
(!J7 

BEST APPROXIMATION IN FUNCTION SPACES 

BY 

MUHAMMAD ALI 

SUPERVISED BY 

DR. LIAQAT ALI KHAN 

DEPARTMENT OF MA THEMA TICS 

QUAID-I-AZAM UNIVERSITY ISLAMABAD 

Aura JST-'1990 

( I ) 



I 
>I 

TO MY 

MOTHER 

( i i ) 



BEST APPROXIMATION IN FUNCTION SPACES 

A DISSERTATION 

SUBMITTED TO 

THE DEPARTMENT OF MA THEMA TICS 

QUAID- I- AZAM UNIVERSITY ISLAMABAD 

IN 

PARTIAL FULFILMENT OF THE r~EQUIr<I'1ENT FOR THE DEGREE OF 

MASTER OF PHILOSOPHY IN THE SUBJECT OF 

MA THEMA TICS 

BY 

MUHAMMAD ALI 

( III ) 



" 

CERTIFICATE 

WE ACCEPT THE WORK CONT AINED IN TI-IIS DISSERT A TION 

AS CONFORMING TO THE P ARTIAL FULFILMENT FOR -h -IE DEGREE OF 

Chai.rman 

MASTER OF PHILOSOPHY 

IN THE SUBJECT OF MA THEMA TICS 

(ii) ~£~ 2-'11-
CDr.Liagat Ali Khan) '70 

supervi.sor 

(iii) ----+-------~--~-

(PR. A fSJ)t)L J2-A~IM KHf,N) 

j)e-t:>(1)..{ w..~....t" tf "'ltL-"lh~'v~t..:'-& 

!it~:~ 2- c.../~ ~"~b 

DEPARTMENT OF MATI lEMA TICS 

QUAID- I- AZAM U/'-lIVEk :.; ITY ISL.At"lAB AD 

1900 

( I V ) 



"And if all the trees on earth were 

pen and the oceans (were ink) , with seven 

oceans behind it to add to its (supply). 

Yet would not • the words of God be 

exhausted (in the writing) for God is 

exalted in power. Fall of wisdom. 

(AL QURAN) 

"He thanks not God .. who thanks not the 

people . " 

Holy Pr ophe t Muhammad 

(peace be upon him) 

( V) 



" .; 

ACKNOWLEDGEMENT 

First of all I would like to record my thanks and 

gratitudes to my father who prayed day and night at every 

stage of my life and without whose h e lp and guid an ce I 

would have not reached this stage. 

I am grateful to Dr . Asghar Qadir (Chairman, 

Department of Mathematics) for providing atmosphere of 

study and research in the Department. 

I also deeply thank Prof ess or Dr. Faiz Ahmed, 

Head, Department of Mathematics, Gover7mant College....., Asghar 

Mall, Rawalpindi , who had always been v ery kind a nd 

encourging me on the track of research. 

Special thanks are due to Professor Dr. Qaiser 

Mushtaq, who rendered his generous help during my M.phil 

studies. 

Last but not least wo rd s are insufficient to 

express my heartfelt gratitude to Dr.Liaqat Ali Khan my 

supervisor because wV~u.t his cordial attitude, kindness, 

guid n e and supervision, I would not have moved a step 

further. 

(Muhammad Ali) 

( V I ) 



I ' 

PREFACE 

In this dis5 e rtation we are primarily concerned with 

presenting recent results on Best Approximation in metric 

linear spaces,locally convex spaces, and spaces of 

continuous vector-valued functions. The dissertation 

consists of three chapters. 

In chapter 1, we introduce basic terminology such as 

proximinal, Chebyshev and semi-Chebyshev se't$.Jo.tId~c.tW\$idt:y- best 

approximation for normed spaces and, in particular, for 

Hilbeit, uniformly convex, strictly convex, and reflexive 

spaces. The proofs of the results are mostly omitted as 

they can be found in standard books on Functional Analysis 

and Approximation Theory. In this chapter, we also mention 
~"t 

an open problem which i s still ~resolved: Is every Chebyshev 

set in a Hilbert space convex ? Some partial answers and 

their generalizations are given. 

Second chapter d eals with generalizations of some 

results of chapter 1 to metric lin ear spaces and locally 

convex spaces. The results and their proofs are taken from 

recent research papers. 

In the last chapter, we are concerned with 

approximation and best approximation in function spaces. In 

particular, we present the statements and proofs of 

Stone-Weierstrass typ e theorems for vector - valued 
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functions, both in th e loca lly convex and non - locally 

convex settings. An important result on best approximation 

in continuous real valued fun ction spaces is the Haar 

oriteria of uniquen ess. This was establis hed by A.Haar in 

1918 for functions on a closed interval and subsequently 

extended by R. Phelps in 1960 for functions on a compact 

topological space . Other forms of approximation such as the 

least-square approximation a nd the 

are also mentioned . Finally, 

rational approximation 

two results on best 

approximation in spaces of bounded functions on paracompact 

spaces and of continuous linear mappings on Hilbert spaces, 

by Holmes and Kripke, are presented. As a counter example, 

it is mentioned that th e last result does not hold for 

linear mappings on certain reflexive Banach spaces. 

( V" I ) 



CONTENTS 

CHAPTER 1 

BEST APPROXIMATION IN NORMED SP ACES 

§ 1.1 Introduction 

Basic definitions and examples 

1 

2 § 1. 2 

§ 1. 3 

§ 1. 4 

Best approximation in normed and Hilbert spaces 5 

Best approximation in uniformly and strictly 

convex spaces 

§ 1. 5 Best approximation in reflexive spaces 

CHAPTER 2 

BEST APPROXIMATION IN TOPOLOGICAL VECTOR SPACES 

§ 2.1 Introduction 

§ 2.2 

§ 2.3 

CHAPTER 3 

Best approximation in metric linear spaces 

Best approximation in locally conv ex spaces 

APPROXIMATION AND BEST APPROXIMATION IN FUNCTION SPACES 

§ 3 . 1 Introduction 

6 

" 

14 

14 

22 

34 

§ 3.2 Stone-Weierstrass Theor e m for scalar and vector 

§ 3.3 

§ 3.4 

valued function 

Weight e d approximation 

Best approximation in s p ace 

functions 

( I X ) 

of 

34 

44 

continuous 

51 



CHAPTER 1 

BEST APPROXIMATION 

IN 

NORMED SPACES 

§ 1.1 I~ODUCTION 
1' -

In t.his chapt.er we shall give some defini'lions and a 

survey of result. on Best. approximat.ion in normed spaces 

and, in part.iculaJ-, in inner product.. uniformly convex, 

s'lrict.ly convex and reflexive spaces. The proofs of most. of 

t.hese result.s are omit.t.ed as t.hey may be found in st.andBrd 

Text. books. (e.g., E.W.Chene y [6), Heuser [10), R.B. Holmes 

(12) , G.Kot.he [20) • E.Kreyszig (22) , J.R.Rice [28) • 

1. Singer [ 33 )). Some of' t.hese result.s will be generalized 

~ n chapt.er 2 t.o met.r i c linear spaces and 1 ocall y convex 

spaces. 

1 



§ 1.2. BASIC DEFINITIONS AND EXAMPLES 

We begin wi~h ~he ~ollowing de~ini~ions. 

DEFINITION 1.2.1. 

Le~ (X,d) be a meLric space and LA ,- " JVJ := h ~ For each x E x, 

le~ d(x,M) = in~ d( x,y) and P (x) = {z E M d( x, z) =d( x, M)} 
yEM , M 

i.e., Z E P (x) ir~ d(x,z) = d( x, M) 
M 

(,1) 

Any Z E M wich sa~isfy (1) i s call ed a point of best 

approximation. ~rom x ~o M. C :z i s a l so ca;ll e d t..he neares~ 

poin~ o~ M ~rom x ) 

No~e lhal 

{x) if 

if 

M 
x 

X E M 
-

X E M - M 

Consequenlly, we may a lways ass ume in ~he sequel lha~ 

X E X-M. 

DEFINITION 1.2.2. 

If P (x) ;JI! 1> for each x EX, ~hen M is called a 
M 

proximinaL set Cor- existance set ); i~ P Cx) 
M 

= single~on 

i. e. , if each x E X ha s a unique poin~ besl 

approxi ma~i on in M, lhen Jv1 is call ed a Chebyshev set; i ~ 

P (x) 
M 

= single~on or emply, 

semi-Chebyshev ( or unicity ) sel. 

2 
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Cl ear 1 y ever y ChebyShev seL is pr oxi mi nal and semi -

Chebyshev buL converse i s noL Lrue as we shall see by 

examples. 

Not.e t.haL if (X. II IP is a normed space and M a subset. 

of X, t.hen for any x E X, inf I II d(x , M) = I x-y and 
yEM 

PM(x) = {Z E M: II x-z ll = d( x, M) 

EXAMPLE 1 • 2. 3. 

Let. X R2 wiLh II x ll I x
2 2 

= norm = + x 
1 2 

where x = (x , x ) E R2 
1 2 

Let. M = {(Ot,O) Ot E R),t.he X-axis. 

Let. x 

Then clearly z = (2,0) is t.he unique best. approximat.ion in 

M f or x = (2, 1 ) ~ i. e. , p (x) = {( 2 • 0) . 
M 

NoLe t.hat. if x = (1,1), Lhen P (x) = {(l,O) 
M 

In t.his case M is a Chebyshev seL . 

EXAMPLE 1.2.4. 

R~ 
, 

Let. X = wi Lh norm II x li = max { IXi I · Ix z I 

Let. M { (Ot.O) Ot E R ), Lhe x-axis. 

Le L (1.1) 2 
x = E R. 

Then, for any y = (Ot,O) E M, 

II x-y li = II (1,1) - (Ot,O) II = max { 11 - Ot I 

= max { 11 -Ot I , 

Thi s h as mi nimum value i f 11 -Ot I < 1 i . e. , if' 0 

3 

) 

11-0 I ) 

1 ). 

~ Ot ~ 2. 



Therefore if Y = (Ct, 0), where 0 ~ Ot ~ 2 t-hen y is a 

point- of best- approxi mat-i on . Hence, in t-his case , 

P (x) = { e Ct, 0) 
M 

the line segment- joining eO,O) and (2,0). Therefore M is 

Proximinal but- not- Chebyshev. 

EXAMPLE 1.2.5. 

Let X = Rand M = (1,2). an open interval. Then, for 

any x E X-M, P (x) = ¢. 
M 

So Mis semi -Chebyshev but not-

proximinal or Chebyshev. 

As a sort- of' another example, we have ' t-he following 

resul t-. 

:THEOREM 1.2.5. [6J 

Any Compact- subset K of a metric space eX,d) is 

proxi mi nal . 

PROOF 

Let- x E X, and let- . y = 
i nf' d(x, y). 
yEK 

We show t-hat- there exists a point- z E K such that-

d(x,z) = y. From t-he definit-ion of infimum, it- follows t-hat-

th ' 4 {'y )00 ere ex~svs a sequence 
m m ::;1 

£ K, (usually called 

1 i m 
minimizing sequence) such t-haL . 

m ->CO 
d(x, Y ) = y. 

10 

Since K is ·, Compact-, every sequence in K has 

t-he 

(1) 

a 

subsequence wit-h limit- in K. So there exisLs a subsequence 

00 Cl.1 lim {y) of {y) ~ s u c h t-haL y . = Z E K. 
mi. i. =1 '" m=1 i. -H'O mt 

4 



Then, by continuity or d, lim dex y ) = dex,z) 
~ -+00 'm ~ 

(2) 

Now {de x , y . ):}oo 
m L ~ = 1 

is a con ver gent s ubseque n ce of 

00 {de x .y )} 
m m = 1 

Since {de x ,y)}oo . is convergent and hence a Cauchy 
m m=1 

sequence in R, it follows from (1) that 

1 i m de x ) = lim de x. y ) = Y 
i. -+00 ' y mi. m-+OO m 

(3) 

By uniqueness of limit. , it follows from (2) and (3) that 

d( x, z) :::: y 

Hence Z E PKCx), and so K is proximinal .• 

§ 1. 3 . BEST APPROXI tofA TI ON IN NORMED AND HI LDERT SPACES. 

In thi s sect i on. we wi 11 gi ve the statement or the 

results on best approximation in normed spaces and inner 

product spaces. We recall that a subset A or a vector space 

X i s called convex if r x + el - r)y E A for all x,y E A and 

O~r~1. 

THEOREM 1. 3. 1 • 

Let ex, II II ) be a normed space over K. Then any f'ini~e 

dimensional vector subspace M of X is Proximinal .• 

THEOREM 1.3.2. (33) 

Ir M is a n~n-empty convex subset of a normed space X. 

then, for any x E X, 

subset of X .• 

P e x ) is a convex, closed and bounded 
M 
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I' , THEOREM 1. 3. 3. [6") 

Every convex subset. K of an inner product. space Xis 

semi -Chebys hev .• 

THEOREM 1.3.4. [6" j 

Let. (e ,e , ... ,e ) be an orth onor ma l syst.em in an inner 
1 Z n 

product. space X. Then 

M = sp (e ,e ,. 
1 Z 

,e ) i s a Ch ebys h ev sel in X .• 
n 

THEOREM 1. 3. 5. 

Every non-emply convex compl ele subset. K of an inner 

producl space X is Che bys h ev .• 

THEOREM 1 . 3 . 5 . 

Lel M be a vector subspace of an inner product space X, 

and let. x E X and Z E M. Then 

X-Z ..L M .• 

§ 1 . 4. BEST APPROXIMATION IN UNIFORMLY 

AND STRICTLY CONVEX SPACES. 

DEFINITION 1.4.1. [201 
A riormed space eX, 1I II ) is called uniform.Ly convex if 

for each 0 < c; ::::; 2 the re exi s t. s 6 = 6e c; ) > 0 such lha t 

II x II ::::; 1, II y II ::::; 1 and II x-y II ~ £: i mpl i es 

II Cx +y)/2 11 ::::; 1-6. 

6 
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NOTE: 

Uniformly Convexi~y is a geome~ric proper~y of ~he uni~ 

sphere of ~he space: if t.he "mid point." of a line segme nt. 

wi~h end point.s on t.he surface of t.he sph ere approaches t.he 

surface. t.hen t.he end point.s must. come closer t.oget.her . 

o 
Uniformly Convex Not. Uniformly Convex 

EXAMPLE 1 . 4 . 2 . 

Any inner product. space CX. <.» is Uni for mly convex. 

EXAMPLE 1.4.3. 

The spaces I and L ar e uni fOI ' ml Y cOJ'lvex i'or 1 < P < 00. 
p p 

THEOREM 1 .4.4. [2.. 0 J 
The foIl owi ng al- e equival e n t. . 

Ca) The narmed s p ace ex. \I \I ) i s uniformly convex. 

eb) If {x ). Cy) are seque nces in ex. II \I ) wit.h 
n n 

II x II ::; 1. lI y II ::; · 1. t.he n II Cx +y ) /2 11 -> 1 implies t.hat. 
n n n n 

II x - y \I -~ o. D 
n n 

7 
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THEOREM 1.4.5. [6J 

Any non-emp~y convex and comple~e subse~ K of a 

uniformly convex space X is Chebyshev .• 

DEFINITION 1.4.6. [b ] 

A normed space X is called strictLY convex if for any 

x,y E X wi~h II x II = 1, lI y ll = 1, x ~ y, implies II x+y ll < 2. 

THEOREM 1. 4. 7. [6J 

Every uniformly convex normed space (in par~icular 

every inner produc~ space) is s~ric~ly convex .• 

EXAMPLE 1.4.8. 

The space C[a,b] wi~h sup norm is no~ s~ric~ly convex. 

SOLUTION 

We consider f,g 

f(~)=l, 
L-a 

gC~) =-- , 
b-a 

f,g E C[a,b]. 

[a,b] ~ R d e fin e d b Y; 

wher- e a -< b, ~hen cl earl y 

We also have II f ll = 1, II g ll = sup I~-al = Ib-al = 1. 
a~t..~b b-a b -a 

bu~ II f+g ll = sup I 1+ t-a I = I 1+ b-a, = 2 ' 
a~t ~b b-a b-a' 

This shows ~hat.. C[a,b] is not.. st..ric~ly convex. 

We ment..ion t..hat.. ~he spaces C . 1 
o i 

1 , L , L are also 
00 1 co 

: not.. st..ricLly convex ([ 2 0] ,p.343). A par~ial converse of 

Theorem 1.4.7 is 

8 



THEOREM 1 . 4. 9. [6') 

Every finit.e-dimensioilal s t.l' ict. l y convex nor med space 

i s uni for ml y con vex .• 

THEOREM 1. 4 .10. ( [20] .p. 3 4 3) 

Any convex s ubset. K o r a S ll' i c ll y CL")n vex norme d s pace X 

i s s emi - Chebyshev . • 

The converse ' of t.he above res ult. A is ' a hard pl' ob.l e m 

which i s s t.ill open. 

OPEN PROBLEM: (see [19] ) 

Is every Chebys hev set. in a Hilbe rt. space ., convex? 

We now s ~at e s ome kn o wn p a r t. i a l solutions ~o ~his 

problem and t.heir s ubseque nt. gener a li zat.ions . 

THEOREM 1. 4. 11. (Mot.zk j n. 1935) 

Every Che b ys h e v set. in a r i ni t.e di mens i ona l spac e i s 

convex . • 

THEOREM 1.4. 12. CPi c k e n. 1951) 

Ever y compact. Che bys hev set. in a · Hi 1 ber t. space is 

convex . • 

For fLlrt.her generalizat.ions we ne~d t.he following 

t.erminology (see [ 8 ) , (35)). A norme d space X is cal l ed 

Lint formLy s moo th i f , f o r eac h £. > O . t.h e l- (;> e x i s t..s 6 C £. ) > 0, 

sLlch t.h a t. 

II x -y 1\ < c5 .i mp.l i es II x + y II C: 1\ x II + 1\ y II - £. 1\ x-y 1\ • 

9 



. 1 

A subset.. K o!~ a nOI- med space X is called boundedl.y 

c ompac t i:f K nBC x) is empt..y or convex :for each closed 
r' 

ball B C x) <y E X " x - '), II < ' r), C X E . X, 1- > 0); K i s 
r 

call e d approxim.atively compact i:f :fOI- a n y x E Keach 

mi ni mi z i ng seque nc e {y) inK h as a s u b s equence convergi ng 
. r, 

lo an e l e ment.. of' K. Eve ry c ompac t.. set.. is boundedly compact.. 

and every boundedl y c mpac l set.. i s appr oxim~Lively compacl. 

For any :f E X' and r E R, lhe sel s (x E X :fC x) ~ r) a nd 

(x E X: :fCx) ~ r } a r e call ed h a lf spac e s. 

THEOREM 1. 4. 13. [ 9) 

Eve ry bounde dly compact.. Chebyshev s et.. in a uni:formly 

s moot..h a nd uni:f or ml y convex Banach space i s convex . • 

THEOREM 1. 4. 1 4. [ '9 ] 

Every weakly c l osed Chebys h ev set.. in a uni:formly smoolh 

and uni:formly convex Banach space i s convex,. 

THEOREM 1. 4. 15. [9) 

Every approxi malively compact.. Ch e byshev set.. in a 

uni:formly s moot.. h a nd uni:formly c onvex Banach space i s 

convex . • 

THEOREM 1 .4.15. [ 2 1 

Ca) I:f lhe met.. ri c proj eclion P onlo a Chebyshev set.. K 
K 

.10 



in a Hi lberL space is nor m conLinuo u s. L h e n K i s c onvex . 

Cb) Ir K is Chebyshev sel in a HilberL space such lhaL 

i Ls inLersecLion wil h e~c h c l o sed hal r-s p ace is p roxi mi n a l 

seL, L h en K is convex. 

§ 1.5 BEST APPROXIMATION IN REFLEXIVE SPACES 

In Lhi s s e c Li o n we s how lha L eve ry closed linea r 

subspace of a reflexive Banach s pace is proximinal. To 

prove Lhis imporLanL resulL we nee d some deriniLions and 

res ulLs. which we sLaLe as follows . 

DEFINITION 1.5.1 . 

Le L X b e a n o rmed space. The n iLs c onLinuo u s dua l X' i s 

sup 
a Banac h space w. J- t. lhe norlll 11 1' II x EX - I f (x) I . f EX'. 

II x 1I ~1 

LaL X" = (X', II II )'. Th e n X" i s a Banach space w . r.L Lhe 

n or m II G il = 
sup 
[ EX' IGCf) I. X" i s call ed L h a b idua l of X. For 

II [ 1I ~1 

eac h x E X , def ine xCf) = !'Cx) fo r a ll f E X'. IL i s well 

known lha L x E CX' ) ' wi L h II x II = II x li. LeL X = { x : X E X} . 

The n X i s i s ome t.ri cally i s olllor~i c lo X and we may identify 

x == X 5; X" . 

DEFINITION 1 . 5.2. 

A n o r me d S I)aCe ex , II II ) i s call e d r e .fl exi v e i r X = X". 

Not.a lhaL, s ince- X" i s a lwa y s compleLe, a reflex ive 

nor med s pac e i s n ocessaJ' il y a Ba n ac h s p ace . 

1 1 



EXAMPLES 1.5.3. 

(1) Every Hilbert.- space (e. g .• 1 ) is ref'lexive . 
2 

si nee H " = ( H ') I := C I-I) I = H . 

(2) For 1 < p < 00, Ip is rerl exive . 

s ince Cl p)" = Cl p ' )' = Cl q) ' = I p. 

wh e r e 

( 3) C , C, 1 
o 1 

r e f' l e x i v e . 

1 
+ -

q P 
1. 

1 , C [ a , b ), 1 ( 0 < p ~ 1 ) a r e not.. 
00 p 

(4) Every uni f ormly con vex Ban ac h s p a c e i s ref'lex ive. 

(Ko t..h e ( 2 0) } p. 354 ) 

C!3) The s p ace 1 (E ), E = 1
00

, p > 1 , i s ref'lex ive but.. 
p n n n 

not.. uni f' ormly c onvex ( Kot.. h e [ 20 ) p 361 ) . 

THEOREM 1.5.4. 

A closed vect..or subspace M of' a reflexive Banach space 

C E, II II ) i s I' ef' 1 exi ve .• 

Recall t..hat.. a sequence {x) in CX, II II ) is said t..o 
n 

conv erge weak Ly t..o x E X i f' If' ( x )-·f(x) I ... 0 t'or a ll f E X ' 
n 

THEOREM 1 . 5 . 5 . ([I CJ 1/~2. S l) 

Eve ry bound e d seque n ce in a r e f'l exive Banach s p ac e has 

a we akly conve rge n t.. s ubseque n ce . • 

We n ow s t.. at..e and p r ove U ,€' ma in r-es ult.. of' t..hi s sect.. i o n . 

12 



I', 

Le~ M be a closed linear subspace or a rerlexive Banach 

space E. The n M i s pJ- ox j nd pal 

PROOF 

Let.. X a nd 
i nf' 

II x-y li . Le~ {y ) be mi ni mi zi ng x E v ::: a . 
yEM Ii 

in M s u c h t..hat.. 
li m 

II x-y II Then it.. t'ollows sequence y. 
Ii -'00 n 

t..hat.. {y ) is a bounded sequence in M. 
n 

No w M being a closed s ubspace ot~ a rerlexive Banach 

space is i~selt' a Banach s pace (Th eorem 1.5.4.). 

So, by Theor e m 1. 5 .5, <y) h as a convergen~ subsequence 

{y ) 00 wi lh 
nk k = 1 

veakly 

.... eakly 
x-y x-y Now II x- y II ::: 

nk -> 0 0 

Henc e 

Ii 

Yo i'or some y E M. 

~ 
II x-y II 

0 

sup 
::: fEX' 

II f II :S 1 

sup 
~ f EX' 

II f II ~1 

lim 
::: 

m ... CO 

~. 

0 

sup 
::: I fCx-y ) I 

f EX' 0 

II f 1I ~ 1 

li m 
I fCx-y ) I 

nk 

lim inf 
IIrll IIx-y 

yn -+00 K~m nk 

inf 
II x-y II . 

K2:m nk 

:S 
li m inf 

II 

y II x-y II 
0 m ... OO K2:rn 

II x-y 
nk 

lim 
II x-y II = 

Ii -'00 Ii 

Ol~ II x-y II ::: y. 
0 

Thus Yo E PMCx) and so M is proximinal,. 

13 
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CHAPTER 2 

BEST APPROXIMATION 

IN TOPOLOGICAL VECTOR SPACES 

§ 2 .1 INTRODUCTION 

In this chapter, we extend some of results of chapter 

1 to metric linear spaces and locally convex spaces. These 

results are mostly taken from the papers [1,23(24
1
25.34]. 

§ 2 . 2 BEST APPROXIMATION IN METRIC LINEAR SPACES. 

The problem of best approximation has been 

extensively studied in normed spaces. The same problem in 

metric linear spaces has b e en studied by G.Albinus [see1], 

Ivan Singe r [33] and a few others. Ahuja - Narang - Trehan [1 ] 

14 



extended the notion of uniform convexity and strict 

convexity from normed spaces t~ metric linear spaces. In 

this section we present the generalizations obtained in [1J 

We first recall some basic definitions and facts 

about metric linear spaces. 

Let E be a vector space over the field K (R or C ). A 

subset u of E is called 

(a) absorbing if , for each x E E, 

number r = rex) > 0 such that 

there exists a 

X E AU 

(b) balanced if AX E u 

for all IAI ~ r 

for all x E u and IA I ~ 1. 

A vector space E over K together with a topology T on 

E , is called a topolog'ical vectol' spa.ce (TVS) if the 

operation of addition (x,y) ~ x + y of ExE ~ E and the 

operation of scalar multiplication (A,x) ~ AX of KxE ~ E 

are both jointly continuous. It is a well - known result that 

every TVS E has a base of neighbourhoods of 0 consisting of 

absorbing and balanced sets. A TVS (E,T) is called a metric 

linear space if there exists a metric d on E such that 

(i) the topology induced by the metric d on E 

coincides with T. 

(ii) d(x+z, y+z) = d(x,y) = d(x-y, 0) 

for all x, y, z E E (translation invariant), 

(iii) d(Ax, 0) ~ d(x, 0) for all x E E and IAI ~ 1. 

All the normed spaces are metric linear spaces. 
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Further the space 1 ( 0 < P < 1 ) all sequence 
00 

p 

{x } £ K s u ch that L Ix IP < 
n=l n 

00 with metric defined by 
n 

00 

d(x,y) = L I x - y I P [x = {x }, y = {y } E 1 ] is a metric 
n =l n n n n p 

linear space (but not a normed or locally Qonvex space). 

For the detail of the above facts, the reader is re~ered to 

any standard book on topological spaces (e.g., A.& W. 

Robertson 129], H.SchGefer [32], G.Kbthe [20]) 

DEFINITION 2.2.1. 

A metric linear space (X,d) is said to be Uniformly 

Convex if there corresponds to each pair of positive number 

( &,r ) , a positive number 6 such that if x and y lie i n X 

with d(x,y) ~ &, d(x,O) < r+6, d(y,O) < r+ 6 , then 

d (x;y , 0) < r. 

EXAMPLE 2.2.2. 

The Set R of real numbers with metric d(x,y) = 
I )(-y l 

1+ I x-y I 

SOLUTION' 

is a uniformly convex metric linear space. 

First it is easy to v e rify that (R, I I) is uniformly 

convex. Now, let (&,r) be given and X,y E R be such that 

d(x,y) ~ &, d(x,O) ~ r, d(y,O) 

i . e . , Ix-YI ~ &, Ixl < _r_ - , 
l - r 

~ r ~ d(X+y 
2 

,0) < r. 

r 
< -

1-r 

Since (R, I I) _. is uniformly convex, there exists 
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0 0 such that Ix-YI ~ Ix I 
r 0, Iy I 

r ,s > c;, < - + < + 1- r 1-)' 

x+y r 
=> I- I < -

Z 1-r 

I x I 
r 0 - + r+<1-r )O 

Now, d(x,O) 1- r = 1+ I X I < = 1+<1-r)O 
1 

r 0 + + 1- r 

Let 
r+(1-r)O 

r+D r+(1-r)0 = 

D 
rH1-r),s rH1-r)O-r- r (1 - r),s 0<1--r)(1 - r) 

=> = - r = -
1H1-r),s r+<1-r>O - 1+< 1-r ),s 

0(r-1) 2 

- O-rO+1 > O. => D > O. With this value of D we have 

d(x,y) ~ e d(x,O) < r+D, d(y,O) < r+D and 

l(x+y) /2 1 r 
r 

d (x:y , 0) 1-r = < - = r. -
1 + I X+Y I 1 

r 
1- r+r + --

2 1-r 

=> d (x:Y , 0) < r. 

Hence (R, d) is uniformly convex. 

NOTE: 

Finite dimensional metric linear space n eed not be 

uniformly convex, as is shown by the following example. 

EXAMPLE 2.2.3. 

z 
Consider (R ,d) where d is defined as 

d(x,y) = max I x~- Y 2 I }; 

Let x = (1,1), y = (1,0). The n 

d ( x, y) = max { 11 - ° I , 11 - ° I} = 1 

d ( x , 0) = 1, d ( y , 0) = 1 J => d ( x+y -, 0) = d { ( 1.~ ) J ( 0 , 0 )} = 1. 
Z 2 

17 



DEFINITION 2.2.4. 

A metric lin e ar s pace (X , d) is said to be Strictly 

x+ y 
Convex if d(x,O) ~ r, d(y,O) ~ r "* d( - ,O) < r, x ~ y, z 

where X,y E X and r is any po s itive real number. 

DEFINITION 2 . 2 . 5 . 

A metric linear space (X,d) is said to be totally 

complete if it has the property that its d - bounded closed 

sets are compact. 

THEOREM 2. 2. 5. 

(a) Every uniformly convex metric linear space is 

strictly convex. 

(b) Every totally complete and strictly convex metric 

linear space is uniformly conv e x. 

PROOF 

(a) Let (X,d) be uniformly convex metric space. Let 

x ~ y, d(x,O) ~ rand d(y,O) ~ r. Take e = d(x,y) > O. We 

choose a 0 > O. So we have 

d(x,y) ~ e, d(x,O) < r + 0, d(y,O) < r + O. 

By uniform convexity, we hav e d«x+y)/z, 0) < r. 

Hense (X,d) is strictly convex. 

(b) Let (X,d) be a totally complete and strictly 

convex metric linear space and (e,r) be given. Define 

s = { <x ,y > : X,y EX; d(x,O) ~ r, d(y,O) ~ rand 

d(x,y) ~ & } 
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It can be shown that S is a closed and bounded subset 

of X x X, the metric on X x X being 

1/2 

d «x ,y >, 
1 1 1 

2 2 
< X ,y » = [{ d (x ,x )} + {d (y 1 ' Y2 )} ] 

2 Z - - 1 Z 

S, being a closed and bounded subset of a totally complete 

metric linear space, is compact. Define 

¢ : S ~ R as ¢«x,y» = r-d«x+y)/z, 0) 

¢, by the strict convexity of X, is a positive continuous 

real valued function on a compact set S: It will attain its 

positive infimum, say 6, on S. 

Therefore, for <X,y> E S, we have 

r-d«x+Y)/2, 0) ~ 6, i.e., d«x+Y)/2, 0) 5 r-6 < r. 

Therefore, d(x,O) < r+o, d(y,O) < r+ o , and d(x,y) ~ e 

imply d«x+y)/z, 0) < r. Hence (X,d) is uniformly convex .• 

NOTE: 

Finite dimensional metric linear space need not be 

strictly convex. For example, 

Let x = (1,1), y = (1,0). Then d(x,O) = 1,d(y,O) = 1 

x+y , 1. 1 
and also d(-,O) = c1,(l,-),(O,O» = rnax{11 -0 1, 1--O I} = 1 . 

2 2 Z 

Hence a finite dimensional metric linear space need not be 

strictly convex. We recall the following definitions. 

A set K in a metric space (X,d) is said to be 

Proximinal if for each point x E X there is a point Z E K 
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such that d(x,z) = d(x,K); K · is called Ch~byshev (resp 

semi - Chebyshev) if for each x E X there exists exactly one 

(resp at mo st one) 2 such that d(X,2) = d(x,K). 

THEOREM 2.2.7. 

Every convex set in a strictly convex metric linear 

space is semi-Chebyshev. 

PROOF 

Let K be a convex set in a strictly convex metric 

space (X,d) . For a given x E X, if possible, let 2 1 ,Z2 E K 

be such that 21 ~ 22 and 

d(2
1
,x) = d(2 2 ,x) = y = d(x,K) i.e., 

d(z1 - x ,0) = d(z2- x ,O) = Y. 

X being strictly convex so 

i. e., 

of y, 

( z -x> + (z - x> 
1 2 

d(------=2-----'0) 

2 +2 
1 2 

d( -2- x) < y . 

Since K is convex, 

< y, sin ce 2 - x 
1 

2 + 2 
1 2 

2 
E K and so by 

y $ d( 
z +z 

1 2 

2 
, x), which contradicts (1). 

Hence 2 = 2 1 2·. 

DEFINITION 2 .2. 8. 

( 1) 

definition 

A set K in a metric space (X,d) is said to be 

2 0 



approximative!y compact if for every x in X and every 

sequence {y } in K with ' lim d(x,y ) = d(x,K) there exists a 
n n ~oo n 

subsequence {Ynk} converging to an e l e men t y in K. 

LEMMA 2.2.9. 

In a uniformly convex metric linear space every 

complete convex set is approximatively compact. 

PROOF 

Let K be a complete convex se t in a uniformly convex 

metric linear space (X,d) and {y } 
n 

be a sequence in K 

t · f' lim d ( ) d ( K) ( ) sa ~s Y1ng X,y = x, = r say. 
n ... oo n 

Now let e > 0 be given. Let 6 be taken as in the 

definition of uniform conve x ity . Choose N such that 

d( x,y ) < r + 6, whenever n ~ N. 
n 

Let n,m ~ N. Then d(x,y ) < r + 6, d(x,y ) < r 
n m + 6. 

Since K is convex so 
y +y 

n m 

2 E K. Therefore d(x, 
Yn+Ym 

2 ) r 

and so, by uniform convexity dey ,y ) < e, for all n,m ~ N. 
n m 

This implies {y } is a cauchy sequence in K. 
n 

K being 

complete , {Yn} will converge to a point of K. Hence K is 

approximatively compact . • 

DEFINITION 2 . 2.10. 

A metric linear space (X,d) is said to satisfy 

Property P if any sequence {y } in a convex subset K of X 
n 

lim satisfying dey ,x) = d( x, K) has a cauchy subsequence . 
n ... oo n 
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THEOREM 2.2.11. 

A complete convex set K lD a lin e ar s pace 

(X,d) satisfying the property p is chebyshev. 

PROOF 

Let x E X and r = d(x,K). By the definition of 

infimum there is a sequence {Yn} in K such that 

lim dey ,x) By property P {Yn} has cauchy = r. a n ... oo n 

subsequence {y nk} in K. K being complete {y nk} ... Z E K and 

consequently d(z,x) ~ r. Also d(z,x) ~ d(z'Ynk) + 

implies d(z,x) ~ r. Hence d(z,x) = r. Now, if possible 

Z,2 E K be such that d(z ,x) = d(z2'x) - r. Consider the 
121 

sequence {y } defined by 
n 

Y n = { ZZ1 

2 

if n is odd 

if n is even 

By the property P, {Yn} has a Cauchy subsequence 

{y nk} and therefore for a given e > 0, there exists a 

positive integer N such that 

d(xnk,xnj ) < e for all k,j ~ N 

i . e . , d(z1,2
2

) < e. Since e is arbitrary so z = Z 2·-1 

§ 2.3. BEST APPROXIMATION IN LOCALLY CONVEX SPACES 

In this section we present some results due to 

Rao - Elumalai [27], Nar ang [2 3-;25J and Thahe~ m [34] . We first 

recall that a topological vector space E is said to be 
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locally convex if its topology has a base of convex (and 

absorbing. balan ced) neighbour~oods of u . loca llJ-~ 

convex tr)p~~M1 E can alternatively be defined by a family 

~ = {p : a E I} (say) of continuous seminorms on E. A a 

locally convex space ne e d not be a metrizable linear space, 

and vice-versa. 

HAHN - BANACH THEOREM (Extension form) . 

Le t E be a locally convex space, M a subspace of E, 

and loa continuous linear functional on H with lo(x) ~ p(x) 

(x E H) for some continuous semi-norm p on E. Then there 

exists an I EE' such that I = loon M and I/ex)1 ~ p(x) for 

allxEE. 

For the detail of the above, the reader is referred 

to standard books on topological vector spaces (e.g ., A & W 

Robertson [29J, Shaefer [32J, Kothe [20J ). 

DEFINITION 2 . 3 . 1 . [~~J 

Let E be a locally convex space with a family ~ of 

seminorm, H a subset of E, x E E and z E H. Then z is 

called ari element of best approximation of x by elements of 

inf H if for every p E~, p(x-z) = _ p(x- y) = d (x,M), i.e., 

p(x-z) ~ p(x-y) 

We denote P (x) -
lot 

{Z E M 

23 
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for all y E H 

= d (x,H) Y p E ~ } 
p 



DEFINITION 2 . 3 . 2 . [2 L, 1 
E is said to be Strictly convex if for every p E ~ 

and X,y E E with p(x) S r, p(y) S r, x ~ y implies 

p(~~) < r. 
2 

, LEMMA 2.3.3. [ 2 4] 

E is strictly convex iff for a ll PEP, x,y E E with 

p(x) 5 r, p(y) ~ r, x ~ y implies p(tx + (l-t)y) < r for 

all 0 < t < 1. 

PROOF 

Suppose E is strictly convex, and let pEP, x,Y E E 

with p(x) S r, p(y) S r, x ~ y and O < t<l~ There exists 

s > 0 such that 0 < t-s < t < t+s < 1. 

Let z = (t-s)x + (1-t+s)y and w = (t+s)x + (l-t-s)y. 

Then p(z) ~ (t-s)p(x) -I (l - t+ s )p(y) 

S (t-s)r + (1-t+s)r = r 
and similarly pew) < r. By strict convexity of E, 

z >v 
p( 2 ) < r, i.e., p(tx -I (l-t)y) < r. 

Conversely, 

If we take t = 1 2 ' then it follows that E is strictly 

convex .• 

THEOREM 2.3. 4. [2. 41 
Let K be a convex sllbs8t of a st.rictly convex LCS E. 

Th e n Kis semi-Chebyshev. 



PROOF 

Let x E E and p E ~. Supp ose Z1 ,Z 2 

p(x-z) = p(x-z ) = v = inf p(x - y). 
1 2' yEK 

E p .. (x). 
K 

If z ~ 2 , then x -z ~ x-z and so by strict convexity, 
1 2 1 2 

x-z + x-z 

p( 1 2) 

2 
< y 

z +z 

or p(x - ~) < r 

Then 

( 1 ) 

Since K is convex, 
z +z 

1 2 

2 
E K and so by definition of 

z +z . 

y : ~ p(x - ~), which contradicts (1) . Hence 21 = 2
2

, and 

so K is semi-Chebyshev .• 

DEFINITION 2.3.5. [ 2. ~ J 

A subset K of a LCS E is called P-inf-compact if for 

every x E E, each minimi zing net {Yo} in K 

(i.e. p(x-y ) ~ d (x,K» has a convergent subnet converging o p 

in K for all p E ~. 

THEOREM 2. 3. 5. [ 2... Y 1 
Let K be a non-empty P-inf-compact subset of a LCS E. 

Then K is proximinal. 

PROOF 

net 

Let x E E, p E ~ and r = d (x,K). Then there exists a 
p 

in K such that p(x-y) 
o 

~ r. Since K is 

P-inf-compact, there exists a subnet {y~} of {Ya} such that 

y ~ ~ Z E K. Now 
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p(x~ Z) ~ p(x-y~) + p(y~-z) 

Taking limit, we have p(x-z) ~ r. But r ~ p(x- z). Hence 

p(x-z) = r and so z E PK(x). Thus K is proximinal .• 

The following classical result for normed spaces is 

due to Singer ([33J, p.18) 

THEOREM 2.3.7. 

Let X be a normed space, H a vector subspace, x E X\H 

and z E H. Then Z E PM(x) iff there exists some f E X' such 

that f = 0 on H, "I" = 1 and f(x -z) = "x-z " .• 

THEOREM 2.3.8. ([27J,p.15) 

Let E be a locally convex space with a family P of 

seminorms, H a linear subspace of E, x E E\H and z E H. 

Then z E PM(x) iff for every pEP there exists fEE', 

depending on p, such that 

PROOF 

f = 0 on H, 

I/(x -z) 1 = p(x-%), 

I/(x -y) 1 ~ p(x-y). V Y E M. 

Let z E p (x) and p ~ p. Then for every y E H, 
M 

p(x-z) ~ p(x-y). In particular 

if D ~ O,then 

p(x-z) ~ p(x-z + ~), V Y E H 

Let H = {y + D(X-Z) o 
Y E H, D E F}. Clearly H S H . 

o 
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define 10 on Ho such that 

I (y + a(x-z» - a p(x-z) 
o 

for each y E H and all a E F. It is easy to verify that 10 

is linear . Therefore, I (y) = 0 and o 

For a ~ 0 

I (x - z)1 = p(x-z ). o 

I I (y + a(x- z» 1 = l a l p(x-z) ~ lal p(x- z + ¥) o a 

= p(y + a(x-z», v Y E H . 

For a = 0 and for each y E H, 

I/o(Y + a(x-z» 1 - 0 ~ p(y + a(x-z» 

Thus, for every m E H , and for every pEP 
o 

If oem) I ~ p(m) 

Then, by Hahn -Banach theorem, I can be extended to a o 

continuous linear functional I on E such that I/(x)1 ~ p(x) 

for every x E E and I/(m)1 = 
I(y) = 0, If(x-z) I = p(x-z) and If( x-y) I ~ p(x-y) for every 

PEP and y E H. 

Conversely, 

Let the given condition be satisfied then 

p ( x - z) = If ( x - z ) I = If (x - y + <y - z » I 

= If (x-y ) + I (y-z) I = I f (x-y ) + 0 I 

= 11 (x-y)1 ~ p(x-y). 

for every y E Hand pEP. Hence the proof .• 

In [25J, T .D.Narang considered the above result for 

simultan eous characterization of a set of elements of best 

approximation: Given E, H, and x as above and a subset S of 
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H, what are the necessary and sufficient conditions in 

order t hat every e l ement yES be an ele me n t of best 

approximation of x (by means of eleme n ts o f H) ? 

THEOREM 2 .3. 9 . ([ 2 5] ,p . 6 0 ) 

Let E be a LCS with a f a mily P of seminorms, H a 

subspace of E, x E E\H and S S H. Then S S Pw(x) iff fo r 

each PEP, there exists an l E E', depending on p, such 

that 

PROOF 

I = 0 on M 

I I (x- z) I = p( x-z) f o r a ll z E S 

II ( x-y) 1 ~ p ( x-y) for a ll y E H 

(4) 

(5 ) 

(6) 

Suppose S S Pu(x) and z E S. Then Z E PM(x) and so by 

theorem (2.3.8) there exists lEE' such that conditions 

(1), ( 2) a nd ( 3) ho l d . Now l et y E 5, t hen y E PM ( x ) and 
1 1 

i nf so p(x- y ) = p(x-z ) = p(x-y) for a l l pEP. 
1 y EM 

Consider 

I I (x - y ) 1 = I I ( x-z+z- y ) I 
1 1 

= I f ( x - z) I 

= p( x-z ) 

= p( x-y ) 
1 

Thus (4), (5) and (6) are sat i sfied . 

Conversely, 

Le t u s suppo se tha t th e r e ex i s ts a f E E' sati s fying 
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(4), (5) and (6) and let z E S. Then by theorem (2.3.8) 

Next we consider the problem of characterization of 

proximinal subs~ts I< of E. 

DEFINITION 2.3.10. [23] 

A set K in a locally convex metric linear space (X,d) 

is said to be bOLlndedly wea.kly compact if every bounded 

sequence in K contains a subsequence wich converges weakly 

to an element of K. 

THEOREM 2.3. 11. [23] 

A convex boundedly weakly compact set in a strictly 

convex metric linear space is Chebyshev. 

PROOF 

Let K be ~ bounded weakly compact set in a strictly 

convex metric space (X,d) and x be an arbitrary point in X. 

Then we can find a sequence {Yn} in K such that the 

sequence {d(x,y )} converges to r = d(x,K). The sequence 
n 

{Yn}' being a bounded sequence in K, has a subsequence 

{Ynk} converging weakly to an element z of K. Since the 

space is strictly convex, the closed ball S (x) = {y E X 
n 

. 1 
d(x,y) S r + ( - )} is convex. Since a closed convex set in a 

n 

locally convex linear space is weakly closed, the element z 

is in S (x) for each n, · and so d(x,z) ~ r + ~ for each n. 
n n 
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Hence d(x,z) S r. Thus d(x,z) = r, establishing that K is 

proximinal. Now we show that K is Chebyshev. Let, if 

possible, Z,Z1 E K be such that d(x,z) = r = and 

Z - Z1. Then strict convexity of the space implies 

d(X,(Z+Z1)/2) < r, which contradicts the fact that (z+z1)/2 

is in K .• 

Finally we present a generalization due to A.B~haheem 

[3 it] . 

DEFINITION 2.3.12. [34) 

Let (E,d) be a locally convex metrizable linear 

space. A ball B (0) = {x E E: d(x,O) S r}, r > 0 is said to 
T 

be compressible if for every s > 1, there is t > r such 

sB (0). 
T 

If every ball B (0) 
T 

in (E,d) is 

compressible (resp convex), then we say d is compressible 

(resp convex). 

We shall require the following result from [31]. 

THEOREM 2. 3. 13. ([ 31] , p . 65) 

Let (E,d) be a locally convex metrizable linear 

space. If {x } is a sequence in E that converies weakly 
n 

to 

some x E E, then there exists a sequence {y } 
\. 

in X such 

that 

(a) each y is a convex combination of finitely many x . 
\. n 

(b) y, ~ x in the original topology. 
\. 
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THEOREM 2 . 3 . 14. [3 ~1 

Let (E,d) be a locally convex metrizable linear space. 

If d is convex compressible then every weak 

sequentially compact subset K of E is proximinal. 

PROOF 

Let x E E . Suppose that d(x,K) = r, r > O. Since K is 

weak sequentially compact and hence c losed in the strong 

(or original) topology, there exists a sequence {Yn} in K 

such that d(x,y ) • d(x,K) = r. Further there exists a 
n 

subsequence {y'} of {y } which converges weakly to y in K. 
n n 0 

Then (x-y') also converges weakly to (x-y ). We show that 
n 0 

Yo E PJ(x). 

Let gB denote the Hinkowski functional associated to 

B = B (0) . Since B (0) is a convex neighbourhood of 0 in E, 
r r 

gB is a semi - norm on E with B/O) = (y E E: gB(y) :$ 1}. 

The main part of the remaining proof is to show that 

g (x-y ) :$ 1. Now, l et I be a subset of the natural numbers 
B 0 

N, and consider the following set of finite combinations 
m m 

L c. = 1, i E (Nil)} 
~ =n ~ 

Let LI denote the closure of 11 in the! space 

Obviously LI is convex. 11 1S also closed in (E,d) because 

the topology generated by qB 18 weaker then the strong 

topology. Thus L is also weakly closed in (E,d) and 
1 

by convexity, y E L by Theorem 2.3.13. 
o 1 

hence 

Therefore, for an £ ) 0 there exists u convex 
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m 

combination . L c . y~ E L (with n,m,c. depending on s) 
L=n L L I L 

such that 
m 

L=n 
c . (y' 

t l 
- v )) 

• 0 ' , 
< ::., 

m 

or . L (c(y' - x) - (y - x» < E. 
L = n t L 0 

Since I is arbitrary, therefore for E > 0 small 

enough and i E (N\I), we have 

q (x-y~) < lim inf(q (x- y'» 
o L n B n 

+ s. 

It follows that ( ) ~ liminf q (x-y') qo Yo-X n D n ( 1) 

Now if q (x - y ) ~ . 1 does not hold, then we have o 0 

q (x-y ) > 1. 
o 0 

(2) 

1 
Put s = (-) (1 + q (x-y ». Thus s > 1. Since B (0) is 

2 B 0 r 

compressible, therefore there exists t > r such that 

B (0) c sB (0) 
l r 

(3) 

Also limd(x,y') 
n n = r, therefore for sufficiently large 

values of n, (x-y') E 
n 

By ( 3) , (x-y' ) 
: n 

E sB (0), 
r 

and so 

q . (x-y') ~ 1 
sO n 

or 
1 
q(x-y')~l 

s B r, 

1 
or q (x - y') :5 s - [1 + q ( x-y )] 

o n 2 B 0 

1 
< i [qD (X-Yo) + qo(x - yo)]' by (2) 

= Qn(X "7" Yo ), 

which contradicts (1). Thus q (x-y ) ~ 1 or equivalently 
D 0 

. d(x,yo) ~ r. Since Yo E K, so 

r = d (x, K) ~ d( x,yo) 

d(x,K), a nd as 

required . • 
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The following is a 

Theorem 1 .5. 6. 

COROLLARY 2.3.15. [3~J 

partial generalization of 

Let (E,d) be a refle x ive locally convex metrizable 

linear space with d as a convex a nd compressible metric. 

Then every bounded, closed and convex subset K of E is 

proximinal. 

PROOF 

This follows immediately from the above theorem and 

the Eberein-Smulian Theorem (see [13 ],p.227-228 ) which 

states that a locally convex metri zab l e linear space (E,d) 

is reflexive iff every bounded, closed and convex subset of 

E is weak sequentially compact . • 
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CHAPTER 3 

APPROXIMATION 

AND 

BEST APPROXIMATION 

IN FUNCTION SPACES 

§ 3.1. INTRODUCTION 

In this chapter, we obtain some approxi mation results 

of the Ston e-Weierstrass type theorem for the uniform, 

qompact-open, and weighted topologies. We also present 

results on best approximation in spaces of continuous 

function and of continu ous linear mappings. 

§ 3.2. 

We 

STONE - WEIERSTRASS THEOREM FOR SCALAR AND VECTOR 

VALUED FUNCTION. 

begin with a brief discussion on 

Stone - Weierstrass th e orem, a generalization of 

the 

the 

Weierstrass approximation theorem by M.H . Stone in 1938, 

which may be stated as follows. 
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3.2.1. STONE-WEIERSTRASS THEOREM 

(for scalar va ued function) 

Let X be a co mpact Hou sdorff space and e(X) the 

algebra of all real - valued continuous function on X 

the uniform (sup norm) topology. Le t A be a subalgebra 

e(X) such that 

with 

of 

(1) A separate the points of X (i.e . ) if x ~ y, there 

exists g E A such that Sex) ~ g(y» . 

(2) A contains constant functions (or 1 E A, where 

l(x) = l for all x E X). Th e n A is uniformly dense in e(X) 

(i .e. ~given any f E e(X) and £ > 0 , there ex ists some g E A 

such that "g -f fl ~ &). 

NOTE: 

If eeX) consists of all complex valued continuous 

function on X, then the above theorem requires the 

a dd itional hypothesis that if f E A, then also ¥ E A. 

Many earlier proofs of this theorem d epend on the 

following facts. 

(a) Th e classical Weierstrass theorem (or its special 

case of uniformly approximation f(t) = 

polynomials). 

I t I on [ - 1,1] by 

eb) Th e closure of a sub algebra is a subalgebra. 

(c) The closure of a subalgebra is a sublattice. 
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In 1981, Brosowski and Deutsch [4] gave a simple and 

elegant proof of this theorem. Their proof does not appeal 

to any of the above facts. It is simple in the sense that 

it depends only on the definitions of " Compactness " (each 

open cover has a fi ni te subcover), "Continuity" (the 

inverse images ' of open sets are open) and the elementry 

Bernoulli inequality 

n 
(1 + h) ~ 1 + nh (n = 1,2,3, ... ) if h ~ 1 

We now consider some generalizations of the 

Stone -We ier s trass Theorem to vector-valued functions, in 

par tic u 1 a r, we pre sen t so mer e s uI t s es t a b li s he din ([ I S ]~ (I ~J) 

DEFINITION 3.2.2. 

Let X be a locally compact Hausdorff space and E a 

topological vector space. Then a function f : X. E (resp 

f : X • C ) is said to Vanish at infinity if given any 

neighbourhood U of 0 in E (resp £ > 0) there exists a 

compact set K S X such that f(x) E U ( resp If( x) 1 < c ) 

V X E X-K. 

DEFINITION 3.2.3. 

A function f : X ~ E is said to h ave pompact s upport 

if there exists a compact subset K ~ X such that f(x ) = 0 

for all x E X-K. 

Let C(X,E) (resp Ch(X,E» d enote the vector space of 
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all continuous (resp and bounded) E-valued function on X 

and let Co(X,E) (resp CooeX,E» denote the vector space of 

all those f E CeX,E) which vanish at infinity (resp have 

compact support). Clearly C eX,E) S C (X,E) S Cb(X,E) S 
00 0 

l C(X,E) and it is easy to see that C (X,E) = C(X,E) iff X 
00 

is compact. When E is the scalar field (R or C), these 

spaces are denoted by C(X), Cb(X), Co(X) and Coo(X). 

DEFINITION 3.2.4. 

The Unifol'm topo .log·y 0' on Cb(X,E) is defined as the 

linear topology 0' which has a base of neighbourhoods of 0 

all sets of the form {f E Cb(X,E) : f(x) E W v X E X}. 

Where W varies over a base of neighbourhoods of 0 in E. 

When E is a locally convex space whose topology is 

given by {Pa :a E I}, a family of continuous semi-norms on 

E, then 0' topolog"j' can be defined by the family {II II :a E a 

I} of semi-norms, where IIfll = sup p (f(x» (f E Cb(X,E». 
Dt x EX a 

REMARK: 

If C(X,E) consists of an unbounded function, then we 

cannot define uniform topology on it. H0wever, a useful 

topology on C(X,E) is the Compact-open topology 1<. which has 

a base of neighbouthoods of 0 consisting of all sets of the 

form { f E C(X,E) : f(K) S W } 

where K is a compact subset of X and W is a neighbourhood 

of 0 in E. On Cb(X,E), we have 1< ~ o. 
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THEOREM 3.2.5. (Rudin [30J, p.40) 

Let X be a locally compact Housdorff space, K a 

compact subset of X, and {u ,u , 
1 2 

.,u } an open cover of K. 
n 

Then there exist function ~ ~ 't"1,'f'"'2' . , ¢ E Cb(X) such that 
n 

n n 

o ~ ¢.~ 1, ¢.= 0 outside U . , E¢.= ion K, and E¢~ 1 on X 
l 1. l ~=1 l ~=1 l • 

We now consider some Stone-Weierstrass type theoremf 

for Co(X,E). It is clear that Co(X,E) is not ; in general an 

algebra (since E is a vector space) but it possess the 

algebric structure of Cb(X)-module. (i.e.,if ¢ E Cb(X) and 

We note that the condition "separates points of X" 

would not be enough ; because if M is a proper closed 

subspace of E then for any x E X, 
1 0 

f(x o ) E M} separates points of X but is a proper a - closed 

(i .e ., Ax is not a-dense 
o 

in 

Co(X,E». Therefore we have to assume an alternate 

hypothesis on a Cb(X)-submodule A of Co(X,E), so that A is 

a-dense in Co(X,E). 

STONE-WEIERSTRASS THEOREM IN LOCALLY CONVEX SETTING. 

THEOREM 3.2.6. [JS~ )6) 

Let X be a locally compact Housdorff topological 

space and E a Hausdorff locally convex space. If A is a 
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Cb(X)-submodule of Co(X,E) such that, for each x E X, 

A(x) = {g(x) : g E A} is dense in E, then A is a-dense in 

. PROOF 

Let f E C (X,E), and let p be a continuous semi-norm o 

on E and & > O. We show that there exists a function g in A 

such that p(g(x)-f(x» < & for all x E X. Since f E Co(X,E) 

there exists a compact set K in X such that p(f(x» & 'f < - 1 
2 

x ~ K. For each x E X, there exists by hypothesis a 

function g in A such that peg (x)- f(x» 
x x 

).; 
< ~ 

2 

Now, p 0 (g -f) : X ~ R is continuous and so 
x 

there 

exists an open neighbourhood N(x) of x in X such that 

& 
p(gx(Y) - fey»~ < 2' for all y E N(x). 

The collection {H(x) : X E K} form an open covering 

of K, and so, since K is compact, there exists a finite 

open subcovering, {N(x . ) 
~ 

i. = 1,2, ... ,m} say. 

By Theorem 3.2.5 there exists a collection 

{¢i i = 1,2, ... ,m} of functions in Cb(X) such that 

m 

m 

o outside of H(x.), E¢. (x) = 1 for x 
~ . ~ 

L = 1 

an d E ¢. ( x) s 1, for x EX. 
. L 
L =1 

E K, 

Define a E-valued function g on X by the equation 
m 

g(x) = E¢.(x) g (x) (x E X). Then it is clear that g E A. 
i. =1 LXi. 

Let y be any point in X. If y E K, then 
m 

peg .(y) - fey»~ = p [ E ¢i(y) gxi(y) - fey) ] 
i =1 
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m 

Tr1 

i = 1 
m 

- . E ¢i( y ) p [ g x i (y) - f (y) J 
t ::- j ,n 

6" 
< Lf/> (y) < E . 

t 2 
i = 1 

If y E X-K, then peg (y) - f(y» 

fn 

- p [i ~1 ¢i ( y) gxi ( Y ) fey) J+ [ E ¢ (y) - 1] fey) 
o t 

i = 1 
m TfI 

~ 0 E ¢i (y) p [ gxi (y) - f (y) ] + [ E ¢i. (y) - 1 J p ( f (y) ) 
t =1 i =1 

m Tr1 
S 

[ E¢(y) - 1J - < E. 
o t 2 
1. =1 

This implies that f b e longs to t he a-closure of A . 

Henc e A is a-dense in Co(X,E)' a 

NOTATION: 

Co(X) ® E is ~ r~p~ of all functions of the forom 

¢ ® a, where ¢ E C (X), a E E. (¢ ® a )(x) = ¢(x)a (x EX). 
o 

Clearly C (X) ® E $; C (X E) ' in f a ct C (X) ® E is a o 0 ' , 0 

COROLLARY 3.2.7. [ \6) 

Let X and E be as in the theor e m, then C (X) ® E is 
o 

a - dence in C (X,E) . 
o 

PROOF 

By the theorem, it is s uf fioient to s how that, for 

eac h x E X, (C (x) ® E)(K) = E . Let a E E , and l et y E X, 
o 

s j n (~e Xis lac a lL y C (I III [ia c t 11 011 ~; d n r f f) t. her e e x i s t s ( by a 
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I 

theorem) a function ~ in C (X) such that 0 < ~ ~ 1 an d ~(y) 
o 

= 1. Then ~ ® a E C (X) ® E and (~ ® a)(y) = a. Since a ~ E o 

and y E X were chosen arbitrary, the result follows .• 

III order to establish the Stone-Weierstrass theorem 

for general topological vector space E , we proceed as 

follows . 

DEFINITION 3.2.8. ([21], p.9) 

Let X be a topologic a l space and U a collection of 

. subsets of X. For any x E X, we d e fine ord
x

U .. the order of 

U at x, as the numb er of me mbers of U which contain x. The 

order of U is defined as 

ord U = sup { ord U } 
xEX X 

The covering dimension of X is defin ed as the least 

positive integer n such that every finite covering of X has 

a refinement of order S n + 1 . We shall bri~fly write it as 

dim X = n . If no such finite n exists, then we say that 

dim X - 00. 

STONE-WEIERSTRASS THEOREM 

IN THE NON LOCALLY CONVEX SETTING 

TI ~ [I S' J i 6) -IEOREM 3. 2. 9. 

Let X be a locally compact Housdorff topological 

space of finite covering dimension, and let E be a 

Housdorff topologi ca l vector space. If A is a C(X)-submodule 
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of C (X,E) such that, for each x E X, A(x) is dense in E, o 

then A is a-dense in C (X,E). o 

PROOF 

Suppose dim X = n, and let f E Co(X,E). For any 

neighbourhood W of 0 in E, Choose a balanced neighbourhood 

V of 0 in E such that V+V+ ... +V (n + 2-times) £ W. 

Since f E C (X,E), there exists a compact set K in X o 

such that f(x) E V if x ~ K. For each x E X there exists a 

function h in A and an open neighbourhood N(x) of x in X 
x 

such that h (y) - fey) E V for all y E N(x) 
x 

Since K is compact, the open covering {N(x) : X E K} 

pf K has a finite subcovering {N(x
i

) : i = 1,2, ... ,m} say. 

Since dim X = n, dim K ~ n and so {N(x.) 
~ 

i = 1,2, ... ,m} 

has an open refinement {N'(x ) j = 1,2, ... ,r} (say). 

Where r ~ n + 1. Let {4> : j = 1,2, ... ,r} be funtions in 
J 

C(X) such that 0 ~ ¢ . ~ 1, ¢ . = 0 outside of N' (x.), 
J J J 

r r 

E¢(x) = 1 for x E K, and E4>(x) ~ 1 for x E X. 
j=l

J 
j=l

J 

Let h be the E-valued f unction on ! X defined by 
r 

hex) = E¢(x) he x) (x E X), then h E A. Let y E K, then 
j '" 1 J XJ 

r r 

h ( y ) - f ( y) = E ¢ . ( y ) (h. . ( y ) - f ( y » E E 4> . ( y ) V £ V + V + . . . + V £ W 
j = 1 J XJ j = 1 J 

If y t2' K, then 

r r 

h(y) -f (y) = E¢(y) (h .(y)-f(y» + [ E¢.(y) - 1 ] fey) 
j = 1 J xJ j = 1 J 

E V+V+ ... +V (r-terms)+V £ W 

Thus f belongs to the a-closure of A and so A is 

a-dense in Co(X,E) .• 
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COROLLARY 3.2.10. 

Let X and E be as in the Theorem. Then Co(X) ® E is 

G-dense in Co(X,E). 

PROOF 

It is similar to that of corollary 3.2 . 6 .• 

REMARK: 

With , slight modification of argument, 

Theorems 3.2.6 and 3.2.8 and their corollaries hold easily 

for C(X,E) in place of Co(X,E) and the uniform topology in 

place of the compact open topology . 

STRONG STONE- WEIERSTRASS THEOREM 

The following result is due to R.C.Buck [5]. 

THEOREM 3.2.11. 

Let X be a compact Housdorff space, (E,II II) a normed 

space and let .JiI a C(X)-submodule of C(X,E). Then for any 

g e C(X,E), fine:" II g-f ll = sup inf , II g(x) - ull where .JiI = .JiI(x) !: 
~ xeX UE~ x 

x 

i.e., d(g,d) = ~~~ d(g(x),.JiIx )= A (say). 

PROOF 

Since .JiI = A( x) , we have 
x 

A - sup d ( ( ) .54' ) 
xeX g x, x 

_ sup in f II II 
xeX feA g(x)-f(x) 

in f 
<.: fed II g - f II = d ( g , .JiI) 
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To prove the re v erse re l a t i on , l e t e > O. For x E X, 

there exists som e / E d s u c h that 
.x 

IlIg(x ) - { (x )II - AI < e 

or II g(x ) - /(x) 1I 
:It 

< A + e . 

By continuity of II g-fll X 

open neighbourhood V( x ) of x in 

II gCif ) - /( :I ) II < A + e 
. :x: 

.... R at x o ' there exists an 

X such that 

V ' E V( X ) 

Now {V(x) : X E X} is an open cover of the compact 

space X, so there exists x ,x , .. . ,x EX. such that 
1 2 n 

n 

X = . U V( x . ) 
1 = 1 " n 

Choose ¢ . E C(X) s uch that ¢.(x) ~ O,.L ¢.(x) = 1, 
1 1 1=1 t 

n 

for a 11 x E X. Set I = . L ¢i y Ed. T hen, 
t = 1 t .. .,i 

n n 

I g ( ~ ) - I ( x ) I S I 1. ~ 1 ¢ i ( X ) g ( x ) - i ~ 1 ¢ i. ( X ) Ix. ( X) I 
"-

S E I g ( x ) - I .... ,( X ) I ¢ . ( x ) 
"'... 1 

S E ( A + e) ¢(x) = A + e. 
t 

Since this hold s for all x E X, we have IIg - fli S A + e. 

Since e is arbitrary, we h a v e d(g, d ) S A. This completes 

the proof . • 

, § 3 . 3. WEI GlUED APPROXI MATI ON 

DEFINITION AND TERMINOLOGY 3.3. 1. 

Let X be a topological space. 

(1) A function 1> X .... H is called upper semi 

continuous at x E X if, for every r E R with 1>(x) < r, o 



there exists an open neighbourhood U(xo ) of Xo in X such 

that ¢(x) < r for all x E (l.l( x ) . 
o 

(2) Pl. function ¢ x ~ R is called lower semi 

c ontinuous at Xo E X if, for every r E R with ¢(xo ) ) r, 

there exists an open neighbourhood U(xo ) of Xo in X such 

that ¢(~) ) r for a ll x E vex ). 
o 

(3) ¢ X ~ R is ca ll ed upper(lower) semi continuous 

on X if ¢ is upper(lower) semi continuous at each point of 

X. 

NOTE: 

(i) Clearly ¢ : X ~ R is continuou s iff ¢ is both 

upper and lower semi-continuous on X. 

(ii) The characteristic function ~A is upper(lower) 

semi continuous on X iff A is closed (open) subset of X. 

(iii) Every non-negative upper semi continuous 

function on compact s ub set K of X is bounded. 

X is called Compl e t e l .v J:'eg'u 180 r if given any closed 

s ubs e t F S X a nd x ~ of, there exists ¢ E Cb(X) s u c h that 

0 ~ ¢ < 1, ¢(x) = 0, ¢ - 1 on F[ 14J ° -

A Nachbin Family V on X is a set of non-negative 

upp er semi continuous functions on X, called weights, such 

that, given u,v E V and t ~ 0, there exists aWE V such 

that tu, tv s we I,J . 

In the sequel, X d e n o tes a completely regular 



Hausdorff space, V a Nachbin family on X, and E a Hausdorff 

TVS. Let CVb(X,E)[CVo(X,E)] denote the subspace consisting 

of those f E C(X,E) such that vf is bounded <vanish at 

infinity) for all v E V. The Weighted topology w 
v 

on 

CVb(X,E) is defined as the linear topology which has a base 

of nei~hbourhood of 0 consisting of all sets of the form 

N(v,W) = {f E CVb(X,E) : (vf)(X) S W}. where v E V and W is 

a neighbourhood of 0 in E. (CVb(X,E),wv ) is called a 

weighted spacer \"1') 

The following are some intances of weighted spaces. 

the set of all non-negative 

constant functions on X, then CVb(X,E) = Cb(X,E) and Wv is 

the uniform topology o. 

(ii) If V = {tx : t ~ 0 and K is compact subset of X}, 
J( 

then CVb(X,E) = CVo(X,E) - C(X,E) and Wv is the compact-

open topology k. 

A neighbourhood W of 0 in E is called Shrinkable [18] 

if r~ S int W , for 0 ~ r ~ 1. By [18J, every Housdorff 

topological vector space has a base of Shrinkable 

neighbourhoods of 0 and also the Minkowski ,functionals of 

such neighbourhood are continuous. E is said to be 

admissible if the identity map on E can be approximated 

uniformly on compact sets by continuous maps with range 

contained in finite dimensional subspaces of E. By [1 8 ] 

locally convex spaces, topological v ec tor spaces having the 

46 



approx imation property, and ultrabarrelled top ological 

vector spaces with a Shauder basis (in particular, F-spaces 

wi th a b ase ) are a dm iss ibl e. A TVS E is ca ll e d loca lly 

bounded if there ex ist s a bounded n e ighbourhood of 0 in E. 

THEOREM 3 . 3. 2 . [17] 

(1) CVo(X,E) is wv - closed in CVb (X,E). 

(2) If X is locally compact, then Coo(X,E) is 

I wv-dense in CVo(X,E). 

PROOF 

(1) Let f belongs to the wv - closure of CVo(X,E) in 

CVb(X,E), and let v E V and W a neighbourhood of 0 in E. 

Choose a balanced neighbourhood G of 0 in E with G+G ' £ W. 

The re e xists a function g E CV ( X,E) s uch that g- f E N(v,G) . 
o 

Let F = { X E X v (x)f(x) e W land 

v(x)g ( x ) !2' G } 

By hypothes i s K i s co mpa c t ( s in ce g E CVo ( X,E». To 

show that f E CVo(X,E) it suffices to show that F £ K or 

equivalently K' S F'. Now x E K' ~ v(x)g(x) E G ~ v(x)f(x) 

c v(x)g(x) + G S G + G S W ~ X E F' . Thus f E CV (X, E) . 
o 

(2) Let f~CV (X,E), and let v E V and W a balanced , 0 

~eighbourhood of 0 in E. Th e n K = { X EX: v(x)f(x) e W } 

is compact. Since X is locally compact, there exists a ¢ E 

C (X) such that 0 ~ ¢ ~ 1 and ¢ = 1 on K. Then ¢f E 
00 

Coo(X,E) For any x E X, 
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v ( x ) [¢( x ) f(x ) -f(x)] = v(x)f(x)[¢(x)-l ] 

= { 

v(x)f(x)[l-l] = 0 E 

£(¢(x ) -l) WsW 

W if x E K 

if x i&! K 

Therefo re ¢f-f E N(v,W) and so Coo(X,E) 

CVo (X , E) .• 

THEOREM 3.3.3. [11J 

is w -dense 
v 

• 

in 

Suppose E is a locally bounded topological vector 

space. Then Cb(X,E) n CVo(X,E) is wv - dense in CVo(X,E) . 

PROOF 

Let f E CVo(X,E), a nd l et v E V and W a balan ced 

neighbourhood of 0 in E. Le t H b e a boundecd neighbourhood 

of 0 i n E . There ex i s t s a c l osed Sh r inka bl e n eighb ou r hood S 
, 

of 0 in E wit h S S H. Choose r ~ 1 s u c h that H £ r W a nd H S 

rS. The set K = { X EX: v(x)f(x) e (~)S} is a compact 
r 

and so we choose t ~ 1 with /(K) S (t/r)H. The Minkowski 

f u nc ti on a l p of S is co n tinuous and positive l y homogeneo u s 

a nd , cons e qu e ntly , th e fun c ti on h E .. E d e fin e d by 
l 

{ ; p : a> 

i f a E t S 
'\ ( a) --

)a if a g tS 

is continuous with h t ( E ) S tS . Let g - hto / . Cl e arly, g - E 

Cb(X,E) . Furthe r g E CVo(X , E) as follows , l e t Vi E V and G 

E W. We show that A = { X E X : v
1
( x )l ( x ) e G } is compact . 

By hypo thes i s B - { X E X v (x) /( x ) e G } 
1 

is 

compact, so it s uffi c e s t o s how th a t A S B or equivalently 

B ' £ A' . 
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Let x E B' . Then v (x)/(x) E G and so 
:1 

v (x)g(x) = v (x)h (/( x » 
:1 :1 t 

f v (x)/(x) if lex) E tS 
:1 

= , 
tS l v:1(pel;x») lex) - v (x)/(x) if lex) e - pc/e x» :1 

E { 

G if I(x) E tS 

G s G if I(x) e tS 
pe lex» 

Hence x E A" . Let x E X, then , since le k ) s tS, we have 

{ 

0 E W if I(x) E tS 
:v(x)(g(x)-/e x » = " t v(x)/(x) E ( ~)S s W 
" p(j(x)-l) r 

Thus g- I E N(v,W) , as required .• 

THEOREM 3 . 3 . 4 . [1 ',1 

Suppo se E is an admissible T.V.S. 

Cb(X) ® E is wv - dense in Cb(X,E). 

PROOF " 

if I(x) Ii! tS 

and V 

Let I E Cb(X,E), and let v E V and W a neighbourhood 

of Oin E. Choose an open balanced neighbourhood G of 0 in 

E such that G+G+G S W. Choose r > "v" with I(x) S rG, and 

let K = { X EX: vex) > l/r} . Then I(K) is a compact 

subset of E and so, by hypothesis, there exists a 

continuous map ¢ : I(K) ~ E with range contained in a 

finite dimensional subspace of E such that 

¢(/(x» - /(x) E (~)G v X E K 
r 
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... 
<f> c f ; z~ ('! .. of ) <Jl Cl.l., ~ 

We can wri t e)¢i 0 .;. E C ( K) and a E E. By T ietz 
L 

e xtension theor e m, the re e xist s ~. (1 ~ . < L _ n) such 
L 

n 

t hat ~L. = ¢o f on K . Let h = . L ~ . ® a . . Th e n k £ 
1. l. = 1 1. l : 

-1 
h (rG+ rG) 

= F , wh ic h is open in X, a nd so there ex i sts a ~ E Cb ( X) 

with 0 ~ ~ ~ 1 , ~ = 1 o n K a nd ~ - 0 on X\F . Le t g 

th e n g E Cb(X) ® E a nd g = h = ¢ 0 f on K . Fu r ther , g( x ) 

rG + rG as follow s , Le t Y E X. Th e n, 

g(y) - ~(y) h( y) E 
{ 

~(y)(rG+rG ) 

{OJ 

£ rG -I- rG 

if y E F 

if Y ~ F 

We next show that g- f E N(v,W) , let x E X. Then, 

v(x)(g(x)-f(x» - v(x)(¢(x)/(x) - /Cx» 

{ v( x )_ G if x E K 
E r i f K v(x )[ rG+rG - rG ] 

x fi! 

{ G S; W if x E K 
S; 

v(x)rW S; W if K x fi! 

Thi s c ompl e t es the the pr o o f .• 

T HEOREM 3. 3. 5 . [l -, ] 

~h , 

Let X be a lo c ally c ompact spac e of finit e covering 

dimension. Then C (X) ® E is w - dens e in CVo(X,E) . 
00 v 

PROOF 

In view of Th e or e m 3. j .2 .( 2 ) ,it suffices to show 

that C (X) ® E is w - d e n se in C (X,E) . Le t / E 
00 v 00 

C (X,E), 
00 
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let v E V and w a balanced neighbourhood of 0 in E. Ther e 

exists a compact set K S X such that lex) - 0 for x ~ K. 

Since X is of finite covering dimension, it follows that 

there exists a function g E C (X) ® E, with g = 0 
00 

outside 

K, such that gex)-/(x) E N(v,N), as required .• 

REMARK: 

If E is assumed to be locally convex, then theorem 

3.2.5. holds without restricting X to have a finite 

covering dimension. 

§ 3.4. BEST APPROXIMATION IN SPACES OF 

CONTINUOUS FUNCTIONS 

Consider C[a,b] with the sup norm "f" = sup If(x)1 
xE[ a. b} 

(f E C[a,b]). If M is a finite dimensional subspace of 

C[a,b], then, by Theorem 1.3.1, M is proximinal. However, 

since (C[a,b], ") is not strictly convex, M need not be 

Chebyshev. Hence, for the uniqueness of best approximation, 

we need to impose Haar condition on M which we define as 

follows. 

DEFINITION 3.4.1. ([11],p.91 - 92) 

Let X be a loc~lly compact Housdorff space and M an 

n-dimensional subspace of C eX). Then M is said to satisfy 
o 

Haar condition if every non-zero f E M has at most n-1 

zeros. 
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The following result was initi a lly prov e d by A . Haar 

i n 1918 for t he case X [a,b] (see [ 22 J , p . 340) . Its 

exten sion i n t h e prese n t for m is d u e to R.R.P h e l ps ( [ 26 ] , 

's ~ ... .f" II" "" . t" \ T h eo):,e m 3.6 ) ., .:!.it~~IlI l.".j .)' r · l l .11 

T HEOREM 3. 4. 2. 

Let X be a (locally) compact Hausdorff space and H is 

n - dime n s i o n a l s ub s pac e of C(X) ( o f c (X». o Then M is 

Chebyshev iff M sati s fies the Haar condition . • 

The following is a recent re s ult which generalizes 

t h e above t heorem to v ec tor-valued functions . 

THEOREM 3. 4. 3. [ ..., ] 

Le t X be a lo ca lly co mpac t Ha u s d o rff spac e and E a 

rea l n o rm ed space. Let K be a con v ex subset of an 

n-dimensional linear space of c (X E) o ' , and let f E 

E P (f) 
K 

iff t h ere exists 

h , h ,..., h , m S n + 1 , ex t r e)l>\£ po i n t s 0 f th e un i t b a ll 0 f 
12 m 

m 

E', m points x . E X a nd m sca l a r s t . > 0 with .~ t . 
1 t 1= 1 1 = 1 

such that 

m 

( i) . L: t . h . [g(x )-g ( x )] s 0 for all g E K. 
1 = 1 1 1 l ' 0 1 

(ii) h . [ f(x . ) - g (x . ) ] = . lI f-g II , (i =1,2, . .. , m). 
1 1 0 t 0 

We next describ e two oth e r types of approximations. 

Least - square approximation and the r a tion a l approximation. 
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First consider C[a,bJ with th e quadratic norm 

IIfll = ( J'blf(x)l~dx )1 / 2, f E C[a,b] 
2 a 

C[a,bJ becomes an inner product space with respect to the 

inner product defined by 

< f,g 
b 

> = l' f(x)g(x)dx 
a 

THEOREM 3.4.4 •. ([6J, p. 10 2-103) 

Let {g ,g , ... ,g } be any linearly independent subset 
12m 

Nl 

of C[a,b] and let .L DI.g E M = sp{g ,g , ... ,g}. Then for 
~ =:1 L L :1 2 Tn 

any f E C[a,b], the l east-squar e approximation problem of 

minimizing II f - . L DIg II has a solution i( {g ,g , .. . ,g } 
~=:1 L ~ 2 :1 2 m 

is an orthonormal base for M .• 

As regards the rational approximation, a function of 

_ P(x) 
the form R(x) - -Q(x)-' x E [a,b], where P(x) and Q(x) are 

polynomials of finite d egree with Q(x) > 0, is called a 

rational function. For any integer n,m ~ 0, let 

P 
[a ,b ] = { -Q deg P ~ n, deg Q ~ m, Q(x) > 0 on [a,b]} 

Clearly R
n 

[a,b] C 
Tn 

C[a,b]. 

THEOREM 3.4.5. ([6], p. 154) 

With the above notations, for any n,m ~ 0, R
n 

[a,b] is 
m 

a proximinal subset of C[a,b] .• 

Finally, we present with proof an interesting result 

due to Holmes-Kripke ([1 IJ ,p.125). We recall some 

definitions. An open cover ~{ of a topological space is said 
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to be locally finite, if eac h x E X has a neighbiurhood 

meeting only finitely many members of U. X is said to be 

paracompact, if each open cover of X has a refinement which 

is locally-finite. A cla~sical result of j.Dieudonne 

(1944), known as the Interposition theorem, states that if 

u( x ) and vex) are respectively the lower and upper 

semi-continuous functions on a paracompact space X with 

v ~ u, then ther e exists g E Cb(X) such that v ~ g 5 u 

([ 14],p.172). 

THEOREM 3 .4. 6 . ( [ 11],p.125) 

Let X be a paracompac t Hausdorff space and B(X) the 

space of all real-valued bounded functions on X with the 

sup norm topology. Then H = Cb(X) is a proximinal subset of 

B(X) . 

PROOF 

For any f E B(X), let d = d(f,H). Define 

f (y) = lim inf {f( x) 
1 

fz(Y) = lim sup {f(x) 

x .. y} 

x .. y} 

Then f1 and fz are lower and upper 

functions, respectively, on X. Further 

f (y) ~ fey) 5 f 
1 

z (y) for all y E X. 

Let ref) 
1 

\I f f \I , r = = 2 2 1 

U = f + r and 
1 

v = f 2 
~ r. Then 

u - v - (f - f ) + 2r ~ 0 a nd so v 5 u on -
1 2 
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X. We claim 



that r - d and that g E P (f) iff v ~ g ~ u on X. -
M 

We first show that r ~ d. Let c > o. Then there 

exists g E Cb(X) such that 

IIf -g ll ~ d + €: 

or f - d - e ~ g ~ f + d + e on X. 

Taking lim sup of the left hand inequality and lim 

inf of the right hand inequality, we have 

f d - £; ~ g S f + d + £ on X. 
2 i 

Hence 0 ~ f - f ~ 2d + 2£ on X, and so r 5 d + e. 
2 i 

Since e is arbitrary, we obtain r ~ d . 

Next, since u and v are lower and upper 

semi-continuous functions, respectively, on paracompact 

space X with v ~ u, it follows from the Dieudonne's 

Interposition Theorem, there exists g E Cb(X) such that 

v ~ g ~ u on X. Then 

-
f - r ~ f - r - v ~ g ~ u " f + r ~ f + r, -

2 1 

and 
5 

~ II f-g II ~ Then d, and this completes so d(It,M) r. r = 

the proof . • 

To conclude, we present without proof another 

interesting and deep result of Holmes and Kripke [12] on 

best approximation in spaces of bounded linear mappings. 

Let X and Y be Hilbert spaces and CLeX,Y) the space of all 

continuous e=bounded) linear mappings, with the operator 

norm li T II = sup{ II Tx ll : x E X, II x ll ~ 1 }. Let KL(X, Y) be the 

subspace of CLeX,Y) consisting of compact mappings. (A 
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linear mapping T : X ~ Y is called compact if, for every 

bounded subset A of X, T(A) is relatively compact subset of 

Y; or equivalently if, for any seq uence 

X 
n 

",eakl y norm 
0, we have Tx ~ 0). 

n 

THEOREM 3.4.7. ( [1 2 ], p.257) 

{x } 
n 

in X with 

With the a b o v e n otat ion s, KL ( X, Y) is pr oximi nal 

s ub space of CL (X , Y) .• 

REMARK 

Th e a bov e r e sult ma y not hold wh e n X and Yare not 

Hilbert spaces. In [3] , it i s shown that if 1 ~ p ~ 00, p ~ 

2 , the n KL(L , L ) is not prox imin a l in CL(L ,L ). Thus the 
p p p p 

a b ove t heorem need not ho l d even if X and Yare reflexive 

Ban'ac h spaces. 
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