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ABSRTACT

The diffraction of a line-source by an acoustically penetrable half-plane is studied. The problem
solved is an approximate model for a noise barrier which is not perfectly rigid and therefore
transmits sound. Expressions for the total far field for the leading edge (no wake present) and the
trailing edge (wake present) situation are given. It ig found that the field produced by Kutta
Joukowski condition will be substantially large than the field in the absence when the source is

near the edge.



PREFACE

In 1931, Wiener And Hopf [1] developed a useful technique to solve an integral equation of a
spherical lype. This technique proved to be & powerful tool for solving the problems involving
diffraction by semi-infinite/finite planes. The technique is based on the application of integral
transforms and the theory of analytic continuation of the complex valued finctions [1].

In this procedure, the associated mathematical boundary value problem is transformed to the
Wiener-Hopf functional equation. An important step in the solution of the functional equation is to
decompose the Kernel (in general this is a known function of a complex variable with a number of
poles characterizing the underlying physical processes) into a product or sum of two functions, one
analytic in the upper/right of the complex plane whereas the other is analytic in the lower/left half-
plane. The procedure of the decomposition is relatively simple for a scalar Kernel. However in
the case of system of Wiener-Hopf equations, one has to work with a matrix equation involving a
mairix kernel and the success has only been achieved for a limited c;lass of matrices. Thus a
congiderable attempt has been made in recent yeara not only to extend this class but also to
develop new conalnlwtive methods for caleulation malrix decompositions, especially with
reference to the diffraction problems. An appreciable account of the problems based on the
Wiener-Hopf technique in the wave propagation theory can be found in the literature, for example
Copson [2], Noble [3], Jones [9,10,11] and Brekhovskikh [7].

Noise is deafening! Stop it now. In recent years, noise has become a serious issue of
environmental concern. Noise abatement has therefore attracted the attention of many scientists.
Traffic noise from motorways, railways, airports and other outdoor noises from heavy construction

machinery or stationary installation, such as large transformers and plants, can be shielded by a
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barrier. Noise in an open plan office can also be reduced by means of barrier partitions. In most of
the calenlations with noise barriers the fields in the shadow region of the barrier Kurze 8] is
assumed to be solely due to diffraction at the edge. This assumption supposes thal [he barrier is
perfectly rigid and therefore does not transmit sound. However the most practical barriers which
are made of wood and plastic will consequently transmit some of the noise through the barrier. The
object of present work is to make somé allowance for the transmitted field, and to investigate its
effect, together with the edge diffracted field. It has also applications in electromagnetism when
considering diffiraction by a dielectric half-piane.

The results of Yeh [9] for the problem of diffraction by penetrable parabolic cylinder are of some
what complicated in the form of infinite series of parabolic cylinder functions. Limiting case of
diffraction by penetrable parabolic cylinder approximates to a penetrable half-plane. Difficulty
arises in relating the dimensions of & practical barrier with a thin parabolic eylinder. Shmoys [10]
has used different approximate approach using parabolic ecylinder coordinates and has given
results which are expressed in the form of Fresnel integrals, and simpler than Yeh [9]. His
approach is not rigorous and he does not elaborate on the penetrable half-plane solution but merely
quoted results obtained heuristically.

Pistol’kors et. al [11] and Khrebet [12] have both used same approximate boundary condition. The
approximate boundary condition uged by Pistol’kors et. al [11] and Khrebet [12] is only good in
describing a perfectly half-plane, no loss within the material which comprises the half-plane A. D.
Rawlins [13] uses an alternate boundary condition which gives a smooth transition from a
perfectly penetrable half-plane to a nonpenetrable half-plane, with an absorption type of boundary
condition. By this boundary condition which is slightly more complicated than that used in [16,17]

and its symmetry amens the boundary value problem to the Wiener-Hopf technique.
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In Chapter One, some theoretical as well as mathematical preliminaries are discussed. These help
in calculations which will come in Chapter Two and Three.

Chapter Two gives the diffraction of acoustically penetrable or electromagnetically dielectric
half-plane. This diffiraction problem provides a method to solve the cylindrical problem of
diffraction in the trailing edge situation.

Chapter Three is devoted to the diffraction of a cylindrical wave scattering from a penetrable half-

plane in the trailing edge (wake present) situation.
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stretched wire is displaced in a direction normal to its
length. It is this elastic restoring forece, coupled with the
inertia of the system, that enables matter to partiecipate in
oscillatory vibrations and there by generating and
transmitting acoustic wave.

The most familiar acoustic phenomena is that associated with
the sensation of sound. For an average young person, a
vibrational disturbance 1is interpreted as sound if its
frequency lies in the range of about 20 to 20,000 Hertz.
However in a broader sense, acoustiec also include the
ultrasonic frequencies above, 20,000 Hertz, and infrasonic
frequencies below 20 Hertz. The mature of vibration associated
with acoustie are for example, the simple sinu soidal
vibrations produced by 8 tuning fork and non-periodic motions
associated with an explosion.

1. The most important type of wave motion studied in acoustics

is wave motion in air. (e.g. sound waves)

2. Sound waves (3D-waves) differ from waves on a string or
membrane (which are transverse in nature) because these are
longitudinal in nature.

3. The restoring force responsible for keeping the wave going

is the opposition offered by fluid.

4. Since in the sound waves the molecules of air, move in the



direction of propagation of wave so thal there are no
alternate crests and troughs (as with waves on surface of
wanler), but allernate compressions and rarefactions.

1.2 PLANE WAVE

The tvpe of waves having the same direction of propagation
everywhere in space whose “crests’™ are in planes perpendicular
to the direction of propagation are called plane waves. Waves
travelling along the inside of tubes of uniform cross-section
will usually be plane waves. Waves that have travelled
unimpeded along distance from their sonrce will be very

nearly, plane waves.

1.3 DIFFERENT PHENOMENA INVOLVED IN ACOUSTIC WAVIE MOTION

i) Transmission Phenomena

¥hen an acoustic wave travelling in one medium encounters the
boundary of the second medium, reflected and transmitted waves
are denerated [17]. For simplification, it 1is assumed that
both the incident wave and the boundary between the two media
are planar and all media are fluids. The ratios of the
pressure amplitudes and intensities of the refleeted and
transmitted waves to those of incident wave depend both on the
characteristic impedance and speed of sound in two media and
on the angle the incident wave makes with normal to the

interface. If the complex pressure wave P, and that of



transmitted wave P;’ that of reflected wave Pr, and that of
transmitted wave PL, then we define the transmission and
reflection co-efficienlts as

PL/Pl "

P/P .

T

R

I

Since the intensity of plane harmonic wave is PZ/ZPOc: where £,
is the density and ¢ is the speed of sound, the intensity
transmission (I ) and reflection (I ) co-efficients are real
and are defined by

T =By 5

.= kAL

1

ii) Absorption and Attenuation of Sound Waves in Fluoids

So far we have not considered +the dissipation of acoustic
energy. In many situations, dissipation takes place so slowly
that it can be ignored for small disturbances. The sources of
these dissipation may be divided into two general categories:
those due to losses in the medium and those associated with
losses at the boundaries of the medium. The first is important
when the volume of the fluid is large e.g. the transmission of
sound in the earth’s atmosphere and oceans. The second is
important in the opposite sense porous- material and small
rooms. Losses in the medium may be classified into three basic

types:



i) Viscous losses result when there is relative motion between
adjacent portions of the medium, such as during the

compressions and expansions.

ii) Heat conduction losses result from the conduction of
thermal energy (heat) between higher temperature condensations
and lower temperature rarefactions.

iii) Losses associated with molecular exchange of energy, that
can lead to the absorption, include the conversion of kinetic
enerdy of molecules into (a) stored potential energy (b)
internal rotational and vibrational energies (¢) energies of
association and dissociation.

Each of these absorption processes 1is characterized by a
relaxation time, which measures amount of time for the
particular process to be nearly completed.

So far we have assumed that the fluid is a continuum with
observable properties such as pressure, density,
compressibility, specific heat and temperature withoulk being
concerned with its molecular structure. Under the same
assumptions, by use of viscosity, Stokes developed the [irst
theory of sound absorption. Subsequently, Kirchoff utilized
the property of thermal conductivity to generate what is
called classical sound absorption in fluids. In more recent
times, as more accurate sound absorption measurements were

made, it became evident that explanations of sound absorption



from +this view point were 1inadequate 1in some fluids.
Consequently it became necessary to adopt a microscopic view
and consider such phenomena as the binding energies within and
between molecules to develop an additional absorphtion
mechanisms. These Mechanisms are commonly referred to as
molecular or relaxation types of sound absorptipn.

Attenuation is the loss of acoustic energy from a sound beanm.
Attenuation can be divided into two parts:

(a) Absorption mechanism that convert acoustic energy into
thermal energy

(b) Other mechanisms that deflect or scatter acoustic energy

out of the beam.

When a fluid contains inhomogeneities such as suspended
particles, microcells or regions of turbulence, acoustic
energy is lost from a sound beam faster than in a homogeneous
medium. Fog and smoke particles produce a decided effect on
sound propagation through atmosphere. Extremely high attenua-
tions are also produced in water containing suspended gas
bubbles. For instance viscous forces and heat conduction
losses associated with the compression and expansion of small
gas bubbles by a passing sound resnlt in a loss of energy by
the sound wave. A further effect of suech inhomogeneities, of
particular importance in the transmission of directed sonar

beams of sound energy is scattering i.e. the removal of small



amounkt of energy from the directed beam by each bubble and its

subsequent radistions in all directions.

1.4. WAEKE

If we consider the case of a non-viscous flow, the boundary
condition for the flow about a body is simply the the normal
velocity component of the surface vanishes. The proper
boundary condition in & viscous fluid is that the fluid
adheres to the bounding surface. Thus both the normal and
tangential velocity relative to the body wmust vanish. At a
small distance from the surface, the veloecity reaches a value
of the order of the free-stream value and the influence of
viscosity is restricted to a small boundary laver with strong
vorticity near the surface. However for thin wings the vortex
layer is also thin. The vortices are also carried along with
the flow and form a thin vortex wake behind the wing. The
strendth of this wake can be determined approximately by what
is called the Kutta-Joukowski condition. This condition
consists in requiring that the fluid veloecity does not become
infinite at the sharp trailing edge of the wing, in simple, in
this connection we may recall that when an ideal fluid flows
round an angle, the fluid veloeity in deneral becomes
infinite, according to a power law, at the wvertex of the

angle. We can say that the condition stated implies that the



jets coming from the two sides of the wing must meet smoothly
without turning through an angle. When this condition is
fulfilled, the solution of the problem of potential flow gives
a pattern very like to the true one, where the velocity Iis
everywhere finite and separation occurs only at the trailing
edge. The solution will now become unique and in particular
the circulation I needed to calculate the 1ift Fforce has a
definite value. Stagnation point at the front of the body
(which may stretch into a stagnation region if the body is
very blunt) and there is the flow regdion behind the body
called a wake (shown in Fig.1l). When thickness of the wake

increases pressure decreases and if thickness decreases the
pressure increases. Discontinuous distribution of pressure is

called drag.

1.5 The Radiation of Sound

Sound waves are generated by the vibration of any solid body
in contact with the floid mediom, or by vibratory forces
acting directly on the fluid, or by the violent motion of the
fluid itself, as from a jet or by oscillatory thermal effects,
as would be produced by a modulated laser beam. In each case,
the energy is transferred from the source to the fluid. From
the point of view of the acounstic, a SOURCE is a region of

space, in contact with the fluid medium, where new acoustic



energy is being generated, to be radiated outward as sound
waves. Discussing the generated sound waves as Lhey mnove
outward from the source, we will assume that the fluid medium

ontside the source region is initially uniform and at rest.

1.6 The Scattering of Sound

When a sound wave encounters an obstacle, some of the wave is
deflected from its original course. It is useful to define the
difference between the actual wave and the undisturbed wave,
which would be present if the obstacle were not there, as the
scattered wave. When a plane wave, for instance, strikes a
body in its path, in addition to the undisturbed plane wave,
there is a scattered wave, spreading out in =all directions
from the obstacle. If the obstacle is very large compared with
wave length (as it usunally is for 1light waves and very seldom
is for sound), half of the scattered wave spreads out more or
less uniformly in all directions from the scatterer, and the
other half is concentrated behind the obstacle in such a
manner as to interfere destructively with the unchanged plane
wave behind the obstacle, creating a sharp-edged shadow there.
This is the case of geometrical opties; in this case, half of
the scattered wave spreading oot uniformly is called the
reflected wave, and the half responsible for shadow is ecalled

the interfering wave. If the obstacle is very small as



compared with the wave 1length (as it often is for sound
directions and there exists no sharp-edged shadow. In the
intermediate case, where the obstacle is about the same size
as the wavelength, s variety of curious interference phenomena
can oceur.

A sound wave is scattered not only by a solid object, but also
by a region in which the acoustic properties differ from their
values in the rest of the medium. Turbulent air scatters, as
well as generates sound. Fog particles in air, and bubbles 1in
water scatter sound.

When an object or region scatters sound, some of the energy
carried by the incident wave is dispersed. The.energy lost to
the incident wave may be absorbed by the scatterer or it may
simply be deflected from its original course. In any case, the
incident plane wave is reduced in intensity because of the

loss.

1.7 Diffraction of Sound

When the scattering objeet is 1large compared with the
wave—-length of the scattered sound, we usually say the sound
is reflected and diffracted, rather than scattered. The
effects are really the same but the relative magnitudes differ
enough so that there seems to be a qualitative difference.

Behind the object, there is a shadow, where the pressure

10



amplitude is vanishing small, in front or to the side, in Lthe
“illuminated"” region, there is a combination of the 1incident
wave and the wave reflected from the surfasce of the scattering
object. At the edge of the shadow, the wave amplibude does not
drop discontinuously from its value in the illuminated region
to zero, the amplitude oscillates about its illuminated value,
reaching its maximum Jjust before the edge of the shadow and
then dropping monotonically, approaching zero well inside the
shadow. These fluctuations of amplitude, near the shadow edge,
are called diffraction bands. Their angular spacing depends on
the ratio between the wavelength of incident sound and the
distance from the observation point to the 1ine on the

scattering object separating "light” from "shadow”.

(B) MATHEMATICAL PRELIHINARIES

1.1 FOURIOR TRANSFORMS

If f(u) is eontinuous funection, for real u and if

1 4+ ;
F(a) = — [ f£Cu)e du,

2 -

exists, then the function F{(a) is called the Fourior transform
of F(u) and is sometimes written as

F(a) = £(a)f(u)}
where o may be a real or a complex variable. And o = o4ir,

called the Fourior parameter.

11



Similarly, if o is real variable and F(a) 1is a continuous
function of o and if the integral

Lol

1 I+mF(
o)e da,

2n -m

f(a) =

exists, then the function f(u) is called Lhe inverse Iourior

transform of F(«). It is written as
£(u) = £ {F()).

Now let f’'(u) represents the derivative of F(u), also f'(u) is

continoous function of the real variable u, then if

1 He Lo
F'(a) = — [ £'(a)e du,

2 -m

exists then F'(a) is called the Fourior transform of the
derivative of f(u). Similarly for the inverse Fourior

transform. More details can be seen in [3].

1.2 The Wiener-Hopf Technique

The Fourier transform technique can be used in solving the
integral equations or boundary value problems if the domain of
the problem is from -« to ®, If this is from 0 to = or in case
of the mixed boundary value problem we use Lhe Wiener-—-Hopf
technique. N.Wiener and L.Hopf discovered in 1931 this useful
technique to solve an integral equation of special type.
Problems involving diffraction by semi infinite planes can be

formulated in terms of integral equationg which can be solved

12






T'<T<7! have a common portion. Equation (1.1) can be written

as

B w (k) + v (k) S = 0. (1.3)
Using Eq.(1.2), Equation (1.3) becomes

];_E:; w06+ v (k) B = 0,

L, (kv (k) + v (KL (k) + g‘é}‘:; L (k) = O. (1.4)
Decompose

L(k) S3 = D (k) + D_Ck),

where the funetions D+(k) and D (k) are analytic in the half
plane Im(k)>7", Im(k)>7“ respectively. All the three strips
T_TLT , Tf_T(Tl, e T(‘E‘" have a common porbtion 't‘ <T<T , then in

this strip the following funectional equation is true

J(k) = L (k)w (k) + D (k) = - L _(k)¥ (k) - D (k).

(1.5)
Left hand side of the above equation is analytic in half plane

T?<In(k}. Right hand side of the above equation 1s analytic 1in
the half plane Im(k)<r . Hence by analytic continuation, we
can define J(k) over the whole x-plane, so that J(k) 1is
regular in the whole »-plane. Now it can be shown that the

function J(k) has algebraic behaviour as |k| — w. i.e.
|L (kv (k) + D (k)| < (k)¥ as ot — o 7577, (1.6)

|L_(k)y (k) + D_(k)| < (k)? as a0 —> o w57, (17D

14



Then from the extended form of Liouville s Theorem J(k) is =a
polynomial P(k) of degree less than or equal to the integral

part of min(p,q), i.e.

L (k)w (k) + D (k) = P(k), (1.8)

L (k)w (k) + D_(k) = -P(k). (1.9)

Eq.(1.8) gives
P(k) - D, (k)

Eq.(1.98) gives
=D Ck). + P(k)
v;(k) = L’(k) (1:11)

Egq.(1.10) and Eq.(1.11) gives values of w+(k) and ¥ (k) within
the arbitrary polynomial i.e. within a finite number of
arbitrary constants which must be determined otherwise. The
solution can thus be obtained which is wvalid throughout. We
note that the decomposition of functions into additive and
nultiplicative parts is imperative here. We, therefore give
the conditions under which this can be done Noble [3].

Theorem 1

Let F(k) be an analytie function of k = eo+it regular in the

strip 7_<r<r_ such that
|F(eotit)| < C|k| ™, p > O for |o| — w,

the inequality holding uniformly for all t in the strip

15



T +s$r5r+-s, £50, then for T_+c<T<d<T*

F(k) = F (k) + F_(k),
where F (k) is regular for all 7>7r_ and F (k) is regular for
all 747 .
We note that the additive decomposition is a generalization of
the Laurent theorem. We know that if a function is analytie in
an annnlar region then it can be written as the sum of two
functions one of which is analytic inside a circle while the
other is analytic outside another circle both being analytic
in the common annular region.
Theorem 2
In {n[L(k)] satisfies the conditions of Theorem 1 which impose
in particular that L(k) is regular and non-zero in the strip
T_<t<7 , -o¢o<wo and L(k) — +1 as ¢ — *o in the strip, then

Wwe can write

L(k) = L+(k)L_(k),
where L+(k) and L (k) are regular, bounded and non-zero in
T>7  and TR, respectively.

1.3 HANKEL FUNRCTIONS

Hankel functions of first and second kinds are respectively
defined by

(1}

HUCx) = J,.0x) + 1Y _(x), H (%) = T (%) ~i¥ (x) (1.12)

16



where Jn(x) and Yr_(x} are the solutions of the differential
equation

xzv" + xy' + (xa—nz)y =% A 9% (1.13)

J (x) and Y (x) are Bessel functions of first and second kind
respectively of order n. Eq.(1.13) is called Bessel s
differential eguation, primes are the derivatives with respect
to x. Bessel functiﬁns of order =zero bhave the TFfollowing

integral representation

o o
Jo(x) = % I sin(xcoshs)ds, Yo(x) = :% f cos(xcoshs)ds, (1.14)
o =

so that

[

o .
HO(x) = J_(x) + X (x) = 2 [ &"°"gs. (1.15)

i

b |

Now for the large values of x, the asymptotic formulas for the

Bessel functions of order n are given by

Jn(x) = Vég cos(x-n/4 - nn/2),
} (1.16)

J (x) -~ ﬁ sin(x-n/4 - nn/2),

so that asymptotie formulae for the Hankel functions of first
and second kinds (of order zero) are given by

2 (-TTs4)
e
X

(2 2 —Un-TI/4)
Ho {x) - '/rg e &

ﬂ;"(x) =

17



1.4 THE DIRAC DELTA FURCTION

In mathematical physies we often encounter funebtions which
have non-zero values in very short intervals. If we consider

the function
1

o | I TN
S (x) = {Za (1.17)
2 SRR | 58 3 1%

1t can be easily shown that

+ 00
J- (Sq(x)dx = I C1.1B)
— 00
Also, if f(x) is any function whiech 1is integrable in the
interval (-a,a), then by using the mean value theorem of

integral calculus, we see that

+ 0 S
J  £(x)6 (x)dx = %E I 8(x)dx = £lea), ¢1.18)

- -y

where |2| = 1.
We now define

S(x) = 1lim 5 _(x). (1.20)

a0

Letting a tends to zero in eqs.(1.17) and (1.19) it is c¢lear

that &(x) satisfies the following

&(x) = 0, if x = 0, ¢1.213
+ (0

J Stx)dx = 1. (1.22)
-0

The function defined by Egs.(1.21) and (1.22) is called Diract

delta function.

18



Dirae delta function and its derivatives play such a useful
role in the formulation and solution of boundary value
problems in classical mathematical physics as well as 1in
quantum mechanics that 1is important to derive GLhe formal
properties of Dirac delta funclbion.

If we let a — 0 in Eq.(1.19) we obtain the relation

“+ 00
| £x)s6(x)dx = £(0), (1.23)
- 00
with a simple change of variable transforms to
+00
[ £(x)S(x-a)dx = f(a). (1.24)
-0

Let us ¢ now consider the interpretation, we must put upon the
“derivatives” of &(x).

If we assume &' (x) exists and that both it and &(x) can be
regarded as ordinary functions in the role for integration by

parts we see that

+00

[ £(xys* (x)dx = [f(x)é(x)]
-

+00 + 00
+ [ £ (x).6(x)dx = —f’ (0).
-

-0

Repeatind the above process, we Find that

D
im T LT

[ E)s ™ (xddx = (-1)"ET(D).
-0

1.5 SOLUTION OF INHOMOGENEOUS WAVE EQUATION

Suppose that there is a line source at (xo,yo). The time
dependent of the field is tsken to be harmonie. Then the

partial differential equation satisfied by the potential ¢ 1is

19



22+ 22 4 s = —am 5(x,x)(¥,7,) (1.25)

where the right hand term is a foreing term due to the line
source at (xo,yo). We determine the solution of (1.25) in free
space, such that ¢ represents an outgoing wave al infinity.

Taking the Fourior transform of {(1.Z5) we getl

dzﬁ 2. _ —dn B Lot
— W = L't &(x-x_)5(y-y_Je dx, (1.26)
dy ¥Y2mr -
2 2 2
where 2~ = o - k.

Using the property of &-function, we obtain

2

d f - 28 = —2(2n)1lzeiaxé(y—yo) (12T
dy
d*3s 2
we know that if e A & = f(y) then the solution in -—w<y<w
dy

such that ¢ — 0 as v —+ *w is given by

I |y
(v) =5 ] fm e dn. (1.28)
~0o

Using (1.28) the solution of (1.27) can be written as

Yo @ o —Jcl?‘}—yﬂi
(a,y) = —%5 [ e °6mn-vy)e dn ,
=00
or
o0 i.ot')txml —nly—y |
S(a,y) = 222 [ e % e (1.29)

Now taking the inverse Fourior transform of (1.29), we obtain,
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asymptotically form of certain integrals appearing in
diffraction problems. In many problems we have tao deal with

integrals of the form

b
1= L Y (1.32)

a

where  is a real valued function, called the phase function,
while g may be either real or complex valued. In contrast to
the Laplace Method which is the other method used Lo solve the
integrals asymptotically, the exponent 1is purely imaginary;
hence the integrand is an oscillatory function of t. As long
as ' () # 0, we may integrate by parts and conclude that the
integral is 0(1/t) when t — ®w. The main contributiaon comes
from the points (,uj), where ¢’ (,uj) = 0. These are called the
stationary points (the points where the maxima or minima
lies). We assume a finite nusber of stationary points hu])

with a(,uj(b, ¢"(;JJ] = 0 and r |g{u) |ducew. Then, when t — o
(41

b
L = [ e PG Yy = T [— e - 9(u)

2 ]1/2 TLehld T 4
a I|.:¢!"t)‘_lj)‘z0 te [“,}]

e 1-2 tufxiji.n/‘
% [Wf] e glpu)+0(1/t). (1.33)
=" 130 a5 J

In contrast to Laplace’s method, we must sum over all
stationary points of ¢ not simply those where ¢ is maximum.
IfT the end points ¢ = a or 4 = b are stationary points, then

the expression Tor I must be halved.
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where k = w/e = kr + iki is the wave number and ¢ 1is the
velocity of sound. For analytic convenience k‘\)U'

On the penetrable half-plane we have the boundary condition
[13]

a + + ¥

3y u(x,07) * ik{alU(x,07) + pPul(x,0 )} = 0, =x<0. (2.2)
Also we impose the conditions of continuity,

u(x,0") = u(x,07),

du(x,0") _ du(x,0 ) } X2 03 (2.3)
3y = ay r

In Eq.(2.2), the parameters o and # are given by

2 zi.khsi.nﬁ'o -i.khai.nf}o g zi.khsi.nﬁa
_ |IT e + (e - Re Yelz=
o = [ -i_khsi.ms»o 1kh91n90z = 2,-_%9“90 51m9°, (2.4)
(e + Re ) -Te
- 2Tsin8°
3 = [ -ikhsin® ikhain®_ 5 2 zikhsin®_ ]’ (2.5)
(e + Re ) - Te

where R and T are the reflection and transmission coefficients
respectively and 2h is the width of the half-plane. We

decompose the total field u into
U(x,y) = ¢ (x,y) + #(x,v¥), (2.8)

where ¢o is the solution of inhomogeneous wave equation that
corresponds to the incident wave and ¢ is the solution of
homogeneous wave Eq.(2.1) that gives the diffracted field.

Thus the wave equations satisfied by ¢0 and ¢ are
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T AF RN
SV, * Yot §F 3% 0
WHLT k(ot3) -m[vxo-xyol —
I {p(u)ﬂ(u) + =L g } e .dv = 0,
- W+ T

Addition of Egs.(2.14) and (2.15) dives

CO+LT —i[vx -y ] :
» [ {p(v)L(u) -e ° ° } e ".dv = 0.
- oL T
Eas.(2.16) and (2.17) can also be rewritten as
WO+ T i8¢
C(v)e dr = 0, x>0
—OH.T
WOLT .
ey s og, ¥ <0
—O+LT
where
C(v) = A(») + B(v),}
D(») = A(») - B(»),
K(V) = 1 3§ k(i”’ﬁ) . L(P) - 1 4 k(i"ﬁ) 3

We shall solve the Egs.(2.18) to (2.21) by the

technique. We write the solution in the form

c) = & (v),
) 3 (0,

-L[rn -y ]
CrIR(pY & SLHB) o T8 T g g
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(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

Wiener—Hopf

(2.24)

(2.25)

(2.26)









Common strip of regularities provide the analytie continuation
of the other and so the composite functions defined in (2.38)
and (2.39) are regular in the entire plane. The both sides of
the Eas.(2.38) and (2.38) have only the algebraic growth as
|v| by
Therefore from the extended form of Liouvill s theorem [3].
Thus Ji(v) and Jz(v) must be polynomials 1in ». Using the
asymptotic estimate used in Rawlin [14],

L(») — 1, as |¢v| — o,

K(») — 1, as |p| —> o,

Ly(») ~ 0(1), as [v| — o,

K, (») -~ 0(1), as |v| — o,

The edge condition (2.7) gives A(¥) - 0(|»| %),
B(») -~ 0C|»|™?). This implies that

C(v) = A(») + B(») - 0C|»|™®), as [v| — o.
and  D(¥) = A(») - B(») - O(|»|7®), as |¢| — w.
Thus

J () - oC[v|™*), as |p]| — w.
and Jz(v) = D(|u|_”q), as |v| — oo,

Hence the polynomials representing J1(v) and Jz(v) can only be
constants which equal to zero. With the help of this
argument, Eqgs.(2.38) and (2.39) implies

8 (IR (¥) = - A () (2.40)
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source, RF is the reflected wave and TR is the transmitted
field. These represent geometrical acoustic field. D, are the
diffracted waves in illuminated region (0<®%<m) and shadow
region (—-n<9<0) respectively. Further, the results for a rigid
barrier can be obtained by putting a = 0 = 3. In addition, the
results for an absorbing half-plane can be obtained as a
special case of this problem by taking a = pe/z and (3 = 0,

where P, is the density of the ambient medium and 2z is the

acoustic impedance of the surface.
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harmonic factor & (w is the angular frequency) the

equation governing the total velocity potential U reduces to

a* 8* 2 N
S — F R = S{x-x )5(y-y ), €3-1)
x ay o o

where k = w/e is the wave number and ¢, is the veloecity of
sound. On the penetrable half-plane of negligible thickness

the boundary conditions
a + 4 ¥
2 Ulx,0 ) £ ika U(x,07) & ik U(x,0' ) = 0, (3.2)

where o and [ are parameters to be shortly identified. We
also require that field be radiating outwards at infinity. If
we assume that the pressure and veloecity are continuous we

obtain the condition

U and gg are continuous when y = 0, x>0, (3.2a)

In this instance the field does not satisfy Lhe
Kutta-Joukowski condition of finite velocity at the edge of
the semi-infinite plane. Therefore to find a solution of
(3.1) which satisfies the Kutta-Joukowski condition the only
possibility is to abandon the continuity of the field. As
discussed by Jones [16] the most natural way to introduce a
discontinuity in the field is to postulate the existance of a
wake across which U 1is discontinuous whilst g% remains
continuous. The wake occupies y = 0, x>0 and should be

similar to that in steady flow but modified to account for
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oscillatery field. Thus we take as the boundary condition on
y =0, x>0
U(x,0%) - U(x,07) = » e,

aU (x,0%) _ 8U (x,07) Afrad

ay oy 2
where » and p are constants. The constant ¢ is regarded as
known and ) is to be determined by the condition imposed at

the edge.

For analytic convenience we assume that k has a small
positive imaginary part which we place equal to zero at the
end of the analysis. This assumption corresponds to an
absorption of sound so that the waves decay at infinity. We
also write

H =k cosd , (3.4)
where UERe3£<n, Inaizﬂ. ¥hile k has a positive imaginary part
we shall take OSRe91<n, In81>0; eventually we shall be
concerned primarily with the case Reﬁ1 = 0, In81>0. Ve
decompose the total field into the incident wave ¢, and the
diffracted field ¢ as

U(x,y) = ¢,(x,¥) + ¢(x,¥), ¢4.5)

where ¢o is solution of inhomogeneous wave equation that
corresponds to the incident wave and ¢ 1is the solution of
homogeneous wave egquation (3.1) which gives the diffracted

field.
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Fourier transform of (3.8) gives

62
25 + #lvin = o,

3y
T
& 1 A(v) t[vsray ]
@ znt.f - dv, y>0. (3.13)
- 00T
COFLT
1 B(r) _i[vx+
= o I e artvmayil ., <o (3.14)
= 0+LT

In order to obtain the unique solution of the problem, the

edge condition requires that A(»), B(v) . [v|_'s ¥ — ® where

1 1

0<e<1, (e = 5~ 3n arg(l)) [15]) substituting Egs.(3.11),

(3.12), (3.13) and (3.14) into Egs.(3.2) and (3.3) give

OrLT i
I [A(u) + B‘”’]E‘”"dp ='Q, %30, (3.15)
—00HLT

(4

Iom-w {[A(v) + B(»)l ¥ }ew"dv g %30 (3.16)

~ 0oL T " HE
LT COHLT
kK({o+3) | ivx e _ k(at+3)
_r _ Alr) [1 + “—]e clro 5 I ‘ [Sgn(val ——;c————]
- 00+LT =00+ T
ilveex Y|y |1
x B e " dp o= 0, %<0 (3.17)
OHLT OrLT
k(o+3) ]| _ivx 1 k (at3)
I ' B(u)[i + T—]e dy + > f | [Sgn[yﬁ) + x—]
=00+ T =0O+LT
Vo= )+ |y | 1
o] o
X e dv = 0, x<0, (3.18)

where
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