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ABSRTACT 

The difii-aclion of a Iine w source by 811 acoustically penetrable: haJ f~p lalle is atuni od. TIle problem 

solved is nn approx imate model for 11 noise barrier which is not perfectly rigid and Ulel'efofe 

transmits sound. Expressions for the total far fi eld for !lIe leading edge (no wake present) and the 

trailing edge (wake present) situation are given. 11 is found that the field produced by Kulta 

Joukowski condition will be substantial ly Iw'ge than the field in the absence when Ule source is 

near the edge. 
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PREFACE 

In 1931. Wiener And Hopf(l] developed a useful teclutique to solve an integral equruion of a 

spherical type.1bis technique proved to be 8 powerful tool for Bolving the problems invo lving 

difl:i-action by semi·jnfinite/finite planes. The teclmique is baBed on the application of integral 

transfonns and the theory OfWla1ytic continuation of the complex valued functions [1]. 

In this procedw-e, the associated mathematical bOlUldary value problem is transfonned to the 

Wiener·Hopffunctional equation. An important step in the solution of the functional equation is to 

decompose the Kernel (in general this is a known fimction of a complex variable with a number of 

poles chara.cterizing the lUlderlying physical processes) into a product or mun of two functions, one 

analytic in the upperlright oflhe complex plane whereas the other is analytic in the lower/left half· 

plane. The procedure of the decompoflition is relatively simple for a scaJar Kernel. However in 

the CUBe ofgystem ofWiener-Hopf equations, one has to work with a matrix equation involving a 

matrix kernel Bnd the success hAS only been achieved for a limited elMS of matrices. Thus a 

considerable attempt hM been made in recent years not only to extend thi s class but also to 

develop new constructive methods for crucul91ion rnBJrix decompositions, especially with 

reference to the dlffraction problems. An appreciable account of the problems based on the 

Wiener-Hopftechnique in the WBve propagation theory can be fOlll1d in the literature, for example 

Cop,on [2]. Noble [3]. Jones [9.10.11] and Brekhovskikh [7]. 

Noise i9 deafening! Stop it now. In recent years, noise has become a senous Issue of 

envirorunentaJ concern. Noise abatement has therefore attracted Ule nttention of many scientists. 

Traffic noise from motorwnys, railways. airports and other outdoor noiseEl from heavy constnlCtion 

machinery or stationary installation, Sllch as large transformers and plants, can be shie lded by a 
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barrier. Noise in an open plaJl office can aJso be reduced by means of barrier partitions_ In most of 

the calculations with noise barriers the fields in the shadow region of the bW1'icr Kurze [8] is 

assumed to be solely due to diffraction a1 the edge. TIlis 38swnption supposes that Ule blUTier is 

perfectly rigid and therefore does not trlU1smil sowld. However Uj(~ mOill practical barriers which 

are made of wood and plastic will consequently transmit some ofUle no ise tlu'ough the barrier. TIle 

object ofprescnt work is to make some allowooce for Ule trnnsmitted field. and to investigate its 

effect, together with the edge dim'acted field. It has also applications in e lecb-omagnet ism when 

considering dUE'Bction by a dielectric haJf-plnne, 

The results ofYeh [9] for tile problem of diffraction by penetrable parabolic cyl inder are of some 

what complicated in the f0I111 of infinite series of parabolic cylinder flUlctions. Limiling case of 

diffi-action by peneb'able parabolic cylinder approximates to a penetrable half-p lane_ Difficulty 

orises in !'elnting U,e dimensions of a prnctico.i borrier WiU, a tllin parabolic cylinder. SIUllOYS [10) 

has used different approximate approach using parabolic cylinder coordinates wId has given 

results which nre expre!:lsed in the foml of Fresnel integrals, and simpler than Yeh [9]. His 

approach is nol rigorous and he does nol elaborate on the penetrable huJf.plane solut ion but mere ly 

quoted results obtained heuristicnlly, 

Pistol'kors et. oJ (11) and Khrebet [12] have bOUI used same approximale bOWldruy condition. 11,e 

approximate bowldary conditioa used by Pistol'kor. et. al [1l] llOd KJu'ebet [12] is ooly good in 

describing a perfectly haJf·p lwIC, no 108s wiUIin the material which comprises the half-plane A D. 

Rawl ins [13] uses Wl alternate bOlUldruy condition which gives n smooth transition from n 

perfectly penelmbl. half-plane to a nonpenetrabl e half-plane, wiU, an absorption type of boundary 

condition. By thiR boundary condition which is sl ightly more complicated than that used in [16, 17] 

and its symmetry amens Ule boundary value problem to the Wiener .. Hopflechnique. 
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In Chapter One. aorne theoretical as well as mathematical preliminaries are discussed. 'These h~)p 

in cruculntions which wi ll come in Chapter Two and Tltree, 

Chapter Two gives the diffioaction of acoustical ly penetrable or electromagnetically dielectric 

hn1f~plwle. This dim'action problem provides a method to solve the cylindrical problem of 

diffraction in U1e trailing edge situation. 

Chapter TItree is devoted to the diffract ion of a cylindrical wave scattering fj·om a penetrable half· 

plane in the trai ling edge (wake pre,ent) ,ihJalion. 
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CHAPTER ONE 

ACOUSTICS 

INTRODUCTION 

In this chapter some definitions including also the different 

phenomena in wave motion are discussed. Some definitions of 

generalized functions (Dirac delta function, Hankel function 

etc) are also part of it. Inspite of these definitions the 

mathematical techniques used for solving 

presented in Chapter Two and Three are given. 

the problems 

These methods 

are consist of transformation techniques, asymptotic methods 

etc. 

A BASIC ACOUSTICS 

1.1 ACOUSTICS 

Acoustics may be defined as the study of the generation, 

transmiss ion and reception of energy in the form of vibration 

waves in matter. As the atoms and molecules of a fluid or 

solid are displaced from their normal configuration an 

inertial elastic restoring force arises . Examples include the 

tensile force produced when a fluid is compressed and the 

transverse restoring force produced when a point on a 
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stre t c hed ~ire is displaced in a d irection nor~al to its 

length . It is this elastic restoring f'orce , c.-oupled ~ith the 

inertia of the s ystem. that enables matter to participate i n 

oscillatory vibrations and there by generati ng and 

transmitting acoustic wave . 

The mos t familiar acoustic phenomena is that associated with 

the sensation of sound . For an average young person, a 

vibrational disturbance is interpreted as s ound if its 

frequency lies in the range of about 20 to 20,000 Hertz . 

Howeve r i n u brander sense, acoustic also i nclud e the 

ultrasoni c frequencies above, 20 , 000 He rt z, nnd infrasonic 

frequencies below 20 Hertz. The n'atur e of vibration associated 

with acoustic are for example, the simp l e sinu soidal 

vibrations produced by a tuning fork and non -periodic motions 

associated with an explosion. 

1 . The 1l0st import.ant type of wave ootion studied in acoustics 

is wave notion in air. (e.g. sound ~aves) 

2. Sound waves (3D- waves) differ from waves on a string or 

nenbrane (which nre t ransverse in nature) because t hese are 

longitudinal in natu re. 

3. The restoring force responsible for iteeping the wave going 

is the opposition offered by fluid. 

4. Since i n the sound waves the molecules of air. move in the 
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direction of propagation of wave so that there are no 

alternate crests and troughs (as with wllves on su-rface of 

water), but alternate compressions nnd rarefuctlons. 

1.2 PLANE WAVE 

The type o f waves having the salle direction of propagation 

everywhere in space whose 'crests' are in planes perpendicular 

to the directi on of propagation are called plane waves. Waves 

travelling along the inside of tubes of uniform cross-section 

will usually be plane waves. Waves that have travelled 

unimpeded along distance from their source will be very 

nearly. plane waves. 

1. 3 DIFFERENT PHENOHENA INVOLVED IN ACOUSTIC WAVE KOTION 

i) Transmission Phenomena 

When an acoustic wave travelling in one mediun encounters the 

boundary of the second medium. reflected and transnitted waves 

are generated [17]. For simplification, it is assulled that 

both the incident wave and the boundary between the two media 

are planar and all media are fluids . The ratios of the 

pressure amplitudes and intensities of the reflected and 

transmitted waves to those of incident wave depend both on the 

characteristic impedance and speed of sou nd in two media and 

on the angle the incident wave makes with normal to the 

interface. If the complex pressure wave Pro and that of 
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transllitted wave p , that of reflected wave P, and that of , . 
transnitted liave P

t
, t hen lie d efi n e the transnission and 

reflection co-efficients as 

T P/P\., 

R == Pr/Pi. 

Since the intensi ty of plane harmonic wave i s p2/2poc ; where Po 

i s the density and c is the speed of sound, the intensity 

transmission (I
l

) and reflection (Ir ) co-efficien t s are 

and are defined by 

T.I = I/Ii. ~ 

RI = I I I . , 
ii) Absorption and Att e nuation of Sound Waves in Fluid s 

real 

So far we have not c onsidered the diss ipation of acoustic 

e nergy. In Ilany si tuati o ns. d issipation ta kes place so s l owly 

that it can be ignored for sl1all disturbances. T he sources of 

these dissipation Ilay be divided into two general categories: 

those due to losses in the mediun llnd those associated with 

losses at the boundaries of the Iledium. The first is inportant 

when the volume of the f luid is large e.g. the transllission of 

sound in the earth's atmosphere and oceans . The second is 

important in the opposite sense porous- material and snaIl 

rooms. Losses in the medium may be c l assified into th ree basic 

types! 



i) Viscous losses result when there is relative notion between 

adjacent portions of the medio~, such 

cOllpressions and expansions. 

as during the 

ii) Heat conduction losses result fran the conduction of 

thernal e nergy ( heat) between higher temperature condensat ions 

and lo~er temperature rarefactions. 

iii) Losses as s ociated with molecular exchange of energy, that 

can lead to the absorption. include the conversion of kinetic 

energy of molecules into (n) stored potential energy (b) 

internal rotational and vibrational energies (c) energies of 

association and dissociation . 

Each of these absorption processes is characterized by a 

re laxation time, which measures amount of time for the 

particular process to be nearly completed. 

So far we have assumed that the fluid is a continuum with 

obs ervable properties such as pressure. density. 

compressibility, specific heat and temperature without being 

concerned with its molecular structure. Under the salle 

assumptions, by use of viscosity. Stokes developed the first 

theory of sound absorption. Subsequently, 

the property of thermal conductivity to 

called classical sound absorption in fluids . 

Kirchoff utili zed 

generate what is 

In Ilore recent 

tines, as more accurate sound absorption measurement s were 

made. it became evident that exp lanations of sound absorption 
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from this view point were inadequate in some fluids. 

Conseguently it became necessary to adopt a microscopic view 

and consider s uch phenonena as the binding energies within and 

between molecules to develop an additional absorption 

mec hani sms. These Mechanisms nre commonly referred to as 

molecular or r e laxation types of sound absorption . 

Attenuation is the loss of acoustic energy from a sou nd b eam. 

Attenuation can be divided into two parts: 

(a) Absorption mechanism that convert acoustic energy into 

therllal energy 

(b) Other mechanisms that deflect or scntter acoustic energy 

out of the beall. 

When a fluid contains i nholloge neities suc h as suspended 

particles. microcells or regions of turbul ence. acous t ic 

energy is lost froll a sound bean faster t hall in a homogeneous 

medium . Fog and snoke particles produce a decided e ff ect on 

sound propagation through atmosphere. Ext remely high attenua­

tions are also produced in water containing s uspended gas 

bubbles. For i nstanc e viscous forces and heat conduction 

losses associated with the compression and eXpansion of small 

gas bubbles by a passing sound result in a loss of e nergy by 

the s ound wave . A further effect of such inhomogeneities. of 

particular importance in the transmission of direc ted sonar 

beans of sound energy is scattering i.e. the removal of small 
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amount of energy frOIl the directed beull by each bubble and it s 

subseguent radiation s in all directions ~ 

If we consider the case of n non - viscous flow ~ the boundary 

condition for the flow about a body is simply t he the normal 

velocity component of the surface vanishes. The proper 

boundary condition in n viscous fluid is that the fluid 

adheres to the bounding sorfnce. Thus both the nor~al nnd 

tangential velocity relative to the body must vanish. At a 

small distance from the surface . the velocity reaches a value 

of the order of the free-strean value nnd the influence of 

viscosity is restricted to n small boundary layer wit.h strong 

vorticity near the surface. However for thin wings the vortex 

layer is n1so thin . The vortices are also curried along with 

the flow and f orm a thin vOTtex wake behind th e wi ng . 'i'he 

st rengt h o f this wake c nn b e detcrlllined app r ox i llat e l y by what 

is called the Kutta- Joukowski condition. This condition 

consist.s l..n TequiTing that the fluid velocity does not beC!ome 

infinite at the sharp trailing edge of the wing. in simple. in 

this connection we may recall that when an ideal fluid flows 

round an angle. the fluid velocity in general becomes 

infinite. according t o a power law, at the vertex of the 

angle . We cnn say that the condition stated implies that the 
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jets coming from the two sides of the wing must meet smoothl y 

wit hout turning through an a ngle. When this condit ion is 

fulfilled. the solution of t he problell of potential flow gives 

a pattern very like to the tru e one, where t he ve l ocity is 

everyw here finite and separation occu rs on l y at the trailing 

e d ge. 'l'he solution will now b ecoll.e uniqu e and in particular 

t he circulation r needed to calculate t he lift f orce has a 

definite value . Stagnation point at the front of 

(which Day stretch into a stagnation region if the 

very b l unt) and there i s the flow region behind 

the body 

body ~s 

the body 

called a wake (s hown in Fig . 1). When thickness of the wake 

increases pressure decreases and if thickness decreases the 

pressure increases. Discontinuous distribution of press ur e i s 

called drag. 

1.5 The Rad iation of Sound 

Sound waves are generated by the vibration of any solid body 

in contact with t he fluid medium , or by vibratory forces 

acting directly on the fluid , or by the viol e nt Ilotion of the 

fluid itself, as f rom a jet or by oscillatory therma l eff ects, 

a s would be produce d by a modulated laser beall. In eac h case, 

the e nergy is transferred froll the source to the fluid . From 

the point of view of the ac oustic ~ a SOURCE 1S a region of 

space , in contact with the fluid medium . whe re new acoustic 
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energy is being generated, to be radiated outward as sound 

waves. Discussing the generated sound waves as they move 

outward from the source~ we will assume that the fluid mediun 

outside the source region is initially uniform nnd at rest. 

1.6 The Scattering of Sound 

When a sound wave encounters an obstacle. some of the wave is 

deflected from its original course. It is useful to define the 

difference between the actual wave and the undisturbed wave. 

which would be present if the obstacle were not t here. as the 

scat tered wave. When a plane wave. for instance. strikes a 

body in its path, in addition to the undisturbed plane wave. 

there is a scattered wave, spreading out in all directions 

from the obstacle . If the obstacle is very large compared with 

wave length (as it usually is for light ~aves and ve~y se ldom 

is for sound)1 half of the scattered ~ave spreads out more or 

less uniformly in all directions from the scatterer. and t he 

other half is c oncentrated behind the obstacle in such a 

manner a s to interfere destructively with the unchanged plane 

wave behind the obstacle. creating a sharp-edged s hadow there. 

This is the case of geometricnl optics; in this case. half of 

the scattered wave spreading out uniformly is ca lled the 

reflected wave l and the half responsible for shadow i s called 

the interfering wave. If the obstacle is very snaIl as 
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compared with the ~ave length (as it often i s for s ound 

directions and there exists no sharp-edged shadow. In the 

interll.ediate case, where the obstacle is about the salle size 

as the wavelength, a variety of curious interferenc~e phenomena 

can occur . 

A sound wave is scattered not only by a so lid object. but als o 

by a region in which the acousti c properties differ frOll their 

values in the rest of the medi um. Turbulent nir scatters. as 

well as generates sound. Fog particles in air. and bubbles in 

water scatter sound . 

When an object or region scatters sound, SOlie of the energy 

carried by the incident wave is dispersed. The e n ergy lost to 

the incident wave Day be absorbed by the scatterer or it may 

simp ly b e deflected from i ts original course. In any case, the 

i ncident plane wave is reduced in intensity because of the 

loss . 

1 .7 Diffraction of Sound 

When the scattering object is large compared with the 

wave-length of the scattered sound. we usually say the sound 

is reflected and diffracted , rather than scattered. The 

effec ts are really the same but the relative magnitudes differ 

enough so t hat there seems to 

Behind the object. there is 

10 
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umplitude is vanish i ng s lrHlll. in fro nt. or to the s ide.;t ll Lhe 

" illuminated M region, there is a combin ation of the incident 

wave and the wave r ef l ected f rom the s urface of the scatteri ng 

object . At the edge of t he s hadow. t he wave amplitude does n ot 

drop discontinuously from its value in the ill um i nated reg ion 

to zero, the amplitud e oscilla t es about its i lluminated va lue, 

reaching i t s maximum just b efore the edge of the s hadow and 

then dropping monotonically, approaching zero we ll in s id e t he 

s hadow, These fl u ctuations of amplitude. near the s ha dow edge, 

are called diffraction bands . The ir angul ar s pacing depend s on 

the ratio b e twe e n the lOIuvelengt h of incident sound and the 

distance from the observation point to the lin e on the 

scatter ing object separating "light" frolll " s hadow" , 

(B) MATHEMATICAL PRELIMINARIES 

1.1 FOU RIOR T RAN SFORM S 

If fCu) is continuou s function, for real u and if 

.ro 
F(CI) ::: _ 1_ f f(u)eiDllldu, 

-I2iT -co 

exists, then the function F( CI) is cal l ed the Fourior transfol."1Il 

of feu) nnd is sometimes written as 

F( <» = f (<»f( u») 

~here a nay b e a real or a complex variable. And a = 

called the Fourior parameter, 
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SimilarlY. if ~ is real varinble and F(a) is a continuou s 

function of " and if the integral 

1 
.00 . 

f(c<) f ,"" = F(a)e dL't. 
Y2n - 00 

exists. then the function f(u) is called Lhe ioverse Fourior 

transform of F(~). It is written as 

-. f(u) = f (F( ")). 

Now let f' (u) repres ents the derivative of f (u), al so f' ( u ) 1 5 

continuous fun ction of t he real variable u , the n if 

+ 00 . 

F ' (01. ) = _ 1_ f f' (OI)el.
OIU du . 

yz,r -00 

exists then F'( Ol ) is called the Fourior transforn of the 

derivative of feu) . Similar ly fo r the i nverse Four ior 

transform. Hore details can b e seen in [ 3 ] . 

1 . 2 ']' he Wiener - Hopf Tec hniqu e 

The Fourier t ransfofm technique can be used i n solving the 

i ntegral equations Of bou nd ary value problems if the dOllain of 

t he problen is frOID -00 to 00. If this is froll a to 00 or i n case 

of t he Ilixed boundary valu e proble lD we u se t he Wiener- Hop! 

t ec hnique. N.Wiener and E . HopI discovered in 193] t ll is useful 

technique to so lve an i ntegral e quati on of s pe c ial type . 

Problems involving d iffract ion by semi infinite planes can be 

fo rmulated in terns of integral equation s which can be solved 
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by Wiener-Hopf technique. The general method of solving 

functional equations which became know as the Wiener-Hopf 

nethod or factorization method has been successfully employed 

in the solution of many. problems of diffraction, in the theory 

of elasticity, the boundary value problems dealing with the 

heat transfer and many other problems of mathematical physics. 

This technique as discussed by Noble [4] will be described and 

used to solve different boundary value problems. 

Procedure of the Technique 

To illustrate the method we consider the following type of 

functional equation. 

A(k) ~+(k) + B(k) ~_ (k) + C(k) = 0, (1.1 ) 

Here A(k), B(k) and C(k) are given functions of complex 

variable k, analytic in the strip T <Im(k)<T<T . Also A(k) and 
- + 

B(k) are non zero in the strip. Our first step is to re-cast 

the boundary value problems in the form (1.1). The fundamental 

step in the Wiener-Hopf procedure is based on the possibility 

of factorizing the expression A(k)/B(k) i.e. possibility of 

factorizing the expression: 

A(k) _ 
B(k) 

L (k) 
+ 

L (k) , (1. 2) 

where L (k) is regular and free of zeros in T)T' and L (k) is 
+ 

regular and free of zeros in T<T' + • The strip T <T<T and 
+ 
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7' (7(7' have a COll110n portion. Equation (1.1) can be written - . 
ns 

A(k) C(k) _ 
B(k) 1I'.(k) + 1I'_(k) B(k) - O . C 1. J) 

Using Eq . (1 .2 ) . Equat ion (1 . 3) becomes 

L.(k) C(k) 
L (k) 1I'. (k) + .'_(k) B(k) = 0, 

L,.(k)II',(k) + 1I'_ (k)L_(k) + ~~~~ L_ Ck) = O. (1.4 ) 

Decompose 

where the fun ctions 0 (k) and 0 (k) are ana l ytic in the , - half 

plan e IIl(k»T". Im(k»T" respectively . All the three strips - . 
T 7(T T'T(T' 

+ • - + • 
o 0 

7"T<7" have n commo n portion T <-r<r , 
- + - + 

then in 

this strip the following functional equation is true 

(1.5) 

Left hand side of the above equation is analytic in half plane 

o 
T.< IIl(k). Right hand side of t he above equation is a nalyt1c 10 

o 
the half plane III.(k)<T _. Hen ce by analytic continuation. we 

can define J(k) over the whole ")(-plnn e~ so that J(k) is 

regular in the whole n-plane. Now it can b e shown t.hat the 

function J(k) has algebraic behaviour as I kl -- 00. 1..e . 

( (k)q as Ol --

14 

o 
00 T>T • 

• 

(1. 6) 

(l .7) 



Then from the extend ed form of Liouville"s Theorem J(k) is !l 

polynomial P(k) of degree l ess than or equul to the integrul 

part of min(p.q)~ i.e . 

( 1. B) 

(1. 9) 

Eq . (l.8) gives 

P(k) - D ( k ) • 
'I'_( k) = L (k) 

• 
(1. 10) 

Eq . (1.9) gives 

( 1.11) 

Eq.(l.lO) and Eq . (1.11) gives values of V' (k) and V' (k) with i n . -

the arbitrary polynomial i . e . within a finite nunber of 

arbitrary c on s tants whic h must be determin e d ot herwise. Th e 

solution can thus b e obtained wh ic h i s valid throug hout . We 

note that t he d ecompos i tion of functions inlo additive a nd 

multiplicative part.s is imperative here . We~ therefore give 

the conditions und er which this can be done Noble [3]. 

Theorem 1 

Let F(k) be an analytic function of k = O'+i T regular i n the 

s trip T (T(T s uch that 
• 

IF(O'HT)I < Clkl - P
, P > 0 for 1"1 ----> 00, 

the in equal i ty holding uniformly for all T 1n the strip 
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'T +E~T~T -e, e >O . then for T +c (T( d (, 
- + - .. 

F(k) = F ( k) + F (k). 
+ -

where F (k) is r egular for all T)T and F (k) is regular for 
+ 

a ll T(1" . 
• 

We note that the additive decomposition is 0. g enera l ization of 

the Laurent theorem. We know that if n function i s analytic in 

an ann ular region then it can be written as the s un of two 

functions one of which is analytic inside a circle while the 

other is analytic outside another circle both b e ing analytic 

in the connon annular region . 

Theorem 2 

In In.[L(k)] satisfies the conditions of Theorem 1 which illpose 

in particular that L(k) is regular and non -zero in the s trip 

T (T(T • -00< 0' <00 and L(k) --+ +1 8S 0' --+ ±oo i n the strip, then 
- + 

we can writ e 

L( k) = L (k ) L (k), 
+ -

'Where L (k) and L (k) are regular. bounded nnd non-zero in 
+ -

T)T and T(T respectively. 
+ 

1 . 3 HANKEL FUNCTIONS 

Hankel functions of first and second kinds are respectively 

defined by 

n!j)(x) = J (x) ... i.Y (x). H !21 (X) = J (x) -i. Y (x) 
'"' r. n r. n r. 

(1.12 ) 
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where J (x) and Y (x) are the solutions of the differential 
n " 

equation 

.. " , (? z) X Y + xy + x - 0 y=-O I n 2: a (1.13) 

J (x) and Y (x) are Bessel funcUons of first a nd second 
n n 

kind 

respectively of order fl . Eq.(1 . 13) is called Bessel's 

differential equation. primes are the derivatives Qith respect 

to x. Bessel functions of order zero have tfle following 

integral representation 

J (x) = ~ 
o n 

'" J sin(xcoshs)ds, Y (x) 
o 

co 
- -~ J cos(xcoshs)ds. (1. 14) 

o o 

so t ha t 

- J (x) + 'Y (x) = -2 
D 0 iIT 

., 
f 

\}(CClShS

d e s. (1. 15) 

Now for t he large values of x. the aSYllptotic fornulas for the 

Bessel f unctions of order n are given by 

J (x) 
" 

J (x) 
" 

- Rx cos(x-n/4 - nIT/Z),} 

sjn(x-n/4 - nn/2), 
(1.16 ) 

so that asymptotic formulae for the Hankel functions of first 

and second kinds (of order zero) are given by 

(}(-fl/4) 
e 
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1.4 THE DIRAC DEL1'A FUNCTION 

In mathellatical physics t.:le often encounter i'llnctions \oJhir.-h 

have non-zero values in very short intervals. If we consider 

the function 
1 

6 (x) = {2R 
Q 0 

I x I < u , 

I xl > n. 
It can be easily shown that 

J 6 (x)dx = l. 
" -00 

(1.17) 

( 1.18) 

Also , if f(x) is nny function which is integrable in the 

interval (-a, a), t hen by using the mean value theorem of 

integral calculus. we see that 

J 
-00 

1 0 

f(x)6
0
(x)dx = 2a J 

-0 

f(x)clx 

where 1&1 5 1. 

We nnw define 

6(x) = lim 6 (x). 
o 

= f(&ul. (1.19 ) 

( 1. 20) 

I.etting a tends to zero in eqs . (Ll1) and (1.19) it 16 clear 

that 6(x) s atisfies the following 

6(x) ::. O. if x;;of! O. (1.21) 
·00 

J 6(x)dx = 1. (1.22) 
-00 

The fun ction defined by Eq s.(1.21) nnd (1.22) is called Diract 

delta function. 
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Dirac de l ta function and its d er iv a tives p lay su c h a usefill. 

role in the formulation and solution of bounda ry value 

problems in classical mathematical physic s as well as in 

guantull f\echanics that is i mportant to derive th e fortlal 

properties of Dirac delta function . 

If we let a ~ a in Eq .( 1.19) we obtain the relation 

+Q) 

J f(x)6(x)dx = f(O), 
-co 

~ith a simple c hange of variable transforms to 
+Q) 

J f(x)6 (x-a)dx = f(a) . 
-to 

(1. 2 3) 

(1. 24 ) 

Let us c now consider the interpretation. we Must put upon the 

"derivatives" of 6 (x}. 

If ~e assume 6' (x) exists and that both it and 6(x) can be 

regarded as ordinary functions in the role for integration by 

parts we see that 
.co 

J f(x)6' (x)dx - f'(O). 
-co 

Repeating the above process. we find that 

"" J f(x)6'n)(x)dx = ( - l)"r"')( O). 
-to 

1.5 SOLUTION OF INHOHOGENEOUS WAVE EQUATION 

Suppose that there is a line source at (x ,Y ). 
o 0 

The tine 

dependent of the field is taken to be harllonic . Then the 

partial differential equation satisfied by the potentin l ¢ is 
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: -4~ 6(X,x )(y,y ) 
o 0 

(1. 25) 

where the r i g ht hand term is a forcing term d u e to the lin e 

source at (x ,y) . We d e termine the solution of (1.25) in free 
o 0 

space, suc h that ¢ represen ts un outgoin~ wuve aL infinity. 

Tak i ng t he Fourior transform of (1.Z5) we ge t 
., 

J 
-00 

2 2 k 2. where )t = 01 

lOx 
6(x-x )6 (y-y)e d x, 

o 0 

Using the proper ty of 6-function. we obtain 

d 2 T _ '1(2g; = _ 2 (211 ) 1/2 e ~0I)f 6 (y_ y ) 
o 

(1. 26) 

(1. 27) 

d2~ 
we know that if - ~2~ = fey) then the solution ~n -oo< y <oo 

dy2 

such that ~ ~ a as y ~ ±oo is given by 

~(y) = 

Using (1. 2 8) 

~("',Y) 

or 

~(""y) 

- 1 
z,;-

., 
J 
-00 

the solution of 

"2" 
00 iOl){ 

J 0 = -- e n 
-00 

-nn ., iOl){ 

J 0 = -- e 
" -00 

(1. 27) can be written 

-~ I n-y I 
6(YJ-Y )e 0 dYJ 

0 

-n Iy-y I 
0 

e 

(1. 28 ) 

as 

(1. 29) 

How taking the ~nverse Fourior transform of (1 .29). we obtain, 
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¢(x , y) 
co 

I 
-i.Olex-x }-1l I y-y I 

o 0 
e (1 .30) 

-co 

To solve (1.30). Let us define the following substitutions 

x x = rc o s&, 
o 

Iy-yo l = rsi n &, 

Ol = -kCOS ( &+it ) , -co<t<co 

Then (1 .30) t akes the f o r m 

00 

¢ (x , y) = I ikr"coshl 
e dt = rri He 1 ) ( k r ) • 

o 
-00 

where r = -/cx-x )2 + (y- y )2 and the integral 
o 0 

of the Hankel function has been used . Using 

( 1. 31 ) 

representation 

the asymptotic 

behaviour of the Hankel function the field given by ¢(k , r) in 

(1 . 31) can finally be written as 

.+. (k ) 1." (~) 1 / 2 
'f-" ,r ~ rrkr 

iekr"-rr / 4 } 
e 

1.6 ASYMPTOTI C EVALUAT I ON OF INTEGRALS 

Here we discuss the methods usually adopted to calculate 

asymptotically the integrals appearing in certain diffraction 

p r obl e ms. We di sc u ss the f o llowi ng two met ho d s; 

i ) The Method of S tat i onary Phase 

i i ) The Laplace Method 

we a r e not going to discuss the steepest descent method : 

iJ The Method of Stationary Phase : 

It is one of the methods usually adopted to write down 
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asymptotica ll y fo rm of certain integrals appear ing in 

diffraction problems. In many problems we have 

integrals of the form 

b 
I = f eil(jx}.J)g(lJ)dlJ 

a 

to deal with 

(1.32) 

whe~e ¢ is a real valued fun~tion, called the phase functian~ 

whi l e 9 may be either real or- complex valued. 1n con trast to 

the Lap l ace Me thod whic h is the other method used to s olve t he 

integrals asymptotically, the expon ent is purely imaginary;-

h e n ce the integrand is a n oscilla·to r y function of t. As l o n g 

as 1/>' (}.J) ~ 0, we may integrate by parts a nd conclude that the 

integral i s O(lft) when t ~ 00. The main contribution comes 

from the points ( /J . )~ where ¢' ( IJ . ) = O. These are ca lled t h e 
J J 

stationary points (the points where the max ima or minima 

l ies). We assum e a finite numbe r of stationary points 
h 

(I' ) 
J 

with a<p <b. ¢-"(JJ) ~ 0 and J Ig(I') Idl'<oo. Then, when 
t _ 

00 . 
J J 

= [ 

2 ] J / 2 ltl/>(p.> .. i.rt ..... .. 
r: t rP" C

tl
) e ) g(}.J )+O(lft). 

J=rp"II.1.) >0 J.J j J 
J 

(1.33) 

In contrast to Laplace 's meth od. we must s um over al l 

station ary points of ¢ not sim pl y those where ¢ is maxi mum. 

r "f the end po i nts J.I = a or J-I = b are sta tionary points, then 

t h e expression for I must be h a l ved. 
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ii) Laplace's Method 

We take the integral of the form 

with 

this 

b 

f(t) = f 
a 

th<x) g(x) .e . dx , 

the possibility that h' (x) 

case it is still true that 

(1 .34 ) 

= 0 at one or more points . In 

f(t) lH t where H is 
'" 

e ~ 00 , 

the maximum of hex) , a ~ x ~ b. The feature results from the 

possibility of points x, , where h (x , ) = H and h'(x) . We 
l l t 

assume that h"(x,) ~ 0 at each of these points [of course it 
l 

follows that h"(x,) < 0, since we are at maximum of h] . 
\. 

These 

points fall into two groups : 

(1) interior global maximum of hand 

(2) boundary maxima where hex , ) = o . 
\. 

The exact contribution of the second type of point is one-half 

the first type of contribution. We now state the result of 

Laplace's method 

where 

C = -{2rr: 

f (t) = 
tH 

e 

[."E'b 
h<x 

i 
= i 

H 

[c+O(t/it)] t ~ 00 , 

g (x, ) g (x, 

) ) )</2] . \. 

E 
\. 

+ 
[ - h" ( x, ) ] 1/2 x,=a or· x =b [-h"(x 

l \. i. \. 
i 

h<x, ) = H 
l 

(1 .35 ) 
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CHAPTER TWO 

DIFFRACTION BY AN ACOUSTICALLY PENETRABLE OR 

ELECTROMAGNETICALLY DIELECTRIC HALF-PLANE 

2.1 INTRODUCTION 

This chapter is devoted to the problem of diffraction by an 

acoustically penetrable or an electromagnetically dielectric 

half-plane addressed by Rawlin [13] . We have reproduced this 

problem here to unders~and the problem that we have considered 

in chapter three. 

2.2 FORMULATION OF THE PROBLEM: 

We consider the scattering of an acoustic wave due to a line 

source by a penetrable half-plane. The penetrable half- plane 

is assumed to be thin and occupies the position x S 0, Y = 0 

as shown in the Fig . 2. We consider a line source to be 

located at (x ,y ), y > O. The time harmonic factor 
000 

-i.Wl 
e (W 

is the angular frequency) is understood and is suppressed 

throughout. Thus the wave equation in presence of a line 

source reduces to. 

(2.1) 
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where k = w/c = k + ~ k. is the wave number and c is the . , 
velocity of sound. For analytic convenienc e ~)O. 

On the penetrable hulf-plane we have the boundary condition 

[13] 

~ + + + 
lJy u(x,O-) ± lk{" U(x,O- ) + flu(x,O )] 

Also we impose the conditions of continuity. 

u(X'O+~ = U(X,O-)~ } 

lJu(x,O ) = Du(x,O ) 
by by , 

x ) 0; 

0, X<O. 

In Eq.(2.2), the parameters a and r are given by 

2 2~khsll"l& 

<>= [T e 0 

-~khS~I"I& 0 
(e + 

-i.k h9~ n& 
+ ( e 0 

lkhsln& 2. 
o 

Re ) -

- 2Tsin& 

(l = [ -ikhs~n& 0 ~khsi.n& 0 2 
(e + Re ) -

2~khslTt& 

2 0 ] R e. . ) sine 
2 2~kh9Ln& 0' 
Teo 

2 2i.khsi.r.& Co ]. 

T e 

(2.2) 

(2.3) 

(2.4 ) 

(2 . 5) 

where R and T are the reflection and transmission coefficients 

respectively and 2h is the width of the half-p lane . We 

decompose the total field uinta 

U(x,y) (2.6) 

where ¢ is the solution of inhomogeneous wave equation that 
o 

corresponds to the incident wave and ¢ is the solution of 

homogeneous wave Eq.(2 . 1) that gives the diffracted field. 

Thus the wave equations satisfied by ¢o and ¢ are 
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(0 2 02 

k
2
}Po(X.y) - 6(x-x )6(y-y ). -- + -- + -

OX2 Oy2 o 0 
(2 . 1) 

(0 2 02 

k
2
}P(X, y) - 0, -- + -- + -

OX2 Oy2 
(2.8) 

we also assume that the field requires the outgoing waves at 

infinity i.e. 

1/2(0 
r or -ik)u --+- 0 as 

/22 
r = l"x-+y- --+- co. 

and satisfies the edge condition [3] 

u(x.O) = 0(1), 

au ( x. 0) = 0 ( X -1/2 ) ; 
oy 

+ 
as x--+-O . 

2.3 SOLUTION OF THE BOUNDARY VALUE PROBLEM: 

A solution of Eqs.(2.1) and (2.8) is given by 

¢o(x.y) - L H (1){k/cX-x )2 + (y_yo)2. 
4. 0 0 

i[V(X-X )+nly-y I] 
o 0 

e dv. 

where n = ,1k2
_v

2 
and v = O+iT. The plane v is cut 

(2.9) 

(2 . 10) 

(2.11) 

in such a 

way that Imk > O. The solution of Eq.(2.8) satisfying the 

radiation conditions is given by 

¢(X,y) A(v) i[vx+nY]d 0 e v; y > • (2.12) 
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1 
OO+ i.T 

B(v) i. [vx- nY]d - I < o. - 2rri. e v ; y 
:It -oo+iT 

( 2.13 ) 

Fo r a unique solution of the problem we Ilust have 

A( v ) - I V 1-1/2 
and B(v) - I V 1-1/2 

as Ivl -+ 00 . 

Subs t itution o f Eqs . ( 2 . 9) t o ( 2 . 11 ) in Eq s . ( 2 . 2 ) t o ( 2 . 3 ) 

yields 

1 
4rr 

oo+i T k i [V(x-x >- ny ] 1 oo+i T . 
I 01 0 0 I \.V x OI k • (1 + ~)e dv + 2rr A(v).e (1 + ~)dv 
- 00+i. T - oo+i T 

oo+iT oo+iT i [ V (X-X >+ny ] 
o 0 

+ !rr I B(v) ~k e
iVx 

. dv + ~k I e dv - 0, 
- oo+i T - oo+i T 

oo+iT oo+iT 
1 

- 4rr I (1+ 
k 

i [V(X-X >- ny ] 
01 ) 0 0 d -- e v n 

1 
2rr I B( v)(1+ 

-oo+iT 

oo+i.T 

I 
-OO+i.T 

oo+iT 

I 
-oo+iT 

-OO+i T 

i [V(X-X >+ny ] 
o 0 

iVx d e . v e 

ivx 
{A(v)+B( v)}e .dv = 0 , 

{A(v) - B(v)} 
n 

ivx d e . v = o. 

Subtracting Eqs . (2 . 15) f r oll (2 . 14) ; we obtain 

dv = all 

(2.14 ) 

OIk ) ivxd -- e v 
n 

(2 . 15) 

( 2. 16) 

(2 . 17) 

oo+i. T { i [V (X- x OWN. I Yo I J i. [V (X-X >+:1t I y I J} 
~ I . - Sgnyo e +Sgnyo e 0 0 v=o 

-OO+\. T 

where 
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_{ 1, 
Sgnyo - -1 .. 

C»+>i.T 

f . 
- (I)f-\. T 

if Yo > 0, 

if Yo < O. 

e 
-"'[Vl( -;(y J} o 0 w' d = 0 e . l.' j 

Addition of Eqs.(2 . 14) and (2 . 15) gives 

.".iT { -i [vx -~y J} . 
f 

0 0 ~ 
.. . D(v)L(v) - e e . dv = O. 

-CO+\.T 

Eqs . (Z.16) and (2.17) can also be rewritten as 

~iT 
iv)( 

f C(v)e . dv = 0, x > 0 
- COt-i T 

oo+i..T 
D(v) ivx f e .dv = 0, 
~ 

- co.-iT 
x < 0 

where 

C(v) = A(v) + B(V),} 

D(v) = A(v) - B(v), 

K(v) = 1 + k( ~+~) , L(v) = t + k(a-~ ) 
~ ~ 

(2 . 10) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

We shall solve the Eqs.(2.18) to (2 .21) by the Wiener- Hopf 

technique. We write the solution in the form 

C(v) = !Ii ( ... ), 
+ 

O(v) = 
~ 

0; (v), 
+ 

C(v)K(v) + k( ~+~) 
~ 

-1. [ v)( -1t:y ] 
o 0 

e 

28 

= iii (v) 

(2.24) 

(2 .25) 

(2.26) 



(2.27) 

In order to solve bJthe Wiener-Hopf technique, functional 

Eqs.(2.24) to (2.27), we need to factorize the functions K(~) 

and L(v). The factorizations of K(v) and L(v) are discussed by 

using the procedure in Noble [3, p-164] and are given by 

(2.28) 

(2.29) 

In Eqs.(2.24) to (2.29), ~ (v), K (v) and ~ (v), K_(v), L_(v) 
+ + -

are regular analytic functions in the domains Im(v) > - T and 
o 

Im(v) < respectively . These two domains have the 

intersection IIm(v) I <T 
o 

and T is assumed that no 
o 

singularities occur in this common region of intersection . 

Eliminating C(v) and D(v) from Eqs.(2.24) to (2.27), we have 

~ (v)K (v) + k(Ol+rn 
-i. [vx -'H.y ] 

o 0 
e 

+ + A2_V2 K_(v) 

~ (v) 
~ (v)~k+v L (v)+~ (v) = 

+ . + + 

where we have used 

A(v) = k(ot+(1) 
e 

f22 
-i.[vx -Yk--V-y ] 

o 0 

29 

= A(v) 

(2.30) 

(2.31) 

(2.32) 



- i [vx - ny ] 

.6.(v) 
o 0 

.6.(v) - .6. (v) .6. (V), - e = -- -
+ - (2.33) 

-1 
00 A(t) A (v) = 2ITi f dt; Im(v) > O. 

+ v - t 
- 00 

(2.34) 

-1 
00 

.6.(t) 
b. (v) = 2ITi f v-t dt; 1m(v) > O. 

+ 
-00 

(2.35) 

-1 
00 

A(t) 
A_(v) = 2ITi f dt; Im(v) < O. v-t 

-00 

(2 .36) 

-1 
00 

.6.(t) 
.6._ (v) - f dt; II1(v) < o. - 2ITi v-t 

-00 

(2.37) 

With the help of Eqs.(3.32) and (2 . 33). Eqs.(2.30) and (2.31) 

become 

~ _ (v) 

~+(v)K+(v)+A+(v) - K_(v) + A_(v) - J 1 (v), (2.38) 

1f'_(v) 
1f' (v)L (v)+.6. (v) = 

+ + + 
+ .6. (v) = J (v). 

- 2 
(2.39) 

The integrals in (2.34) (2 .37 ) exist as these are 

exponentially bounded as It I --4 00. 

Fo r A (v), .6. (v) and A (v), .6. (v) the point lies above and 
+ + - -

below the contour of integration which is indented for real v 

respectively. Also IA+(v)1 and IA±(v)1 are of 0(l v l -
1

) and Ivl 

--4 00 these are of 0(0). Consequently. we get (2.39) and 

(2.40) which hold in the common strip of regularity of both 

sides. However, the left hand sides and right hand sides 

define J
1
(v) and J

2
(v) in (2 . 39) and (2.40) throughout the 

upper and lower v - plane respectively. 
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COlhoon strip of regularities provide the analytic continnation 

of the other and so the cOIlPosite functions defined in (2.38) 

and (2 . 39) are regular in the entire plane. The bot.h sides of 

the Rgs.(2.38} and (2.39) have only the algebraic growt h as 

Ivl ----> .,. 

Therefore fron the extended for .. of Liouvill ~s theoren (3] . 

Thus JJ.(V) and 3 2 (1.>} must be polynomials in v. Using the 

asymptotic estimate used in Rawlin [14]. 

L( v) ----> 1, as Ivl ----> ." 

K(v) ----> 1, as Ivl ----> 00, 

L±(v) _ 0(1), as Ivl ----> ." 

K±(v) _0(1), as JvI ----> ro 

The edge condition (2.7) gives A( v) _ O(lvl 'v, ) , 

B(v) - O( I v I'u,). This illPlies that 

C(v) = A(v) + B(v) O( Ivr'''), as Ivl ----> .,. 

and 0( ... ) = A(v) - B( .... ) O( I .... r·/Z), as H - .,. 
Thus 

.J. ( .... ) _ O( IVI-u,), as !vi ----> ." 

and J (v) , _ O( Ivl'v,), as Ivl - 00, 

Hence the polynomials representing 3J.(v} and 3
2

(1-'} can only be 

constants which egual to zero. With the he l p of this 

argument, Eqs.(2.38) and (2.39) implies 

t (v)1t (v) = - A (v) 
+ + + 

(2.40 ) 
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and 
J./2 

l! (v) (2.41) ljJ (v)(K+v) L (v) = -
+ + + 

Froll Eqs. (2. 24L (2.25L (2.32), (2.34) and (2.35), we have 

-i.[tx 2 2 J./2 
Y ] - (k -t ) 

k(o.+(1) 00 0 0 

C(v) J e dt, (2.42) = K (v)2rri. 
+ -00 (k2 _t2 )J./zK_ (t) (v-t) 

-i. [t x 2 2 J./Z 
Y ] - (k - t ) 

k( 0.+(1) 00 0 0 

D(v) J e dt. (2.43) = L (v)2rri. 
+ -00 K_ (t) (kz _t2 

)U2 (v-t) 

Adding and subtracting Eqs.(2.22) and using (2.42) and 

(2.43), we arrive at 

A(v) = 1 k(o.+(1) 
4TTi. K (1.) 

+ 

2 2 1/2 -i.[tx -(k -t) y] 
00 0 0 J ~e ________________ _ 

-00 K_ (t)(k2 _t 2 )1/2 (v-t) 

2 2 1/2 -i.[tx -(k - t > y] 
00 0 0 

(k_V)1/2 
dt + L (v) 

+ 

x I e 1/2 dt 
-ooL_(t)(k-t) (v-t) 

B(v) = -1 k(o.+(1) 
4TTi. K (v) 

+ 

00 

x I 
-00 

2 2 J./2 -i.[tx -(k -t) y] 
00 0 0 J ~e ________________ _ 

-00 K_(t)(k2_t2 )J./2(v_t) 
dt 

(2.44) 

In view of Eqs.(2.11), (2.12), (2.13) and (2.44), total field 

becomes 
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00 00 

+ ~ f f 
81l -00 -00 

rzz~ i. [vx+1t I Y I-(VX -,1k -t 6' ) 
° 0 F(v,t)e dv . dt (2.45) 

where 

F(v , t) -

(2.46) 

When k is real, the path of integration is indented below t = 0 

and the v-path of integration indented above v = o. 

It is well known that results for line source are the same as 

for plane wave incidence except a constant factor 

e 
i. (kr -1</4) 

o 

So the plane wave solution (given by [13]) obtained by 

evaluating the integral asymptotically as the source goes to 

infinity i.e. as kr --4 00 is given by 
o 

U(x, y) = e 

where 

G(v,& ) = 
° 

-i.<xcos& +ysi.n& > 
o ° 1 

+ -2' ITt 

00 

f 
- 00 

,Ik-v -{k-kcos& 
L (v)L (kcos&o) sgn(Y)}. 

+ + ° 

(2 . 47) 

(2.48) 

The far field can be obtained by solving the integral 
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appearing in Eq.(2.47) asymptotically. For that we put 

x = rcos&. y = rsin&. 

Hence for large kr i . e. kr ~ 00. we obtain. 

2.4 ASYMPTOTIC EXPRESSIONS FOR THE FAR FIELD INCIDENCE 

Let us consider second term appearing in Eq. (2.45) 

where 

I - 1 
2ITi. 

00 

J 
-00 

v = -kcos-& 
p 0 

e 
i.r>g(v,& > 

o 

f22 l"k- -v- (v-v ) 
p 

f(v,& )dv, 
o 

g(v,& ) = vcos& = Yk2
_v

2 
ISin& l . 

o 

(2.50) 

(2.51) 

{ 

(Yk-V)(Yk-kCOS&o)sgn(y)} 
f(v & ) = k(~+~) + 

, 0 K (v)K (kcos& ) L (v)L (kcos& ) . 
+ + 0 + + 0 

(2.52) 

The integral (2.50) can be evaluated by asymptotic method for 

large r by modification of the method of stationary phase. The 

modification is required because the pole v can come close to 
p 

the point of stationary phase v = kcos&. The method used is 
s 

similar to that in Rawlins [13]. In order to avoid repetition 

details of calculations are omitted and I becomes 

I = 1 
2ITi. 

00 

J 
-00 

i. rg (V, fJ > 
o 

e 

f22 ;'k--v- (v-v ) 
p 

f(v,& )dv 
o 
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+i.kr-i.IT/4 
e 

contribution, 

where 

cos&+cos& 
o 

sin& 

il
2 

e dt . 

(2 . 53) 

(2.54) 

(2.55) 

Note:- if the source is far from half-plane then F(z) _ 2TQT' 

Otherwise F(z) 21. I Q I . Eq . ( 2 . 54 ) gives the complete 

asymptotic evaluation. If we do not take asymptotic 

evaluation, then we have some other terms as well. 

The pole contribution account for geometrical acoustic field 

terms. The total field can be represented in terms of 

geometrical acoustic field terms and the diffracted field 

where 

U diff = 
i.<kr-IT/4) 

e 

1. -(2ITkr 
(2.56) 

{ 
2sin&/2 sin& /2 } 

f(v ) = k (01+(1) + 0 
9 K (vcos&)K (kcos&) L (kcos&)L (kcos& ) . 

+ + 0 + + 0 

(2.57) 

For the purposes of obtaining the far field in terms of the 

geometrical acoustic and diffracted field the expression 

(2.46) is asymptotically evaluated for large kr. Thus using 

the modified saddle point method [4], we have 

35 



By Rawlin [13]. for 0<& <rr, x - rc os&. y - rsin&. -rr<-/7< rr . - -

u(r.&) 

where 0<& <rr, 
o 

= 
= 
= 
= 

I 

I 

I 

TR 

+ RF 

+ D 
+ 

+ D 

+ D 

0 

+ D for rr -& 
+ 

for 0 < 

for & 
0 

for rr --Ef 

< -Ef 
0 

< rr. 

& < rr-& 
0' 

- rr < & < 0, 

< & < rr. 
0 

I = Incident wave = e 
- ikrcos(&-& ) 

o 

RF = reflected wave 

= R e
ik

[2hsin& - rcos(&+& )], 
o 0 

= diffracted field -

{ (ot+(1) 

TR = transmitted field -

i ( k r--rr/4) 
-e 2( IQIF( IQI ) 

(cos&+cos& ) 
o 

Y1-cos& Yl-cos& } 

+ L (kcos&)L (kco:& ) 
+ + 0 

-2(1sin& e 
o 

- i k r- cos ( &- & ) 
o 

(sin& +(ot+(1»(sin& +(ot-(1) , 
o 0 

ik [zhsi n& -rcos(&-& )] 
_ Te 0 0 

where R & T are given by Eqs . (24) and (25) respectively. 

2.5 Concluding Remarks : 

(2.58) 

The physical interpretation of Eq.(2.58) is now obvious . I 

represents the incident wave directly coming fron the line 
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source, RP is the reflected wave a nd TR is the transmitted 

field. These represent geometrical acoustic field. 0 + are the 

diffracted waves in illuminated region (O< &<n) and shadow 

region ( - n <&< O) respectively . Further. the res ults for n rigid 

barrier can be obtain ed by putting 0 = 0 = ~ . In addition. the 

results for an absorbing half- plane can be obtained as a 

special case of this problem by taking a = p c/z and 
o = 0 , 

where p is the density of t he ambient medium and z is t he o 

acoustic impedance of the s urface . 
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CHAPTER THREE 

CYLINDRICAL WAVE SCATTERING FROM A PENETRABLE HALF-PLANE 

3.1 INTRODUCTION 

We have discussed the problem of scattering of a cylindrical 

wave from a penetrable half-plane in the presence of a wake 

in the present chapter. Thus the problem corresponds to the 

trailing edge situation. The integral transforms and the 

Wiener-Hopf procedure are employed to obtain the approximate 

mathematical model for the problem in terms of integrals 

representing the diffracted field. These integrals are 

normally difficult to handle because of the presence of 

branch points and are only amenable to solution using 

asymptotic approximations. The analytic solution is thus 

obtained using asymptotic methods (saddle point method) and 

the diffracted field is presented. 

3.2 FORMULATION OF THE PROBLEM: 

We consider the diffraction by a semi-infinite plane. The 

semi-infinite plane is assumed to be penetrable occupying the 

position x~o, y = O. We consider a line source situated at 

(x ,y ), y >0, as shown in the Fig.3. On suppressing the time 
000 
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harllonic factor 
-iWl 

e (to is the angular frequency) the 

equation governing the totnl velocity potential U reduces to 

u = o( x-x ) o( y-y ). 
o 0 

(3 .1 ) 

where k = w/c is the wave nuaber and c. is the velocity of 

sound. On t he penetrable half -plane of negligible t h ickness 

the boundary conditions 

8 ± + + 
ay U(x , O ) ± ikat U(x, O-) ± i k(l U( x,O ) = 0, (3.2) 

where 0 and ~ are parameters to be s hort l y identified. We 

also require that field b e radiating outwards at infinity . If 

we assume that the p ress ure and v e locity nre continuoll s we 

obtain the cond ition 

au U and 8y are continuous when y = O. x>O. (3.2a) 

In this instance the field does not satisfy the 

Kutta- Joukowski condition of finite velocity at the edge of 

the selli - infinite plane. 'l'herefore to find a solution of' 

(3.1) which satisfies the Kutta-Joukowski condition the only 

possibility is to abandon t he continuity of t he field. As 

discu ssed by Jones [16] the most natural way to introduce a 

discontinuity in the field is to postulate the existance of a 

wake across which u is d i scon t inuous whilst au 
oy rellain s 

continuous. The wake occupies y = 0 , x>O and s hould be 

simi lar to thn t i n steady flow but modified to account for 
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oscillatory fie ld . Thus we take a s the boundary condition on 

y 0 , x>O 

• U(x,O-) := Y e i.1J)( 

') 
U(x,O ) 

• BU (X,O ) au (x,O ) 
oy = By 

(3.3) 

where r and J..l are constants . 1'he cons tan t I.J is regarded as 

known and y is to be determined by the condition imposed at 

the edge. 

For analytic convenience we assume that k has a s naIl 

positive imaginary part ~hich we place equal to zero at the 

end of the ana l ysis. This assumption corresponds to an 

absorption of sound so that the waves decay at infinity. We 

also write 

!J = k cos9, (3.4) 

where Q::::Re-&l<rr. IJl-&1~ O . While k has a positive imaginary part 

we shall take O:::: Re&, <n. 11:1&j >0; even tu ally 1'f'e shall be 

concerned primarily wit h t he case ReI) = 0, , 11:1& >0 . , We 

decompose the total fie ld i nto the incident wave ~o and the 

diffracted field ¢ a s 

U(x,y) = ¢ (x,y) + ¢(x,y), 
o (3.5) 

where ¢o is so lution o f inhomogeneous wave equation that 

corresponds to the incident wave and ¢ is the s olution of 

homogeneous wave equation (3 .1 ) which gives the diffracted 

field. 
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3.3 SOLUTION OF THE PROBLEM 

The Fourior transform and its inverse over the variable x is 

defined as 

1 
00 

1,p(v ,y) f - ivx ) = u(x,Y)e. dx, 
-Y2rr -00 (3 . 6) 

1 
00 

U(v,y) J -tVX = l,tJ(v ,y)e dv, 
, -Y2rr -00 

where v = O'+i.T . 

Transforming Eqs.(3.1), (3 .3 ) , (3 .5 ) and (2 .2 ) with respect to 

x by (3 . 6) , we obtain, 

[
0

2 
+ 

oy2 

i..vx 

~2 ] l,tJ 0 (v , y) = e 0 6 (y-y 0) , 

[::2 + u
2
]y;(v,y) = 0, 

o + + -
oy l,tJ(v,O-) ± i.k{al,tJ(v,O-)+~(v,O+)} = 0, x<O, 

l,tJ(v,O±) l,tJ(v O±) = Y 
+' J-l - V ' } 

ol,tJloy(v,O-) = ol,tJloy(v,O-) , 

l,tJ(v ,y ) = l,tJ (v,y) + l,tJ(v,y) , 
o . 

(3 . 7) 

(3 . 8) 

(3.9) 

(3 . 10) 

(3 .11) 

Eq.(3.7) can be solved in a straightforward manner to give 

¢o 
1 ( j,) { I( 2 2 } = 4i. 

H k (x -x ) +(y-y ) 
o 0 0 

OO+i.T i.[vx+~ I Y-Y I ] 
1 

0 

f e 
dv . (3 . 12) = 4rri. ~ - oo+i.T 
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Fourier transform o f (3.8 ) gives 

~i..T 

J 
-oo+i..T 

1 ~i..T 

= 2", J 
- co+-i.. T 

A(t.>} 

" 

B(v ) ---• 

0, 

i..[V)(+UY]d >0 e v, Y • 

i..(V)(-t- XY)d (0 e v, Y • 

(3 . 13) 

( 3.14) 

In order to obtain the uniq ue so l ution of the p r oblem, t h e 

A( " ) , B (") • [,, [-e e dg e c ondi t i o n r e qu i r es that ~ v - v ~ v ---+ 00 where 

0 (&< 1 , 1 1 
( & = 2" - 2n arg(1» [15 ]) s u bst i tu ti n g Eq s. (3. 11) , 

(3. 1 2 ) , ( 3. 1 3) a nd ( 3. 14) in to Eq s. ( 3.2 ) a nd ( 3.3 ) g i ve 

OOt-i..T 

J )(>0, ( 3.15) 
-00t-i.. T 

co+-i T 

J . 
-00+-1. T 

{
(A(V) + 8 ( v)] _ ~}elV)(dV = 0, 

n v-~ 
.>0 (3.16) 

COt-iT 

J 
- 00+i. T 

A(v) [1 + kCOI+(1)] iV)(d 1 J CO+-LT [s ( ) e 1.-1 - - gn y -
n 2. 0 

-oo+ ... T 

i[V(x-x )+n I Y I] 
o 0 

x e dv = 0, .(0 (3.17) 

co+-iT 

8( 1.1 ) [1 ... k ( 0<+(1 ) J ,v'd 1 J"" T [s ( ) e v'" 2 g n Y 
U -OOt-t T 0 

f 
- co+-i. T 

i.. [ V(X-X ) +)l:ly I] 
o 0 

x e d v = 0, x<o, ( 3. 18) 

whe r e 
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{

1 , 

Sgn(y ) = 
o - 1, 

if Y ) 0, 
o 

(3 . 18a) 
1-f <_ ° Yo . 

Addition and subtraction of Eqs . (3 . 17) and (3 . 18) with (3 . 15) 

and (3.16) yield 

OOt-i.T 

f C(v) 
i.vx 

e dv = 0, ><)0, 

- 00t-i. T 

where 

C(v) 

D(v) 

K(v) 

L(v) 

- L-Jei. VX dv = 0, 
v-/-1 

X)O, 

k(Dl+(1) 
'l 

o 0 
e 

-i. [vx -'ly J} 

= 

= 

= 

-i. [vx -'ly J} o 0 -e 

A(v) + BC"'),} 
A(v) - B (v) , 

1 + k(Dl+(1) 
'l 

= 1 + 
k(Dl-(1) :} 

'l 

i.Vx 
e dv 

i.vx 
e 

= 0, 

dv = 

X(O, 

A solution of Eqs. (3.19), (3 .20) , (3 .21 ), (3 .22 ) 

(3 .19) 

(3 . 20) 

0, x<o, 

(3 . 21) 

(3.22) 

(3 . 23) 

(3 .24 ) 

and (3 .23 ) 

can be written by keeping in view the Wiener-Hopf method as 

C(v) = ¢ (v), 
+ 

(3 .25) 
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k(Ol+{1) 
- i.[VX -'H. y ] 

C(v)K(v) + o 0 
¢> (v) , e = 

'H. -
(3.26) 

D(v) y 
= VJ (v), 

'H. v-J-J + 
(3 . 27) 

-i.[vx -'H.y ] 
D(v)L(v) 

0 0 
(v) , - e = VJ (3.28) -

where the positive subscript denotes that the function is 

regular and analytic in the domain Im(v»Im(k). The negative 

subscript denotes that the function is regular and analytic 

in the domain Im(v)<Im(k). These two domains have the 

intersection I Im(v) I < Im(k). Now eliminating C(v) and D(v) 

from the Eqs . (3.25) - (3.28) gives, 

¢> (v)K(v) 
+ 

k( + r?) -i.[vx -'H. y ] 
+ ot ( J e 0 0 

'H. 

VJ (v)L(v) - e 
+ 

-i.[Vx -'H.y ] 
o 0 

=¢>(v), (3.29) 

(3.30) 

For the solutions of Eqs.(3 . 29) and (3.30), we need to 

factorize the kernel functions K(v) and L (v) • The 

factorization of these function is given in chapter 2. 

According to this 

¢> (v)K (v) + 
+ + 

k(Ot+{1) 
e 

2 2 1/2 
-i.[vx -(k -v) y] 

o 0 = 
¢> (v) 

K (v) 

(3 .31 ) 

with the help of Eq.(3.31), Eqs.(3.29) and (3 .30) can be 

rewritten as 
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2 2 1/2 
- i [vx - (k -1) y] 

o 0 

= (3 .32 ) 

Now Eqs . (3 .31) and (3.32) are the usual Wiener-Hopf 

functional equations. For the solution, we have to split 

these equations into the functions which are regular in the 

upper and lower half-planes. For that we need to factorize 

2 2 1/2 
- i [1.-'x - (k -1.-' ) y] 

= k (Ol+~ ) e 0 0 
(3.33) 

( k 2 -1.-' 2 ) 1 / 2 K (1.-') 

2 2 1/2 - \'[1.-':>< - (k -1.-') y] 

~(1.-') = 1. e 
o 0 

(3 .34) 

We can split A(1.-') and ~(1.-') by means of Cauchy integrals [3] 

into the form 

A(1.-') = A (1.-') + 
A_ (v) '} + 

~(1.-') = ~ (1.-') + ~ (1.-'), 
+ 

(3.35) 

where 

1 
00 A(t) 

A (1.-') = 2rri I dt, 
+ (t - 1.-') 

-00 

(3 .36) 

1 
00 

A(t) A (1.-') = -
2rri. I dt, (t - 1.-') 

-00 

(3.37) 

1 
00 

~(t) 
~ (1.-') = 2rri. I dt, 

+ (t - 1.-') 
-00 

(3.38) 

1 
00 

~(t) 
~ (1.-') = 2ni. I dt . (t - 1.-') 

-00 

(3 .39) 
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It is worth noting that I A±(v) 1 and I ~±(v) I are at least of 

O( lvi -i ) as Ivl ~ 00 . Thus Eqs . (3 .31) and (3 .32 ) can now be 

written as 

¢ (v) 
-

¢+ (v)K (v) A (v) J (v) + = = 
+ + 1. K (v) 

A (v), (3 .40) 

11' (v) 
-

11'+ 
(v)L (v) + ~ (v) = J (v) = 

+ + 2 L (v) 
~ (v) . (3 . 41) 

In Eqs . (3 . 40) and (3 . 41), the left- hand side is regular in 

the upper half-plane and the right hand-side is regular in 

the lower half-plane . Therefore by analytic continuation, 

both sides of Eqs . (3 . 40) and (3 . 41) define entire functions 

J (v) and J (v) because of the strip common to both the 
1. 2 

domains . Now , K(v) --4 1 as Iv l --4 00 and K(v) --4 1 as Iv l --4 00, 

I K± (v) I and I L± (v) I o ( I v 1+0
) Ivl 6 

1 ( 1) • as --4 00, = 2rr 
arg ... 

Also from the edge conditions , we conclude that ¢ (v) 
+ 

and 

¢ (v) must be of order O( I v I-e) as Iv I --4 00. Using this 

asymptotic estimate, it can be seen from Eq.(3.40) that 

J
1

( ") _~ O( IVI -e-6 ) d th f th I - I ~ __ an ere are e po ynom~a representing 

J (v) can only be a constant which equals zero since e+6 = 
1. 

1/2 (Abelian Theorem [3]) . Equating left hand side of 

Eq.(3.40) to zero, we obtain 

¢ (v)K (v) = - A (v) . 
+ + + 

(3 . 42) 

Eq.(3.42) together with Eqs . (3 . 25) and (3 . 36) gives 
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C(v) = - k(a+(1) 
2rrL K (v) 

+ 

00 

I 
-co 

2 2 1/2 
- ~[VX - (k -V) y] 

o 0 
e 

Similarly, from Eqs.(3.41), (3 .38 ) and (3 .27 ) 

D(v) = 
. (k-v) 1/2 

2rri. L (v) 
+ 

00 

I 
-co 

2 2 1/2 
- i. [vx - ( k -v ) y] 

o ·0 
e 

dt. (3.43) 

dt . (3 . 44) 

The value of A(v) and B(v) can be determined by adding and 

subtracting the Eqs . {3 . 43) and (3.44) and are given by 

A(v) = 
4ni. L (v) 

- 1 

+ 

00 

xI e 

2 2 1/2 
- L [vx - (k -v) y] 

o 0 [k(a+(1)-(k-v)1/2(k+t)1/2] 
dt 

-00 

+ 
y (k-v) 1/2 (k+,u )1/2L (,u) 

+ 

2L (v) (v - ,u) 
+ 

(3 .45 ) 

B(v) = 
-1 

4nL L (v) 
+ 

00 

xI e 

2 2 1/2 
- i. [Vx - (k - t) y] 

o 0 ( k ( a+ (1 ) + ( k - v ) 1/2 ( k + t ) 1/2 ] 
dt 

-00 

2L (v) (v - ,u ) 
+ 

(3 . 46) 

The requirement of Kutta-Joukowski condition velocity must be 

finite at the origin. This infact means that in the above 

expression for A(v), B(v), the term of 0 ( 1 v 1-1/2+0) as 
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Iv l --4 00 must vanish . So from (3 . 45) , y is chosen such that 

y = lim 
- (v-,u) 

1/2 1/2 
V-+O 21Ti.( k+,u) L (,u) (k-v) 

+ . 

00 k(a+~)L (v)L (t) _ (k _ V)1 / 2(k+t)1/2 K (v)L (t) 
x J + - + -

-00 K (v)K (i)L (v)L (t)(k2-t2 )(t-V) 
+ + 

2 2 1/2 
-i. [tx - (k -t) y] 

x e 0 0 dt (3.47) 

1 
00 

J 
- 00 

2 2 1/2 
- i.[tx - (k -t) y] 

o 0 
e 

dt. = 
1 / 2 

2ITi.( k +,u ) L ( ,u ) 
+ 

L (v) (k _ t)U2 
(3 .48 ) 

Substitution of Eqs.(3.48) is to Eqs.(3.45) and (3 . 46) 

-1 
A(v) = 

4rri. L (v) 
+ 

00 

x J 
-00 

2 2 1/2 
-i.[vx -(k -t) y] 

+ (k -v ) 1/2 J 00 e 0 0 

411 i. L + (v) _ 00 L (v) ( k _ t ) 1/2 d t , 
(3.49) 

B(v) 

2 2 1/2 
- i. [vx - (k - t) y] 

( k -v ) 1/ 2 00 0 0 

+ 41Ti. L+(v) (v-,u) [00 : (v) (k_t)1 /Z 
dt . (3.50) 

Substituting the values of A(v) and B(v) from Eqs.(3.49) and 

(3 .50) into Eqs . (3 . 13) and (3 . 14) give the total field 
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U(x,y) 1 (1){ I 2 2} = 4, H k-{(x-x) +(y-y ) 
• 0 0 0 

00 00 . 2 2 1/2 2 2 1/2 
\. [VX-to (k -V) , y ' -LX -to (k -\.) y] 

+ f f 
o 0 F(v,t)e dvdt 

-00 -00 

2 2 1/2 2 2 1/2 
i. [vx+ (k -v) , y '-\.x + (k -\.) y] 

o 0 G(v,t)e dvdt, 

(3 . 51) 

where 

F(v,t) = k (a+(1) - y'k=V -Ik+t Sgn (y) 

L (v)L (t) (t-v) (k
2 _t 2 

)1 /2 (k
2

_ V
2

)1/2 

(3 .52 ) 

+ -

G(v,t) = (3 . 53) 

3.4 THE FAR FIELD 

In order to obtain the field U(x,y) in spatial coordinates, 

we have to solve the double integral appearing in Eq.(3.53). 

WE solve the integral over the variables t and v in sequel. 

For t hat we substitute 

x = r cos& , 
000 

Yo = r sin& , 
o 0 

and introduce the transformation t = -k cos(& +i.p ) 
o 1 

(0<& <IT 
r- 0 ' 

- oo<p <00) , which changes the contour integration over t into a 
1 

hyperbola passing through the point -k cos& , 
o 

the integral 

with respect to t is then solved asymptotically for r --4 00 
o 
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by the method of stationary phase and the 

expression for the diffracted field is given by 

00 . 2 2 1/21 1 t[Vx+(k -1) y] 

¢(x,y) = 1 
811' J e F(v ,& )dv 

where 

o 
-00 

+ Sgn(y) 
811' 

F(v,& ) = 
o 

G(v,& ) = 
o 

00 
2 2 1/2 

i [vx+ (k - 'I.) I y I ] 
f e G(v,& )dv , 

o 
-00 

( 1 ) 
H ( k r ) Sgn ( y) 

o 0 

2 2 1/2 K (v)K (-kcos& )(v+kcos& )(k - v ) 
+ - 0 0 

2 2 1/2 L (v)L (-kcos& )(v-~)(k -v ) 
+ 0 

resulting 

(3 . 54) 

(3.55) 

(3 .56) 

The first integral appearing in Eq.(3.54) in the variable v 

can be evaluated using a modified method of stationary phase 

since the pole at 1) = -kcos& may come close to the saddle 
o 

point . For that if we put 

F(v,& ) = 
o 

F (v,& ) 
1 0 

v-v 
p 

, v 
p 

= 

x = r cos&, y = r sin&, 

Eq.(3.54) becomes 

1 
00 F (v ,& )erg(V) 

f 
1 0 

2 v-v 
8IT -00 P 

kcos'& 
o 

dv, 

where F(v,& ) has no pole at v = v let v = v be the 
o p s 
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(3 .57 ) 

saddle 



point of g(v) and r is large and positive . The contour of 

integration has to be deformed over the pole in 

to the path of steepest descent through v • On 
5 

steepest d escent F ( v,& ) 
1 0 

is a pproxi mated by 

being moved 

the path of 

F ( v,-& ) 
1 0 

a n d 

g(v) is approximated by i ts Taylor se r ies upto the second 

derivative . Then (3 . 57) takes the form 

where 

00 

12 = J 
-co 

[ 

rg (v) ] 
2rri. F ( v , -& ) e P + 1 , 

P 0 2 

1 2 
F (v ,-& ) el'g (V)- 2" q 

p 0 
dq, 

A = ( v - v ) [ g " (1'> )] 1/2 • 
P s s 

(3 . 58) 

The first term in expression (3 . 58) is present only if 

~(A»O. When ~(A»O, the integral (3 . 59) can be written as 

r'g(V ) 00 
2 1/2 

-1/2q 00 i.p (q+i.l' A) 

1 
2 

- i. F ( v s ' f) 0 ) e S J e dq J e dp . 
-00 o 

On invert i ng the order of integ r ation , 

written as 

2 1/2 
l'g(V ) 00 -1/2p - 1' 

12 = - i. ( 2rr ) 1/2 F ( v S ' {) 0 ) e S Jed p . 
o 

Eq . (3 . 60) 

(3 . 60) 

c a n be 

(3.61) 

This can be written in the following alternate forms in terms 

of Error and Fresenal functions such that 

(3.62) 
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In particular if we introduce the hyperbolic path v = k 

cos(& +iq) (O~&<rr , -oo<q<oo) in Eq. (3 .57 ) the corresponding 
o 

saddle point appears at v = kcos&. Thus using Eq.(3.62) in 
9 

Eq . (3 . 58) , the first integral appearing in Eq . (3 . 54) gives 

where 

1 

8rr
2 

00 

f 
2 2 1/2 

i [Vx+ (k -v) I y I ] 
e F(v,& )dv 

o 
-00 

1 [( 01+(1) = 
2n sin& "f2r -tk 

2Sin&O/2 .sin&12] 

-tk 
0 

ik(r+r· ) 
F( I Q I> 0 e 

x + 
K (kcos&)K ( -kcos& ) 

Pole contributions, 
+ 0 

Q = j'iZr (COS&-COS& oJ 
I I . ~ sin& ' 

. 2 00 

I I -1.Q J 2 F( Q ) = e it dt 
lal e . 

(3 . 63) 

(3 . 63a) 

(3.63b) 

Adopting the same procedure for the second integral appearing 

in Eq.(3.54) we obtain 

Sgn(y) 

8n
2 

= 

where 

IQ' I = 

00 

J 
. 2 2 1/21 I 1.[vx+(k -v) y] 

e G(v,& )dv 
o 

-00 

1 

2rr sin& ~ -tk L (kcos&)L (kcos&) 
° + -

e 
ik (r+r ) 

o 

(kr)1/2 (j.../-kcos&) 
2 sin& 

( -!:. ) 1/2 k (kCOS&1 -kCOS&J 

2 sin&' 

. Q' 2 00 
= e-1. J 

IQ' 
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(3 .64 ) 

(3 .65a ) 

(3 . 65b) 



Thus the total diffracted field can be obtained by Eqs.(3.63) 

and (3.64) as 

1 [(0l+(1) _ 2Sin(&o/2)(Sin&12)] 
¢(x,y) = 2 --& 

rrS1n Yk Yk 

e 
x 

i.k(l'+r ) 
o 2 sin(& 12)sin(&/2)F( IQ' I) 

o 

K (kcos&)K (-kcos-& ) 
+ 0 2rr sin-& fk L (kcos&)L (kcos&) 

+ 

(3.66) 

Solving Eq.(3.54) for y>O, and taking pole contribution, and 

x = rcos&, y = rsin-&, we get the reflected wave and solution 

of Eq. (3 .54) for y<O with pole contribution yields the 

transmitted wave. Therefore the acoustic far field for 

leading and trailing edge situation is given by 

¢(x , y) = I + D O<&<rr-& , 
+ 0 

= I + RF + D 
+' 

rr-& <&<rr, 
0 

= I + D & -rr<&<O, 
0 

= TR + D -rr<&<& -rr . 
0 

where 

I = incident wave = e 
-ikr cos (&-& ) 

o 

RF = reflected wave 

-ikr cos(&-& ) 
_ 2 2 2 0 

(s1n & )-(Ol -(1 »e 
o = ( Isin& 1)+(Ol+(1)( l sin& 1)+(0l-(1 ) 
o 0 

o = diffracted field = [ -
e i. (k r -IT /'4) 2 I Q I F ( I Q I ) 

(cos&+cos& ) 
o 

+ 

{
(0l+(1) 
K (kcos&)K (kcos& ) 

+ + 0 

+ 2sin(&o/2) (sin&12) )} 

K (kcos&)L (kcos& 
+ + 0 
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(3 .67) 



2sin(& 12)(sin&/2) 2I Q'IF(IQ'I) ] ' 0 + e K ( kcos& )L ( kco s& ) ( cos& +c o s& ) 
+ + 0 i 0 

where 

t for trailing edge situation, 

e = 
f o r leading edge s ituation . 

3 . 5 CONCLUDING REMARKS 

The problem of diffraction of a line source by a 

semi-infinite penetrable plane is studied in this chapter . 

Expression for the trailing edge (wake present) is given . It 

is found that near the wake the field is strengthened and 

weakend elsewhere even when the source is near the edge. It 

is further observed that field for trailing edge situation 

will be greater than the field in its absence . It is worth 

noting that Rawlins [14] r esults fo r an absor bing half - plane 

can be obtained as a special c ase of thi s problem by taking 
P o c 

Ot = and ~ = 0, where z is the acoustic impedance of z 

t he s u rface. Also Rawl i n s [13] r e s u lts i n c a s e o f penet r abl e 

half - pl a ne fo r no wake situation can be obtained by putting 

y = 0 . These agreements provide the useful check. 
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Diffraction by Acoustically Penetrable or Dielectric Half-Plane 
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Cylindrical Wave Scattering from A Penetrable Half-Plane 
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