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PREFACE 

In ternary operations the commutative law 

is given by abc = cba. M.A. Kazim and M. Naseerudin 

(1972 ) introduced braces on the left of this 

equation to get a new pseudo associative law, that 

is, (ab ) c = (c b) a. It is ca lled the left i nvertive 

law. A groupoid is called a left almost semigroup, 

abbreviated as LA-semigroup, if its elements 

satisfy the left inverti ve law. Similarly, a 

groupoid is called a right 

abbreviated as RA-semigroup, 

satisfy t he right invertive 

almost semigroup, 

if its elements 

law, t ha t is 

a(bc) = c(ba). A group is called an 

semigroup if it is both an LA- semigroup 

RA- semigroup. 

almost 

and an 

An LA-semigroup is an algebraic structure 

midway between a groupoid and a commutative 

semigroup. Despite the fact that the structure is 

non-associative and non-commutative, it 

nevertheless possesses many interesting properties 

wh ich we us ually find i n c ommutative a nd 

associative algebraic structures. 

This thesis comprises four chapters. The 

(i) 



first chapter contains on l y those def ini tions and 

results whi c h are directly related to our study of 

t he LA- semigroups . We have mentioned in t hi s 

chapter the results without proofs in order to 

avoid making the dissertation unnecessarily bulky . 

We have avoided giving the text - book definition 

also by presuming that the reader is familiar with 

these definitions . However, one can refer for 

reference to several text - books, and one of them 

is: A.H. Clifford and G.B. Preston, The algebraic 

theory of semigroups, Amer. Math. Soc., Vols.l, 

1961 and II, 1967. 

In Chapter 2 , we have described the 

structure of LA- semigroups by means of 

LA- semigroups and certain homomorphisms between 

them. Specifically, we have shown that an 

LA-semigroup G is a semi lattice of LA-semigrups . 

Conversely we have shown that given a semilattice 

of LA-semigroups and a family of homomorphisms, 

with certain propert ies, an LA- semigroup can be 

defined which is a union of the given 

LA - semigroups. 

In chapter 3, we have extended the results 

by Tamura and Kimura [33] that any commutative 

semigroup G is uniquely expressible as a 

semilattice of archimedean semigroups. We have 

generalized also the results of He'w itt and 

Zuckerman [11] that the following are mutually 

equivalent: ( i) G is separative (i i ) the 

(ii) 



archimedean components of G are cancellative 

(iii) G can be embedded in a union of groups. We 

have shown also in chapter 3, that any locally 

associati ve LA-semigroup G with left identity is 

uniquely expressible as a semi lattice of 

archimedean components. Also it has been shown 

that G is separative if and only if the archimedean 

components of G are cancellative and G can be 

embedded in a union of LA-groups if and only if it 

is separative. 

In chapter 4, an LA-semigroup G, which has 

a left regular band of LA-groups as an LA-semigroup 

of left quotients , is shown to be the LA-semigroup 

which is a left regular band of right reversible 

cancellative LA-semigroups. An alternative 

characterization is provided by unique spined 

products. These results are applied to the case 

where S is super abundant and where the set of 

idempotents form a left normal band. 

The results contained in chapter 2, are 

published in Proceedings of Academy of 

Sciences 2, 28 (1991), 197-20·0 . The results 

contained in chapter 3, are published in 

Semigroup Forum, 41 (1991) 155-164. 

One separate paper, containing results 

from chapter 4, has already been submitted to 

journal for consideration of pUblication. 

( iii) 



CHAPTER ONE 

DEFINITIONS, EXAMPLES AND SURVEY 

In ternary operations the commutative law is 

given by abc = cba. In 1972, Kazim and Naseerudin 

[15 J have introduced braces on the left of this 

equation to get a new pseudo associative law, t hat 

is, (ab)c = (cb)a and proved several interesting 

results. 

A left almost semigroup, abbreviated as 

LA-semigroup, is an algebraic structure midway 

between a groupoid and a commutative semigroup. An 

LA-semigroup is a non-commutative and 

non- associative algebraic structure. It has been 

defined in [15] and [28J as a groupoid G in which 

the left invertive law: 
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( 1. 1 ) (ab ) c = (cb ) a 

Naseerudin has 

f o r a ll a ,b,c in G holds. 

investigated some basic 

characteristics of this structure in his doctoral 

thesis [28]. He has generalized some rudimentary 

but useful and important results of semigroup 

theory. Relationships between LA- semigroups and 

quasi-groups, semigroups, loops, mono ids and groups 

have been established. 

Kazim and Naseerudin, in their paper on 

almost semigroups [15] have shown t hat G is medial . 

That is, 

(1.2) (ab) (cd) = (ac) (bd) for all a,b,c,d in G. 

Right almost semigroups can be defined dually . That 

is, a g r oupo i d (G, . ) is called a right almost 

semigroup, abbr eviated as an RA- semigr oup, if it 

satisfies the right invertive law: 

a(bc) = c(ba) for all a,b,c in G. 

EXAMPLES 1.1 

(i) Let (2, + ) denote the group of integers under 

'+'. Define a binary operation * in 2 as follows: 

x*y = y - x for every X,y in 2, 

2 



where ' -' denotes the ordinary subtraction defined 

in Z. Then it is a routine matter to check that 

(Z,*) is an LA- semigroup. 

(ii) Let (Q, +) denote the group of rational 

numbers under '+'. Let * be defined in Q as 

follows: 

x*y = y-x for every x,y in Q. 

Then it is easy to check that (Q, *) is an 

LA-semigroup. 

( iii ) Similarly (R,* ) , where (R,+ ) is a group of 

all real numbers under ordinary addition (+) and * 

is the binary operation defined by x*y = y - x, for 

every x,y in R, is an LA- semigroup. 

'" 
( i v ) Let (Q,. ) denote the group of all non-zero 

rational numbers under ordinary multiplication ( . ) . 

'" Define a binary operation * in Q as follows: 

x*y = y + x for every x,y E Q. Then it can be 

'" 
checked easily that (Q,*) is an LA - semigroup. 

REMARK 1.2 

(i ) Note that the binary operation '*' is not 

necessarily associative. For if we consider the 

3 



additive group of integers , ( Z, + ), and define 

a*b = b - a for all a,b in Z, 

Then (3*4)*5 = (4 - 3)*5 = 1*5 = 5- 1 = 4 

and 3*(4*5) 3*(5- 4) 3*1 1- 3 - 2. 

Thus 3*(4*5) ~ (3*4)*5 and so (Z,*) is not a 

semigroup. 

(ii) The binary operation \ *' is not necessarily 

commutative. For 

3*4 = 4- 3 = 1 

and 4*3 = 3- 4 - 1 

implies that 3*4 ~ 4*3 . 

The structural properties of LA- semigroups 

are studied in a number of important papers that 

h ave appeared since the introduction of this 

struct ure. I n one o f t hes e papers Ka zim and 

Naseeruddin [15] have tried to find out a condition 

under which an LA- semigroup can be converted into a 

group. They assert that an LA-semigroup G with left 

identity e will become a group if for each a in G 

there exist band c in G such that a (be) = e = 

(ac)b holds in G. In [23] Mushtaq ha s shown that 

their assertion was not true. He provided a counter 

example to support his assertion. Kazim and 

4 



Naseerudin [15] have e xtensively used the identity 

a(a(bc)) = e and (a(bc))a = e which is not 

necessar i ly true as Mushtaq [23] has shown that 

a(bc) = e does not necessarily imply that 

a (a (bc )) = e and (a (bc )) a = e. 

consider, for instance, the following example of an 

LA-semigroup which satisfies the hypothesis of the 

theorem by Kazim and Naseerudin but which is not a 

group. 

EXAMPLE 1.3 

Let G = {a,b,c,d} and a binary operation ( . ) 
be defined in G as follows. 

a b c d 

a a b c d 

b d a b c 

c c d a b 

d b c d a 

Then (G,. ) is an LA-semigroup with left identity a 

because all the elements of G satisfy the left 

5 



invertive law and ax = x for all x in G. Moreover , 

all the elements of G satisfy the identity 

a(a(bc)) = e and ( a ( bc)) a = e . 

Thus, for each x in G, there exist y and z in G 

such that x (yz) = a = (xz)y. But (G,.) is not a 

group. It is not even a semigroup because we find 

at least two elements band c in G such that (bb)c 

~ b (bc) . 

Mushtaq and Yusuf in [20J have defined an 

LA-semigroup defined by a commutative inverse 

semigroup. Let (G, . ) be a commutative inverse 

semigroup. Define a binary operation * in G as 

follows: 

-1 . a*b = b.a for every a,b 1n G. 

They have proved that (G,*) is an LA-semigroup and 

referred to this as an 'LA- semigroup defined by a 

commutative inverse semigroup'. In [20], the 

authors have described the structure of 

LA-semigroups defined by commutative inverse 

semigroups, by means of LA-semigroups def ined by 

commutative groups and certain homomorphisms 

between them. Specifically, they have shown that if 

a commutative inverse semigroup G is a semi lattice 

6 



of the inverse semigroup G then the LA-semigroup 

defined by G is a lso a semi lattice of 

LA-semigroups. Conversely they have shown that 

given a semi lattice of LA - semigroups and a family 

of homomorphi sms v.,'ith certain properties, an 

LA- semigroup c~n be defined which is a union of the 

given LA-semigroups. 

Mushtaq [ 22] , has shown that conversely, 

provided that a necessary and sufficient condition 

is satisf ied by an LA-semigroup, it can induce an 

'Abelian group satisfying the condition a. b = b*a-1 

for all a,b in G. He also observed some additional 

characterstic of such LA-semigroups . Specifically, 

the author proved that in (G,.), the following 

conditions are equivalent: 

( i) 

(ii) 

a.b = 

(ii i) 

and 2 a 

( iv ) 

a = (cc.ab)b for all a,b,c in G, 

there exists an Abelian group (G, * ) such that 

b*a -1 for all a,b in G, 

(G, • ) is cancellation with left identity e 

= e for all 

( G, • ) has a 

a in G, 

2 left identity e and a e for 

all a in G. 

The notion of a left(right) translative 

7 



mapp i ng (which is c alled a left ( r ight ) t rans la t ion 

in semigroup theory ) is natural and very useful. It 

is we ll - k nown [ 5 ] t hat each e l e me n t o f a semigr oup 

induces a left a nd r ight trans l a tion . Th ese 

t r anslations pl a y an impor tant r ole, for e x ample, 

in the theory of ideal e xtensions. A syst em of 

mappings T : x ~ T (x ) of a non - empty set G into 
u u 

itself, where u ranges over elements of a set U, is 

called commutable if TuTv (X) = T T ( x ) 
v u 

holds for 

all u, v in U and x in G . A s ystem of mappings 

T :x ~ T (x ) i s t r ansitive i f T (x ) = G f o r all x u u u 

in G, 

u is 

where the set of elements T (x ) 
u 

denoted by T ( x ) • 
u 

A sys t e m 

for all u in 

o f mapp ings 

T : x ~ T (x ) of G int o i tse l f i s cal l e d righ t 
u 

translative, left translative or translative 

a ccording a s Tu( XY) = XTu( Y) ' Tu( XY ) = T ( x ) y o r 
u 

T ( xy ) = xT (y ) = T (x ) y holds f o r e v ery X, y in G u u u 

and u in u . 

In [26] , Mushtaq has de f ined translative 

mappings on LA- semigroups, and besides other 

things, he has shown that if there is a transitive 

system of translative ma ppIngs on a n LA - semigroup 

wi t h l eft identity then the structure is 

8 



necessarily a commutative semigroup with identity. 

It ha s been s hown also that a mapping T ' u 
of a 

translative system o f mappings over an LA-semigroup 

G is injective if the right cancellative law holds 

with respect to every element of T (G) . Also, every 
u 

transitive system of translative mappings over a 

mUltiplicative LA-semiqroup G with left identity 

has the form x ~ T ( x ) 
u 

x + 8 ( x ) , where + is an 

Abelian group operation on G , and 8: U ~ G is a 

mapping of U onto G. 

Mushtaq and Kamran [25] have shown that a 

cancellative LA-semigroup is a commutative 

semigroup if a(bc) = (cb)a for all a,b,c in G. 

Further, it has been shown that G, with left 

identi ty, is a commutative monoid if and only if 

(ab)c = b(ca) for all a,b,c in G. 

Hewitt and Zukerman [11], surveyed the field 

of ternary operations and semigroups giving rise to 

them. In [13], Iqbal has generalized their results 

to invertive operations and studied the 

LA-semigroups connected with them. Apart from 

several interesting results, the main result he has 

proved is that an LA - semigroup is isomorphic to the 

9 



direct product of a group all of whose eleme nts are 

of order two and a semigroup under a special binary 

operation. 

Analogous to Vagner - Preston Representation 

Theorem [5], Iqbal in [13] has proved that every 

inverse LA- semigroup has a faithfull representation 

as an inverse LA- semigroup of partial one - one 

mappings. Iqbal has also shown that the given 

partial ordering relation is the maximum 

idempotent-separating congruence on an 

LA- semigroup. 

In [13], a 

LA- semigroup was 

ternary 

introduced 

operation 

and t.he 

inverse 

on an 

author 

generalized the results of Hewitt and Zukerman 

[11] . Some useful properties of this s t ructure were 

studied and a relationship was established between 

LA - semigroups (S,.) and (S,o), defined on the same 

set S, such that x. (y.z) = xo(yoz) for all x,y,z in 

S. If in (S,. ) and (S,o), x. (y.z) = xo(yoz ) then we 

say that (S,. ) and (S , o ) are in relation R with 

each other. Iqbal [ 13] has shown that if (S,. ) and 

(S,o ) are related by R then (S,. ) and (S,o) are 

isomorphic under certain conditions. 

10 



Translations and transformations playa vital 

role in t he theory of semigroups. In [ 14 ] Kamran 

has shown that under certain conditions the set o f 

l eft translations on a l eft a lmost semigroup forms 

a left almost semigroup. A parallel result to 

Cayley's theorem for the set of left trans l ations 

defined on a left almost semigroup has been proved 

in [1 4]. In [14], the concepts of zeroids and 

idempoids in left almost semigroups are discussed 

in detail, and some interesting results have been 

proved. 

Mushtaq [24] has proved that if · an 

LA-semigroup contains the left cancellative 

LA-subsemigroup such that the LA- subsemigroup is 

contained in the centre of the LA-semigroup then it 

can be embedded in a c ommutat ive monoid whose 

cancellative e l e ments form an Abelian group and t he 

identi ty element of this group coincides with the 

identity element of the commutative monoid. 

In [ 15], it has also been proved by Kazim and 

Naseerudin that in an LA - semigroup G the 

conditions: 

(1. 3 ) b ( ac) == (ab) c 

11 



( 1. 4 ) b (ca ) = (ob ) c 

are e quiva l e nt fo r all a,b,c in G. 

In order to define associative powers in an 

LA - semigroup G we impose the condition (i) on G and 

call (1.3) or (1.4) a weak associative law. Notice 

that if a = b = c in (1. 3) then an LA- semigroup 

wi th the weak associative law becomes a locally 

associative LA-semigroup, that is, an LA-semigroup 

with the condition (aa) a = a (aa ) for all a in G. In 

[19], Mushtaq and Yusuf have defined a locally 

associative LA- semigroup G and have defined on it a 

relation p on G as follows : 

b 'f d 1 l' f abn -_ bn
+

1 a plan on y and ban = 
n+l a for some positive integer n. 

They h a ve s hown that if G i s a loca lly 

associative LA- semigroup with left identity, then p 

is a congruence on G and G/p is the maximal 

separative homomorphic image of G. (Refer to [19] 

for details) and hence all the results contained in 

[32] are true for this structure. 

In [3 4], Tamura and Nordhal have called the 

semigroup satisfying the identity = m m 
X y 

(m ~ 2) as exponential m- subsemigroup. 

12 



It is important to note that an LA- semigroup 

G with weak associative property (1 .3 ) or (1 .4 ) is 

exponential. One can refer to [19) and [25) for 

more details about this property. 

In (19), it has been shown that locally 

associative LA- semigroups are exponential. Several 

structural theorems are proved in this paper. 

The following results are essential for our 

subsequent work and are referred to frequently. 

These results are proved in (18) and (21), and here 

we state these results without proofs. 

THEOREM 1.4 

In an LA-semigroup the left identiy is unique. 

THEOREM 1.5 

In an LA- semigroup the right identity becomes 

a two sided identity. 

We may mention here that the converse of the 

above theorem is not necessarily true. That is, the 

left identity does not become the right identity. 

13 



As a consequence of the above theorem we have 

the following important resu lt . 

THEOREM 1.6 

An LA-semigroup with right identity is a 

commutative monoid. 

THEOREM 1.7 

In an LA-semigroup G with left identity, 

a(bc) = b(ac) for all a,b,c in G. 

THEOREM 1.8 

An LA- semigroup with left identity and right 

inverses has two sided inverses. 

A groupoid (G,.) is called a left almost 

group, abbreviated as LA-group, if: 

(i) (G, . ) is a left almost semigroup, 

(ii) e.a = a for all a E G, and 

(iii) a.a = e for all a E G. 

14 



EXAMPLE 1.9 

Let G = {a,b,c,d} and ( . ) be the binary 

operation in G defined as follows. 

a b c d 

a a b c d 

b d a b c 

c c d a b 

d b c d a 

Then G is an LA- group with left identity a, and 

every element of G has a left inverse and the 

elements satisfy the left invertive law. 

THEOREM 1. 10 

An LA- group with right identity is an Abelian 

group. 

THEOREM 1.11 

A left cancellative 

cancellative LA- semigroup. 

15 
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THEOREM 1.12 

In an LA - semigroup G with left identity, ab = 

cd implies that ba = dc for all a,b,c,d in G. 

THEOREM 1.13 

A finite LA-semigroup is a group provided 

a (bc ) = (cb ) a for all a,b,c in G. 

THEOREM 1.14 

If (G,.) is a commutative group then (G, * ) is 

an LA-semigroup under *, where * is defined by: 

-1 - 1 -1 
a*b = a .b = b .a for every a,b in G, and by a we 

mean the inverse of a. 

THEOREM 1.15 

A subset containing all the idempotent 

elements of an LA-semigroup with left identity e is 

a commutative subsemigroup with e as its identity . 

Due to theorem 2.6, corollary 2.2 [21J, we 

16 



have the following useful results. 

THEOREM 1.16 

In a right cancellative LA- semigroup G every 

right identity of an idempotent element is its 

identity. 

In theorem 3.10, 3.11, 3.12, [ 21] the 

following results have been proved. 

THEOREM 1.17 

If in an LA-semigroup G, ax = b has a unique 

solution for every a,b in G, then yc d has also a 

unique solution for every c,d in G. 

THEOREM 1.18 

If in an LA- semigroup G with left identity e 

yc = d has a unique solution for every c,d in G, 

then ax = b has also a unique solution for every 

a,b in G. 

17 



THEOREM 1.19 

If in an LA- semigroup G, a x b has a unique 

solution for every a,b in G, then G is a 

commutative group. 

The following example shows the existence of 

an LA - semigroup with more than one idempotent. 

EXAMPLE 1.20 

Let G = {a,b,c} and the binary operation (.) 

be defined in G as follows. 

abc 

a a 

b a 

c a 

a a 

a a 

a c 

Then G is an LA - semigroup with more than one 

idempotent. An LA - semigroup with left identity can 

have idempotents other than the identity. 

EXAMPLE 1.21 

Let G = {e,f,a/b/c} and the binary operation 

(.) be d e fined as follow s . 

1 8 



e f a b c 

e e f a b c 

f f f f b c 

a a f e b c 

b c c c f b 

c b b b c f 

Then G is an LA - semigroup which has e as the left 

identity and f as an idempotent. 

Note that ef = fe = f implies that f s e. 

In [18], the following r esults have been proved. 

THEOREM 1 . 22 

An LA- semigroup with left identity e contains 

no idempotent such that e s f . 

THEOREM 1 . 23 

A subset containing all the idempotent 

elements of an LA - semigroup with left identity e, 

is a commutative subsemigroup with e as its 

identity. 

19 



EXAMPLE 1.24 

Let G = {a,b,c} and a binary operation (.) be 

defined in G as follows. 

abc 

a c c b 

b b b b 

c b b b 

Then (G, . ) is a locally associative LA-semigroup. 

The above exampl e s hows that we can not def ine 

associative powers in G, as we do in semigroups. So 

in order to define associative powers, in a locally 

associative LA-semigroup we introduce the left 

i d e n t i ty. 

Mu s hta q a nd Yu s u f [ 19 ] have prove d the 

following results in this connection. 

THEOREM 1.25 

Every locally associative LA-semigroup with 

left identity has associative powers. 

In 

relation 

[1 9 ], Mushtaq 

p ( refer to 

and Yusuf 

page 12) 

2 0 

h ave defined a 

on a locally 



associative LA- semigroup G with left identity. 

Later in [19] it has been proved that the 

relation p is a congruence relation on a locally 

associative LA-semigroup with left identity. 

A relation (J on a locally associative 

LA - semigroup G with left identity e is separative 

if and only if 

ab (J a 2 and ab (J b2 implies a (J b. 

It was also proved in [19] that the relation 

p is separative. 

In [20], Mushtaq and Yusuf have shown that if 

an LA-semigroup is defined by a commutative inverse 

semigroup [commutative group], then by def ining a 

binary relation in the LA- semigroup, we can recover 

the commutative inverse semlgroup [ commutative 

group] . 

In chapter 2, we have described the structure 

of LA-semigroups by means o f LA - semigroups and 

certain homomorphisms between them. Specifically, 

we have shown 

semi lattice of 

that an LA-semigroup 

LA-semigroups. Conversely 

G is a 

we have 

shown that given a semilattice of LA - semigroups and 

a family of homomorphisms, with certain properties, 

21 



an LA-semigroup can be defined which is a unlon of 

the given LA- semigroups . 

In chapter 3 we have extended the results by 

Tamura and Kimura [33J that any commutative 

semigroup G is uniquely expressible as a 

semilattice of archimedean semigroups. We have 

generalized also the results of Hewitt and 

Zuckerman [llJ that the following are mutually 

equivalent : (i) G is separative (ii) the 

archimedean components of G are cancellative (iii) 

G can be embedded in a union of groups. 

We have shown in chapter 3 , that any locally 

associative LA-semigroup G with left identity is 

uniquely expressible as a semi lattice of 

archimedean components. Also it has been shown that 

G is separative if and only if the archimedean 

components of G are cancellative and G can be 

embedded in a union of LA-groups if and only if it 

is separative. 

In chapter 4, an LA-semigroup G, which has a 

left regular band of LA-groups as an LA-semigroup 

of left quotients, has been shown to be the 

LA - semigroup which is a left regular band of right 

22 



reversible cancellative LA- semigroups. An 

al ternati ve characterization has been provided by 

unique spined products. These results have been 

applied to the case where S is super abundant and 

where the set of idempotents forms a left normal 

band. 

23 



CHAPTER TWO 

SEMILATTICE STRUCTURE OF LA-SEMIGROUPS 

To consider the decomposition of semigroups 

into groups, we need to recall from [5], the 

following theorem. It gives a number of conditions 

on G, each of which is equivalent to the assertion 

that G is a union of groups. 

The fo llowi ng conditions are equivalent: 

(i) G 1S a union of disjoint groups, 

(ii) G i s both left and right regular, 

( iii ) every left and every right ideal of G is 

semi - prime, 

( iv ) every H- class of G is a group . 

These conditions, however, shed no 1 ight on 

the actual structure of G, and in article 4.2 [5], 

24 



provide small illumination in this direction. 

It is well known that a commutative inverse 

semigroup G is a union of groups. Due to [5], if E 

denotes the set of all idempotents of a commutative 

inverse semigroup G, then G = U G where each G is 
e e 

eE E 

the group with identity element 

Moreover, e ~ f implies that G 
e 

and G G ~ G 
e f ef 

G. 
f 

Being a 

commutative band, E is a semilattice. Let Y be a 

semi lattice isomorphic to E. Then e a ~ e(3 in Y if 

and only if a ~ (3 in Y. We write G for G thus a e a 

The elements of G will be denoted by a 

b , '" a 

since by the Rees theorem [5], the structure 

of a completely simple semigroup is known, a 

semigroup which is a union o f groups is a 

semilattice Y of semigroups G ( a E Y) of a known a 

structure. Even if we regard the structure of a 

semilattice as known, we still do not know the 

structure of G. For although we know that Ga G(3 ~ 

Ga (3' we are not in a position to say just how the 

product aab(3 (aa EGa' b(3 E G(3) lies in Ga (3' where 

a ~ (3. This is in general a complicated problem. 

But if we make the further assumption that the 
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idempotent elements of G commute with each other 

then we can determi n e t h e structure. We observe by 

theorem 1.17 [ 5 ], that G is an inverse semigroup. 

We are thus dealing with inverse semigroups which 

are the union of groups . 

Before we prove the results concerning 

LA-semigroups, we define the following terms. 

An element a of an LA-semigroup G is called 

regular if (ax ) a a for some x in G. An 

LA-semigroup G is called left regular if, for any 

element a in G, there exists x in G such that x (aa) 

= a. Similarly, an LA-semigroup G is called right 

regular if for any element a in G, there exists x 

in G such that (aa ) x = a. An LA- semigroup G is 

called regular if every element of G is regular. 

In [20] , Mushtaq and Yusuf have described the 

structure of LA-semigroups defined by commutative 

inverse semigroups, by means of LA - semigroups 

defined by 

homomorphims 

commutative groups and 

between them. Specifically, 

certain 

it has 

been shown that if a commutative inverse semigroup 

G is a semi lattice of the inverse semigroups G ex 

then the LA-semigroup defined by G is also a 
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semi lattice of LA- semigroups . Converse l y , it h as 

also been shown that given a semilattice of 

LA- semigroups and a family of homomorphisms, with 

certain properties, an LA- semigroup can be defined 

which is the union of the given LA- semigroups. If G 

is an LA - semigroup and E denotes a set of all 

idempotent contained in G, then we call E to be a 

band. ( It is important to point out here that E, 

being a subset of G is an LA-subsemigroup of G and 

is not associative as in the case of a band in 

semigroups) The main objective of this chapter is 

to refine these results and describe the structure 

of LA - semigroups by means of LA - semigroups and 

certa in homomorph isms between them. Specifica l ly, 

we shal l s how that an LA - semigroup G is a 

semilattice of LA- semigroups. Conversely, we shall 

show that given a semilattice of LA- semigroups and 

a family of homomorphisms, with certain properties, 

an LA - semigroup can be defined which is a union of 

the given LA-semigroups. 

It is important to note that an LA-semigroup 

cannot contain a right identity because an 

LA - semigroup with a right identity becomes a 
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commutative semigroup with two sided identity. A 

homomorphism between two LA- semigroups is defined 

in the same way as a homomorphism between two 

semigroups . That is a mapp ing f from an 

LA-semigroup (G, . ) to a n LA-semigroup (G, * ) lS 

called a homomorphism if (a.b ) f (a ) f* ( b ) f, for 

all a,b in G. 

with the necessary information and 

terminology in hand, we can now prove the following 

results. 

THEOREM 2.1 

Let an LA- semigroup G be a semi lattice Y of 

LA-semigroups G , a E Y whence each G has a unique a a 

idempotent e f or a in Y. If a ::: (3, the mapping a 

homomorphism of G into G a a 

a a E G a is a 

If a ::: (3 ::: 0 then ¢a,(3 ¢(3, o = ¢a , o' Moreover, 

¢a ,a is the identity mapping of Ga' 

If a E G and a a E G(3' then 
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PROOF 

First note that ¢ (3 maps G into G(3 because a, 0: 

0:,(3 being idempotents commute and a ¢ (3 = e(3a E 0: 0:, 0: 

Let a ,b E G , then (a b ) ¢ (3 = e(3 (a b ) = 0: 0: 0: 0: 0: 0:, 0: 0: 

(a b ) = (e(3a ) (e(3b ) = (a ¢ (3) (b ¢ (3). 0: 0: 0: 0: 0: 0:, a 0:, 

Thus ¢ (3 is a homomorphism from G to G(3. If a ~ a, 0: (3 

~ 0, then for any ao: in Go:, (ao:¢o:,(3 )¢(3, o 

(e(3aa) ¢ (3,0 = eo (e(3ao:) (eoe o ) (e(3ao:) = (e o e(3) (eoao:) 

e (e a ) = e a , as e~ is the left identity of G~ o 0 0: 0 0: Q Q 

and e a E G . Thus (a 
00:0 0: and 

¢0:,(3¢(3,0 = ¢a,o · As ao:¢o:,o: = ea = a, 0: 0: 0: therefore 

¢ is the identity map of G . a,o: 0: 

In an LA-semigroup the product of idempotents 

is an idempotent, so ao:b(3 (eo:ao:) (e(3b(3) = 

(ea e(3) (aab(3) e (a b(3) = (e e ) (a b(3) = 
o 0: 000: 

(e a ) (e b(3) = (a ¢o:,o) (b(3¢(3,o) · 00:0 0: 

THEOREM 2.2 

Let Y be a semilattice, and to each element a 
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of Y assign an LA- semigroup G with left identity 
a 

e a and no other idempotent such that Ga and G~ are 

disjoint if a * ~ in Y. To each pair of e lements 

0: / (3 of Y such that 0: > (3/ assign a homomorphism 

¢o:/~ of G into G~ such that if a > ~ > 0 then a 

¢O:/~¢~/o ¢O:/o' Let ¢a 0: 
be the identity 

/ 

epi-morphism of G Let G be the union of all 
0: 

LA-semigroups G / a E Y and define the product of a 

any two elements ao:/b~ of G (ao: E Go: and b~ E G(3 ) 

(a ¢ ) (bn ¢[3 ) where 0 = a~ 
0: 0: / 0 fJ / a 

in Y. 

Then G is an LA- semigroup which is a semi lattice Y 

of LA-semigroups G / a E Y. a 

PROOF 

The converse statement has already been 

established in theorem 2.1. Since a ¢ n E G",Q 
a a / afJ ""fJ 

and b~¢~/a~ E Ga~/ therefore (aa ¢a/a~) (b~ ¢~.a~) 

belongs to Ga~' 

{ (aa ¢a/a~ ) ¢a~/a~o ( b~ ¢~/a~ ) ¢a~/a~o} Co ¢o/a~o 

= {(aa ¢a/a~o) (b~ ¢~/a~ o )} (Co ¢o/a~o) 

{(Co ¢o/a~o) (b~ ¢~/a~o)}(aa ¢a/Ci~o) and (cob~)aa 
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{( c ¢'(,'((3)(b(3 ¢(3,'((3) } a 
'( ex 

{ (c 
'( ¢'(,'((3) ¢,(,ex(3,((b(3¢(3,'((3) ¢ex(3,ex(3'(} (a ex ¢ex,ex(3'() 

= { (c ¢,(,ex(3'() (b(3 ¢(3,ex(3,()}(aex ¢ex,ex(3'() '( 

(a b(3)c = (c b(3)a . ex '( '( ex 

Moreover, = (e ex 

implies that 

is an LA-semigroup with commuting idempotents and 

is a union of LA-semigroups, each having a left 

identity. 

Now we shall prove the last theorem which 

describes the structure of an LA- semigroup defined 

by a commutative inverse semigroup. 

THEOREM 2.3 

An LA- semigroup G is a union, u G , 
e 

eEE 

of 

LA - semigroups G , where G is the LA-semigroup with 
e e 

left identity e. Moreover, E is a commutative 

sUb-semigroup of the LA-semigroup. 

PROOF 

since the idempotents of an LA-semigroup with 
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left identi ty commute, it implies that G G ~ G 
e f ef 

where e and f, being left identities in G and G 
e r 

respectively, are the idempotents. This implies 

that G lS an LA-semigroup which is a union of 

LA - semigroups G. Moreover, E is a commutative 
e 

subsemigroup of the LA - semigroup by the result 

mentioned in the beginning of this chapter. 
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CHAPTER THREE 

DECOMPOSITION OF A LOCALLY ASSOCIATIVE LA- SEMIGROUP 

In [33], Tamura and Kimura proved that any 

commutative semigroup G is uniquely expressible as 

a semi lattice of archimedean semigroups. Later in 

[ 11] , Hewitt and Zuckerman proved that the 

following conditions are mutually equivalent: 

(i) G is separative, (ii) the archimedean 

components of G are cancellative, (iii) G can be 

embedded in a union of groups. In this chapter, we 

have extended their results to a locally 

associative LA-semigroup G which, as we know, is 

not an associative structure. 

Note also that a locally associative 
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LA- semigroup does not necessarily have associative 

powers . 

EXAMPLE 3.1 

For example, in a locally associative 

LA - semigroup G = {a, b, c}, defined by the table: 

a b c 

a c c b 

b b b b 

c b b b 

a ( a (aa )) = c #; b = (a (aa )) a. 

Next, we prove the following theorems. 

THEOREM 3.2 

A locally associative LA - semigroup G with 

left identity e has associative powers. 

PROOF 

For any element a in G we let a 1 = a and a n
+

1 
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ana, wh ere n is a positive integer . The identity 

n n+l aa a is true for n = 1 and 2 by [2]. So 

assume that the identity holds for some n > 2. Then 

by theorem 1.7 have n+l a (ana ) an (a a ) we aa = = 
n-l (aa ) (aa). But because S is medial, n- l (aa ) (aa) 

(aa) (a n-l a) . Thus 
n+l 

(aa) (a n- l a) (aa)a 
n 

aa = = = 

(ana)a by the left invertive law. Hence by 

n n+l induction it follows that aa = a . 

Now we shall show that for all a ln G and for 

all positive integers m, n 

(3 . 1) 
m n m+n 

a a = a 

n n+l 
According to aa = a , the result is true for m = 

1. Suppose t hat (3 .1 ) holds f or some m>l also. Then 

by the left inverti ve law and (3 .1 ), we have a m+1 an 

= 
m+n a a m+ n + 1 

a 

n+l a m 
a = 

Hence, the result (3 . 1) follows by 

induction. Thus, the sub- structure generated by a 

is associative. 

Due to [19], if G is a locally associative 

LA- semigroup with left identity e, then for all a 

in G and for all positive integers m,n 

( 3 . 2 ) 

It is important to mention that in [19] it 
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has been shown also t ha t 

( 3 • 3 ) (ab)m = am bm for all a,b in G and all 

positive integers m. 

2 The result is true for n=l, let n = 2. Then (ab) = 

(ab) (ab) (a 2 b2
), by (1.2). Thus the result is 

true for n = 2, suppose the result is true for 

n k, that is (ab ) k = akbk. Then (ab ) k+l 

k ( aka ) ( bkb) by (1.2 ) . Thus (ab ) k+l ( ab ) (ab ) = = 

k+l
b

k+l 
a . Hence by induction, the result is true 

for all positive integers. 

Before we prove the next result, we consider 

an example which shows that there exists a locally 

associative LA-semigroup with left identity that is 

not associative. 

EXAMPLE 3.3 

For instance, if G = {a,b,c,d} and the binary 

operation ( . ) is defined as follows 

a b c d 

a d d b d 

b d d a d 

c a b c d 

d d d d d 
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G is a locally associative LA-semigroup with left 

identity c and (ac ) c = a * b = a(cc). 

THEOREM 3.4 

If G is a locally associative LA-semigroup 

with left identity e then H = {a E G: ae = a} is a 

commutative subsemigroup of G with identity e. 

Moreover, for any a in G and positive integer n ~ 

2, an is in H. 

PROOF 

Let x,y belong to H. Then xe = x, ye = y and 

since G is medial, (xy)e = (xy) (ee) ::: (xe ) (ye) 

xy. Also xy ::: (xe)y = (ye)x = yx by virtue of 

(1 .1 ). Now, let x,y,z be in H. Then xe ::: X and so 

because of (1.2), we have x (yz) = (xe) (y z ) 

(xy) (ez) = (xy)z. Thus H is a commutative semigroup 

with identity e. 

Let a belong to G and n~2 . It follows from 
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(1. 1) and the fact n n+l that n =(a n-l a) aa a a e e = 

(ea)a n-l n-l n This shows that n is in H. = aa = a a 

In theorem 5 (19) Mushtaq and Yusuf have 

proved the following resu lt . 

LEMMA 3.5 

Let G be a locally associative LA-semigroup 

with left identity . If there exists positive 

integers m and n such that abm = and ban = 
n+1 a ,then apb. 

PROOF 

For the sake of definitions assume that m<n; 

then we can multiply abm = bm+1 by bn-m to obtain 

bn-m (abm) = bn-mbm+ 1 

= bn+1 , by (3 . 1) 

imply bn-m (abm) = bn+1 

imply a (bn-mbm) = bn+1 by theorem 1.7 , 

Hence by ( 1) abn = bn+1 . Thus abm = bm+1 imply 

n n+1 n n+l ab = b . since ba = a ,have apb. 
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LEMMA 3.6 

The relation p on any locally associative 

LA - semigroup G with left identity is a congru ence 

relation. 

PROOF 

Evidently p is reflexive and symmetric. For 

transitivity we may proceed as follows. Let apb and 

bpc so that there exist positive integers nand m 

such that abn b n+1
, ban a n+1 and bcm c m+1 

Let k = (n+1) (m+1 ) -l, that is , k =n (m+1 ) + m. 

Then by ( 3 . 1) , (3.2) and (3.3), 

= 

k 
ac 

n(m+l )+m 
ac = 

Hence, ac k = a { ( cmcmn ) bn} , by def ini tion of an 

LA-semigroup. Then by (3 .1 ) and theorem 1.7, 

ack a (cm(n+l)bn) 

= c m(n +l) (abn) 

c m(n+l)bn+1 = (ecm(n+1l)bn+1 

(bn+1c m(n+ l)) e 
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Thus, k ac 

= (Cm+1 ) n+le 

(m+l) (n+l) = C e. 

( CCmn+n+m) e 

mn+n+m+l = e = k+l 
e by ( 3. 1) and 

remark 2 in k k+l [19]. Therefore, ac = c 

k k+l Similarly, it can be proved that ca = a 

thus showing that p is an equivalence relation. 

To show that p is compatible, assume that for 

some positive . n n+l lnteger n, ab = b 

Let e belong to G. Then, by (3 .3 ) and (1 .2 ) 

(ae) (be)n = (ae) (bnen), 

= (be) n+l . 

Thus 

n n+l ( ae) (be ) = (be) . 

Similarly, (be) (ae ) n = (be) (ancn) = (ban) (ccn) 

(ban ) (c n+1
) 

11+1 11 + 1 a e 

(ae )n+l 
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Thi s implies t hat 

(be) (ac)n (ac)n+l . (ii) 

From (i) and (ii) we conclude that p is 

compatible. Thus p is a congruence relation on G . 

A congruence p on a groupoid is called 

separative if a 2 p ab and ab p b 2 implies that 

a p b. 

THEOREM 3.7 

Let p and 0' be separative congruences on a 

locally associative LA- semigroup G with left 

identity . If P n (Hx H) ~ 0' n (Hx H) , then p ~ 0' . 

PROOF 

Let a p b. Then 

(a 2b 2
)2 . 

2 2 (a (ab)) p 
222 (a (ab)) (a b ) p 

It follows from theorem 3.4, (1 .1 ) and (1 .2 ) , 

( a 2 ( ab ) ) 2 , ( a 2 b 2
) 2 belong to Hand (a 2 (ab )) ( a 2 b 2

) 

2 so a (ab ) O' 
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2b2 a . . 2b2 4 Slnce a p a and by theorem 3 . 4, 2b2 4 a ,a 

Since, G is medial, 

have 2 abo Finally 2 b2 and again by theorem a (J' a p 

3 .4, have 2 b2 is in H. Then obtain we a , we 

2 ab b2 and b. a (J' (J' so a (J' 

A groupoid is said to be separative if the 

identity map defined on it is a separativ e 

congruence. 

THEOREM 3.8 

A locally associative LA-semigroup G with 

left identity is a commutative semigroup with 

identity if it is separative. 

PROOF 

By virtue of theorem 3.4, we need only to 

show that G = H. Let a belong to S. Then since G is 

medial it follows from theorem 3.4, that 2 (ae ) = 

(ae ) (ae ) 
2 

a e 2 a. Now by the fact that G is 

medial and by theorem 3.2, we have 2 «ae ) a) 
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2 2 2 2 (ae) a = a a 
2 (aa ) (ea) = 

(ae) (a2a) = a 2 ((ae)a), by theorem 1.7 and since G 

2 2 is separative (ae)a = a . Moreover, we have (ae) = 

(ae)a = a 2 which implies that a = ae. Thus G = H. 

We define a relation n on G as follows. Let 

a,b be in G. Then we say that a n b if and only if 

each of the elements a and b divides some power of 

the other. 

That is, a n b if and only if bm = ax for 

some x and an by for some y and positive integers 

m, n. 

THEOREM 3.9 

Let G be a locally associative LA-semigroup 

with left identity. Then the relation n on G is the 

least semi lattice congruence on G. 

PROOF 

The relation n lS obviously reflexive and 

symmetr ic. To show transi ti vi ty, let a n band 

b n c , where a, b, c are in G. Then bm f a and an f b 
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for some positive integers m and n. This implies 

that ax == bm and by == c n for some x and y. Then c~ 

nm nm-I nm-l nm.. nm 
C == C C == (cc ) e == c e lmp l les t h at ec 

e ( a (ymx ) ) by ( 3 • 3 ) . That is nm a (ymx ) . If k c = nm 

k 
, 

and m t h e n S imilar ly , b x ' m a nd y x == z c == az. a 
, 

k ' 
c y ' b n imp lies t h at a == cz ' . 

Next , l et a , b, c b e long t o G a nd a ~ b. The n 

by ( 3.3 ) and ( 1.2 ) , (bc ) m == == == 

( ax ) (cem-I ) == ( ae ) (xcm- 1
) and so (be )m = (ae ) y, 

where y == 
m-l xc Thus ae ~ be. Similarly it can be 

shown that ca ~ cb. This proves that ~ is a 

congruence relation on G. 

Now to show that is a semi lattice 

congruence on G, first we show that 

( 3 .4 ) a ~ b implies ab ~ a. 

Let a ~ b. Then ax == bm and n by == a for some x 

a nd y. So by ( 3.4 ) and ( 1.2 ), 

== a ( alnx ) . Also, by ( 3.3 ) and ( 1.2 ) ,an = by implies 

t h at n+2 2 n 
a == a a == ( aa ) (by ) == ( ab )( ay ) . He n ce 

ab T) a. 

Next we show that, 
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( 3 .5 ) ab ~ ba for all a , b 8 G. 

By (3 .3 ), theorem 1.7 and by (1.1), (ab ) 2 = a 2b
2 = 

b ( a 2b) = b ( (ba) a) (ba) (ba) 
2 (ba) . 

Hence ab ~ ba. Also 

( 3 • 6 ) (ab ) c ~ a (bc ) for a ll a,b,c 8 G. 

By the medial l aw (ab ) c = (cb ) a ~ (bc ) a = (a c ) b ~ 

b(ac) = a (bc) by theorem 1.7. Therefore ~ is a 

semi l attice cong r ue nce o n G. 

Now to show that ~ is the least semi lattice 

congr uence on G we need to s how that ~ is conta ined 

in any other idempotent p on G. Let a ~ b, then 

there exist positive integers m and n and elements 

x and y in G s uch that ax = bm and by n = a . since 

2 2 
apa and bpb, we infer that axpb and bypa. Also, 

since bpb2 and p is compatible, we get bypb2y. Now 

bypa implies that (by)x = am and ay = (by)n . Thus 
1 1 

bmam (ba ) m b m (( by ) x ) = ( bm-1b )(( by ) x ) = 
1 1 

(bm-1b ) (( x y ) b) = (bm-1 (x y ) ) (bb) 
1 1 

theorem 1 . 7 . 

x (b2y )) b m
-

1 

1 

So (ba )m 

= 

(bm-1 (xy ))b2 
1 

by media l l aw 

( x (b2 y )) b
m

-
1 

1 

(( (b2y ) X ) e) b
m

-
1 

1 

by ( 1. 1) 

theorem 1.7. If we let z = (bm-1e ) x , then (ba ) m 
1 
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(b 2y ) z implies that (b2y ) p ( ba ) . Similarly it can be 

2 s hown that (a x )p(ax ) . Thus 

2 2 ap (by) p (b y) P (ba) p (a x ) p (a x ) pb implies that 

apb. 

That is ~ ~ p. Thus ~ is the least 

semi lattice congruence on G. 

THEOREM 3.10 

Let G be a locally associative LA - semigroup 

with left identity . Then G / ~ is a maximal 

semilattice homomorphic image of G. 

PROOF 

Evidently 2 a ~ a for any a in G implies that 

G/~ is idempotent. Now by the orem 2 . 10 in [21], G/~ 

is commutative and it follows that G/~ is a 

semilattice. Since by theorem 3.9, G/~ is the least 

semilattice congruence on G, it follows from 

proposition 1. 7 in [5] that G/~ is the maximal 

semilattice homomorphic image of G. 
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We say that G is archimedean if for any two 

elements of G, each divides some power of the 

other. This leads us to the following theorem. 

THEOREM 3.11 

If G is a locally associative LA-semigroup 

with left identity then G is uniquely expressible 

as a semi lattice Y of archimedean locally 

associative LA-semigroups G (a L y ) with the left a 

identi ty. The semi lattice y is isomorphic to the 

max ima l semi lattice homomorphic image Gin of G and 

G (a belongs to y ) are the equivalence classes of 
a 

G mod n. · 

PROOF 

Let n be the equivalence relation defined on 

G as in theorem 3.9 . Then by theorem 3.4, Gin is a 

semi lattice and G is homomorphic to Gin. G lS a 

semi lattice of archimedean locally associative 
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LA- semigroups with left identity will follow when 

we s how t ha t each e qu i valence class A on G mod n is 

an a r chimedean loca l ly a ssociative LA- s ubsemi g r oup 

(with left identity) of G. A is a locally 

associative LA- semigroup (with left) identity of S 

is clear . Let a,b c A, then a n b implies that 

ax = bm and by = an for some x, yeS and some 

positive integers m,n. Then a (bx ) = b(ax) = bb
m = 

m+l n n+l band b(ay) = a (by) = aa = a This implies 

m+ l that b jbx, bxjb . That is, (bx) n b and so bx 

c A. Similarly, ay cA . h bm+lj d a n
+.

1 jb T us a an 

a r e relative to A, whence A i s archimedean . 

For uniqueness, let G be a semilattice Y of 

archimedean l ocal l y associative LA- semigroups (with 

left i dent i t y) G ex (ex belongs t o Y) . Once we s how 

that G are the equivalence classes of S mod n our ex 

job is done because then Y is isomorphic to Gjn 

follows immediately. Let a,b be in G. We have to 

show that anb if and only if a, b c 

divides a power of the other . 

G . ex Now each 

since G ex is 

archimedean, a n b by definition. Conversely, let 

a n b and a belong to 
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since a ~ b by definition we have ax = bm and by = 

an for some x,y in G and positive integers m and n . 

Let x belong to S . Then ax belongs to G and bm 

~. a~ 

belongs to G~, so that a~ = ~ . Hence a ~ ~ in the 

semilattice Y. By symmetry ~ ~ a, and hence a = ~. 

THEOREM 3.12 

If G is a locally associative LA- semigroup 

with left identity, then G is separative if and 

only if its archimedean components are 

cancellative. 

PROOF 

Let G be separative. Then by theorem 3 . 8, G 

is a commutative semigroup with identity and so by 

theorem 4.16 [5] the archimedean components Ga of G 

are cancellative. 

G a of 

Conversely, let every archimedean component 

G be cancellative. Let a,b belong to G 

such that a 2 = b 2 = abo If a belongs to G ex and b 
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2 belongs to G~, where a,~ are in Y, then a belongs 

2 to Ga and b be longs to G~ s uch that a = ~ . Using 

t he cancellation in G, we conclude t hat a = b. 

Thus, G is separative. 

THEOREM 3 .13 

If G is a locally associative LA- semigroup 

wi th left identity, then G can be embedded in a 

semigroup which is a union of groups if and only if 

G is separative. 

PROOF 

Suppose that G can be embedded in a semigroup 

Q which is a union of groups. Let a,b belong to G 

such that a 2 = b2 = ab. If H denotes the maximal 
x 

subgroup of Q containing 2 x, then a belongs to H , 
a 

b 2 belongs to H , 
b 

so that H 
a 

= H • 
b 

But 

implies that a = b. Hence S is separative. 

2 a ab 

Conversely, assume that G is separative. Then 

by theorem 3.8, G is a commutative semigroup with 

identity and so by the well - known result in [ 5 J, G 
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can be embedded in a semigroup which is a union of 

groups. 
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CHAPTER FOUR 

CHARACERTIZATION OF LA-SEMIGROUP BY A SPINED PRODUCT 

In this chapter we characterize LA- semigroups 

S which h a v e an LA - semigroup Q of left quotients , 

where Q i s a n ~-unipotent LA-semigr oup whi c h i s a 

band of LA-semigroups. 

~-unipotent 

severa l a uthors 

semigroups were 

(s ee f or exampl e 

studied by 

[ 8 J a nd [ 9 J ) • 

Bailes [2J characterized ~ -unipotent semigroups 

which a re ba nds of groups . Thi s characte ri za tion 

extended the structure of inverse semigroups which 

are semi lattices of groups . Recently, Gould [9 J , 

studied the semigroup S which has a semigroup Q of 

left quotients where Q is an inverse semigroup 

which is a semi lattice of groups. However, many 
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def ini tions of semigroups of quotients have been 

proposed and studied. For a survey , the reader may 

consult weinert [ 36 J . These definitions have been 

motivated by corresponding definitions in ring 

theory. In this chapter we are concer ned with a 

concept of semigroups of left quotients adopted by 

Fountain and Petrich [7J. The definition proposed 

there, is 

semigroups of 

restr icted to 

left quotients. 

completely 

The idea 

O- simple 

is that a 

completely O- simple semigroup Q, containing a 

subsemigroup S, is a semigroup of left quotients of 

S if every element q in Q can be wr i tten as q = 

a- 1 b for some elements a,b in S with a 2 
*- 0 and -1 

a 

is the inverse of a in the group H-class H of Q. a 

In this case S is called a left order in Q. This 

definition and its dual were u sed by Fountain and 

Petr ich [7 J, to characterize a semigroup S which 

has a completely O-s imple semigroup of quotients. 

An extension of this definition and its dual was 

used by Gould [8J to obtain a necessary and 

suff icient condition for a semigroup S to have a 

bisimple inverse w- semigroup of left quotients. 

This extended definition was used by Gould in [9J 
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also to characterize semigroups S which have a 

semigroup Q of left quotients, where Q is an 

inverse semigroup which is a semilattice of groups. 

In this chapter we have considered the 

corresponding problem for ~-unipotent LA-semigroups 

which are band of LA- groups. 

After preliminary results, we have obtained a 

necessary and s ufficient condition for an 

LA- semigroups S to have an LA- semigroup Q of left 

quotients where Q is an ~-unipotent LA- semigroup 

which is a band of LA- groups . An ~ -unipotent 

LA-semigroup is an LA-semigroup whose set of 

idempotents is a left regular band in which (ef ) e = 

ef, for any idempotents e and f in s. 

For an LA- semigroup S, any two elements a,b 

. * . 1n S are ~ -related 1f they are related by Green's 

relation ~ in some over LA-semigroup of S. The dual 

* . * relation of ~ 1S l . It is easy to * see that ~ is 

a left and * . l 1S a right congruence. Thus the 

intersection * of ~ * and l 

* relation denoted by H . 

is an equivalence 

We say that an over-LA-semigroup Q of an 

LA-semigroup S is an LA-semigroup of left quotients 
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of S if for any element q of Q, there exist a,b in 

S such that q = a - lb where a -1 is the left inverse 

of a in an LA-subgroup of Q. If Q is an 

LA-semigroup of left quotients of an LA-semigroup 

S, then S is said to be a left order in Q. 

An LA- semigroup S is right reversible if for 

any a,b in S, there exists x,y in S such that xa = 

yb. 

It is known now [20] that if Q is an 

~ -unipotent LA- semigroup which is a band of 

LA- groups, then Q can be written as a disjoint 

union of LA - groups Go:, 0: E Y, that is, Q = u Go:, 
O:EY 

where Y is a band isomorphic to t he band of 

idempotents of Q. In particular Y is left regular; 

so we may call Q in this case a left regula r band 

of LA-groups. 

This result has been used together with the 

characterization of ~-unipotent LA- semigroups which 

are bands of LA-groups in terms of spined product 

to obtain an alternative structure for an 

LA-semigroup S to have a left regular band of 

LA-groups as an LA - semigroup of left quotients. At 

the end the case where the left orders are in a 
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class of * . ~ - unlpotent LA- semigroups has been 

discussed. 

PROPOSITION 4.1 

8 is a left regular band Y of right 

reversible left cancellative LA- semigroups 8 aE Y a 

with left identity . 

PROOF 

Let Q be an ~-unipotent LA - semigrou p with set 

of idempotents E. The set E is a left regular band. 

80 every ~ -class in Q contains a unique idempotent . 

Consider Q to be the semi la t tice Y of LA- semigroups 

G : (a E Y) where for any a,~ E Y, G n G = ¢ if a 
a a ~ 

'* ~ and Q u G , GaG Q £:; GAlQ such that E = Y. 
aEY a I" \AI" 

Now let 8 be an LA-semigroup which is a left 

order in Q . Put 8 = 8 n G for any a in Y. a a It 

follows that for any a in Y, a 

in 8, with - 1 
where x ,y a = x y 

for ~,o in Y. 8ince - 1 
in some x 

= [30 and xy in 8~o 
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x 

G[3' 

8 a 

G a' there 

in 8~, y 

y in G 
0' 

so that 

exist 

in 8 

then 

8 a 

0' 

a 

is 



non- empty for any a in Y. Clearly for any a in Yi 

S is an LA-subsemigroup of S. Now to s how that S a a 

is cancellative. Let a,b,c belong to S and let ac a 

= bc . Since a,b,c are in S I therefore a,b,c belong a 

to G also. This implies that c' is in G . That is a a 

(ac)c' = (bc )c', this implies that (c'c)a = 

(c'c ) b thus a = b. 

Now to show that S is right reversible let a a 

be in Y and a,b belong to S . Choose s in S . Since a a 
b -1 in G this implies that -1 is in G By a ' (sa)b a . 
the ordering of S in Q, there exists x in S~ and y 

in S for some (3,'0 in Y such that (sa )b- 1 = x- 1y. 
'0 

-1 - 1 
This implies that a = (3'0 and (x y)b = {(sa)b }b = 

- 1 
(bb ) ( sa ) = ea (sa ) . Thus 

That is 

{e (sa)}x a 

This implies that 

{(£ly)b}x 

= (xb ) (x- 1
y ) 

-1 
(xx ) (by) 

(sa)x = e~ (by) 

theorem 1.7i and so a~ = a and (sa) x 

Let z be in S~. Then 

{ (sa)x}z = {(sa) (e~x)}z 

= {(se(3) (ax )}z 
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= {a(zx)}(se[3) = (as){ ( zx )e[3 } 

= (as){(e[3x)z} 

= (as) (xz) = {(xz) s}a. 

since ( sa) x = e [3 (by) , therefore {(sa)x}z = 

{e[3(by)}z implies that {(xz)s}a = = 

{z(e[3y)}b . It is clear that (xz )s is in s[3sa~ S[3a= 

sa· Similarly z(e[3Y ) is in S[3Sa ~ S[3a = sa. This 

shows that S is right reversible. 

COROLLARY 4.2 

For any a in y. G , a is an LA- group of left 

quotients of sa. 

PROOF 

For any a in Y, let g be in G and choose a a 

in S . since ag is in G a' there exists x in S[3 and a 

in S for [3,0 in Y such that 
-1 

Then y some ag = x y. 
0 

by theorem 1.12, 
-1 

Notice that 
-1 

is in ga = yx . x 

-1 • 
G[3' [30 = a, we have (ga)x = (yx )x. ThlS implies 

-1 
that (xa )g = (xx )y = e[3Y. Let b belong to S[3. 

Then, {(xa) g}b = (e[3Y) b = (by) e~ and (bg) (xa ) = 
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imply that (bx ) (ga) = 

yb because of (1.2) and theorem 

1.7. It follows that {ja = a. Now since yb is in 

SoS{j and SoS{j 

{ (bx) a} -1 (yb) . 

COROLLARY 4.3 

S a therefore g = e g a = 

If q belongs to Q, then there exist a,b in S 

. - 1 
with a~b In Q and q = a b. 

PROOF 

This follows from corollary 4.2 and from the 

fact that every two elements in G are Je-related. a 

LEMMA 4.4 

If a belongs to Y and a,b are elements of S , a 
* . then a~ b In S. 
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PROOF 

If a belongs to Y a nd a,b are i n Sand s is a 

in SA' t is in Sg for some A,g in Y, with sa = ta, 

t hen SAa = Sga . Put ~ = Aa = ga o Since sa,ta are in 

and S~ is a right reversible cancellative 

LA- semigroup with left identity, as = at implies 

that there exist m,n in S~ such that m(as) = n(at) . 

Then by (1.3), a(ms) = a(nt). Now sm is in SAS~ and 

SAS~ = SASAa = SAa = S~, therefore tn is in SgS~ ~ 

S S = S = s~. g ga ga 

And again by 

t here exist g, v i n 

s (gm ) t (vn) or 

(as ) (gm ) = (at ) (vn ) 

the r ight r eversability of S~, 

S~ wi th g( s m) = v( t n) s uch t hat 

(gm ) s = (vn ) t. This means that 

where gm, vt, as, vn, at are in 

s~ and a s = a t imp l i es t ha t gm = vt a s s~ i s 

cancellative. This implies that gm = vt = k (say) . 

Hence ks = -kt or (ks)b = (kt)b . That i s (bs)k = 

(bt)k . since k, bs, bt are in S(3' therefore by 

right cancellation in S~ we have bs = bt or sb = 

* st. Thus a ~ b in s. 
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COROLLARY 4.5 

* 2 a H a for any element a in S. 

PROOF 

Let a belong to S a' s belong to SA and t 

belong to S with 2 2 Clearly 2 is in S a s a t. a J,.L a 

and aA = aJ,.L (= '0 say) . Choose k in S and write 
'0 

2 2 Then k{(aa)s} k{(aa)t} implies k (a s) = k (a t) . 

that (aa) (ks) = (aa) (kt) or (ak) (as) = ( ak) (at) . 

That is ak is in SaS'O= SaSaA = SaaA = SO' where as, 

at belong to SO' and SO' is cancellative. Hence as = 

at implies that sa = ta and this implies that (sa)a 

= (ta)a . Thus a 2s = a 2t and a t* a 2 in S. Therefore 

by the dual of the fact that for any two elements 

a,b in an LA-semigroup S, the following two 

conditions are equivalent: (1) * aIR b in S ( i i) sa = 

, 1 l'f * 2 ta lf and on y sb = tb. But aIR a by lemma 4.4 

and hence aH*a 2 in S. 

Returning now to the product in Q, it can be 

seen that the product in Q is an extension of that 

in S. It is immediate from the definition of the 
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product in Q that Gex:G(3 ~ Gex:(3 for any ex: , (3 in Y. 

There f ore Q is a l eft regu lar b a nd of LA- groups Gex:' 

wh ere ex: be longs to Y. From its construction, Q is 

an LA - semigroup of 

conclusion we have 

left quotients of s . In 

establ ished the following 

r esult . 

THEOREM 4.6 

An LA - semigroup S has a left regular band of 

LA- groups as an LA- semigroup of left quotients if 

and only if S is a left regular band of right 

reversibl e cancel l ativ e LA-semigroups. 

Theorem 4.6 shows that, if S is a left 

regular band of right reversible, left cancellative 

LA-semi g r oups , t h e n f or a ny d e compos i t ion o f S as a 

left regular band of right reversible , cancellative 

LA- semigr oups , we can construc t Q, wh ere Q is a 

left regular band of LA - groups . 

Now we provide an alternative 

characterization of an LA- semigroup S which has an 

LA- semigroup Q of left quotients, where Q is a left 

regular band of LA- g r oups . This characterization 
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will be in terms of spined products. Recall that, 

if E is a band and M is an LA- semigroup with a 

semilattice congruence and an LA-semigroup 

isomorphism ¢ : Ejc ~ Mj~, where c is the minimum 

semilattice congruence on E, then the sub-direct 

produc t 

P = {e,x) E ExM : II II 
e c ¢ = X~ } 

is called a spined product of E and M. We call a 

sub- direct product S of ExM a punched spined 

product of E and M if S is subset of spined product 

of E and M such that for any e in E, there exists x 

in M with (e , x ) in S and for any y in M, there 

exists f in E with ( f, y) in S. The aim of this 

discussion is to show that the left orders, which 

have been characterized earlier, are in fact 

punched spined products. 

Let Q be an ~ -unipotent LA-semigroup and E be 

its band of idempotents. Let c be the minimum 

semilattice congruence on E. For any e in E, denote 

the c-class containing e, by e or E(e). Write Y = 

{E (e ) : e E E}. Since E is left regular, therefore 

E (e ) is a left zero semigroup. 
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REMARK 4.7 

Let 'I = {( X,y) E QXQ : 'I (X) = r(y)} . It is 

well known that 'I is the minimum inverse semigroup 

congruence on Q, and r/E = c. Suppose that Q is a 

band of LA- groups then Q/o is a semi lattice of 

LA- groups, and we can write Q/r = u H- , where He- is - e 
eEY 

the group ~-class in Q/r containing e. Moreover, Q 

is a spined product P of E and Q/r, that is 

- 1 
Q = P = _ U (E ( e ) xH e) = {( x x, xo ) : x E Q}. 

eEY 

We emphasize that P is a semilattice of the direct 

products E(e)xH- where e belongs e to Y and the 

product P is reduced from the cartesian product 

- 1 E x Q/r . Moreover (f,x 'I) is an inverse of (e,xo) 

for any f in E(e). In particular, for any (f,yo) in 

E(e)xHe; (f,yr) ~ (f,e) in P and the inverse of 

(f, yr) in H - is 
(f I e) 

- 1 (f, Y 'I). We refer the reader to 

[2] and [31] for further details. 

Let S be an LA- semigroup which has P as an 

LA- semigroup of left quotients. For any e in Y, 

define a subset M- of Q/r by the rule: m in M- if e e 

and only if m belongs to Q/r and ( f,m) is in S for 

some f in E(e ) . 
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LEMMA 4 . 8 

For any e in Y, M- is a left cancellative 
e 

LA-semigroup. 

PROOF 

Let e belong to E and (e , ao ) be in E ( e ) xH-. e 

5ince P is an LA- semigroup of left quotients of 5, 

then there exist ( k , xo ) , (g,yo ) 
- 1 

in 5 and ( f,x 0 ) , 

the inverse of ( k,xo), in an LA- subgroup of P, that 

is, f E E (k) such that 

-1 
( e, a 0 ) = (f , x 0 ) (g, Yo ) • 

It follows that e = fg, and fe = e, ke = kg, 

where ke is in E(f)E(e) s; E(fe) s; E(e) and ( xo ) (Yo ) 

belongs to Hfg = He' Therefore (k, xo ) (g, Yo ) 

(kg, ( xo ) ( Yo ) ) belongs to 5 n (E ( e ) xH- ) . e Hence 

( xo ) ( Yo ) 

Clearly, 

is an 

= xYo E M­e and so M­e is non - empty. 

M- is an LA- subsemigroup of H- where H-e e' e 

LA - group and M­e is a left cancellative 

LA- semigroup. 
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LEMMA 4.9 

PROOF 

Fo r any e i n Y, M- is reversible. e 

Let ar,br be in Me and g,h in E(e) so that 

(g, a r) , (h, br) are in S. Choose cr in M- and take e 

(k,cr) 
- 1 

from S for some k in E(e) . Let (n,b r) be 

the inver se of (h,br) in an LA- subgroup of P . That 

is, n in E(h) and 

- 1 
{(k,cr) (g,ar)} (n,b r) be longs t o E( e ) xHe. 

By the left ordering of S in P, t h ere exist 

( f, qr ) , ( i, dr ) in S, and -1 
( t,q r ) the inverse of 

(f,qr) in an LA-subgroup of P, that is, t belongs 

to E ( f ) s u ch that -1 
{(k,cr )(g,ar )}( n,b r ) = 

-1 • 
( t ,q r) (l,dr) . Th is i mplies t h at 

- 1 
[{ (k,cr) (g,ar)} (n,b r)] (h,br) = 

- 1 • 
{ ( t , q r) (1, d r) } (h, br) . That is 

{(h,br) (n,b- 1 r )}{ (k,cr ) (g, a r)} = 
• - 1 

{ (h, br) (1, d r) } (t, q r) 

implies that 

(h, e ) {(k,cr) (g,ar)} = {(h,br) (i,dr)} (t,q-1r ) . 
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That is, 

or 

{(k, co )(g,ao)} = 

{ (k, e) (k, co ) } (g , a 0) 

{ (g , a 0) (k, co) } (k, e) 

. -1 
{ (h, b o ) (l, do) } (t, q 0 ) 

. -1 
{ (h, b o) (l, do) } (t, q 0) 

-1 
{ (h, b o) (i, do) } (t, q 0) 

or ( f,qo ) [{ (g,ao ) ( k,co )} (k , e )] = 

( f , qo) [ {h , b o) (i, do) } 
-1 

(t,q 0)] 

implies that 

{ (g , a 0 ) (k, co) }{ (f , qo) (k, e )} = 

{(h,bo ) (i,do )}{ (f,qo ) (t,q-1 0 )} and 

or 

[{ (f,qo) (k,e)} (k,co)] (g,ao)= (h,bo ) (i,do )} (f,f) and 

[{(f,qo)(k,e)}(k,co)](g,ao) = [(f,f)(i,do)](h,bo ) . 

That is {(fk,qo.e) (k,co)}(g,ao) = (fi,f.do ) (h,bo ) 

implies that 

{(fk, (qo .e )co) }(g,ao) = ( fi,f.d o ) (h,bo ) . 

By theorem loll, we have (g,ao){(fk),(qo. e )co)} 

(h,bo ) (fi,fdo ) [(g,ao){(fk,(qo.e)co)}(j,vo) = 

[ (h, b o ) (f i , fda) ] (j , va) . That is 

{ (j , va) (fk, (qo . e) co) } (g , a 0) = {( j , va) (f i, fda) } (h, b o ) 

and (jfk, va { (qo . e) co} ) (g, a 0) = (j f i, va ( fda) ) (h, b o ) 

and ( j fk, (qo. e ) (va. co ) ) (g, a 0 ) = (j f i, va (f do) ) (h , b o ) 

and (j fk, (qov'iY ) co) (g, ao) = (j f i, va ( f do) ) (h, b o ) 

and (j fk, (qvo . ) co) (g, a 0 ) = (j f i, vo(fdo )) (h,bo ) 

and (j fk, (qv) c. 0) (g, a 0) = (j f i, va ( fda) ) (h, b o ) . 
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Recall that k = ti, and notice that fk =fi,tk = k. 

so t hat E ( f ) E (e ) ~ E (e ) and jfi = jfk, ef= efe are 

in E (e ) . Moreover (vr ) ( fdr ) (vr « ef ) dr )) = 

vr( e (dr)) = vrdr =vd . r (as e is t he lef t identi t y) 

therefore (qv)c , vdr are in M-. e 

Now we put M = U M- , M is a semilatt i ce Y of - e 
eEY 

reversible left cancellative LA- semigr oup M- with e 

left identity, where e belongs to Y. It is easy to 

note that U ( E (e ) xM- ) - e is a spined product 
eEY 

containing S. Moreover, we have 

LEMMA 4.1 0 

( i ) For any e E E, there exists xr in H- with e 

(e,xr ) in S, 

(ii) For a ny f in E, yr in Mi' t here ex i sts g i n 

E(f) with (g,yr) E S . 

PROO F 

( i) Le t e be long to E a nd (e , ar ) 

The n (e,a r ) - 1 = (f , x D) (g, YO') I where 

be in E (e ) xM-. e 

( f , x r) , (g, yr ) 

. - 1 
are In Sand (f, x r) is the inverse of (f, xr) in 
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H - of P. Therefore e = fg and ( f, xO' ) (g, YO') 
(f. f) 

(fg, ( XO' ) ( YO' )) = ( e , ( xY)O') in S. 

(ii) The proof is straightforward. 

Now it follows that S is a punched spined 

product and the following result 1S established. 

PROPOSITION 4.11 

Let P be a left regular band of LA-groups and 

S be an LA-semigroup. If P is an LA- semigroup of 

left quotients of S, then S is a punched spined 

product of a left regular band and a semi lattice of 

reversible, cancellative LA-semigroups. 

PROOF 

For the converse of propos it ion 4 . 11, let S 

be a punched spined product of a left regular band 

E and a semilattice Y of reversible, cancellative 

LA-semigroups M where a belongs to Y. By corollary a 

4 .2, there is an LA-group of left quotients G of 
a 

M for any a 
a in Y. We may 

for all a,(3 in Y, a *- (3. 
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Let T = U G . a 
aEY 

n G(3 = ¢ 
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prod uct ( .) in T by 

a-1b.c-1d = (xa ) -lyd 

where , if a,b i n Ma i c ,d in M~, t h e n x , y in Ma~ are 

chos en such that xb = yc. Then T is an LA- semigroup 

of left quotients of M where M = U M . That is, T a aey 

is a semi lattice of LA- groups. Put P = U (EaXGa) . 
aey 

Since E xG is an LA-semigroup so is P, which is a a a 

band of LA- groups and whose set of idempotents is 

an LA- subsemigroup isomorphic to E . Therefore P is 

a left regular band of LA- groups. In fact we have: 

LEMMA 4 .12 

P is an LA- semigroup of left quotients of S. 

PROOF 

Let a belong to Y and (e, m) be in E xG . a a 

Recall that S is a punched spined product of E and 

M. Since e 

s uch that 

order in G 

that (e, z) 

is in E there exists an element z in M a a 

(e, z ) in S . As m in G and M is a left a 

a ' there exists an eleme nt z in M such a 

in S. As m is from G and M is a left 
a 
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order in Go: there exist x, y in Mo:, such that m = 
- 1 

X Y a nd h e n ce t h ere exist f , g in E with ( f,x ) and 
0: 

( g , y ) i n s. Notice t hat £ 1 be longs Go: a n d t h ere 

e x ist u,v in M with 
0: 

- 1 
X 

-1 - 1 
uz (u v ) = (uu ) ( zv ) = zv. 

= - 1 
U v and 

- 1 
(U Z ) X = 

Let i,j be in E so that (i,u) and (j,v) are 
0: 

in S. Clearly (ei,uz ) = (e,uz ) in S (since E(e) are 

left zero semigroups ) . Now 
-1 

(e, (u z ) ) is the 

inverse of (e,uz ) in H( - ) of P and (ejg, ( zv )y) = e,e 

(e, (zv)y) (since E(e) is a left zero semigroup ) . 

Moreover, 
- 1 

(e,m) = (e, x y) = (e, 
-1 

(u v) u) 

(e, 
- 1 {(uz) (zv)y}) = (e, 

- 1 - 1 
(u Z ){(zv)y} 

-1 -1 - 1 - 1 ( e , {u ( zv )}{ z y }) = ( e , { z (u v )}{ z y}) 

= (e, ( ZZ-1){ ( U- 1v) y} ) = (e, (u- 1v ) y ) . This implies 

- 1 
that ( e ,m) = (e, (u z ) {( zv ) y }) 

= ( e , 
-1 (uz ) ( e , ( zv )y) . 

Now the converse of 4 . 11 is evident . In 

conclus ion we have t h e following result . 

THEOREM 4.13 

An LA - semigroup S has a left regular band of 

LA- groups as an LA- semigroup of left quotients if 
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and only if S is a punched spined product of a left 

regular band and a semilattice of reversible, left 

cancellative LA-semigroups. 

The following corollary is an immediate 

consequence of theorem 4.13. 

COROLLARY 4.14 

If S is a spined product of a left regular 

band and a semilattice of right reversible left 

cancellative LA-semigroups, then S has a left 

regular band of LA- groups as an LA-semigroup of 

left quotients. 

For the rest of this chapter, let S be a 

spined product of a left regular band E and a 

semilattice Y of cancellative LA-semigroups M a 

where a belongs to Y. Put E = U E M = U M and a ' a aey aey 

LEMMA 4.15 

* The relation H is the greatest semi lattice 
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congru ence on M all of whose classes are 

ca nce llat i ve. 

PROO F 

By the fact that M lS a semi lattice of 

* cancellative LA- semigroups, then Je is the greatest 

band congruence on M all of whose classes are 

cancellative. The relation 0 defined on M by the 

rule (a,b) is in 0 if and only if a,b are in Ma fo r 

some a belonging to Y is a band congruence on Mall 

of whose classes a r e canc ellative. Therefore 

* o ~ Je • Now for a ny eleme nts a I b in M I we have 

(ab,ba ) in o . * * Hence ab Je ba and M/ Je is a 

semilattice . 

* Ident i fy t he semi l attice M/ Je by J , t hat is, 

M i s a s emilattic e J o f Je* , where j belongs t o J . 
J 

For each j in J, let Z 
J 

{a E Y, * ~ Je } . 
J 

Readily, Z is a sub- semi lattice of Y for any j in 
j 

J. Put F = U E and S = U (E xM ) . 
J a . a a 

aE Z J a E Z 
J J 

Now we corne to the final result. 
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PROPOSITION 4.16 

The f o l l owing statements concerning t h e 

LA- semigroup S are equivalent. 

( i) * . . Each Jf - class of M 1S revers1ble 

(ii) For any a,b in M, there exist x ,y in M with 

* * xa = yb and x 1C y Je ab 

(iii) S is right reversible for any j in J. 
J 

(iv) There is an over- LA-semigroup T of S which is 

a left regular band X of right reversible left 

cancellative LA- semigroups T , where a belongs to X a 

and for any j in J, Jf* is 
J 

s ome a i n X. 

PROOF 

isomorphic to T a f or 

* Recall that Jf is a semi lattice congruence on 

M . (i) ~ (ii) 

If (i) holds and a,b are in M, then ab, ba 

are in H: b and there exist c,b in H: b with 

or 

Also 

c (ab ) = d(ba) 

a (cb ) = b (da) by theorem 1.7. 
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* da E Hab 

Put x = cb and y = da to get ax = by or 

* * x a = yb (by theorem 1. 12) and x Jf y Jf ab. Hence 

( ii) holds . 

If (ii) holds, z belongs to M and a,b are in 

* Hz' then in particular there exist x,y in M with xa 

* * , 2 * * = yb and x Jf y Jf abo Slnce a Jf ab, then a Jf ab and 

* x,y are in H so ( i ) holds. z 

(i) ~ ( iii ) 

If (i) holds and j is in J, (e,a), (f,b) 

belong to S , 
J 

( f, b) belongs 

* subsets of H 
j 

such that 

to E{3 x M{3' 

Then a,b 

where x is in Mi\' y is in 

follows that i\ex = IJ.{3 . Let 

(e, a) belongs to 

say, where M and ex 

* are in H with xa 
j 

M for some i\,IJ. in 
IJ. 

g belong to Ei\' h 

to EIJ. and s belong to Mi\ex = MIJ.{3' Then gehf 

Ei\Eex EIJ.E{3 ~ Ei\ex'sx is in Mi\exMi\ ~ Mi\ex'SY is in 

E xM , ex ex 

M{3 are 

yb, 

Z . It 
J 

belong 

is in 

~ MIJ.{3 whence (sx)a = (sy)b. The elements (gehf,sx ), 

(gehf,sy) are in Ei\ex x Mi\ex so that they are in Sj' 

Moreover, (gehf, (sx)a) = (gehf, (sy)b) (S, is right 
J 

reversible ) that is (gehfe, ( sx ) a ) = (gehff, (sy) b) 

and (gehf,sx ) (e,a) (gehf,sy ) ( f,b ) . Hence (iii) 

holds. 
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(iii) in * If holds and a,b are H j , then for 

some a, (3 in ZJ' a be l ongs to M a' b be longs to M(3 ' 

Let e be in E a ' f be in E(3' so t hat (e , a ), ( f , b ) are 

in S . Then ther e e x ist (g ,x ), (h,y) in S wi t h 
j J 

(g,X) (e,a) = (h,y) (f,b). In particular, x,y belong 

* to H
J

, x a = yb and (i) holds . 

( i ) ~ ( i v) 

If ( i ) holds, then by lemma 4.15, * Hand 
J 

* hence {e}xH is a reversible, left cancellative 
J 

LA- semigroup f o r any e in Ea , a in ZJ' f o r any j in 

J, a in Z , put 
j 

N a 
* = U ({e} x H . ) s o t ha t 
J 

and T 

aEE a 

= U (F 
JEJ J 

U (U 
j E J aEZ 

j 

x 

( U 
e E E a 

* H ) 
J 

F x 
J 

* H 
j 

= U N a 
aEZ 

J 

= 

is a left regular band of reversible, left 

cancellati ve LA- semigroups . Clearly, for any j in 

J, a in Z, 
J 

. , * {e}xH 
J 

* = H 
J 

LA- subsemigroup of T. Hence (iv) holds . 

and s is 

If ( iv) holds, then trivially (i) holds. 

an 

An LA- semigroup S is abundant if each 
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* * contains IR -class and each J!. - class of S an 

+ * idempotent. If a is an element of S, then a and a 

* * denote typical idempotents in IR and J!. a a 

respecti vely. An LA-semigroup S is super abundant 

if * each Jf -class contains an idempotent. Next we 

consider the class of abundant LA-semigroups in 

which the set of idempotents form a left regular 

band. In this case * every IR - class of S contains a 

unique idempotent. Thus S * . is called IR - unlpotent. 

The objective is to characterize a class of 

* . IR - unlpotent LA-semigroups which have an 

LA-semigroup Q of left quotients where Q is a left 

regular band of LA-groups. This is the special case 

of the subject matter discussed previously. 

LEMMA 4.17 

* . . Let S be an IR -unlpotent LA-semlgroup then: 

( i) S is . . * * super abundant If and only If IR = H on 

S . (ii) S is a band of a left cancellative 

LA- monoid if and only if S is super abundant and 

*. ~ lS a congruence on S. 
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* . He nceforth by S we s hall mean an ~ - unlPotent 

LA- semigroup. 

PROPOSITION 4 . 18 

If S is a left regular band Y of reversible, 

left cancellative LA - semigroups S , where a is in Y a 

then the following statements are equivalent. 

(i) S is super abundant 

(ii) for every a in Y, a in S , there exists an a 

* idempotent eo in So for some y in Y with eo~ a and 

S S s; S",. 
o a '" 

PROOF ( i ) =) ( ii ) 

* Let a belong to Y, a belong to S and a ~ e 
0' a 

is idempotent in Since * * where e an S . ~ = Jf by 
0 0 

* is lemma 4 . 17 therefore a ~ e and e a = a . That 
0 0 

S S s; S . 
0 a a 

(ii) =) ( i) 

* is Let a belong to S where a~ eo' eo an a 

idempotent in So· Then eoa = a, that is, oa = cx. It 

follows that aScx = a and ~o = a. In particular, aeo 
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belongs to S . a By reversability of S a 

for some x,y in Sa' that is, 

xa = 

= 

{y(aeo)}eo and by the le ft cancellation in Sa this 

implies that x = y and xa = xaeo ' Thus a = aeo ' 

Now let e be an idempotent in S a a 
. * Wl th eta a 
* and S S ~ S . a a a Since ae 

a = a = aeo and eat a, then 

aea = (ae 0 ) eo = (eaeo ) a. This implies that e a = 
a 

(eaeo ) a and eo = eoeo' Recall that 

S S ~ S , a is in S 'We have o a a a 

e a o belongs to 

and 

or 

and 

Similarly 

u(e a) = va 
a 

ea(ua) va by theorem 1.7. 

(eoe o) (ua) = va 

(eou ) (eaa) 

(e u) (e a) o a 
e{(eu)a} a 0 

e {(au)e } o a 
(au) (e e ) o 0 

(au)e = va o 

= 

= 

= 

= 

(eou)a va. 

va 

va 

va 

va 

va 

by (1.2). 

This implies that e a = a since e a = a = e~a and a 0 0 

* eolR a. 

Since e a = a 
a 

(eoa)eo aeo 
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(ea)(ee) = eo (aes ) o S 5 

(e eo) (ae ) = eo (aes ) . o 5 

This implies that e oeo = e . 
5 

* * Hence eo = eo and a ~ eo' that is a H eo and 

(i) holds. 

LEMMA 4.19 

If S is super abundant in which for any 

elements a,b in S, there exist x,y in S with xa = 
* * *.. . yb and x H y H ab then each H - class 1n S 1S r1ght 

reversible . 

PROOF 

This is immediate from the fact that each 

H* - class of S is a left cancellative LA- monoid. 

PROPOSITION 4.20 

If S is a band of cancellative LA-monoids, 

then the following statements are equivalent. 
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* (i) Each H - class in S is right reversible. 

(ii) For any a,b in S, there exist elements x,y in 

* * S with xa = yb and xH y H abo 

PROOF 

(i) => (ii) 

By Lemma 4.17, S is super abundant on which 

* * Jf is a congruence. Let a belong to H , b belong to e 

* Hf , for some idempotents e,f in S. Then ab belongs 

* * * * . to Hef and (ab ) a belongs to Hefe = Hef . But Hef lS 

right reversible, so there . . * eXlst u, v In Hef such 

that u(ab) = v{(ab)a}. Then, by theorem 1.7 . a(ub) 

= (ab) (va) or a{(bu)eef} = {(va)b}a. This implies 

(ba) (ueef ) = that (bu) (aeef ) = {(va) b}a and and 

{(va) b}a which further implies that { (ueef ) a}b = 

{(va)b}a. 

* * Let y = (ueef)a belong to Hefe = Hef . Then x 

* * * * = (va)b E Hefef = Hef xa = yb and x Jf y Jf ab 

( i ) => ( ii ) 

This is Lemma 4.19. 

In fact any of the statements of proposition 

4.20 is a consequence of S to have LA-semigroup Q 
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of left quotients where Q is a left regular band of 

LA-groups. The following Lemma demonstrates this 

result. 

LEMMA 4.21 

Let S be super abundant which is a left 

regular band of right reversible left cancellative 

LA-semigroups. Then for any elements a,b in s, 

. .. * * there eXlst x,y ln S wlth xa = yb and x H y H abo 

PROOF 

Put S = v S , where Y is a left regular band a 
aEY 

and S is a right reversible left cancellative a 

LA- semigroup for any a in Y. Let a,b belong to Si a 

belong to Sa' b belong to S(3' say . Then ab belongs 

to S Q' and (ab) a belongs to S Q = S Q' and 
a I"> (a l..»a a l'" 

there exist u,v in Sa(3 with u{(ab)a} = v(ab) where 

x = (ua) b is in Sa(3a(3 = Sa(3 and y = (vea (3) a 

belongs to S Q = S Q. But every two elements in 
al"'a a I"> 

* S a(3 are IR - related (Lemma 4.20 ) . Then the result 

* * follows from the fact that IR = H on S. 
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Now we consider the construction of S in S a 

as given in the folloing proposition. 

PROPOSITION 4.22 

Let S be super abundant with band of 

idempotents E and E = U E a 
aEy 

be the maximal 

semi lattice decomposition of E. For each a in Y, 

define 

Then: 

S a {x E S + 
x , * X E E - }. a 

( i) S is a maximal abundant LA - subsemigroup of S a 

which contains E as its set of idempotents such a 

* * * * that ~ (Sa) ~ ~ (S) and t (Sa) ~ t (S) 

(ii) Sa n S~ = ¢ if a * ~ 
(iii) S is a semi lattice of 

to Y 

s . 
a' where a belongs 

(iv) * * * S = E xH , where H is the }f -class in S a a e e 

containing e, and e belongs to E . a 

Now let S be super abundant with set of 

idempotents E. Retain the notations of proposition 

4.22. Assign to each a in Y, a l eft cancellative 

LA-monoid M a 
* = H e for some 
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fact that if e, fare t-related idempotents in an 

LA- semigrollP 5, 

a ny f in E • a 

* * . . t h en He = Hf l mplles 

By proposition 4.22 , 5 = E xM . a a a 

Denote t he identity o f M by e and put M = v M . a a a 
aEY 

Define a p r oduct ( . )on M by x. y = ea~xy, for any x 

in Ma , y in M~. Then 

(X.y ) .2 = {ea~ ( xy ) }.2 where 

ea~ ( xy ) belongs to Ma~' 2 belong to Mo ' Also 

(x. y ) .2 = e a~o { (xy ) 2 } 

= ea~o{ ( 2Y ) X} 

= {e~o( 2y)}(eax ) 

(z . y) x . 

He nce M is a semi l attice y of t h e left cancellative 

LA-monoids. M where a E Y. a 

Moreover, we have the following lemma. 

LEMMA 4 .23 

5 is in one- to - one correspondence with 
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PROOF 

Define ¢: P -----1 S by (e,a)¢ ea. It is 

obvious that ¢ is a well - defined map. Let ( e, x ) 

belong to Eex x Mex and (f,y) belong to E~ x M~ such 

* * that ex = fy. We can verify that e ~ ex and f ~ fy. 

Consider e ( ex ) = e{ (ee ) x} = e{xe ) e} (xe ) (ee) = 

( xe ) e = ( ee ) x = ex. This implies e ( ex ) = ex . That 

is e ~*ex. Similarly f ~*fy. Therefore e = f and E 
ex 

= E(3' that is, ex = ~. Thus ex = fy implies that 

e (e x ) = e (fy) ex ex 

or e x ex 

or x = y 

Thus, ¢ is one - to - one. 

For surj ecti vi ty, let x belong to S, where 

* x ~ + x . , 

E x M , 
ex ex 

+ + x belongs to Eex , say. Then ( x ,eexx) is in 

+ + + 
and ( x ,e x )¢ = x (e x ) = x x = x. Hence, ex ex 

¢ is surjective. 

Recall that a band E is a left normal band if 

efg = egf for any idempotents e,f,g in E. Clearly 

left normal bands are left regular. To improve the 

resul t of Lemma 4.23, we impose the condition of 
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left normality on E . 

PROPOSITI ON 4.24 

If E is left normal, then P = u (E xM ) ex ex is 
exEY 

isomorphic to S. 

PROOF 

From the proof of Lemma 4.23, we have the 

bijection ¢: P ~ S defined by (e,a)¢ = ea for any 

(e,a) in P. To show that ¢ is a homomorphism, let 

(e,x) belong to E x M and ( f , y) be in E(3 x M(3. ex ex 

Then {(e, x )'(f,y)}¢ (ef,eex(3xy )¢ = (e f ) (e ex(3xy ) = 

(ef) ( xy) where ef,eex(3 belong to Eex (3 and 

* . . (e,x )¢( f,y )¢ = (ex ) (fy) . Notice t hat ex ~ e lmplles 

* * * that efe x ~ efe.That is, efex ~ ef o r efex 2 ef 

* because ~ * H on S. That is, efexef = efx . This 

implies that efexfy = efxy or efxfy = efxy. 

Now let i be in E such that xf n*i . Then, in 

particular we have xf i = xf. That is xf i = xff 

which implies that i = if. Therefore efxfy efixfy 

= eifxfy, because E is left normal, and efxfy = 

eixfy, because if = i. Thus efxfy = exfy. Hence ¢ 
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is an isomorphism. 

As a n immed i ate consequ ence of proposition 

4.24 , we have the following corol l ary. 

COROLLARY 4.25 

If E is left normal, then S is a spined 

product of a left regular band and a semi lattice of 

y of left cancellative LA- monoids M . 
ex' where 

* belongs to Y and M 's are Jf - classes of S. ex 

Now directly from theorem 4 . 6 proposition 

4.20, proposition 4.24, proposition 4.18, and lemma 

4. 12, we have 

THEOREM 4.26 

Let S be super abundant in which the set of 

idempotents is a left normal band. Then the 

following statements are equivalent. 

(i) S is a left order in a left regu lar band of 

LA-groups, 

(ii) S is a left regular band of right reversible 

and left cancellative LA-semigroups, 
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(iii) For any a,b in S, there exists x,y in S with 

* * xa = yb and x H yH ab, 

(iv) * Each H -c lass in S is right reversible, 

(v) S is a spined product of a left regular band 

and a semi lattice of right reversible and 

cancellative LA - semigroups. 
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