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PREFACE 

In recent years. no}se has become a serious issue of 

environmental protection in heavily built up areas, Kurze 

[1]. Noise abatement has. therefore. attracted the attention 

of many scientists. Traffic noise from motorways, railways 

and airports, and other outdoor noises from heavy construction 

machinery or stationary installation ( transformers or 

plants), can be shielded by a barrier which intercepts the 

line of sight from source to receiver. In most of the 

calculations with noise barriers the field in the shadow 

region of the barrier is assumed to 

diffraction at the edge. This assumption 

be solely due to 

supposes that the 

barrie r is perfectly rigid and therefore does not transmit 

sound. However. most practical barrier are made of wood or 

plastic and will consequently transmit some of the noise 

through the barrier. 

Yeh [2] has considered the problem of diffraction by 

penetrable parabolic cylinder. and as a limiting case 

approximates to a penetrable half plane. An other approximate 

approach using parabolic cylinder coordinates has been used 

by Shmoys [3]. His results are much simpler than Yeh [2] and 

are expressed in terms of Fresnels integrals. However. his 

approach is not rigorous and does not elaborate on the 

penetrable half plane solution. 

Pistol'kors et al. [4] use the Kirchoff-Huygens integral 

equation approach to solve . the more general problem of 



diffraction by a penetrable strip when shadow face of the 

strip is assumed to be the sane as for an infinite penetrable 

sheet. The same approximate boundary condition is 

Khrebet [5] in conjuction with Kontrovich- Lebedev 

transforms to obtain a solution for a dielectric half 

used by 

integral 

plane. 

The approximate boundary condition [4 and 5] is only good in 

describing a perfectly penetrable half plane. 

A.D. Rawlins [6] has used an alternative boundary 

condition which gives a smooth transition 

penetrable half plane to a non penetrable 

from a perfectly 

half plane. This 

boundary condition is slightly more complicated than that 

used in [4 and 5]. but symmetrical. He solved the problem of 

diffraction by an acoustically penetrable or an 

electromagnetically dielectric half plane due to line source. 

The present work is a natural and important extension 

of the above to consider the diffraction of acoustic waves in 

three dimensions (Point source) by an acoustically penetrable 

or an electromagnetically dielectric half plane. This 

consideration will help understand acoustic diffraction from 

the more general case of special wave and will go a step 

further to conplete the discussion for penetrable half 

planes. Introduction of the point source introduces another 

variable. The difficulty that arises is the solution of the 

integrals occurring in the inverse transforms. These 

integrals are normally difficult to handle because of the 

presence of branch points and are only enable to solve using 



asymptotic approximations. The analytic solution of these 

integrals is obtained and the far field is presented . 

In chapter one. basic relations of acoustic waves are 

derived. A few asymptotic methods are presented to calculate 

the integrals approximately for large frequency. 

Chapter two consists of diffraction by an acoustically 

penetrable or an electromagnetically dielectric half plane 

due to line source. 

In chapter three, we present the far field solution of 

the problem of point source diffraction by an acoustically 

penetrable or electromagnetically dielectric half plane. Also 

the integrals appeared in the diffracted field solution are 

solved. 



CHAPTER ONE 

BASIC ACOUSTICS AND ASYMPTOTIC METHODS 

In this chapter we present the basic equations of Fluid 

Dynamics and Acoustic Waves. We also discuss standard methods 

usually adopted to calculate asymptotically certain integrals 

appearing in diffraction problems. General procedure for 

solving cylindrical and spherical wave equation is also 

presented. The contents of this chapter are taken from 

"Theoratical Acoustics By Philip K. Korse And K. UNO Ingard. 

BASIC ACOUSTICS 

1.1 -- ACOUSTICS 

Acoustics may be defined as the study of the generation, 

transmission and reception of energy in the form of 

vibrational waves in matter. As the atoms or the molecules of 

a fluid or solid are displaced from their normal 

configuration an inertial elastic restoring force arises. 

Examples include the tensile force produced when a spring 1S 

stretched, the increase in pressure produced when a fluid is 

compressed and the transverse restoring force produced when a 

point on a stretched wire is displaced in a direction normal 

to its length. It is this elastic restoring force, coupled 
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with the inertia of the system, that enables matter to 

participate in oscillatory vibrations and there by generate 

and transmit acoustic wave. 

The most familiar acoustic phenomenon is that associated 

with the sensation of sound. For an average young person, a 

vibrational disturbance is interpreted as sound if its 

frequency lies in the range of about 20 to 20,000 Hertz. 

However, in a broader sense, acoustics also include the 

ultrasonic frequencies above 20,000 Hertz and infrasonic 

frequencies below 20 Hertz. The nature of vibration 

associated with acoustics are for example, the simple 

sinusoidal vibrations produced by a tuning fork and non 

periodic motions associated with an explosion. 

1.2 -- ACOUSTIC WAVE MOTION 

Acoustic waves that produce the sensation of sound are 

one of a variety of pressure disturbances that can propagate 

through a compressible fluid. There are also ultrasonic and 

infrasonic waves whose frequencies are beyond the audible 

limits, e.g. high intensity waves generated by air crafts and 

explosions. 

It will be convenient to start with the simpler case of 

plane waves. The characteristic property of the plane wave is 

that each acoustic variable has constant amplitude on any 

given plane perpendicular to the direction of wave 

propagation. The propagation of sound is always associated 
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with s ome medium . Sound does n o t propagate in vaccum. Sound 

is gene r ated when t he medium i s dyn amically d isturbed . Su ch 

disturbance of the medium affects its pressure, dens~ty, 

partic le velocity and temperature. Host known fluids and 

solids have relatively small heat c onductivity and sound 

propagation is nearly adiabatic , even at very low 

fr equencies. There fo r e t he t emp erature is o f little 

s ignificance. The effects of gravitational force s will al s o 

be neglected so that constant equilibrium density ( po ) and 

constant equilibrium pressure (p ) 
o 

have uniform values 

throughout the fluid . The fluid is also assumed to be 

homogeneous. isotropic and perfectly elastic; no dissipative 

effects such a s those a r i s ing fr om v iscosity or heat 

conduction are present. Finally, the analysis will be limited 

to waves o f re lative l y s mall a mp litude s o that changes in 

density of the med i u m wi ll be smal l as c ompared with ·ts 

equilibrium value. These assumptions are necessary to arrive 

at the simplest theory for sound in fluids. Fortunately, 

experiments have s hown t hat t h is simplest t he o ry adequately 

d e scr ibes most common phenomena. 

1. 3 - THE BASI C EQUATIONS 

In this section, we develop some equations of basic 

equations of acoustics. These definitions a r e taken from f221. 
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1.3.1 - THE EQUATION OF STATE 

A relation between pressure and density is the adiabatic 

equation of state is 

P = f(p). (1 . 1) 

Since the change in pressure and density is very snaIl, this 

equation can be expanded in a Taylor series: 

o P 1 02p 
P = Po + (0 p)p (p - po) + 2 (0 p2)p (p -

o 0 

where the partial derivatives are constants, determined for 

adiabatic compression and expansion of the fluid about its 

equilibrium density. If the fluctuations are small, only the 

lowest order term (p - p ) need be retained. This gives a 
c' 

linear relationship between pressure fluctuation and change 

in density 

p - P =- B(p - p )/p 
o 0 0' 

(1. 3) 

Op 
where B = poe dp) is the adiabatic bulk modulus. 

Po 
In terms 

of acoustic pressure and condensation S, (1_ 3) can be 

expressed as 

P = BS. (1.4 ) 

where S = (p - po)/po and I S I « 1. 

1.3.2 - THE EQUATION OF CONTINUITY 

To r~late the motion of the fluid to the compression or 

dilation we need a functional relationship between the 

particle velocity V and instantaneous density P. In other 

words we want to observe what happens if one part of the 
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fluid affects the other part. We represent this effect in 

equation forn, known as the equation of conservation of 

natter. The equation of conservation of matter in the 

Eulerian approach is derived as follows: 

The total mass in volume T bounded by the surface s at 

time t is f p dx, where p is the volume density of the fluid 
T 

and dx is the volume element. Let us keep this volume fixed 

in space. Then the increase in mass in a small time Cit is 

Cit f(ap/at)dx. Since the mass is conserved the increase must 
T 

be due to flow across the boundary s of T. Now the fluid 

crosses s is only on account of the velocity component along 

the normal to s. If n is a unit normal vector directed out of 

T, the mass which is transferred across the snaIl element ds 

is that obtained in a cylinder of volune n.v btds, where the 

vector v is the velocity of the fluid. Hence 

J (ap/at) dx = - J p n.v ds. (1. 5) 
T s 

Using the divergence theorem, (1.5) can be written as 

J(ap/at) dx = -J div(pv) dx. 
T T 

(1. 6) 

Because this holds for an arbitrary volume T, we conclude 

that 

up/at + div(pv) = 0, (1. 7) 

which is the Eulerian form for conservation of mass. 

Notice that it is non-linear equation. If we write 

p = poCl + ~) and use the fact that Po is constant in both 

space and time and assuming that § is very snaIl, equation 
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(1.7) becomes 

as/at + div(v) = 0, (1.8) 

which is known as the linearised equation of continuity. 

1.3.3 -- FUNDAMENTAL EQUATIONS OF MOTION 

In fluids the existence of viscosity and the failure of 

acoustic processes to be perfectly adiabatic introduce 

dissipative terms. Since we have already neglected the 

effects of thermal conductivity in the equation of state, we 

also ignore the effects of viscostty and consider the fluid 

to be inviscid. The equation of motion comes from the 

consideration of the forces in a fluid. Let P be the 

pressure, then the total surface force will be 

-J P.nds , 
s 

where s is the closed surface bounding the volume T of the 

fluid. 

Let f represents the acceleration of the fluid particle, 

then the total inertial force will be 

-J P f dx. 
T 

According to De'Alembert's principle, 

Total surface force + Total body force + Total inertial force 

= o. 

Since we are neglecting the body forces like gravity. the 

above principle takes the form: 

J p.n ds + J p f dx = O. 
s T 
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Using the divergence theorem in this equation we have 

f ~P dx + f p f dx = O. 
T T 

Bec~use this equation holds for an arbitrary volume. we 

conclude that 

f = - ! 'VP. 
p 

Now using the relationship 

DV _ iN 
f = Dt - at + (V·~)V. 

we have, from the last equation 

aV 1 -- + (V''V) V = - - 9P. at p 
(1. 9) 

This non-linear, inviscid force equation is called Euler's 

equation of motion. It can be simplified if we require I ~ I « 1 

aV 
and I (V, 'V)V I « I at I · Then replacing P with Po and dropping 

the tern (V''V)V in equation (1.9), we obtain 

p 
o 

aV 
at 'VP. (1. 10) 

This is the linear inviscid force equation. valid for 

acoustic p r ocesses of small amplitude. 

1.3.4 -- THE LINEARISED WAVE EQUATION 

The two equations (1.8) and (1 .10) can be combined to 

yield a single differential equation with one dependent 

variable. Taking the divergence of equation (1.10), we have 

(1.11) 

where 'V
2 

is the three dimensional Laplacian operator. Now 

taking the tine derivative of (1.8), we have 

a 2 S a 
+ ""t ('V'V) = o. 

at2 v 

7 
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Combining equations ( 1.11 ) and ( 1.12) 

oV 
~'ot ' we obtain 

2 

P o 0 S = ~2 P . 
ot2 

and 

Using the equation of state (1.4), we get 
Po 02p = ~ p . 
B ot2 

o r 

where 

c = -{S/p . 
o 

using 
o 
--(~ ' V) ot 

(1. l :·n 

(1. 14) 

Equation (1 . 13) is the linear ised, loss less wave equation 

for the propagation of sound in fluids . In equation (1.13), c 

is the phase speed for acoustic waves in fluids . Use of 

(1 . 14) allows the equ ation of stat e t o be written in a more 

convenient form 

Thus the condensation also satisfies the wave equation. 

Since the curl of the gradient of a function f must 

vanish . i . e. ~x~f = O. fr om ( 1.10) . ~x ( oV/ ot) = o . Th is 

i mpl i e s that av/at c an be expressed a s the g r adient of a 

scal ar function ¢ . For the pur poses of dealing with transient 

e ff e c ts we c an write V = ~¢ . The physical meaning of this 

i mpor tant r esult is that the acoustical excitation of an 

inviscid fluid involves no transient rotational flow; there 

are no e ffects such as boundary layers , shear waves , o r 
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turbulence. In real fluids, f o r which there is finite 

v iscosi t y. t he p a r ticle ve l ocity is not curl-free everywhere 

but for most acoustic processes the presence of small 

rotational effects is confined to the vicinity of boundaries 

and exerts little influence on the propagation of sound. 

Thus. substituting V = V¢ in (1.10) we have 

o 
P o o t V¢ = - VP, 

o r 

o¢ V( p oot + P) = O. 

The quantity in the parenthesis can be chosen to van i sh 

identically if there is no acoustic excitation. This gives 
o'+' P = _ P 'f' 

o at . 

1. 3 . 5 -- GENERAL WAVE EQUATION 

A gener al e quation of wa v e equ a t i on can be obtained by 

taking into account the s mal l pert rbations made by t he sound 

waves and dropping the requirement that the flow be 

insentropic i.e. the entropy S is constant throughout the 

medium t hen we have the e quations 

Dp /Dt + p div.V = 0, 

DV/Dt - - l/pVP. 

DS/Dt = 0, 

P = f(p,S) . 

(1. 15) 

(1. 16) 

( 1.1'7) 

(1. 18) 

Suppose that there is steady flow in which V = U, P - Po' p 

= Po and S = So then the equations (1.15 ) --( 1 . 18) take the 

form 
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U .~p + p div.U - 0, 
o 

p (U .~)U = -vp 
o 0 

U . ~S = O. o 

~p = (of/ap)vp + (af/aS)~S . 
000 

Where af/ap and af/aS are calculated at p = Po and s 

(1. 19) 

(1. 20) 

(1.21) 

(1. 22) 

S . 
I) 

2 
Now the speed of sound is given by C = of/aS. If we write 

h = of/as, then C and h will be known at every point once 

(1.19)--(1 . 22) have been solved for Po and So as function of 

position. 

Let the sound waves make small perturbation so that 

p = p + p , V = U + U and S = S + S . 
0.1 1 0 1 

Neglecting the product of small quantities, we arrive at the 

following equations: 

op fat + U 
1 

~ p + u . v p +p d i v . U + p d i v . U - 0, 
1 1 0 0 .1 1 

p au lot +p (U . ~)U +p (U .~)U +p (U.~)U = 
01 0 1 1).1 .1 

-h grad.S - (p a
2

f/ap2+ S a 2 f/apoS)grad.p 
11.1 0 

2 2 . 2 -(p a f/opoS + S of/as )grad.S 
1 1 0 

as/at + U grad.S+Ugrad.S = O. 
1 .1 1 0 

It is immediately evident that a background 

( 1. 23) 

(1. 24) 

(1. 25) 

flow 

complicates the analysis which has to be under taken in order 

to determine the acoustic disturbance. Some simplification 

can be achieved for particular cases. For example,suppose 

that the basic flow consists of a steady velocity U parallel 

to x--axis so that U = J..Ji, where i. is a unit vector along the 
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x- axis. Assume further that ~ and p are constant o 
and that 

flow is insentropic. Then equations (1.19)-(1.22) are 

certainly satisfied with C = constant and h 

Therefore equations.(1.23) and (1.24) become 

op / at + ~ op / ox + p d i v . U = 0, 
1 1 0 1 

p au / at + p ~ au / ox = _c2
'Vp . 

o 1 0 1 1 

To eliminate U
1 

from equations.(1.26) and (1.27). we 

divergence of equation.(1.27) to give 

2 
P 'V. (au / at) + p ~ 'V. (aU / ax) = -C 'V. 'V P • 

o 1 011 

and using 

'V • au / at = a/at ('V. U ), 
1 1 

we obtain 

Substituting the value of div.U from equation.(1.26) 
1 

(1.28),we have 

Z 2 2 2.2 2 2 2 
a p / at + 2~ (a p / otax) + ~ (a p / ox ) = C 'V p . 

1 1 1 1 

= o. 

(1. 26) 

(1. 27) 

take 

(1. 28) 

into 

(1. 29) 

The ratio ~/C is known as Hach number H. If H <1. the flow is 

said to be subsonic where as if H >1, it is super sonic. 

Equation.(1.29) in terms H can be written as 

'V
2

p = 1/C2 
02p /at2 +(2H/C) ij2 p /atox + H2 a 2 

/0 2 
1 1 1 P1 X. 

(1. 30) 

or 

(1.31) 
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1..4 - THE LI NE SOURCE 

Suppose that there is a line source at (x ,y ). The ti~e o 0 

dependent of the field is taken to be harmonic. Then the 

partial differential equation satisfied by the potential ¢ is 

given by 

2 2 222 o ¢/ox + 0 ¢/oy + k ¢ = -4n6(x-x )6(y-y ), o 0 
(1. 32) 

where the right hand side is a forcing term due to the line 

source at (xo,yo)' We determine the solution of (1.32) in 

free space, such that ¢ represents an outgoing wave at 

infinity. 

Taking the Fourier transform of (1.32), we get 

2 -4n ,00, i.Ox -- - r q; = -- J 6(x-x )6(y-y)e dx, 
dy2 Y2n -00 0 0 

(1. 33) 

where r2 = (0
2 

- k
2
). Using the property of the 6-function,we 

obtain 

We know that if 
dy2 

Y < 00 such that !P -4 

00 

2 
r!P = fey) then the solution 

o as y -4 ±oo is given by 

1 
!P (y) = - 2r f f(ll) e -y I Y-il l dll. 

-00 

in 

Using (1.35) the solution of (1.34) can be written as 

!P(O,y) = 

or 

!P(O,y) = 

_rn= 00. 
-yo 2n J' lOX -- e 0 

r -00 

Y2n i.Ox e 0 
-y I Y-Y - I e u • 

12 
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Now taking the inverse Fourier transform of (1.36), we 

obtain 

¢(x,y) 
00 -i~(x-x )-1' I Y-Y I 

_ f e 0 0 

_ 00 I' 
(1. 37) 

To solve (1.37), let us define the following substitution: 

x-x - r coseo, 
o Iy-yo l = r sine, 

~ = -k cos (e + it). -00 < t < 00, 

I' - -i k sin (e + it). 

Then (1.37) takes the form 

00 

¢(x,y) l' 
i kr cosht = e dt = Tl i H ( 1.) (kr), 

o 
-00 

(1. 38) 

where r = ~ (x-x )2 + (y-y )2 and the integral representation 
o 0 

of the Hankel function has been used. Using the asymptotic 

behaviour of the Hankel function the field given by ¢(k,r) in 

(1.38) can finally be written as: 

,I-,(k ) i(2n )1/2 i(kr - TU4) 
.,.' , r = kr e (1. 39) 

1.5 -- THE POINT SOURCE 

Suppose that there is a point source at the position 

(xo,yo,zo)' Then the partial differential equation satisfied 

by the potential is given by 

u2¢/ux2+u2¢/uy2+u2¢/uz2+k=_4n6(x_x )6(y-y )6(z-z ), 
000 

(1.40 ) 

where the right hand side is a forcing term due to the point 

source at (x~,yo,zo)' We determine the solution of equation 

(1.40) in free space, such that ¢ represents an outgoing wave 
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at infinity. The fourier transform and its inverse over the 

variable z is defined as 

00 

iI?(x,y,w)= , A- ~kwz 
J 'i/( x, y , z ) e dz, (1.41) 
-00 

k 00 -i.kwz 
1)( x , y , z ) = 211 l' iI? ( x , y , w ) e dw . (1. 42) 

-00 

Taking the Fourier transform of (1.40), we have 

( ;:,,2/;:"X2 + ",2/"'y2 + 2 2 -ik(vZ 
u u u u k y )<I>(x,y,(v)= -411e 0 

6(x-x )6(y- y ). (1. 43) 
o 0 

We see that (1.43) is same as (1.32) except that 
2 2 

k r 
2 ~k~ 

replaces k and a multiplicative factor e 0 is extra on 

the right hand side of the equation (1.43). Following the 

procedure adopted in the previous article and omitting the 

details of calculation we get 

-i.J,;(0Z H(1)(1. v r), iI? ( x , y , (0 ) =11 ~ e 0 n.f 
c' 

(1. 44) 

where r = I (x-x )2 + (y-y )2 and the integral 
o 0 

representation 

of the Hankel function has been used. 

1. 5 - ASYMPTOTI C EVALVA TI ON OF INTEGRALS 

Here we discuss the method usually adopted to write down 

the asymptotic form of certain integrals appearing in 

diffraction problems. 
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1.6. 1 -- THE METHOD OF STATIONARY PHASE 

form 

In many problems we have to deal with integrals of the 

f b e i. t¢ (J.l ) g ( J.l) g (J.l ) , 

a 
(1. 45) 

where ¢ is a real valued function, called the phase function, 

while g may be either real or complex - valued. In contrast 

to Laplace's method, the exponent is now purely imaginary; 

hence the integrand is an oscillatory function of t. As long 
, 

as ¢ (J.l) ~ 0, we may integrate by parts and conclude that the 

integral is D(l/t) when t--> 00. The main contribution comes 

from the points O.These are called 

stationary points. We assume a finite number .of stationary 
H b 

points (J.l . ) with a < J.l < b, ¢ (J.l.) ~ 0, and S Ig(J.l)ldJ.l < 00. 
J J J 

Then, when t--> 00, 

Sb ei.t¢(J.l)g(J.l) dJ.l 
a 

= 2: " 
j:¢ (J.l.) 

J 

]

1/2 L t¢(J.l . )+i.nj4 
2n J 
"e g(J.l . ) 

t¢ (J.l . ) J 
J 

1 / 2 

[ 
2n ] i. t¢ ( /-I j ) + i. n I 4 

+E" ---:-:---- e g( J.l . ) + D( l / t ) 

j:¢ (/-1 . )<0 t l¢ (J.l.) J 
J J 

(1.46 ) 

In contrast to Laplace's method, we must sum over all 

stationary points of ¢ not simply those where ¢ is maxinum. 

If the end points /-I = a or /-I - b are stationary points, 

they contribute to Eq.(1.28) with a factor pf 1/2, just asin 

Laplace's method. 
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This complicated-looking formula becomes easier to 

remember if we restate it in the following fashion: replace 

¢(/-i) by its second- order Taylor expans ion and r eplace g(/-i) by 

its value at the stationary point . Do the result.ing 

integrals, one for each stationary point, and sum over all 

stationary points. 

1.6.2 -- THE METHOD OF STEEPEST DESCENT 

We consider the integral 

1
1
= f eSg(z)f(z) dz 

c 
(1.47) 

where c is a contour in the complex z-plane. We assume that s 

to be large complex variable, g and f t.o be analytic 

functions of the complex variable z and the integral to be 

taken along some path in the complex z-plane. This integral 

may be evaluated asymptotically by the method of steepest 

descents, which was originated by Debye . Copson(1946) gives a 

detailed description of this method . 

It will be assumed that f and g are independent of sand 

suitably regular. It will be sufficient to consider the case 

e iB 
s ~ 00 for if s = l s i e

i 
we can split sg into l s i and ge 

Let g(z) = U(x,y) + iV(x,y) where U and V are real. When s is 

large, a small displacement causing a small change in V will 

produce a rapid oscillation of the sinusoidal terms in 
sg 

e . 

In general, the contribution from anyone part of the path of 

integration will be about the same as that from any other 
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part. However. if a path is chosen on which V is constant the 

rapid oscillation will disappear. Then the contribution will 

come from the neighbourhood of the point s. where U is the 

greatest. The essence of the method. therefore. consists in 

deforming the contour. as far as this is possible, into a 

curve V = constant passing through the point where U -

constant. Now. a point where g' (z) - 0 is called a saddle 

point. Let g' (z) = 0 

Now. at z = z o 

at 

U = U = V = V - 0 x y x y 

+ i Y o 

because g(z) is analytic. Further. 

U + U = V + V = 0 ~ U U xx yy xx yy xx yy 

which further gives 

U U xx xy 

U U yx yy 

= U U xx yy u2 = _ [U 2 + U2 
] < 0, xy xx xy 

this implies that U = U is neither a maximum nor a minimum. 
o 

That is why every stationary point is called a saddle point. 

Near the saddle point z = z o 

g(z) - g(zo) = l/Z gll(ZO) (Z-ZO)2 = l/Z Ar2 e i (e<+Z8) 

If i8 ia 
z-z = re and gil (z ) = Ae where A, o 0 

a are real with 

positive if g(z ) = U + iV • o 0 0 

U - Uo = i r2 cos(Z8+a). V - Vo = i r2 sin(ZB+a). 

A 

Now, U-U is negative if B is such that its cosine is o 

negative and drops fastest with r if 8 = (rr-a)/Z or B 

(3rr-a)/Z. These are desirable directions because they force 

17 



exponential decay on the integrand as one moves away from the 

saddle point. They are called paths of steepest descent. Note 

that on a path of steepest descent V = Yo' Having seen that V 

= V is a good route to start on from a saddle point. Let us o 

see what happens if we stay on it . Suppose we reach a point 

z and 
1 

that z + 
1 

p~¢ is a nearby point on V = V Since V 
0 

does not change in the move from one point to the other, ¢ 

must satisfy V cos¢ + V sin¢ = O. By means of the x y 

Cauchy-Riemann relation this may be expressed as 

-u cos¢ + U sin¢ = O. y x 

The change of U in the move is p(U cos¢ x 

quantity is known to be negative at zoo 

+ u 
Y 

sin¢). 

(1.48) 

This 

It will therefore 

renain negative until a point z is arrived at where it . is 
1 

zero. But, on account of (1.38), this 1S impossible unless 

U = U - 0, ~ .e. Z1 is a saddle point. Hence, on a path of x y 

steepest descent. U decreases steadily fran a saddle point 

until another saddle point is reached. Should g' (z) have a 

singularity on the path, that can upset the apple cart too. 

It will now be assumed that the path of steepest 

descent goes off to infinity without encountering another 

saddle point or singularity of g' (z). Consider Ii taken along 

the path of steepest descent that begins from Zo along 

e=(rr-a)/2. Convergence of the integral at infinity is assumed 

because of the property of U demonstrated above. Indeed, that 

property guarantees that the main contribution to the 

integral comes from a neighbourhood of the saddle point . In 
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this vicinity 

and 

Hence the integral is essentially 

z-z o 
_ i.(n-0I)/2 

re . 

co 2 
f{ zo) J eO'{g(Zo)-i/2 Ar }+L(n-0I)/2 dr . 

o 

or 
00 J fez) eog(z)dz '" [rr/( 2oAei.0I)]i/2 
z o 

f( ) og(z )+rri./2 
Z eo. 

o 

(1. 48) 

Going from z to infinity via the path of steepest descent on o 

which e = (3rr-0I)/2 merely reverses the sign of the right-hand 

side of (1.49). The strategy for dealing with I therefore is 
1 

to deform the contour C as far as possible into a path or 

paths of steepest descent. Then the contribution of each 

saddle point is calculated by means of (1.49). However. we 

bear in mind that in the deformation of C poles or other 

singularities of the integrand may be captured; their 

contribution may be as significant as that from the saddle 

point. If g"(z ) = 0 there will be more than two paths of o 

steepest descent from the saddle point but on each one the 

argument about U is unaffected. The mode of calculation is 

still effective though the asymptotic formula will differ 

from (1.49). 
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1.6.3 -- LAPLACE'S METHOD 

We take the integral of the form 

b 
f(t) = f g(x)eth(x)dx (1. 50) 

a 

with the possibility that h (x) = 0 at one or more points. In 

this case it is still true that f(t) _ et"t--> 00. where H is 

the maximum of hex). a ~ x ~ b. The feature results from the 

possibility of points x .• where h(x.) = Hand h (x) - o. We 
L L L 

assume that h (x.) ;;t! 0 at each of these points. [Of course it 
L ., 

follows that h (x) < 0 since we are at maximum of h]. These 
L 

points fall into two groups: (1) interior global maximum of h 

and (2) boundary · maxima where h (x.) 
L 

O. The exact 

contribution of the second type of point is one- half of the 

first type of contribution. We now state the result of 

Laplace's method. 

tH 
f ( t) = ~ t [c + 0 ( 1/ yt )] t--> 00 (1.51) 

where 

[ 

E g~,xi.) .1/2+ E 

C --~ a<x. <b [-h (x. )] x . =a or b 
- r ",IT L L L 

h (x. ) =H h ( x. ) =H 
L , L 

h (x. )=0 
L 

g( x . ) ] 

[-h~' (xi.) ]1/2 

(1. 52) 
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CHAPTER 2 

DIFFRACTION BY AN ACOUTICALLY PENETRABLE OR 

ELECTROMAGNETICALLY DIELECTRIC HALF PLANE 

I n t h is chapter we p resent d i ff raction by an 

acoustically penetr able o r electr omagnetically diele ct r ic half 

plane due to a line source. This problem has been addressed by 

Rawlins [9]. The problem is formulated in terms of two Wiener 

Hopf equation. The method of stationary phase is used to 

calculate the diffracted field. 

2. 1 -- FORMULATION OF THE PROBLEM 

We consider the situation where a penetrable half plane 

occupies x ~ 0 , y = O. The half plane is assumed to be thin 

compared with the wave length of the incident line source. A 

line source is situated at (x ,y ), y > 0, and has time o 0 0 

harmon i c v a ria tion e-iwt . The f actor e-iwt will be suppressed 

in the following work . The problem is solved by finding a 

solution of the wave equation 

+ k
2 

u(x,y) = 6(x- x ) 6(y-y ); 0
2 

) 
oy2 0 0 

subject to the boundary conditions 

+ -
:~( X, O-) ±. ik {au(x,O+) + OU(x,O+)} = 0; x < 0 , 

2 1 

Iy I > h, 

(2.1) 

(2 . 2) 



+ o u( x, O ) _ 
} ; X > D. ( 2. 3) 

oy 
where ~ and ~ are c onstants and are given as under 

r2 2i. khsinB ( - 2i. khsinB R2 2i. khsinB )J 
~ = e 0+ e 0 - eo. f:") 

( - i khs inB R ikhs inB )T2 2 i. khs inB sln · o · e o+e 0 e 0 

( 2.4 ) 

( 
2Ts inBo J 

(1 = -(----i.~k~h~s~i-n~B~---R--i~k~h-s~i-n~B~-)2---T-2--2-i.k~h-s~i~n-B=---- > 

e o+e 0 - e 0 

( 2.5 ) 

and 2h is the width of the half plane and R, '1' are the 

reflection and transmission coefficients. 

For a unique solution of the problem, we also require 

the radiation conditions: 

o rr( -or - i k)u ----~ 0 a s r - I x2 + y2 

and the edge conditions 

u( x, O) = 0(1), :yU( X, O ) = -1 / 2 + o ( x ) ; as x ~ 0 . 

2 . 2 SOLUTION OF THE BOUNDARY VALUE PROBLEM 

(2 . 6) 

( 2. 'I) 

A solution to the boundary value problem (2.1)--(2.5) 

can b e written i n the f orm: 

u( x ,y) = ¢ ( x ,y) + ¢ ( x , y ), (2.8) 

where ¢ (x,y) accounts for the source in all space in the 
o 

absence of the half plane, and ¢(x,y)is the pertu r bation 

field due to the presence of the half plane. 

A suitable representation for ¢o(x,y) and ¢(x,y), which 

satisfies the radiation condition (2 . 4) is 
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y 

source 

(x.y) 

penetrable 
~~~~~~--------~~~~------------------------> x half plane 

¢o(x.y) = (1/4i.)H (1) {kl (x-'X )2 +(y _y )2} 
000 

oo-!-i.;v 
i.[V(x-x )+U(Y-Y )]d 

= (1/4ni.) J e 0 0 v 
-00-1- i. Y U 

(2.9) 

00-1- i. ~/ 
i. [~'>x+uy] 

¢(x.y) - (1/2ni. ) J 
A(~.> ) e dv; (y>O). 

-
U 

(2.10) 
-00+- i. ,," 

ocH-iy 

= ( 1/2ni. ) J B(v) 
i. [vx-uy] 

e dv; (y<O). (2.11) 
- OO-I-i.r u 

Where A(v).B(v) are functions of v and we shall assume that 

k = k +k. (k .k.>O) and the v--plane is cut such that 
r 1. r 1. 

Im(u»O. where u =/k2 2. 
- V 

For a unique solution the edge condition (2.7) requires 

that A(v). B(v) Substituting 

equations (2.9)---(2.11) into the boundary conditions (2.2) 

and (2.3) and carrying out some simple manipulation gives 

OO-I-i.;v 
J e(v) 

i.vx 
e dv = 0; 

- OO-I-i.r 

00-1- i. ;V _ 

J D(~.»elVX dv - 0; 
-oo-!- i.;v u 
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(x > 0) . (2.12) 

(x >0). (2.13) 



COt- i. y 

[C(l-') 
- i. [VX -"-y ] ] i.vX J K(v) + k(a + rn e 0 0 e dv = 0; 

-00+ iy "-
(X < 0). (2.14 ) 

COt- i. y 

[D(V)L(V) i. ~vx - "-y ] ] ivx J dv - 0 ; + 0 0 e -
-(\)+ iy 

(x < 0), (2 .15 ) 

where 

K(v) - 1 + k(a + rn/"- } - (2 .16 ) L(v) - 1 + k(a - O)/'H. -

C(J.-I ) - A(v) + B(v) } - (2.17) 
0(1--' ) = A(I--' ) - B(v) . 

A solution of the equations (2.12)--(2.15) can be written 1n 

the form 

(2.1B) 

(2.19) 

D(v) 
'H. 

= 11' (t) • 
+ 

(2.20) 

(2 . 21) 

Where the ± subscript denotes a regular functions in the +ve 

and -ve half planes respectively. The positive subscript 

denotes that the function is regular in the domain lm(v) > 

-7 and the negative subscript 
0 

denotes that the function is 

regular in the domain Im(l--') < :r 
0' 

- k < :r < k. These two 
t 0 t 

domains have the intersection I Im(l--') I < :r and :r is 
0 0 

assumed to be such that no singularities occur in this com~on 

region of intersection. 

We now split K(v) and Le v ) in the form 
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K(v) = K+(v) K (v), 

L(v) = L+(v) L (v). 

(2.22) 

(2 . 23) 

Then eliminating C(~-,) and D(v) froll the equations (2.18)--

(2 .21 ) gives 

-i.[vx - ~y ] 
+ k(Ot + rn e 0 0 

K_(v)! k2 _ v2 

l' (v) 

K (~-,) 
(2 .24) 

+ v L (v) 
+ 

-i. [vx - ~y ] 
e 0 0 = (2.25) 

-I L_(v) 
k - v 

Let 

(2.26) 

and 

1.(v) = 
-i. [~-'x - ~y ] e 0 0 (2.27) 

- v 

then, from the theory of complex variable, we can split these 

terms by Ileans of Cauchy integrals. 

Where 

A(v) -

1.( v) = 

A (v) 
+ 

A (v) 

A (~-, ) 
+ 

f. (v) 
+ 

A (v). 

f. (v). 

__ . f co A( t) } (-1/2rrL )_co (v _ t) dt; IIl(v) >0, 

= (-1/2rri.)f co(VA~t~) dt; Im(v) <0, 
-co 

. f co 1.(t) 
1.+(v) - (-1/2rrL) (v _ t) dt; Im(l» 

-co >0. } 

1. (v) = (-1/2rri.)f co(v1.~t~) dt; Im(v) 
-co 

<0. 
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(2.29) 

(2.30) 

(2.31) 



From equations (2.26) and (2.27) it can be seen that the 

integrands (2.30) and (2.31) are exponentially bounded as 

I t I ---) 00 so that the integrals exist. For real v the 

contour of integration is indented so that for A (v) 
+ 

and 

~+(v)the point v lies above the contour of integration and 

for A_(v) and ~_(v) the point v lies below the contour of 

integration.It is also worth noting that IA ±(v) 1 and 1 ~±(v) 1 

are at the least 0(0) as Iv l-> 00. 'l'hus equations. (2 .24 ) 

and (2.23) can be written 

¢ (~.» K (v) + A (v) --+ + + 

and 

in the 

¢ (v) 

KTv) 

form 

+ A (v) = J (v) 
1 

+ ~ (l.» 
y k - ~.J L_(l.» 

(2.32) 

- J (v), 
2 

(2.33) 

It can be seen that from equation (2.32) that this 

equation holds only in the common strip of regularity of both 

sides. However.the left hand side defines J (~.» 
1 

throughout 

the lower v--plane. By means of the common strip of 

regularity, each side of equation.(2.26) provides the 

analytic continuation of the other hand. the composite 

function defined by equation (2.32) is regular in the entire 

l.J -- plane. Provided that we can show that both sides of 

equation (2.32) have only algebraic growth as Iv l --) 00 .then 

it follows from the extension of Liouville's theorem that 

J (v) must be polynomial in v. Now 
1 
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L(v) -) 1, as Ivl -) 00, 

and 

K(v) -) 1, as Ivl -) 00. 

as Iv l -) 00, 

also 

aslvl -) 00. 

- 1 / 2 

Fron the edge condition we know that A(v). B(v) O( I v I ) 
- 1 / 2 

and therefore, C(v), D(v) must be at least of O( I t) I ) as 

Iv l -) 00. 

Using this asymptotic estimate it can be seen from 
-1/2 

equation (2.32) that J
1
(v) _ O(lvl ) and therefore. the 

polynomial representing J (v) can only be a constant which 
1 

equals zero. Hence from equation (2.32) 

(2.34) 

and equation (2.34) combined with equations (2.19) and (2.30) 

gives 

C(v) = k(Q( + (3) 
2ITi K (v) 

+ 

[ Yk ~ t 2 y ] 00 - i. vx - -

J 
e 0 0 dt. 

-00 ( Yk ~ t2 )(v - t)K_(t) 
(2.35) 

Applying exactly the same argument as above to ,equation 

(2.33) gives that J (v) 
2 

~ (v) Y k + v L (v) = - ~ (v), + + + 

and thus from equations (2.20). (2.31) and (2.36) 
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D(v) = 
[ ~k 2 t 2 YO] Ll) -i VX -

f e 0 dt. 
-Ll) (~ k - t )(v - t)L (t) 

(2 .37) 

Now adding and subtracting equations(2.35) and (2.37) 

gives A(v) and B(v),which on substitution into equations 

(2 .9 ) and (2 . 10) gives the total field as 

u (x , y) = (1/4i.)H (1>{k I (x-'x )2+(y_y /} + 
o 0 0 

Ll) 

(1/8 rl)f 
Ll) ! ! -f 2 t2 ] 

J' ei.[VX+o>l y -(V X
O

- k - YI~ F(v,t) J 

-Ll) - Ll) 

d~j dt, (2.38) 

where 

F(v,t) -

(2 . 39) 

For k real the t-- path of integration is indented below 

t = 0 and the v--path of integration indented above v :;: O. By 

removing the source to infinitely i.e. kr ---) 
o and 

asymptotically evaluating the integral integrated with respect 

to the plane wave solution is given by [6] 

where 

u(x,y)=e-i. (x cos80+Y Si~eo)+(1/2rri.)J :(v,eo)ei.[VX+o>l !y ! ] 
-Ll) 

G(lJ,B
o

) = 
1 

-(-V--+--k-C-o-s-.e-~-~-)-(Y--k2-_---v-2-){ 
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( 2.41) 

2.3 -- ASYMPTOTIC EXPRESSIONS FOR THE FAR FIELD FOR PLANE 

WAVE INCIDENCE : 

For the purpo se of obtaining the far field expression 

(2 . 38) i s a symp t o t ical l y evaluate d fo r k r lar ge. By mak i ng the 

s ubstitutions 

x = r cose, y = rsine , 

the second term in the expression (2 . 30) reduces to the form 

where 

00 

(1/2rri) f 
-00 

irg(v) 
e 

)(1-' - V ) 
P 

dv, 

f(v) - { k(o + ,8 ) + 
K+(v) K+(k coseo ) 

( ~ k - v)(~ k - k cos8o ) sgn ( y) } 

L+( v ) L+( k cos8o ) 

(2.42) 

(2 . 43) 

( 2. 44) 

( 2.45) 

This integral can be asymptotically evaluated for large 

r by modification of the method of stationary phase. The 

modificat i on is r equired because the pole v can come close 
p 

to the point of stationary phase v = s 
k cose. Rawlins [6] has 

described a method for obtaining a uniformly valid asymptotic 

approximation for such integrals. Without going through the 
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details it can be shown that 

co irg(v) i kr -
(1/2rri.) f e 

dv e 

("t'k 2 _ i -{ 2rrkr -co 2 )(v - v ) 
v p 

x [ 2 jQ I ] F( \Q \ ) + Pole contribution. 
(~.> - ,.> ) 

p S 

where 

Q - (-{ kr/2 ) 
cose + cose 

o 
----:----:::---

sine 

2 co 2 

F(Q) =e-i.Q S ei.tdt. 
Q 

irr / 4-
r(v ) s 

(2.46 ) 

(2 .47) 

(2 .48) 

The pole contributions account for geometrical acoustic field 

terms. The total field can be represented in terms 

geometrical acoustic field terms and the diffracted field. 

The diffracted field is given by 

i kr - irr/4 
- e f(v ) 

s [ 
2 1Q j ] F 

(v - v) (I QI) . 
p s 

(2 .49) 

where 

(I..~ + (5) 
+ 

2 sine/2 sine / 2 } 

L+(k cose) L+~k coseo ) . 
(2.50) 
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CHAPTER THREE 

POINT SOURCE DIFFRACTION BY AN ACOUSTICALLY PENETRABLE 

OR AN ELECTROMAGNETICALLY DIELECTRIC HALF PLANE 

In this chapter we consider diffraction of acoust ic 

waves by an acoustically penetrable or an electromagnetically 

dielectric half plane due to a point source . The problem is 

formulated in terms o -f boundary value problem in thn?.::' 

dimensions . The integral transform and asymptotic methods are 

used to complete t he diffracted field. 

3.1 - FORMULATION OF THE PROBLEM 

We consider the scattering of a small amplitude sound 

wave from a semi-infinite penetrable plane occupying a 

position y = 0, x ~ 0 . The half plane is assumed to be of 

negligible thickness. The point source is situated 

(x ,y ,z ) having the time harmonic variation e - itvl • 
000 
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y 

source (x ,y ,Z ) 
000 

( x, y ,Z ) 

penetrable 
~~~--~-----------------~~--~--~-------------------> x half plane 

Thus, the wave equation satisfied by velocity potential u in 

the presence of a point source is 

2 2 

(010X
2 

+ 01 ay2 
2 

+ 010z2 + k
2
)U(X,y ,Z ) 

= 6 (x - x )6(y - y )6(z -z ) . ( 3.1 ) 
000 

The boundary conditions of the problem are given as 

+ + 
(oloy)u(x,O ,Z)+i.k{OIU(X,O ,Z )+(5U(X , 0 , Z)}=o ,] 

;x< O , 
+ 

(oloy)u(x , O ,Z)-i.k{OIU(X,O ,z )+0u(x , 0 ,z )}=O , 

+ 
(oloy}u(x,O ,z ) = (oloy)u(x , O ,Z )] . 

+ _ , x >0. 
u(x,O, z ) = u(x,O, z) 

Where 01, 0 are given by equations (2 . 4) and (2 . 5) • 

radiation and edge conditions are given by equations 

and (2 . 7) . 

3.2 -- SOLUTION OF THE PROBLEM: 

( 3.2 ) 

(3 .3 ) 

The 

(2 . 6) 

We define the Fourier Transform and its inverse over the 

variable Z by 
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where 

co 
-ikwz 

l/'(x,y,W) = J' 1p(x,y,z) e 
-co 

co 
l/'(x , y ,z ) = (k/2rr)J' lp(X,y,w) 

k = k + ik . • 
r l. 

-co 

dz 

-ikwz 
e dw , ] (3 . 4) 

Transforming equations (3.1)--(3.3), with respect to z by 

using (3.4) gives 

-ikwz 
= e ° 6(x-x )6(y - y ), 

o 0 

where 

and 

2 2 
Y = (1-W ), 

+ + 
oloyU(X,Q ,W )+ik{Otu(x ,o ,w )+Ou(x,o,w)}=o 

~ . u(x,o ,w) - + 
v I oy -i k ( au ( x , 0 , w ) + (ru ( x , 0 , w )} = 0 

+ 
01 iJy ( x , 0 , w ) 

u(X,o ,w) = u(x,o ,w ) . 

(3.5) 

} (3 . 6) 

(3.7) 

A solution to the boundary value problem defined by the 

Equations (3 . 5) - (3.7) can be written in the form 

u(X,y,w) = ¢ (x,y,w) + ¢(x,y,w) 
o 

where ¢ (x,y ,w ) accounts for the inhomogeneous source 
o 

(3.8) 

term 

and ¢(x,y,w) is a solution of the homogeneous wave equation 

(3 . 7) . A suitable representation for ¢ and ¢ which satisfies 
o 

the radiation condition is given by 

(a/4i.)H(1){Yk i<x-x )2 + (y-
o 0 

co 
(a/4ni)f (l/n)ei[V(X-X o ) + n l y-yo l J dv 

- co 
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co 
(1/n)A(v)e~[vx+ny] ¢ = (1/2Tt~)J 

- co 
co 
(1/n)B(v)e~[~x-ny] = (1/2Tt~) J 

- 00 

-~kwz 

where a = e 
o 

and n 
2 

V 

dv; y>O 

dv ; y<O 

i s choosen s u c h 

I m (I y 
2 

k 2 - l~ 2 J > 0 for 1 I m v 1 < 1m (rk) . For a 

(3 . 10) 

(3 . 11) 

that 

uniquE' 

solution the edge condition (3 . 5) requires that A(v), B(v) 

Iv l -:1/2 as Il.'l ~ co . Su bstituting ( 3.11 ) - ( 3.13 ) into the 

boundary conditions (3 . 6) and (3 .7 ) and carrying out simpl e 

manipulation gives 

co 

J ~vx 
[A(v) + B(v»)e dl.J 0 ; x > 0 , 

-co 
co 

J [(A(v) - B(v)}/n] 
~vx 

E' dv = 0; x > 0, 
-co 

co J [A(v) + (k/n){aA(v) + ~B(v)}]eiVX dv 
co 

i.[v(x - x )+ny ) 

(3 .12 ) 

(3 .13 ) 

o 0 
+ (k/n)( a+~)}e dv, = 0, (3 . 1LJ) 

co 

J 
i.vx [ - B(v) - (k/n){aB(v) + ~A(v)}]e dv 

- co 

co i.[v(x -~ )+n~ ] 
+ (a/2)J{1 - (k/n)(a+~)}e dv,= o. ( 3.15 ) 

-00 

Adding and subtracting equations ( 3.14 ) and (3 .15 ) a nd 

putting 

e(v) = A(v) + B(v), (3 . 16) 

D(v) = A(v) B (v) , (3 . 17) 

the resulting expression combined with equations (3 .12 ) and 

(3.13) give the pair of coupled equations 
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00 . 

J C(v)e
LVX 

dv = 0; x ) 0 , 
-00 

00 

J ivx 
[D(v)/u]e dv = 0 ; x > 0 , 

-00 

OO[ - i.(vx -'Ily )] . 
J' 0 0 LVX 

-00 C(v)K(v) + (ak/'Il)(a+~)e e dv = 0; 

x < 0, 
OO[ -i (VX -'Ily )] . 

J' 0 0 LVX 
-00 D(v)L(v) + ae e dv = 0; x < 0, 

where 

K(v) = 1 + k(a + ~)/u 

L(v) = 1 + k(a P)/u 

(3.18) 

(3.19) 

(3 .20) 

(3.21) 

(3.22) 

(3.23) 

A solution of the equations (3.18)-(3.21) can be written in 

the form 

C(v) = ¢ (v), 
+ 

-i. (VX -'IlY ) 
C (v ) K ( v) + (a k/ u )( C( + (1) e 0 0 - ¢ (v), 

D(v)/'Il = lI-' (v) 
+ ' 

D(v)L(v) 
- i. (l.JX -uy ) 

o 0 
+ ae = lI.1_(V), 

(3.24) 

(3.25) 

(3.26) 

(3 .27 ) 

where the ± subscript denotes a regular analytic function 

as defined in chapter 2. 

The expressions (3 . 24) - (3.27) constitute two separate 

Wiener-Hopf equations . A similar set of equations have been 

discussed in chapter 2. Thus by means of the technique given 

in the chapter 2 these equations can be solved to give 

C(v) = ak(a + rn 
2ITi. K (v) 

+ 

00 

r 
-00 
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-i [vxo _(!rzkZ_t Z 
)yo] 

e dt, 

K_ (t )(irz k Z 
_ t

Z 
)(v - t) 

(3.28) 



D(v) = -:a=-~--"r-::k:---::----cl:--'> _ rco 

2rri L (l'» 
+ -co 

-i [VXo _C/y2k2 _t2 )y 0] 

e dt. (3.29) 

L (t)(lr-k - t)(v-t) 

Adding and subtracting equations (3.28) and (3.29) give A(l J ) 

and B(~.» 

A(v) = 

x (3 .30) 
-h 2 2 2 ( '{' It - t )(t-v) 

CD 

B(v) = J
.. [kC eI + rn 

( a/4rri ) K + C v) K _ ( t) 
-co 

-i [vxo -( ~/2 k2 _ t 2
)y 0] 

x e dt. (3.31) 

(!r2 k 2_ t 2 )(t_V) 

Substituting these values into equations (3.10) and (3 . 11) 

gives the total field as 

u(x,y,w) = (a/4i)H~1>{rki<x - XO)2 + (y - YO)2 } 

+ (a/8rr2)Sco Scoei[VX+(1r2k2_2.>2) I Y I -{vXo-(~/2k2_t2)yo}] 
-co -co 

x F(v,t)dtdv, (3.32) 

where 

F(v,t) = 1 [k(eI + ~) 
K (v)K (t) /222 /222 +-

-t( '{' k - v ) -tCr k - t )( t - v) 

+ Cir-k - v)(lr-k + t)Sgn(y) ] . 

L (v)L (t) 
+ -

(3 .33 ) 

36 



3.3 -- SOLUTION FOR PLANE WAVE INCIDENCE 

Without loss of generality we shall: assume y >O.In o 

expression (3.32) make the change of variables 

Yo = ro sineo ' 

the 

'rhe first term of the expression (3.32) represents ¢-o the 

incident point source. If we let ro~oo, we obtain using the 

asymptotic form of Hankel function (see Rawlins [6]) 

where 

- i.kwz 
a = e 

- i.k(xcose +ysine o 0 
e , (3.34 ) 

'rhus we obtain the solution for plane wave incidence by 

removing the source to infinity i.e. r ---+00 (for k real) and 
o 

evaluating the integral integrated in the point source (3.32) 

by a straight forward application of the method of stationary 

phase see Rawlins [23]. Hence for an incident plane wave 

where 

-i.kwz ,---

u{x,y .. w) -
o co [/2221 I ] 

e f G( ) i. vx + -tk r -v y d 
2ITi. V'&"o e v 

-00 

-i.kr(x coseo + y sine o ) 
+ e 

+ <-Irk - v)(IYk - yk COSBo)sgn(Y)} 

L (v)L (rk cose ) 
+ + 0 
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Thus the expression for diffracted field (as discussed in 

chapter 2) is given by 

iky(r + r ) - ikwz ° 0 
U(XJY~W) -

ie F( I Q I) 

where 

2n-;r- sine 
° 

x ---'---
[

a + (3 

y~ K (yk cose)K (yk cose ) 
+ + 0 

+ 
2(sine/2)(sine o /2) ]. 

L (yk cose)L (yk cose ) 
+ + 0 

cose + cose 
° Q = -fykr/2 

11 - w
2

• v -. -

sine F ( Q) 

equation (3.37) can be written as 

u(x,y,w) = C 
1 

iky(r + r ) - ikwz 
° ° e F( IQ I ) 

[
a + (3 x ---'-----

y~ K (rk cose)K (rk cose ) 
+ + 0 

+ 
2(sine/2)(sineo /2) ]. 

L (rk cose)L (yk coseo) 
+ + 

where 

C - -(i/2n) sine rr- . 
1 0 

(3.37) 

dt, 

( 3.38) 

(3.39) 

(3.40) 

The field u(x.y.z) can now be calculated by taking inverse 

Fourier transformation of (3.39). Thus the inverse Fourier 

transform of (3.39) gives 

ik[r(r + r ) + w(z - z )] 
e 0 °F( IQ I )dw 

r-ykr K (rk cose)K (yk cose ) 
+ + 0 

u(x.y,z) 
00 

- C
ii 

f 
-00 
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where 

and 

co 

+ C J 12 
-CO 

U(X ,. y , z) = C I 
11 1 

+ C I 
12 2 

C = 12 

2 
- W , c = k«()(+(n C 

11 2n l' 

ke-ir/ 2[ (2sine/2)(sineo/2)] 
2n C1 , 

ik[y(r + r ) + w(z - z )] 
I = J co e 0 0 F( \ Q \ ) 

1 co yYkY K (yk cose)K (yk cose ) 

I = 
2 

co 

J' 
-co 

+ + 0 

ik[y(r + r ) + w(z - z )] 
e I) 0 F( \Q \ ) 

YkY L (yk cose)L (yk cose ) 
+ + 0 

(3.41) 

(3.42 ) 

(3.43) 

dw. (3.44) 

dw. (3.45) 

Equation (3.42) gives the required field. To complete the 

problem we only need to calculate the integrals in (3.42) 

which is accomplished in the Appendix. 

where 

cose + cose 
o 
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Making use o f the resu l t 

the equation (A ) can be written as 
1 

2 r +t 2
_ 00 00 - W 

2 -ik[it (r + w{z z )] /..l ) + 

J J 
0 

o F(I GI) 
I - e 

-
2 

L ( kh /..l - 00 - w 
+ 

x dw dt. 

Consider the integral 

00 
2 

- W 

cose ) L ( kit 
2 2 - w cose 

+ 

I 
2 J 

-00 

e 

2 
- W 

d w. 

cose)L (kyfl - w
2 

cose ) 
+ 0 

By the substitutions 

w = c o sr,. z - z = R c o s y) . o 1 

P = R sinY). 
1 

2 
W - sinf,. 

R = i< z - z ) 2 + p2 
1 0 

I 
2 

takes the form 

00 ikR cos( f, - Y) 

I J f( f. ) 
:I. 

d f, • = e 
2 

- 00 

whe r e 

0) 

(A ) 
3 

(A ) 
4 

( A ) 
~ 

f( f, ) = - sin( /L (ksinr, cose)L (ksinr. cose ) . (A., ) + ,~ 0 r 

We apply the method of steepest decent to solve the integr al 
, 

I . For that we deform the contour of integration to pass 
2 

through the point of steepest decent. f, - II such that the 

major part of the i ntegrand is give n by the integra tion over 
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the part of the deformed contour near nJ with f(r.) slowly 

varying around it. Hence we can write 
( 1) 

12 = rrf(n) Ho (kR
1

) 

IT H ( 1 ) {k-i<: z _ z ) 2 + p2 }. P 
o 0 

c«z - z )2 + p2 }L (kr. cos8)L (kZ; cos80) 
o + + 

where 

Using (Ae ). (A
4

) can be rewritten as 

00 

ITf 

x 

H (1) {k-i<: z _ z ) 2 + (t 2 
o 0 

L (kf, cos8)L (kf, 
+ + 

2 
+r+r -I-') 

o 

If we make the substitutions 

t
2 ,fA 2 2 . h2 - A + + R sln u R -

+ r + r o 

cosB ) 
o 

dt. 
2 )2 - I-' 

2 -- -1 1 11 11 (z 

A - 2 
- r + r I-' • 1 0 

in A10 • we obtain 
( 1) 

2 )2 - I-' 

? z )- + 0 

00 H {kR coshu}~ 2sinhz u + A2 

I 
IT 

f 
0 1 1 1 1 1 

duo = - 2 Z 
E:: L (k( cosB)L (k( cosB 0) + + 

where 

J 
r. /R11 zsinhzu Z = + Ai jR11 coshu. 

E:: - -1 ..,{Z + 2A Z )I-'/R - sinh (I-' 
1 11 . 

The integral A can be solved asymptotically by 
11 
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1 

(Au) 

(A
1Z

) 

taking 



k R coshu » 1 . Therefore. we can replace the Hankel function 11 

by the first ter m of its asymptotic e xpression to give 

I = Z -{2kR 
11 

00 

J 
i kR l1 c oshu {(h ZsinhZu+A Z )+A }1/ Z 

e 11 1 1 

du 
L ( k( c ose)L ( k( c ose )-{cos hu 

+ + 0 

If we t a ke 

T = -(2kR sinh(u/2). 
11 

then 

i.kR - i.n/4 
_~ 11 

12 = - -y2n e 
00 

f 
. 2 
tT 

e f (T) dT. 
2 

where 

and 

f ( T ) 
Z [ 

/T2(T22 2 2 -y, + 2kR ) + A k + A k 11 1 1 
= 

(T + kRu )( T2 + 2kR
l1

) 

1 x 

r: = 

T R = I k( R12 - Ru )' 
12 

R = -A: z - Z )2 + (r + r { . 12 0 0 

An asymptotic expansion of I then follows by putting T 
2 

equal to the lower limit value in the non - exponential factor 

of the integrand plus the contribution from T = O. depending 
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it zero lies in the interval of integration . Hence 

i k R i k R - irr/4 
-I2rT u. & e 12 

I 
e 

I H( -& ) 
1 

F ( T
R = 2 -Ik 0 -Ik 12 

';Zrr(A + r +r ) 
1 0 

x 
';k(R + R)R L (kl; case)L (kl; cose ) 

12 11 12 + 2 + 2 0 

where 

e = s g n TR 1 
12 

1 if & < 0 
H( -& ) 

1 = 
0 i f e~ > 0 

1 

and 

1 x 
z-lk R 

11 
L (k( case)L (k( case 

+ 1 + 1 0 

r + r o r 
> 2 R r = A /R 

> 1 1 11 > 
12 

The integral I can be evaluated similarly. 
1 
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