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INTRODUCTION AND ABSTRACT 

A ~ing R is called regular if fo~ each a E R, there 

exists an element x E R such that axa = a. 

were int~oduced by von Neumann in 1936, 

Regula~ rings 

in o~de~ to 

cla~ify ce~tain aspects of operato~ algeb~as . Since then 

~egular ~ings have been ve~y extensively studied both for 

thei~ own sake, as well as fo~ the sake of thei~ links 

with ope~ato~ algeb~as. In . this thesis, we will be 

conce~ned with this impo~tant notion and some of its 

gene~alizations, f~om a purely algeb~aic point of view, in 

the contexts of semig~oups and semi~ings . We will 

dete~mine new cha~acte~izations of ~egula~, weakly ~egula~ 

and some of the othe~ ~elated classes of semigroups and 

semirings, using algeb~aic and homological techniques. We 

will also initiate the study of sheafs fo~ ce~tain classes 

of semig~oups and semirings. 

Th~oughout this thesis, which contains five chapte~s, 5 

will denote a semig~oup a nd S-systems a~e ~epresentations 

of S . Mo~eove~, R will denote a semi~ing and R-semimodules 

a~e non-subt~active gene~alizations of modules ove~ rings. 

Chapte~ 1 is of an introducto~y natu~e which p~ovides 

basic definitions and ~eviews some of the backg~ound 



material which is needed 

chapters . In chapter 2 , 

for reading 

we introduce 

the subsequent 

P-injective and 

divisible S-systems. We use these notions to construct an 

S-divisible S-system, Q(A), for an S-system A under some 

conditions . We also define and characterize von Neumann 

regular S-systems, and deduce several new 

characterizations of (von Neumann) regular monoids . In 

this chapter , we also study weakly regular monoids, and as 

a generalization of these monoids, we introduce the notion 

of normalS-systems . We show that an arbitrary monoid 5 is 

weakly regular if and only if each S-system is normal . In 

chapter 3 , we introduce the notion of a regular 

semimodule, which is analogous to the notion of (von 

Neumann) regular S-systems studied in chapter 2. We 

characterize regular semimodules in terms of certain 

restricted injectivity properties, and use this 

c haracterization to obtain new characterizations of 

regular semirings. We also examine semiring analogs of the 

notions of hereditary, semihereditary a nd PP-rings . As an 

application of our results in this chapter, we obtain a 

homological characterization of PP-semi rings . 

establish a characterization theorem for 

semimodules, which is analogous to the 

We also 

projective 

Classical 



Projective Basis Theorem for projective (ring) modules. In 

chapter 4, we define and characterize weakly regular 

semirings and study some properties of their prime ideal 

space. In chapter 5, we construct sheafs for classes of 

monoids and semirings, which include regular and weakly 

regular monoids and semirings. 
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CHAPTER 1 

FUNDAMENTAL CONCEPTS 

In this introductory chapter we shall define basic 

concepts of semig roups and semirings and review some of 

the background material that will be of value for our 

later persuits . For undefined terms and notations of 

semigroups , we refer to [11] and [25] . We also refer to 

[23] for basic terminology and results in semirings. 

1 .1 Basic concepts in semigroups 

A system (5 ,* ) consisting of a nonempty set 5, together 

with an associative binary operation * on 5 is called a 

semigroup. Hence forth we shall write x*y simply as xy, 

and usually refer to the binary operation as 

multiplication • on 5. If (5, . ) or more simply 5 is a 

semigroup with the additional property that multiplication 

is commutative, then S is called a cDmmutative semigrDup. 

S is called a monoid if 5 is a semigroup which contains an 

identity element. If S has no identity element then it is 

very easy to adjoin an identity element 1 to the set by 

defining 1 - s = s-l = s , for all s E 5 , and 1 . 1 = 1 . Then 
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5 u {1} becomes a semigroup wit h an identity element 1. We 

shall use the notation 51 with the following meaning : 

51 = {S, if S has an identity element 
5 U {1} otherwise 

and call 5 1 the sem1-g r oup bt - d f S b d- - -• 0 a1ne rom y a J01n1ng an 

identity element . If a semigroup with at least two 

elements contains a zero element 0 then 5 is called a 

semigroup with zero. If 5 has no zero element then it is 

easy to adjoin an extra element 0 to the set 5, by 

defining O-s = s-O = 0 and 0·0 = 0, for all s E 5 . This 

makes the set 5 U {O} a semigroup with zero element O. We 

shall use the notation 5° with the following meaning: 

50 = { 5 , if 5 has a zero element 
5 U {OJ otherwise 

a nd call 5° the semig roup obtained from 5 by adjoining a 

zero (if necessary). An element a of a semigroup 5 is 

called idempotent if 2 
a = a-a = a. 5 is called an 

idempotent semigroup (also called a band) if each element 

of 5 is idempotent. If (E,~) is a lower semi lattice , then 

E may be characterized as a commutative idempotent 

semigroup by defining the product of two elements to be 

their greatest lower bound . Thus for e , f E E, e ~ f if and 

only if ef = fe = e . A semigroup 5 is called right (le~t) 

cancellative if for all a,b,c in 5 , ac = bc ~ a = b (ca = 

2 



cb ~ a = b); S is called cancellative if it is both left 

and right cancellative . If A and B are subsets of a 

semigroup S, we write AB = {ab: a E A, b E B} = u {Ab: b E 

S} = U {as: a E A}. If a is an element of a semigroup S 

without an identity element, then as or Sa will not, in 

general, contain a. In this situation, we use the 

notations S i a for Sa u {a}, aS i for as u {a}, and S i aS i 

for SaS U Sa U as U {a} . Note that 1 aS i and SiaSi S a, are 

all subsets of S (which do not contain 1) . A non empty 

subset T of a semigroup S is called a subsemigroup of S if 

for all x,y E T, xy E T. Thus T is a subsemigroup if T2 = 

T·T S T. A subsemigroup T of a semigroup S is called a 

subgroup of S if T is a group. Recall that a semigroup S 

which has the property: as = S and Sa = S, for all a E S 

then S is a group in the usual sense. Thus a nonempty 

subset T of a semigroup S is a subgroup of S if and only 

if aT = Ta = T, for all a E T. A semigroup S is called a 

union of groups if each element of S is contained in some 

subgroup of S. If a is an element of such a semigroup S, 

then a E G, where G is a subgroup of S. An element of a 

semigroup S which commutes with every element of S is 

called a central element of S . The set of all central 

elements of S is either empty or a subsemigroup of S, and 

in the latter case, is called the center of S. Let A be a 
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subset of a semigroup S. The intersection of all 

subsemigroups of S containing A is a subsemigroup of S 

denoted by <A>. Clearly <A> contains A and is contained in 

every other subsemigroup of S containing A; it is called 

the subsemigroup of S generated by A. (A> may also be 

described as the set of all elements of S which are 

expressible as finite products of elements of A. If (A>=S 

then A is called the set of generators of S or a 

generating set of S. If A is finite, say A = {a ,a , ... a } 
.1 2 n 

then <A> = <a ,a , ••• a >. In particular, if A = {a}, 
1 2 n 

then 

<A> = <a> = 2 3 {a,a ,a , ••• }. <a> is called the cyclic 

subsemigroup of S generated by the element a. S is called 

cyclic if S = <a> for some a E S . 

A nonempty subset A of a semigroup S is called a right 

(left) ideal of S if AS £ A (SA £ A); A is a two-sided 

ideal, or simply, an ideal of S if A is both a right and 

left ideal. Clearly S is an ideal of S, and if S has a 

zero element, then (0) is an ideal of S. An ideal I of S 

different from these two ideals is called proper. The 

definitions of right (left) and two-sided ideals of S 

generated by a nonempty subset A of S are given in the 

usual manner. Note that the right ideal of S generated by 

A is A u AS = ASi and the two-sided ideal of S generated 

by A is A U AS U SA u SAS = SiASi. If A is a finite subset 

4 



1 1 
of S such that I = S AS , then I is a finitely generated 

ideal of S. A right (left or two-sided) ideal of S 

generated by one element set {a} is called a principal 

right (left or two-sided) ideal generated by a, and are 

denoted, respectively by R(a), L(a) and J(a). Thus R(a) = 

{a} U as = aS
1

, L(a) = {a} U Sa = Sia and J(a) = {a} U as 

U Sa U SaS = SiaSi. A semigroup S is called a principal 

right (left or two-sided) ideal semigroup if every right 

(left or two-sided) ideal in S is principal. 

Let Sand T be two semigroups with operation • and *. A 

function f: S ----~ T is called a semigroup homomorphism if 

f(a,b) = f(a)*f(b), for all a,b E S. Semigroup monomor-

phisms, . epimorphisms, isomorphisms and automorphisms are 

defined as usual. A relation p on a semigroup S is said to 

be right (left) compatible if for a,b in S, a p b implies 

that as p bs (sa p sb) for all s E S. A congruence on S is 

an equivalence relation that is both right and 

compatible. If p is a congruence on S then SIp denotes the 

set of all equivalence classes of S determined by p. If ap 

denotes the equivalence class of p containing the element 

a (a E S), then SIp can be made into a semigroup by 

defining (ap)(bp) = (ab)p; SIp is called the factor 

The function # 
p : semi group of S modulo p. S ---~ SIp 

defined by p#(a) = ap (a E S) is a (semigroup) 
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homomorphism. Let I be an ideal of a semigroup S. Define a 

relation p on 8 by a p b (a,b E 8) to mean that either a=b 

or else both a and b belong to I . Clearly p is a 

congruence on 8, called the Rees congruence modulo I. The 

equivalence classes of 8 modulo p are I itself and every 

one element set {a} with a E S\I. We shall write S/I 

instead of 81p, and call 8/1 the Rees factor semigroup of 

S modulo I. 

Let 8 be a semigroup without zero. Then 8 is called 

simple if it has no proper ideals. A semigroup S with zero 

is called O-simple if (0) and S are the only ideals of S, 

and 8 2 ~ (0). A simple semigroup can be converted to a 

O-simple semigroup by adjoining a zero element. However, 

not all O- simple semigroups arise from simple semigroups 

in this way. It can be shown that a semigroup S is 

O-simple if and only if SaS = S, for every a E S\{O}. 

Equivalently, for every a,b E S\{O}, there exist x,y E S 

such that xay = b (see [25,p.58]). Hence it follows that a 

semigroup 8 is simple if and only if SaS = S for all a E 8. 

Equivalently, 8 is simple if and only if for all a,b E S, 

there exist x,y E8 such that xay = b. A semigroup 8 is 

right simple if and only if as = S, for all a E 8. Left 

simple semigroups are defined analogously. Thus a 

semigroup is a group if and only if it is both right and 
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left simple . 

An element x of a semigroup S is said to be regular if 

there exists an element x' E S such that xx'x = x; S is 

called a regular sem~group if every element of S is 

regular (cf.[ll]). An element x' E S is said to be an 

inverse of XES if and only if xx'x = x and x'xx' = x' S 

is called an ~nverse semigroup if every element of S has a 

unique inverse. A semigroup S is an inverse semigroup if 

and only if S is a regular semigroup and any two 

idempotent elements of S commute with each other 

(cf.[11,p.28]). 

1.2 S-systems and S-homomorphisms 

Let S be a semigroup. A right S-system Mover S is a 

nonempty set M together with a map MxS ---~ M, such that 

if ms denotes the image of (m,s), then for all m E M and 

s,t E S, we have m(st) = (ms)t. We write M 
s 

to indicate 

that M is a right S-system. Analogously, we define a left 

S-system M, written as M. A right S-system M is said to 
s s 

be un~tary if S is a semigroup with an identity 1, such 

that m1 = m, for all m E M. An element d E M is called a 
s 

fixed element of M if ds = d for all s E S. An S-system 

may have several fixed elements, and it may also have no 
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fixed element. Let D denote the set of all fixed elements 

of M. A right S-system M is called centered if S = SO and 

IDI = 1 . Thus m is centered if and only if there is a 

fixed element (necessarily unique) denoted by e su~h that: 

(i) es = e, for all s E S 

(ii) mO = e, for all m E M and 0 is the zero of S 

e will be called the zero of M. A nonempty subset N of a 

right S-system M is called an S-subsystem of M if NS £ N, 

that is, ns E N, for all n E Nand s E S. An equivalence 

relation p on an S-system is called a (right) congruence 

if a p b (a,b E M) implies as p bs for all s E 5, that is, 

(a,b) E P implies (as , bs) E p . The set of all congruences 

on M form a lattice with universal congruence denoted by 
s 

wand identity congruence ~ • Let p be a congruence on M 
MM . S 

then the set of equivalence classes of M determined by p 

is denoted by Mlp. Then Mlp is a right S-system if we 

define (mp)s = (ms)p for m E M and s E 5; Mlp is called 

the factor S-system of M by p. 

of M/p is ep. 

If M is centered, the zero 
S 

A function f: M ~ N between right S-systems M and 
S S 

N is called an 5-homomorphism if for each m E M and s E 5, 

f(ms) = f(m)s. S-monomorphisms, 5-epimorphisms, S-isomor-

phisms and S-endomorphisms are defined as usual. The class 

of right (left) S-systems together with S-homomorphisms 
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form a category which will be denoted by ACT-S (S-ACT) . An 

s-system B is a retract of an S-system A if there exist 
s s 

S-homomorphisms ~: A ~ B and ~: B ---~ A such that ~~ = 

1 . If this is the case then ~ is necessarily epic and ~ 
B 

is necessarily monic. If A and Bare S-systems then 
s s 

the 

set of all S-homomorphisms from A to B is denoted by 

Hom (A,B). Let H = Hom (A,A). Then H is a monoid and A is 
s s 

an (H,S)-bisystem , that is A is a right S-system which is 

also a left H-system in which the elements of Hare 

regarded as left operators . If B is an S-subsystem of an 

S-system A then B determines a congruence p on A as 

follows: For a,b E A, a p b if and only if a = b or both a 

and b belong to B. In this case we write AlB instead of 

Alp and call it the Rees factor S-system of A by B. A 

right S-system M is called totally irreducible if M 
s 

e 

and the only right S-congruences are the universal 

congruence wand the identity congruence L • Thus if M 
M M S 

is totally irreducible, then M has no proper S-subsystem. 
s 

An S-system M is called cyclic if there exists x E M such 

that M = xS u {x} where xS = {xs: s E S}; x is called a 

generator of M • M is called 
s 

strictly cyclic if 

exists x E M such that M = xS and in this case x 

there 

is a 

strict generator of M • If S = S1 then of course the 
s 

difference between the strictly cyclic and cyclic 

9 



disappears. On the other hand , if M is cyclic but not 

strictly , s ay , M = x u xS with x not in xS, then x is the 

only generator of M. If M is any cyclic S-system then it 

is easy to show that M is isomorphic to Sip, where p is a 

right congruence on M. The definitions of a finitely 

generated S-system or more generally, a generating set for 

an arbitrary S-system are given in the usual way 

(cf. [11, Chapter 11]). Let S be a semigroup and let 

{ Mi : i E I} be a family of right S-systems, then the 

product nM and the coproduct 11 M, are isomorphic, 
L 

i. EI i.EI 

respectively, to the cartesian product and the disjoint 

union of the sets M with a suitable action of S. 
i 

Moreover, in the category ACT-S, epimorphisms are 

surjective and monomorphisms are injective . Let 

be a family of right S-systems and let every 

contain a fixed one element subsystem (that is, 

{Mi : i 

M 
i 

E I} 

(i.EI) 

the zero 

element) e,. By their direct sum eM" we mean the subset 
L L 

of IT M, consisting of all (m,) E n M, for which 
iE! 

L L 
iEI 

e
i
} is finite and the respective zeros of the M' , S 

L 

m, 
L 

are 

identified. Then eM, is a right S-system under the 
, L 
LEI 

componentwise multiplication. 

10 



1.3 Free, projective and injective S - systems 

In 1967, Berthiaume [8] introduced the concept of an 

injective S-system by generalizing the notion of an 

injective module over a ring (cf. Rotman [42]). He proved 

that the category of S-systems has enough injectives. 

Injective S-systems and their various generalizations were 

later investigated by many authors (see, for example, [1,3 

15,16,17,18,19,21,44], among others). On the other hand, 

following Berthiaume"s paper on injective S-systems, many 

papers have appeared extending other homological notions 

from the category of modules to the category of S-systems. 

Thus, for example, the concepts of free, projective and 

flat S-systems have been investigated among others . In 

this section we define the concepts of free, projective 

and injective S-systems and review some of their basic 

properties . An S-system F is said to be Tree provided 

there exists a subset X of F such that each element y in F 

has a unique representation y = xs, X E X, S E S' , x is 

called a basis for F. A (right) S-system P is called 

projective if for every S~epimorphism g: M ---~ Nand 

every S-homomorphism h: P ~ N, there exists an 

S-homomorphism k: P ---~ M such that gk = h. 

Diagrammatically, P is projective if and only if the 

11 



diagram is commutative, that is, gk = h . 

We list some of 

P 

h 

v 

M ------+N 
g 

the basic properties of free and 

projective S-systems [cf. 31]. 

(1) Every free S-system is projective, and every retract 

(2) 

(3 ) 

(4) 

of a projective S-system is projective~ 

Every S-system is the epimorphic image of a free 

S-system. 

An S-system is projective if and only if it is a 

retract of a free S-system. 

A coproduct II p. of S-systems is projective if 
t 

i.EI 

only if p. is projective for each i. E I. 
t 

and 

(5) Every right ideal of S generated by an idempotent is 

projective. 

Dual to that of projective S-system is the notion of 

injective S-system. A right S - system A is called injective 

if any S-homomorphism C ----+ A can be extended to 8 for 
s s s 

any 8 containing C • Thus an S-system A is injective if 
s s s 

and only if for any S-monomorphism ~: C ----+ Band 
s s 

S-homomorphism ~: C ----+ A , there is an S-homomorphism 
s s 

/-l: B ----+ A such that /-l~ = ~. s s 
Clearly a retract of an 

12 



injective S-system is injective. An S-system A is called 
s 

weakly injective if fo .... any ....ight ideal K of 5 and any 

S-homomo .... phism 1': K ---+ A, the .... e exists an element a E A 

such that 1'(s) = as fo .... all s E K. In .... ing theo .... y7 it is 

well-known that weakly injective R-modules ove .... a .... ing R 

a .... e injective in the usual sense. Weakly injective 

S-systems 7 howeve .... , need not be injective (see Be .... thiaume 

[8]). It is howeve .... t .... ue that injective S-systems a .... e 

weakly injective [Be .... thiaume 8]. Let A be an S-subsystem 
s 

of a .... ight S-system B. Then A is large (0 .... essential) in 
s 

Band w .... itten as A S B if and only if fo .... any S-system 
s s s 

C and any S-homomorphism ¢: 8 ---+ C with .... est .... iction 
s s s 

to A injection 7 is itself an injection. If A 
s 

S B , 
s 

then 

8 is also said 
s 

to be an essential extension of A . 
s 

Be .... thiaume showed that an S-system A is injective if and 

only if A has no p .... ope .... essential extension [8, Thm. 9]. 

He also showed that eve .... y S-system A has a maximal 

essential extension which is injective and unique up to 

isomo .... phism ove .... A [8 7 Thm. 10]. 
s 

extension of an S-systyem A 
s 

Any maximal essential 

is called an inJective 

envelope (0 .... injective hull) of A . It is unique up to 
s 

isomo .... phism ove .... A 
s 

and is denoted 

Fu .... the .... mo .... e, E is the injective envelope 
s 

by 

of 

E 
s 

A 
s 

only if E 
s 

is a maximal injective extension 

13 
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Berthiaume [8] also showed that every S-system can be 

embedded into an injective S-system and that an S-system A 

is injective if and only if it is a retract of every 

extension. 

1.4 Semirings: Basic definitions and examples 

A semiring is a set R together with two binary 

operations + (addition) and (multiplication) such that 

(R , +) is a commutative semigroup, and (R, • ) is a 

(generally) non commutative monoid with 1 as its identity 

element : connecting the two algebraic structures are the 

dist ributive laws, a(b+c) = ab + ac and (a+b)c = ac + bc, 

for all a,b,c E R. We shall always assume that (R,+,.) has 

an absorbing zero 0, that is, a + 0 = 0 + a = a and a"O = 

O"a = 0 hold for all a E R (cf. [23]). Thus all rings with 

identity elements are semirings. A natural example of a 

semiring which is not a ring is the set O~ of non negative 
o 

integers with usual addition and multiplication . Moreover, 

if (L , V , A) is a distributive lattice with 0 and 1, then L 

is a semiring with + = v , and • = A . In particular, the 

unit interval [0,1] of real numbers is a semiring with + = 

max and , = min or, with + = min and . = max or, even with 

+ = max and • = usual product of real numbers . A semi ring 
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R is c::ommutative if multiplication in R is commutative; R 

is called right (left) c::anc::ellative if multiplication in R 

is right (left) cancellative , that is, ax = bx (xa = xb) 

implies a = b , for all a,b,x E R. A nonzero element a of 

a semiring R is called right zero divisor if there exists 

a nonzero element b of R satisfying ba o. Left zero 

divisors are defined similarly. By a zero divisor we shall 

mean one which is both a right and a left zero divisor. A 

commutative semiring in which each nonzero element has a 

multiplicative inverse is called a semifield. Following a 

classical construction, it can be shown that a commutative 

cancellative semiring can be embedded in a semifield [46]. 

A function ¢: R ---~ R between two semirings Rand R is 

a (semiring) homomorphism if: ¢(x + y) = ¢(x) + ¢(y) and 

¢(xy) = ¢(x)¢(y) for all x,y E R. The concepts of monomor

phisms, epimorphisms , isomorphisms and endomorphisms are 

defined as usual. A subset I of a semiring R is a subsemi

ring of R if I is a semi ring under the operations of R; I 

is a right (left) ideal of R if for a,b E I and r E R, 

a + bEl and ar (ra) E I; I is a (two-sided) ideal if I 

is both a right and left ideal of R. A right (left or 

two-sided) ideal of R is princ::ipal (finitely generated) if 

it is generated by a single (finitely many) element(s). A 

principal right ideal of R generated by an element a will 
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be denoted by <a> = aR = {ar: r E R} . The sum and product 

of ideals of a semiring are defined as in the case of 

rings. A direct summand of a semiring R is a (two-sided) 

ideal J for which there exists an ideal K, called a 

cosummand of J such that each x E R can be written 

uniquely in the form x = a + b, with a E J, b E K. An 

ideal J is called complemented (uniquely complemented) if 

there exists an (a unique) ideal K such that J n K- (0) 

and J + K = R. It was shown by Cornish [12, Thm. 2.5] that 

for semirings with 1 and an absorbing, the notions of 

direct summand, complemented and unique complemented 

ideals are all equivalent. A right (left or two-sided) 

ideal I of a semiring R is called a right (left or 

two-sided) k-ideal provided that a, a+x E I implies x E I 

(cf. [34]).The multiples of 2 and the multiples of 3 are 

k-ideals of the semiring D~ . If I is an ideal of a semi-
0 

ring R, and * I = {a E R : a + x E I for some x E I}, then 

1* is a k-ideal generated by I. Moreover, if ¢: R ---+ R 

is an epimorphism between semirings R and R then for each 

right (left or two-sided) k-ideal I of R is a 

right (left or two-sided) k-ideal of R, and ker ¢ = {aER: 

¢(a) = o} is a k-ideal of R [34]. 

Let I be a two sided ideal of a semiring R . We define a 
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relation "- on R as follows: for a, b in R, a ... b if and 

only if there exist x 1,X 2 
in I such that a + x = b + x . 

1 2 

Then ... is a congruence on R. The relation ... is called 

Bourne's congruence relation on R . The set of all 

congruence classes determined by ... will be denoted by R/I. 

The set R/I admits the structure of a semi ring under the 

following rules of addition and multiplication: 

[a] + [b] = [a+b] 

[a] • [b] = [ab] 

The congruence class [x], where x e I, is the zero element 

of R/I and [1] is the identity of R/I. R/I is called the 

Bourne factor semiring of R modulo I [23]. Generalizing 

the notion of regular rings (cf. Rotman [42]), a semiring 

R is called regular if for each x E R, there exists a E R 

such that xax = x. This class of semirings have been 

investigated by many authors (see, for example, [23,26,47, 

56,57], among others). 

1.5 R-semimodules and R-homomorphisms 

Let R be a semiring with an identity element 1 and an 

absorbing zero o. An additively written commutative 

semigroup M with a neutral 0 is a right R-semimodule, M , 
R 

if there is a function ~: MxR ---4 M such that if ~(m,r) 

17 



is denoted by mr, then the following conditions hold : 

(1) (m + m')r = mr + m'r 

(2) mer + r') = mr + mr' 

(3) m(rr') = (mr)r' 

(4) m-1 = m 

(5) O-r = moO = 0 , for all r,r' E Rand m, m' E M (cf . 

[23,p.138], [54]). 

One can similaly define a left R-semimodule M. 
R 

A 

semiring R is a right semimodule over itself which will be 

denoted by R • A subsemimadule N of a right R-semimodule M 
R 

is a subsemigroup of M such that nr E N for all n E Nand 

r E R. Thus subsemimodules of R (R) are the right (left) 
R R 

ideals of the semiring R . Let S be a subset of a right 

R-semimodule M. By M we denote the set of all elements of 
o 

the form E sr (r E R) such that all but a finite number 
s s 

sES 

of terms in the sum are zero i.e. r = 0 except for a 
s 

finite number of s E S. Then M is an R-subsemimodule of 
o 

M, containing S. M is called the subsemimadule generated 
o 

by S. Symbolically, we write M = <S). If <S) = M, then M 
o 

is said to be generated by S. If S is a finite subset of M 

such that M = <S>, then M is called finitely generated. In 

particular, if lS I = 1 and M = <S) then M is called 

cyclic. It can be easily verified that M is cyclic if and 

only if M = xR = <x> for some x E M. 
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A function f : M ---~ M between right R- semimodules M 

and M is a right R-homomorphism if: 

(1) f (m + m') = f (m) + f (m' ) , 

(2) f(mr) = f(m)r, for m,m' E M and r E R. 

Let A and B be right R-semimodules . A is called a 

retract of B if there exist R-homomorphisms g : A --. B 

and p: B ---~ A such that pog = 1. The set of all 

R-homomorphisms from M to M is denoted by Hom (M,M ). By 
R R R 

End (M) we shall mean the set of R-endomorphisms of M. 
R 

Using standard arguments, it can be shown that for each 

right R-semimodules M, End (M) is a semiring. 
R 

1.6 Free, projective and injective semimodules 

Let R be a semi ring and let M be a right R-semimodule. 

A subset 5 of M is called linearly independent if E sA. = 
s 

sES 

E s~ implies A. = ~ for all s E 5 and A.,~ E R. 
s s s s s 

M is 
sES 

called a free R-semimodule if M has a linearly independent 

generating subset S. In this case, S is said to be a basis 

of M. If M is a free R-semimodule with a basis S, then 

every element of M is uniquely written as E sA.. For any 
s 

sES 

set S, there exists a free right R-semimodule with 5 as a 

basis [48]. Let A and B be R-semimodules and let f:A---~B 
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be an R-homomorphism. Then ker f = {a E A: f(a) = o}, 1m f 

= {b E B: b + f(a) = f(a' ), for some a,a' E A} and f(A) = 

{b E B: b = f(a) for some a E A}. We call them kernel, 

image and proper image of f, respectively. In general, 

f(A) £ 1m f £ B. We shall say that f is i-regular (image-

regular) if f(A) = 1m f; f is called k-regular (kernel-

regular) if f(a) = f(a') implies a + k = a' + k' for some 

k,k' in ker f; f is called regular if f is both i-regular 

and k-regular [48] . Furthermore, f is an inJection if 

f(a) = f(a') implies a = a'; a surJection if b E B implies 

b = f(a) for some a E A; and a biJection if f is both an 

injection and a surjection. For an R-homomorphism 

f:A ---~ B and a right R-semimodule P, the induced R-homo-

morphism: f : Hom (P,A) ---~ Hom (P,B) is defined by f.(¢) 
• R R 

= fo¢, where ¢ E Hom (P,A) . 
R 

A right R-semimodule P is 

called proJective if 

(i) for each surjective R-homomorphism f: A ---~ B, the 

induced map f.: HomR(P ,A ) ---~ Hom (P ,B) 
R 

is surjective, 

(ii) f. is k-regular whenever f is k-regular [49]. 

The following results are due to M.Takahashi [49] . 

Proposition 1.6.1 ([49] , P roposition 1.3, p. 84) 

Every free right R-semimodule is projective. 
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particular, R is projective. 
R 

Proposition 1.6.2 ([49] , Theorem 1.9 , p . 86) 

A right R-semimodule P is projective if and only if P 

is a retract of a free R-semimodule . A retract of a 

projective R- semimodule is projective. 

A right R-semimodule E is injective if and only if 

given a right R-semimodule M and a subsemimodule N, any 

R-homomorphism from N to E can be extended to an 

R-homomorphism from M to E. In ring theory it is well 

known that if R is a ring then any right R- module is 

contained in an injective right R-module [42]. This, 

however , is not true for arbitrary semirings. It was shown 

by B.Banascewski that if R is an entire, cancellative, 

zero sum free semiring then the only injective 

R-semimodules is {O} [23, Proposition 15.17, p . 178] . In 

particular, there are no non zero injective semimodules 

over the semiring of non - negative integers . Injective 

semimodules over special classes of semirings have been, 

however, investigated by some authors (see Golan [23] , for 

references to this subject) 
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CHAPTER 2 

CHARACTERIZATIONS .OF MONOIDS BY P-INJECTIVE 

AND NORMAL S-SYSTEMS 

In this chapter we introduce the notions of P-injective 

and divisible S-systems and use these notions to construct 

an S-divisible S-system Q(A) from an S-system A under some 

conditions. We define and characterize regular and von 

Neumann regular S-systems in terms of certain relative 

injectivity properties. As an application of our result, 

we obtain characterizations of PP monoids and von Neumann 

regular monoids defined in the sequel . These 

characterizations are similar to those found in [15] for 

hereditary and semihereditary monoids . We also study 

weakly regular monoids . Moreover, as a generalization of 

these types of monoids, we introduce the notion of normal 

S-systems and characterize weakly regular monoids by the 

property that each S-system is normal. Throughout this 

chapter S will denote a monoid and all S-systems are 

unitary right S-systems. 
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2.1 P-injective and divisible S-systems 

We begin with some definitions . 

Definition 2 . 1 . 1 Let M be a fixed rig ht S-system . An 

S - system Q is called PM- injective if eac h S-homomorphism 

(that is, right S-homomorphism) f r om a cyclic S- subsystem 

as (a E M) of M to Q extends to an S-homomorphism from M 

to Q. Thus, Q is called a P- injective S-system if Q is 

PS-injective [35] . An S-system all of whose quotient 

S-systems are PM-injective will be called a completely 

PM-injective S-system. Completely P-injective S - systems 

are defined analogously . 

Definition 2.1.2 Let S be a monoid and Q an S-system. An 

element x of Q is said to be S-divisible in Q if, for 

every a E S, there exists y E Q such that x = ya. Q is 

S-divisible if Qa = Q for all a E S . From t h is definition 

it follows that a monoid S is a group in the usual sense 

if and only if S is S- divisible . An S-system Q wi ll be 

called completely S-divisible if and only if every 

quotient S- system Q of Q is S- divisible . 

Proposition 2 . 1 .3 If Q is (completely) S-divisible then 

Q is (completely) P-injective . 
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Proof Suppose that Q is S-divisible. To show the 

P-injectivity, let as (a E S) be any principal right ideal 

of Sand ¢: as ---~ Q be an S-homomorphism. Then ¢ is 

determined by the element ¢(a) = x E Q, that is, ¢(as) = 

xs for all s E S. Since Q is S-divisible, there exists, an 

element y E Q such that x = va. Define If': S ---~ Q by 11'(1) 

= y, that is, 1I'(s) = ys for all s E S. Then, we have 1I'(as) 

= vas = xs = ¢(as) for s E S. This shows that 11' is an 

extension of ¢. Thus Q is P-injective. The proof of the 

parenthetical version is now immediate. 

Proposition 2.1.4 If A is a retract of an S-divisible 

S-system Q, then A is S-divisible. 

Proof Let p be the retraction and q the coretraction such 

that poq = 1 • To show that A is S-divisible, let x E A 
A 

and a E S. Then q(x) E Q. Since Q is S-divisible, there 

exists, y E Q such that q(x) = va. Then 

x = poq(x) = p(ya) = p(y)a and p(y) E A. 

This shows that A is S-divisible. 

Definition 2.1.5 Let A be a right S-system. A is right 

S-cancellative if A has the following property: 
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xs = x's for X,X'E A a n d s E S ~ X = x'. 

Thus, S is rig h t cancellative if is rig ht 

S-cancellative. Duall y , A is left ~-cancel l ati ve if A has 

the following p r operty : 

xs = xs' fo r x E A and S , S' E S ~ S = s' . 

Thus , S is left cancellative if S is left S-cancellative , 

that is, S is left cancellative as a left S-system . 

Proposition 2 . 1 . 6 If A is a retract of a r ight 

S-cancellative (left B-cancellative) S-system B , then A is 

right S-cancellative (left A-cancellative) . 

P roof Let p be t he re t ract i on a nd q the c o re t ract i on such 

t hat poq = 1 . Let xs = x ' s for X,X ' E A a nd s E S. 
A 

q ( xs ) = q(x' s). this implies that q(x)s = q ( x' ) s. 

q( x ) = q ( x ' ) , sin ce B is S-cancellative. As poq 

t he r efor e , p(q(x» = p(q(x'» ~ x = x ' Hence, 

= 

Then 

Thus, 

1 , 
A 

A is 

S - cancellative . Simil a rly , if xs = xs' , then q(xs) = 

q(xs' ) . This implies that q(x)s = q(x)s' . But , B is left 

B-cancellative , therefore , s = s' . Hence , A i s left 

A- cancellative . 

P r oposition 2 . 1 . 7 For a left cancellative monoid S , the 

following assertions are equivalent : 
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(1) Q is a (completely) P-injective right S - system, . 

(2) Q is a (completely) S-divisible right S-system. 

Proof (2) ~ (1) : This follows from Proposition 2.1.3. 

(1) ~ (2) : Let x E Q and a E S. Define a map ¢ : as ---~ Q 

by ¢(as) = xs for all s E S. Since S is left cancellative, 

¢ is a well-defined S-homomorphism. Since Q is 

P-injective, there exists, an extension ~ from S to Q. 

Then x = ¢(a) = ~(a) = ~(1a) = ~(1)a and ~(1) E Q. This 

shows that Q is S-divisible. 

Proposition 2.1.8 

equivalent. 

The following assertions are 

(1) All right S-systems are S-divisible, 

(2) All right ideals of S are S-divisible, 

(3) S is divisible, 

(4) S is a group , 

(5) All right S-systems are P-injective, 

(6) S is P-injective . 

Proof (1) ~ (2) ~ (3) are clear. (3) ~ (4) : Let a be an 

element of S. Then, as Ss is divisible, there 

element b of S with 1 = ba . Thus, a is left 

exists, an 

invertible . 

Hence a is invertible. This shows that S is a group. 
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(4) ~ (1): Let Q be a right S-system. Let x E Q and a be a 

non zero element of S. From (4), there is an element b E S 

with 1 = ba. Then, x = xl = x(ba) = (xb)a. Hence, Q = Qa. 

Hence, Q is S-divisible. Thus, (1) if and only if (2 ) if 

and only if (3) if and only if (4). 

Now, suppose that S is a group, and so, in particular, 

cancellative. Hence , by Proposition 2.1.7, (1) if and only 

if (5) and ( 3 ) if and only if (6) • This proves the 

proposition . 

Next, we will construct an S-divisible S-system Q(A) 

from a right S-systemA under some conditions. 

Consider the set AxS = {(x,a) :x E A and a E S}. On this 

set define S-action by (x,a)s = (xs,a) for all S E S. 

Then, AxS, together with this S-action, is a right 

S-system which we shall denote by Q(A). Consider a 

relation = on Q(A) defined by 

(x ,a ) = (x' ,a ') if and only if xa' = x' a. 

Then, we have, 

Lemma 2.1.9 If S is a commutative monoid and A is a 

right S-cancellative S-system, then, the above relation 

is an S-congruence on Q(A). 
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Proof By definition, the relation is reflexive and 

symmetric. To show the transitivity, suppose that 

( x ,a) == (x' , a') and (x', a') == (x", a") for x, x' ,x" E A 

and a,a' ,a" E S . Since, by assumption, xa'= x'a and x'a" = 

x"a' and S is being commutative, we have 

xa"a'= xa'a" = x ' aa " = x'a"a = x"a'a = x"aa' 

Thus xa"a'= x"aa' . Since A is right S- cancellative, we 

have xa" = x"a. This shows that (x,a) == (x",a"). 

Finally, compatibility with S follows directly from the 

definition and commutativity of S. Thus, the relation == is 

an S- congruence on Q(A). 

By the above lemma, we may construct a quotient right 

S-system Q(A)/== which will be denoted by Q(A). For each 

element (x,a) E Q(A), we shall denote by (x,a) the 

corresponding element of Q(A). Moreover, the S-action on 

Q(A) is defined by 

(x,a)s = (x,a)s = (xs,a) for, s E S. 

Proposition 2.1.10 Let S be a commutative monoid and A a 

right S-cancellative S-system. 

properties: 

Then Q(A) has following 

(1 ) Q(A) is S-divisible with A considered as an 

S-subsystem of Q(A). 
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(2) O(A) is right S-cancellative. 

(3) For every (x,a) E O(A), (x,a)a = (x,1) . 

Proof ( 1 ) Define q:A---~O(A) by q(x) = (x,1). Then q is 

injective. Thus, we may consider A as an S-subsystem of 

O(A). Let (x,a) E O(A) and s E S. Since 5 is commutative, 

xas = xsa. This shows that (x,a) = (xs,as) and (x, a) = 

(x,as)s . This means that O(A) is S-divisible. 

(2 ) Suppose that (x ,a )s = (x' ,a ' )s . Then, (xs,a) 

(x's,a'). Thus xsa'= x'sa. Since 5 is commutative, xa's = 

x'as. Since A is right S-cancellative, we have xa'= x'a. 

This means that (x,a) = 

S-cancellative. 

(x',a'). Hence, O(A) is right 

(3) For every (x,a) E O(A), (x,a)a = (xa,a) = (x,1). 

Corollary 2.1.11 Let S be a commutative and cancellative 

monoid. Then, 0(5) is S-divisible and 5 £ 0(5). 

In this case, 0(5) is a commutative group with the 

following multiplication: 

(b ,a ) . (b',a') = (bb',aa') 

Remark In this case, 0(5) is the well-known classical 

construction from a commutative and cancellative monoid s. 
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Proposition 2.1.12 Let S be a commutative monoid and A a 

right S-cancellative S-system. 

assertions are equivalent: 

Then, the following 

(1) A is S-divisible, 

(2) A is a retract of Q(A). 

Proof (2) ~ (1) : This follows from Proposition 2.1.4, 

since Q(A) is S-divisible . 

(1) ~ (2) : To define a retraction p:Q(A)--~A, let 

(x,a) E Q(A). Since A is S-divisible, there exists, YEA, 

such that, x = ya. Since A is right S-cancellative, y is 

unique. Then, we define p by p(x,a) = y for dll (x,a) E 

Q(A). Now, suppose that (x,a) == (x' ,a') with x = ya and 

x'= y'a' . Since, xa'= x'a and yaa'= y'a'a therefore, 

yaa'= y'aa', by the commutativity of S. Also, since A is 

right S-cancellative, therefore, y = y'. Thus, the map p 

is well-defined. To show that p is an S-homomorphism, let 

p(x ,a ) = y with x = ya , and p(xs ,a ) = y' with xs = y'a. 

Then, yas = y'a. Since S is commutative, we have ysa 

y'a. Since A is right S-cancellative, it follows that y'= 

ys. Hence, 

p«x,a)s) = p(xs,a) = y'= ys = p(x ,a )s . 

This shows that p is an S-homomorphism. Let q:A--~Q(A) be 

the inclusion defined by q(x) (x,l) . Then, poq(x) = 
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p(x,l) = x because x = xl . 

retraction o f Q ( A). 

This shows that A is a 

Corollary 2 . 1 . 13 Let S be a commutative and cancellative 

monoid . Then the following assertions are equivalent: 

(1) S is a commutative group. 

(2) S, considered as an S-system , is P-injective . 

(3) S, considered as an S-system, is S - divisible . 

(4) S is a retract of Q(S) . 

Finally , we will prove the following universal property 

for Q(A) . 

Theorem 2.1.14 Let S be a commutative monoid and A a 

right S-cancellative S-system. Then, there exist an 

S-system A and an S-homomorphism f : A ~ A satisfying 

the following four conditions . 

(1) f is injective. 

(2) Each element of f(A) is S-divisible in A. 

(3) A is right S-cancellative . 

(4) For each Y E A, there exist , a E Sand 

that, y a = f(x) . 

X E A, 

If A' and f' satisfy conditions ( 1 ) through (4) , 

there exists a unique S-isomorphism ¢ : A ---+ A' , 
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that , f'= cpof . 

Proof Since Q(A) satisfies conditions (1) through (4) , 

we need only to prove the last part. To define a map 

¢ : A ---+ A' , let y be any element of A. By condition (4) , 

there exist, a E 5 and x E A, such that, ya = f ( x ) • For 

f' (x) E A' and a E 5, there exists y'E A' , such that, y'a 

= f' (x), by condition (2) • 

Now, let ya'= f(x') and y"a'= f' (x') be another 

expression. Then, yaa'= f(x)a'= f(xa') and ya'a = f(x')a = 

f(x'a) . Hence , we have , xa'= x'a by commutativity of 5 and 

injectivity of f. It follows that 

y' aa' = f' (x)a' = f' (xa') = f' (x' a) = f' (x' )a = y"a' a . 

By commutativity of 5 and right 5-cancellativity of A' we 

have y'= y". This shows that y'E A' is uniquely determined 

from YEA by the rule: ya = f(x) and y' a = f' (x) 

Thus, we may define a map ¢: 

f' (x), for all YEA. 

A ---+ A' by ¢(y)a = 

To show that ¢(ys) = ¢(y)s, let ¢(y) = y' and ¢(ys) = 

y". Since ya = f(x), ysa = yas = f(xs). Therefore, y"a = 

f' (xs) = f' (x)s = y'sa . Since A' is right 5-cancellative, 

y" = y's. Thus , we have an 5-homomorphism ¢: A ---+ A'. By 

the definition of ¢ we may easily check 

5-isomorphism such that f' = ¢Of. 
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Finally, suppose that f'= ¢'of and ya = f ( x ) • Then, 

¢' (y)a = f' (x) = ¢(y)a. Since A' is right S- cancellative, 

we have ¢' (y) = ¢(y). This establishes the uniqueness of ¢ 

with the property that f'= ¢of. 

Remark If A satisfies conditions (1) through (4), then A 

is S-divisible and, therefore, P-injective. 

To see this, suppose YEA and a E S. By condition 

(4), there exist, b E S and x E A, such that, yb = f(x). 

By condition (2), for f(x) E f(A) and ab E S, there 

exists, z E A, such that, f(x) = zab. Hence, yb = zab. By 

condition (3), it follows that y = za. This shows that A 

is S-divisible . 

2.2 Characterizations of monoids by P-injective 

S-systems 

Definition 2.2.1 An S-system M is called regular if, for 

each a E M, there exists, an S-homomorphism f E Hom (as,S) 
s 

such that, a = af(a). A monoid S is called regular if S 
s 

is regular as an S-system [24]. An S-system M is called 

von Neumann regular if, for each a E M, there exists an 

S-homomorphism g E Hom (S,S), such that, a = ag(a) [58]. 
s 
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Thus, if 5
s 

is von Neumann regular, then, for each aES 

there exists, g E Hom (5 ,5), such that, a = ag ( a ) = ag (l) a 
s 

and g(1) E 5. Hence , S is von Neumann regular in the 

familiar sense. 

Definition 2.2.2 Let M and Q be right S-systems. Q is 

ff-projective if, for each S - epimorphism g : M ---~ M and 

each 5-homomorphism h : Q ---~ M, there exists, a n 

S-homomorphism k : Q ---~ M, such that, gok = h . Thus, Q 

is projective if Q is M-projective for each S-system M. We 

notice that every monoid 5 is always projective . 

Dually, Q is ff-injective if, for each 5-monomorphism 

g: N ~ M and each 5-homomorphism h : N ----. Q, there 

exists, an 5-homomorphism k: M ----. Q, such that, kog = h. 

Thus, Q is injective if Q is M-injective for each 5-system 

M. 

Definition 2 . 2 .3 A right 5-system M is called a right pp 

5 - system if each cyclic 5-subsystem as of M with a E M is 

projective . 5 is called a right PP-monoid if all its 

principal right ideals are projective as right 5-systems . 
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From the above definitions we have the following 

diagram in the category Act S: 

~------------------------Acts 

projective 
~ . 

~ S-systems I 

regular 1 p-injedive f-I --- completely p-injedive 

cyclic injective 

The following result is due to T . L . Hach . [24] 

Proposition 2.2.4 For an S-system M the following are 

equivalent : 

(1) M is a regular S-system, 

(2) M is a PP S-system. 

Corollary 2.2.5 For a monoid 5 the following are 

equivalent: 

(1) 5 is regular, 

(2) S is a PP-monoid. 

(3) Every projective S-system is regular. 

For a right S-system M and a E M, we may always define 

an S-epimorphism rr : S ---~ as by rr(s) = as for all s E S, 

also we have an inclusion k : as ~ M. 
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Note that the following are equivalent: 

(1) M is regular, 

(2) for each a E M, as is a retract of S, 

(3) for each a E M, IT is a retraction. 

For a monoid S, S is von Neumann regular if and only if 

the inclusion k:aS ---~ S is a coretraction for each aeS. 

Proposition 2.2.6 For a projective S-system M the 

following assertions are equivalent: 

(1) M is a regular S-system. 

(2) Each PM-injective S-system is completely PM-injective. 

(3) Each injective S-system is completely PM-injective . 

Proof (1) 9 (2) Let A be a PM-injective S-system and A 

a quotient S-system of A. Hence, there is an S-epimorphism 

p: A ---~ A. In order to prove that A is PM- injective, 

consider a cyclic S-subsystem as with a e M and an S-homo

morphism f: as ---~ A. Since M is a regular S-system, it 

follows that as is projective, by Proposition 2.2.4. 

Hence, there exists an S-homomorphism h: as ---~ A, such 

that, poh = f. Now , since A is PM-injective, there exists, 

an S-homomorphism g : M ---~ A, such that, gok = h, 

k: as ---~ M is the inclusion map . Let J..l = pogo 

where 

Then, 

J..l : M ---~ A is an S-homomorphism, such that, ~ok = pogok = 
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PGh = f. Hence, is PM-injective. 

(2) => (3) : Clear. 

(3) => (1) : Let as be a cyclic S-subsystem of M a nd let 

k: as ---~ M be the inclusion map . Now, consider an epi

morphism p: A ---~ A a nd an S-homomorphism f : as ---~ A. 

In order to prove that as is projective , we may 

assume,(without loss of generality) by Lemma 4 of [15], 

that A is injective . The rest of the proof is dual to that 

of (1) => (2) . This proves the proposition. 

Proposition 2 .2. 7 For an S-system M the following 

assertions are equivalent: 

(1) M is von Neumann regular, 

(2) M is regular and 5 is PM-injective. 

Proof (1) => (2) : Suppose that M is von Neumann regular. 

It follows easily that M is regular. We show that 5 is 

PM-injective . Let as (a E M) be a cyclic S - subsystem of M 

and let f : as ---~ 5 be an S- homomorphism . Since M is von 

Neumann regular and a E M, there exists an S- homomorphism 

g: M ---~ 5, such that, a = ag(a) . Define f: M ---~ 5 by 

f(x) = f(a)g(x), for all X E M. Clearly, f is an 

S-homomorphism which extends f . Hence , S is PM-injective . 

(2 ) => (1) : Suppose that M is regular and s 
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PM-injective. Then, for every a E M, there exists an 

S-homomorphism f : as ---~ S, such that, a = af(a). Since S 

is PM-injective, so there exists an S-homomorphism 

g: M ~ S, extending f. Hence , a = ag(a) and therefore M 

is von Neumann regular. 

Lemma 2.2.8 Let Q be an M-projective S-system . If M 
o 

is 

either an S-homomorphic image or an S-subsystem of M, then 

Q is M -projective. 
o 

Proof The result is almost obvious in case M is 
o 

S-homomorphic image of M. Thus, we assume that M 
o 

is 

S-subsystem of M. In order to show 

M -projective, consider an S-epimorphism ¢ : 
o 0 

that Q 

M ----+ 
o 

an 

an 

is 

M 
o 

and an S- homomorphism g : Q ---~ M • 
o 

Let p be the relation 

on M defined by p = ker¢ ui ,where ker¢ is the usual 
o M 0 

kernelS-congruence and i the identity relation on M. Set 
M 

M = Mlp and let ¢: M ----+ M be the natural map . We can 

identify M with the S-subsystem M Iker¢ of the 
o 0 0 

S-system 

M. Thus, the natural map ¢ : M ---+ M is an extension of 

¢ . o 
By the M-projectivity of Q, there exists, an 

S-homomorphism f: Q ----+ M, such that, ¢Of g . But 

¢(f(Q» = g(Q) £ M = M Iker¢ • Hence f(Q) £ M 
000 0 

Thus, f 

can be regarded as an S-homomorphism from Q 

38 

to M . 
o 

This 



proves that Q is M -projective. 
o 

Lemma 2.2.9 Let M be a projective S-system and E = E(M) 

the injective hull of M. If E is completely PM-injective 

then, each cyclic S-subsystem of M is M-projective. 

Proof Let as (a E M) be a cyclic S- subsystem of M and 

let k: as -----~ M be the inclusion map. Consider a n epi-

morphism p: E ---~ E and an S-homomorphism ~: as ---~ E. 

Since E is completely PM-injective, E is PM-injective . 

Hence, there exists an S-homomorphism ~ : M ---~ E, such 

that, ~ok = ~. Since M is a projective S-system, there 

exists, an s-hofllomorphism ¢>: M ---~ E, such that, po¢> = (1 . 

Let e = ¢>ok . Then poe = po¢ok = ~ok = ~. Thus, as is 

E-projective. Hence, by Lemma 2.2.8, as is M-projective. 

To summarize, we may now state the following 

characterization theorem for a monoid. 

Theorem 2.2.10 For a monoid S, the following assertions 

are equivalent: 

(1) S is regular. 

(2) S is a PP-monoid . 

(3) E = E(S) is completely P-injective. 
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(4) Every P-injective 5-system is completely P-injective . 

(5) Every injective 5-system is completely P-injective . 

Proof From corollary 2.2.5 and Proposition 2.2.6 we have 

(1) if and only if (2) if and only if (4) if and only if 

(5), since 55 is projective . We need only to prove (2) if 

and only if (3) . Necessity follows from Proposition 2 . 2 . 6 

as a corollary . For sufficiency, let a5 be a principal 

right ideal of 5 (a E 5) . From Lemma 2 . 2 . 8 it follows that 

a5 is 5-projective and, from this, it follows that as is a 

retract of S . Hence , as is projective, since S is always 

projective . Therefore , 5 is a PP-monoid . 

the proof . 

This completes 

Theorem 2.2.11 For a monoid 5, the following assertions 

are equivalent: 

(1) S is von Neumann regular. 

(2) S is regular and P-injective . 

(3) S is completely P- injective . 

(4) Every S-system is P-injective. 

(5) Every cyclic S-system is P-injective . 

Proof As a corollary of Proposition 2 . 2 . 7 , we have 

if and only if (2) . The proof of (1) if and only if 
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if and only if (5) ' is found in [36]. We need only to prove 

(2) if and only if (3) . 

(2) ~ (3) : This follows as a corollary of Proposition 

2.2.6. 

(3) ~ (2) : Suppose that S is completely P-injective . 

For every a E S, consider a surjection n : S ---~ as 

defined by n(s) = as, for all s E S. Since S is completely 

P-injective, as is P-injective. Consider the inclusion map 

k: as ---~ S and the identity map 1 : as ---~ as. 
as 

Since 

as is P-injective, we have an S-homomorphism g : S ---~ as, 

such that, a = g(a) = g(l)a . Since n is surjective, there 

exists, XES such that g(l) = ax . Thus, we have a = axa 

with XES. This shows that S is von Neumann regular. 

Since (1) if and only if (2), this completes the proof. 

Proposition 2.2.12 If a right S-system M is left 

M-cancellative, then M is regular. 

Proof Let a E M be any element. Then, by the 

assumption,we may define an S-homomorphism g: as ---~ S by 

g(as) = s, for ails E S. Since g(a) = 1, a = a1 = ag(a). 

Hence , M is regular. 

Corollary 2.2.13 If S is left cancellative, then S is a 
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PP-monoid. 

Proposition 2.2.14 For a monoid S, the following 

assertions are equivalent : 

(1) S is a PP-monoid wit h a unique idempotent element. 

(2) S is left cancellative . 

Proof From the above corollary, we have (2) ~ (1) . 

(1) ~ (2) : Suppose we have as = as' 

Since S is regular, there exists, 

for a, s, s' in S. 

an S-homomorphism 

f: as ~ S, suc h that, a = af(a). Then, f(a) = f(a)f(a). 

By the uniqueness of the idempotent element, it follows 

that f(a) = 1. Then, the equation as = as' implies that 

s = ls = f(a)s = f(as) = f(as') = f(a)s' = ls' = s' , 

is, s = s'. Therefore, S is left cancellative. 

that 

Proposition 2 .2. 15 For a monoid S, the following 

assertions are equivalent: 

(1) S is left cancellative and S is P- injective . 

(2) S is a group . 

Proof (2) ~ (1) : Suppose that S is a group . Then, S is 

left cancellative and is S-divisible . It follows that S is 

P- injective, by Proposition 2 . 1 .3. 

42 



(1) ~ (2): Let a E S. Since S is left cancellative, S 

is S-divisible by Proposition 2.1.7. It follows that S is 

a group . 

To summarize, we may now describe the following 

of the category Mon: 

,...----------- Mon ----------, 

VOIl 

Neumann 

regular 

p-injective 

2 . 3 Weakly regular monoids and normal S-systems 

figure 

In [10], Brown and McCoy considered the notion of 

weakly regular rings. These rings were later studied by 

Ramamurthy [41], [52] and others . Adopting this notion we 

have the following definitions. 

43 



Definition 2.3.1 A semigroup 5 is right weakly regular 

2 if!, for a 11 x E 5!, X E (x5) • 

Thus!, if 5 is commutative and weakly regular!, 

is (von Neumann) regular. 

then!, 5 

We shall now define normal homomorphisms and normal 

S-systems, and use these notions to characterize weakly 

regular monoids. In particular!, we will prove that each 

S-system is normal if and only if S is right weakly 

regular. 

First, we introduce some notation. 

Let S be a monoid, I a two sided ideal of S and A a 

right S-system. Then AI = {ax . a E A and x E I } . 
right S-subsystem of A. By A we shall 

I 

factor of A by AI , that is, 

AlAI = (A\AI) U {AI} . 

denote the 

is a 

Rees 

Let ~: A ~ B be an S-homomorphism . Then!, we define 

the map ~ : A ---. B by 
I I I 

~ (a) 
I = { 

~(a) 

{BI} 
if aEA\AI 
if a={AI}. 

Clearl y!' ~ is an S-homomorphism . Moreover, i f ~ is an 
I 

epimorphism then so is ~ . 
I 

We also note that if ~:A ---. B 

is an 5-homomorphism and I is a two-sided ideal of 5, 

then, we alwa'ys have the inclusion ~(AI) 5; BI n ~(A). When 
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equality holds then ~ is of special interest and motivates 

the following. 

Definition 2.3.2 An S-homomorphism ~: A ~ B is called 

normal if ~(AI) = BI n ~(A) for every two-sided ideal I of 

S. 

Proposition 2.3.3 Let ~: A ---~ B be an S-monomorphism. 

and I a two- sided ideal of S. Then, 

assertions are equivalent: 

(1) ~ :A ---~H is an S-monomorphism, 
I I I 

(2) ~(AI) = BI n ~(A). 

Proof (1) ~ (2): Suppose that ~ is an 
I 

the following 

S-monomorphism. 

We verify that ~(AI) = HI n ~(A) . Since we always have the 

inclusion ~(AI) S HI n ~(A), we only need to show that 

BI n ~(A) S ~(AI) . Let ~(x) E BI, for some x E A. Then, 

~ (x) = HI = ~ (AI). Since ~ is an S-monomorphism, the 
I I I 

coset x and AI are same, that is, X E AI. Hence, 

~(x) E ~(AI). Thus, it follows that ~(AI) = HI n ~(A). 

(2) ~ (1): Assume that ~(AI) = BI n ~(A). Suppose we 

have ~ (a) = ~ (a') for a,a'E A • Assume that a,a' 
I I I 

,c AI. 

Then, ~ (a) = ~ (a') implies that ~(a) = ~(a'). Since ~ is 
I I 

an S-monomorphism, it follows that a = a' . 
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If a E AI, then a' also belongs to AI . For, otherwise, 

a (a) = HI = a (a') = a(a'} . This means that a(a'} 
I I 

E HI, 

t ha tis, cd a' ) E HI n O(A) = O(AI). Since 0( is a 

monomorphism, it follows that a'E AI, 

Also, since a and a' are both in AI, 

same coset in A , that is, a = a' • 
I 

which is absurd. 

they represent the 

Corollary 2.3.4 Let 0(: A ---~ H be an S-monomorphism. 

Then 0( is normal if and only if 0( 
I 

for every two-sided ideal I of S. 

is an S-monomorphism 

Definition 2 . 3 . 5 An S-subsystem N of an S-system M is 

normal in M if the inclusion k : N ---~ M is normal . M' is 

called normal if every S-subsystem N of M is normal in M. 

From the above definition and Proposition 2.3.3, it 

follows that M is normal if and only if NI = MI n N for 

every S-subsystem N of M and every two-sided ideal I of S. 

Definition 2.3.6 A two-sided ideal I of a semigroup S is 

called right (left) pure i'f, for each x E I, there exists 

Y E I, such that, x = xy (x = yx). In other words, I is 

right pure if and only if, for every a E I, the equation 

a = ax has a solution in I. 
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Lemma 2 . 3 . 7 Each two-sided ideal of a right weakly 

regular semigroup is right weakly regular as a semigroup . 

Proof Let I be a two-sided ideal of a right weakly 

regular semigroup S and let x E I. Then, X E (xS)(xS) . 

Hence, x E xSxSxSxS S x(SxS)x(SxS) s (xI)(xI) . This means 

that I is right weakly regular. 

Lemma 2 . 3 . 8 Let S be a right weakly regular semigroup . 

Then each S-monomorphism ~ : A ---~ B is normal. 

Proof By the Corollary 2 . 3 . 4, in order to prove that ~ 

is normal , we must show that ~ : 
I 

A 
I 

----+ B 
I 

is an 

S-monomorphism for every two-sided ideal I of S. By 

Proposition 2.3.3, it is sufficient to prove that, for 

every two-sided ideal I of S, we have BI n ~(A) S ~(AI). 

Let x E BI n ~(A) . Since x E BI, we can write x = bt, 

where b E Band tEl . By Lemma 2 . 3 . 7, I (considered as a 

semigroup) is right weakly regular. Hence t E I implies 

that there exists an element s E I such that t = ts . 

Hence, x = bt = bts = xs. Since x E ~(A), it follows that 

x = XS E ~(A)s S ~(As) S ~(AI). Hence , BI n ~(A) S ~(AI). 

This proves the lemma. 
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Proposition 2.3.9 For a monoid 5 the 

assertions are equivalent: 

(1) 5 is right weakly regular. 

(2) B2= B for all right ideals B of 5. 

(3) BA = B n A for all right ideals B and all 

ideals A of 5 . 

(4) Every two-sided ideal of 5 is right pure . 

following 

two-sided 

Proof 

B2 £; B. 

(1) ~ (2): Let B be a right ideal of 5. Clearly, 

Let x E B . Then , x E (x5)(x5) £; BB = B2 . This 

proves that B = B2. 

(2) ~ (3) : Let B be a right ideal and A a two-sided 

ideal of 5. Clearly, BA £; B II A. To prove the 

inclusion, let x E B II A. Since x E x5 = (x5)(x5) 

£; xA £; BA, we have B II A £; BA and so B II A = BA. 

(3) ~ ( 1) : Let x E 5 and let A = 5x5 be the 

ideal generated by x. If B is the right ideal x5 

by x then, x E B II A = BA = (xS)(SxS) S xS2xS S 

This implies that 5 is right weakly regular. 

reverse 

= x(5x5) 

two-sided 

generated 

(xS)(xS). 

(1) ~ (4) : Suppose that 5 is right weakly regular. Let 

A be a two-sided ideal of 5 and a E A. Since 5 is right 

weakly regular, a E (as)(aS) = a(SaS) £ aA. Hence , there 

exists an element x E A such that a = ax. Thus, A is right 

pure. 
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(4) ~ (1): Assume that each two-sided ideal of S is 

right pure. In order to show that S is right weakly 

regular, let XES and A = SxS be the two-sided ideal of S 

generated by x. By the hypothesis, X E xA = x(SxS) = 

(xS)(xS) . Hence , S is right weakly regular. This completes 

the proof. 

Theorem 2.3.10 For a monoid S the following assertions 

are equivalent: 

( 1 ) S is right weakly regular. 

(2 ) S is normal. 

(3) Every S - monomorphism is normal. 

(4 ) Every S-system is normal. 

Proof (1) ~ (2): Suppose that S is right weakly regular. 

If B is a right ideal of S then the inclusion map is 

normal by Lemma 2.3.8. Hence B is normal in S. Thus S is 

normal. 

(2) ~ (1): Assume that S is normal. If B is any right 

ideal of S, then B, considered as a right S-system, is 

normal in S. This means that the inclusion map a: B ----~ S 

is a normal monomorphism . Hence , it follows from 

Definition 2.3.2 that , for any two-sided ideal A of S, BA 

= B n A. Thus , by Proposition 2.3.9, S is right weakly 
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regular. 

(1) ~ (3) : This follows from Lemma 2.3.8. 

(3) ~ (4): This is immediate . 

(4) ~ (1): Since S is normal by hypothesis, S is right 

weakly regular by the argument (1) 

proved as above. 

if and only if 

( 1 ) ~ (4): This follows from Lemma 2.3.8. 

completes the proof. 

(2 ) 

This 

Corollary 2.3.11 For a commutative monoid S the 

following assertions are equivalent: 

(1 ) S is von Neumann regular . 

(2) Every ideal of S is pure. 

(3) S is normal. 

(4) Every S-system is normal . 

Proof Since for a commutative monoid S, S is von Neumann 

regular if and only if S is weakly regular, so the above 

proposition follows from Proposition 2 . 3 . 9 and Theorem 

2.3.10 as a corollary. 

Proposition 2.3.12 Let S be a PP-monoid (not necessarily 

commutative). If A is a two-sided ideal of S such that the 

Rees factor Sf A is P-injective as an S-system then, A is 
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right pure in S . 

Proof Let a E A. Then, as is a principal right ideal of 

S. Consider the Rees factor aS/aA of the right S-system 

as. Let g: as ---~ aS/aA be the natural map defined by 

{
as 

g(as) = aA 
if as ~ aA 
if as E aA. 

Also define f: S/A ---~ aS/aA by 

f(s) = { as 
aA 

if s E S\A 
if s = {A} . 

Clearly, f is an S-epimorphism. Since S is a right 

PP-monoid, the principal ideal as is projective as an 

S-system. It follows that there exists an S-homomorphism 

h: as ---~ S/A such that foh = g. Hence foh = g. 

Let us now consider the inclusion map k: as ---~ S. 

Since S/A is P-injective, for the S-homomorphism h there 

exists an S-homomorphism h: S ---~ S/A such that hok = h . 

Note that h extends h: hok = h. Let h(l) = s for s e S/A. 

Let 9 = foh. Then g: S ---~ aS/aA is an S-homomorphism. 

We now verify that 9 is an extension of g. Let x E as. 

Then g(x) = foh(x) = fohok(x) = foh(x) = g(x). 

Now, if a E aA then we are done. If a ~ aA then g(a)=a. 

Since 9 is an extension of g, therefore, a = g(a) = g(a) = 

g(la) = g(l)a = (foh(l»a 
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( f ( s » a = { asa 
aAa 

if s!i!A 
if seA. 

This implies that a E aA, in any case. Hence A is right 

pure. 

Corollary 2.3.13 Let S be a right PP-monoid. If, for 

each two-sided ideal A of S, the Rees factor Sf A is 

P-injective, as an S-system, then S is right weakly 

regular. 

Proof By the above Proposition, each two-sided ideal of 

S is right pure. Hence by Proposition 2 . 3 . 9, S is right 

weakly regular. 

Corollary 2 . 3 . 14 A commutative monoid S is von Neumann 

regular if and only if S is a PP-monoid such that, for 

each two-sided ideal A of S, the Rees factor Sf A is 

P-injective. 

Recall that a right S-system M (~e) is called simple 

if M has no proper non zero S-subsystem. 

Proposition 2.3.15 If 5 is a monoid for which, every 

simple S-system is P-injective then, .5 is right weakly 
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regular. 

Proof We prove that each right ideal A of S is 

idempotent, i.e., A2= A. Suppose that A ~ A2 . Let a E A be 

such that a ~ A2. Then, as ~ (as)2 . By Zorn's Lemma, the 

set of right ideals I, such that, (as)2 ~ I c as has a 

maximal element 8 (say) . Then, aS/8 is simple a nd , hence, 

P-injective by hypothesis. Let f: as --.... aS/8 be the 

natural S-homomorphism defined by 

f(as) { as if as E as\8 = {8} if as E B. 

8y the P-injectivity of aS/8, there exists, an 

S-homomorphism g : S --.... aS/B which extends f. Let g(l) = 

at (teS) . Then f(as) = g(as) = g(l)as = (at) (as) . Since 

f(a) = a, we have a = f(a) = g(a) = (at)a = (at)(al) E 

a E B. Thus, B = as. This is a 

contradiction. Hence, A = A2 . From Proposition 2.3.9, it 

follows that S is weakly regular. 

Corollary 2.3.16 ([35]) A commutative monoid S is von 

Neumann regular if and only if each simple S-system is 

P-injective. 
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CHAPTER 3 

REGULAR AND PP-SEMIRINGS 

In this chapter we will be concerned with certain 

classes of semirings and their semimodules . In particular 

we will investigate certain aspects of regular semirings, 

taking a homological approach . We extend the usual 

elementwise definition of a regular semiring to arbitrary 

semimodules, and introduce the notion o f a von Neumann 

regular semimodule . We characterize von Neumann regular 

semimodules in terms of certain restricted injectivity 

properties (Theorem 3.1.8). Using this characterizations, 

we obtain new characterizations of ( von Neumann) regular 

semirings. We will also examine the semiring analogs of 

hereditary, semihereditary and PP-rings. Recall that a 

ring R is right hereditary (semihereditary ; PP) if every 

right (right finitely generated ; right principal) ideal of 

R is projective (cf . [42]) . We will also define and 

characterize the notion of a PP-semimodule . As an 

application of our results, we obtain characterization 

theorem for projective semimodules which is analogous to 

the Classical Projective Basis Theorem for projective 

modules over rings (Theorem 3 . 4 . 12) . Throughout this 
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chapter, R will denote a semiring as defined in chapter 1 . 

3.1. R-divisible and P-injective semimodules and 

regular semirings 

We begin with the following definition . 

Definition 3.1.1 Let R be a semiring and Q a right 

R-semimodule . An element x E Q is R-divisible in Q if for 

each (nonzero) A E R, there exists y E Q such that x = YA; 

Q is R-divisible if each element of Q is R-divisible in 

Q. Thus Q is R-divisible if and only if QA = Q for all 

(nonzero) A e R. If every quotient R-semimodule Q of Q is 

R-divisible, Q will be called a completely R - divisible 

R-semimodule. 

Example 3.1.2 Let Z+ denote the semiring of non-negative 
o 

integers with usual addition and multiplication . Then the 

semigroup + 
(~ ,+) 

o 
of 

Z+-divisible semimodule. 
o 

non-negative rationals is a 

Proposition 3.1.3 Let Q be an R-divisible semimodule • 

. Then each R-homomorphism ¢: I ---~ Q, where I is a 

principal right ideal of R, extends to an R-homomorphism 
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¢: R ---~ Q. 

Proof Let I = aR (a E R). Suppose ¢(a) = x (x E Q) . Then 

for each A E R, ¢(aA) = ¢(a)A = XA. Since Q is 

R-divisible, there exists y E Q such that x = ya. Define 

¢: R ~ Q by ¢ (A) = YA, (AER) . In particular, ¢(l) = y 

Hence ¢(aA) = 

of ¢. 

yaA = XA = ¢(aA), Thus ¢ is an extension 

Definition 3.1.4 A right R-semimodule Q is p-injective if 

each R-homomorphism ¢ : I , Q, where I is a principal 

right ideal of R, extends to an R-homomorphism ¢: R ---~ Q. 

More generally , for an arbitrary but fixed R-semimodule 

M, Q is PM-injective if each R- homomorphism from 'a cyclic 

subsemimodule of M to Q extends to an R-homomorphism from 

M to Q. An R-semimodule all of whose quotient 

R-semimodules are PM-injective will be called completely 

PM-injective R-semimodule . Completely P-injective 

R- semimodule are defined analogously. 

Proposition 3.1.5 Let R be a right cancellative semiring . 

Then the following assertions are equivalent: 

(1) Q is a (completely) P-injective right R- semimodule; 

(2) Q is a (completely) R-divisible right R-semimodule. 
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Proof (1) * (2) : Let x E Q and A be any nonzero element 

of R. Define ¢: aR ---~ Q by ¢(aA) = XA, (A E R and a E R) 

¢ is a well defined R-homomorphism, since R is right 

cancellative. Moreover, ¢ extends to an R-homomorphism 

¢: R ---~ Q, since Q is P-injective. Hence x = ¢(a) = ¢(a) 

= ¢(l.a) = ¢(l)a. since ¢(1) E Q, x is R-divisible. Hence 

Q is R-divisible. 

(2) * (1): This is proposition 3.1.3. 

Proposition 3.1.6 If M is a retract of an R-divisible 

R-semimodule Q, then M is R-divisible. 

Proof Let p be the retraction and q the coretraction such 

that poq = 1 • To show that M is R-divisible, let x E M 
M 

and a E R. Then q(x) E Q. Since Q is R-divisible, there 

exists y E Q such that q(x) = ya. Then x = poq(x) = p(ya) 

= p(y)a and p(y) E R. This shows that M is R-divisible. 

Proposition 3.1.7 The following conditions are equivalent 

for a semiring R. 

(1) All right R-semimodules are R-divisible; 

(2) All right ideals of Rare R-divisible; 

(3) R is divisible; 

57 



(4) All non zero elements of R are invertible; 

Proof It is clear that (1) implies (2) and (2) implies 

(3). (3) ~ (4): Let a be a non zero element of R. Then as 

R is divisible there exists a non zero element b of R with 

1 = ba. Thus, a is left invertible . Hence, 

elements are invertible. 

all non-zero 

(4) ~ (1): Let x be an element of an R-semimodule Q and 

let a be a non zero element of R. From (4), there is an 

element b E R with 1 = ba. Then x = xl = x(ba) = (xb)a. 

Hence 0 = OR. So Q is R-divisible. 

Theo~em 3.1.8 

equivalent: 

For a semi ring R, 

(1) R is von Neumann regular; 

(2) Every R-semimodule is P-injective; 

the following are 

(3) Every cyclic R-semimodule is P-injective . 

Proof (1) * (2): Let Ra be a principal right ideal of R 

and M be an R-semimodule. Let f: aR ---~ M be a R-homomor

phism. As a E Rand R is regular, there exists x E R such 

that a = axa and ax EaR. Let f(ax) = m. Define f:R ~ M 

by f(l) = m and f(s) = f(l)s = ms then f is an extension 

of f. Thus M is P-injective. 
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(2) ~ (3) : obvious . 

(3) ~ (1) : Let a E R . Consider the right ideal generated 

by a and the identity R-homomorphism i, i . e . ~: aR ---~ aR 

As aR is P-injective, this mapping is extendable to 

~: R ---~ aR. Let ~(1) = ax E aR then ~(a) = tea). This 

implies that a = tea) = l(l)a = axa. Thus a is regular. 

Definition 3.1.9 A right R-semimodule M is totally 

irreducible if the only right R-congruences are the 

universal congruence and the identity congruence and M~O. 

Theorem 3.1.10 Let R be a semiring with no non_zero zero 

divisors such that every ideal of R is a K- ideal. Then the 

following assertions are equivalent: 

(a) R is von Neumann regular and Ra S aR for all a E R; 

(b) Every totally irreducible R-semimodule is P-injective 

. and every right ideal is two-sided. 

Proof (a) ~ (b): If R is von Neumann regular then every 

R-semimodule is P-injective by Theorem 3.1.8. Moreover, if 

I is a right ideal of R then Ra S aR S I for all 

Hence I is two-sided. 

a E 

(b) ~ (a): Let 0 ~ a E R where a is not regular. 

I . 

Then 

consider the right ideal aR which is two-sided. Let peaR) 

59 



be the right R-linear equivalence relation corresponding 

to right ideal aR . (An equivalence relation p on M is said 

to be right R-linear if and only if for all a,b,c, d E M 

and r E R, we have ( a,b), (c,d) E p ~ ( a+c,b+d ) E P and 

(a , b) E P ~ (ar , br) E p . The re lation peaR) is defined by 

(x , y) E peaR) , for all x , y E R , if and only if there exist 

s,t E aR such that x + c = Y + d). 

Let f: R ---~ aR be defined by f(A) = aA and ker f be 

the right R-linear equivalence relation corr esponding to 

R-homomorphism f (that is (a, b) E ker f if and only if 

f(a) = feb) for all a,b E R) . Then (1,0) ~ peaR), because 

if (1 , 0) E peaR) then there exist x,y E aR such that l+x = 

y+o ~ l+x = YEaR ~ 1 E aR because a R is K-ideal 

that a is regular. Which is a contradiction. 

implies 

Also (1,0) ~ ker f, because if (1,0) E ker f then f(l) 

= f(O) ~ a = ° which is again a contradiction. 

Let ~ be the right R-linear e quivalence relation 

generated by p(aR) and ker f . Then (1 , 0) ~ a , 

(1,0) E a, then there exists c E R such 

because , if 

that either 

(l,c) E peaR) and (c,O) E ker f o r (l ,c ) E ker f and 

(c,O) E peaR) . If (l,c) E peaR) and (c,O) E ker f then 

fCc) = f(O) ~ ac = ° ~ c = 0 . and (1,0) E peaR) q a is 

regular. Which is a contradiction . If (l,c) E ker f and 

(c , O) E peaR) then f(l) = fCc) ~ a = ac and there exist 
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x,y E aR such that x+c = y+o ~ x+c = YEaR and c E aR 

because aR is a K-ideal. This implies that c = Aa because 

aR is two sided. Hence a = aAa, that is, a is ..... egula ...... 

Which is a cont ..... adiction. 

Let ~ be the ..... ight R-linea..... equivalence ..... elation 

maximal with ..... espect to condition a £ ~ and (1,0) 

Then ~ is a maximal ..... ight R-linea..... equivalence ..... elation, 

because if ~ £ r then (1,0) E r and so (0,1) E r. This 

implies that r = w the unive ..... sal ..... elation. Thus R/~ is 

totally i .......... educible. Define ~: aR ---~ R/~ by ~(aA) = [A]. 

Then ~ is well defined because if aA = aA then (A ,A) ~ 
i 2 i 2 

ker f £ ~ ~ [A ] = [A ]. ~ 
i 2 

is an R-homomorphism from 

aR ~ R/~. As R/~ is P-injective , this R-homomorphism is 

extendable from R to R/~ i.e. ~:R ---~ R/~. Let ~(1) = [x] 

then [1] = ~(a) = ~(a) = ~(l)a = [x]a = [xa] ~ (l,xa) E ~. 

But ax E aR and so (xa,O) E peaR) S ~ ~ (1,0) E ~ which is 

a contradiction. Hence a is regular, that is, R is 

regular. 

Co ..... olla ..... y 3.1.11 If R is a commutative semiring in which 

every ideal is a K-ideal and has no non-zero ze ..... o divisor, 

then R is von Neumann regula ..... if and only if eve ..... y totally 

irreducible R-semimodule is P-injective. 

61 



3 . 2 PP semirings and PP R-semimodules 

Definition 3.2 . 1 Let M be a right R- semimodule . We call M 

a PP R-semimodule if each cyclic subsemimodule of M is 

projective. In particular, R is a right PP semiring if R, 

considered as a right R-semimodule, is a PP R-semimodule. 

Hence R is a right PP semiring if each principal right 

ideal of R is projective (as an R-semimodule). 

Definition 3.2.2 An element a E R (semiring) is called a 

left e-cancellative if ae = a and, from ax = ay, x,y E R, 

it follows that ex = ey. 

Pro position 3 . 2 . 3 Every right ideal of a semi ring R 

generated by an idempotent is projective . 

Proof Let e be an idempotent of R. Consider the maps 

f: R ~ eR defined by f(A) = eA and g: eR ---~ R be the 

identity map, i.e g(eA) = eA. Then we have 

2 
fg(eA) = f(eA) = e(eA) = e A = eA 

Therefore fg = i 
eR 

So eR is a retract of R. 

projective. 

Thus eR is 

Proposition 3.2.4 A cyclic R-semimodule P is projective 
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if and only if P ~ eR for some idempotent e in R . 

Proof Suppose P is a cyclic projective R-semimodule, 

then P = aR for some a E P. Let f: R ---~ aR (defined by 

f(l) = a) be an R-epimorphism. Since aR is projective, 

there exists g: aR ---~ R such that fg = 1 Let g(a) = 
aR 

e;fhen a = fg(a) ;=: fee) = f(l)e = ae, implies that a = ae '* 
g(a) = g(ae) '* e = g(a)e => e = ee => e is idempotent. 

Now we show that g: aR --~ eR is an isomorphism. Let 

g(aA) = g ( al-l ) • This implies that g(a)A = g(a)1-l => eA = el-l => 

a(eA) = a(e!-l) => (ae)A = (ae)1-l => aA = al-l. Thus g is one 

one. Clearly, g is onto, therefore g is an isomorphism. 

Conversely, if P ~ eR for some idempotent e E R then P 

is cyclic and as eR is projective, by Proposition 3.2.3. 

Therefore P is projective . 

Corollary 3.2.5 A principal right ideal aR is projective 

if and only if a is left e-cancelable for some e E R. 

Corollary 3.2.6 A semiring R is right PP if every 

principal right ideal of R is generated by a left 

e-cancelable element for some e E R. 

Lemma 3.2.7 Let A be a right R-semimodule and ¢ E End A. 
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If ¢(A) is projective then ¢ is left ~¢-cancelable where 

~ : ¢(A) ~ A is a monomorphism . 

Proof As ¢ : A ---~ ¢(A) is an epimorphism and ¢(A) is 

projective, therefore, there exists ~ : ¢(A) ---~ A such 

that ¢~ = l¢(A) . We have ¢(~¢) = (¢~)¢ = l¢(A)¢ = ¢ . Now, 

let ¢a = ¢~ for some a , ~ E End A. Then (~¢)a = ~(¢a) = 

~(¢~) = (~¢)~ . Thus ¢ is left ~¢-cancelable . 

Theorem 3 . 2 . 8 A semiring R is a PP semiring if and only 

if End P is PP for every cyclic projective R- semimodule P. 

Proof Let R be a PP semiring and P = aR, where a E P, be 

a cyclic projective R-semimodul e. Let ¢ E End P. First, we 

show that ¢(P) is projective. Clearly, ¢(P) is a cyclic 

R-subsemimodule of P. 

Let f: R ---~ aR = P defined by f(l) = a be an 

epimorphism. Then there exists g : aR ---~ R such that, 

fg = 1 • Thus 9 is a monomorphism from P to R . Hence 9 
aR 

maps ¢(P) onto a principal right ideal of R, 

isomorphically . Thus , ¢(P) is projective because R is PP . 

Hence by Lemma 3 . 2 . 7, ¢ is e-cancelable for some e E End P . 

By Corollary. 3.2.6 End P is PP . 

Conversely, since R is a cyclic, projective 
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R-semimodule, therefore End R is PP by hypothesis. Also 

f: End R---~R defined by f(¢) = ¢(1) is an isomorphism 

t herefore, R is PP . 

Proposition 3. 2 . 9 F o r a right R-semi modul e M, the 

following asse r tions a re equiva lent : 

(1) M is a PP R- semimodule ; 

(2) For each a E M, there exists an R-homomorphism 

f E Hom (aR , R) such that a = a . f(a) . 
R 

P r oof (1) ~ (2) : Le t a E M. Then a R = {aA : A E R} i s a 

cyclic s ubsemimodul e o f M, a nd is p r ojec tive by the 

hypothesis . Define g: R ---~ aR by setting g ( A) = aA ( AER). 

Clearly, 9 is a surjective R-homomorphism. Hence, there 

exists f E Hom (aR,R) such that the following diagram 
R 

commutes: 

g 

Thus gf = 1 . This implies tha t gf(a) = a . Since g(f(a» 
aR 

= a f (a) it follows that a = a . f(a) . 

(2) ~ (1) : In order to prove that M is a PP R- semimodule , 

we show that , for each a E M, the cyclic subsemimodule , 
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aR, of M is projective. Let g: R ~ aR be defined by 

g(A) = a A, (A E R) . Then, by the hypothesis , there exists 

f E Hom (aR , R) such that a.f(a) 
R 

= a. Since a.f(aA) = 

a.f(a).A = aA, it follows that g(f(aA» =a.f(aA) = aA . 

This implies that gof = 1 • Thus, aR is a retract of R 
aR 

and is thus projective 

3.3. Von Neumann regular semimodules 

Definition 3.3 . 1 A right R-semimodule M is called von 

Neumann regular if, for each a E M, there exists an 

R-homomorphism g E Hom (M ,R) such that a = a . g(a) 
. R 

([58]) . 

Thus, if R, considered as a right R-semimodule, is von 

Neumann regular then, for each A E R , there exists 

g E Hom (R ,R ) such that a = a.g(a) = a.g(l.a) 
R 

= a.g(l).a 

and gel) E R . Hence R is von Neumann regular in the usual 

sense. 

Lemma 3 . 3 . 2 Every R-subsemimodule of a von Neumann 

regular R-semimodule is von Neumann regular. 

Proof Let M be a von Neumann regular R-semimodule and N 

be a Subsemimodule of M. Let a E N. Then a E M. Thus, 

there exists an R-homomorphism g E Hom (M , R) 
R 
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a = a.g(a). Let g be the restriction of g to N then 

g E Hom (N;R) and g(a) = g(a). Thus, a = a.g(a). Hence, N 
R 

is von Neumann regular. 

Lemma 3.3.3 Every retract of a von Neumann regular 

R-semimodule is von Neumann regular. 

Proof Let M be a von Neumann regular R-semimodule and N 

be a retract of M. Then, there exist R-homomorphisms 

f: N ---~ M and g : M ---~ N such that gof = 1 . Let a e N. 
N 

Then f(a) E M. Hence, there exists an R-homomorphism 

¢ E Hom (M , R) such that . R 

f(a) = f(a)¢(f(a» = f(a).¢f(a) 

and g(f(a» = g(f(a).¢f(a» = gf(a).¢f(a) 9 a = a.¢f(a). 

Where ¢f: N ---~ R. Thus, N is a von Neumann regular. 

Proposition 3.3.4 For a right R-semimodule M the 

following assertions are equivalent: 

(1) M is (von Neumann) regular; 

(2) M is a PP R-semimodule and R is PM- injective. 

Proof (1) 9 (2) : Suppose M is von Neumann regular. Then 

it follows easily that , for each a E M, there exists an 

R-homomorphism f E Hom (aR,R) such that a = a . f(a) . Hence, 
R 
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by P~oposition 3 . 2 . 9, M is a PP R-semimodule . We now show 

that R is PM-injective. Let aR (a E M) be a cyclic R- sub

semimodule of M and let f : aR ---~ R be an R-homomo~phism . 

Since M is von Neumann ~egula~ and a E M, the~e exists an 

R-homomo~phism g: M ---~ R, such that, a = a.g(a). Define 

f : M ~ R by f(m) = f(a).g(m), fo~ all m E M. Clea~ly, f 

is an R-homomo~phism which extends f. 

PM-injective . 

Hence, R is 

(2) ~ (1): Suppose M is a PP R-semimodule, and R is 

PM-injective. Let a E M. By P~oposition 3.2.9, the~e 

exists an R-homomo~phism f: aR ---~ R such that a = 

a.f(a). Since R is PM- injective, the~e exists an 

R-homomo~phism g: M ~ R, which extends f. Hence a = 

a.g(a). This implies that M is von Neumann ~egula~ . 

Co~olla~y 3.3.5 A semi~ing R is von Neumann ~egula~ if 

and only if R is a PP semi~ing which is P-injective (as a 

~ight R-semimodule). 

P~oposition 3.3.6 Fo~ a semi~ing R the following 

asse~tions a~e equivalent: 

(1) R is a PP semi~ing with a unique idempotent (x E R is 

idempotent if x2 = x); 

(2) R is left cancellative. 
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P r oof (1) ~ ( 2 ) : Suppose t hat Aa = Ab f o r a, b , A E R . 

Since R is a PP semi r ing , i t follows , from Proposit i on 

3 . 2 . 9 , tha t there exis ts an R- homomorphism f : AR ~ R 

such that A = A . f(A) . Hence , 

f(A) = f(A.f(A» = f(A).f(A). 

Hence f(A) = 1 by the uniqueness of the idempotent . Hence 

Aa = Ab implies that a = 1.a = f(A).a = f(Aa) = f(Ab) = 

f(A)b = 1.b = b. That is, a = b . Hence R is left 

cancellative . 

(2) ~ (1) : Suppose R is left cancellative . Then , 

obviously , R has a unique idempotent . Let a E R and define 

g : a R ---~ R by g ( a A) = A , f o r all A E R . The n g( a ) = 1 

a n d we have a = a.l = a.g ( a ) . Hence, by Proposition 3.2.9, 

R i s a PP semiring . 

3 . 4 . Projective Basis Theorem fo r R-semimodules 

Definition 3 . 4 . 1 Let R be a commutative cancellative 

s emiring and Q be the semifield of quotients of R 

(cf . [46]) . An ideal I of R is called invertible if there 

exist elements a , • •. ,a E I, q , ••• ,q E Q such that : 
1 n 1 n 

( i ) q . I S; R (i = 1 , ••• , n ) 
L 
n 

(ii) E q. a . = 1 
. L L 
L=1 

6 9 



Remark If R is a commutative cancell ative semiring then 

each nonzero principal ideal aR (a e R) of R is invertible 

(by choosing a = a q 
1 ' 1 

-1 
=(a) eQ). 

Proposition 3 . 4 . 2 If A is an invertible ideal of a 

commutative cancellative semiring R then A is finitely 

generated. 

Proof As A is an invertible ideal of R, therefore there 

exist a , ••• ,a e A, and q , ••• , q e Q such that q .A S R 
1 n 1 n I. 

n 

and E q.a. = 1. We claim that A = <a , ••• ,a >. 
. I. I. 1 n 
I. = 1 

Clearly 

n 

<a , ••• ,a > S A. If x E A then x = xl = x( E q.a. ) = 
1 n I. I. 

i.=1 
n n 

E (xq.)a. = E r.a. where r = xq. E R. Thus 
I. I. I. I. i. I. 

i. =1 i. = 1 

X E <a , ••• ,a >. Hence A = <a , ••• ,a >. So A is finitely 
1 n 1 n 

generated . 

Definition 3.4.3 If A is an invertible ideal of a 

commutative cancellative semiring R, then, we define A-
1 

to be the R-subsemimodule of Q generated by q ,q , ••• q • 
1 2 n 

Proposition 3 . 4 . 4 If A is an invertible ideal of a 

commutative cancellative semiring R then = R 
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where 

Proof 
n 

A-
1

} Ea. b.: a.E A and b E 
f i.. ni.. t. it L L i. 

As 1 = Eq. a. e AA-1
• Thus AA-1 = R. 

. L L 
L =1 

Definition 3.4.5 Let R be a commutative cancellative 

semiring and Q be its semifield of quotients. Every 

R-subsemimodule A of Q such that there exist 0 ~ A E R for 

which AA S R is called a Tractional ideal of R. 

Proposition 3.4.6 Every finitely generated 

R- subsemimodule of Q is a fractional ideal . 

Proof Let A = <a , ••• ,a >, where a . E Q, be a 
1 n L 

finitely 

generated R- subsemimodule of Q. As a. E Q therefore a . = 
L L 

b. (d. ) -1 where b. , d . E Rand d. ~ 0 for i = 1, ••• , n . Let 
~ ~ 1. 1. 1. 

n 

d = d d •.• d , then d E R . Now if x E A then x = 
1 2 n 

LA.a. 

n 
-1 

EA.b.<d.> • 
. ~ L L 
1. =1 

n 

Thus dx = 

. L L 
L =1 

n 

(d d ••• d ) ( E A. b . (d. )-1 
1 2 n. 1. 1. 1. 

1. =1 

= 

= 

EA. b. d ••• d . d. . . d E R . Thus ' A is a fractional 
. 1. 1. 1 1. - 1 1.+1 n 
~=1 

ideal of R . 

Corollary 3.4.7 If A is an invertible ideal of R then A 

and A- 1 are fractional ideals. 

71 



Proposition 3.4.8 An ideal A of a commutative 

can ce ll ative semiring R is i n verti b le if a nd only if t here 

e x i sts a f ractiona l i dea l B s u c h t hat AB = BA = R. 

Proof If A is an invertible ideal of R then by above 

Corollary there exists a f r actional ideal 
-j. 

A • By 

- j. 
Proposition 3 . 4 . 4 AA = R . 

Conversely , suppose that there exists a fractional 

ideal B such that AB = BA = R. As 1 E R therefore 1 E AB . 
n 

Hence 1 = Ea. b . where a . E A a nd b . E B . 
. 1. 1. 1. 1. 
1. =j. 

Thus by Definition 3 . 4 . 1 A is invertible . 

Al s o Ab 
i. 

R. 

Definition 3.4 . 9 A fractional ideal A of a commutative 

cancellative semiring R is invertible if there exist a 

fract i o n a l i dea l B s uch t hat A8 = 8A = R. 

Definition 3 . 4 . 10 Let R be a commutative cancellative 

semiring with semifield of quotients Q and A B a re 

fractional ideals of R then (A : B) = {x E Q : xB S A} . 

Proposition 3 . 4 . 11 If A is an invertibl e f r actional 

ideal of R , then A has a unique inverse and this inverse 
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is equal to (R:A). Hence, a necessary and sufficient 

condition for A to be invertible is that A.(R:A) = R. 

Proof As A is invertible, therefore there exists a 

fractional ideal A-1 such that AA-1 
= = R. This 

impli~s that A-1 
£ (R:A) . On the other hand A(R:A) £ R. 

Now (R: A) = A -1A (R: A) S;; A -1R S;; A -1. Thus A -1 = (R: A) • 

Theorem 3.4.12 Let M be a rig ht R-semimodule . Then the 

following assertions are equivalent: 

(1) M is projective; 

(2) There exists elements {ak e M . . (k e K)} 

R-homomorphism {¢k: M ~ R (k e K)} such that: 

(a) if x E M then ¢k(x) = 0 for almost all k e K; 

(b) if x e M then x = E ak¢k(x). Moreover, M is 
keK 

generated by {ak: k e K}. 

and 

then 

Proof (1) ~ (2): Suppose M is projective. By Proposition 

1.6.2, there exists a free right R-semimodule F and an 

R-epimorphism ~: F ~ M. Since M is projective, 

exists an R-homomorphism ¢: M ~ F such that ~ ¢ 

there 

= 1 
M 

Let {e
k

: k E K} be a basis for F. If x E M then ¢(x) E F. 

Hence , we can write ¢(x) = E e .A , where Ak E Rand 
kEK k k 
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for almost all k . Define = ), 
Il"k · Then is 

R-homomorphism . Since ~ is an epimorphism , therefore 

an 

{a : 
k 

~(ek) = a
k

, k E K} generate M. Moreover, if x E M then x 

(2) ~ ( 1 ) : Assume the existence of {a • k 
k' 

E K} and 

R-homomorphism {¢ • k' M ---+ R}. Let F be a free 

R-semimodule with basis {e • k • k E K}. Define ~ : F ---+ M 

by setting ~(ek) = a k and extending ~ to F. Then, ~ is an 

R-homomorphism which is surjective. Now, define ¢:M ~ F 

by ¢(x) As this sum is finite, ¢ is = E e .¢ (x). 
kEK k k 

well-defined . Then we have 

Hence ~¢ = 1 • This implies that M is p r ojective by 
M 

Proposition 1 . 6 . 2 . 

Proposition 3 . 4 . 13 Let R be a commutative cancellative 

semiring . Then each nonzero ideal I of R is projective 

if and only if I is invertible. 

Proof (1) Suppose I is a (nonzero) projective ideal of R. 

Then I has a projective basis by the above Theorem . Hence, 

there are elements {a
k

: k E K} S I and R-homomorphisms 

¢k: I ~ R such that: (i) if a E I, then ¢k(a) = 0 for 
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almost all k e K; (ii) if a e I, then a = r a (¢ (a». 
k k kEJ< 

If 

bEl and b ~ 0, then define qk = ¢k(b)/b, where Q is the 

semifield of quotients of R. Note that qk does not depend 

on the choice of b. For, if b' E I and b' ~ 0, then 

b'¢k(b) = ¢k(b' b} = ¢k (bb' ) = b¢k (b' ) ~ ¢k(b)/b = 

¢k(b' )/b' • We now verify that qk I £ R for all k E K. Let 

b E I (b ~ 0) • Then qk b = [¢k(b)/bJb = ¢k (b) E R. By 

condition ( i ) , if b E I and b ~ 0, then ¢k (b) = ° for 

almost all k. Since qk = ¢k(b)/b, there are only finitely 

many nonzero qk. Finally, by condition (ii), if bEl then 

If we discard all those a k for which qk = 0, then there 

remain finitely many a
k 

E I. Furthermore, if b ~ O,we may 

cancel b from both sides of the above equation to get 1 = 

E qkak· This proves I is invertible. 

(2) Suppose now that I is invertible and let a
1

, ••• ,a
n 

E I, and ql, ••• ,qn E Q be as in the definition . Define 

¢k: I ---~ R by ¢k(a) = qka (qkI £ R) . Let a E I. Then 

E (¢k(a) )ak = E qkaak = a E qkak = a. This implies that I 

has a projective basis. Henc e I is projective by Theorem 

3.4.12. 

Following the terminology in ring theory, we call a 

semiring R right hereditary (semihereditary) if each right 
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ideal (finitely generated) of R is projective (as a right 

R-semimodule) . The following corollaries follow from the 

above proposition and the remark stated before Lemma 

3.4.2. 

Corollary 3.4.14 Let R be a commutative cancellative 

semiring. Then R is a semihereditary semiring if and only 

if every finitely generated ideal of R is invertible. 

Corollary 3.4.15 Let R be a commutative cancellative 

semiring. Then R is hereditary if and only if each ideal 

of R is invertible. 

Corollary 3.4.16 Each ideal of a commutative 

cancellative hereditary semiring is finitely generated 
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CHAPTER 4 

WEAKLY REGULAR SEMIRINGS AND THEIR 

PRIME IDEAL SPACES 

Analogous to von Neumann regular rings, a ring R is 

2 called right weakly regular if x E (xR) , for each x E R . 

These rings were introduced by Brown and McCoy [10], later 

investigated by Ramamurthy [41], [52] and others . In this 

chapter we define and characterize ' weakly regular 

semi rings and study some properties of the space of their 

prime ideals . 

4.1 Weakly regular semi rings 

A semiring R is called right weakly regular if aE(aR)2, 

for each a E R. Thus, if R is commutative then R is weakly 

regular if and only if R is regular . In general , however, 

regular semirings form a proper subclass of weakly regular 

semirings. 

Theorem 4.1 . 1 The following assertions for a semiring R 

are equivalent: 

1 . R is right weakly regular; 
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2. J2 = J for each right ideal J of R; 

3. For each (two-sided) ideal I of R; J 0 I = JI, for any 

right ideal J of R. 

Proof (1) ~ (2): Let J be a right ideal of R. Clearly, 

J2 S J. For the reverse inclusion, let x E J; so X E (XR)2 

Hence x E J2, so J = J 2 • 

(2) ~ (3) : Let I be any ideal of R and let x E I. Since 

X E (xR) 2 = (xR) , it follows that x = xy, for some y E I . 

Let J be a right ideal of R. Clearly, JI S J 0 I. Let 

X E J 0 I. Then there exists y E I such that x = xy. Thus 

X E JI i.e., J 0 I S JI, so J 0 I = JI. 

(3) ~ (1): Let x E R. Then x E (xR) 0 (RxR) = (xR)(RxR) 

S (xR2 )(xR) S (xR)(xR) . Hence R is right weakly regular . 

Proposition 4 . 1.2 ([41], Prop. 5, p . 318) . Each ideal of 

a right weakly regular semiring is (right) weakly regular 

(as a semiring). 

Definition 4.1.3 A two sided ideal I of a semiring R is 

called right (left) pure if, for each x E I, there exists 

Y E I such that x = xy (x = yx); in other words, I is 

right pure if and only if for every a E I the equation 

a = ax has a solution in I. 
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Definition 4.1.4 An R-subsemimodule N of an R-semimodule 

M is normal if and only if NI = MI n N for every ideal I 

of R. M is called normal if every R-subsemimodule N of M 

is normal in M. 

We characterize right weakly regular semi rings in terms 

of pure ideals and normal semimodules. 

Proposition 4.1.5 A semiring R is right weakly regular 

if and only if every two sided ideal of R is right pure . 

Proof Suppose R is a right weakly regular semiring and I 

is a two sided ideal of R. Let a E I. Since R is right 

weakly regular~ a E (aR)(aR) i.e. a = E (ax , ) (ay) = 
fi..ni..te ~ J 

E a(x,ay,) = a E x,ay, = 
~ J ~ J 

ax where x = E x ,ay, E 
~ J 

I. Thus I 

is right pure . 

Conversely~ suppose that each two sided ideal of R is 

right pure . Let x E R and I be a two sided ideal generated 

by x. Then, by hypothesis, x E xl i.e. x = x E a,xb, = 
~ ~ 

E xa ~ xbi.. E (xR)(xR) . Hence R is right weakly regular . 

Proposition 4 . 1.6 A semiring R is right weakly regular 

if and only if each cyclic R-semimodule is normal. 
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Proof Let R be a right weakly regular semiring and M=xR 

be a cyclic R-semimodule . Clearly, NI S N n MI (where N is 

an R-subsemimodule of M). For the reverse i nclusion, let 

a E N n MI implies that a E N and a E MI. Then a E MI 

implies that a = E xa.i. = x E a.i. = xi where i = E a .i. 
f ·i. n i. t e 

J J J J J J 

E I. As R is a weakly regular semi ring and i E I , 

therefore, there exists j E I such that ij = i . Hence , a = 

xi = x(ij) = (xi)j = aj E NI . Thus, N n MI S NI . 

Conversely, suppose that each cyclic R-semimodule is 

normal . As R is a cyclic R-semimodule, therefore, JI = 

RI n J = I n J for every ideal I and every right ideal J 

of R . Thus , R is a right weakly regular semiring. 

We shall now examine some properties of the lattice of 

ideals of a right weakly regular semiring R. In the sequel 

we shall denote this lattice by 2 • First we show that the 
R 

lattice :e 
R 

is a complete Brouwerian and, 

distributive lattice . Recall that a lattice 2 is 

Brouwerian if for any a,b E :e, the set of all 

hence , 

called 

X E 

satisfying a A x ~ b contains a greatest element c , the 

pseudo- complement of a relative to b (cf . [9]) 

Proposition 4 . 1 . 7 Let R be a right weakly regular 
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semiring. Then, the lattice 2 is a 
R 

complete Brouwerian 

lattice under t h e sum and intersection of ideals . 

Proof Clearly, ~ is a complete lattice under the 
R 

sum 

and intersection of ideals. Let Band C be ideals of R . By 

Zorn's Lemma, there exists an ideal M of R which is 

maximal in the family of ideals I satisfying 8 n I S C. 

Thus, for any such ideal I we have 81 S C by Theorem 4 . 1 . 1 

Again, by Theorem 4 . 1 . 1 8(1 + M) = 8 n (I + M) S C . 8y the 

maximality of M, we get I + M S M and, therefore, I S M, 

as required . This proves that ~ is a Brouwerian 
R 

lattice . 

Since 2 is also a complete lattice , therefore it follows 
R 

from ([9] 11.11 ) that 2 is distributive . 
R 

Recall that an ideal P of a semiring R is prime 

(irreducible; strongly irreducible) if 1J S P 9 I S P or 

J S P (I n J = P 9 I = P or J = P; I n J S P 9 I S P or 

J S P) holds for all ideals I , J of R. Thus, any prime 

ideal is strongly irreducible and any strongly irreducible 

ideal is irreducible (cf . [23]) . The notions of prime, 

irreducible and strongly irreducible ideals coincide for 

right weakly regular semirings, as shown below . 

Proposition 4 . 1 . 8 Let R be a right weakly regular 
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semiring. Then the following assertions for an ideal P of 

R are equivalent : 

(1) P is i r reducible . 

(2) P is prime . 

Proof It is clear that (2) implies ( 1 ) , thus, it 

suffices to show that (1) ~ (2) . Suppose that IJ S P for 

ideals I and J of R. Hence I n J S P, by Theorem 4.1.1. 

Thus, it follows that (I n J) + P = P . Since the ideal 

lattice of R is distributive , we have P = (InJ) + P = 

(I+P) n (J+P). Since P is irreducible, therefore, I+P = P 

or J+P = P. This implies that I S P or J S P. Hence P is a 

prime ideal . 

As an application of the above Proposition , we prove 

the following result . 

Theorem 4 . 1 . 9 Let R be a right weakly regular semiring. 

Then each proper ideal of R is the intersection of prime 

ideals which contain it. 

Proof Let I be a proper ideal of R and let {p~: ~ E A} 

be a family of prime ideals of R which contain I. Clearly, 

I S nP • To prove the converse, suppose that a ~ I. By 
~ 
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Zorn's Lemma, there exists an ideal P 
01. 

such that P 
01. 

is 

proper, I S P , a IZ! P , and P 
01. 

is maximal with these 
01. 01. 

properties. Then P is irreducible. For, 
01. 

contrary, that P = K n L, 
01. 

and both K 

suppose on the 

and L properly 

contain P • Then K and L both contain a. Hence a E K n L. 
01. 

This contradicts the assumption that P = K n L. Hence, P 
01. 01. 

is irreducible, and, therefore prime by Proposition 4.1.8. 

This establishes the existence of a prime ideal P such 
01. 

that a IZ! P and I S P • Hence, a IZ! n P • As this is true 
01. 01. 01. 

for every a IZ! I, the desired result follows. 

Remark The above property doesnot fully characterize 

weakly regular semirings. We refer to [2] for semirings 

which are precisely characterized by the property that 

eac~ proper ideal is the intersection of prime ideals . 

Proposition 4.1.10 The set of direct summands of a right 

weakly regular semiring R is a Boolean sub lattice of the 

lattice of ideals of R. 

Proof The proposition will follow if we show that 

A and A n A are direct summands of R if A and A 
2 1 2 1 

direct summands of R. Let B and B be the cosumands 
1 2 

and A 
2' 

respectively, that is, A+ B = R, A n B= 
1 1 1 1 
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A + B = R and A n B = (0) • We show that A + A is a 
2 2 2 2 1 2 

summand of R with B n B as the cosummand of A + A . It 
1 2 1 2 

is easily seen that every ideal is contained in a maximal 

ideal which is irreducible. I of there exists a maximal 

ideal M containing B II B , then M contains B or B by the 
1 2 1 2 

irreducibility of M. Suppose M contains B • Since A + B 
111 

= R, M can not contain A • Hence there is no maximal ideal 
1 

bigger than (B II B ) + (A + A ), i. e., ( B II B ) + (A + 
12 12 1 2 1 

= 1,2) , then 

xy + xy = 0, 
1 2 

(k = 1,2) • 

Thus, (B nB)(A +A)=(O). 
1 2 1 2 

Hence by Theorem 4.1.1 

(B II B ) n (A + A) (0) • Thus (B n B) is the 
1 2 1 2 1 2 

cosummand of A + A • An exactly similar proof can be 
1 2 

given for the intersection. 

4.2. Prime spectrum of a weakly regular semiring 

We continue to let ~ denote the lattice of ideals of R 
R 

and peR) will denote the set of proper prime ideals of R. 

For any ideal I of R, we define G
1 

= {J E peR) : I 1- J}, 
and T(P(R» = {eI :I E £R}' In the rest of this section, R 

will denote a right weakly regular semiring. 

Theorem 4 .2.1 The set T(P(R» forms a topology on the 
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set peR) . Moreover, the assignment I ~ e is 
I 

an 

isomorphism between the lattice £ of ideals of R and the 
R 

lattice of open subsets of peR). 

Proof First we show that T(P(R» forms 

set P (R). Note that e = {J E P (R): (0) 
(0) 

a topology on the 

since 

(0) is contained ln every (prime) ideal. Thus e is the 
(0) 

empty subset of T(P(R». On the other hand, e
R 

= {J E 

peR) : R 1 J} = peR) . This is true , since prime ideals are 

proper . So e (= P(R» is an element of T(P(R». Now, let 
R 

e
I 

, eI E T(P(R» with 1
1

, 12 
1 2 

in ;e • Then e n 
R I 

:1 

e 
I 

2 

= {J E 

J}. This 

follows from Proposition 4.1.8. Next, let us consider an 

arbitrary family 

U {J E peR) 1A'J J} (J E peR) 3A E A such that IA~ J} 
= {J E peR) : I: IA1 J} = eI: I • Since I: IA E :e , it 

R 

AEA A AEA 

follows that ~ e E T(P(R» • Thus, the set T(P(R) ) of 
IA 

subsets e with I E £ constitutes a topology on the set 
I R 

P( R) • Let ¢ : £ ---~ T(P(R» be the mapping defined by 
R 

I ~ e . It follows from the above that the prescription 
I 

¢(I) = e preserves finite intersections and 
I 

arbitrary 

unions. Thus , ¢ is a lattice homomorphism . To conclude the 
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proof, we must show that ¢ is bijective. In fact, we need 

to prove the equivalence I = I if and only if e = e 
1 2 r r 

1 2 

for I ,I ,in 2 . Suppose that e = e If I ;z! I 
2' 

then 
1 2 R r r 1 

1 2 

there exists x E I such that x ~ I • Then there exists a 
1 2 

prime ideal J such that I S J and x ~ J. Hence, 
2 

therefore, J E e 
r 

1 

By the assumption e 
r 

1 

== e . 
r ' 

2 

I 1: 
1 

J, 

we have 

JEer . Hence, 121 J. 
2 

But this is a contradiction. 

Hence, I 
1 

I . 
2 

Definition 4.2 . 2 The set peR) of prime ideals of R will 

be called prime spectrum of R . The topology T(P(R» in the 

above theorem will be called the prime spectral topology 

on peR). We shall denote by :P(R) the prime ideal space of 

R . 

Proposition 4 .2. 3 For a right weakly regular semiring R, 

the following hold: 

(1) For I E 2 , e is open and closed in :P(R) if and 
R r 

if I is a direct summand of R. 

(2) :P(R) is a compact space. (but not Hausdorff, 

general). 

Proof ( 1 ) Suppose that e (I E 2 ) 
r R 

E T(P(R» is 
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open and 

that e 
I 

I + J = 

summand 

(2) 

closed. Then there exists e with J E :e such 
J R 

U e = P(R) and e n e = ¢ . This implies that 
J I J 

R and I II J = (0) • Therefore, I is a direct 

of R . 

Suppose that u e = P(R) is an open covering 
A. IA 

of 

P ( R) . Then r: I A. R. Since 1 E R, there exist 

A. 
n n 

such that 1 Hence, R = Thus, P(R} 

Hence P(R) is compact. 

Proposition 4.2.4 A right weakly regular semi ring R is 

directly indecomposable if and only if P(R) is a connected 

space . 

Proof A topological space is connected if and only if it 

has no nonempty proper open and closed subsets. Hence , the 

proof follows from part (1) of the above proposition . 
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CHAPTER 5 

SHEAFS FOR CLASSES OF MONOIOS AND SEMIRINGS 

A classical result in ring theory asserts that any 

commutative ring with identity is isomorphic to the full 

ring of global sections in a sheaf of local rings. 

in the Following this result, proved by A. Grothendieck 

late 1950's, several authors have established 

representations of rings and other algebraic structures by 

sections in sheafs . In 1966, J . Dauns and K. H. Hofmann [13] 

obtained a representation of (not necessarily commutative) 

biregular rings . In 1967, R . S . Pierce [40] proposed a 

different kind of sheaf representation for rings. On the 

other hand, Dauns and Hofmann [14] extended their 

weakly representation theory of biregular rings to 

biregular rings. They proved that a weakly biregular ring 

with identity is isomorphic to the ring of all continuous 

sections in a sheaf of local rings over a zero dimensional 

compact Hausdorff space ([14] , 3.2, Thm. XI, P. 154) • In 

1969, S.Teleman developed a functional representation 

theory for harmonic rings by sheafs (see the bibliography 

in [51] for several references to Teleman's work). In 1971 

J . Lambek obtained a representation theorem for modules by 

sheafs of factor modules. For a survey of results dealing 
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with representations of rings and modules, we refer to 

Mulvey [37]. We also refer to K.Keimel [27] in which he 

developed a representation theory for lattice ordered 

rings which also applies to abelian lattice ordered groups 

and to vector lattices. The aim of this chapter is to 

initiate an analogous study of sheafs for monoids and 

semirings. In section 1, we construct sheafs of regular 

monoids with zero. In section 2, we establish a 

representation theorem for weakly regular semirings by 

sections in a presheaf. As an application of our results, 

we obtain a sheaf representation of weakly regular rings. 

5.1 Sheafs of regular monoids with zero 

Throughout this section, S will denote a monoid with a 

two-sided zero o. The word ideal will always mean a two-

sided ideal. Let I be an ideal of S; I is called prime if 

for any a,b E S, aSb C I implies that either a E I or 

bEl. Equivalently , I is prime if and only if for any 

ideals A and B of S, AB S I implies that A S I or B S I . 

Let peS) denote the set of proper prime ideals of S. For 

any ideal I of S, we define the sets: e
I 

= { J E peS): I ~ 

J }, and T(P(S» = { eI: I is an ideal of S } . 
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First we prove some preliminary lemmas. 

Lemma 5.1 . 1 Let S be a regular semigroup. Then for each 

pair I,J of ideals of S, I n J = IJ. 

Proof Always IJ SIn J. To prove the converse, let 

X E I n J. Since S is regular, there exists YES such 

that xyx = x . Hence I n J S IJ, and therefore IJ = I n J . 

The following lemma can be proved by using the usual 

arguments. 

Lemma 5.1.2 Let S be a monoid (with a zero 0) and let A 

be a right S - system. Then the set End (A) 
s 

S-endomorphisms of A is a monoid with zero. 

of 

Lemma 5.1.3 Let S be a regular semigroup with zero. 

each pair I,J of ideals of S with J I , 

S-homomorphism from J to I factors through J. 

all 

For 

any 

Proof Let f: J ---~ I be an S-homomorphism. Let a E J. 

Since S is regular, there exists b E S such that a = aba. 

Hence f(a) = f(aba) = f(ab)a E J. 

Lemma 5.1.4 Let S be a monoid with zero. For each ideal 
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1 of S, End (I) is a monoid wit h zero which admits the 
s 

structure of a right S - system . 

Proof Let f E Hom (1,1) and s E S. 
S 

we define fs by 

(fs)(x) = f(sx), for all x E I . Note that sx E I, since 1 

is both a left and right ideal of g. Hence Hom (1 ,1) is a 
s 

r ight S-system. 

We will now topologize the set of proper prime ideals 

of a regular monoid . 

Theorem 5.1.5 Let S be a regu l ar monoid. The set T(P(S» 

constitutes a topology on the set peS) and the assignment 

I t-----. 8 is a lattice isomorphism between t he lattice :e 
1 s 

of ideals of S and the lattice of open subsets of peS). 

Proof First we show that the set T(P(S» forms a 

topology on the set peS). Since the zero ideal (0) of S is 

contained in every prime ideal, t herefore 8 = {J 
CO} 

E 

P(S) : (O) 1 J} = ¢. Thus 8 is the empty subset 
(O) 

of 

T(P(S» . Moreover 8 s = {J E P(S) :S ~ J} = peS) . This is 

true since prime ideals in peS) are proper. Thus pes) ( = 

8 s ) is an element of the family T(P(S». Now let 8
1 

, 8
1 

E 

i 2 
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T(P(S» whe ..... e I ,I E;;e. Then e () e 
1 2 S I I 

1 2 

and 12 1 J} = {J E P(S):I
1
() 12~ J} This follows f ..... om 

5 . 1 . 1 . Now conside ..... an 

ideals of S . Since U e 
Ik 

a ..... bit ..... a ..... y family 

= U {J E peS) : Ik 

(Ik)kEJ< 

$ J} = 

$ J 

Lemma 

of 

E 

pes) : the ..... e exists k E K such that Ik 1: J} {J E P ( 5) : 

it follows 

that U e E T(P(S». Thus the set T(P(S» of subsets e 
kEJ< Ik I 

(IE:t:) 
S 

is a topology on the set peS). Define 

¢::t: ---~ T(P(S» by ¢(I) = e. It is easy to ve ..... ify that 
S I 

¢ p ..... ese ..... ves finite inte ..... section and a ..... bit ..... a ..... y union. Hence 

¢ is a lattice homomorphism. Finally we show that ¢ is an 

isomo ..... phism. Fo ..... this pu ..... pose we show that I = I if and 
1 2 

only if e = e fo ..... I I in :e . Suppose e = e 
I I l' 2 S I I 

If 
1 2 1 2 

I ~ I 
2' 

then the ..... e exists x E I such that x ~ I . 
1 1 2 

Then 

by Zo ..... n ' s Lemma, the ..... e exists an ideal J of R which is 

maximal with ..... espect to the p ..... ope ..... ty that J is p ..... ope ..... , 

I £ J and x ~ J . Then J is an i .......... educible ideal of 5 (in 
2 

the sense that J = P () L fo..... ideals P and L, implies 

eithe ..... J = P 0 ..... J = L) • Fo ..... if J = P () L and both P and L 

p ..... ope ..... ly contain J, then P and L both contain x. Hence 

x E P n L = J, which is a cont ..... adiction. Since x ~ J, 

the ..... efo ..... e I 1 J. Hence J E e But e e Hence 
1 I I I 

1 1 2 
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J E e 
I 

2 

This means that 

contradiction. Hence I = I • 
1 2 

But this is a 

Definition 5.1.6 The set peS) is called the prime 

spectrum of S and the topology T(P(S» will be called the 

spectral topology on peS). The corresponding space is 

called the spectral space of S. 

We now formulate a definition of a sheaf of monoids 

with zero as follows : 

Definition 5.1.7 Let X be a topological space and let 

T(X) be the category of open subsets of X and inclusion 

maps . A presheaf P of monoids wit h zero on X is a 

contravariant functor from the category T(X) to t he 

category Mon of monoids with zero y that is, it consists of 

the da -ta: 

(a) 

(b) 

For every open set U S X, there exists a monoid 

with zero P(U), and 

For every inclusion V S U of open sets, there 

exists a semigroup homomorphism P : P(U) ---~P(V) 
Puv 

subject to the following conditions : 

(1) P(¢) = (0) , where ¢ is the empty set of X; 

(2) P P(U) ---~ P(U) is the identity map, and 
Puu 
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(3) if W eVe U are three open sets, then ~ = ~ o~ 
P uw P vw P uv 

If ~ is a presheaf on X, then ~(U) is called a section of 

the presheaf ~ on the set U and the maps ~ are 
P uv 

called 

the restriction maps for which the notation ~ IV is also 

used instead of ~ (~) where ~ E ~ (U) . 
Puv 

The presheaf ~ is called a sheaf if the following 

additional conditions are satisfied: 

(4) If U is an open set and (VA) is an open c overing 
AEA 

of U and if ~ I V 
A 

VA' then ~ = ~; 

fo r ~,~ E ~(U) and for all 

(5) If U is an open set and (VA) is an open covering 
AEA 

of U and if there are elements ~A E ~(VA) for each 

A E A such that for each pair A,~ E A, ~AIVAIlV~ = 

~ IV V' then there exists ~ E ~(U) such that ~ I V 
~ All ~ A 

= ~A for each A E A. 

If a presheaf satisfies condition (4 ) only, it is 

called separated [cf . G. Berdan, I . R . Shafarevich] . 

We now describe a sheaf of monoids with zero on the 

prime spectrum of a regular monoid with zero . 

Theorem 5 . 1 . 8 Let S be a regular monoid with zero. For 

every ideal I of S , the assignment e ---t End (I) = :P (I) 
ISS 
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defines a sheaf ~ of monoids with zero on the 
s prime 

spectrum of S . 

Proof First we prepare the data for the existence of a 

p resheaf. By Lemma 5.1.2, ~ (I) = End (I) is a monoid wit h 
s s 

zero for every ideal I of S . We now define a restriction 

map : ~ : End (I) 
P

1J 
S 

--~ End (J), whenever e 
S J 

s e , that 
I 

when J S I for each pai r of ideals I,J of S. For 

~ E End (I) , we define ~ (~) 
S P

1J 

= Note that 

is, 

E 

End (J) 
S 

by Lemma 5.1.3. Clearly is a semigroup 

homomorphism . Thus satisfies the conditions of a 

presheaf . Hence we have described the desired presheaf ~ . 
S 

We now show that ~ 
S 

is separated . Let (I) be a 
k kEK family 

of i deals of S and let I = U I
k

• Suppose f,g 
kEK 

E ~ (I) suc h 
S 

that f l I 
k 

for all k E K. Then for each x 

have x E Ik for some k. Thus f(x) f l I (x)= 
k 

E 

g(x) . Hence f = 9 and ~ is separated. Finally we 
S 

I , we 

= 

check 

condition (5) . Let (Ik)kEK be a family of ideals of Sand 

let I = U I
k

, 

kEK 
and let (f) be a family of maps with 

k kEK 

for k,l E K. 

For S-endomorphisms f • I --~ I and f • I ---~ k · k k l . l 

which coincide on Ik () It we define a map 

f : I U I ---. Ik U I by 
k \. \. 
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{ \(xl if x E I 
f(x) k = f (x) if x E 11 1 

Since f and f coincide 
k 1 

on Ik Ii 11 ' f is an 

S-homomor-phism extension of f 
k 

and fl . Now if I is 
m 

any 

ideal in the family , then 1m Ii (I
k 

U 1
1

) = (I Iilk)U( I nI ) 
m m 1 

or- x E ( I Ii I 1 ) • Hence 
m 

{ f ( x ) f ( x ) 
f(x} k m = f 1 (x) = f ( x ) 

m 

or-

Hence -f ( x ) = f ( x) for x E I Ii (lk U 
m m 

1
1

) • This implies 

that the family (1) is stable with r-espect to 
k kEK 

finite 

unions. Now if x E U I
k

, then x E Ik for some k in K. So 
kEK 

we may define with no ambiguity, the map f: U I 
k 

---. u I 
k 

kEI< kEI< 

by f(x} = fk(x} , since two differ-ent f1 agr-ee on x when 

flex) make sense. The map f is clear-Iy an S-homomor-phism 

extending each fk for all k E K. This proves that $s 

sheaf of monoids with zer-o. 

Cor-ollar-y The monoid ~ (S) (called the monoid of 
s 

global section of ~) 
s 

is S-isomor-phic to S, as 

S-system. 

is a 

the 

an 

Pr-oof Note that End (5 ) is an S-system by Lemma- 5.1.4. 
s 

We show that End (5 ) ~- 5 as S-systems. For- this pur-pose , 
s 

we define h : End (S) ---. S by h(O() = 0( ( 1 ) for- O( E End (S) 
s s 
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It is easy to ver ify that h is an S-homomorphism . Suppose 

h(~) = h(~) . Then ~(1) = ~(1) . Hence for all s E S , ~(s) = 

~(ls) = ~( l ) s = ~(l) s = ~(ls ) = ~(s) . The r e fo r e ~ = ~ . 

Hence h is injective . To show that h is surjective , let 

t E S and let c( : S ---+ S be defined by C{ (s) 
t t 

= ts for 

atl s E S . Evidently, C( E End (S) and h(C{ ) = C( (1) 
t s t t = tl 

= t . Therefore h is surjective . 

Finally it is remarked that the sheaf representation of 

regular monoids given above (Theorem 5.1 . 8) can actually 

be proved, with some minor modifications, for more general 

classes of monoids including weakly regular and semisimple 

mo n oids. Recall that a semigroup S (not necessarily with 

identity or zero element) is called semisimple if all 

ideals of S are idempotent (an ideal I is called 

idempotent if I = These semigroups admit many 

interesting character izations (see [14 , vol . I , p . 76] , 

see also [2] for a recent characterizations of these 

semigroups in terms of their prime ideals) . Semisimple 

semigroups contain regular and weakly regular semigroups 

as proper subclasses. 
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5.2 Representations of weakly regular semirings by 

sections in a presheaf 

Throughout this section, R will denote a semiring with 

a zero 0 and an identity 1 and all R-semimodules Mare 

right unital (that is,. mol = m, for all m EM). Let Rand 

L be semirings. We shall say that L is an R-semiring if L 

has the structure of an R-semimodule so that (xy)r = 

x(yr), for x,y ELand r E R . For two such R-semirings 

and L , a semiring 
2 

homomorphism f : L --.... L is 
:1 2 

L 
:1 

a 

homomorphism OT R-semirings if f is an R-homomorphism . If 

R is a semiring and L is an R-semiring, then an 

R-semimodule M is called an L-R-semimodule if M is an 

L-semimodule such that (mx)r = m(xr) , for all m E M, x E L 

and r E R . We begin with some preliminary lemmas. 

Lemma 5 .2.1 Let R be a semiring and M a right 

R-semimodule. Then the following hold: 

(1 ) 

(2) 

Proof 

For each ideal I of R , End (I) 
R 

is an R-semiring , 

and Hom (I,M) is an End (I)-R semimodule. 
R R 

If R is commutative, and I is an ideal of R such 

that for each x E I, there exists Y E I with 

x = xy, then End (I) is a commutative semiring. 
R 

The proof is similar to that of the corresponding 
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result in rings and hence omitted. 

Lemma 5 . 2 . 2 Let I and J be ideals of a right weakly 

regular semiring R with J £ I. Then any R-homomorphism 

from J to I factors through J. 

Proof Let f: J ---~ I be an R-homomorphism. Since each 

ideal of a right weakly regular semiring is a right weakly 

regular semiring (see [41], Proposition 5, p.318) , 

therefore J, considered as a semiring, is right weakly 

regular. If a E J, then we can write a = ax ay + 
1 1 

ax ay + ..• +ax ay , 
2 2 n n 

Therefore, f(a) = 

••• +f(ax a)y E J. 
n n 

for x , ••• ,x and y , ••• , y 
1 n 1 n 

f (ax ay ) + 
1 1 

••• +f (ax ay ) 
n n = 

E J . 

f(ax a)y + 
1 1 

We now define the concept of a sheaf for semirings in 

the following way : 

Definition 5.2.3 Let X be a topological space and T(X) 

be the category of open subsets of X and inclusion maps. A 

presheaf P of R-semimodules on X 

functor from the category T(X) to 

is a contravariant 

the category .Ai 
R 

of 

R-semimodules, that is, it consists of the following data: 

(a) For every open set U £ X, there exists an 

R-semimodule P(U), and 
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(b) For every inclusion V C U of open sets, there 

exists an R- homomorphism ~ ~(U) ---~ : 
Puv 

P(V) 

satisfying: 

( 1 ) :J>(¢) = (0) , where ¢ is the empty set of X· , 

(2 ) :J> :J>(U) ---.... :J>(U) is the identity map, and 
Puu 

(3) if W S V S U are three oren sets, then P = :J> 0:J> 
Puw Pvw Puv 

If :J> is a presheaf on X, then :J>(U) is called a section of 

the presheaf :J> on the open set U and the maps are 

called the restriction maps , and often the notation a l V 

is used instead of:J> (a) if a E :J>(U) . 
Puv 

A presheaf ~ on a topological space X is called a sheaf 

if the following additional conditions are satisfied : 

(4) If U is an open set and (VA) is a n open covering 
/\.EA 

of U, and if Ct lv 
A 

for a,D E ~(U) and for all 

VA' then a = (3; 

(5) If U is an open set a nd (VA) is an open covering 
AEA 

of U and if there are elements a A E ~(VA ) for each 

A E A, wit h the properties that for each A,~ E A, 

a AIV nV = a IV V ' then there exists a E 
A f;I ~ An ~ 

~ (U) 

such that a l
V 

= a
A 

for each A E A. 
A 

If a presheaf satisfies condition (4) only it is called 

separated [cf . G . 8erdan , I.R . Shafarevich] . 
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Definition 5 . 2 . 4 Let ~ be a p r esheaf (sheaf) of 

R-semimodules on a topological space X. If each ~(U) is an 

R-semiring and ~ are homomorphisms of R-semirings, 
Puv 

then 

~ is called a presheaf (sheaf) of R- semirings. 

As defined in Chapter 4, we shall use the notations :e 
R 

and peR) for the lattice of ideals of Rand the set of 

proper prime ideals of R, respectively. Moreover, for any 

ideal I of R, e { J E peR): I $ J}, and T (~ ) = {eI : I R 
I 

E :e
R

} . As shown in Chapter 4 (Theorem 4.2.1) , the set 

T(P(R» constitutes a topology on the prime spectrum peR) 

of R . On this prime spectrum peR) we now des~ribe a 

presheaf ~ of R-semirings . 
R 

Theorem 5 . 2 . 5 Let R be a right weakly regular semiring . 

For every ideal I of R, the assignment e ---~ 
I 

End (I) 
R 

= 

~ (I) defines a separated presheaf ~ of R-semirings on 
R R 

T(P(R». The semiring of the global section of 

presheaf is isomorphic to R. If R is commutative, then 

is a presheaf of commutative semirings. 

this 

~ 
R 

Proof First we prepare the data for the existence of a 

presheaf . By Lemma 5.2.1, ~ (I) = End (I) is an R-semiring 
R R 

for every ideal I of R. We need to define a restriction 
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End (I) --~ End (J), whenever e s e, that 
R R J I 

is, 

when J S I. By Lemma 5.2.2, this is just the usual 

restriction of an R-endomorphism f: 1 --~ 1 to the 

R-subsemimodule J , that is, = By 

definition , ~ is a homomorphism of R-semirings. Thus 
P

1J 

the 

satisfies the conditions of a presheaf. Thus we have 

described the presheaf ~ • In order to show that ~ is 
R R 

separated, we verify condition (4) i n Definition 5.2.3. 

Let 1 = LIE £ , and suppose f,g 
>,EA )'- R 

E ~ (I) such that fll = 
R ~ 

g i l for all ~ E A. For each x E I, we have x = 
~ 

x + ••• +x , 
.1 n 

where x~ E I~. Then f(x) = f(x ) + ••• + f(x ) = g(x) + .•. + 
/\. /\. .1 n.1 

g(x ) = g(x + ••• +x ) = g(x) . Hence f = g, 
n .1 r, 

and so Y 
R 

is 

separated. Now we show that ~ (R) = End (R) ~ R. 
R R 

Define 

h: End (R) --~ R by h(~) = ~(1), for ~ E End (R). Clearly 
R R 

h is a homomorphism of R-semirings. Suppose h(~) h«(3) . 

Then ~(1) = (3(1). Hence, for all r E R, ~(r) = Ot(lr) = 

~(1)r = (3(1)r = (3(1r) = (3(r). Hence Ot = (3; showing that h 

is injective. To show that h is surjective, let t E R, and 

define Ot: R --~ R by ~ (r) = tr for all r E R . 
l l 

~ is an R-homomorphism. Hence Ot E End (R), 
l l R 

and 

Clearly , 

h (ot ) 
l 

= 

t1 = t . Thus h is surjective, and hence bijective . 

Finally, if R is commutative, then End (I) 
R 

is a 

commutative R-semiring by Lemma 5 .2. 1. This follows, since 
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R is right weakly regular, therefore for each x E I, we 

2 
have x E (xR) = (xR) • Hence x = xy for each y E I. This 

compl etes the proof of the theorem. 

Let us now assume that the weakly regular semiring R in 

the a bove theorem is actually a ring. Then the presheaf ~ 
R 

defined in the above theorem is in fact, a s heaf . To show 

this we check condition (5) in Definition 5 .2.3. Let I 

= LIE £ and su ppose f E End (I) 
AEA A R A - R 

coincide on IA n IJ.l' Let x E IA + 

xA E IA and ~J.l E IJ.l' Define f: IA + 

Suppose x = xA + xJ.l = x~ + X I • 

J.l 
Then 

I 
J.l 

I 
J.l 

x
A 

-

f J.l( XJ.l) = fA(x~) + fJ.l(x~ ) . Thus f is a 

suc h t ha t f A I I 

. 

f 

x 

---) 

Then x = 

--... IA 

/-J 

I which 
J.l 

x
A 

+ x J.l; 

+ I by 
J.l 

is well-defined. 

- x' = x' X E 
A J.l J.l 

) . Hence fA(x A) + 
J.l 

correctly defined 

extension of fA a nd f J.l . Now if Iv is any ideal of R, then 

I 
v 

I ) . 
J.l 

Note that this 

follows since the lattice of ideals of a right weak ly 

regular semiring is dist r ibutive (see Chapte r 4 , 

Proposition 4.1.7). Hence if x E Iv n (I A 

can write x = x
A 

+ x 
J.l ' 

where x
A 

E I n IA v 

Hence f(x) = fA(X A ) + f ( x ) = fV(x A ) 
J.l J.l 

f ( x. + x ) = f ( x ) . This proves that the 
v A J.l 1·> 
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+ I ) , 
J.l 

and x 
J.l 

+ f 
v 

family 

then we 

E I n I 
v J.l 

(x ) = 
J.l 

( I A) AEA 



is stable under finite sums . Let x ELlA . Then we can 
AEA 

write x = x + ••• + x , where x
A 

E I A• Thus x belongs to a 
1 n 

finite sum of lA'S and hence by the first part of the 

proof , we can suppose that x E I for some J..i. Thus we 
J..i 

define f(x) = f (x) with no ambiguity in the defini tion of 
J..i 

L I X because two different f agree on 
AEA J..i 

x as 

s oon as f (x) make sense. 
J..i 

Finally, f is evidently an 

R-homomorphism extending each fA ' Hence ~R 

Thus we have proved : 

is a sheaf . 

Theorem 5.2.6 Let R be a right weak ly regula r ring . 

every ideal I of R, the assignment e 
I 

End (I) 
R 

For 

= 

~ (1) defines a sheaf ~ of R-semirings on peR). The 
R R 

(semi-)ring of the global sections of this sheaf is 

isomorphic to R. If R is commutative, 

of commutative (semi-)rings. 

Finally , we prove : 

then ~ is· a 
R 

sheaf 

Theorem 5 .2. 7 Let R be a right weakly regular semiring 

all of whose ideal s are linearly ordered . For every ideal 

1 of R, the assignment e ---~ End ( 1) = ~ (1) 
I R R 

defines a 

sheaf ~ of R-semirings on peR) . 
R 

The semi ring of the 

global sections of this sheaf is isomorphic to R . If R is 
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commutative, then ~ is a sheaf of commutative semirings . 
R 

Proof We need o n ly to check condition (5) in Definition 

5. 2 .3. Let I L I, E £ . S u p pose f, 
AEA " R " 

= f I 
I-l I 

I-l 

Con sid er f >, : 

E E nd ( I ) 
R 

I 

whic h c o i n ci d e on I , n I • S i n ce i d ea l s of R are 
" I-l 

such 

---+ 
I-l 

t h at 

I 
I-l 

l i n ear ly 

o r de red , the r efo re I A £ II-l o r II-l £ I A • He nce I A + II-l = 

or I, (respectively) . We now define f : I + I by 
" A I-l 

I 
I-l 

{ f (x J if I ;, + I I 
f(x) 

f: ( X) 
I-l I-l 

if I;, + I IA 
. 

I-l 

Obv iously, f i s a n e xten s ion of fA a nd f . Hence the 
I-l 

fami l y ( IA ) AEA is stab le u n der finite sums. Therefore, 

f: L I ---+ L I can be correctly defined in such a way 
AEA A AEA ;, 

that f extends each fA. Hence ~R is a sheaf. 
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