 <X ,y,t: x = y = t = (xy ) = (xt ) =(yt ) = 1>. (1.2.3) 

In his doctoral thesis [4J, he has considered two-

element generation of certain permutation groups, 

especially for finite alternating and symmetric 

groups . with the help of coset diagrams he has 

proved that if k is any integer greater than six, 

then all but finitely many of the alternating 

groups A can be generated by elements x , y which 
n 

satisfy the relations 

2 
X y3 = (xy ) k 1. (1.2.4) 

Also if k is even then the same is true for all but 

finitely many of the symmetric groups S . Most part 
n 

of the thesis is devoted to showing that all but 64 

of the alternating groups are Hurwitz groups. Note 

that a Hurwitz group is any finite non-tr ivial 

quotient of the triangle group ~(2,3,7). 

In [6], M. Conder has used the method of 

W. Stothers and G. Higman to show that for all but 

finitely many positive integers n, both the 

alternating group A and the symmetric group s 
n n 

occur as quotients of G6
,6,6 with presentation 

9 



26 62 2 2 6 <X ,y,t: X = y = (xy ) = t = (xt ) = (yt) = (xyt ) =1 >. 

In 1983, Q. Mushtaq [ 2 0J s tudied the coset 

diagrams for the modular group extensively and 

proved that for each element 19- of a f ini te field 

F, where q is a prime-power, there exists a coset 
q 

diagram for the natural permutation action of 

PGL(2,l) on PL(F), the projective line over F 
q q 

containing the eleme nts of F together with the 
q 

additional point 00. The thes is contains also some 

partial answers concerning the 'Reconstruction 

Conjecture'. That i s, the way a diagram i s 

reproducible from certain types of sub-diagrams or 

fragments. If we have certain fragments of a coset 

diagram, we can find the conditions for the 

existence o f those fragments in the respective 

coset diagram. The condition in fact is a 

polynomial in ?l [z]. The modular group PSL ( 2, ?l ) 

<x , y: 2 3 X = Y = 1 > has many important homomorphic 

i mages. For many reasons connected with PGL ( 2, q) 

actions on surfaces it is important to know when 

PGL(2,q ) is a n image of the extended modular group 

PGL(2,l). The solution to that has been given 

10 



in [20 J • 

We study the coset diagrams for the actions 

of G(2,n) on projective lines over finite fields 

and we find conditions for the existence of 

suitable fragments in such diagrams. Q.Mushtaq [ 20 J 

laid the foundations for this study, in the case 

n = 3. We have extended his work to the cases in 

which n > 3 , assuming that the characteristic p, 

where p > 3, of the finite field F 
q 

in question is 

prime to 2n. For, if p is not prime to 2n, then for 

any positive integer d, with 1 < d < n, (p, 2n) = d, 

implying dip and dl2n. But dl2n implies din (since 

d~2). Now in our case we choose n to be the least 

positive integer such that yn 1, so that n has no 

positive divisors except 1 and n itself. Hence d = 

1. Note that the case n = 3 becomes a special case 

of it. 

The coset diagrams arising from the actions 

of PGL(2,l) on PL (F) can be thought of as composed 
q 

of fragments.The fragments themselves may be 

composed of a single circuit or of a number of 

circuits. A condition for the existence of a 

certain fragment of a coset diagram in a coset 

11 



diagram for an action of PGL(2,71 ) on PL (F ) 
q 

has 

been found in [16]. There are special types of 

fragments of coset diagrams which occur quite 

frequently in certain coset diagrams . The 

condi tions for their existence in coset diagrams 

representing the actions o f a factor group of 

PSL(2,71) on PL(F) have been given in [1 9 ]. 
q 

In [ 23 ], the author has discussed the coset 

diagrams for the h omomorphic images of the group 

t':. (2,3, k), which has been defined by Coxeter and 

Moser in [9] as the group with presentation 

2 <x , y : x 3 k 
Y = (xy ) = 1> ( 1.2.5 ) 

for some k ~ 2. In fact we use coset diagrams to 

determine the group ~(2,3,k). We can observe that x 

has order 2 and y has order 3 , (by the triangles 

that we choose ) . Also since every vertex of the 

coset diagram is fixed by (xy)k, for some k ~ 2, we 

in fact obtain a coset diagram for the permutation 

representation of the group t':. ( 2 , 3 , k ) . In order to 

do so , we have found a condition for the existence 

of a coset diagram in which every vertex is fixed 

by k (xy ) . We h ave studied separate ly [18] the 

particular case when k = 6. The case for k = 6 has 

1 2 



some special properties so we have given it a 

separate treatment. It should be noted, however, 

that all such cases (where xy has order 6), the 

subgroup generated by x and y is either cyclic (as 

discussed in [ 18 ] ) or an extension by 

elementary Abelian group. 

C 
6 

of an 

In our subsequent work we have generalized 

many of the results of Q. Mushtaq [20] , by 

considering the actions of the group G(2,n), 

defined by (1.2.2) , on PL(F), where q is a 
q 

prime-power, and we have studied the coset diagrams 

for these actions. 

Let G(2,n) be the group defined by (1 .2.2 ) . 

Let ex be a homomorphism from G (2, n) to PGL (2, q) , 

the group of linear-fractional transformations 

z ~ (az+b)j(cz+d) (1.2.6) 

with a,b,c,d in F and ad-bc ~ o. Then ex is called 
q 

degenerate if <y> is normal in PGL(2,q), where y = 

yex. otherwise it called non-degenerate. 

Relationships between the non-degenerate 

homomorphisms ex and the parameters ~, where ~ c F , 
q 

have been found in Chapter 2. The role of the 

parameter ~ is also explained in this chapter. 

13 



Apart from degenerate cases, when the image 

of <x,y,t> in PGL(2,q) does not contain PSL(2,q), 

the actions will be parametrized by an element ~ of 

F, that describes the conjugacy class in PGL(2,q) 
q 

of the projective transformations representing xy. 

Furthermore , for suitable fragments, containing 

only one cycle, there wi ll be a polynomial f(~) in 

7l [~J such that the presence of the fragment is 

equivalent to f (~) being a square in 

suitable fragments containing two 

F ; 
q 

and for 

independent 

cycles, there will be a polynomial f(~) in 7l[~J 

such that the presence of the fragment 1S 

equivalent to f· (~) o. We have given the 

conditions for the existence of such circuits in 

Chapters 3 and 4. 

We can study the properties of some group 

just by taking a 'patch' of a coset diagram related 

to that group instead of studying the whole diagram 

which may be of larger degree. For this purpose, we 

need to find the conditions for the existence of 

such fragments in the respective coset diagrams. 

In Chapter 3, we have studied just the 

single circuits of coset diagrams and have found 

14 



the conditions for their existence in the coset 

diagrams. The cases for the existence of more than 

one circuit, which are interconnected, in the coset 

diagrams have been discussed in Chapter 4. We have 

given a method of joining any two or more 

fragments. We have found conditions for the 

existence of certain interconnected fragments in 

the coset diagrams. 

since we study the coset diagrams for the 

actions of the group G(2,n ) on PL (F ), 
q 

the 

projective lines over finite fields F , for a 
q 

prime-power q, the degree of G(2,n) is I PL (F ) I 
q 

q + 1. Suppose we need to draw a coset diagram 

giving the transitive representations of the group 

G(2,n) of very large degree. For a particular q, we 

can find the elements f(~ ) being squares in F that 
q 

guarantee the presence of certain fragments in the 

respective coset diagram. So, in a way, by joining 

those fragments we can finally obtain the main 

coset diagram giving the transitive representation 

of the group G(2,n). 

We have considered the actions of the 

particular group G(2,6), with presentation 

15 



on PL (F ) 
q 

<X,y,t, 2 6 2 2 2 X =y =t = ( xt ) = ( yt ) = 1> , 

and have discussed the circuits a nd the 

fragments of the coset diagrams for these actions 

in Chapter 5. Finally, by using the coset diagrams 

which depict the homomorphic images of the groups 

~(2,6,6), we have proved the following result: For 

a family of positive integers n, (with n = q + 1), 

both the alternating and symmetric groups occur as 

homomorphic images of the group ~( 2 ,6,6). 

We now discuss the polyhedra l groups and the 

coset diagrams related to them as follows . 

1.3 Coset Diagrams and Polyhedral Groups 

The triangle group ~ (k,l, m) as defined · by 

Coxeter a nd Moser [9] has the presentation 

I m n <x , y , z : x = y = z = xyz = 1> . (1.3.1) 

Suppose S is a group with presenta tion 

k Im <X,y: x = y = (xy ) = 1> . (1. 3.2) 

Then (x , y ) is a (k,l,m) generating pair for S, and 

S i s a quotient of ~(k,l,rn) def ined by (1.3.1). 

These types of groups known as polyhedral groups 

16 



are discussed in detail ln [9J . In our subsequent 

work we shall consider the p articular case wh e n x 

is an involution, that is, for k = '2. The group 

L'I (k,l,m ) defined by (1.3. 2 ) is finite if l / k + 1 / 1 

+ l/m > 1 . These contain 

L'I( 2 , 2 ,n) , S 
3 

L'I( 2 , 3 , 2 ) , A 
4 

the dih edra l grou p 

L'I( 2 ,3,3) , S 
4 

L'I( 2 , 3 , 4 ) a nd A ~ L'I( 2 , 3 , 5 ) . For l/k + 1/1 + l/m = 1, 
5 

we obtain the me t a blian group L'I( 2,3 , 6 ) or L'I(2,4, 4 ) 

which i s inf ini t e but s olub l e. Th e group L'I (k, 1 , m) 

is infinite and insoluble when l / k + 1 / 1 + l / m <1. 

In fact this group is SQ-universal: that is, every 

countable group occurs as a subgroup o f some 

quotient of L'I(k,l,m). We shall study the polyhedral 

groups L'I(2,l,m) with the help of coset diagrams. In 

fact, we are interested in studying actions of S 

(defined by (1.3.2 ) ) on projective lines over 

Galois fields t h r oug h coset diagrams. 

I n the case of a tr i ang l e grou p L'I( 2 ,n, k ), we 

may s imp l ify t he c oset d i agram by removing some o f 

i ts edges direct ion s and even the c olours. If 

(x,y ) is a ( 2 , n , k ) -gener atin g pa i r , t h e n we may 

represent t h e n-cyc l es o f y by (n-s i ded ) p o lygons , 

(wh ose vertices are permuted anti-c lockw i se by y ), 

17 



or by h eavy dots ( i ndicat i ng fixed p o i nts o f y ) . 

Note t h a t in our case we do not get cyc l es of y o f 

l e ngth prope rly dividing n sinc e we choose n to be 

the leas t pos itive inte g e r sati sfying yn = 1, a nd 

hence we choose n - gons fo r the n - cycles of y . Also 

we draw lines (edges) to indicate the action of x 

(inte rchanging the points at the ends of each 

edge ) . 

For e xample, consider the coset diagram for 

the ac t i on of the group 

on PL( F ) 
11 

2 6 H(2,6) = <x ,y: x= y= 1 > 

F U {oo} . We choose x t o be the 
11 

linear fractional transformation z ~ ( - l )/ z and y 

to be z ~ ( z+1 )/( 2-z ) . Hence x and y act as 

(0, 00 ) (1,10) ( 2 , 5 ) ( 3 ,7) ( 4 , 8 ) ( 6 , 9 ) 

a nd 

(0,6,1,2, 00 ,10) (3,7, 5 , 9 ,8,4) 

respectively . 

Thus we obtain the following diagram. 
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3 " 

7 

1 

Figure 2 

Every vertex is fi xed by 5 (xy) , thus giving 

5 (xy ) = 1, so that we get a homomorphic image of 

the group ~(2,6,5) . 

Note that the diagram is not just a mean of 

illustrating the action of the group H(2,6) on 

PL (F ), but it can be helpful when we come to 
11 

examining some of its properties as well . For 

example, the property of the diagram being 

connected depicts the transi ti veness of the group 

~ ( 2,6,5 ) . Also it is easy to read off the 

permutations induced by any given element of 

~( 2 ,6,5) simply by chasing points around. For 

example in the above representation the element 
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- 1 xy xy act s as (0, 9,10,-8,3,5 ) (1,6,00,2,7,4) . . 

1.4 Actions of G(Z,n) on PL(F ) q 

Consider the group G(2,n) defined by (1.2.2) 

and let H(2,n) be its subgroup defined by (1 .2.1 ) . 

Let q be a pri~e-power. Then, as defined earlier , 

the group PGL ( 2 ,q) is the group of linear 

fractional transformations 

z ~ (az+b) j( cz+d ) (1.4 .1 ) 

where a,b,c,d E F and ad - bc * o. Also, the group 
q 

PSL ( 2 , q) is the group of transformations (1 .4. 1) 

where a,b,c,d E F and ad-bc is a quadratic residue 
q 

in F. 
q 

since each element of PGL(2,q ) is a 

permutation of PL(F ), so PGL(2,q) is a subgroup of 
q 

the symmetr ic group S 
q+1 

The group PSL (2, q), for 

q > 2, contains only even permutations, so that it 

is a subgroup of A 
q+1 

For a pair (x ,y), where x ,y E PGL (2,q ), 

satisfying the relations (1.2 .2 ), we denote by 

D('t9-,q,n) , where E F , 
q 

the coset diagram 

corresponding to the action of the group G(2,n) on 

PL(F) via a homomorphism a : G(2,n) ~ PGL (2,q), 
q 
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with parameter ~ . We shall e xplain the role 'of ~ in 

our next chapter . 

As an example, consider the following coset 

diagram 0(1,11,5) depicting an action of the group 

H(2,5) <x,y 2 5 
X = Y 1> on PL (F

11
) . Here we 

choose x ,y to be the linear fractional 

transformations 

x:z ~ (5 z+2 )/( 2z-5 ) and y: z ~ (2 z+5 )/(5z+2) 

Figure 3 

Here 0 (1,11, 5 ) depicts the homomorphic image of 

fl(2,5,3) 2 5 3 <x,y:x := y = (xy ) = 1>, isomorphic . to 

the alternating group A . 
5 
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CHAPTER TWO 
PARAMETRIZATIONS OF NON- DEGENER A TE HOMOMORPHISMS 

2.1 Introduction 

Let H(2,n) and G(2,n) be the groups defined 

by (1.2.1) and (1.2.2 ) respectively. Let ex be a 

homomorphism from G (2, n) to PGL (2 I q). Then ex is 

-called degenerate if <y > is normal in PGL (2, q) 

<x ,y, t> . otherwise it is called non- degenerate . 

Let ex be a non-degenerate homomorphism from G(2,n) 

to PGL(2,q) such that it maps x,y of G(2,n) to x ,y 

of PGL(2,q). Then the images x,y of PGL(2,q), where 

x = xex, y = yex satisfy the relations 

2 n 

X = Y = 1. (2.1.1 ) 

Two homomorphisms ex: G(2,n) ~ PGL(2,q) and ~: 

G ( 2 , n) ~ PGL (2, q) are said to be conjugate if 

there exists an inner automorphism p of PGL ( 2, q) 
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satisfying (:5 exp. In section 2.2 we have 

considered the conjugacy classes of the 

non-degenerate homomorphisms. 

We assume first that the field F is not of 
q 

characteristic p if n happens to be the prime p. In 

fact we assume that the characteristic of the 

finite field F 
q 

in question is prime to 2n (as 

given in the argume nts of section 1. 1) . In section 

2.3 we s ha ll consider the cases for the field of 

characteristic p. 

If M is a matrix mapped to the element u of 

PGL(2,q) by the natural map GL(2,q) to PGL(2,q), 

then ~ = (tr (M) ) 2 jdet (M) is an invariant of the 

conjugacy class of u. We refer to it as the 

parameter of u, or of the conjugacy class. Here 

since we are considering actions of G(2,n) on 

PL (F ) via the non - degenerate homomorphism ex, we 
q 

take u to be (xy)ex. Hence ~ is the parameter of the 

class represented by 

determ i ned by the pair 

xy 

( x , y) 

(xy ) ex. Now ex is 

and each ~ gives us 

the pair (x, y ) , so that ex is associated with the 

parameter ~. In this chapter we find a relation 

between the conjugacy c l asses of the non-degenerate 
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homomorphisms and the parameters '\9' 

some element of the Galois fie l d F ) . 
q 

, (where 'lJ 1S 

In the f ollowing, we prove that there is a 

one to one c orrespondence between the con jugacy 

classes of non- degenerate homomorphisms of G (2, n) 

into PGL ( 2 ,q) and the conjugacy classes of elements 

ofPGL(2,q) such that the correspondence assigns to 

any non-degenerate homomorphism the class 

containing (xy )a. 

2.2 Relationship between the non-degenerate 

homomorphisms and ' the parameters 

Let H(2,n) be the group satisfying the 

re lations (2 .1.1 ). Let a be a homomorphism fr om 

H(2,n) into PGL(2,q). Then a can be extended to a , 

homomorphism of G( 2,n ), defined by (1.2.2), into 

PGL(2,q) if and only if we can find an element t in 

PGL(2,q) such that 

for x ,y in PGL(2,q). 

We define a pair (x , y ), satisfying the 

relations (2.1.1), in PGL(2,q) to be invertible if 
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2 

there ex i sts t in PGL(2,q) such t hat t = 1, txt x 
- 1 

and tyt = y . 

To prove Lemma 2.2.2, we need a result from 

[20J which we state without proof. 

Lemma 2.2.1 

A non-singular 2x2 matrix with entries ln 

F , (where q is not a power of 2 ), represents an 
q 

involution in PGL(2 , q ) if and only if its trace is 

zero. 

Lemma 2.2.2 

Let x , y be the elements of PGL (2, q) such 

that x is of order 2 and y is of order n and let X 

and Y be the matrices representing x and y, 

respectively. If rand m are the traces of XY and Y 

respective l y, then either r2 2 (4-m ) l1 or the pair 

(x,y ) is invertible (where l1 is the determinant of 

XY ) • 

Proof 

Let x ,y be the elements of PGL (2,q), (where 

q is an odd prime- power), satisfying the re l ation s 
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(2.1.1). Let the matrices corresponding to x and y 

be X and Y with 

X = [ a b ] c d and Y = [~ ~] 
2 

respecti v ely. Since x I, therefore by Lemma 

2.2. I, we choose X [a bJ Now since every c -a . 

element of GL(2,q) of trace zero has, upto scalar 

multiplication, a conjugate of the form [~ ~], 

therefore we can assume that the matrix 

[ 0
1 

ko]· representing x has the form 
n n 

Also since y = I, Y is a scalar matrix and 

hence the determinant of Y is a square in F . Thus 
q 

replacing Y by a suitable scalar multiple, we 

assume the determinant of Y to be equal to 1. So 

that we have det(yn) = 1. We observe that yn = I or 

yn = -I depending upon the value of the integer n 

being odd or even. Let m be the trace of Y. Then 

the characteristic equation of Y is 

y2 _ mY + I = 0 . (2.2.1) 

Thus m = e + h imply that h = m-e. Hence, we have 

y = [~ m:e] thus giving det(Y) = e (m-e ) -fg = 1. 

So that we have 

1 + fg + 
2 

0 (2.2.2) e - em . 
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Now suppose that there exists an invertible 

element t in PGL (2,q ) satisfying 

2 

t 
-- 2 -- 2 = ( xt ) = ( yt ) = 1. 

Let the matrix representing t be T 

(2.2.3 ) 

[~ j]. Then, 

s ince t is an involution, we have by Lemma 2.2.1, 

j = - u s o that T = [u v] w - u . 

Let XT be the matr i x representing xt of 

PGL ( 2 ,q) . Then 

XT = [~w -k~J 

which by Lemma 2.2.1 , implies 

v = -kw , (2.2.4) 

Similarly, choosing YT to be the matrix 

representing the element yt of PGL ( 2, q ), we thus 

obtain 

[
eu+fw 

YT - ug-w (m-e ) 
ev-fu ] 

vg-u(m-e ) 

Since yt is also an involution therefore by the 

arguments given above, we have 

vg - u(m-e ) = - (eu + fw ), 

which from Equation (2.2 . 4 ) gives 
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2ue + fw - kwg - urn - o. 

That is, 

u(2e-m) + w(f - kg ) = o. (2 .2.5 ) 

NOw for . T to be a non-s ingular matrix , we 

should have det(T) * 0, that is, 

2 2 
- u + kw * o. (2.2.6 ) 

Thus the necessary and suff icient concH tions for 

the existence of t in PGL ( 2 , q) are the Equations 

(2.2.4), (2.2.5 ) and (2.2.6 ) . So that t exists in 

PGL(2,q) unless kw 2- u2 o. 

If both 2e m = f-kg = 0, then the 

existence of t is trivial. If not, then 

u/w = (f-kg)/-(2e-m), 

and so Equation (2.2.6 ) is equivalent to 

k ( 2e-m ) 2 - (f-kg ) 2 * o. 

Thus t exists in PGL(2,q) sat isfying (2 .2.3 ) unless 

2 2 -(f -kg ) = k(2e-m) 

But this implies that 

f 2+k2g2 _ 2 fkg k (4 2 2 4 ) = e + m - em, 

which by (2.2.2 ) gives 
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That is, 

or 

Now 

gives tr(XY) 

to r. Also , 

k(gf - em 

2 k( -4 fg - 4+m). 

2 2 2 2 f +k g + 2fkg = m k - 4k , 

2 2 (f+kg) = -k (4-m ) . 

Xy = [k~ k(m~e) J 

kg + f , wh i c h we assume 

by (2.2.2 ) , det(XY) = kg f 

+ e 2
) = -k. Let det(XY) = 

(2.2.7 ) 

to be equal 

- kme + ke 2 

11 . So t hat 

11 = - k. Also, we have r = kg + f . Substituting 

these values in (2.2 . 7) we thus obtain 

2 2 
r = ( 4 - m )11 . (2 . 2 .8) 

By the a r gument s of [ 20J we have that 

PGL(2,q ) contains two classes of involutions, both 

consisting of elements of trace zero. The classes 

of PGL(2,q) not c onsisting of elements x such that 
2 

x = 1 are in one to one correspondence with the 

non-zero e l ements ~ of F. The class corresponding 
q 

to ~ consists of e l ements represented by ma t rices M 

with ~ = r 2 /11, where r = tr (M) and 11 = det(M). 
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Remark 2.2.3 

There are two classes, Cl and 
1 

Cl , 
2 

of 

PGL(2,q) with parameter O. Each of them i s afforded 

by a matrix M with c haracteristic equation Z2+k = 

0, where k = det(M). That is , if k = 1 we get Cl 
1 

and if k is a non-square in F, we get Cl , where 
q 2 

both Cl and Cl are with the same parameter O. If 
1 2 

the field is of characteristic 2, there is only one 

class with parameter 0 and only one class of 

involutions. 

We now define the dual homomorphism of the 

non-degenerate homomorphism ex: G (2, n) --7 PGL ( 2 , q ) 

as follows. 

Let 0 be the automorphism of G(2,n) defined 

by xo = xt, yo = y and to = t. If ex : G(2,n) --7 

PGL(2,q) is a homomorphism, then ex' 8ex is )<:nown 

as the dual homomorphism of ex. That is, if ex maps 

x , y ,t to x,y and t, then ex' maps x,y ,t to xt,y and 

t respectively. Now since the elements x , y, t as 

well as xt ,y,t satisfy the relations 

2 n 2 2 2 
X = Y = t = (xt ) = (yt) = 1, (2.2.9) 

therefore the solutions of these relations occur in 

dual pairs. In our subsequent work we shall find a 
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r e lationship between the p a r a meters of dual 

homomorphisms . We first prove the following. 

Lemma 2.2.4 

There are just two conjugacy classes of 

non-degenerate homomorphisms a: G(2 ,n)~ PGL(2,q) 

in which xy is of order 2 , and two in which xyt is 

of order 2. 

Proof 

If xy is of or der 2, we g e t the dihedral 

group of order 2n, with presentation 

2 n 2 

< x , y : x = y = ( xy ) = 1>. 

- -- 2 Le t H = <y > . The n s ince (ty) = 1, tH = Ht. So that 

-t normalizes <y > which in this case is 

- -characteristic in <x, y > D 
2n 

That is, in this 

case the homomorphism a in fact maps G ( 2, n) into 

the normalizer of PGL (2, q) of a cyclic group of 

order n. This normalizer is a dihedral group of 

order 2(q-1) or 2(q+1) according as q = l (mod n) or 

q = -1 (mod n). Since all elements of order n in 

PGL ( 2,q ) are conjugate, we can take y to be a fixed 

element of order n. Any further conjugation must 
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take place within N«y» . In this group there are 

two classes of non- central involutions (because 

q ± 1 is even ), and we choose x from e i ther. Then 

xy is of order 2 , and centralizes x and y. So it is 

the unique non- trivia l e l eme nt of the centre o f 

N« y » . Thus there are just two conjugacy c lasses 

of non - d egenerate homomorphi sms a: G( 2 ,n) 

PGL(2,q ) . 

If the dual a' of a maps x ,y,t onto x,y,t, 

then xy xty = txy = t(xyt )t . Thus if xyt is of 

order 2, so is xy. Hence if we app l y the dual a' of 

a we in f a ct interchange x with xt throughout and 

so the case in which xyt is of order 2 remains ' 

exactly the same. Hence there are two conjugacy 

classes of non-degenerate homomorphisms in which 

xyt is o f order 2. 

In our subsequent work, we choose the 

matrice s X,Y and T r epresenting the elements x , y 

and t of PGL(2,q) as follows. 

Y = [ e f1 J 
f m-e and T = [O-lJ 

1 0 ' 

where a,c,e,f,l are elements of F , with 1 * O. We 
q 

choose m = x (mod q) , for s ome x in F where q is an 
q 
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odd prime- power. 

Let us denote the trace of XY by r, and let 

the trace of XYT be equal to 1s. For the following 

lemma, we exclude the cases in which r = 0 and 

s 0, so that by Lemma 2.2.1 we choose the 

elements xy and xyt of PGL (2, q) not of order 2. 

That is, -- 2 --- 2 (xy ) ~ 1 and (xyt) ~ 1. Note that the two 

cases xy is of order 2 and xyt is of order 2 are 

du al. Let us denote the element, whose order is not 

equal to 2 and whose dual is also not of order 2 by 

g, for the following Lemma. 

Lemma 2.2.5 

Any element g (~1), whose order is not equal 

to 2 and whose dual is also not of order 2, of 

PGL(2,q) is the image of xy under some 

non-degenerate homomorphism of G ( 2, n ) into 

PGL(2,q ) . 

Proof 

Using Lemma 2.2.2 we show that every 

non-trivial element of PGL(2,q) is a product of ~n 

element of order 2 and an element of order n. So we 
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find elements x,y and t of PGL(2,q) satisfying the 

relations 

2 

X 

n 2 

Y = t 
2 2 

(xt ) (yt ) = 1. 

Let x,y and t be represented by the matrices: 

x = [~ C1 J Y = [e fl J and T = [~ -l J 
-a f m-e a ' 

where a,c,e,f,l are e l ements of F , with 1 "" O. 
q 

Al so m == x (mod q ) , for some x in F . Let us q 

denote by f.. t h e determina nt of X, so that 

- (a 2 + lc2
) = f.. "" o. (2.2.1 0) 

Also, assuming the determinant of Y to be equal to 

1, we have 

1 + 1 f 2 + e 2 
- em = o. (2 . 2 . 11) 

We take ~~ in a given conjugacy class. The 

matrix representing xy is given by 

XY = [ae+lcf 
ce-a ,f 

alf+cl (m-e )] 
lcf-a(m-e ) . 

Its trace, which we denote by r , is given by 

r = tr (XY ) = a (2e-m ) + 2lfc (2.2.12 ) 

Also det (XY ) = det (X) det (y) = f.. , as determinant of 

y is assumed to be equal to 1. Let tr (XYT ) Is, 

so that 
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s = 2af - c(2e- m) (2.2 . 13) 

Hence , we have 

2 
( 4 - m ) 11 • ( 2.2.14 ) 

s ince g xy (or its dual xyt ) are not of order 2, 

the class to which we want them to belong do not 

consist of involutions, 
- - 2 --- 2 

so that (xy ) ~ 1 and (xyt) 

~ 1. Thus the traces of the matrices XY and XYT are 

not equal to zero, by Lemma 2.2.1. Hence r ~ 0, and 

s ~ 0, so that we have 19- r
2

/ A 0 D. ~ ; and it i s 

sufficient to show that we can choose a,c,e ,l, f in 

F so that r2 / 11 is indeed equal to 19-. Now 19- = r 2/ 11 
q 

implies that r 2= 19- 11; so that 11 is a square if and 

only if 19- is, and not if 19- is not, and we choose it 

arbitrarily in F to satisfy the conditions, and we 
q 

then choose 2 r to satisfy 19- = r /11. From Equation 

(2.2.14 ), we have 

2 2 If r ~ (4- m )11, we select 1 according to the above 

argument. 

Any quadratic polynomial 2 
i\.z +jlZ+V, with 

coeffic i ents in F takes at least (q+l )/ 2 distinct 
q 

values, as z runs through F • 
q ' 
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AZ 2+~Z+V = k has at most two roots for fi xed k; and 

there are q elements in F, 
q 

and q is odd. In 

particular, e 2-em and -lf2-1 each take at least 

(q+l)/2 distinct values as e and f run through F . 
q 

Hence we can find e and f so that e 2-em = -lf2
-1. 

Finally by substituting the values of 

r,s,e,f,l in Equations (2.2.12) and (2.2.13 ) we can 

find the values of a and c. Now these two equations 

are linear equations for a and c with determinant 

2 2 - (2 e - m) - 41 f 2 4-m (2.2.15 ) 

which is non-zero, so that we can find a and c 

satisfying Equation (2.2.10). Hence the proof. 

The conjugacy classes corresponding to the 

parameter ~ = 0 and ~ = 4 2 m are already 

established in Lemma 2.2.4. We want next to show 

that any two such non-degenerate homomorphisms, 

with the parameter ~, are conjugate. 

Lemma 2.2.6 

Any two non- degenerate homomorphisms a, ~ of 

G(2,n) into PGL(2,q ) are conjugate if (xy)a 

(xy)(3. 
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Proof 

Let 0:: G(2,n) PGL(2,q) be the 

non-degenerate homomorphism such that xy has 

parameter '19- constructed as in the proof of Lemma 

2.2.5. We also suppose that the non-degenerate 

homomorphism (3: G (2 , n) --7 PGL (2, q ) has the same 

parameter '19-. 

First, since there are just two classes 

(Remark 2.2.3 ) of elements of order 2 in PGL(2,q), 

one in PSL(2,q) and the other not, we can pass to a 

conjugate of (3 in which t(3 is represented by 

[~ _ ~I ] for some 1 ' :f- 0 in F . Then because x(3 and 
q 

xt(3 are both of order 2, x(3 must be represented by 

a matrix [~; l~~:Jand because y(3 is of order nand 

yt(3 is of order 2, y(3 must be represented by a 

matrix with a',c l ,e l ,fl ,11 satisfying [
e l 1 I f l ] 
fl m-e / ' 

the Equations (2 .2.2 ) I (2 .2.5 ) and (2.2.6 ) . Then 

2 
1s / f... 

Here '19- :f- 0, 2 
( 4-m ) '19- :f- 0; so it follows that 

1 I / 1 is a square in F . 
q 

Now yo: and y(3 are both of order n and so are 

conjugate in PGL(2,q). So we can pass to a 

conjugate of (3 (which we still call (3) with yo: 
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y~. Then ta and t~ are involutions which invert ya, 

and so belong to N«ya». In N«ya» there are two 

classes of such involutions, one in PSL (2, q) a nd 

the other not. Because ta is [~ - ;] 

1'/1 is a 

and t~ is 

[
0
1 

- 10' ] conjugate to and square, ta 

and t~ either both belong to PGL(2,q ) or neither. 

Hence they are conjugate in C « ya » . That is, 

pass ing to a new conjugate (still called ~) we can 

assume ya = y~, ta = t~. This means that in the 

notations above, we can assume 1 = I' f = f' and , 

e e'. We can also, by multiplying the matrix 

representing x~ by a scalar, assume ~ = ~', r = r' 

and s = s'. Then the Equations (2 .2. 10), (2 .2.11 ), 

(2.2.12 ) and (2.2.13 ) with a,c,e,f,l and then with 

a' ,c' ,e' ,f' ,I' ensure that a = a', c = c'. That is 

a = ~. Hence the proof is completed. 

We now put together the Lemmas (2.2.4 ), 

(2.2.5 ) and (2.2.6 ) to obtain the following. 

Theorem 2.2.7 

The con jugacy classes of non-degenerate 

homomorphisms of G(2,n ) into PGL(2,q ) are in one to 

one correspondence with the non - trivial conj ugacy 

38 



classes of elements of PGL(2,q) under a 

correspondence which assigns to any non- degenerate 

homomorphism a the class containing ( xy)a. 

We now find a relationship between the 

parameters of the dual non - degenerate 

homomorphi sms. 

Let a be a non - degenerate homomorphism of 

G(2,n) into PGL ( 2,q ) such that it maps x,y to x,y. 
Let ~ be the parameter of the class represented by 

xy. Now a is determined by (x,y) and each ~ gives 

us this pair (x,y), so that a is associated with ~. 

We shall call the parameter ~ of the class 

represented by xy, the parameter of 

non-degenerate homomorphism of G(2,n) 

PGL(2,q) . 

where 11 

Now XT = [Cl 
-a 

-al ] 
-cl implies det (XT ) 

2 2 = - (a + 1 c ) . Also, 

(XT)Y = [cle -alf 
-ae-clf 

2 
cl f -al (m-e ) ] 

-alf "':'c l(m-e ) 

implies tr«XT)Y) = 2cle - 2alf - clm 

- 1(2af - c(2e-m)) = - Is. 
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- - -Note that if x,y,t satisfy the relations 

2 n 2 
t (xt ) 2 -- 2 (2.2.16) x = y = = = (y-t) = 1 

-- - -then so do xt,y,t. So that the solutions of 

(2.2.16) occur in dual pairs. Hence replacing the 

solutions in xt , - t , Lemma 2.2.5 by y, we 

interchange r by -ls (where r = tr(XY)), ~ with 1~ 

2 to get the new parameter 1 s / ~ . We then find the 

relationship between the parameters of dual 

non-degenerate homomorphisms. 

Let a:: G(2,n) --7 PGL(2,q) be a 

non-degenerate homomorphism satisfying the 

-relations xa: = x, ya: = y and ta: = t. Let a:' be the 

dual of a:. As in Lemma 2.2.5, we take the matrices 

x = [ ~ C1J 
-a Y = [ ~ f1 J and T = [0 -l J 

m-e 1 0 ' 

- -representing x,y and t, respectively, of PGL(2,q) . 

Now by Lemma 2.2.1, we have tr(XY) = 0 if and only 

if 
-- 2 

Also, have {tr(XYT) }/1 0 if (xy) = 1. we s = 

and only if 
--- 2 

det(XY) ~, thus (xyt ) 1. Now = 

giving 
-- r2/ !::. the parameter of xy equal to = 1')-, say. 

Also since tr (XYT ) i s and det(XYT) 1!::. (since 

det(X) = !::., det(Y) = 1 and det(T) 1), we obtain 
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the parameter of xyt equal to Is2/~, which we will 

denote by ¢. Thus 'lJ + ¢ 2 
1 s /!:.. 

Substi tuting the values from Equation (2 .2.14 ), we 

thus obtain 'lJ + ¢ 4 
2 - m. Thus if 'lJ is the 

parameter of the non-degenerate homomorphism a, 

then ¢ 2 (4-m ) - 'lJ is the parameter of -the dual a' 

of a. 

In section 2.2 we have studied the actions 

of the group G(2,n) defined by (1. 2.2 ) on 

proj ecti ve lines over f ini te fields. In that case 

we have assumed the characteristic of the finite 

field F 
q 

to be prime to 2n. So that we have 

excluded the cases where F is of characteristic p 
q 

if n happens to be the prime p. In the following 

section we discuss the cases for the field of 

characteristic p, if n = p. 

2.3 Fields of prime characteristics 

In the case when the field is of 

characteristic 2 , both x and t have a common fixed 

point lying on the vertical axis of symmetry. So 

that in this case there is a fragment which lS 
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always contained in the diagram. This case has been 

discussed in [20] for the coset diagrams for the 

actions of G(2,3) on PL(F ) as follows. 
q 

The elements x and t satisfy the relations 
2 _2 2 

X = t = (xt) = 1, and so generate a 2-group. In 

characteristic 2, the only irreducible linear 

representation of 2-group is the trivial 

representation, and it follows that in any 

projective representation there is a fixed vertex. 

The same case is true in general, that is when we 

are studying the coset diagrams for the actions of 

the groups G(2,n) on PL(F), where F is of 
q q 

characteristic 2. 

For example, consider the fragment of a 

coset diagram for the actions of G(2,5) on PL(F ), 
q 

(q = 2r, for some positive integer r). In this case 

we always obtain the fragment: 

Figure 4 
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We recall that the labelling of the vertices of the 

diagram by elements of PL(F ) changes, when we pass 
q 

to a conjugate homomorphism; and that the change is 

induced by applying to the labels an element of 

PGL (2,q ) So that we can assume the labels 00, 0, 1 

are given to the points shown, and then take k to 

be the label of the vertex to which we have 

attached it. We observe that x , y and E are the 

linear fractional transformations z ~ z + k, Z ~ 

- l/(z + 1) and z ~ z + 1, respectively . Let X, Y 

be the matrices representing x, y. Then, 

X 

thus giving XY = [
k -l+k] 
1 l' 

so that we have '!9- = 

(tr(xy))2 / det (XY ) = k
2 + 1. Since every element . in 

a finite field of characteristic 2 has a unique 

square, we get a unique diagram for each value of ~ 

If for the group G(2,n), defined by (1.2.2), 

n happens to be a pr ime p > 2 , we proceed as 

follows. 

Considering the case for the field of 

characteristic p > 2 , we observe that since number 

of elements in PL (F ) 
q 

. r 
lS p + 1, for r ~ 1, the 
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element y of PGL(2,q) has a unique fixed vertex . 

Also since (ty ) 2 = 1, t normalizes <y>, 
-p 

(where y = 

1) . To make it clear, we give an example of a 

fragment of a coset diagram for the action of 

G(2,5) on PL (F ) where 
q 

the field is of 

characteristic p > 2. 

Consider the fragment: 

Figure 5 

Here the vertex labelled 00 is the vertex fixed by 

both y and t and hence lies on the vertical axis of 

symmetr y . We assign the labels 0, 1, - 1 as 

indicated. Then x, y, t are the linear fractional 
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transformations z ~ aj z, z ~ z + 1 and z ~ -z 

respectively, for some integer a ~ O. Thus if X and 

y are the matrices representing x , -y, then X = 

[~ ~J and Y = [~ ~J thus giving the matrix Xy 

[~ ~J . Thus 19· = -l j a , so that each 1J 

occurs uniquely except 1J = O . 
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CHAPTER THREE 
CONDITIONS FOR THE EXISTENCE OF CIRCUITS 
IN D(1J,q,n) 

3.1 Introduction 

It has been shown in Chapter 2 that for each 

1J in F there exists a non-trivial conjugacy class 
q 

of pairs (x,y), with x,y in PGL(2,q) satisfying the 

relations (1.2 . 2) . Each pair (x,y) determines the 

non-degenerate homomorphism ex from G (2, n ) to 

PGL (2,q ) . We have in fact proved that the con jugacy 

classes of non - degene rate homomorphi s ms of the 

group G(2,n) into PGL(2,q) are in one to one 

correspondence with the non- trivial conjugacy 

classes of elements of PGL (2,q ), such that the 

correspondence assigns to any non- degenerate 

homomorphi sm ex the class containing (xy ) ex. Thus the 

homomorphism ex gives an a ction of the group G(2,n) 
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on PL (F ) . 
q 

The pair (x , y) gives a coset diagram for 

this action . So for each -rJ- in F we can find a 
q 

unique coset diagram. It is unique in the sense 

that the diagram is the same for each conjugacy 

class of pairs (x, y ) , only the labelling of the 

vertices of the diagram differs. That is, if we 

draw coset diagrams for two pairs and 

(X2'Y2 ) in the same conjugacy class we get the same 

diagram except that the labelling of the vertices 

of the diagram will vary. Therefore , if we know ~ 

we can find some homomorphism ex and hence we can 

draw a coset diagram. The method for finding the 

pair (x,y ) from a given ~ is also given in the 

previous chapter. It is important to mention that 

we are not only interested in ~ but in the 

irreducible equation over F which it satisfies. 
q 

A coset diagram is said to be composed of 

several fragments, each fragment being composed of 

circui ts, that is, closed paths. As mentioned . in 

earlier chapters, one can study the properties of a 

certain group with the help of the coset diagram 

arising from the action of G(2,n ) on PL (F ) 
q 

depicting the homomorphic image of the group. We 
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can also study properties of the group with the 

help of just a fragment of a coset diagram, instead 

of studying the whole diagram depicting t he 

transitive permutation representation of larger 

degrees. We shall find conditions for the existence 

of these particular fragments in the respective 

coset diagrams in our next chapter. 

chapter , 

ex i s t ence 

we discu ss 

certa in 

t he cond i tions 

of sing l e 

respective 

relationship 

coset diagrams. We 

between single 

parameters 'l9-. 

c i rcuits 

in fact 

circuits 

In this 

f or 

i n 

the 

the 

find a 

and the 

There are two types of circuits : periodic 

and non- periodic . Both have different conditions 

for their existence in the corresponding coset 

diagrams. 

separately 

We 

in 

have discussed 

sections 3 . 3 

both the cases 

and 3 .4. In the 

following we give a brief description about the 

coset diagrams whose vertices are the cosets of 

the trivial stabilizer of the group G(2,n ) . 
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3.2 Regular Representations of a Coset Diagram 

A path P in a coset diagram, def ined as 

u s ual, is a sequence of edges E E ... E , such that, 
12m 

for i = 1,2, ... ,m- 1, E begins at the end point 

of E The path . P 
i 

the inverse path, 

1+1 

- 1 described backwards 

def ined by p - 1 = E-1 

m 

is called 

- 1 - 1 E E. 
2 1 

The path P is closed if its initial vertex 

coincides with its final vertex. In such a case it 

is called a circuit. A coset diagram is said to be 

connected if every pair of its vertices can be 

joined by a path along a set of consecutively 

adjacent edges. The coset diagrams which represent 

the actions of G (2, n) on PL (F ) 
q 

are composed of 

several circuits. However, there are certain 

results which do not necessarily qepend upon this 

action. In this section we discuss only such cases . 

The coset diagram for the group H(2,n), 

def ined by (1 . 2.1), in' its regular representation 

is defined as follows. It is a tree of valency n in 

which every vertex is replaced by an n-s ided 

polygon giving a graph of valency three. As in the 

case of a connected coset diagram, the elements of 
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PL(F) are identified with the cosets Ng where N is 
q 

the stabilizer of some arbitrary element of F and 
q 

g E H(2,n). We choose the trivial stabilizer to 

obtain the coset diagram for the regular 

representation of H ( 2 , n). So that the vertices of 

such a graph, being the cosets of the trivial 

stabilizer, represent the elements of the group 

H(2,n) . 

A diagram 0, for the group H (2, n) in its 

regular representation will always be a covering 

diagram, for a connected coset diagram 0 1 for 

H(2,n) in the following sense. We choose a vertex u 

in 0 and a vertex u l in 0 1
• Any vertex v in 0 is 

joined to u by a path P which is unique if we do 

not allow successive 

y-edges. There is a 

x-edges, or successive 

corresponding path in 0 1 , 

starting with u l
, and having x-edges where P does, 

and positive y - edges where P does. This path will 

end at a point V I, uniquely determined by V. In 

this way (mapping V to VI) we get a mapping ~ from 

o to Of, in which x-edges correspond to x-edges and 

positive y-edges to positive y-edges. This map will 

not be one to one unless 0 is 0 1 itself. 
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For example, the corresponding diagram is 

the coset 

2 <X ,y : x 

diagram for the group H(2,4) = 

y4= 1> in its regular representation. 

Figure 6 

Any path along the edges of the cos~t diagram 

corresponds to an element of the group. For 

example, the path from the vertex u to V in the 
1 1 

above diagram correspond to the element g = 

2 2 xy xy xyx of the group H(2,4 ) = <x,y 2 4 
X = Y = 1>. 

If V * u maps onto u', the path from u to V 

51 



in 0 maps onto a circuit in 0'. If g is the element 

of the group H(2,n), defined by Equation (1.2.1), 

labelling V', then V' maps onto u'if and only if g 

belongs to the stabilizer of u' in the 

representation of H(2,n) of which 0' is the 

diagram. Thus circuits in the diagram 0' correspond 

to elements of H(2,n) which have fixed points. For 

example, we consider the group H(2,4) = <x,y : 

4 
Y = 1>. Let the elements g and g of this group 

1 2 

such that gl 
-1 2 2 

( xy ) (xy) (xy) (xy) and 

(xy-1) (xy) 3(xy-1) 2. The circuits and 

2 
X = 

be 

corresponding to these elements are as follows. The 

vertices u and u are fixed by the elements g and 
1 2 1 

g respectively. 
2 

0: 
1 

Figure 7 
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and 

o : 
2 

Figure 8 

The two circuits are simple circuits. The circuit 

o can be obtained by connecting- 0 and 0 in the 
3 12 

following way. 

o : 
3 

u 

Figure 9 
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Here u is the fixed vertex both of g and g . Then 
1 2 

u is also a fixed vertex of gl g 2· But the coset 

diagram for the regular representation of the group 

H(2,4) does not contain the 

corresponding to g g , which is: 
1 2 

'0 : 
4 

u 

Figure 10 

but a non-simple circuit, which 

simple circuit 

in a natural 

sense, is a homomorphic image of it. That lS, the 

vertices of '0 can be mapped onto the vertices of 
4 

in such a way that u maps to u ' , x-edges maps 

to x-edges, and positive y-edges to positive 

y-edges. 

In any coset diagram, a circuit corresponds 

to an element of the group H(2,n ) , expressed as a 
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,product of the generators and their powers, with 

fixed points. Given a simple circuit of a 

particular form, we can find an element g of H(2,n) 

such that a diagram contains the circuit only if, 

in the corresponding permutation representation, g 

has a fixed vertex. If g has a fixed point then 

conversely the diagram contains either the circuit 

or a homomorphic image of it. In case if the coset 

diagram for the group H(2,n) is not a regular 

representation we get circuits having fixed vertex 

of the generators x or y, showing that x or y is in 

the stabilizer of the fixed vertex. The conditions 

for the existence of fixed vertices of x and y in 

the coset diagram which determines the action of 

H(2,n) on PL (F) have been found in our later 
q 

chapters. Here we deal with the circuits 

corresponding to the existence of fixed points of 

elements which are comparatively simple. 

A circuit is non-trivial if the word, 

corresponding to the path of the circuit is in the 

reduced form. For example, the circuits: 
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Figure 11 

are non-trivial circuits in which the vert ices 

V , V , V and V are respectively fixed by x , y and 
1 2 3 4 

-1 xy xy. If a diagram contains a non-trivial 

circuit, we can choose a particular vertex on the 

circuit, which determines an element of the group 

H(2,n) 

Let g be a non-trivial element of H(2,n) of 
E E E 

the 12k form xy ; xy ... xy for some positive integer 

k, where E, may be one of the e l ements 1,2, ... ,n-l 
1 

for i = 1,2, ... ,k. If E = E = E = 1 then g will 
12k 

be of the form k (xy) for some k ~ 1. If g k (xy ) 

for k > I , where g is an element of H(2,n) and if 

in some coset diagram, for the action of H(2,n ) on 

PL ( F ) 
q 

each vertex is fixed by g, then (xy )k 1. 
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Thus g (xy ) k becomes a relator, giving a 

homomorphic image of the group ~(2,n,k). Such 

groups are discussed in detail in the last chapter. 

In our next section we deal with circuits 

corresponding to the elements (xy ) k and find the 

conditions for its existence in the coset diagrams 

D('l},q,n) . 

3.3 Circuits in D('l},q,n) fixed by the elements 

(xy)k 

Let h be some element of H(2,n), chosen to 

be equal to xy . Let g k h for k ~ 1. The element g 

1S said to be of proper power if k > 1. Now for any 

arbitrary element z 

E E E 
1 2 xy xy k " z and xy 

in 

- 1 
Z 

H(2,n) with 

always have the 

z = 

same 

fixed points. Therefore we just consider the case 

for z only. Hence we shall consider just (xy )k, for 

k ~ 1. When k = 1, that is, for g = xy, the only 

circuit for the fixed point of xy is a loop, as for 

example in the case of a hexagon, we will have the 

following fragment: 

57 



Figure 12 

Here the vertex V is fixed by xy , thus giving 

xy = 1. Now if xy ~ I, the fixed points of 

are same as the fixed points of xy as long as 

k 
(xy ) 

(xy) 
k 

~ 1 for k>l. So that no coset diagram D(~,q,n ) will 

contain a circuit in which some vertex is fixed by 

k k (xy) unless (xy) = 1. We shall therefore consider 

k the circuits corresponding to (xy) , for k ~ 2. 

Theorem 3.3.1 

Let C be t h e circuit corresponding to (xy)k, 

k ~ 2 . Then there i s a po l ynomial f in 7L [z ] such 

that, if q does not divide k, then 

(i) if the circuit C occurs in D(~,q,n) then 

f(~) = 0, and 

(ii) i f 0, then every vertex in 
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D(1J,q,n) is in a circuit C, or in the 

homomorphic image of it. 

Proof 

Suppose the circuit exists in D(1J,q,n). It 

follows from the above discussion that xy has order 

k. Thus if M is a matrix corresponding to xy then 

Mk is a scalar matrix, but M
k

' is not if k' is a 

proper divisor of k. Now since q does not divide k, 

this implies that over a suitable extension field 

of F some scalar multiple -of M is conjugate to 
q 

[Po po -lJ where P is a primitive k - th root of unity 

if k is odd, but a primitive 2k- th root of unity if 

2 2 -2 k is even. Then 1J = . r /!J. = P + P + 2 since ' p2 

is in either case a primitive k-th root of unity, 

1J is a 
. 1/2(¢ ) 

zero of f(z), where z k f(z +Z-l + 2 ) = 

<I> (z), ¢ being Euler's function, and <I> the k - th 
k k . k 

cyclotomic polynomial. 

Conversely, if 1J satisfies f(z)=O, then 1J = 

(J' + - 1 
(J' + 2, where (J' lS a primitive k-th root of 

2 unity . We put (J' = P , where p can be taken to be a 

pr imi ti ve k-th root of unity if k is odd, but a 

primitive 2k-th root of unity if k is even. Then a 

matrix M has the same characteristic equation as 
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some scalar multiple of [~ ~-lJ. It follows 

that Mk is a scalar matrix, -- k so that (xy) is in the 

kernel of the homomorphism. 

Theorem 3.3.2 

Let C be a simple circuit corresponding to 

an element g of the group H (2, n) which is not a 

proper power. Then there exists a polynomial f in 

l [z] such that if C occurs in D(~,q,n) then f(~) is 

a square in F, and if f(~) is a square in F then 
q q 

ei ther C or a homomorphic image of it occurs in 

D(~,q,n) . 

Proof 
E E E 

Let g = 1 -- 2 xy 1 where x,y are xy xy 

in PGL(2,q) and E is any of the integers 

1,2, .. . ,n-1 for i = 1,2, ... ,1. Let C be the simple 

circuit corresponding to g having a fixed vertex. 

Let X and Y be the matrices corresponding to x and 

Y of PGL (2, q). Then the matrix representing g of 

PGL(2,q) will be 

E E E 

M = XY 1 XY 2. • XY 1 (3 .3.1 ) 

As in Lemma 2.2.2, we let det(X) /:,. "" 0 and assume 
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that det(Y) = 1, so that det(XY) = ~. Similarly we 

choose r to be the trace of XY , and m the trace of 

Y, where m 5 x (mod q), for some x in ~, where q lS 
2 

an odd prime- power. Now since x = 1, we have by 

Lemma 2.2.1, tr(X) = 0, so that the characteristic 

equation of X becomes 

X2 + ~1 = 0 . (3.3 .2 ) 

Also the characteristic equations of Y and 

XY are respectively given by 

y2 _ mY + I = 0 (3 .3.3 ) 

and 

2 (XY) - r XY + ~1 = O. (3.3.4) 

From Equations (3.3.2), (3.3.3) and (3. 3.4 ) 

we can easily deduce the following equations: 

XYX = rX + bY - mbI 

YXY rY + X 

YX = r1 - XY + mX . 

(3.3 .5 ) 

(3 .3.6 ) 

( 3.3.7 ) 

From Equation ( 3.3.3 ), we can easily obtain 

yn = I if n is odd and yn -I if n is . even. 

Now since det(XY) ~, we have det(M) 

E E E 

d t (XY 1 XY 2 XY I) = A I . U . t . e . . . L1 slng Equa lons (3.3.2) 
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to (3 .3.7) we can express the matrix M , defined by 

(3.3.1) , as M = A. I + A. X + A. Y + A. XY , where i\. , 
o 1 2 3 i 

i = 0,1,2,3 is a polynomial in rand n. Therefore, 

we have tr (M) 

A. tr (I) 
o 

tr(A. I + A. X + A. Y + A. XY ) 
o 1 2 3 

+ A. tr (XY ) 
3 

2 A. + mA. 
o 2 

+ rA. . Hence the characteristic equation of M will 
3 

be 

(3 .3.8 ) 

Its discriminant d(r,n) will then be 

(3.3.9) 

which is a polynomial in rand n. 

Regarding r as of degree 1, and n as of 

degree 2, we can show by induction on 1 that the 

polynomial (3.3.9 ) is homogeneous of degree 21. 

Therefore, for 2 some suitable h('lJ), where 'lJ = r In, 

the polynomial ( 3.3.9 ) is h('lJ)n 1
• 

Now g has a fixed vertex in PL(F) 
q 

if the 

characteristic equation of M has roots in F , or in 
q 

other words, if the discriminant h('lJ)n 1 is a square 

in F . since r2 = 'lJn, n is a square if and only if 
q 

'lJ is, we put f ('lJ) = h('lJ) if 1 is even and f ('lJ) = 

h('lJ)'lJ if 1 is odd. Hence the result. 
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- 1 

Consider an element g xy xy of PGL(2,q ) 

where x,y are in PGL(2,q). consider the non-trivial 

simple circuit corresponding to g. Since g is not a 

proper power, we can apply Theorem 3.3.2 to obtain 

a polynomial f(~) satisfying the conditions of 

Theorem 3.3 . 2. We find this polynomial in the 

result that follows. Now since we are considering 

the circuits in the coset diagrams D(~,q,n), so 
n 

that y = 1 and hence we choose n-gons to represent 
n 

the relator y. For example, for n to be equal to 4 

or 6 we shall consider the following circuits 

respectively, 

Figure 13 

in which the vertices V , V , V , V , are all fixed by 
1 2 3 4 

- 1 

xy xy.ln our last chapter we shall find conditions 

for the existence of such circuits in D(~ , q,n) for 
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certain q's. Here we gi ve, in general, the 

condi tion for t he existence of s u ch circuits in 

D( ~ ,q,n) . 

Corollary 3.3.3 

Let C be a circuit corresponding to an 
- 1 

element g xy xy of PGL(2 , q ), such that C 

contains a vertex which is fixed by g. Then C or 

its homomorphic image, e x ists in D ( ~,q,n ) if and 

only if 

is a square in F . 
q 

Proof 

Consider the vertex V in the circuit C which 
- 1 

is fixed by xy xy, where x,y are in PGL(2,q). Let 

X and Y be the matrices representing x and y. Let 

us d e note by M the matrix corresponding to the 

element g, so Now by the arguments of 

° Theorem 3.3.2 , as y = I, we have yO = I for n to be 

odd and yO = - I for n to be even . Hence we can find 

- 1 . the va lue of Y dependlng upon the parity of n. 

substituting the values of and ( XY ) 2 
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from Equations (3.3.2 ), (3 .3.3 ) and (3.3.4) we 

obtain 

M = -rXY + ~I - m~Y (3.3 . 10) 

where m and r are the traces of Y and XY 

respectively. From (3.3.10 ), we have tr(M) 

tr( -rXY + ~I - m~Y) = -rtr(XY) + ~tr(I) - m~tr(Y) 

2 + ~(2 - m ) . Also, we have 

det(M) ~2 since det(X) = ~ and we 

assume det(Y ) = 1. Thus we get the characteristic 

equation of M as 

giving the discriminant as 

2 2 2 2 
d(r,~) = [ -r + ( 2~m )~J - 4 ~ 

r 4 + (2 _m2 ) 2~2 _ 2 ( 2-m2 ) r2~-4~2 

= r 4 2(2-m2)r2~ + [(2 -m2 )2- 4J~~ 

2 substituting r ~~ we get the equation in ~ as 

(3.3.11) 

Thus the circuit c, or its homomorphic image exists 

in the coset diagram D('I9-,q,n) if and only if f('I9-) 

is a square in F . 
q 

Consider the following as an example. 
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Example 3.3.4 

consider the circuit 

a : 

Figure 14 

in which the vertex V lS fixed by the element 
- 1 

xy xy of PGL(2,q). We find the condition for this 

circuit to exist In the coset diagram D(~,q , 6 ). 

Let X and Y be the matrices corresponding to 

the elements x and y of PGL (2 , q). Let M be the 
- 1 

matrix corresponding to the element xy xy , so 

that M can be expressed as M = Xy-1XY Here , of 
6 

course, y-l is the matr i x y 5 . Now since y = 1, we 

calculate the trace of Y to be equal to 13. From 

Equation ( 3 . 3.11) , substituting m = V3 , we obtain 
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f(~) 19
2 + 2~ 3 (~+3) (~- 1) Thus, by 

Corollary 3.3.3, the circuit '1 exists in D(~,q,6) 

if and only if f(~) is a square in F . 
q 

In the following section, we consider the 

circuits in D(~,q,n) having the fixed points of 

x,y,xy and t, where x,y,t are all in PGL(2,q). 

3.4 Fixed Points in D(~,q,n) 

We shall now consider the circuits in 

D(~,q,n) having the fixed points of x,y,xy and t, 

where x,y ,t are all in PGL(2,q). Note that for this 

purpose we choose q not to be of characteristic p, 

where p is a prime, if n = p. Therefore, as 

discussed in section 2.3, the fixed points of x,y 

do not lie on the vertical axis of symmetry, so 

that they are not the fixed points of E also. The 

case for the fixed points of t (lying on the 

vertical axis of symmetry) has been discussed in 

the following theorem. We first make the following 

observations. 
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Remark 3.4.1 

(i) A circuit having a fixed point of x exists 

in D('O-,q,n) if and only if -'0- is a square in F . 
q 

For, by Theorem 3.3.2, the matrix representing x of 

PGL ( 2,q ) will be M = X. So that from Equation 

(3 .3.2 ), its characteristic equation will be X2+~I 

= 0, thus giving the discriminant as -4 ~. Now since 

2 r 'O-~, '0- is a square if and only if ~ is, hence 

the result. 

(ii) Let C be a circuit having a fixed point of 

y. The matrix representing y shall be M = Y. So 

that the characteristic equation of Y, from 

Equation (3. 3.3 ) is y2_ mY + I = O. Thus we obtain 

the discriminant as 2 
d = m - 4. Hence C exists in 

D('O-,q,n) if and only if m2- 4 is a square in F . 
q 

(iii) Consider now the circuits having fixed 

points of xy. These circuits exist in D(1J,q,n) if 

and only if ~ ( '0--4) is a square in F . 
q -

This is a 

direct consequence of Theorem 3.3.2. By taking the 

matrix representing xy as M = XY and considering 

the discriminant of the characteristic equation of 

XY, 2 given by Equation ( 3.3.4 ), and substituting r 

= 'O-~ we obtain the required result. 
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We now consider coset diagrams having the 

fixed vertices of t on the vertical axis of 

symmetry in the following. 

Theorem 3.4.2 

The element t of PGL (2,q ) has fixed vertices 

ln D ( ~ , q , n ) if and only if ~[~- ( 4-m2 )J is a square 

i n F . 
q 

Proof 

We recall from Remark (3.4 . 1) (i), that in 

the non-degenerate homomorphism a with parameter ~, 

x maps to an element of PSL(2,q) if and only if -~ 

is a square in F. 
q 

since changing to the dual 

homomorphism interchanges both x and xt, and ~ and 

(4-m2 )-~, it follows that xt maps to an element of 

PSL (2,q ) if and only if - [( 4-m2 ) -~] is a 'square in 

F. since t is in PSL (2,q ) if both or neither of x 
q 

and xt is, but not if just one of them is, t is in 

PSL(2,q ) if and only if ~[ ( 4-m2 ) -~J is a square in 

F . Now t has fixed vertices in PL (F) if either t 
q q 

belongs to PSL (2,q ) a nd q = 1 (mod 4 ) or t does not 
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belong to PSL(2,q ) and q == 3 (mod 4). Since 'q == 

1 (mod 4)' is equivalent to ' - 1 is a square in F ' q , 

we see that t has fixed vertices if and only if 

~[~-(4-m2) ] is a square in F . 
q 

3.5 Circuits when the Discriminant is Zero 

Let C be a circuit such that it contains a 

vertex which is fixed by an element g of PGL(2,q). 

The characteristic equation of the matrix 

corresponding to g will, of course, have equal 

eigen-values if the discriminant of the 

characteristic equation is equal to zero. This 

means that g will have just one fixed vertex in 

D(~,g,n), but the exact type will depend upon the 

circuit concerned. 

For example, we first consider some circuits 

occuring in the coset diagrams D(~,q,6) for an 

action of the group G(2,6) on PL(F ) . 
q 

Let C be a circuit in D(~,q,6) such that a 

vertex in it is fixed by an element ~ of PGL(2,q). 

Then the characteristic equation of the matrix (say 

M) corresponding to the element ~ has roots in F . 
q 
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So that g has fixed vertex in PL(F) 
q 

if the 

discriminant d(~) of the characteristic equation of 

M is a square in F. 
q 

We now check for the 

conditions on C if this discriminant is . zero. In 

that case the characteristic equation has equa l 

eigen values, meaning 9 will have just one fixed 

vertex in D(~,q,6). 

For example , consider the circuit 

Figure 15 

in D(~,q,6). Since D(~,q,6) admits the axis of 

symmetry , the image of the circuit under the 
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permutation t will also occur. The vertices v and 
2 

vty on the circuits: 

Figure 16 

2 

are both fixed by an element g = xyxyxy of 

PGL(2,q) • So if the discriminant of the 

characteristic equation of the matrix corresponding 
2 

to g is equal to zero, then v = vty. This means 

t hat the circuit c, which has a symmetry, lies on 

the vertical axis of symmetry as shown in 

Figure 17. 
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Figure 17 

Cons ider now the homomorphic image of the 

circuit in Figure 18 that occurs in D(~lq,6). 

Figure 18 
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Here the vertices v and v are fixed by the 
1 10 

- 1 - 1 

element g == xyxyxy xy of PGL(2,q). Now if the 

discriminant of the characteristic equation of the 

matr i x corresponding to g is zero , then we get a 

homomorphic ima g e of the circuit in which v == vx. 

So that a homomorphi c image of the circuit will be 

as shown in Figure 19 , which will be , ln fact 

symmetrical about the vertical line of symmetry. 

Figure 19 

Let us now consider the circuit h aving f ixed 

point of xy as discussed in Remark ( 3 .4.1) (iii). 

Taking the discrimina nt 6(~-4) o we ha ve ~ == 4, 

since 6 , being the determinant of the matrix x , is 

non-zero. Hence by the above arguments , there will 
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be on l y one vertex In 0(4,q,n) fixed by xy . Since 

the action of t represents reflection about the 

vertical line of symmetry, the circuit (hav ing the 

fixed the point of xy) will, in this case, lie on 

the vertical axis of symmetry. 

Example 3.5.1 

Consider the coset diagram 0(4 , 23 , 4) for the 

action of the group G(2 , 4) on PL(F ). 
23 

Figure 20 

Here v is the only vertex fixed by the element xy 
20 
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of PGL (2,23). Note that In this case, (where we 

choose y4 = AI, for some scalar A), we obtain tr(Y) 

V2i so that, from Theorem 3.4.2, t has fixed 

vertices, namely v and v since tt (tt-2 ) 
1 22 

square in F 
23 
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CHAPTER FOUR 
SOME SPECIAL FRAGMENTS OF COSET DIAGRAMS 

4.1 Introduction 

In [ 9] , it has been shown how an 

automorphism of a given group enables us to adjoin 

a new element so as to obtain a larger group. For 

example, the cyclic and non- cyclic groups of order 

4 yield the quaternion group and the tetrahedral 

group respectively. We can do the same in a much 

simpler way with the help of graphs. By joining 

graphs representing groups of smaller degree we can 

get a 'big' graph representing a group of larger 

degree . Then it is also easy to study the 

properties of the new group just by studying its 

graph. Therefore the graphs enable us both to see 

what steps to take and ' to check that our results 

are 'sensible'. We have different methods of 
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'joining' graphs together, to give transitive 

representations of the group G of larger degree. 

M.Conder, in [ 4J and [ 5 J, has adopted a method of 

using 'j handles' to join the coset diagrams for 

groups of smaller degrees to obtain coset diagrams 

for groups of larger degrees. The method that he 

ha s used is called (j) -composition (where j = 1,2 

or 3). It has been described in [25J. We also give 

a method of forming groups of larger degrees by 

joining fragments of coset 

groups of smaller degrees. 

diagrams representing 

Our method is much 

simpler as we need not have to s tudy the entire 

group of a smaller degree. We can do that just by 

studying a fragment of it and find conditions for 

the existence of that fragment in the coset 

diagram, so that if that fragment exists in a coset 

diagram of larger degree, we can study the 

properties of that diagram for the related group of 

larger degree. 

A fragment is said to be composed of a 

single circuit or more than one circuit. In Chapter 

3 we have studied the single circuits , and found 

condi tions for their existence in the respective 
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coset diagrams D(~,q,n ) . The purpose of this 

chapter is to study the fragments composed of at 

least two interconnected circuits, both periodic 

and non-periodic, and to find the conditions for 

their ex istence in the coset diagrams D(~,q,n). (By 

a periodic circuit, we shall mean a circuit 

corresponding to a n element g hk k > 0 of , 

G ( 2, n), so that g belongs to the kernel of <x.) 

Recall that each class of non- degenerate 

homomorphisms <X from G(2,n) to PGL(2,q) can be 

represented by a unique coset diagram. In order to 

k now which class(es) a diagram comes from, we need 

to consider this question: Given a fragment of a 

coset diagram for an action of G(2,n) (or H(2,n)) on 

PL (F ) or PL (F 2), for what values of q and ~ can 
q q 

it be found in D(~,q,n) ? In our next section we 

have found the condition for the e x istence of a 

fragment in D(~,q,n), for the conjugacy class of <X 

related to ~, to be a polynomial f in 1: [z] such 

that f ( ~)= O. 
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4.2 Fragments in D(~,q,n) and Related Polynomials 

In [20], Q.Mushtaq has proved that, given a 

fragment '0, there is a polynomial f in 7L [z] such 

that if a occurs in D(~,q,3) then f(~ ) = 0 and if 

f(~) 0 then the fragment, or a homomorphic image 

of it, occurs in D(~,q,3) or in the coset diagram 

for the action of G(2, 3 ) on PL(F 2)\PL(F). We have 
q q 

generalized the same result by taking the action of 

G ( 2, n) on PL (F ) . 
q 

Before proving the main result, we state a 

lemma for use in our s ubsequent work. (The proof is 

given in [16].) 

Lemma 4.2.1 

Two 2x2 matrices M and N over the field F 
q 

have a common eigen vector over F or F 2 if and 
q q 

only if the algebra A that they generate, has 

dimension less than or equal to 3. 

As def ined earlier, by a per iodic circuit, 

we shall mean a circuit corresponding to an element 

k g = h, k > 0 of G(2,n), s o that g belongs to the 
E 1 E 1 E 1 

kernel of ex. Here h = (xyl ) 1 (xy2 ) 2 ... (xy J) j 
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for 1 ~ E ~ n - 1, where i = l,2, ... ,j, and h does 
i 

not have a fixed vertex. 

We now prove the main theorem. 

Theorem 4.2.2 

Given a fragment 0, there is a polynomial f 

in l [z] such that 

(i) if the fragment 0 occurs in D(~,q,n), then 

f('l9-) = 0; 

(ii) if f ( ~) = 0 then the fragment, or a 

homomorphic image of it , 

diagram D( ~,q2,n ) . 

occurs in the coset 

Proof 

Suppose 0 exists in D('l9-,q,n) and assume that 

C and C are any two non - periodic, interconnected 
1 2 

circuit s which compose the fragment O. Let a vertex 

v belongs 

namely 

and 

to both C 
1 

and C. 
2 

Then the 

t 1 t 1 t 1 
-- 1 1 -- 2 2 -- k k 

W ( xy ) ( xy ) ... (xy 1 ) 1 , 
1 
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where 1 :::: t, s :::: n - 1, of PSL (2, q) are induced 
1 

by the paths (with the initial point v) P and P 
1 2 

of circuits C and C. This implies that v = vW 
1 2 . 1 

and v = vw. If X and Yare the matrices, 
2 

representing the elements x,y of PSL(2,q) and also 

X,Y satisfy the relations 

(4.2.1) 

for some scalar 'A, then we can represent the 

elements w and w in the matrices form as 
1 2 

t 1 
t I t I k k 

W (XY 1) 
1 2 2 1 ) 1 

1 
(XY ) .. . (XY 

and 
5 \ 5 J 52 J2 

k 

W (XY 1) 1 (XY ) ... (XY 2) 2 

2 

respectively, where k , k > o. 
1 2 

since X and Yare the matrices with entries 

from F, and X, Y satisfy the relations (4 .2.1 ), 
q 

therefore we can choose x ,y to be represented by 

X = [
a
c and Y = [ e flJ 

f m-e 

as in Chapter 2. Also X and Y satisfy the Equations 

(2 .2.1 0) , (2 .2.11 ) and (2.2 .12 ) . So 

arguments in section 3.3, as det(X) = ~, 

the by 

det(Y) = 

1, det(XY) = ~ and tr(XY) = r, tr(X)=O, tr(Y) = m, 
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we obtain the characteristic equations of X,Y and 

XY (as in Equations (3 . 3.2),(3.3 . 3) and (3.'3.4)) 

respectively as 

X2 + fl.I 0, (4 .2.2 ) 

y2 - my + I = 0, (4.2 .3 ) 

(XY ) 2 - r (XY ) + fl.I o. (4.2.4) 

On recursion, Equation (4.2.4) gives 

(4 .2.5 ) 

Using Equations (3.3.2) to (3.3.7) and also 

(4.2.5), we can express the matrices Wand W as 
1 2 

and 

where i\ and 

in r and fl.. 

W = i\ I + i\ X + i\ Y + i\ XY 
1 0 1 2 3 

W = J.1 I + J.1 X + J.1 Y + J.1 XY , 
20123 

for i = 0,1,2,3 are expressions 

since v = vw and v = vw, the 2x2 matrices 
1 2 

Wand W have an eigen-vector In common. So by 
1 2 

Lemma 4.2.1, this means that the algebra generated 

by Wand W has dimension 3. The algebra contains 
1 2 
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I, W, 
1 

Wand W Wand · so these must be linearly 
2 1 2 

dependent. Using Equations (3.3.2) to (3.3.7), the 

matrix W W can be expressed as 
1 2 

W W = v I + v X + v Y + v XY , 
1 2 0 1 2 3 

where VI' for i = 0,1,2,3 can be calculated in 

terms of A 
I 

and using Equations (3 .3.2 ) to 

(3.3.7) along with (4.2.5). The condition that 

I, W, Wand W Ware linearly dependent, 
1 2 1 2 

expressed as 

A 
1 

V 
1 

A 
2 

V 
2 

A 
3 

V 
3 

= o. 

can be 

(4.2.6) 

If we carry out the calculations of v, V 
1 2 

and V 3 in terms of A and /1i' and sUbstitute in 

Equation (4 .2.6 ) we get 

[ (11.
2

/1
3 

-/1211.
3

) 2+ ( 11.
1

/12 -/1111.
2

) 2 

+ m{ (A /-1 -/1 II. ) (A /-1 -/-1 II. )} 
12123232 

+ r{ (II. /1 -/1 II. ) (II. /1 - /1 II. )l 
13133232:.1 

(4.2.7) 

The expression (4.2.7) is a homogeneous equation in 
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r and ~, and so we can sUbstitute ~~ for r2 to get 

an equation in ~. 

If conversely, ~ satisfies f (z)=O, then the 

determinant (4.2.6) is zero and so W, Wand W W 
1 2 1 2 

are linearly dependent. Now each of W , Wand W W = 
1 2 1 2 

W is a 2x2 matrix and therefore satisfies the 
3 

equation W 2=k W + 1,1. Using these equations, and 
iii I 

the fact that Wand Ware non-singular, it is 
1 2 

easy to express W W . W W Wand W W W linearly in 21123 212 

I, W 
1 ' 

W and W W . Thus the algebra generated by 2 1 2 

W and W is spanned by I, W 
1 ' 

W and W W . Since 1 2 2 1 2 

W 1 ' W and W W are linearly independent, this 2 1 2 

algebra has therefore dimension less than 4 .Thus, 

by Lemma 4.2.1, Wand W have a common fixed 
1 2 

vertex, necessarily in PL (F 2) • 
q 

Hence we , have 

circuits (or their homomorphic images) with 

appropriate common vertex. That is, we have the 

fragment 0, or a homomorphic image of it. 

We now give an example to find a polynomial 

from a given fragment of a coset diagram. 

Example 4.2.3 

Let X and Y be two 2x2 matrices with entries 
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from F and let them satisfy the relations 
q 

for s ome scalar A. Now since y4 = i\I, tr(Y) ,12, 

so that we can choose the matrices X and Y as 

X = [~ ~~J and Y = [~ fl J 
v2-e 

where a , l , c , e , f are in F , with 1 '" 0, 
q 

prime- power q. Now from Equations 

(3.3.4), we get 

0, that is, X2 -~I, 

y
2-V2Y+I = 0, that is, y2 = V2Y-I, 

for an odd 

(3.3 .2 ) to 

(4.2.8 ) 

(4 .2 . 9) 

2 2 (XY) -rXY+~I = 0, that is, (XY ) = rXY-~I. (4.2.10 ) 

Also by putting m = ,12 in Equations (3 . 3.5) to 

( 3 . 3 . 7), we get 

XYX rX + ~Y - V2~I, 

YXY rY + X, 

YX = rI - XY + v2X. 

(4.2.11) 

(4.2.12) 

(4.2.13) 

Also for n = 3 and n = 4, we get from Equation 

(4.2.5 ) , 

(XY) 3 = 2 (r - ~) XY - ~rI (4.2.14 ) 

and 

(XY ) 4 
322 (r -2 r~) XY + (~ -r ~I) (4 .2. 15) 
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respectively. 

We now consider -the following fragme nt of 

D(tJ-,q , 4) • 

Figure 21 

This is composed of two non-periodic and connected 

c i rcu its with a common vertex v. The path s 
3 2 2 ------ -- ------ --xyxyxy xy and xy xyxyxy xy fix the vertex v. Th a t 

3 2 2 ------ - -----
.if lS , w = xyxyxy xy and w xy xyxyxy xy , the n 

1 2 

v = vw and v = vw . 
1 2 
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Let X and Y be the matrices corresponding to 

x and y of PGL (2,q ) satisfying the relations 

AI, for some scalar A. Also let X and Y 

satisfy the Equations ( 4.2.8 ) to 

and w can be expressed as 
2 

and 

W 
2 

( 4 . 2 . 15) . Then w 
1 

(4.2. 1 6 ) 

( 4.2.17 ) 

Now using Equations (4.2.8 ) to (4.2. 15) and solving 

( 4.2.16 ) we get 

= A I + A X + A Y + A XY, 
0 1 2 3 

where A = 1J.2_r 21J. A = -v'2IJ.r, A = -v'21J.2 and A 
0 

, 
1 2 

3 Similarly, Equation ( 4.2.17 ) r . we can express 

where 11 
o 

= 11 I + JJ. X + Jl Y + 1l3XY, 
012 

3 2 = -2r 1J.+3rlJ. , II = 0 
1-41 ' 

= 
3 

as 

and 11 
3 

2r4 - 4r
2

1J. + 1J.
2

• Now by multiplying Wand 
1 

W
2

, we obtain 
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w W ( A J.1 - A J.1 b. + r A J.1 - A J.1 -12 b. A J.l - A J.1 b.) I 
12 0011 21 22 3133 

where 

+ (A J.1 +A J.1 +V2A J.1 +A J.1 + r A J.1 -A J.1 ) X 
0110 2123 3 1 32 

+ (A J.1 - A J.1 l'.+A J.1 +V2A J.1 +rA J.1 +l'.A J.1 ) Y 
021320 22233 1 

+ (A J.1 +A J.1 - A J.1 + A J.1 +V2A J.1 +rA J.1 ) XY 
03 1 22 1 30 2233 

v I + V X + V Y + V XY , 
o 1 23 

V = A J.1 - A-J.1 b.+A J.1 r - A J.1 - V2b.A J.1 - A J.1 b., 
o 00 11 2 1 22 3 13 3 

V A J.1 + A J.1 + V2A J.1 +A J.1 +rA J.1 - A J.1 , 
1 0 1 10 21 2 3 3 132 

V = A J.1 - A J.1 b. + A J.1 +V2A J.1 +rA J.1 +A J.1 b., 
2 02 1 3 20 - 22233 1 

v A J.1 + A J.1 - A J.1 + A J.1 + v 2 A J.1 +r A J.1 
3 03 1 2 2 1 30 22 33 

Now t he c ondit ions t hat I , W, 
1 

Wand W W 
2 1 2 

are linearly dependent, can be expressed as 

A A A 
1 2 3 

J.1
3 

= 0 

V - V V 
1 2 3 

which implies that 

substituting the values of 

(4.2.18) we thus obtain 

89 

, 

V , V , V 
123 

in 

(4 . 2 . 18) 

Equation 



+ v2 {01112 - ;:\111 )C\112-1I. 2113 )} 

+ r { (11.111 3 -11. 311 1 ) (11. 3112-11. 211) } 

+ ~{(1I.1113-1I.3111) 2 } = o. (4.2 .19 ) 

Now substituting the values of II. , 11., II. and 
123 

11 ,11 in (4.2.1S), we get 
2 3 

which gives, by sUbstituting r2 = ~~, 

Then by Theorem 4.2.2, for any ~ in F satisfying 
q 

f(~) = 0, the diagram D(t9-,q,4) shall contain the 

fragment (Figure 21) or a homomorphic image of it . 
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CHAPTER FIVE 
2 6 

THE GROUP <x, y: x =y =1> ACTING ON PROJECTIVE 

LINES OVER GALOIS FIELDS 

5.1 Introduction 

There is a well - known relation between the 

action of z ~ (a z+b)/(c z+d) o f PSL ( 2,Z!:) = 
2 3 <x , y:x =y = 1 > on IR v { oo } a nd c ont i nued fract ions. 

(See e.g. [ 1) ) . There is a large body of literature 

re l a t i ng to the c onnect ion between geodesics on the 

modular s urfa c e (the quot ient of the hy perbo l i c 

plane by the modula r group PSL( 2 , Z)) a nd continue d 

f ractions. Le t a denote a r e al quadratic irrational 

number (a+vn)/ c, where n is a non - square positive 

integer and a, 2 
( a - n )/ c , c are . relative prime 

integers. Let G be the modular group. In [1 5 ) it 

has been p r oved that classifying real quadratic 

irrational numbers into the orbits aG is almost the 

same a s c lassifying indefinite binary qu adratic 
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forms. A good account of the relationship between 

continued fractions and indefinite binary quadratic 

forms is given in [13J. In this chapter we shall 

replace PSL(2,l) by H(2,6) = <x,y 2 6 
X = Y = 1>. 

In [17 J , Q. Mushtaq has determined a 

condition for the existence of closed paths in the 

coset diagrams for the action of PSL(2,l) on 

Q(Vn) U {oo}. It has been shown that, if such a 

closed path exists, then under certain conditions 

the closed path contains a real quadratic 

irrational number a along with its algebraic 

conjugate a. Also, necessary and sufficient 

condi tions have been determined for the existence 

of two closed paths in the diagram; one containing 

a along with 1ja and the other containing a 

together with 1 j a. In our later work we shall study 

t h e actions of H(2,6) on the projective lines over 

Galois Fields F, denoted by PL(F ), and see under 
.q q 

what conditions these closed paths appear in the 

case of f ini te coset diagrams for t he action of 

H(2,6 ) on PL(F). Our interest in this case is 
q 

motivated by the fact that there is a homomorphism 

between ~ ( Vn ) U {Do} and PL(F ) . 
q 
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In [6 ], M. Conder has used coset diagrams to 

give an important result on the group 

6 66 2 6 6 2 2 2 6 G' , =<x,y ,t :x =y = (xy ) =t = (xt) = (y t) = (xyt) =1>. 

In fact, it is shown that for all but finitely many 

positive integers n, both the alternating group A 
n 

and the symmetric group S occur as quotients of 
n 

the group The proof o f this result 1S 

obtained by diagramatic argument, using coset 

diagrams for the latter group. In the last section 

we have studied the coset diagrams for the actions 

of ~ · ( 2,6,6 ) with presentation <x,y,t : x 2 = y6= t 2 = 

2 26 (xt ) =(yt ) =(xy) = 1> on PL (F ) and have found the 
q 

conditions for the existence of some special 

circuits in D(3,q,6). Here ~ = 3 is the only 

parameter which gives rise t o the coset diagrams 
. . 

for the act10ns of ~ (2,6 ,6) on PL(F ) . 
q 

5.2 Parametrization of the Actions 

Let us denote by H(2,6) the group gener ated 

by two elements x and y satisfying the relations 

2 6 
X = Y = 1 . (5.2.1 ) 

93 



We choose the linear fractional transformations 

x : z ~ ( - l)/z and y : z ~ ( z+1)/(2 - z) (5 .2.2 ) 

satisfying (5 .2.1 ) . Let q be a prime- power. We then 

parametrize the actions of H(2,6) on PL (F) us ing 
q 

the method described in section 2.2. Let X, Y and T 

denote the elem~nts of GL ( 2, 7l ) which yield the 

elements x , y and t in PGL ( 2,q ), where x = xa, y = 

ya and t ta, for some non-degenerate homomorphism 

a from the group G(2,6 ) with presentation 

into PGL (2, q) . Then X, Y and T will satisfy the 

relations 

(5 .2. 3) 

for some scalar ~. As in section 2.2, we choose the 

matrices X, Y and T to be 

[~ CIJ 
- a [~ flJ 

m- e and 

respectively, where] * 0 and a,c,e,f,] are in F . 
q 

Also, m = x (mod q ) , for some x in F . To find m, 
q 

the trace of Y, we adopt the following method. 

Since y6 = 1, we have y6 = AI. As in Theorem 

3.3.1, we deduce that some scalar multiple of Y is 
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conjugate to the matrix [ z 0 1J where z is 12th o z- , 

root of unity . So that we have Z 12 1 th .. = , u s glvlng 

6 6 
( z -1 ) ( z +1) 

Now 

Z6 + 1 = 0, 

= O. 

since z6 - 1 '" 0 (as 6 

Z '" 1) , 

242 thus giving ( z +1) ( z -z + 1) 

further implies that 

4 2 
Z -z + 1 = 0, 

therefore 

= O. This 

(5 .2.4 ) 

because Z2+ 1 '" O. Now Z6 + 1 = 0 implies that Z6 = 

"':' 1, so that 4 
Z -z -2 Hence Equation (5.2.4) 

becomes 

But m z + 

Z2 + z -2 - 1 = O. 

-1 
Z so that 2 

m 

Substituting in (5.2. 5 ), we obtain 

or m2 = 3, implying that m = ± YJ . 

2 = 
2 

Z 

(5.2 . 5) 

+ 
-2 

Z 

2 
m - 2 - 1 = 0, 

Let m YJ, so that tr (Y) YJ where Y 

satisfies the relation y6 = AI for some scalar A. 

We now find some conditions on q for the 

existence of some special fragments in D(~,q,6) in 

our next section. 

5.3 Some Special Fragments in D(~,q,6) 

Cons ider the fragments '0
1

' '0 and '0 having 
2 3 
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fixed points of x , y a nd t respect i vely . 

a : 
1 

REMARK 

( i) 

(i i) 

(iii) 

a : 
2 

b 

a : 
3 

Figure 22 

5.3.1 

We observe that the fragment: 

'0
1 

exists in D(1J,q,6) iff q - 1 

a
2 

exists in D(1J,q,6) i ff q - 1 

a
3 

exists in D(1J,q,6) iff q - ± 
2 

(mod 

(mod 

1(mod 

'" 

4 ) 

3 ) 

12) . 

-Note that since x = 1, we ca n choose x to 

the linear fractional transformation x z 

be 

~ 

(-1)/z. Thus for the fixed point of X, say a, we 

have (a) x = - 1/a = a, giving the equation a 2 + 1 = a 

or the discriminant equal to -4. Hence the circuit 

a
1 

exists in D(1J,q,6) if and only if -4 is a square 

in 
6 

F , 
q 

provided q is not a power of 2. Also since 

y = 1, we c hoos e y to be the linear fractiona l 

transformation z ~ (z+1)/(2-z). Thus for any 

fixed point b of y, we have (b)y = (b+1)/(2-b) = b , 
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which implies b2
_ b + 1 0, so that the 

discriminant is equal to - 3. Hence exists in 

D(~,q,6) if and only if q = l(mod 3). 

Note that s ince t is t he linear fractional 

transformation z ~ l/z, the points 1 and q - 1 are 

fixed by t and hence lie on the vertical axis of 

symmetry. Also we have observed that 0 exists in 
3 

D(~,q,6) iff q = ±l (mod 12). 

5.4 The Coset Diagrams D(3 ,q,6 ) 

In this section we find the conditions for 

the existence of some circuits in the coset 

diagrams D(3,q,6). Here ~ = 3 is the only parameter 

which gives the coset diagrams for the actions of 

* 6 (2,6,6), with presentation 

2 6 2 2 2 6 <x ,y,t :x =y =t = (xt) =(yt) = (xy ) =1 >, (5 .4 . 1) 

on PL(F ) . Let g be an element o f PGL(2,q ) . We 
q 

choose g xy and discuss only those coset diagrams 

-- 6 in which every element is fixed by (xy ) . 

By sUbstituting n 6 in the Equation (4 . 2 . 5), 

we observe that (Xy ) 6 = ~I, for some scalar ~, if 

and only l' f 5 C r 5 _ 4C r3 A 3 A 2 
D + .c

2
rD 

o 1 
0, implying 
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that 4 r(r + O. since 2 r= f)·6, we 

multiply the above equation by rj6 and thus obtain 

2 the polynomial equation in ~ as ~ ( ~ -4~+3 ) = 0, or 

~(~-3) (~-1 ) = 0, thus giving ~ = 0, 1 a nd 3 as its 

roots. 

Now for ~ = 0 , the coset diagram D (0, q , 6 ) 

depicts the actions of the dicyclic groups 6(2,6,2 ) 

on PL (F ) . Also for 
q 

~ 1 , the coset diagram 

D(l, q , 6 ) depicts t h e actions o f the group s 6(2,6 , 3) 

on PL ( F ) . 
q 

Consider, for example, the coset diagrams 

D(O,ll,6) 

Figure 23 
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and D(1,13,6) 

a • b • 

Figure 24 

depicting the images of the groups 6 (2,6,2) and 

6(2,6,3) , on PL(F ) 
. 11 

and PL(F ), respectively. 
13 

In 

Figure 24, the points a and b are fixed points of 

both x and y. 

Considering the case for ~ = 3 , we observe 

that this is the only parameter which gives the 

coset diagrams D(3,q,6) for the actions of 6(2,6,6) 

on PL (F ) . 
q 

We sha ll now discuss some spec i a l fragments 

of D(3,q,6) and find the conditions for their 
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existence in D(3,q,6) First 

fragments, namely: 

o . 
5 

Figure 25 

Figure 26 

100 

consider the 



Figure 27 

Figure 28 
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Theorem 5.4.1 

The fragment 

Figure 29 

'0 wi ll occur 
4 

and only if 60 is a square in F . 
q 

Proof 

In D ( 3 , q, 6 ) if 

Let v be the vertex fixed by the element 
1 

- 1 
----- ----- -- 2 -- 2 
xyxyt of PGL(2 , q). Then xyxyt = (xy ) (xy ). Let M 

- 1 
-- 2 -- 2 

be the matrix representing the element (xy) (xy ) 

so that 

M ( Xy ) 2 ( XY - 1 ) 2 (5.4.2) 
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where X and Yare the matrices representing x and y 

respectively. Considering the characteristic 

equation of XY, namely, (Xy ) 2 - rXY + ~I = 0 , we 

obtain (XY ) 2 rXY - ~I. Here r tr (XY) and ~ = 

det (XY), as def ined in Chapter 2. Also from the 

characteristic equation of Y, that is, y2 - V3Y + 

I = 0 , we get y 5 = Y - V3 . 

2 5 Thus sUbstituting the values of (XY ) and Y 

in (5 .4.2 ), we get 

M = (r3- 5r~)XY + ( -2V3r3+4V3r~) X+ (-2V3r2~+2V3~2 ) y 

since tr(XY) = r, tr(X) 

2 , we thus obtain tr(M) 

since det (X) == 11., 

0 , tr ( Y) 

4 
r -

and det (Y) 

assumption, we have det (M) 

+ 

characteristic equation of M will be 

giving the discriminant as 

+ (5r2~ -2 ~2 )I. 

V3 and tr (I) = 

Also, 

= 1, by our 

Hence the 

(5 .4.3 ) 

( 5 . 4.4 ) 

substituting 2 
r in (5.4.4) , we get the 

polynomial in ~ as f(~ ) = ~4 

for ~ = 3 , we have f(3) = 60. 
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Hence we conclude that the fragment ° will 
4 

occur in D(3,q,6) 

Theorem 5.4.2 

iff 60 is a square in F . 
q 

The fragments and will occur 

D(3,q,6 ) if and only if 60 is a square in F . 
q 

Proof 

in 

Here the vertices v and v are fixed by t h e 
2 3 

- 2 4 2 

elements xyxy xyx and xy xy of PGL(2,q ) , 

respectively. Following the same method as used in 

the proof of Theorem 5.4.1, we find that both the 

fragments 05 and 06 will occur in D(3,q,6) if and 

only if 60 is a square in the field F . 
q 

Hence as well as will occur 

D(3,q,6) if and only if 60 is a square in F . 
q 

Also, considering the fragments °
7 

and 

in 

we notice that the vertices v and v are fixed by 
4 5 

- 1 

the elements (xy ) 2(xy ) 2, which is same as for the 

fragment ° . So that a diagram D(3,q,6 ) can contain 
4 

any of the fragments 04' 07 and os' 

Let denote respectively the 

following fragments. 
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0' : 
9 

Figure 30 

Figure 31 
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'0
11 

: 

Figure 32 

Then following the procedure as adopted in the 

proof of Theorem 5.4.1, we have the following 

result. 

Theorem 5.4.3 

The diagram D(3,q , 6) will contain the 

fragment (or a homomorphic image of) 

( i) '0
9 

iff 12 i s a square in F 
q 

( i i) '0
10 

iff 15 1S a square in F 
q 

(iii) '0
11 

iff 8 is a square in F 
q 

Note that all these fragments are symmetric about 

the vertical axis. 
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Example 5.4.4 

If we draw the coset diagram D(3,71,6) for 

the action of ~(2,6,6) on PL(F ), then since 
71 

8,12,15 a nd 60 are all squares in F , the diagram 
71 

contains the fragments '0 , '0 , '0 , '0 , '0 and '0 • 
4 5 6 9 10 11 

We now find the primes p for which 3 is a 

quadratic residue using the classical Legendre 

symbolism. Clearly 3 is residue of 2. Suppose p is 

a prime other than 2 or 3. Since 3 = 3 (mod 4 ) , we 

have 

(3jp) 
{ 

(pj3) 

-(pj3) 

if P - l(mod 4) 

if p - 3(mod 4) 

We know that p = 1 or 2 (mod 3 ) and that (lj 3 ) = 1 

and (2j3) = - 1. So that, (3 jp) = 1 if and only if 

p = l(mod 4) and p = l(mod 3 ) ( i) 
or 

p = 3 (mod 4) and p = 2 (mod 3). (ii) 

Then conditions in ( i ) are equivalent to p -

l(mod 12) ; those in (ii) to p - -l (mod 12) . Thus we 

have shown that ( 3 jp) = 1 if and only if p 2 or 

p - ± l(mod 12) . So that the prime numbers p that 
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we choose for the coset diagrams O(3,p,6), (p 

having squares of 3) , are of the form 12k ± 1, 

wh~re k E 7l.+. 

To prove our main result, we shall need the 

coset diagrams O(3,p, 6 ) containing the fragment 0 
9 

(Figure 30). As shown in Figure 33 , we just 

consider the patch h av ing the pattern o f 'holding 

hands' . 

0
12 

: 

Figure 33 

If we consider the vertices a ,b, a ' ,b' in Figure 33 

as fixed points (of x) by 'breaking ' the edges aa' 

and bb', we see that the whol e diagram shall still 

be the coset diagram O(3,p,6) depicting the 

homomorphic images of the group 6 ( 2 ,6, 6 ). For, if 

(ab' c
1 

C
2

C
3

C 4 ) and (a' bd
1 
d

2
d

3
d

4
) are the cycles of 

xy before 'breaking' the edges aa' and bb', then 

(abc
1
c

2
c

3
c

4
) and (a'b'd

1
d

2
d

3
d

4
) shall be the cycles 
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of xy after we 'break' the 'hands' aa' and bb', and 

consider the vertices a,b,a' ,b' as fixed points of 

x. All other cycles of xy are unchanged. In 

particular, xy still has order 6. 

For our required result, we also need the 

coset diagrams containing the fragment 0 as shown 
13 

in the following figure. 

Figure 34 

The vertices labelled A, T and ~ have been indicated 

for a reason that shall be explained later. First 

we find a condition for the existence of in 

0(3, p , 6 ) in the form of a theorem that follows. 

Note that the vertices A and ~ are the fixed points 

of t , so that the edge A~ lies on the vertical axis 

of symmetry. 

Let 1> be the parameter for the dual 

homomorphism a' of the non-degenerate homomorphism 

109 



cx. Then as shown In Chapter 2, 1J+¢ = 2 4-m, where, 

as defined earlier, m is the trace of the matrix Y 

satisfying yn = AI, for s ome scalar A. Now since we 

are dealing with the group H(2,6) we find m to be 

equal to YJ, so that we have 1J+¢ = 4-(YJ ) 2 = 4-3 = 

1. Thus if 1J is the parameter for (X then (1 -1J ) 

shall be the parameter for cx'. 

Next we prove the following: 

Theorem 5.4.5 

The fragment 0 exists, with A, ~ fixed by 
13 

t, In D(3,p,6) if and only if 6 is a square in F . 
p 

Proof 

The proof is a direct consequence of Theorem 

3.4.2 , by substituting m = YJ and 1J = 3. 

Having found the conditions for 1J and p in 

the coset diagram D (3, p, 6 ) a nd the existence of 

certain special fragments in D(3,p,6 ), we finally 

give our main result in the form of a theorem. 

5.5 Application of Coset diagrams and their 

Fragments 

Conder [6J, uses small coset diagrams as 
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building blocks and connects them together to form 

a large diagram. The method of pasting together 

these diagrams is called j - composition. Though 

j - composition preserves the orders of x, y and xy, 

but it preserves very little else, so that it is 

hard to control the structure of the group that 

emerges. But for the coset diagrams for the actions 

of the group G (2, n ) 

quite otherwise. 

Theorem 5.5.1 

on PL(F ) , the situation 1S 
q 

Let n = p+1, where p is a prime such 

that 6 and 12 are squares in F and n = 2(1+r) for 
p 

a prime r . Then for all such n, both A and S 
n n 

occur as homomorphic images of ~(2,6,6). 

Proof 

To prove our result we choose a prime number 

P such that p = 12k ± 1, where k E 71.+. Also these 

p'S are such that the fields F should contain 
p 

squares of ' 6 and 12 I so that the coset diagrams 

D(3,p,6) should contain the fragments a and a . 
12 13 

Let us denote the coset diagrams, having these 
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properties by * D (3,p,6 ) . Now since we are 

considering the actions of the group G(2,6) on 

PL(F ), the degree o f this group will be n = p + 1. 
p 

Let us express this n as n = 2 (l+r ) , for some 

positive integer r. Considering the points a, b, 

a', b' of '0 
12 

(in Figure 33 ) as fixed points of x , 

we trace out the cycles o f xyt a nd find the parity 

of these cyc les. We observe that the vertices a, a' 

form a cycle (of xyt ) of length 2. The other 

cycles, containingb and b' then form either cycles 

of length r separately or a single cycle of length 

2r containing the points band b'. 

Now we need to consider only those coset 

diagrams * D (3,p,6) in which r is some prime 

integer. So that the length of t he cycles 

containing band b', separately, i s a prime number, 

concluding (xyt) s = 1 for some r = s. We see that 

the cycle containing the point b, which is now of 

some prime length, also contains the vertices ~ , ~ 

and ~ (as shown in Figure 34). So that we form a 

* block, say B, in D (3,p,6) conta ining the points ~, 

~, ~ as well as b. It is obvious, from Figure 34, 

that ~x ~, ~y = ~ and ~t =~ , (where ~ , ~ and ~ 
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E B), so that B is preserved by x , y and t. This 

implies that B is a union of orbits of <x ,y,t> . But 

* . from the connectedness of D (3,p,6), we can easlly 

check that the group ~(2,6,6) is transitive. Hence 

IBI n, thus also proving the primitivity of the 

group ~(2,6,6). The group ~(2,6,6) being primitive 

and having an element xyt of prime order, we can 

now use Jordan's theorem 13.9 in [ 29] , to conclude 

the proof. 
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