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ABSTRACT 

Considerable attention has been given to the acoustic scattering from half planes. The 

aim of this thesis is to contribute something by studying some acoustic diffraction 

problems from the absorbing half plane. Although, the acoustic wave diffraction 

from an absorbing half plane with similar absorbing parameter has been studied in 

the literature, nevertheless no attempt has been made to consider the spherical wave 

diffraction from a bi-impedant half plane in still air. The absorption in the half plane 

is introduced through different absorbing parameters. The problem is formulated in 

terms of matrix Wiener-Hopf (W. H.) functional equation. Physically, it corresponds 

to a mathematical model for a noise barrier whose surface is treated with two 

different acoustically absorbent materials. The modified W.H. method is used to 

arrive at the solution. 

We further calculate the diffraction of a spherical acoustic wave from a porous 

barrier using a simple theory of porous materials [77] in still air. Our model assumes 

the balTier is made from a rigid material that is riddled with small pores that are 

approximately normal to the plane of the balTier. We take limited account of the 

compressibility of the gas in the pores. However, the gas in each pore behaves 

primarily as an incompressible cylinder, driven back and forth by the harmonic 

Wavefield, but opposed by the frictional force generated at the pore walls ( the flow 

resistance). The barrier is thin enough (with respect to wavelength) that sow1d is 

communicated from one side to the other by the motion of numerous incompressible 

cylinders. The approximate boundary conditions for such a situation are derived. A 

formal analytic solution to the complete problem is given, for the diffracted 

wavefield in the farfield region of the slit. The dependence on the barrier parameters 

of the power removed from the reflected wavefield by the diffraction at the slit is 

exhibited. 

In the case of noise radiated by aero engines and inside wind twmels, it is necessary 

to discuss acoustic diffraction in the presence of a moving fluid . Therefore, the 

theory of acoustic diffraction is further extended to include the case of moving fluid 



and the following two problems are addressed in this direction. (1) "The diffraction 

of spherical wave by a halfplane in a moving fluid". A finite region in the \ic inity llt" 

the edge of a half plane has an impedance boundary conditions ; the remaining part of 

the half plane is taken as rigid. It is found that the fie ld is increased in case of 

moving fluid when compared with still air case. The fie ld is also independent of the 

direction of the flow. This model has potential application in engine noise shielding 

by aircraft wings. (2) "The diffraction of a spherical Gauss ian pul se by an uhsorhing 

half plane in a moving fluid for trailing edge (situation}". The trailing edge adds the 

complications of a trailing vortex sheet to the absorbing half plane. The motivation 

of this problem comes from a desire to understand the transient nature of the 

wavefields- since these can be expressed as linear combination of Gaussian pulses. 

The time dependence of the fie ld is tackled by the lise of temporal Fourier transform . 

It is found that field ratio of no wake to wake situation is independent of the type llf 

acoustic sources. Also near the edge of absorbing half plane, the fie ld of a spherical 

pulse caused by the Kutta-loukowski condition is in excess of that in its absence. 

Chapter 0 is devoted to the brief history of the problems of acoustic scattering. This 

chapter also contains the motivation for the work presented in this thesis. In chapkr 

1, we calc ulate the diffracted field by a slit in an infinite poro us harrier . Charter 2 

deals with the problems of scattering by a bi-impedant half plane. Chapter 3 is 

devoted to the scattering of a spherical wave by a rigid screen with an absorbent 

edge in a moving fluid. In chapter 4, we present the scattering of a spherical 

Gaussian pulse near an absorbing half plane in a moving fluid . 
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Chapter 0 

INTRODUCTION 

Although mathematical analyses of light scattering by faceted objects occu­

pied the time of many medieval scientists, perhaps the most notable being 

Ibn-al-Haitham of Basra who flourished in the 10th century AD. The rein­

troduction of the subject of scattering of sound and electromagnetic waves , 

commence with the analysis by Poincare [88], followed soon afterwards by 

Sommerfeld[104]. The problem of calculating an exact analytical solution for 

the scattering of sound or electromagnetic waves by an arbitrarily shaped 

body is generally intractable. However , for particular geometries (e.g. half 

plane, slit , wedge etc.) and certain restricted classes of problems it is possible 

to obtain explicit solut ions to t he associated mathematical boundary value 

problems. 

HALF PLANES: The scattering of sound and electromagnetic waves 

by a half plane has been investigated by a number of authors. Sommerfeld 

[104] was the first who obtained the solut ion of the diffl"action of plane waves 

from a half plane by using image waves. These solutions are valid in the far 
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field , although they Ill'(,OIII(' ull l)()UIHI('d al I II!' illCi<i{'lll (Jr rdh'{"l I'd :-- Il il<i()\\ ' 

boundaries. MacDonald [75] and Carslaw [14] ohtaiJJ('d tlw difl'ral'li(Jll (If it 

line source and a point source field by an ideal half plallc. ClellllllO\\' [17] 

and Senior [102] obtained solut ions in terlllS of Fresnel functions \\·lIidl ar(' 

bounded at the shadow boundaries. A further illlprov('nJ('nt on t 111' solul iOll 

for the half plane with ideal boundaries was obtained by Pal hak and KOIl.\' ­

oumjian [84J employing a uniform geometrical theory of diffract ion . A useful 

collection of diffraction formulae are given hy BowIllan et iiI. [11 ]. and Hll 

extensive review is given by Pierce [85]. 

The diffraction of waves by half planes wit h nOll idea l boundary CUJl( lil iUIIS 

was discussed by Williams [108J. His solution, perta ining to sur fa {'e." of I II(' 

half plane with identical point reacting impedance is in I he form of all infiui Ie 

product. A closed form solution for the diffraction of a plane wave by a rigid­

soft half plane was obtained by Rawlins [90]. The scattering by half plalle 

surfaces with more complicated boundary condit ions hClli iwell sl udied a." W'W 

physical applications have occurred, for instance , il1lpcdallCe surfac(~ have 

found application as absorbent liners in aero enginc exha llsts. T he mt'l hod 

of solution for these half plane problems involves the lise uf the \\"icller- lIopf 

technique. 

THE WIENER-HOPF (W.H.) TECHNIQUE: Thi~ l('cillliqlJ(' pru­

\rides an extremely powerful tool for attackillg t\\'() and three dinwlls iul1al 

diffraction problems . Out. of all possible approaches towards t he red lid ion 

of the physical problem at hand to a Wiener-Hopf problem, · ' .JOJl(~ mel hoc\" 

is the most suitable option as it is direct and straightforward . A beautiful 

account of Jones method can he found ill t he books of Jones [-16] and Nuhl( ' 
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[82]. The W . H. technique has many applications to problems ()utsicil' t hI' 

field of acoustics and electromagnetism, see, for example, Wickhalll [111]. 

Kuiken [61], Shaw [103], Davis[19] and Soward [105]. T he lit erature abu ill­

eludes some interesting new modifications of the da:-;sical IIIct hod [G/:!] fur 

treating problems with axial symmetry. In scattering t hcory, t he diffract iOll 

by arrays of parallel plates and diffraction by a plate wit h different absorbing 

conditions on either face is interesting from both a physical and a mathclllat ­

ical point of view. Apart from some special cases (Heills [-10 .. n ]. L(~\\'ill .lIld 

Schwinger [63], Carlson and Heins [16] and Rawlins [91]) thcse ditrractiol1 

problems give rise to matrix W. H. equations. There is, as yet , 110 gellcral 

method of solution of such equations. 

To solve a W . H. functional equation it is necessary to decompose the 

kernel (in general this is known function of a complex variable wit h a lIulllber 

of isolated singularities that characterize t.he underlying physical pro('(~ses ) 

into a product of functions, one analytic and of atlllost algebraic growth 

in the upper half of the complex plane, whereas the other is analytic and 

of at most of algebraic growth in the lower half plane. In the scalar casc. 

this may be achieved by the use of Cauchy's integral theorem. but. for a 

matrix kernel, the formal extension of this technique is only successful for 

a restricted elass of matrices. Thus a considerable effort has been made ill 

recent years both to extend this class and to find new constructive met hods 

for calculating matrix decompositions, especially wit.h reference t.o particular 

physical problems. Examples of specific problems lIIay be foulld in till' P' I\H'l'S 

by Rawlins [90], Hurd and Przez(hiecki [44] and PrZ(!zdzi( ~cki awl IIll1'd [H!.J j. 

and Abrahams [2], Hurd [45], Daniele [20], Khrapkor [57] awl .J()1I( ~ [47]. 
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Extension of these techniques, and other relevallt lIIat ( ~rial. call 1)(' fouJld ill 

Rawlins and Williams [92], Williams [110], Dalliele[21] and Rawlins [93] . The 

abstract theory of matrix factorization, in the sense describcd above , has also 

received a great deal of attention following the existence theorem of GOhberg 

and Krein [28], see, for example Speck [106] , Meister [76] and GOhberg and 

Kashock [29]. 

POINT SOURCES: In scattering, plane wave theory is gencrally a.-;­

sumed to be sufficiently accurate to predict wave scattering phenomcna when 

a sound source is far away from a scatterer. The approach, howevcr, becollles 

unavailable when, for practical reasons, a large source-to-scattcrcr scpara t iOIl 

cannot be achieved. Actually, it is difficult to answcr t he problem of how 

large the separation must be sufficient. At large distances from a soulld 

source with a finite aperture, the wave front of the incident wave always be­

comes spherical. If the scatterer extends over a fairly large size, the sphcricity 

of the wave front may cause significant bending strcss, r('~., ult ing t he change 

in frequency and spatial charactcristics. Keepillg in view the i III port allCt' of 

a spherical wave emanating from a point source, the diffraC'l iOIl of a sph(~ri('al 

wave by an absorbing half plane is considered in this thesis. This considcra-

. tion is important because point sources are regarded as better substitutes for 

real sources than line sources/plane waves. In many experimental sit uations, 
• 

the insonifying source is more appropriately modelcd as a point source or 

an array of point sources. If the point source is close to the scatt.erer, the 

scattered field could be significantly different compared to that of a plane 

incident wave due to the following two reasons: 

(1) Geometrically, the surface area of the scattercr 'insollificd' by a splH'r-
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ical wavefront is smaller than that of a plane wave awl therdore til(' s('att('n'd 

field contributed by the specular reflect ion is small('!'. 

(2) Structurally, the pressure loading on tl\( ~ s('a ll('n'r is diff('!"I'llt d\l(' I tl 

the spherical spreaciillg ami therefore the s('a tt (~n~r ·:-. d.\·lltlllli(' n':-'p()I1 ... (' <llld 

radiation pressure are different from those clue to a plalll ~ illcidellt Wil\,(' . 

WAKES: The interaction between acoustic sOlll'ces and waye support ­

ing structures is an important area of flow generated noisl' theory. Lighthill 

[65 , 66] in his theory of aerodynamic sound. lllod('kd t 1[(' prol>ll'lll (If ~"ulld 

generation by turbulence in an exact analogy wit It sound radiat ed h.Y a 

volume distribution of acoustic quadrupoles embedded ill an ideal a('()ust ic 

medium. The strength density of the equivalellt quadrupole." is Light hill' s 

stress tensor which is essentially the unsteady colllponellt of t 1[(' H( 'Yll(Jlds 

stress in low Mach number flows. Curle[l 8] shO\\·(·d how t 1)(' pn'Sl'II('( ' "f 

boundary surfaces could be accoullted for by addit iOllal smfil( '(' di :-. t rilJllt iOllS 

of dipole and monopole sources . A dimensional analysis based OIl the id('a 

that the only velocity and length scale in the problelll an~ set by t hos( ~ ill 

the turbulence yield the well-known laws that the illtcnsity of sound g( ~ ll ­

erated by free turbulence increases with the eighth power of flo\\' \·pl() ('i t.v. 

while that induced by unsteady surface forces increases ill proport iUll t () the 

sixth power of flow velocit.y. In 1970, Ffowes Williams and Hall [23] have . 
shown that the aerodynamic sound scattered by a sharp edge is proport iOllal 

in intensity to the fifth power of flow velocity and to t he inverse cube of 

the distance of the source from the edge. However . it is observed that the 

analysis of Ffowcs Williams and Hall was based upon the assumptioll of a 

potential flow near the sharp edge with velocity becoming infinite there. In-

5 



1 . .l­
f .. : 

stead of that if one wishes to prescribe that the \·('Iocit.\' is fillitt' . tlwrt, an' 

two possible points of view. One way is to ai>ancioll t II(' Light hill t Iwur\ alld 

use linearized Navier-Stokes equations with source terllls. This would h ~ad til 

analysis of the type employed by Alblas [3] who showed that, ill the absl'llC'(' 

of the main flow, small viscosity removed the sillgularity ill the wl()('it,Y at 

the edge without appreciably affect iug t he far field pr<'SS Il!,( !. IIm\'l'\·('!". ill 

order to make the procedure sat.isfactory ill t he pn ~(!II('l! of a fio", Oll(' \\'1)11 1<1 

need to feel convinced t.hat the linearizatiou of the Na\' i( ~ r-St()k(~ eq llat iuu 

was still legitimate, and that. the flow did not cause any shedding of \ 'orl i('(~s 

from the edge. 

The other point of view is to ret aill the equat iOIl ofsllla ll a III plit li( II' :-o() lll j( I 

waves and attempt to apply a Kutta-Joukowski cOllditioll at till' l'dgl' . as ill 

aerofoil theory. It was due to Jones [48] ,who introdllced the "'ilk!, ('(Jll<iitioll 

to examine the effect of the Kutta-Joukowski cOlldition at the edge of til(' 

half plane which generates noise in t.he turbulent fluid at low :'ladl 11111111)('1'. 

He calculated the field scattered from a line sO\ll'ce ill st ill air il." wcll a~ fur 

a moving fluid. It was observed t.hat when the souud held is couvected the 

orders of magnitude of the acoust.ic far field are the same whether or not the 

Kutta-Joukowski condition is applied, provided that the point of observation 

is not near the wake. Thus the wake acts as a convellient transmission channel 

for carrying intense sound away from the source. This prohlem was furt ll( ~r 

extended to the point source excitation by I3alasubramanyam [10] and to 

diffraction of a cylindrical impulse by Rienstra [101]. Keeping t his in mind , 

the diffraction of a spherical Gaussian pulse by an absorbing half plane wit h 

fluid flow and in the presence of a wake is considered in chapter 4. 
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SLITS: Scattering from a slit is a wcll st udied problem ill diffract iOB 

~heory from both theoretical and engineering points of view. The diffrac­

tion from a slit in a screen of finite thickness has becll treat('d b.v s('\·('ral 

authors by using different analytical and nUlllerica l approaches. ASH'st as 

and Kleinman [4] summarize and review much of t he work dOlle on it. J()IH~ 

[46] and Nobel [82] discusses diffraction from a slit using the \Viener-Hopf 

method. Keller [56] treates diffraction of a wave from a slit of any shape in 

a thin screen by using the "geometrical theory of diffract iOIl·'. Fun her. the 

most extensive investigation is that. of Lehman [64], who used the ana lytica l 

properties of finite Fourier transform. The solution of Kashyap and Hamid 

[52] used the Wiener-Hopf formulation in conjuct.ion wit h the generalized 

scattering matrix technique. The solution of Hongo [42] and of Neerhof and 

Mur [80] are obtained by a numerical treatment of coupled integral equa­

tions. The transmission characteristics of a slit in a conduct ing screell of 

finite thickness placed between two different media is obtained by Auckland 

and Harrington [9] by formulating the problem in terms of a pair of coupled 

integral equations. 

Keeping in view the importance of the scattering frolll a slit . the' diffrac­

tion of an acoustic wave by a slit in an infinite, plane, porous barrier is 

investigated in chapter 1. The aim of t.his work is to calculate the scattered . 
wavefield excited by a spherical wave incident to a slit in a barrier exhibiting 

both absorption and transmission. The source is assumed to be sufficiently 

far from the slit that its wavefront is locally plane. T hroughout we ru;sull1e 

that field is harmonic in time. In this chapter we give a formal solution to the 

complete problem and demonstrate that , in the limit of a rigid barrier , the 

7 



solution reduces to that calculated by the gcometrical theory of diffractioll, 

The asymptotic analysis of the resulting integrals is only carried fcu' enough 

to permit the calculation of the diffracted wavefields far from the sli t as well 

as the power removed from the reflected waveficld by int erference \vit h I he 

diffracted one. We anticipate extending the analysis of these int egraI:-;, so 

that expressions for the wavefield in the slit and dose to the barrier call he 

obtained, and have therefore given more details of solution than is ne('~sary 

to calculate only the farfield results. To calculate the diffracted wavefield 

from the interaction between the edges we assume that the sli t is lcu'ge, wit h 

respect to wavelength, and asymptotically approximate several int egrals us­

ing this assumption. Karp and Keller [53] calculate this interaction terlll for 

diffraction from a slit in a perfectly rigid barrier using the geomet rical theory 

of diffraction (this theory also assumes that the slit is large with respect to 

wavelength). Their work is a limiting case for ours and we show that , ill this 

limit, the power removed from the reflected wavefield by int erference \\'it h t]H' 

diffracted one, that we calculate, agrees with thC!irs, Lastly, tlH! Sa lll(' ()\'('rall 

approach used here has been taken by Asghar [5] in his sl udy of scattering 

from an absorbing strip in a moving fluid . 

Rawlins [95], continuing his earlier work on diffractioll fwm an absorbing 

barrier [96], presented a model of an acoustically penetrable but absorbing 
• 

half plane barrier, and calculated the diffraction from its edge, He used a 

boundary condition, having two parameters, that mixes the pressure and 

its normal derivative at each side of the barrier. The boundary condit ion 

produces discontinuities are set by the two parameters, They are chosen to 

give approximately the same reflection and transmission coefficients a...<; those 
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found for the case of a plane wave incident to a thin layer , whose governing 

equation is a scalar wave equation , Adopt illg the salll<! fmlll of h()1I11C lary 

condition in chapter I , we identify the paralllcters ill a diff'('l"(,llt wa~', l ':-, illg 

a simple theory of porous materials described in [77] , our model aSSllllH ~"i the 

barrier is made from a rigid material that is riddled with slllali p()n:~ that 

are approximately normal to the plane of thc barricr. No part idc velocity 

in the barrier parallel to its plane is permitted (a killclllatic cOllstra int) , We 

take limited account of the compressibility of the gas in tlie POrt'..') , IInw('\'cr. 

the gas in each pore behaves primarily as an incompre..<.;sible cylinder. drivell 

back and forth by the harmonic wavefield, but opposed by the frictional force 

generated at the pore walls (the flow resistance), The barrier is thin enough 

(with respect to wavelength) that sound is communicated from one sidc to the 

other by the motion of the numerous incompressible cylindcrs, Th<' 11l0lId 

is accurate provided ~: = 0(1), where h is half the thickness, <l> tlip How 

resistance and pc the specific acoustic impedance of the surrounding gas, 

There have been other attempts do derive approximate boundary conditions 

that model thin layers, though, unlike the one discussed in chapter I , they 

have not involved a kinematic constraint. Bovik [12] derives approximate 

boundary conditions for thin fluid and elastic layers in a differential form , 

using Taylor expansions as the basis of the approximation procedure. \Vick-. 
ham [111] takes a different approach and reduces the approximate boundary 

condition to an integral formulation that avoids the need to approximatc the 

boundary conditions pointwise, but imposes instead a condition averaged 

over the boundary, Though our approach lies somewhat. mid-way between 

the two, we end with a differential form because the boundary conditions are 
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locally reacting. The gas in each pore respollds ollly t () the wC\vl'fi('ld ill it:-. 

immediate neighborhood. 

The final results are presented in the form of t he power removed frolll 

the reflected wavefield by interference with the diffracted one. To make this 

calculation we adopt an argument given by Newton [81]. Normalized with 

respect to the reflected intensity times twice the width of the slit , this give:; 

a measure of the effectiveness of the barrier, with the slit , at reducing sound 

transmission. This term is a function of the slit width and the propert ies of 

the barrier. These contents of chapter 1 have been accepted for publicat ion 

in "Contribution to the issue of Wave Motion honouring Gerry 

Wickham". 

NOISE REDUCTION: The diffraction theory has found its applica­

tions in the problem of noise reduction by means of barriers. Highway noise 

in urban areas is one area of noise pollution that can be rectified. The pri­

mary mechanism for traffic noise reduction in existing highways is t hrollgh 

the use of barriers. Noise barriers are physical barriers t hat can red \1(' (' the 

noise transmitted directly from the vehicles in t he traffic. They can be con­

structed from natural materials, such as earth and wooden barriers or from 

man-made materials such as fiberglass, aluminum, concrete, etc. 

To define the noise problem first, one needs to talk about traffic nuise. 

Vehicle emit noise due to different causes. For example, an automobile has 

engine noise and tire generated noise. While some of these noise sources arc 

pure tone, the overall radiated noise can be treated as a random noise with 

a known spectrum. Because the dominant noise from an automobile comes 

from the vicinity of the tires, the overall noise source height is located at 

10 



the ground, with a typical normalized noise spectrum . . Similar argulllents 

are advanced for the noise emitted from light trucks. On the other hand , 

heavy t rucks have a variety of noise sources. AllIollg the llIost illlp, Irt ant 

are exhaust noise, engine noise, tire noise, radiate lIoise from side' JHlIlds alld 

flow noise from the truck itself. Traffic noise is a composit e of a Illixt me of 

automobiles, light and heavy trucks. The total noise level receiveo at a point 

is the sum of the noise in each frequency Laud of all the vehicles travell ing ill 

all the lanes of a highway, and then added incoherelltly in space and o\'Cfall 

frequency bands. This overall traffic noise level is the oasis for evaluat illg t he 

need for, and effectiveness of a noise barrier. A noise barrier erected between 

the traffic and the receiver acts to reduce the directly t ransmitted noise from 

each vehicle. If t he transmission loss of the barrier is high enough thell the 

only noise that can propagate to the receiver is through the mechanisllI of 

acoustic diffraction over the barrier's top or side edge(s). 

Noise barrier come in a variety of shapes. A noise control highway engi­

neer has to take into consideration the cost of materials and construction, the 

esthetic appearance of the barrier, its acoustic absorbency, its resistallce to 

environmental conditions, durability, ease of repair and maintellallce, as well 

as its acoustic performance. These factors influence the choice of t he barrier 's 

shape, height , length and its location in relat ion to the pavement . T he fi rst 
• 

attempt at modeling the excess attenuation of a thin wall barrier was made 

by Maekawa [70,71,72] in terms of a Fresnel number. This was followed by 

Kurze and Anderson [60] and Maekawa et a1. [73] for finite length screens 

and Kurze [59] for accurate modelling of thin barriers. These models used 

primarily the expression for diffraction by a half plane given by Sommerfeld 
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[104], Carslaw [14], MacDonald [75] and Redfcam [100] for edgp,:.i wit Ii id( 'al 

boundary conditions. 

The theory for wedges having ideal boundary conditions or having sur­

faces with impedance coverages were developed by a few authors including 

Carslaw [1 5], Malyuzhinets [74], Williams [110], Jonasson [50] , ~larson [69] 

and Hayek [30]. Models for barriers of other shapes such as t hick barriers , 

double walls, cylindrical beams and trapezoids were generated by Jones [49] , 

Fujiwara et al.[26 , 27], Pierce [85], Foss [24], May and Osman [68], Lohmann 

[67], Hayek and Nobile [31] and Hayek [32]. 

The diffraction theory for half planes with non-ideal boundary conditions 

including half planes with impedance covered surfaces and for absorbent thin 

wall barriers were developed by Senior [102]' Rawlins [98], Hayek [33,34 , 35]' 

Pierce and Hadden [86,87]' Yuzawa [113L Kendig [55], Nobile et al. [83] , 

Kawai et al. [51] and Kendig and Hayek [54] . In cont inuation to the study of 

absorbing half planes, Rawlins [91] obtained the diffraction of a (,ylilldrica l 

sound wave by a bi-impedant half plane. In Hllother paper [99] , he di~(,llss( ~d 

the diffraction of a plane wave by a rigid screen with a soft or perfectly 

absorbing edge. In the case of noise radiated from aero engines and inside 

wind tunnels it is necessary to discuss acoustic diffraction in the presence of 

a moving fluid. Taking into account the importance of moving fluid , Rawlins . 
[96,97] established the solution for the diffraction of a line source of sound 

by an absorbing half plane. This analysis was further extended to a finit e 

plate by Asghar [5] and to point source excitation by Asghar et al.[6, 8]. 

However, the diffraction of an acoustic field from absorbing half planes 

needs further attention. It is observed that the diffraction of a spherical 
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sound wave by a half plane with different face impedance:; has not bccll 

attempted so far. Therefore, it seems to be a worthwhile att empt to ('olls iC\(!l' 

point source diffraction and determine t he effect of diffeH'llt fac(, a h .. ,orpt iOll 

on the diffracted field. With this in mind, t he problelll of diffract iOll of a 

spherical wave from bi-impedant half plane is investigated in chapter 2. The 

different absorption in the half plane is introduced through the absorption 

parameters /31 and /32' The modified W. H. procedure has beell employed to 

calculate the diffracted field. It is observed that the problem pertailling tu 

rigid boundary condition can be obtained as a special caSt' of this prohl(,l1l 

by equating the absorption parameters to zero. 

Now, in the situation when noise is shielded by a barrier which intercepts 

the line of hearing from the noise source to the receiver, the acoust ic field 

in the shadow region of a barrier (when transmission through t he barrier 

is negligible) is due to diffraction at the edge alone. For this rcasoll Butler , 

[13] suggested that the region in the immediate vicinity of the edge should be 

lined with absorbent material to reduced the sound level in the shadow region. 

This technique has potential applications in engine noise shielding by aircraft 

wings. Keeping this in mind, the diffraction of a spherical acollstic wa\'(~ by a 

rigid screen with an absorbent edge in a moving fluid is discussed ill chapter 

3. A finite region in the vicinity of the edge has an impedance boundary 

condition; the remaining part of the half plane is rigid. The problem which 

is solved is a mathematical model for a rigid barrier with an absorbclIt edge. 

The analysis presented here is concerned with the more general allci pract ical 

case where absorbing parameter f3 is finit.e . It is also noted that the limiting 

case [99] when the surface is ideally soft (t.he pressure fluctuation vanishing 
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on the surface) is given by 1,L3I -+ 00 . The..'ic observa t iOlls haw! b('(,11 pll l,lislll'd 

in Can adian Applied Mathematics Q uarte rly 5 (2 ),105-129 (1997). 

TRANSIEN T PHENOMENA: Another important featlll'c ill the tht ·­

ory of acoustic diffraction is t he transient natme of t II(! field . III t he Ii t pra t m e. 

there has been a strong emphasis on time harmonic \Va\'l~ propagatioll. ho\\,­

ever, there has emerged interest in transient wavc plWnOIllf'nH dill' t () the 

present ability to produce short pulses with a broad frequency spect rUIll . 

The subject of a wave propagation is usually introduced via t imc harmonic 

regime. This practice is based on the assumption that time harmoniC' wave 

processes can be described more readily than transicnt proc('sses. t la' lat er 

being derivable from the former by the additional comput ation of tilt! Fomier 

or Laplace transform. However, the basic phenomenR of wave pl'Opagat iOll 

that travels from a source to a receiver through an ambient envirollment 

are more easily understandable in the transient state, which permits direct 

signal tracking. The time harmonic field t hen emcrges as t hc special ca."it' 

of cont inuously emitted excitat ion at constant fn>qlll»H'Y. It lIlay abo ht· )'(>­

marked that the Fourier or Laplace t ransform rout e from the time harmollic 

regime does not provide the only approach to trans ient solutions. Some­

times a direct analysis of a transient problem is considerably simpler and 

even easier than the solution for the time harmonic case. HCllce. there arose 

strong interest in the transient wave phenomena , stimulated by \'arious ap­

plications that require the explicit treatment of time dependent effects , SL'€ 

Friedlander[25], Harris [36,37], Rienstra [101]. deHoop [43], Jones [46] and 

Asghar [7]. FUrther, one such application is due to present ability to produce 

short electromagnetic pulses and consequently require .. ,> the development of 
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new time dependent techniques. Also short pulses for higher power . espe­

cially in the optical frequency range, are finding applicatioll as diagnost ic 

tools for the study of implosion and ot her wave Illat(!rial applicat iOllS. 1111-

pulsively excited electromagnetic bursts on electrollic cquipnwnt. dev i('( ~s awl 

installations have become a matter of concern also. Such burst s may range 

from naturally caused lightening discharge to man made nuclear explosions. 

The security and reliability of communication channels under the inftucnce of 

such bursts has motivated extensive invest.igations by military agencies awl 

by private, public organizations, concerned with cOlllmunication. In tIl(! arCllii 

of underwater acoustics and of supersonic aircraft noise, acoustic transients 

have been studied extensively and much attention has been paid to transient 

structure-fluid interaction, for example, between the "Sonic boom" generated 

by supersonic aircraft and a windowpane or between all underwater shock 

wave and a submersible. 

Keeping in view the importance of t he transient Ilature of wave pIH!IlOl1l­

ena, the Gaussian pulse response of the absorbing half plane for trailing edgc 

situation in a moving fluid is studied in chapter 4. This investigation is 

important since the wavefield due to any transient source can he expressed 

as a linear combination of Gaussian pulses. The wavefield for the ilIlp\llsi\'c 

source can be easily obtained by using the representation of the Dirac delta 

function in terms of Gaussian pulse. In terms of the boundary conditions the 

trailing edge requires a trailing vortex sheet or wake attached to the absorh­

ing half plane. The time dependence of the field requires a temporal Fourier 

transform in addition to spatial Fourier transforms. The spatial int egrals 

appearing in the solution for the diffracted field are solved asymptotically in 
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the far field approximation. It is oncc again foulld that the fil'ld <ill(! tu a 

spherical Gaussian pulse with the Kutta-Joukowski condition is substalltially 

in excess of that in its absence when t.he source is near thc edge. \Vc also 

observe that results for the diffraction of a spherical Galliisian pulse from a 

rigid barrier can be obtained as a special case of this problclll by taking thl> 

absorption parameter equal to zero. These observations haw! becll pllblished 

in Applied Acoustics 54(4) , 323-338 (1998). 
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Chapter 1 

SCATTERING OF A 

SPHERICAL ACOUSTIC 

WAVE BY A SLIT IN AN 

INFINITE POROUS 

BARRIER 

In this chapter, the problem of scattering of all acollstic waw by a slit ill all 

infinite, plane, porous barrier is studied. The barrier is modeled as a rigid 

material with narrow pores, normal to the plane of the barrier , that provide 

sound damping. However, the barrier is thin enough that sound trallsmission 

takes place. An approximate boundary condition is derived that l1loclds both 

these effects. The source point is assumed far from the slit so that the incident 

spherical wave is locally plane. Th~ slit is wide and the barrier thin , both with 
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respect to wavelength. The principal purpose of the baITi( ~ r is to Inillre the 

reflected and transmitted sound so that we assullle t hat the flow resist alice of 

the pores is large. The diffracted field is calculated using integral tran~forms, 

the Wiener-Hopftechnique and asymptotic methods. While a formal solution 

to the complete problem is given, only the diffracted waveficld is studied . 

and that only in the farfield zone. The diffracted field is t he sum of the 

wavefields produced by the two edges of the slit and an interaction wavefield. 

The dependence on the barrier parameters of the power removed from the 

reflected wavefield by the diffraction at the sli t is exhibited. 

1.1 FORMULATION 

We consider the diffraction of an acoustic wave excited by a point source lo­

cated at (xo, Yo, zo ) or (ro, ()o, zo ) by a slit in the plane y = 0 of the width 2a, 

-a :s x :s a. We shall also ask that 0 < ()o < ~. The geometry of t he prob­

lem is shown in Fig.1. Throughout, the t.ime harmonic factor exp( -iwt) is 

understood. We shall work with the velocity potential at, where the particle 

velocity u is given by u = - Vat. The total velocity potential satisfies 

[ 
82 8

2 
8

2 1 8x2 + 8y2 + 8z2 + k2 
at = 8(x - xo)8(y - yo)8( z - zo), (1.1 ) 

where 

( 1.2) 

is the free space wave number. The wave number k is assumed to have 

a small positive imaginary part whenever this is needed to ensure the con-
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vergence (regularity) of the Fourier transform integrals defined subsequently. 

The term k2 is otherwise set to zero. The boundary conditions satisfied by 

at on (- 00 < x::; - a) U (a ::; x < (0), y = o± are 

± f)f) at(x ,O±,z) +ikaat(x ,O±,z) +ikj3a(;(x, OOf,z ) = 0, (1.3) 
Y 

where O± means t hat the field term is to be evaluated as y ---7 ° t hrough 

posit ive or negative value of y. The parameters a and j3 will be identified 

shortly. For the case of line source, Eq. (1.3) takes t he form of Rawlins 

boundary condit ion [Eq.(10) ; 95]. The boundary condit ions on -a < x < 

a , y = O± are 

If 
·a 

yi 
I 

x 

a 

Fig.l: The geometry of the problem 

(1.4) 

(1.5) 

In addition, we insist that at sat isfy t he edge condition as x ---7 -a+, a-, 
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at(x, 0, z ) = 0(1) , (l.G) 

(1. 7) 

The order x 21 remains the same as in the case of rigid/soft or absorbing 

barrier (Rawlins [94-99]). The plus sign indicates a limit t aken from t be left 

and the minus sign one taken from the right . 

It is useful to split the total field at in two ways. To discuss the bOllIldary 

condition we write 

(U~) 

where ai is the incident wave and as represent an outward radiat ing 

wavefield. However, to discuss the diffraction problem, it is more useful to 

write at as 

(1. 9) 

- a ,Y ~ 0-, 

where aT is the wave reflected from a perfectly rigid barrier and a is the 

scattered wavefield. It is comprised of the diffracted wave , a correctioll to 

the reflected wave and a transmitted wave. 
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1.2 THE BOUNDARY CONDITION 

Fig. 2. shows a porous barrier of thickness 2h ext (~lIdillg t () infillil y in tIl(' ±.r 

directions. No slit is present. The space is divid('d illlo I hn x' r<~g i(JIl :-'. TIll' 

region V + and V- are those above and below the barriel' a lld are ()(,(,lIpi(!d by 

a gas having density p and sound speed c. The rcgioll Vo is that occupicd by 

the porous barrier. Following a formulation that is idcntical to that gi\'cn in 

I.B of Harris et al. [39], the velocity potentia l (T s scattered fro II I I his harri<'l' 

is represented by 

as(x) = -1 [ag(x, x)\7at(x) - at(x)\7ag(x , x)] .n dS(x) , x E \1+ U V-, 

( 1.10) 

where at is the total potential given by Eq. (1.8) alld (T 9 is the t Ilrl'e­

dimensional, free-space Greens ' function. The surfacc S is cOlllpriscd of tIl(' 

upper and lower surfaces of the barrier, fi. is a unit norllIal vector pointing 

out of the barrier and \7 indicates t.ha.t the gradient is takcn wil h re:-;pect 

to the argument X. The vector x indicates the observat.ion point and li~ 

outside the barrier, while the vector x indicates t he source point and lie; on 

the surface S. 

Asking that the unit normal fi. now point only in the positive y direction , 

we define the discontinuities 

(1.11) 

and 

[ad = at(x , h , z) - at(x , -h , z ). ( 1.12) 
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These are the sources of the scattered sound as ('(\11 1)(' !-I('ell hy 11 0 1 illg I 11 i 11 . 

provided the discontinuities ill Eqs. (1.11 )alld (1.1 2) arc 110 larg(' t hall O( 1 ). 

then the integral Eq. (1.10) can be approximated to 0(1.-11) by evaillatillg the 

Green's terms at fj = O. This leave..<; us with 

O"s(x) = - ff [O"g (x , 0, z, x ) [V'ITt.n.] - [ITtl V'IT y.;; 1 tl j' (1: + O(kll ). ( 1.1J) 
s 

where x lies outside the volume enclosed by S. Note that we han:! ap­

proximated a function that we know and whose lengt h scale is set by the 

wavenumber k and not by the wavenumber of the porous luaterial. It is 

therefore the discontinuities, Eqs. (1.11) and (1.12) , that Eq. (1.3) lIIIlS! 

mImIC. 

Returning to the Rawlins boundary condition, we note that if we take 

the limit kh --t O± of the following 

( 1.14) 

and 

[O"tl = - (ik (Q - (3))-1 [V'O"t(x, h, z).n. - V'IT t( x, - It. z).n] , (1.15 ) 

then, by adding and subtracting Eqs. (1.14) awl (1.15). wc rc('()wr Eq. 

(1.3) . Accordingly, by estimating the discontinuitics, Eqs. (1.11) alld (1.12) , 

we may use Eqs. (1.14) and (1.1 5) to determine the parameters Q and fl · 

Adapting a simple theory of porous mat.erials given in [77], the equation:; 

governing the acoustical behavior of the porous barrier are 
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(l.l(j) 

~~ = iwpp [1 + ( ~:p ) lll ~. (1.17) 

The particle velocity in the barrier U2 is restricted to be in t he normal 

direction only, the particle velocity in the tangential direction lIIust Iw zero. 

and the acoustic pressure in the barrier is p. The paralllC't crs of t he IlI()(h' l are 

/'i,p the compressibility of the gas in the pores. 0 t II(' porosity ur frae! i() 11 "f t Ill' 

volume occupied by the pores and hence by the gas, Pp the effect ivc <iPnsity of 

the gas in the pores and <I> the flow resistance. This las t paralllet er det ennine..'i 

the effective sound absorbing properties of the barrier. At. t he boundaries 

of the barrier the pressure and normal componellt s of the part ide veloc:it .Y 

are continuous. No condition is placed on the tangent ial part ide \'('locit y 

components immediately outside the barrier. Integrating Eqs . (1.16) awl 

(1.17), noting that p and U2 are the total fields in the barrier and using the 

boundary conditions at the barrier walls gives 

( 1.18) 

and 

[at] = iwpp [1 + (~)l (_iwpf 1]11 U2 dy. 
wPp - h 

(1.19) 

The barrier is both thin and absorbing. \Ve wish to capture both these 

features. Defining /'i,e = /'i,pO, Pe = Pp [1 + (~:J] and Ce = (Pe h'c) -/ . the 

effective wavenumber in the barrier is ke = Z. We assume that p and U2 \'ary 

slowly enough through the barrier to be approximated accmat ely by t he first 
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two terms of a Taylor series in the scaled thickw'ss \'ariabl(' k,Ii(!J l li) . Thi:-i 

assumes that the flow resistance is not so strong as to ca use the wawficld ill 

the barrier to very rapidly decay, We are t herefore able to relat e Eqs, (1.1 -1) 

and (1.15) to the porous barrier model by noting that 

1 jh d _ [at( x, h ,2 ) +a,(x.- h. z )] ) J...} " 
( 

. ) h P Y - + ( ( l / ) . 

-~WP 2 - h 2 
( l .ll) ) 

and 

1 jh d [\7at(x , h, 2).11, + \7at (x, - h. z).Ti] () (J... 1) '2 
- 2h - h U2 Y = 2 + t I . ( 1.2 1 ) 

Assuming that (keh)2 is small, we find that 

( 1.22) 

and 

Q - {3 = ip (p [1 + (~) 1 ) - 1 
kh P wPp 

( 1. 2J) 

Note that only (Q - (3) contains the flow resistance term. To est imate the 

sizes of these terms assume that /-i,p and pp are equal to the cOlnprcssibility 

J<i, and density p of the surrounding gas, so that ""pPpc2 = 1. This is not 

quite the case because Pp can be larger than p, aBel hI' can be the isot lH'l'llIal 

compressibility rather than the adiabatic compressibility /-i,. Nevertheless, if 

the barrier is to absorb the incident sound then ~ must be moderately p...; 

large. Morse and Ingard [77] suggest a value as high as 10 at 1000 H z. \Ve 

are therefore left with the following est imates. 
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0' + (3 = -irlkh , (1.2-1) 

and 

(-'" _ (3) - 1 __ khl). 
~ (1.:25) 

(NJ 

For kh small (0' + (3) is small because n < 1, but (n - (3) - I need nut be 

because, for effective sound absorption, ! > l. Moreover, I keh I = kit 1fE. 
Examining the approximation in Eqs. (1. 20) and (l. 21), we Ilot e t ha t : pro­

vided kh~/pw = 0(1) or equivalent ly h~/pc = 0( 1). then the elTor leading 

to the approximate equivalence between Eqs. ( 1.1-1) awl (1. 15). and Eq::.. 

(1.20) and (1.21) is O(kh) throughout. As we continlle with the calcula­

tion we shall find that some terms are proportional to (Q + (3) awl ra il be 

dropped, while other terms contain (0' - (3 )or (n - ,3 )- 1 and ('(I llIIot. \\'e 

could just set (0' + (3) to zero at this point, but, by carryi llg it t hrollgh the 

calculation the different roles of the barrier thicklless alld absorptioll 1H'(,(JIllt' 

clearer. Moreover, though we are assuming that (0 - (3) is Ilut small. it can 

be set to zero to recover the case of a rigid barrier. 

The reflection R and transmission T coefficients for the velocity poten­

tial using the boundary condition (1.3) are given in Rawlins [95. Eq.(38)]. 

Neglecting the (0' + (3), they are 

R(O) = sin 0 [sin 0 + (0' + (3)r l 
, ( 1.26) 

T(O) = -2{3 [sinO + (ex - mrl. ( 1. 27) 

We note that when 0' = -(3 and thu~ -2{3 ::::: (0 - L3 ), equations (1.26) 

and (1. 27) are identical to equation (38) of Rawlins [95]. The parallleter 
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(3 clearly controls transmission. For HOrIllal illCic\{'Il("('. \lS III).!, til!' pn'\"Illll:-. 

estimates r( ~) is approximately - (~) so that t lw barrier alJuw:-. weak 

transmission of sound. The coefficients have 110 poles 011 t he real () axis 

(0 < e < 71") . 
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Fig_ 2: The geometry of the barrier. The hatched regions are intended to 

suggest the presence of pores in an otherwise rigid material. In practice the 

pores are unlikely to be so regular. 

1.3 THE WIENER-HOPF PROBLEM 

We now proceed with the calculation of the diffraction by the slit. The 

Fourier transform over z and its inverse are defined) respectively) as 

0/' ( , ) _ 1 100 

( ) -i/-LZd 'l-'t x ) y ) {i - rn= IJt x) y ) z e z) 
v21f -00 

(1. 28) 

and 

IJt(X) y) z ) = ~ roo 1fJt (X) y) M) ei/-LZ dM 
v 21f J-oo 

(1.29) 

with identical definitions for the other potentials lJ i) IJr andlJ . The prob-

lem now becomes 
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( 1.30) 

where 

(1.32) 

The boundary conditions at y = 0 are 

( 1.33) 

for (-00 < x < 00) 

(:y +ika) [1fJi(X, 0, Ii) + 1fJr (X, 0, Ii) +1fJ(X ,O+,jI)] +ik)l/J(:I:,O- ,JI) = () , 

(1.34 ) 

(:y -ika) 1fJ(x, 0-, Ii) - ik{3 [1fJi(X, 0, Ii) + 1fJr(x , 0, II) + l/J (x, 0+, J-l)] = O. 

(1.35 ) 

for (-00 < x ::; -a) U (a ::; x < 00) alld 
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for (-a < x < a) . 

The solution to Eq. (1.30) , giving the incident wave 1/)" is 

e-
ijl Zo 

(1) [ / . ] 'lj;i(X, y, /-L) = - V2n . Ho ' V (x - XO )2 + (y - yo) 2 . 
27l'4'/, 

( 1.38) 

The reflected wave 'l/Jr has the same form wit h t he source poi lit repla(,cd 

by its reflected image source (xo, -yo, zo) and H6 1) (.) is the cylilldrical Hallkel 

function of order zero and of first kind. As we are illt er~t ed ill a situatioll 

where the source point is far from the slit. Accordillgly, we may IL'>C the 

asymptotic approximation to the Hankel fUllction , assulllillg that h 1'01 --. :x:. . 

to obtain 

(1.3U) 

( lAO) 

where Xo = TO cos eo and yo = TO sin eo (0 < eo < ~ ) and x = ,. cos e ami 

Iyl = T sin e. The possibility that, is near 0 can always be avoided. The 

term b(/-L) is given by 

b(/-L) = - . __ el (-yro- 4'). e-
ijlZO (;f. ' " 

V2T.4'/, 11',1'0 
(1.41) 

Note that by asking t hat Im, > 0, we have succceded only ill causillg the 

incident and reflected disturbance to be dampcd in t he negative x direction. 
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as 

We next define the Fourier tnmsforI ll pair 

and 

V;(v, y , /l) = ~ j= V; (x, y , Ii) e lV.'d.r , 
v27r - 00 

1 Joo V;(x,y,/l) = J2; -oc /fi (V , y, ll) f' - IVIdlJ 

(1. -12) 

( 1.-13) 

with identical definitions for the other wavcfield tenllS. \\"e split L-(v . f).ll) 

( 1...j -1 ) 

where 

(1.45 ) 

and 

( 1.40) 

In Eq. (1.45) the first (reading from left to right) set of limits accolll­

pany the plus sign and the second minus sign. In calculating the par­

tial transforms, Eq. (1.45), of V;i and V;r' Eqs. (1.39) and (1.40) caTe 

needs to be taken as Ixl -t 00. Accordingly: we sha ll assllme that l,.. ' , alld 

V;r are multiplied by H(x - a)e-E(x-a) for x > 0 and by H(J' + o) eol ' "I " 

for x < O. Later we shall let E -t O. T his (I<~vi('(~ allows liS to s()(' t uut 

the regions of analyticity. Because V;r is that for a rigid rat her t han a 

porous barrier, the wavefield V; will contain a transmitted term that be-

haves as e-i-y(xcosIJO)-E(x-a) for x > a, e-i'y(xcusOo) for -a < x < n. and 
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e-i",((X cos OO)+E(x+a) for x < -a. This fact will ciOllliIlat (' t he n~gi()IlS of all(\ ­

lyticity. The term 1/;+ (v , y, J.l) is regular for IIll(V) > [hllh ('os 00 ) - if ] a lld 

1/;- (v, y, J.l) for Im(v) < [Im(-y cos go) + iEJ. T he fUIlct iOIl /(1 (v. y . JI) is all ill­

tegral function . We shall end wit 11 two \ Viellcr-Hopf problclW'; (jill' wit II t 11(' 

common region [Im(-y cos go) - iEJ < Im(v) < [Illl b ('os 00) + i E] . 

Taking the Fourier transform over x of Eq. (1.31) and soh'i llg the re.'iuit illg 

differential equation, so that the radiation conditioll is satisfied. gi\'(~ 

1/;(v ,y,J.l) ( 1. -17) 

where 

(l.-HS) 

Transforming boundary conditions (1.34) to (1.37) , and llsing Eqs. (1.39) 

to (1.41) we get 

(1.49) 

( 1.50) 
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(LSI) 

d- + d- _ 
-d 'l/JI(V,O ,Il) = -, l/J 1(V ,O "1). 

Y (·Y 
(1.!J2) 

In Eqs. (1.49) and (1.50) the terlll Q goes wit h th!' I1PI )( '1' :-. ig ll cllid , j witll 

the lower sign. The term G(v) is given by 

G(v) = 1 { ei(V-')'cuSllo)a _ e-i(V--,wsou)a } . (1.53) 
y"5;ff [v - , cos eo] 

From Eq, (1.47) and using t he boundary cOllditiollS (1 .-19) to ( 1.52). \\'!, 

eliminate ddy 1jJ + and ddy 1jJ _ to get 

where 

eivafj+ (v , 0, /1) [1- ik(o: - ,8)] 

+e-ivGfj_ (v, 0, /1) [1- ik(o - ,8)] 

d-+ dy 'l/J 1 (1/ , 0, /1) + -jG(v)~h(/I) 
kb(/1) (0: - ,8) e'(V --' (US OU JIl 

+~~~--~-------
J27i=[v - (Tcoseo - it:)] 

kb(/1)(O: - ,8) e-i(v-')'cosllo)a 

v'27T [v - (T cos eo + it:)] 
- 0, 

Equation (1.54) is the Wiener-Hopf functional equatioll. 
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1.4 THE SOLUTION TO THE WIENER 

HOPF PROBLEM 

To solve Eq. (1.54), we make the following factorizRtiow;: 

and 

(1. 57) 

where L+(v) and K+(v) are regular for Im(v) > - 1m, alld L_ (v) alld 

K_(v) are regular for Im(v) < 1m,. Rawlins gives the exact factorizatioll of 

Eq. (1.57) in both [95] and [96] . The L±(O)are given by 

and 

/1 + cos X [ 1 j X 11 ] L+(I) = L_(-,) = --- exp -- -. -dll , 
2 271" - x Sill II 

(1.59) 

where sin X = -(Q-{3)k. 
"( 

Using Eqs. (1.56) and (1.57), we rewrite Eq.(1.54) as 

eillarj+ (v, 0, J.l) + e-illarj_ (v, 0, J.l) + iC( v )b(J.l) 

+ :y 'l/Jl(V, 0, J.l) [S+(v)S_(v)rl 

kb(J.l)(a - (3) ei
(II-"(cos(lo)a [ 1 1 1 

- v'21f [S+(v)S_(v)] [v - , cos 80] - [v - (,ros80 - iE)] 

kb(J.l)(a - (3) e- i (II-"(cos(lu)a [ 1 1 1 
+ v'21f[S+(v)S_(v)] [v - ,cos 80] - [v - (,eos80 + if )] 

- 0, (1.60) 
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where 

(1.61) 

With the help of Eqs. (1.44), (1.47) and (1.49) to (1.52), the unknown 

functions Al (v) and A2(v) are given by 

±2AI ,2(V) - eiva ['I/;+(v ,O+ ,J.L) - ~+(V , O- , J-l)] 

+e-iva ['I/; _(v, 0+, J.L) - ~_ (V , O- , 'l) ] + 2iC(v)b(p.) 

ik(a - (3) { ' [- - ] ± elVa 'I/;+ (V ,O+, ll ) + l1'+ (V ,O- . l l) , 
+e- iva [1ti_ (V ,OT. 1l ) + Uo _(V.O ·- .,, )] 

2ib(J-l) ei(v - -, cus Ou )o 

+~~-------------
J2;r [v - (T' ('os eo - it")] 

_ 2ibC'1) e- I(v-, cusOo)a } . 
(1.62) 

J2;r [v - (r ('os eo + iE)] 

The + sign is used with the subscript 1 and the - sign with the subscript 

2. As we indicated in our discussion of t he bOllndary ('ondit ions. t Cl'lIlS 

multiplied by (a + (3) are O(kh) (after the inverse transforms are taken) and 

are dropped, but terms containing (a - (3) , that appear in L±(v) , need 

not be small and are retained. Thus , using this approximation, Eq. (1.62) 

becomes 

By multiplying Eq. (1.60) by S+(v)e- iVa and using the general decolllpo­

sition theorem, we obtain 
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_ ie-i-ycusOoab(J.l) 
S+(v)'Tl+(V, O, J.l) + J7C[ [S+ (v) - 5+(r ('os6io)] (l.G·I) 

v27r v ·- , cos 00 ] 

kb(J.l)(a: - (3) (,- I/<"< "Ouu 
+U + (v) + V+ (v) + -:::=---------=.:---.:....:.------.:.-----­

V27rS- (r cos 6io - if) [[I - (r ("os6iu - I: )] 
-ie-h cos Ooa S+ (r cos 00 )b(J.l) e - Tim d -:-

J7C [ 0 ] - U_(v) - V_(v) - -5 ( ) -, /P l (v. O. ji) 
V 27r V - , cos 0 - V (y 

+ ie-i(2v- "Ycosllo)aS+bcosOo)b(J.l) + I-.:b(jl)(O - (3) e-I,cusOua 

V27r [v - ,cosOo] V27r5_(// ) [v - i('OSOo] 

kb(J.l)(a - (3) e-i-ycosOoa [ 1 1 1 
- V27r [v - bcosOo-iE)] S_(v) - 5 _(tcos6io -i=) 

kb(J-L)(a - (3 ) e- i (2v--ycusllo)a [Ill 
- $S_(v) [v-,r.osOo]- [v-(f('osOo- i:)] . 

The functions U±(v) and V±(v) are the decomposition of 

( l.G5) 

and 

_ie- i (2v--y cos Oo)ab(J.l) 
J7C[ ] [S+(v) - s+(rcoseo)] = V (v). (1.66) 

V 27r v - , cos eo 

Similarly, multiplying Eq. (1.60) by S_ (v )eivu 
\ we obtain 
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kb(f-L)(a - (3) e hcusOoa [ 1 1] 
+ ~[v -bcosOo-iE)l 5+(v) - 51(-I~)S(}lJ + / ':) 
+ kb(f-L) (a - (3) ei

(2v-"Y
cusOo)a [ 1 _ 1 ]. 

~5+(v) [v - !,cosOu] [v - (-)('osf)ll - IE)] 

The functions P ± (v) and Q ± (v) arc the dCCOIIl posi t iOIl of 

( 1. (j~ ) 

and 
_iei (2v-"Y cos (}o)ab(f-L) 
V2n [5_(v) - 5_bcosf)o)] = (j(v). (1.6U) 

271" [v - , cos 00] 

Let it (v) define a function equal to both sides of Eq. (1.64). T he left hand 

side is regular for Im(v) > 1mb cos 00 - if) and the right hand silk is regular 

for Im(v) < Im(tcosOo). Therefore, by analyt ic cont inuat ioll. the dehIlitioIl 

of it (v) can be extended throughout the complex v planc. The forlll uf 

it(v) is ascertained by examining the asymptotic bchavior of the terms ill 

Eq. (l.64) as Ivl -t 00. We note that IL±(v)1 rv 0(1) as Ivl -t x awl with 

the help of the edge conditions, we find that fj I (/J , n. 1/ ) a lld fj (II. fl . II) Illlbt 
- I 

be atmost of 0(lvI2) as Ivl -t -Xl. Usillg the (!x t(~lld(·d [onll of Li(J1I\·ill("~ 

theorem, it can be seen that is (v) can only be a (,Ollstallt equal t () zew. 

Hence, from Eq. (1.64), we obtain 

_* 1 jOO+iC J(+(()fj~(( , 0 , f-L)e - 21(a 
5+(v)7]+(v, 0, f-L) + 271"i -oo+ic (( _ v)L_ (() d( 

ie-i')' cos (}oab(f-L )5+ (, cos ( 0 ) 

~ [v - !' cos 00 ] 

kb(f-L)(a - (3) e-hcuslloa 
+~~----~~--~--------------

V2n5_ (t cos 00 - ic:) [v - (t cos 00 - if )] 
- 0, (1. 70) 

where 
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_* _ ie ':f ..., cusOoaV(,.l) 

'T7±(1I,0,/-L) = 'T7±(1I,0,/-L) ± '2=[ () ] ' (1.71) 
V.(.7f' II - 'T' (·os 0 

Similarly, from the equality of both sides of Eq. (1.67) in the :st rip 

[Im(-ycos{)o)] < Im(lI) < [Im(-ycos{)o) + iE], we have 

S_(II)r;~ (II , O , /-L) _ kb(/-L)(O: - j3 ) e i-y cus Ooa (1. 72) 
..;hS+(-ycos{)o + if ) [II - heos{)o + iE)] 

_~ JOO+id K-(()r;~((, 0, /-L)e 2i(a d( 

2m -oo+id (( - II)L+(() 
- iei-r cos Ooab(/-L) S_ ('Y cos ()o) 

J27r [II - 'Y cos {)o] 

1.5 THE DIFFRACTED WAVEFIELD 

The unknown functions fj+ and fj _ have been determined by using t he pro­

cedure discussed by Noble [82]. Since the terms multiplied by (0: + j3 ) are 

O(kh) and are dropped, but terms containing (a - j3) (that appear in L(II) 

and L±(II) need not be small and are retained. t-.loreover , the procedure 

includes asymptotically evaluating the integrals appearing in Eqs. ( l. 70) and 

(1.72) for large (a, where ( scales with k. That is, we have taken ka to be 

large. With these approximations the functions as given by Eqs. (1.55) are 

given by 

r;±(II, 0, /-L) = - v;}/-L) [G1,2 (±II) + C ,,2(') )T(±II)]. (1 ,73) 
27f'S±(II) 

where the subscript 1 accompanies the upper sign and the subscript 2 the 

lower. The C1,2 are 
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where 

G (II) = P (lI)e'fhcosOoa - R {1I) e±1/ cus 00 11 , 1,2 1,2 1,2 

S+(II) - S±b COS eo) 
(II 1=, cos eo) 

ik(a -(3) 

R ()
_ Eo[Wo( - ib±,coseo)2a)-Wo(-ib+II)2a)] 

12 II -, 27ri(v 1= , cos eo) , 

and 

1 
T(II) = 'L ( ) Eov0wo (-i h + v) 20). 

27rt +' 

The definition of Wo (i ) is 

( 1.75) 

( 1. 76) 

( 1. 77) 

( I. 7~) 

(l.79) 

where jj is real and positive, and erf c(i) is the complementary error 

function. It is easily related to the Fresnel integral. 

38 



1.6 FAR FIELD ASYMPTOTIC APPROXI­

MATIONS TO THE DIFFRACTED FIELD 

Substitutions of Eqs. (1.73) in Eq. (1.63) yields 

where the first subscript corresponds to y > 0 and the secolld to y < o. 
and therefore the wavefield 'IjJ(x, y, J-L). We divide l/J as 'IjJ = 'l/J I (x , y, 11) + 

'ljJ2(x , y, J-L). Each part is given by 

S_ (v)S+(-y cos Bo + iE ) [v - (-y cos Bo + iE)] 
ik(o: - (3) ei(v--ycusOo)a } 

(1. 82) 

and 

( 1.83) 
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The first term 1/J1 (x, y, J.L) represents the field diffract ('d h.v tIl(' (·dg(·:-, at 

x = ±a, plus the geometrical wavefield . Note that tlwre is one pole abm'(' tilt' 

contour and a second below it. These terms are the tral1l:iIllittcd wavdield . 

Once these pole contributions are captured we can let € -+ O. The second 

term 1/J2(x, y, 11) gives the interaction of one edge with the other. 

The integrals appearing in Eqs. (1.82) alld (1.83) call 1)(' ( ~ \ '(dll(\t('d 

asymptotically by using the method of steepest cieSC<!llts . Hanis [38] sl!mvs 

that, beyond the Fresnel distance, k(2a)2 / 27r, the exponential phase terms 

in the braces need not be considered and only the exponent.ial with x and 

Iyl needs to be considered in making the steepest descents calculation. III 

other words we evaluate the diffracted wavefield at points sllffi('i(~lltl~ ' dista nt 

from the slit that it has evolved into a cylindrical wavefield (a spheroidal 

wavefield after the inversion in 11) with a radiation pattern. For that. we put 

x = T cos e, y = T sin e and deform t.he contour by the Somlllerfeld t ransfor­

mation lJ = - , cos( r). Hence, for large ,1', the diffracted wavefields are 

_ isineb(J.L) . ' I(-,r - ") 1/J 1 (x, y, J.L) - s 9 n. ( y ) ..j2iFiT F l ( - ( os (}) e 4 . 

27r,T 

1/J2(X,Y,I1) = sgn(y)it~) F2(-COse)eihr-~) . 
27r,T 

The radiation patterns are given by 

F1 ( - cos e) 
_ {s+(,coseo)e-i'Y(CUSo+cuSoo)a 

s + ( - , cos e) ( cos e + cos eo) 
s_ (, cos eo)ei'Y(coso+cusOo)a 

s + h cos e) ( cos e + cos eo) 
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i k( n - (J)c- q ( .. "s O-l .. " s Ou )1l 

+------~--~~--------------­
S+(-,cost9)(cost9 + cos (;Io)S- h cos (:10) 

ik(o: - fJ)e - h(cusO +cus Oo )a } . 

- S - (- , cos (;I)(<:OS (;I + ('OS 00 )5+ h ('os 0(1) . (1. ~{)) 

- {[R1 (-, cos (;I) e-i')'cusOoa - C
1 
h )1'( -, ('os 0)] ('~I .I (lI~O<l ) 

5 -t- - ('os () 

_ [R2(rcosO)ehCOs{}oa _ C2h)1'(rcosO)] e:iCUSOO) }1.87) 
5_ - ('os(;l 

Next we take the inverse transform over J1 USi llg Eqs. (1.8-1) alld (1 .85) 

in Eq. (1.29) i.e. 

i sin (;I JOO e , [; (r -t- ru H /, (z-zu)j 

ad2 (x,y, Z) = sgn(y)8 2;;;::;;:. F2(-cos(}) dJ1. 
7r V rro -00 , 

(1.89) 

In order to solve the integrals appearing in Eqs. (1.88) and (1.89) we 

introduce r+ro = r12sin(}12 and z - Zo = r12 COSOI 2. with 0 < 012 < 7r. Using 

the transformation J.L = kCOS(T), Eqs.(1.88) and (1.89) are approxilllatc'd as 

( ) ( )
isin(}F1(-kcos(}sint912) i(kr _!!:) 

a d1 x Y z = sgn y e 12 4 
, , 47rv2rrOr127rk ' 

( 1.90) 

(1.91 ) 

where F1 (- k cos 0 sin 012) and F2( -k cos () sin (}1 2) arc given by Eqs. (1.86) 

and (1.87) , respectively. 
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1.7 DISCUSSION 

We are concerned with understanding how sucC'Pss fllll.y t iH! harrier 1'('<111(,(':' 

the sound transmission despite the presence of the slit. ~Iore()ver, we wallt 

to understand how the absorption of the barrier llIak(!s it s priliellce [('it . To 

do so we imagine that source lif.B on t he positin.! ,I) - axis far frolll t iH! slit 

and that the reflected sound is measured at a point on tlw ,I) - axis . also far 

from the slit. We take b(J.1) = 1 and J.1 = 0, so that I = k. ill Eqs. (1.8-1) 

and (1.85). Moreover we set go = ~. The power both carried by the rdlected 

wavefield and by wavefield diffracted from the slit is thell calculated ill the 

far field. The term resulting from their interfercllce is thell cxtrClct(·d . Thi:, 

term is the power removed from the reflected WCI\·di(!ld hy that Sl'at t (·n·d h.\· 

and transmitted through the slit., and by that absorbcd b.Y' the harrit'r. It is 

then normalized by dividing by the reflect.ed intellsity till1~ twice the widt h 

of the slit. This quantity is given by 

r(ka, ex - f3) = G = -k1 1m {[Fj(O) + kF2(O)] [1 + (0 - in]} . 
4a 2~a 

( 1.!J:2) 

The term FI (0) is given by 

F1(O) = [1 + ~~~ f3) ] - {I + [1 ~~o-!~) l} , (1. 93) 

and F2(0) is given by 

ei(2ka-~ ) 1 
k F2 (0) = - 3 2 . 

v'21f(2ka):i [L+(k)] [1 + (a - f3 )] 
( 1.94) 

The interesting behavior is largely confined to the second term in Eq. 

(1.92). Setting 
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1 
F (ka, Q - (3) = 2ka 1m {kF2(O) [1 + (0 - (3) ]} . ( U)5) 

Fig. 3. shows a plot of F against ka, for values of (0 - i3) fWIlI () t () 1. Tht' 

increasing effect ofthe absorption is apparent.. The forlll kF2 (O) sllggests that 

the interaction between the edges is affected more st rongly by the properties 

of the barrier than are singly diffracted rays . However, because 2ka is large 

in our approximation, the interaction term is always smail . 

Note that the case (Q - (3) = 0 corresponds to a rigid barrier. III this 

. £ r(ka o:-{3) d 1 . . . case our expresslOn or 4a correspon s to t Ie trallSllllSSIOII n()ss-s( ~('t lOll 

given by Karp and Keller [56 , Eq .(16)]' namely, 

r(ka, Q - (3) sin(2ka - ~) 
---'------'- = 1 - 5 

4a J27i=(2ka) 'i 
( 1. 96) 

It is of interest to note how the parameters (0 ± J) ellt er the cakulat iOIl . 

The parameter (Q + (3) represents essent ially the t hickllc:";s of t he barrier 

and appears in the calculation separated from the other terms , while (0 -

(3) represents the absorption of the barrier and is intimately illcluded ill 

the calculation through its role in the terms L± and L . We believe that 

the Rawlins boundary condition more adequately represents the llIechallical 

response of a thin absorbing barrier than would a boundary conditioll with 

(3 = o. 
While we have not explored our expressions in any cOlllpletellcss, we con­

jecture that they are more accurate than those calclliated llsillg the gCOIllet­

rical theory of diffraction and hence that they perlllit llS to approxilllat e tIl(' 

wavefields both near the slit and near the barrier it self. 
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Figure 3 A three_dimensional graph of F(ka,ex - 13) against ka, for values bet",,,,,n 0.5 

and 10, and agai nst (ex _ 13) for values froro 0 to l.0. The (ex - 13) ax is is labeled "b. 



Chapter 2 

SCATTERING OF A 

SPHERICAL SOUND WAVE 

BY A BI-IMPEDANT HALF 

PLANE 

An exact solution for the problem of diffraction of a spherical sound wayc 

by an absorbent half plane is obtained in this chapter. The two faces of 

the half plane have different impedance boundary conditions. The problem 

which is solved is a mathematical model for a noise barrier whose surface 

is treated with two different acoustically absorbcnt Illaterials. The problem 

is formulated into a matrix W. H. functional equation for which no general 

method of solution has yet been found. However, studies have been made for 

restricted classes of these equations, and contents of this chapter show that 

an exact solution is available in the present casc. The cxact solution is found 
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using a technique whereby the W. H. fUllctiollal equat iOll is ("()lIVI'rt(~d illto 

a scalar Hilbert problem. Comparisolls arc 11Iad( ~ wit It exist illg s()lllt iOlls for 

barriers that have a rigid half plane. 

2.1 PROBLEM DESCRIPTION 

Consider a small amplitude sound wave diffracted by the half plalle x < 

0, y = O. The half plane is assumed to be infinitely thin awl rigid wit II it s 

surfaces treated with acoustically absorbent material:; (s ee Fig...!). 011 tit(! 

upper ( x ~ 0, y = 0+) and the lower ( x < 0, y = 0- ) surfaccs, respectively. 

we have the following absorbing .boundary conditions: 

0, (2.1 ) 

Here p is the acoustic pressure, Un is the normal component of t he per­

turbation velocity at a point on the surface of the half plane and z) (Z2 ) is the 

acoustic impedance of the upper(lower) surface. The perturbation velo(,ity u 

of the irrotational sound waves can be expressed in terllls of the total velocity 

potential ",(x, y, z ) by u = grad ",. The resulting pressure in the sound field 

is given by p = iwpo"'(x, y, z ) where Po is the density of the initially undis­

turbed ambient medium. Cartesian coordinates (x , y , z) are chosen so that 

a point source is located at (xo, Yo, zo), Yo > O. The total velocity putential 

",(x, y, z ) satisfies the wave equation 
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The boundary conditions satisfied by 7/ on x ::; 0, y = o± are 

(:y+ik,81)7)( X, 0+ ,Z ) 0, x< O, 

(:y - ik,82)7)(X,0-, Z) = 0, x< O, 

(2.2) 

(2. 3) 

where ,81(= ~) and ,82(= ~) are the specific admittances of the ab-
Zl ~ 

sorbent surfa~~, and for acoustic absorption Re(;J j) > 0, Re(6:2 ) > 0. 

("'Yo") """"'=:---.;;­
I 
I 

I 
I 
I 
I 
I 

I (t-+ ikP,) n - 0 : , 

I 
I 

I 
1 0• 1 - 0• 

----- ..... -. -. - .-. -. -':"1'1' ~-'-'--r----
(Likp.)aoO " 10 ay • I 

I I 
I I 
, I 
I I 
I I 
I I 

j / 

I 
, I 
II. 

I 

I 
I 

I 

I. 

( .... y ... ) "':', -"------. 
11II&< 

Fig. 4: The geometry of the problem. 

In order to ensure the unique solution of the boundary value problem, we 

also require that the field be continuous and that the edge does not radiate 

any energy; also that the field should be radiating outwards at infinity. T he 
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condit ion that t he edge does not hehave like a sourcc. alld t lwr('fur(' radial(':; 

energy, requires that the field near the edgc beha\'( ~ like 

0(1), 
- I 

grad11 = 0(1' 2" ). ( :2. ·1 ) 

as r 

The behavior of the edge field as given in thc abovc cxpr~s ioll is different 

to that given in Rawlins [94] where 1.611 -; (x.) , .62 = O. We have h(~rt, (~xdlldl'd 

the latter case and also 1.621-; 00,.6 1 = 0, the rea::;011 being that om :o;() lllti()n 

obtained is not uniformly continuous in either the lilllit 1' )11 -. x or l, i21 -. 
00. 

2.2 SOLUTION OF THE PROBLEM 

The spatial Fourier transform over z and its inverse are defined as 

X(x , y, j.l) = 1: 1J( X, y, z) e-ik/IZ dz, (2.5) 

(2.(j ) 

In above equations, the transform parameter is t akcn cOllvenicnt ly to be 

kj.l, j.l being non-dimensional. The decomposition (2.5) is common ill ot her 

field theories as well, for example, Fourier Optics [62 , 78] . Transforllling Eq. 

(2.2) and the boundary conditions (2.3) by using Eq.(2 .5) , we obtain 

[ 
[j2 [)2 k2 \2] ( ) _ -ikJlzOJ:( . )J:( ) ox2 + oy2 + /\ X X, y, j.l - e u x - Xo u y - Yo , (2 .7) 
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(:2.~ ) 

(2.0) 

where 

(2 .10) 

Define>. to be that branch which reduces to 1 when 11 = 0 and -i(112-1)~ 

when 1111 > 1. This is feasible as long as 11 is not near ± 1 which call be 

arranged by adjusting the 11 contour first. In fact ± 1 are t he branch poillts 

associated with the function>. = (1 - J.l.2 )~ and we tHk(~ the brallch cut frolll 

+1 just below the positive real axis to +00 and the cut from -1 just above 

the negative real axis to -00. Here the integration path in the J.I. plane is the 

real axis, indented above any poles on the positive real axis and below on 

the negative half (Fig.5). 
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Fig. 5: 

We next define the spatial Fourier transform pair on x as 

(2.11 ) 

(2.12) 

The transform (2.11) and its inverse (2.12) exist provided - Im(kA) < 

T < Im(k>'); this follows from the radiation condition. 

Applying the transform (2.11) to Eq. (2.7) gives 

[:2 + '!92] X(I/, Y, J1) = eivxO-ikjlz08(y - Yo) , Yo > 0, (2.13) 

where {) = jk2A2 _1/2 is defined on the cut shl't,t for which hn(,) ) > () 

when IIm(I/) 1 < Im(kA). 
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A solution of Eq. (2. 13) for 1/ ly ing in t he s t rip Il lll( /I ) I < Irll ( kA). illl d 

which decays as iyi ~ 00 , is given by 

e i(Vxo - ku zo+ ,Jl y - yo l) 

X(I/, y , J-L) = A3(I/ )ei
'9
y + ------

2i19 
y > 0 , (2.14) 

(2. 15 ) 

where A3(1/) and A4(1/) are unkllown functiolls to he cicterlllilll'd. Lt ,t 

\lJt(l/) = fo oo [(:y - ikf32 ) X(X, O- ,P) ] eIVId.r. (2. 1!J ) 

In Eqs. (2.16) to (2.19), <1>1,2 (1/) are analytic for 1111(1/ ) < IIll(k A) , alld 

Wi,2(1/ ) are analytic for Im(//) > - Im(k>') . T hroughout t his chapter a su­

perscript (or subscript) plus or minus attached to allY function will denote 

that the function is analytic in Im(//) > - Im(k>.) or Illl(//) < Illl(k>') . re­

spectively. After using Eqs. (2.8) , (2. 9) , (2. 11) , (2.1-1) HIH! (2.15) ill tlH' Eqs. 

(2.16) to (2. 19) , we get 

e i(vxo - k/ lZo + ,1yo) 

<1>1(1/) = A3(1/) - A4(1/) + --2-i l-9-- (2.20) 
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(2.2 1 ) 

It is now straightforward to eliminate A3(V) and A4(V) fW1l1 Eqs .. (2.20) 

to (2.23) and obtain the matrix \V. H. equation 

which holds in the strip IIm(v)1 < Im(k>.) , with 

(19 + J.:;J I )/19 1 
- (19 + J.:{J2)/lj 

(2.24) 

(.) .) r:: ) _._0 

(2.26) 

(2 .27) 

Expression (2.24) constitutes a coupled systelll of W. H. equations. 

For the solution of expression (2.23) we need to factorize the Illatrix func­

tion K(v). This is not a trivial operation and it is not always obviolls that 
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one can in fact factorize t he matrix. T he factorizat iOIl of t he Ill at l' ix h' ( JI ) i:-i 

given in Appendix A , i.e., 

K(v) = U(v)L- I(v) , (2.28) 

where 

1 

Ul1 =- exp - Q(II)dll. 
[
(VkA+V+JkNl(+))(JkA+V+ JkNl(-))] 2 [11// ] 
(VkA +V+ J kN2 (+)) (JkA+ V+ JkN'2(-)) 2 x 

(2.30) 

( ~ .31 ) 

U12 = VkA + v Ul1(v) , (2.32) 

(2.33) 

Q(u) 
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cos-1 (J (,\2 - f3i) (,\) - 1) COS- 1 ( - J (,\2 -l3n (,\) - 1) 
+ + ---;--'----;====~ 

2rr (U - kJ(,\2 - f3i)) 2rr (u + kJ(,\2 - /3n) 
kf3 1 COS- 1 (Ul k'\) [1 I 
2rrVk2,\2 - u2 

U + kJ(,\2 - l'i) + Il - kJ('\ '2 - .in 
kf32cos-1(ulk'\) [ 1 + 1 ] .(2.3.t) 

2rr Vk2,\2 - u2 u + kJ (,\2 - f3~) U - kJ ()..2 - .J~) 

and elements of U(v);uij ,i,j = 1,2 and L(v) arc allalytic ill IIll(v) > 

- Im(k)") and Im(v) < Im(k'\), respectively. The clemellts of L(v) ill terms 

of U11 (v) and U21 (v) are given by 

(2.;)(j ) 

l (v) = U11 Vk)" + v _ U21 Vk)" + v 
12 i('!9 + kf3 1) i(19 + kfJ2 ) , 

(2.37) 

11u11 1~U'21 
l 21(V) = (19 -I- kf3

1
) - (19 + k(32 )' (2.;)~) 

(2.39) 

Now substituting Eq. (2.28) into Eq. (2.24) and thell carryillg out tht' 

matrix multiplication in the resulting expressioll we get 
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(Det U)-1 [U22qJt -- 'U I2W:;] - G~ (2 .·10) 

- (Det £)-1 [l22<1>1 - lI2<1> 2" ] + Ci, 

(Det U)-1 [-U21qJ t + UllqJr]- GI (2.-1 1) 

= (Det£) - 1 [- 121<1>1+111<1>2] +C2, 

In Eqs. (2.40) and (2.41 ) 

G1 (v) (Det UrI [u22 (k ,B l - 19) + Ul1(k;r
2 
+ I))] [ (' 1 ( /lJU -;:~:CI' 1J!JIJ ' ] 

Gi + G1, (2,-12) 

[ 

ei(IIXO-k/lZO+liYO)] 

G2(v) - (Det U)-l [-U21 (k,Bl -19) - ull(k,B2 + l~)] 2,) 

- Gt + G2", (2.43) 

(2.44) 

(2.45) 

(2,46) 
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1 jOO'fiTI G2 (t ) 
G~ (v) = ±-. --dt, 

2m. -OO'fiTI t - v 
() < T} < IIIl(k>.) . (2.-17) 

The representations (2.46) alld (2.47) with tl10. Ilpper (low!'r) ~lg11 an' 

valid when Im(v) > -T l(Im(v) < Td alld defi lle GT'2(v) (G1.Av)) a~ Hlla lytiC' 

functions in Im(v) > -T l(I111(V) < Tl)' We lIote that ill the lilllitillg ca~e of 

71 = Im(k>.) = 0 the above integrands have all integrable sillgularity at 

t = - k>'. This follows from (A 47) of Appendix A, which gives 

Standard asymptotic analysis in their regions of regularity also shows that 

(2.48) 

Before proceeding further wit h Eqs. (2.40) alld (2.-1 1). it is lll 'C('Ssar.\' to 

know how the various quantities behave as Ivl -t x . Tlw edgf' ('ollditioll (2 .-1) 

means that the transformed functions satisfy the followillg growt h c..'it iIlIc-\.t(!.'i 

as Ivl -t 00: 

-I 

- 0(V2), 

- '1 

<pi(V) = 0(v 2 ) for IIIl(V) < IIIl(k>').lvl -. x, : 

wt (v) = O(v -'/ ) for hll(V) > IIIl(k>') .l v l -. 'X.. 

(2.-19) 

Using the asymptotic estimates (2.49) and (A45) and (A4G) of Appendix A 

we find that: 

For Im(v) > - Im(k>.) as Ivl -t 00, 
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(Det [f)-I \lI+ -1 

U22 1 0(1/ 2 ) , 

c+ 1 = 0(1/ - 1 ), 

(Det [f) - I U21 \lit = 0(1/- 1 ), 

For Im(l/) < Im(k)') as II/I -t 00, 

(Det L)-1 l22<P1' 

C1' 

(Det L)-1 l21<P1' 

0(1), 

- 1 

- 0(1/ 2 ) , 

(Det [f) - I 
- 1 

1L121l'; = O(I/T). (2 .50) 

C; = 0(1/ - 1), 

(Det [f) - I U11 1l' ; = 0(1/ - 1) . 

(2.51 ) 

C'2 = 0(1/- 1
), 

(Det L) - 1 lll<P'2 = 0(1/- 1
) . 

The results (2.50) and (2.51) show that the left side and right side of 

the Eq. (2.41) are analytic and asymptotic to 0(1) as II/I -t ex:. in Im(l/) > 

- Im(k)') and Im(l/) < Im(k),), respectively. Similarly the left side of Eq. 

(2.40) is analytic and asymptotic to 0(1) in Im(l/) > - Im(I.:),) a:-; II/I ~ x . 

whereas the right side is analytic and asymptoti(' to 0(1) as I1II ~ A.. ill 

Im( 1/) < Im( k)'). Thus, by virtue of Liouville's theorem, the allalyt ic fun('t iOll 

which is a continuation of both sides of these equations in the entire v plane 

is a constant; the constant being zero. Hence 

or 

(2.52) 
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.T. + - c+ c+ '1'2 - 1 U2 1 + 2 11 2'2 ' ( .) r: 'J) _. d0 

The expressions (2 .52) and (2.53) in conjllll('t iOIl wit h till' ('x pn 'ss iolls 

(2 .22) and (2.23) yield explici t expressiolls for A:l( // ) a1l(1 A I( I/) . L"sillg th(· 

resulting expressions in (2.14) and (2.15) and thell taking Fourier inn~rs iolJ 

over x, we have 

( 0) - _ -i IlX- iI9Yd 1 U'2 1 2 1122 1 j OO + i T { C+ + G'+ } 
XX, y < , /-L - e 1/ . r . 

21f - oo +iT - ~ ( ,) + /.. / J'2 ) 
(2 .55) 

- Im(k'x) < -71 < 7 < Im(k'x ). 

2.3 ASYMPTOTIC EXPRESSION S FOR THE 

FAR FIELD 

For an approximate solution of Eqs. (2.54) and (2. 55) we first consider 

Ct,2(1/) as given by Eqs. (2.46) and (2.47) : Let k,X be real ; thell 71 = 0 

and the integration path along the real axis is illciellted belo\\' the poillt 

t = 1/ . We note that the integrand has a saddle poillt at ~ = Bu af(( ~ r Pllltillg 
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Xo = TO C:OS()O, Yo = TOsinO() , O < 00 < 7r , t = k)"('Os~. () < n(,~ < 71. T hl' ill\('­

gration path is now deformed into the stcep( ~s t e1 I'SC'C' llt path ."(!llI) cl( '~CT ilJ( ·d 

by Re[cos(~ - ()o)] = 1, Im[c:os(~ - ()o)] 2:: O. In the ddorIlIatic)!l the pol(: at 

k)"cos~ = v is intercepted if v < k)..c:os()o . Thus , for k)..,.o --+ x, \\'e havc 

xH [k)., cos()o - v] ei(vxo+t9YO-kj.lzo), (2.56) 

e-ikj.lzo [,!f,7r i(kATO -.!!: ) 
- --e 4 47ri k)..To 

x [({31 - Asin()o)u21(kACOS()o) + (a'2 + ).. sin ()u) Uld,L\c-OS Ou)] 
[Det U(kACOS()o)] (A COS()O - vi I,:) 

(k{31 -19 )U21(V) + (k{32 + 19)Ull(V) 
219 [Det U(v)] 

xH[kACOS()o - v] ei (IIXO+19YO - kj.lzo) , (2 .57) 

where H(Xl) = 1 for X l > 0, H(Xl) = 0 for Xl < O. The result is \'edid fur 

kATO - 00, - k)" < v < kA; and the second tcrms arise from the res idue 

contributions. After inserting Eqs. (2.56) and (2 .57) into Eqs. (2 .54) ami 

(2.55) we decompose the total field 

x(X, y, 11) = XD(x, y , {L) + Xc .. \ (x . !J·IL) . (2.58) 

where 

(2.59) 

58 



((31 - ,\ sin fJo) 1l :.d k'\(,osU())1I1dv) 

+ ((3.2 + '\sin(}u) UI2(k'\('os(}()) 1I 1dIJ ) 

- (13 1 - ,\ sin (}()) 1I '2 1(k'\('os OO )1I1 "2 (I I) 

- (B'2 + ,\ sill O()) l/ldk.\(,oS (}II)1I1~(I /) 

[Del U(k,\cos(}o)('\('os(}o - u/ k)i (t} + k .1 1)r 1 

x~--~------~--------~~----~~ 

2rr 

(2.60) 

j

OO+iT 
X e -ivx-ifJy du 

-OO+iT 

(13 1 - ,\ sin fJo) U2 2( k,\ ('os ()O)1I21 (u) 

+ (132 + ,\ sin t10) ul '2 (k'\cosBo)u ;21 (u) 

- (131 - '\sinOo)u21(k'\cosOO)U22 (U) 

- (132 + ,\ sin 00 ) U II (k'\ cos 00 ) U2 2 (u) 

[Det U(k>' cos 00 )(>' cos 00 -- u/k)( - i)(19 + kJ'2)r l 

x . 
2rr . 

XCA(X, y > 0, 11-) = e-;;lZO Hal) [k,\V(x - xo)'2 + (y - Yo)"2] (2.01 ) 

e-ikp zo j OO+iT (k13 19) 
+ 2 . k13 1 

- 9 { H [k .'\ ('Os 00 - v 1 - I} 
rr -oo-t lT I + 1 

e- iV(x- LO) + Il}(Y+ YlJ ) 

x duo 
2i19 

e-ikpzo jOO+iT e- iv(x-xo)+i ,1(yu- y) 

XCA (x, y < 0,11- ) = H [k'\ cos eo - u] . duo 
27r -OO+iT 2219 

(2.G2) 

The integrals appearing in Eqs.(2 .59) and (2.60) call be soh 'eel aSylllp­

totically by using the saddle point method. For that we substitllt(!.r = 
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r cos O, y = rsinO, - 7r < 0 < 7r ; V = k>' ('os ~ , 0 < n(' ~ < 7r , tliPIl til(' illt('p;ra­

tion has a saddle point at ~ = 7r - 0 awl ~ = 7r + e, respccti\'('ly. 1l( ~ JII'l' . fm 

large k>.r 

where 

elf exp [~ fk>':~~O~ lJo Q (u )du 1 
2v'27rk>' (cos 0 + cos ( 0 ) cos (00 /2 ) 

(2 .G-1) 

I 

x IsinOI [1>' Sin BI - (J'2 ] 2 

{(>. sin B + (3 l) (>. sin B - (32 )} ~ I>' sill BI + "1 
I 

[

( ~sin(O/2) +~) ( j21sill (B / 2) + J~) ] 1 
X ( ~ sin (O /2) + JN2( +)) ( j21 sin (e /2) + IN').l - )) 
X{({31 - >'sinO) (sin(O/2) + cos(Oo /2 )) 

I 

X [( ~ cos(Oo/2) + ~) ( j21 cos(Oo /2 ) + ~)] 2 . 
. (~cos(Oo/2) + JNI (+)) (~cos(Oo/2) + ~) 
+ {({32 + >. sin ( 0 ) (- sin(O /2) + cos(Oo/2))} 

I 

[

( ~cos(Oo/2) +~) (~cos (Oo/2 ) + ~)1 2 
X ( ~ cos(Oo/2) + JN2( +)) ( ~ cos (Oo/2) + /~d -)) }, 

k>.r - 00, k>.ro - 00, cos 0 + cos 00 =I- O. 

In order to solve t he integrals in Eqs .. (2.61) alld (2. 62) , we Pllt .r - In = 

r2cos02, Y+Yo = r2 sin02,v = k>'cos~, 0 < O2 < 7r ; ill Eq. (2.61) awl ill Eq. 

(2.62) let x - Xo = rl COSOI, y - Yo = rl sinOl, v = k>'cos~ , 0 < OJ < 7r and 

deform the path of integration into S (7r - ( 2 ) and S (7r - 0 l) , respect ivcly. 

Hence, for large k>'rl and k>' r2, we obtain 
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7]cA(rcosfJ,rsinfJ,J-L) rv 

o < fJ < Tr, (
.) I: -) _ .u;) 

Now taking the inverse Fourier transform of Eqs. (2 .63) ,(2 .65) and (2.66) 

over z we get 

_ e -!i1l' {;£~ 100 eik>'(r+ro)+ik/l(z -zo) D(fJ. fJu, 11) 
7]D(X, y, z) - -- -- .J>.. dfL· -7T < () < 7T . 

4Tr 2TrrOr -00 >. 
(2.G7 ) 

7]CA(X,y,Z ) 

-1(' 
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The integrals appearing in Eqs. (2.67), (2.68) awl (2.60) are solved b.v 

following the same method of solution as ill Eqs. (2.60) to (2.62) alld t ilt' 

resulting expression is given by 

where 

17D(X, y, z) 

17(X, y, z) = 17D(X, y, z) + 17cA(x, y, z), 

-3i1f' 
e-4- ksin()12 ( 1) 

---D((), ()o , ()1 2)Ho (krd , 
21frro 4 

(2.70) 

(2.71 ) 

e -!i1f {;;E (I) . e -!'1f (;;S. ( 1) 
-- Ho (hl2d + -- --Ho (k " L!2) 

4 21frl2l 4 271"'122 

(2 .72) 

[
((31 - sin ()1 22 sin ()2)] . 

x ((3 . () . ()) H[SlIl() 122(COS02 + cos Ou) - 1]. 
1 + sm 22 sm 2 

° < () < 1f , 

17cA (x, y, z) 
e -!i1f {;;E" (1). . 

"oJ --- Ho (krl2l )H[sll1()121( COSO I + ('OS ()o)]. 
4 21f1'121 

-1f < () < 0, (2.73) 

and 

2 (r + ro)2 + (z - ZO) 2, r~21 = r1 2 + (z - zo)2 , r I2 -

2 r22 + (z - ZO)2 , r122 -

kr12 --+ 00, krl 21 --+ 00, kr122 --+ 00, 

-1f < () < 1f,0 < ()o < 1f,() =I- ±(1f - ()o)· 
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2.4 CONCLUDING REMARKS 

T he physical interpretation of the result (2.70) in conjuction \"'ith Fig.4. IS 

now obvious. The first term in Eq. (2.72) represc11ts the incident spherical 

wave due to a point source at (xo, Yo , zo) . The second t ( ~nn i 11 Eq. (2 .72) i:-; t ht ' 

wave reflected from the upper impedance facc of the half pla11e. This n'Ht ~('tl'd 

wave appears to radiate from an image point source at (xo, -Yo , 20), the 

reflection coefficient being ({31 - sin B122 sin ( 2) ({31 + sin B122 sin 02f 1 . These 

two terms show the geometrical acoustic field and t hey will not exist e\'('r~' ­

where. The regions where they are present are g()verJl(~d by t ht ' IIt'f\\'i:-;itlt, 

step functions which multiply the Hankel functions. Physically t lm'ic rq!,iu11s 

correspond to the shadow region behind the screen , and the illso11ified rc'­

gions. Eq. (2.71) gives the diffracted field, which is a spherical wave which 

appears to radiate from the edge of the half plane to all points in spare. It is 

worth mentioning that the strength of the diffracted field dies dO\\'ll a~ .k. It 
" ro 

is also of interest to note that the reflection coefficient vanishes identically if 

{31 = sin 0122 sin 82, The criterion that the reflection coefficient should vanish 

means physically that the half plane absorbs all the energy incident upon it 

and does not reflect any. Finally, the results for the diffraction of a spheri­

cal field by a rigid half plane can be obtained as a special ca~e by choosing 
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Chapter 3 

SCATTERING OF A 

SPHERICAL SOUND WAVE 

BY A RIGID SCREEN WITH 

AN ABSORBENT EDGE 

In this chapter, we present the scattering of a spherical wave by a half plalle 

in the presence of a moving fluid. A finite region in the vicinity of the edge 

has an impedance boundary condition; the remaining part of the half plane is 

rigid. The problem which is solved is a mathematical model for a rigid barrier 

with an absorbent edge in the presence of a moving fluid. ?vrat helllatica l 

route which is used to solve the problem is the spatial Fourier transform. 

asymptotic methods and the W. H. technique. It is found that the absorbing 

material that comprises the edge need only be the order of a wavelength 

long to have approximately the same effect on the sound attenuatioll in the 
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shadow region of thc barrier as a .sl'llIi-illfillill' (\h~llrl)(,lll IlCl ITil'l. 

3.1 FORMULATION 

We consider a small ampli tude sound wave due 10 a poillt S() llITl' (lll i l lilaill 

stream moving with a velocity U para llel to the .r-axis. Tlw S() ll\T(' is a~­

sumed to be located at (xo, Yo, zo) , Yo > O. A semi-illfillite plml( ~ is ClSS llllll ~d 

to occupy y = 0, x ~ 0 as shown in the Fig .G. T he half pial\(! is ass lll1l( ~d 

to be infinitely thin, and over the interval - l < .r < 0 there is all absorbillg 

substance satisfying 

(0 .1 ) 

on both sides of the surface and the remainder -00 < x < - l: of the 

half plane is rigid. In Eq. (3.1) Un is the normal compollellt of the 1)('1 1 mba-

tion velocity, Za is the acoust ic impedance of t h(~ plalle . n is llOl'lllal \"('l'l ()\ 

pointing from the fluid into the surface. The perturbatioll vclocity Ul of 11 1<' 

irrotational sound wave and the resulting pressure illto the soulld field are. 

respectively, given by 

UI = grad 1/t( :C, fj , z ). 

PI = - Po (gt + U :x ) 1/ t (x, fj , z) . 
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(x,y,Z) 

(x o, yo,zo) 

Fluid Flow 
~ 

Rigid Absorbent ro 
- - - - - - ~ x 
-~ . e 01 u 

Fig. 6: Sketch of the geometry. 

T he governing problem becomes one of solving the convective Helmholtz 

equation 

(3.4) 

subj ect to the following boundary conditions: 

o ± ) oy 77t (x , 0 ,z) = 0, x < - l , (3.5 

[:y ~(3NJ :x ±'ik{3] 77t( X, O±,z) = 0, - l :::; x:::; 0, (3 .6) 

'Tlt(x, 0-, z), x > 0, (3.7) 
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:y'TJt(X,o+,z ) = :y'/t(.£ ,o- ,::. ) .. r > O. 

where 13(= ~) is the specific adl1littallce of the absorbellt smfan'. alld 
Za 

M = U / c is the Mach number. For subsonic flo\\' I M I < 1 and for aeolls1 ie 

absorption Re(za) > O. 

It is assumed that a solutioll can be writte ll in I Ill' fOrln 

'TJt( X, y , z) = 'TJo( x, y , z ) + 'TJ( x, Y, z), 

where 'TJo( x, y , z) and 'TJ( x, y , z ) are t he incident wave a ile! the diffracted 

field . 

In addition for a unique solution of the problelll Eqs. (3. -1) 10 (3,8). \\'( ' 

insist that 'TJt represents an outward travelling wave as ,. = Jx 2 + y2 + Z2 --. 

00 and satisfies t he edge condition 

'TJt( X, 0, z) 

'TJt(X,O,z) 

fJ -\ 
0(1) and fJy 'TJt( :l', 0, z) = 0(.1'2) as J' -> 0-'- , 

fJ - \ 
- 0(1) and ~'TJ/( x, 0, z ) = 0((.£ + /) 2 ) as .[' --. - I, 

uy 

3.2 SOLUTION OF THE PROBLEM 

Transforming Eqs. (3.4) to (3 .7) through Eq. (2,5) and lllakillg I\ S(' of Ih!' 

subsonic substitutions 

x - J1 - M 2 X, Xo = J1 - 1I12Xo, y = Y, Yo = Yo: (:.U)) 

z - Z, Zo = Zo, k = J1 - lI;f2K , 13 = J l - M2[] . 

. /1 L{2L ( ) (V \ ' ) - dd/.\ V - lV, ',Xt x , y, P = 9 / _' \ , 1 .11 e . 
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the boundary value problem takes the followillg fmlll 

( : ~ . Ill ) 

[ 
82 8

2 
2 2] r 

8X2 + 8y2 +]( 8 ¢(X , Y , /-1) = 0, (3.11 ) 

[8~ 'F BM 8~ ±iKB] ¢(X, O± , !') (3.13) 

- - [8~ 'F BM 8~ ± if( B] ¢o(X, O±, 1') , -L :S X :S O. 

¢(X,o+,/-1) - ¢(X,O- , /-1) = [¢o (X, O-, /-l) - ¢o(X, O-r .II)] .X > O. 

(3. 1·1 ) 

8~ [¢(X , 0+ , J.L) - ¢(X,O- , /-L)] = 8~ [¢o(..,\ .O- ' IL) - c,:>o(..\ .O'-. II )) . X > n. 

where 
eiKMXo-iK~!1Z0 

a = J ' 8
2 = [1 - J.L2( 1 - !lJ2)] . (3 .15 ) 

1 - lvI2 . 

Now we define the Fourier transform pair by 

(J. 1 (j ) 

1 l °O+ iT 

¢(X, y , J.L) =!7C. . ¢(I/ , Y, J.L) e- WX dX. 
v27r -OO+1T 

(3.17) 
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The transform (3.16) and its illver::;c (3.17) will ('xis! !>1'O\'id('c! - IIll ( /\' .,,) ~ 

1" < Im(Ks). In order to accommodate three- part bOllllCiar.v COllditiolls Ull 

Y = 0, we split ¢(v, Y, J-L) as 

where 

~ f -L 
¢(X, Y, IL )CIV(.\( + I. )rlS. 

V21T -:>0 

1 f O A-. ( V } / ) , IV.\( 1\' 
~ 'P ./\ , · 1/ C (.. 

V 21T - L 

_ ~ rX) ¢(X, Y, 1.L)e iVX dX. 
V 21T Jo 

(;1. 1 U) 

In Eq. (3.19), ¢_(v,Y,J-L) is regular for Im(v) < Im(/(s), 9+(v. L/i) is 

regular for Im(v) > - Im(K s), and ¢l (v , Y.ll) is all illl!'gral fllIlC! iOIt. \\ 'it II 

the help of Eq. (3.16) and (3.17), the solutions of Eqs. (3. 10) c\l ld (3. 11 ) 

satisfying the radiation condition can be writtell as 

(J.2fJ) 

(J.2 1) 

(J.22) 

where 191 = JK2s2 - v 2 is defined on tbe cut sheet for which IIll ( t)l) > () 

when IIm(191)1 < ImKs and 
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{J, 

bl(/l) =- ~ 
41 

Xo = Ro cos eo , Yo = Ro sin eo· 

Transforming the boundary conditiolls (3.12) (0 (3 .1-1) \\"l' g (' t 

d~¢l(V'O+ , /j,) +i(I( + J\!V)I3 (5 1(V ,OT. /1 ) ( ;~ . 2:) ) 

- [ d~(l(V , O' / l) +i(I( + MV)I3(l(V . O. /I )]. 

d - -
dy ¢ l(V ,O-, /.L) - i(I\" + Mv) I3 9 1(II.O - . /I) (J .2U ) 

- [d~C(V , O ' /-l) - i (1{ + AIV)B( I(V ,O, /.L)j", 

¢+(V ,O-, /.L) = <p+ (V ,O, /l) , (J.27 ) 

d - rl -
dy¢+(V ,O-, /l) = dY ¢+ (V ,O./,). 

where 

70 



From Eqs. (3.1 8), (3 .21), (3.22) . (3 .2·1) all< I (:3.27) \\'(' arri\'(' i ll 

-ivL d d - _ d -
-e dY(-(v ,O,p) + dy¢dv,O ,11 ) + dy ¢+(V ,O.I/ ) (3.3 1) 

-i191 [e-iVL¢_(v ,O- ,p) + ¢ dv ,O- ,p) + ¢+(V ,O, ll)] . 

Eliminating¢l(v , O+ , p) from Eqs. (3 .2ti) alld (3.30) alld 9 1(IJ. O- . I/ ) [rolll 

Eqs. (3.26) and (3.31) gives 

i19 1 [e-iVL¢_(V,o+,P) - iB(J( ~ Mv) C/~/ ¢I( IJ .O +' I/ ) 

+ [d~ (1 (v , 0+ , Ii)] + 'i (I{ + .AI 1J) J] ( I (v. () . 1/ ) } + (; . ( /1. () . I' ) ] 

ivL d (( 0) d 7.. ( 0+ ) d '"7 ( 0) (3.3:2) = -e- dY - v, ,p + dy'+'J V, , 1.1 + dyq;+ v , , 1/ . -

i19 1 [e-iVL¢_(v,o-,P) + i B(J< ~ lvfv) { d~j' ¢l(V ,O - ' I1 ) 

+ [d~(l(V ,O+'I-L) ] -i(J<+.AIV)J]( J ( I/. O'I/)} + 0 r (IJ.O. /i}] 

-ivL d (( 0) d 7.. ( 0"" ) rI 7.. ( () ) (J.·J;3) - -e dY - v, , /.1 + dy'+'J 1/ , , 1/· + elY '+'+ V. · 1/ · v 
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In a similar way, elimina tioll of (/~/ 4> 1 (11,0+ , I') frolll Eqs. (: 1. 2,'j) en I( I (:~ . :~()) 

and d~¢l(V, O-,J..l) frolll Eqs. (3 .26) awl (3 .3 1) y ields 

-e-iVLd~( _ (V ' () ' II ) - iJJ(I\' + .\! /l)Ol(I/ .W. ,I ) (;~ . J l ) 

[ 
d~( I(U , a , IL) 1 rl -- + -,9+(11.0.11) 

+iB(I( + 1\1 v )( I (v , a. IL ) rI} 

[e-iVL¢_ (v ,a+, ll ) + ¢ l (U,a+: /I ) + O-r(V .O. II )] . 

_e-ivL d~ (- (v , a , J..l ) + 'iB (J( + 1\/V)(j)](V, O- .IL) (J.J5) 

- [ d~/ (l (V , a , J..l ) 1 + ~O;_ (V.O. I I) 
-iB(I( + 1\IV)(](U , O' IL) d} 

- - [e-iVL¢_(v,O-, IL) + ())l( IJ.O-. IL) + 9.,.(1/ . 0. 11) ] . 

Subtracting Eq. (3.32) from Eq. (3.33) alld adding Eq. (:3.3-1) t() Eq. 

(3.35) gives 

where 

'P_ (u) - ~ [¢_ (v, a+, f./) + ())_ (v ,a-, /l )] , (J.Jti) 

'P l(v) = ~ [ d~¢l (l/ , a -l- ,Jl) - d~/¢ ](v. a -' II ) l· 
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i l J\ /j - U [- - ] - 2 ¢_ (V, O+, II ) - ~_ ( I/ , O · IL) . 

iB (J{ + !lIv) [- + J - 1 - - 2 ¢1(v ,O , II ) - (P_ (v ,O , II ) . 

N(v) -
[~ ( I(V , O ' I.l ) + e- i V L ~C(I/.O . IL )l 

l K s+ v 

Q(v) [~+ B (J{ : Al v ) 1 ' 

Q(v) = [1 + B(J{ + l'\;/V) 1 = Q+(V)Q _(/I ). (J.3!J ) 
, ~ J 

Explicit expressions for the functions Q±(v) has beell discllss('d h,\' 11 <1 \\'1 -

ins [96] . Following a similar procedure the final result s ar(' g i\'(,11 1)\, 

1 BK(Ah2 - vdF(I/ ,vd 
----+----,,-----::-- --
2(v + f{ s ) 71"( 1 + B 2!II2)(VI _V2) 

Bf{( lvI s2 - v2 )F(v, V2) 
71"(1 + B 2A12 )(VI _V2 ) , 

IL'L( - v)I M ==_ i\1 = - ti+(/I ) 

- 1 
F(v , vo) = ( ) [h(v) - 11(VO)] , 

VI - VO 
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With the help of Eqs.(3.18), (3 .21), (3.22) anel (3.27) we obtain the tlll-

known functions 

1 
A5,6(1J) = rJQ(IJ) 

-ivL {-:I.. ( o± ) ± 1 d -:I.. ( o± )} e If' - 1J , , J.L i (1{ + J\l v ) D d Y If' _ 1J. . II 

+ f¢l (1J , o±, J.L) ± i(i< +~/V)B d~ ¢l (1J, O±, J1) } 

+ {¢+(IJ , 0, J.L) ± i(1\' +~ /V)B d(~¢+ (IJ , 0, 1-1)} 
(:3 .·HJ ) 

where + sign is used with the subscript 5 and the - sign \vith the' stlhsnipt 

6. The solution of the W. H. equations (3.36) and (3.37) ca ll be obtailH'd l,y 

employing the procedure of rilapt'(!l' 1 to arrive at 

_ _1_.1°O+ i a 
ei(Lr +(() d( 

2m -oo+iaQ_(()((+IJ) 
( :3. -! 1 ) 

1 100+ia [ei(LS(() + S( -()lj 
27fi -oo+ia Q_(()((+IJ) C(, 

(~{ , -12 ) 
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1 j OO+iC e- i(L /L(() 1 I X! iI ' .Y(( ) _ 
- - . d( - -. _ _ d ..... 

27r2 -oo+ic Q +(()(( - v) · 27rl . - X+ I(, (2-r (~)(I/ - t,) 

(:3. -13) 

(: ~ . I I) 

(J .·l !i ) 

(:3. -Hj ) 

Im(v) > - a> - Im(Ks), Im(v) > c > - Im(J(s) , IIll(v) < d < IIll(J\- . .,.). 

The solution of Eqs. (3.41) to (3.44) ultilllately gin's I he SOllll ion (Jf 111<' 

boundary value problem. An exact solution of these integral eqllal iOlls is t ()() 

difficult, and therefore approximate solutions will be obt ained by aSYlIIpt ot ic 

methods. From Eqs. (3 .20), (3.28), (3.29) and (3.38) we get 

~I' ( ) _ -Ks sinfJob1(/1) 1!\'S !, CUSOo 

dY "' - lJ,O , /1 - ( K fJ ) e , v - s cos 0 
(3.-17) 

(:3 . -1 ~) 

(3 .,10 ) 

75 



S( JI) = ib: (JL) (C - i (V- /\· .,CI>SOu l l. _ 1) . ( 1- ) 
v , ;) . :)!) 

(v - J\ S ('os eo) 

3.3 APPROXIMATE SOLUTION OF EQUA­

TIONS (3.41) AND (3.42) FOR ]{sL > 1 

Restricting the path of integration ill expression (3. ·11 ) to t he hand IIlI ( /\'8 ( 'OS Oll) 

< a < Im(K s) (see Fig.7.) and then using Eq. (3.GO). into EC[ . (J. -l1 ) and 

making the further substitution 

(v - f{ s ('os eo) . 
(J.5~) 
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• Im (~} 

Im(Ks} Ks 
:~~¥~ ~ ~ ," -; "'" >~~¥.?;:;.~. YX:;:'-< '. -:.. {:.. ... J :¥~"'...::;:,.o/.~ t.:« .. ,,~-1f'~~~ 

/ 

., 

IJ 

Ks cos 00 

Re(!;} 
--i----- ---~ 

I 

·Kscos O • Ie • 
-1m (Ks) 

Fig. 7: Illustration of location of the poles in t he complex plane. 

The last two integrals appearing in Eq. (3.53) can be evaluated by dis­

torting t he path of integration into t he lower half of t he (plane. The only 

poles captured will be ( = - v and ( = - K s cos eo. Thus 

(v + K s cos eo) Q _ (K s cos eo) 
ib1 +----------------------

(v - K s cos eo)Q+(K s cos eo) 
1 j OO+ia ei(LG+(() Q+(() 

+ 27fi -oo+ia Q( ()( ( + V) de 
Im(K s cos eo) < a < Im(K s). 

(3 .54) 

Equation (3.42) can be dealt in a similar manner by substit ut ing Eq. 

(3 .50) for S(v) into Eq. (3 .42) , where Im(Ks cos eo) < a < Im(Ks ), and 

making t he substit ution 
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iiJ[ e, " 's l""sllu 
, (v ) = 9+(V ) + ---" --

+ . (u + ]\.'; ('os ()o) 

Thus one obtains eventually 

(1/ + ]{s ('os {}())Q _ (1\"" (ns (} l/) 

ih[ 
+ (u - ]( s ('os eo)Q+(J\" s ('os eo) 

1 j :xl+ia ei(L g+(()Q+(C) , _ 
211i - OO+ 1a Q(()((+I/ ) (~ . 

Im(I{scoseo) < a < I III (J\"s) , 

For the solut ions of Eqs. (3,54.) alld (3,56). we liSt' a ll as\ '[[[pt (Jt i(' t ( , ( ,1[ ­

nique given by Jones [46] and the approxilllat e solllti o lls for /\" .. ;£. ~ I , , \1( ' 

respectively, given by 

(J,jb) 

where 

ieiKsLcusOo I 

Sl(V) = (v + J(s coseo)Q _ (J(.<j ('os()o) + (u - ]\' ,<;('os()u)(J (/\ ' .'j( ' ()S(JI!l' 

( :1 ,.'j!J) 

ieiKs L cus Oo I 

52 (v) = - + --- ------:--:----
(v + f{ s cos eo)Q- (I{s ('os eo) (II - ]\".'j ('()S ( 11)0, ( /\ ' ,~ (():-, (III) . 

( : S l il ) j 
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· 1 j X+ II. (,.(f' .f) ! (()(j, (() . 
g+(v) = - riC 

27ri -OC + IC. Q(()(C + /I) 
Putting the values of G+ (() frolll Eq. (3 .[)7) ill Eq. (3,G I ) alld II, (() fWlll 

Eq, (3,58) into Eq, (3 ,62), we have 

1 j =+ l!I e l(l' Q~ (() {hISI (() + G ~ (() } , 
27ri -oc+ia Q( () (( + fl ) rl l... 

Im(Ks cos eo) < a < Illl(K~). (J. G3) 

1 j oo+ia ei( LQ2 (() {b I S2 (C) - g.,- (c) } . 
g+(v) = - . + . ill.. . 

27r2 -=+;a Q(()( C + f/) 
If the contour of integratioll ill express iull~(3 .G:3 ) (1I1d (:3. Gl ) i:- di:-tIIIlI'd 

into the region Im(v) > a, thell the illt( ~grals call 1)(' aSYlllPtot i( ·all.\' appl'l )x ­

imated, for KsL 2': 1, by the illt egrals with its path ()f illt('grHtil)11 \\T ilJ!P(·t! 

around the branch cut ( = /{ s, The part of the illt ('gral1(ls I)f l'xpn':-:-.il )11:-. 

(3.63) and (3,64) withill the emly iJl'a('k(,ts art' rq!,llLII' (llle! illl ilht i( ' ill Illi :-. 

region and provided eo i 0,7r; this terlll \\'ill \'ary S Ill'" !.\' ill t I}(' \'icillity I d' 

( = K s, Thus since the dominant part of the integrancls CO l1le fWIll the' regioll 

( = K s the terms in the curly brackets can be rellloycci uncleI' the illt l'gral 

sign and ( can be replaced by K s. The remaillillg int egrals call he r('placC'd 

by the asymptotic approximation (C2) of the ApP(lId/.r C. lIell(,( ' 
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where 

W(I/) [ ~ 1 {lVo [ ( L v' H l\ s) 1 ~ II " [ ( v'L (.\ I ) I } 
1-->-1(1/+/(S) J 

J2Ks 
B(K + MI/) 

and G+(Ks) and g+(Ks) are obtained by putting 1/ = 1\' s in Eqs. (J.G5) 

and (3.66) respectively and solving the resultillg equatiolls for G.,- (/\'s) ,wei 

g+(K s). 

Using the expressions (3.45) , (3.46) , (3.52) , (3.55) . (3.57) , (3.58) . (3 .6:» 

and (3.66) and some simple manipulation one obtaius 

CP+(I/) - - ib1 [1 - Q+(I/) 1 + blQ~ (I\'8)H'(I/)Q T (/I) 
(1/ - K s cos ()o) Q+(K s cos eo) 2 

x {S1(Ks) - S2(/(S) + G+(/(s)/b 1 + g+(K8) jhd , (3 .G7) 

ib1eiKsLcos90 [1 - Q- (I/) 1 + blQ~(/(s)lV( - I/)Q _(I/ ) 
cp-(I/) - (1/ - Kscos()o) Q_(Kscos()o) 2 

x {S1(Ks) + S2(Ks) + G+(/(s)/b 1 - g+(I\s)jbd. (3.68) 

3.4 APPROXIMATE SOLUTION OF EQUA­

TIONS (3.43) AND (3.44) FOR 1( sL > 1 

The method of obtaining an approximate solution for equations (3.43) aud 

(3. 44) is slightly different from the method used in the last sect iOll. Sub~ti -
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tuting the expression for N(v), Eq. (3.51) , illto exp!'(~ssiOllS (:U:3) (111<1 (:\..1 .\) 

gIves 

The first integral of expression (3.69) can bc c\'Clluilt cd by distortillg the 

path of integration into the upper (plane. Since 1m (v) > c > - 1111(1\" ,., ) 

then the pole at ( = v and ( = K s cos eo will give rise to residue contribut ions 

(see Fig.7). Hence 

Q+(V)(/J - Kscoseo)/K s + /J 
(3 .71 ) 

I 

bj [K s (1 - cos Bo)]2 
+----~--------~----

Q+(Kscoseo)(v - Kscoseo) 

1 JOO+i C e-i( L {A _(() /Ks - CQ- (()} 
--. . ~. 

27l'z -oo+ic Q(C)((-v)jI\,.;-( 
1m (v) > c> - 1m(Ks) . 
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The evaluation of the second integral ill Eq. (J.70) is I)('~t adli('\'('e1 1).\ ' 

distorting the path of integra tion illto t h(' upper half ()f t ht' ( plcllll'. II U\\'l'\'l'l 

this requires a knowledge of the singularities of Q _(() ill 11lI (() > - 1111 (/\'.-;). 

Since the only singularities of Q(() are the brallch points at ( = ± /\'.'j : Ill) 

poles occur in the cut plane. Hence moving the pat h of integrat iOll n'rt icalh' 

until it crosses the pole (= f{ scos 80 (see Fig.7). but not the brallcll point 

( = f{ s; gives 

Q_(v)vf{s - v 
bleiKsL cus Oo 

Q _ (f{ s cos 80 ) (v - f{ s c.os 80 ) 

1 J OO+ id d { K s bl sin8oQ+(() () ') } +-. ( ( + ,A.. T ( Cd. (~ 
27['2 -oo+id J f{ s + ( ( - J( s ('os eo) . 

eiC, L 

x Q(OVf{s _ ((( _ v) , lm(Ksros8o) < d < Im (I\' .'i). (J .72) 

For f{sL > I, the dominant contribution of the integral ll1 eX I)}'pss lon 

(3.71) comes from the region ( = -f{ s; and of the integral in exprl'SSiOll 

(3.72) from the region ( = K s. Provided 80 i 0 the terlll ill t II(' ('mi.\' 

bracket of the integrands in expressions (3 .71) alld (3 .72) art' s l u\\'I~ ' \'a ryillg 

in the vicinity of ( = ±f{ s. One can t herefore replace ( by - !\' s in t his part 

of the integrand in expression (3. 71 ) and remove it frolll under the int egral 

sign. Similarly one can replace ( by f{ s in the curly part of the integrand ill 

expression (3.72) and remove it from under the integral sign. T hp illt <'gntis 

remaining can be replaced by the asymptotic: approxillJatioll (CG) all el ( ('~) 

of Appendix C. Thus 

(J .73) 
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b 1 e,l,' s I. cus Ou 

The constants A± (±K s) are obtained by putting v = f( S ill expressioll 

(3.73) and v = -Ks in expression (3.74) and solvillg the H'sultillg t\\'o ('( [llil ­

tions for the two unknowns A± (± K s) . 

The expression (3.38) in conjunctioll with the expressiolls (3.67). (:3.68). 

(3.73) and (3.74) will now give explicit expressions for ¢+ (v, 0, J-l) , (;~ , 9+ (v. 0 , 

p,), ¢_(v,O+,p,) and ¢_(v ,O- ,p,) . Thus, using these values and the boulldary 

conditions (3.24) to (3 .26) in equations (3 .40) it is llOt difficult to sho\\' that 

(3 .76) 

where 

1 [ i {2Q_(IJ)e- 1 (1I- 1, .. ,ClIS OU )L 

f)lQ(V) (v - Ks cos eo) Q_(K s coseo) 

Q+(v) [Ks (1- coseo)l~ vv + Ks Q+(V)} + -~~~----~~~----~~ 
Q+(Kscoseo) Q+(Kscoseo)B(I( + !l1v) 

+e-iIlLQ+(Ks)Q_(v) {Q+(KS) [ SI(Ks) + S2(I\'S ) 1 
2 +G+(J\ S)/ hl - g-,- (l\·.-; )/ h1 
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A8(1/) 

i [ sin 80 J '2J( s ,]}, 
-B(K+MI/) 1-cos80 + b1 /\. +(1\8) H (- /I) 

+ Q~(Ks)W(v)Q+(I/) { SI(1\'S) - S'2( K.'},) } 

2 +G+(J(s)/b l + g -r- (1\.S) / b1 

W(I/)Q+(Ks)A _(-Ks)Q+(I/)JI/ + J( s ] 
+ ib l B(K + MI/) , (J.77) 

1 [ i {Q+(I/) 
19 1Q(I/) (1/ - /(scoseo) Q+(/(8(,OSOO) 

+ [Ks (1 - cost9o)l~ JI/ + Ks Q+(I/)} + c- ivL Q+(1\8)Q _(U) 
Q + (K s cos ( 0 ) B (K + AI 1/ ) 

{
Q+(KS) " 

x 2 [SI (K s) + S2(J( s) + G+(1\ 8) / b1 - g+(!\ ,.;) / bd 

i [ sin eo JWs ,] } . + B(K + Mv) 1 _ cos eo + b
l 

A+(!\.',) \\ (-/1) 

+ Q~(Ks)W(v)Q+(I/) { SI(/(S) - S2(1\8) } 

2 +G+(Ks)/b l + g+(1{s)/b 1 

_ W(v)Q+(Ks)i\_(~Ks)Q+(v)Jv + /(s]. (3 .7~ ) 
ib 1 B (1\ + 1\-/ v) 

Now using Eqs. (3.21), (3.22), (3.77) and (3.78) ill Eq. (2.6) aud t 11(' 

employing the procedure of chapter 1 for the solutioll of illtegrals ill ill\u'Sf' 

transforms we obtain 

TJ( X,y,z ) (J.7D) 
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where 

R 

and A7(-KcosBsin8) and As(-KcosB sin8) arc g i\"(~ ll by Eqs. (3.77) 

and (3 .78) respectively. 

3.5 CONCLUSIONS 

We have solved a new canonical diffraction problem of a spherical \\ ' c:\ \ T ill 

the presence of a moving fluid . From Eqs. (3 .79) and (3 .80) , we obsen 'c that 
. - 1 

as a result of fluid motion t he field is increased by the fa ctor ( J1 - 1\/2) 

in comparison to still fluid . Also, the fi eld is indepcndent of the din'ct iOll of 

flow since the fluid velocity U appears as IUl2 ill the factor {J l - .\/ 2) .1. 

The results for still air case can be obtained by putting M = O. It i:-.; abo 

interesting to note that Eqs. (3.79) and (3.80) represent fields diffracted frolll 

the edges x = 0 and x = -l . The radiated sound intensity in the illlllllillatl~d 

region 0 < B < 7r is due to constructive/destructive interference bctweell the 

incident wave; the diffracted fields from t.he edges (0 , 0) and the jOillt (0. - l ) 

between the absorptive strip and the rigid region of t he screen. 
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Chapter 4 

THE TRANSIENT 

RESPON SE OF A 

SPHERICAL GAUSSIAN 

PULSE BY AN ABSORBING 

HALF PLANE 

In this chapter, we discuss the acoustic wave diffraction due to a spiH!ricai 

pulse near an absorbing half plane introducing the Kutta-Joukowski cOllcli­

tion (wake condition) . The whole system is assumed to be in a moving fluid . 

The temporal Fourier transform is used to calculate the diffract ed fidd . I t is 

once again found [48] that the field produced by the Kutta-Joukowski ('()!l(li­

tion will be substantially in excess of that in its absence when the source is 

near the edge even in the case of spherical Gaussian pulse. It is also found 
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that ratio of the diffra c:ted fields WIH'll the \\'a k( ~ is iI hS('llt t () IlIa I dIll ' III 

the wake for the spherical Gaussian pulse is the san)(~ as for t 1)(' cy lilld rica l 

Gaussian pulse. Thus the ratio of no wake to wake situation is inciepcn<i(,llt 

of the type of acoustic sources. We also note that the ratio of the diffracted 

field corresponding to no wake to wake situation for rigid half plall( ' is the 

same as calculated by Balasubramanyalll [10] . T his rat io for rigid half plall( ' 

can be recorded by equating t he absorptioll parameter t () zero . 

4.1 FORMULATION OF THE PROBLEM 

We consider a small amplitude sound wave 011 a 11l1lill s trealll llll)\'illg \\ 'il h 

subsonic velocity U. An absorbing plane is assumed to occupy y = 0 . .1' ::; 0 

as shown in the Fig.8. We consider a spherical Gaussiall pulse fr01l1 a source 

parallel to the edge at (xo, Yo , zo ). The convective wave equation satisfied by 

'l/J1 in the presence of a point source is 

(-1.1 ) 

subject to the boundary conditions: 

[
a a {3 a] ± ay ~ {3M ax ~ ~ at 'l/J l (x, 0 . ' z; t) = 0, x ::; 0, ( -1. 2) 

where \72 is the usual Laplacian. We choose the coefficients of the Gaus-

sian pulse to be Jrr so that the strength of the pulse J~00 Jrre- v2t2 
dt . is \lllity. 

We shall assume that flow is subsonic, - 1 < !II < 1 (for a lca<iillg l'<ig<' 
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situation -1 < M ::; 0 and for a trailing edge 0 < AI < 1). The trailing ('dg(' 

problem adds the complication of a trai li ng vortex sheet or wake at t ad1('d t (J 

the absorbing half plane. The usual edge condit ions give rise to it field \\'Ilidl 

is singular at t he origin for the trai ling (!elg(! s it Ilat iOll . TI1('rdm(' . t II(' hilt t (1-

Joukowski condition is imposed to obtain a unique soillt ion of t 11(' plOhl( 'nl. 

In order to satisfy this condition, we introduce a discontinuity in the fielel at 

the aperture (0 < x < (0) and postulate the ex istence of a wake condit iOll 

[48]. According to this, 'l/J I is discontinuous whilst ~~ l/J I awl pn~SS lln ! r(,lll(\ill 

continuous for y = 0, x > 0 

a ( + .) ay'l/Jl x, 0 ,Z, t 
a 

- ~'l/JI(x , O -,z; t) ,x > 0, (-1 .3) 
uy 

[a a] ( + . at + U ax 'l/J 1 x, 0 ,Z, t) [:t + U ~ ] l/J I (x , 0 - . z; t) .. r > () 
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Y .l 

(X,y,z) 

/ Spherical pulse 

I / r (x.Yo,z.) 10 / 
l~teJ ~OA 

P
-u z =0 o rVVV\~ak~ V\ 

a a I 
_u~~ 

_u~~ 

M+v c 

- - 4 X 

Fig. 8: The scattering geometry. 

4.2 SOLUTION OF THE PROBLEM 

We define the temporal Fourier transform and its inverse by 

~(x, y, z; w) = [ : '1jJl (x, y , z; t) eiwtdt , ( 4.4) 

1 100 ~ . '1jJ l( X, y ,z; t) = - '1jJ(x, y ,z;w)e-zwtdw. 
21f -00 

( 4 .5) 

By analogy to t he t ime harmonic problem, we use w as the variable of 

the Fourier transform. Transforming Eqs. (4.1) to (4.3), we obtain 

[ 
2 02 . 0 02 02 2] ~ 

(1 - M ) ox2 + 27,kNI ox + oy2 + oz2 + k '1jJ(x, y , z; w) (4.6) 

c5(x - xo)c5 (y - yo)c5( z _zo)e-w2 /4V2, 
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(. 1.7) 

8 ~ D ~ 
-8 'lji (x, 0+, z; w) = -D 'l/.J (:l:. 0- . z; ....; ) .. 1' > O. 

y Y 

[-ik + M :x 1 ~(x, 0+ , z; w) = [-ik + !II : x 1 ~ ( x , 0-, z; w). J; > O. (.,uJ) 

The boundary condition (4.9) can be writ t ell ill the <llt em <l t i\'( ~ fUl'lll as 

J·(x 0+ z' w) - o" (x 0- .,. . w) = (\ (z ) eikL / M 
c..p , " 0/" ...... , 1 -' 1 ( ·1.10) 

where Ql (z) can be determined by means of the Kutt a-Joukowski cOlldi­

tion. We note that Q l( Z ) = 0 corresponds to t he no wake situatioll . 

The solution of the boundary value problem cOllsistillg of Eqs. (-1 .G) to 

(4.10) can be obtained using t he standard 'N . H. technique and as)' lllpt ot ic 

methods. The detail of calculat.ions for 'ljid is given ill A pIJenrii:c D. TilliS, t h(! 

diffracted field ~d for the spherical Gaussian pulse is givell by 

_ 00 ei K s( R+ Ro)+ iK .Jl'=TI'111 (Z-ZO) F(IQ I) dll 

- ell [ = )1 _ (1 - !vi' ),,' [K ) 1 - (1 - A1' )p' j j N ,(s) 

_ 00 eiKs(R+Ro) +iK.Jl'=TI'1!"( Z - Zo) F(IQI) 
+C22 j 1 dll-

- 00 [K )1 - (1 - N/ 2 )1l-2r N1(s) 

_ 00 eiKs(R+ Ro )+i K.Jl'=TI'1/1(Z-Zo) F(IQ 11 ) 
- C 33 j 1 d II. ( -1 . 1 1 ) 

- 00 [K )1 - (1 - J\/2)JL2r J\'d s) 

where 
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- [Jf{VI - i\J '2 - 1 1 

C C - ~. .11-)) = , I (' , . 
27r 

- K J 1 - M2 . . - ~ .~ 
C22 = 27r [BA1cosBo -2sm(O j2)slll(Oo j2 )]C) c- ..; I- 1r \ 

- K VI - M2 · - ~, 
C33 = sin(O j2) Sill(Boj2 )C'l c ·...: II--

7r 

The integrals appearing on the right side of Eq. (4 .11) can be cvaluatt'ci 

asymptotically using the method of st eepest descellt (see A pp(,lld ix E) alld 

the diffracted field ~d is written as 

~ ~ ~ 

'l/Jd = 'l/JdA + 'l/JdIV' ( 4.12) 

~ ~ 

where 'l/JdA denotes that part of 'l/Jd which arises when there is 110 wak(' 

and 'l/JdW when there is a wake and are explicit ly giwll by 

'l/JdA 

'l/JdW -
sin( Bo/2)e- iK lv/(X -Xo) e-w2 /4v2 

47rJ7rRoJl - M2 cos(Bj2) 

(4.13) 

(-1. ILl) 

X 1 H(-E') + E' eiKRI2-T V { 
/rr A' e

iK R~l . [ / R + Ro + A') 1 F(T'HI2)} 
2R'll N (r')) 1 1 / M(() . ." V R12(R 12 + RII ) 1\ 2 
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where 

A 2 ' 'J 
1 - R + Ro - J.i.l ' Al = R + flo - (PI)- ' 

111 
cos e + cos eo In I = iT - cos () {ii 

sine Y 2' J.i.] sine Y 2 ' 

[ 
J K (R + Ro + A I) 1 - [J"--I(-( R-+-R-o-+-A-'I ) 1 ' 

/ J.i.] , T R'12 - / I , 111 ' 
V (R12 + R ll ) V (flu + RII ) 

R + Ro I A'] I 

(2 = R ' (1 = R' , tel = sgnT 1'1' . 
12 11 12 

When the source is very close to the edge (K Ro < < 1) and the poillt uf 

observation is at a large distance from the source but not near t he wake . the 
~ ~ 

dominant part of '¢d denoted by'¢dl is given by 

~ ~ ~ 

'¢d] = '¢dAI + '¢dlFl ' (-1.1 5 ) 

where 

'¢dAl 
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Now using k = w/c, F(v) ~ 2
i
v (when v -> (0) alld N((.J ill Eq. (cl.l':) ). 

we obtain 

e-1:..Ji M (X -Xo)- a d / c! 

;j;d(x,y,z;w)~(F+Fd Vw e - ..J
2

/-111
2 

(cl.l ti ) 

where 

F - [::~o + BN! cos eo - 2sin(e /2 ) Sin(eu/ 2)] J:"I / (1 - .\1 2
) (· 1.10 ) 

1 
x . 

47rv27r RRoR12( cos e + cos eo)Q + (I< (2 cos e)Q _ (- J( ( 2 ('as e) 

where 

~ = nil - AJ2. 

It is important to note that Q+(I« 2C'.os e) and C2 - (-J(('!.('Qs()). al>l><'<l1-

ing in Eqs. (4.19) and (4.20) are independent of w. 

In order to calculate the field 'l/Jld(x , y , z; t), we need to find the inverse 

temporal Fourier transform of Eq. (4 .18) . This gives, on using Eq. (--1.5) 

(c1. 2 1) 

where 

R' = J(X - Xo)2 + (Y - Yo)2. 
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The integral appearing in Eq. (4.21) can be evaluated \\'it h t It(! help of 

Mathematica [1]. Thus, 

where b2 - [R12 - M R' cos 8 12 ] / r;J and B essel I[ n.l , t] is the lllod ified 

Bessel function of the first kind of order n l in t . 

4.3 DISCUSSION 

A complete analytical description has been provided for the scattering of 

a spherical Gaussian pulse for trai ling edge (wake present) sit ua t iOll . Of 

particular significance are the following points: 

(i) . It is good to note that the wave profile at. y = Yo, z = Zo llloves along 

the direction of x - axis with the velocity c + U, which is due to the fact 

that the fluid is moving in the x-direction. 

(ii) . The ratio of :(J;dAl to :(J;dWI is found to be 

;PdAl .[B(1 + Mcos8o) - 2sin (8/2) sin(8o/2)]/\Ro(cos8 - ,,1/) . 
-~- ~ 1, • (4 .23) 
'l/JdWl sin(8/2) sin(Bo/2) 

Eq. (4.23) gives the ratio of the diffracted wave when the wake is absent 

to that due to the wake for the point source. If we calculat e this rat io fm t Ij( ~ 

line source situation [96] , who has not explicitly sho\\'n it) , \\'e find that bot h 
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the ratios are exactly the same. Thus the ratio of IlO wake to \\'ake sitllati()l1 

is independent of the type of acoustic sources. 

(iii ) . For the rigid half plane if we put,3 = 0 III Eqoo (-1.23). tlli ;-, l'<lti(J 

becomes 

'l/J dAl 'K ( B 1) -~-- = - 2~ R 0 cos - - . 
'l/JdlVl AI 

( -1.2-1) 

We note that ratio is the same as ca lculated by I3a lasulmHll(\Il\'(\lll [I OJ. 

For small Mach number , the ratio (4.24) is cffccti\'(.!!y 2i l\' Hu/ .\} awl i;-, ill­

dependent of angle. If K Ro is of the order of 1I.'\f t his rat io is uf the un!('} 

of 211. Consequently, the dependence of t he intensity Oil ),Iach llulllber \\'()u!d 

be M 5 whether the Kutta-Joukowski conditioll were illlposed or Ilot. 

At any rate, observations of the sound intensity at lo\\' l\lach IlUIll lH'r ill 

a moving medium would fail to det.ect whether or IlOt a Kutt a-.Jouk()\\·;-,ki 

condition has been imposed., if the observations are Ilot Ileal' t he wake allCl 

are limited to the dependence on angle and l\·Iach number. This cOllclusiull 

remains unmodified for quadrupoles since the ratio of the two terms is not 

essentially altered by derivatives with respect to eit her Ro or Bo . 

(iv). We also conclude from Eq. (4.23) t hat for poillt sources I1<'Hr till' ('dge 

of absorbing half plane (Ro ---t 0) , the field caused by the Kutta-JoukO\\'ski 

condition will be substantially in excess of that in its absence as discussed by 

Jones [48]. Also, the imposition of the Kutta-Joukowski conditic)Il and the 

associated wake has the effect of producing a strollger sca ttered field away 

from the wake than that in the neighborhood of t he wak!' al l illtellsc soulld 

is created; it is much stronger than the scattered field away from the wake 

and does not decay downstream. This is true whether or not the sound be 
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near the edge. 

(v). Near the wake e is small and an addi tional tcrIII is rcqllin'd ill Eq . 

(4.12). This extra term is given by 

where 

sin(eo/2)e- i l\ !I/(X -Xo)+ i/\ R12.J2fJ su n (Y) 

21TR2\I1- !vf2J1 + MQ_( -/({eoseo/ R2 )Q+(Idj.\/ R2 ) 

1 

[ 
X + J !vI2 - 1 IY 1]2 

X 1 + !vI flo 

R- = V(Z - Z)2 R2 T = R X J AI2 - 1 IY 1 
2 0 + 0 , 0 + IvI + AI .. 

It is imperative to note the smaller that AI becollles the lllO\"( ' cl(Js ( ~ ly 

is the surface wave confined to the wake. It is t he pressure of this \\"a \"(' 

which is the main distinguishing feature in the radiated-sound bet\\"('cn the 

absence or otherwise of the Kutta-Joukowski conditioll. It is good to nOll' 

that the surface wave disappears from the pressure, but relllains ill velocity. 

Therefore, measurements of the pressure fluctuations alolle will llot illdicatt' 

the existence of the surface wave. However, if the prodllct of prcss llrc awl 

velocity is taken as a measure of energy, differellces in the ellergy due tu the 

surface wave will manifest. 

(vi) The results of leading edge situation for spherica l Gaussiall pillsI' 

can be obtained easily by taking F\ = 0 in Eq. (4.22 ). 
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Appendix A 

FACTORIZATION OF THE 

MATRIX K(v) 

The purpose of this appendix is to present the cOl1lpiPte fa c:torizat iOll ()f tilt' 

matrix K(/I) given by the expression (2.28). \Ve a~~UlllC throughnut 0.. is 

real, i.e. Im(kA) = O. The end results are analytic functiolls of kA which will 

be valid for Im(kA) ~ O. We shall reduce the problem of factorization to the 

solution of a set of Hilbert problems. These Hilbert problellls are thcll soh'cd 

using Muskhelishvili's approach [79] . 

REDUCTION OF MATRIX FACTORIZATION PROBLEM TO 

IDLBERT PROBLEMS 

We assume a factorization of the form 

K(/I) = U(/I)£-I(/I), (:\. I) 

97 



where 

L(I/) [ III (v) 11 2( v) ] . 

[21 (1/) [22 (//) 

( ,-\2) 

[ Ull(V) UI 2(V) 1 
U21 (1/) ll:dl/) 

U (1/) (A3) 

The elements lij, of L(I/) are assumed to be allalytic in the ClIt 1/ pia 11( ' 

larg(k>. - 1/)1 < 7r. The elements of Uij are analytic in the cut 1/ plane 

larg (k>. + 1/) 1 < 7f. This means that L(I/) is analytic everywhere except along 

the branch cut k>' ::; 1/ < oo, Im(l/) = 0; and U(I/) is alla lyt ic ('\·erywl!er(' 

except along the branch cut -00 < 1/ ::; -1.:>'.1111(//) = o. 

From Eq. (2.28) we note that 

(A4) 

in the cut 1/ plane, since -~ < arg(19) < ~ , Re(l.: .'"i l ) ~ o. and RC'(ldJ ~ 

o. Hence K(I/) and, consequelltly, U(I/) as well a:; L - .I (1/) are nOll-:; inglllar 

matrices in the cut 1/ plane. 

We now analytically evaluate the left side , alld consequently the right 

side of (AI), about the branch cut at 1/ = -k>' . This gives 

U+(()L-l((), · - 00 < ( < -1.:>. , 

U- (()L- 1
((), -00 < ( < -1.:>', 

(A5) 

where in this appendix only we use the notation F +(() = F(I(I ei7f
) to dellote 

values of F on the upper side of the cut, and F - (() = F(I(I e- I 7f
) to dCIJ()t(' 



values of F on the lower side of the cut. We rClllark t hat. ill (AS). L 1(/1) 

does not jump in value on crossing this cut be('ause it is allal,)'t i(' at /1 = ( . 

-00 < (:::; -k)" . 

Eliminating L- 1(() in Eq. (A5) , we gct 

where 

(1\ 7) 

(A~) 

and 

From Eqs. (A6) and (A9), we obtain 

(A 11) 

(A 12) 

(A IJ ) 
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(:\ [·1) 

Eqs. (All) and (A12) form a coupled system of Hilbert probl( ~ lllS for 

Ull and U21. Similarly equations (A13) ami (A14) form a coupled systelll of 

Hilbert problems for U12 and U22. If we can solve the coupled Hilbert probl('lIlS 

(:\ [ SJ 

+ _ [- 1191 + ik{32] _ . 
u2 (() - 1191 + ik{31 u 1 (() , -00 < ( < -h>' , (A IG) 

then we can also solve equations (A 11) to (A 14) . 

SOLUTION OF THE HILBERT PROBLEMS (A15) AND (A16) 

Taking logarithms of Eqs. (A15) and (A16) and thell adding alld suh-

tracting the resulting equations, we get the two uncoupled equations 

(A 18) 

where 

(r\ l~) 

(:\20) 
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and (Jk)" + I/)± = ±i 1,1.;).. + (1 4 . 

Equations (AI7) and (A 18) are st Cllldard Hill)('rt problclIlS \\"h ()s(~ suillt i()11 

is given by 

W(I/) - exp 1 log ? ') . 
_ [_ Jk)" + 1/ j -k>. 1 . {(11912 + k2;3i )} ~l 

2iT -00 1,1.;).. + tl 2 Idl- + },- '232 t - I) 

(:\22 ) 

Obviously the exponents of V(v) and \'I'(v) , alld COlls('qllellll.\" \ ' (I I) il lld 

W (I/) , are analytic in larg (k).. + 1/ )1 < iT; furthermore V(I/) =/: 0 and \\ '(v) =/: 0 

in larg(k).. + 1/)1 < iT, Eqs. (A21) and (A22) can be silllplified furth er h.\' 

carrying out the integrations, see Appendix B . III part icular it is sh()\\"lI 

there that 

W(I/) = 0(1), and V (v) = 0(1), as Ivl -t 00, larg(k)" + 1/)1 < iT; (A23) 

W (I/) = 0(1) , and V(I/) = O((k)" + V) -1) , as Ivl -; - k)". Rc(.il.2) > O. 

(A24) 

Thus particular solutions of (AI 5) and (A I6) arc given, fro111 (A19) and 

(A20) , as follows: 

(:\25) 
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where 

(:\27) 

(.-\ 2b) 

and J(I/) is given by the expression (B13) of Appel/eli.c n. 
The choice of sign, on taking the square roots , for UI (1/) alld U1 (U) ill 

(.425) to (.428) is justified as follows. \"lith the siglls giYell h.Y ( .. \2:» ) ttl 

(.428) we have 

\1+ (() ltV + (() It\!- (() 

\1-(0 

By means of Plemelj's forl1lula [79], (A21) giws 

\1+ (0 (1'!91- ik(31) (1191- ik(32) 
\1-(0 = 1'!91 + ik{31 1191 + ik{32 ,-00 < ( < -k)" ; 

and from (.428) 

(A2U) 

(..\30) 

I 

_ [( v'k)" + (+ JkN 1(+)) (v'k)" + (+ Jk~I( - ))l OJ 

(v'k)" + (+ Jk~2(+)) (v'k)" + (+ Jk~ '2 ( -)) 
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Hence 

(AJ2) 

and therefore 

which is clearly consistellt with (A15) . 

It is emphasized that the above result for uJ(v) ami 'u:2 (v) is just a par­

ticular solution, and not the general solution. To obtaiIl the gelleral sulut iOIl 

we must impose further conditions on the functions llJ(V) aIld U:2(V) that \\'l' 

are interested in. First , we require that 

for some 61,2 > -1, in order to guarantee the convergellce of t hl' illt <'grais 

(46) and (47), the singularity at t = - k>' beillg illtegrahll'. S( ~(,()lId. it i~ 

customary for the Hilbert problem to require that uJ(v) alld 1l:2(v) have 

finite degrees at infinity, t hat is, uJ(v) and U 2 (V) have polynomial growth as 

Ivl -. 00. 

To determine the general solution for 'udv) and u:2(v) uncleI' these ('ow ii­

tions , substitute 

Ul(V) = -JV(v)l¥(v)u~(v) , 

V(v) * 
vV ( v) U 2 ( V ) , 
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into the Eqs.(A15) and (A16) , leadillg to th(~ \·('ctor I1ilh('l't pwlJII ' 111 

( .YHi ) 

under the conditions 

and ui(v) and ui(v) have finit e degree at illfillity. 

After addition and subtraction , the Hilbert problelll bCCOllH':-i 1l1l('lJllpll·d . 

I.e. 

[
Ui(() - Ui (()] + 

Jk)"+( [ 
u i (() - u; ( () ]- _ Xi < ( < _ k)" . 

Jk).,+( , 
(AJ~) 

where [Jk)" + (t = ±i Ik)" + (I~ . As the functions uj(v) + u;(v) alld 

uj ~(II) are continuous across the branch cut , t hey are allalyt ic ill t h{' 

entire v plane except possibly at v = -AX Such a possibility is ml<'d Ullt 

by the requirement 61,2 > 1, which ensures that there call be 110 poll' at 

v = -k)". In conclusion, ui(v) + 'u;(v) and Ui~(II) are entire fUll ctions . 

The second requirement of ui(v) and u;(v) having finite degTee at infillity. 

combined with Liouville's theorem, then yields 

u7 (v) + u; (v) 
uj(v) - u;(v) 

Jk)" + v 
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U7(v) = PI(V) + P2 (v) J k)" + /I , 

u;(v) PI(V) - P2(IJ)Jk).. + v, 

(:\·11 ) 

where P1 (v) and P2(v) are arbitrary polYllomials. \Vith til(' hc'lp of Eqs. 

(A35) and (A41), the general solution for UI(V) alld 11"2(1.1) is gi\"(\ ll 1).\· 

(:\-12) 

V(V) [ 1 U2 (v) = 1;\1 ( v ) PI ( v) - P2 ( V ) J k)" + lJ . (:\ -u ) 

SOLUTION OF THE EQUATION (All) TO (AI4) 

After using Eqs. (A42) and (A43) , the matrix elelllellt s 111)(1.1) , satisfyillg 

(All) to (AI4), are given by 

u,,(v) = ~ ~i~) [Pdv) - P,,(v)Vk )' + vi ' 
where Pij(V) (i , j = 1,2) are as yet arbitrary polynomials. 

The matrix U(v) can be writt en more compactly as 
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U(v) = U(O)(v)P(v) , (.\1/"1) 

where 

(0) [ -JV(v)vV(v) 
U (v) = JV(V) 

W(v) 

- ~)~I'(V)(L\ + v) ] . 

- lI' (v) (k)' + v) 
(A-19 ) 

Finally we must ensure that U(v) and L(v) are nOIl-sillgular ill Ill(' CIII I I 

plane. This puts some restrictions on Pi]' T he exa('1 H'stricli(lll:-- an ' d( ,\('l -

mined by looking at Det U(v) and Det L( II ). Thlls , 

DetU(v) = DetU(O)(v) DetP(v) = 2V (v)D etP(v)Jk). + v. (.-\00 ) 

DetL(v) - DetK- 1 (v) Det U (v) (A5 1) 

2i19 
- (19 + k{31) (19 + k{32)2V(v)DelP(v)Jk)' + v. 

Therefore U and L are non-singular in the cut v plane if Del P(v) =I- () for 

all v . Since DetP(v) is a polynomial , one must han~ Del P(v) = (,Ollstallt. 

i.e. a polynomial of zero degree. 

The matrix factorization is not unique, and it is desirable that t he poly­

nomials Pij have lowest possible degree, in order that both sides of the split 

Eqs. (2.40) and (2,41 ), also have lowest. possible dcgree at infillity. T hcll t- h (~ 

best choice for P(v) is 

P(v) = [0
1 

°1 ]' 
106 



Thus 

lLII(V) = - jV(V)W(V). 

V(v) 
\V(V) , 

V(v) 
U22(V) = - vV(V) (k)" + v): 

(;\.'jl ) 

(.'\53) 

( "\''j ·1 ) 

(.'\5S) 

where VV(v) and VPv(v) are given by Eqs. (.427) awl (.428). Tll(' 

elements of L(v) after using Eqs. (A52) to (A5S) illt o L(/ I) = 1\' 1( //) [' ( // 1 

are given by 

iVV(v)W(v) i 
ill (v) = - ---

79+kfJI 79+1.;/32 

iVV(v)W(v)(k)" + v) i 
i12(V) = 9 kfJ + 9 kfJ 

7 + I 7 + 2 
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V(v) 
W(v) , 

\/(v)(J.:).. + v) 

W(v) 

V(v)(k)" + v) 
W(v) 

(ASG) 

(:\57) 

(A5~) 

(A 5!)) 



ASYMPTOTIC GROWTH ESTIMATES 

From the expressions (A52) to (A59), and the result s (1315) . (Uli) of 

Appendix B, we obtain the following growth estimates for large lvi , 

Ull(V) = 0( 1), 

U21 (v ) = 0(1) , 

1 

U12(v) = O( IJ2). 

1 

U22 ( v) = 0 (v :1 ): 

Det U(v) = O (v ~ ) , as Iv l _ 00 in larg(k >. + v) 1 < IT; 

III (v) = 0(v - 1
), 

l21(V) = 0 (1) , 

1 
l I2(V) = 0( IJ-2) . 

l22(1J) = O(v~), 

Det L(v ) = O (v- ~) , as lv i _ 00 in larg(k>. + v)1 < IT; 

( .-\ (j() ) 

( .-\ (j I ) 

When v --t -k>., expressions (A52) to (A59) with (1319) aud (1320) of 

Appendix B give 

Ull(V ) - 0 [(k>' + v) -;1], 

U21 (V) - 0 [(k>' + v) -;1] , 

Det U (v) = 0 [( k>' + v) -2

1

] ; 

UI2(V) = 0( 1), (AW) 

lll(V) - 0 [(k>' + v) -;1] , lI 2(V) = 0 (1) , (A63) 

l21(V) - 0 (1) , l22 (V) = 0 [(I.:>' + v ) ~ ] , 

Det L(v) = 0(1); as v- - k>., Re(tJ 1.2 } > O. 
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Appendix B 

EVALUATION OF THE 

INTEGRALS I(v) AND J(v) 

Here, we present the evaluation of the integrals appearing ill Appendi.l' A. 

namely 

(/3 1) 

() 1 i-kA I {(I19I-ik{31) (1191-ik{32 )} dt 
J 1/ = 2;i -00 og 1191 + ik{31 119 1 + ik{32 t _ 1/ 1 

(132 ) 

where 1191 = !t2 - k2)..2 for -00 < ( < -k)". 

Equation (Bl) can also be written as 
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_ ~ roo { log[t+k(A2-pn ~ J +log[t - k(A2 - (:ln ~ ] } 

27r J k>' _ log [t + k (A 2 - p~) 2] - log [t - k ( A 2 - In 2 ] 
dt 

X -.;7=t =-==::k::::;::A:-:-( t-+-I/--:-) 

_ 1 roo { IOg [t +k~l(+)]+ IOg[t+k~ I( -)] } dl 

27r Jo - log [t + k~2 ( +)] - log [t + k~2( - )] vt - kA(t + 1/) ' 

where ~1,2(±) . A ± VA2 :..- Pi,2' 
Making use of the result [22] 

gIvmg 

1(1/) 

-I 

x (kA + 1/)"2 , 

( ll4 ) 

larg (kA + 1/)1 < 71" , Re(:J} ,2 ) > o. 

J(I/) given by the expression (B2) can be recasted as 

(B6) 

where 

(B7) 
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J2 (1/) = -, log , - " dll , 1
11 [lj-U (IOI - ikJI) rlt 1 

00 271" ,t -:x; 1
'
)1 + l,k ,)'2 (t - IIr 

After using integration by parts , Eq, (B7) yields 

(13!J) 

where 

d I ( 1191-ikPI ) 
_1_ ['X) dt. og 11?I+ikP I dt (B 10) 
271"i j k>' (t + u) 
k{31 roo tdt 

-;:- jk>' Jt2 - k2).2 [t - kJ).2 - {3i] (t + u) [t + k J).2 - Jf] ' 
Now making use of the result. 

1
00 dt cos- 1 (k~ ) 

-r====--- = . I , larg (1.:)1) + 6)1 < 71" , 
k>, Jt2 - k2).i(t + 8) J1.:2).i - 82 

cos-1 (0) = ~, and the part.ial fractiolls in Eq, (BIO) , we obt aill 

k{3 + 1 

271" [u - I.: J). 2 
- (3f] 

cus-l _~ ( ~) 

Jk2>,'2 _ k2 (>,2_ di) 
cus-1 (-fi) 
jk2>,2_u2 

cus-
1

( ~) 
J k2>,2_ k'2 (>,2 -:JT) 

cus - I ( -0. ) 
jk2>,2 _ u 2 

(1311) 

o < Re cos-1(u/k).) < 71" , ne(Jk2).2-u2 ) ~ O, larg(k>.+u)1 < n. 

Re({31) > O. 

111 



In Eq. (B1l) both the fUlld iOlls ("Os I (11 / ).-)..) lI lId \ Ik "2 )..2 - II .! Il il\ '(' III <111111 

cut at - 00 < U ~ - 1.;)" ami 1.;).. ~ 71. < OG, I W IICC , I his lH"lIllCh cuI Citll 

be omitted. Then Ql (71.) IS indeed a nalyti c: ill I a rg (k)" + u) I < Ii wi t h a 

single branch cut - 00 < 71. ~ - 1.;)". V,'e also Ilote that QI(II ) is Clilit/"Iit ' 

at u = ±kj)..2 - f3i , since the sillgularities c:allcel. Silbstillllillg ( 1311 ) illt() 

(B9) gives 

( ~) cus- l _~ 

k .3 1 

cu::, - I ( f;: ) 
k 1).. ·! _ ,, '2 

cus- 1 ( A: -JT ) 

Similarly from Eqs. (B7) and (BS) 

- 1 . + k{J~ 
2(u+ I\)") :.I 7T[tL + kJ)..:.! -lj~ J 

k {3 1 

cus - 1 (D:) 
Jk2)..2_ u2 

Combining Eqs .. (B12) and (B13) illto (B5) gives 

where 
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dll . (1311 ) 

duo (131J ) 

(131..1) 
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V(v) = 0(1), as Ivl ~ 00, lal'g (kA + v)1 < n, I1 c(fJ I ) > O. (131 7) 

In addition, 

W (v) - exp [J k A + v I ( v ) ] ( Bi b) 

= [(JkA+V+ Jk'N 1(+)) ( J kA +V+ Jk'N 1(-l) ] 
(JkA + v + Jk'N 2(+)) ( JkA + v + J k'N 2( -)) 

or 

W(v) = 0(1), as Ivl ~ 00 , larg (kA + v)1 < n. 11<,( ,:/l.'2) > 0: (B I!) ) 

furthermore , as v ~ -kA, 

vV (v) = 0(1), RC(,61,2) > 0, (1320 ) 

V(v) = O(kA + vtl , Re(,6 1.2) > O. (132 1 ) 

The result (B21 ) follows from [79] 

1 j -k>. { (1191 - ik,61) (1191 - ik,62 )} elt 
27ri -00 log 119 1 + ik,61 1191 + ib12 t - v 

( 1322) 

- - log(kA + v) + bounded fUllction. as v --t - kA. 

114 



Appendix C 

SOLUTION OF INTEGRALS 

In this appendix, we present the solution of the illtegrals which appear::, ill 

chapter 3 

1 joo+ia ei(L 
II = -, Q( )( )d('Im(v) > -a. hn(I{.'j('osOo) < ([ < IlIl(!\·..;). 

2m -oo+ia (( + v 
(C 1 ) 

From the way 19 has been defined t ha t for Re( B) > 0, Q (() has 1I0 p()l(~" 

or zeros in the cut plane. Thus in the region a < Im(Ks) the ollly sillglliarit,\' 

is a branch cut at (= K8, Distorting the path of illtegratioll ill Eq, (C I ) 

into the upper ( plane until it runs around the brallch wt ( = !\·8. giV<'s 

I _ .J2KS 
1 - 2?Ti 

where >'1 = .J2KS/(1( + A!fv)B is obtailled by replacillg tilt' Sllloothl,\' 

varying function VV + K 8 by V2J( 8. Making an obvious change of variable' 

one obtains 
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e11L/
, y'u . - ,) II 1/ ((':2) V2K se

iK 
sL laOO {II} 

7r [l-).i (1/ + Ks)] 0 u + /\.<; + II /I + A~' -

[ ~ I {lVO [JL(II+ [(8)] -1\'0 [JLAil]} = 0'(1/ ) , 
l-).l(I/+Ks) 

Wo can be expressed in tenus of the Fresud iutl'grai F( :: d h,\' 

Wo [/Zl L] = ei(~~) {I + 2i;;;LF(;;;L)} , L > 0, larg( zdl < 7r, (('J) 

Also note the asymptotic expansion 

(('-1) 

Now consider the integral 

(C'S) 

Anticipating that the lllajor COllt ri bll t iOIl frulll the Sllloot h flllld iOlls tlll ­

der the integral sign occurs at ( = K s, one obtains, on distorting the path 

of integration round the branch cut ( = J( s, 

or 
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h - - 1 ell/ I, .JU - , (Ill 
V2J( se

iKs l
, A loX> {II} 

[1 + Ai (v - J(s)] 0 lL + l\'.'i - // II + Aj-2 

Al V2Ks { ! [ Ir . ], [/, 11 } - [ ] H 0 V L ( - v + /\ .'j) - \ \ \I v L\ 1 
l+Ai(v-J(s ) . 

- -AIW(V), L > 0, larg(](s - v)1 < 71', larg(All)1 < if, (Co) 

Consider the integral 

1 jOO+iC e- i ( L 
13 = -, ( )( ) / , dC Im(v) > (' > I III (f\' ,s) , 

2m -oo+ic Q ( ( - v v ( + J'I. s 
(('7) 

Letting (be replaced by (-() , c by -a, and USillg the fact tbat Cj( -() = 

Q((), J( + Ks ~ J2Ks, gives 

1 j oo+ia e i( L 11 
Is = - , -' d( = - " 

271'~V2J\ s - =+i(l Q(()(( + v) V2 /\ ,.; 
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Appendix D 

DETAIL OF CALCULATIONS 

OF Eq. (4.11) 

In this appendix, we give the detail of calculations to arrive at Eq. ( .. U 1). 

Transforming Eqs. (4.6) to (4. 10) through Eq. (2.5) and making IlS( ~ ()f tile' 

subsonic substitutions (3 .9) , the boundary value problelll t ak<~s the foll()will g 

form 

(a~ =f BM a~ ±iJ(B) cPt (X ,O±.I1 ;"'; ) = O, S < n. (D2) 
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a~ cPl/'(, O- ' ll ;W ) ' X > 0, (03) 

Q 1 (/l)el/(sX/M. X > n. 



where s and a are defilled by Eq . (3.15). TIl<! fi(·ld satisf.v illg Eq. (1)1) 

can conveniently be written a~ 

<Pt(X, Y, J..L ; w) = <Po (X. Y, II.; w) + 0( S. 1'.11: -<J ). (I) .\ ) 

where 

( 
82 8

2 
K2 2) A. (X Y . ) - - _:.;2/4v2,(X X )'(\/ V·) (0;) 8X2 + 8Y2 + s 'PO , , J..L, w - ae u - 0 U 1 - 1 [) , v 

( 
82 8

2 
]{2 2) , (X" Y .. ) 8X2 + 8y2 + sq;., · Il • ...v = O. 

Using Eq. (3.16) the solution of Eq. (05) is givell by 

ae-W2/tlv2 j= eill(X - XO )+ Il)ll)' - ) 0) 

-------dl/ 
4i -oc. ,1 I 

b
1 
(}l) e -if{ s(X cus 00 + ) ' sill Ou) _..;"1 / 1t·"2. 

where b1 (J..L) is given by Eq. (3. 23) allCi ',)1 = Jf{2 8 2 - 1/ 2 . 

(OG) 

(1)7) 

After using Eq. (3.16) the solution of Eq. (06) sat isfying radiatioll 

condition can be written as 

-w
2

/4v
2 

00 A ( ) 
-:i.(I/Y 'w)=e j ~eillX + il)I YdI/Y > O 
'P , ,J..L, 2 . 9 " 

7f~ -00 1 1 
(O~ ) 

(D9) 

Substituting Eqs. (04) , (07) , (08) and (D9) into Eqs. (02) and (03) 

gIves 
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/

00 Ag(v) - AlO(V) il/xd _ - d,'s X ': ,\{ \" () 

9 
e v-ol e ,. > . 

-00 1 I 
( J) Ill ) 

I: [Ag(v) + AlO(V) ] ell/X clv = 0,.\ > 0, (D ll ) 

/

00 A ( ) [ J3(I( - !If V)] /IIX nr. - ..;2 /-1III 
9 V 1 - , e ril l - ----00 rll 2 

(J) 11) 

x / 00 [Sgn(Yo) + B(!vJ v - !\")] e lll ( X - Xu J-r /lI I II [l l elv 

-00 19 1 

- 0, X < 0, 

100 A () [ B(I(-!lfV)]IIIXd o e-..;2 / 4I,2 
10 v 1 - 9 e v + 

-00 1 I 2 
(01 J) 

X Sgn(Yo) - e lll . - .' 0 )+ 11 11- U ell l 100 [ B ( !If v - f{)] (\' v I ' \ ' 

-00 19 1 

- 0, X < 0, 

where 

Sgn(Yo) 1, Yo > 0 , 

-1 , Yo::; O. 

Adding and subtracting Eqs. (D1 2) and (D13) ami substitutillg 

the resulting equations together with Eqs. (DlO) and (Dll) give a pair 

of coupled equations 
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100 [ 2/ '2fl(J( - Mv) v )' J ' 
-00 C] (V)Q(V) + ae-W 

t1v 171 e- w.\oh II I ) () , e 'I ' .\ til l = lJ . .\' < Il. 

(D I 0 ) 

100 [C2(V) 5 1 J iI/X ' -9- - K s e dv = 0, X > O. 
- 00 1 1 V - !IT 

(0 17) 

100 [ C2 (v)Q(v) 1 , wS I - I)' \ ' ) ( (V- ,. < I . 
-00 -as gn(Yo) e-W2 / 4v

2 B(J(l~ AfI/ ) e-iI/Xo) + i,JI Pi) 1 

, ( DI ~) 

A solution of the Eqs. (DI5) to (DIS) can be writtell HS 

(0 2 1) 

(022) 

where the positive subscript denotes that the fUllctioll is regulHI' ill til(' 

domain Im(v) > -Im(J(s) alld tl w Ilegativ( ~ subscr ipt d(' II()t('S til!' f1l1l<'ti()11 
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which is regular in the domain Im(v) < 1111(1\-,<;). TllCs(' two dOlllaills haw 

the intersection - Im(Ks) < Im(v) < Irn(1\s). 

Now eliminating C1(v) and C2(I.I) frolll Eqs . (DIH) t() ( 1)'22) alld !11t'11 

writing Q(v) = Q+(v)Q_(v) ill the resultiIlg eqllatiolls , \\'(~ ubtaill 

Equations (D23) and (D24) arc the usual Wieller-Hopf eqllat iOll:-i. ~()\\' 

following the same method of solution as in Eqs. (1.64) ami (1.67) a!l(ithplI 

using (D14) we get 

Ag(v) 
__ ae~w2/4V2 J oo e - i(Xo+iJI<2 s2_( 2IYold( [ B(J\' - fI/C) - SYII(l ;,) ] . 

4mQ+(v ) -00 Q_(OJK2s2 - (2(( - v) xJK,<; + (JI\-:; - v 

+Ci1JKs-vVKS+ ~;Q+ (J{S/flJ) [2Q+(v)(v- ~~:)rl (D25) 

(D2t.i) 
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In order to satisfy the Kutta-Joukowski conditioll , the expressiolls for A ~)(I J) 

and A lO (I/) , which is of O(II/I - ~+b) a::; 1/ ~ oc, . IIlIISI vall ish 1!J7 j. Tll\'ldlli"t, 

(0:27) 

Using these resulting expressions of Ag(//) and A!O(IJ) ill Eqs. (D8) alld (D!) ) 

and then using modified method of stationary phase \\"{~ h,I\"(' 

C
-

1 
e-w2 /4v2 [ B + B!IJ cos ao - 2 sin (a / 2) sill (fJu/ 2) 1 

cp(X,Y,/1-;w) = sVKs VKs 

eiK [s(R+R<J)-.Jl=7::J'IJl ZO 1 F( I Q I) 
x (028) 

Q + (K s cos a) Q _ ( - K s cos ao) 

2C\ e-w2 /4v2 sin(a/2 ) Sill(ao/2)F(IQII)e"\"[~ ( /h 11,, 1- \ 1--'-1/
2 )11.,,] 

j K sQ + (1\" S cos 0) Q _ ( - 1\" ::; ('os fJu) 

where 

1 

IQI = [K R VI _ (1 _ 1\112)/1-2] '2 cos () ~ cos ao, 
2 Sill () 

1 1 

1

- 1 [K R J ] '2 - - cos a Ql = - 1 - (1 - !lJ2)J12 M . , 
2 SIl1 a 

Taking inverse Fourier transform of (D28) by llsing Eq. (2.6) we get Eq. 

( 4.11). 
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Appendix E 

EVALUATION OF 

INTEGRAL IN Eq. (4.11) 

In this appendix, we present the evaluation of one of the iIlt egrals appearillg 

in Eq. (4.11). The other integrals can be eva luated silll ilarly. \\"(' ("()ll:-.idl'l" 

the following integral 

where 

y 

Making use of the result 
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100 (,;>"2 12 dt = (' 1>' 2(/ ~ F( ).. '2 (1). 

q v->:; ( Ll ) 

Eq. (El) can be written as 

;I\!Y(Z -Zo)+ [(t2 - 111+ u+ I/o) J 1- )'2] 
1 = roo 100 

e df'dt. 
JJ1.1 -00 Q+(KscosO)Q _(-f{ scos(}o)J I - M 2 

(E:~) 

Now, consider the integral 

_ 00 ;J([Y(Z-Zo )+ Jl - Y2 h ] _ 

]' = 1 e dY 
-00 Q+(I< s cos O)Q _ (- J( s ('os 00) . 

(£-1 ) 

, By the substitutions 

l' takes the form 

( Eo) 

where 

We apply the method of steepest descent to solve the integral I', For I hal. 

we deform the contour of integra t ion to pass t hrollgh t hl' poillt of sl c( 'I )('sl 

descent ( = 8 12 , such that the major part of the illt egralld is gi\'Cll hy thl' 

integration over the part of the deformed contour near 8 12 , with JI (() slowly 

varying around it [82]. Hence, we can write 
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where 

l' ~ 7r jl(8 12)H61)(I{R 1'2) 

~ _ 7r H61) (1\ Jr-( Z---Z-o-) ::--2 -+-r-)n c 

Q+ (J(~ 1 ('OS 8)Q _ (- J\'~ 1 (' OS eu)" } ' 

Using (E7) , we can write (E3) as 

I 

If we make the substitutions 

1 

t - - Al+ Al + Rll smh u , Rll = (Z-ZO ) +All 2 ( 2 2, 2 ) 2 2 '2 '2 

Al R + Ro - J.Li, 

in (ES) , we obtain 

where 
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1 

( A2 + R2 sinh2 u) '2 
1 11 . - I 

~2 = R I , ( I = slllh 
11 cos 1 U 

(E lO) 

The integral (E9) can be solved asymptotica lly by taking I\ HII cosh Ii > > 

1. Therefore, we can replace the Hankel functioll by the first terlll of this 

asymptotic expansion to give 

If we let T1 = J2KRll sinh(u/2), then 

(E I 2) 

where 

1 

[
JTI (TI + 2KR ll ) + A?J(2 + AI!\' j '2 

(TI + J( RIl ) (TI + 2K fl ll ) 

1 

and 
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An asymptotic expansion of J then follows by plIttillg T1 ('qllal tu it:-i 

lower limit value in the non-expollential factor of the illtegralld pills till' 

contribution from 71 = 0 depending if zero lies ill the internti of illtt'grat iUll. 

Hence 

I 

where 

10 -
1 ~ 1 
2 JK Rll Q+(]((2 cos 8)Q _ (- /«(2 cos 80) , 

H(e) is the usual Heavisicle fUllctioll, a lld 

R + Ro A l 
(2= R '( l=-R' 

12 11 
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Abstract 

The diffraction of an acoustic wave hy a slit in an infinite, plane. porous barder is 
investigated. The banier is modeled as a rigid material filled with nanow pores. nOimai to 
the plane of the balTier, that provide sound damping. However, the barrier is thin enough 
that sound transmission takes place. An approximate houndary condition is derived that 
models both these effects. The source point is assumed far from the slit so that the incident 
sphelical wave is .locally plane. The slit is wide and the halTier thin. both with res~ct to 
wavelength. The plincipal purpose of the halTier is to reduce the rellectel! and transmitted 
sound so that we assume that the now resistance of the pores is large. The diffracted tield 
is calculated using integral transforms. the Wiener--Hopf technique and asymptotic 
methods. While a formal solution to the complete problem is given. only the diffracted 
wavefield is studied. and that only in the farlicld of the slit. The diffracted field is the sum 
of the wavefields produced by the two edges of the slit and an interaction wave1ield. The 
dependence on the bUlTier parameters of the power removed from the rellected wavefield 
by the diffraction at the slit is exhibited. 
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1. Introduction 

An crfective method of noise reduction is to use sound absorbent balTiers in heavily 
built up areas r 1.2]. In most calculations with such a balTier. no sound is assumed to be 
transmitted through it. However. many halTiers are not sufticiently thick to completely 
prevent sound transmission. The aim of this work is to calculate the scattered wavefield 
exc ited hy a sphelical wave incident to a slit in a banier exhibiting both absorption and 
transmission. The source is assumed to be sufficiently far from the slit that its wavefront 
is locall y plane. Throughout we assume that the field is hanTIonic in time. In this paper we 
give a fOlmal solution to the complete prohlem and demonstrate that. in the limit ora rigid 
barrier. the solution reduces to that calculated by the geomeuical theory of diffraction. The 
asymptotic analysis of the resulting integrals is only canied far enough to permit the 
calculation of the diffracted wavefields far from the slit as well as the power removed from 
the rel1ected wavefield by interference wi th the diffracted one. We anticipate extending the 
analysis of these integrals. so that expressions for the wavefield in the slit and close to the 
barrier can be obtained. and have therefore given more details of the solution than is 
necessary to calculate only the farfield l\~sults. 

Scatteling from a slit or strip is a well-studied problem in diffraction theory. 
Asvestas and Kleinman [3. pp. 181-239] summalize and review much of the work done 
on it. Jones [4. pp. 602-607] and Noble [5. pp. 196-207] discusses diffraction from a slit 
or strip using the Wiener-Hopf method. We follow their approach very closely. To 
calculate the diffracted wave field from the interaction between the edges we assume that the 
sli t is large. with respect to wavelength, and asymptotically approximate several integrals 
using this assumption. Karp and Keller [6] calculate this interaction telm for diffraction 
from a slit in a perfectly tigid banier llsing the geometrical theory of diffraction (this theory 
also assumes that the slit is large with respect to wavelength). Their work is a limiting case 
for ours and we show that, in this limit. the power removed from the reflected wavefield 
hy interfl!rl!ncl! with the diffracted Olle, that we calculate, agrees with theirs. Lastly, the 
same overall approach used here has been taken by Asghar [7] in his study of scatteling 
from an absorbing sl1ip in a moving fluid. -

Rawlins [8]. continuing his earlier work on diffraction from an absorbing barrier 
19], presented a model of an acoustically penetrable but absorbing half plane banier. and 
calculated the diffraction from its edge. He used a boundary condition. having two 
parameters. that mixes the pressure and its nOlmal delivative at each side of the barlier. 
The boundary condition produces discontinuities across the barlier in both the pressure and 
its nonnal detivativc. T he magnitudes of the discontinuities are set by the two parameters. 
They are chosen to give approximately the same reflection and transmission coefficients as 
those found for the case of a plane wave incident to a thin layer, whose goveming equation 
is a scalar wave equation. Adopting the same form of boundary condition here, we 
identify the parameters in a different way. Using a simple theory of porous materials 
descri bed in Morse and Ingard II O. pp. 252-256]. our model assumes the banier is made 
from a ligid material that is liddlcd with small pores that are approximately nOlmal to the 
plane of the ballier. No pal1icle velocity in the batTier parallel to its plane is pelmitted (a 
kinematic constraint). We take limited account of the compressibility of the gas in the 
pores. However. the gas in each pore hehaves plimarily as an incompressible cylinder, 
dtiven back and forth by the harmonic wavclicld, but opposed by the frictional force 
generated at the pore walls (the !low resislance). The bat·lier is thin enough (with respect to 
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wavelength) that sound is communicated from one side to the other by the motion of the 
numerous incompressible cylinders. The model is accurate provided hCf>/ pc = 0(1). where 
It is half the thickness. Cf> the now resistance and pc the specific acoustic impedance of 
the surrounding gas. 

There have been other attempts do derive approximate boundary conditions that 
model thin layers. though. unlike the one discussed here. they have not involved a 
kinematic constraint. Bovik [11] derives approximate boundary conditions for thin fluid 
and elastic layers in a differential fonn. using "~'aylor expansions as the basis of the 
approximation procedure. Wickham[ 12] takes a different approach and reduces the 
approximate boundary condition to an integral fonnulation that avoids the need to 
approximate the boundary conditions pointwise. but imposes instead a condition averaged 

.ovcr the boundary. Though our approach lies somewhat mid-way between the two. we 
end with a differential fOlm because the boundUly conditions are locally reacting. The gas 
in each pore responds only to the wave field in its immediate neighborhood. 

The final results are presented in the form of the power removed from the reflected 
wavcfield hy interference with the diffracted one. To make this calculation we adopt an 
argument given hy Newton[13. pp. 18-20]. Normalized with respect to the reflected 
intensity times twice the width of the slit. this gives a measure of the effectiveness of the 
hanier. with the slit. at reducing sound transmission. This telm is a function of the slit 
width and the prope11ies of the banier. 

2. Formulation 

We consider the diffraction of an acoustic wave excited by a point source located at 
(xo . Yo. zo ) or (lo'Oo'zo) by a slit in the plane y = 0 of width 2a • -a ~ x ~ a . We shall 
also ask that 0 < Of) ~ rc/2. The geometry is shown in the Fig. 1. Throughout. the time 

harmonic factor e -;(~ \s understood. We shall work with the velocity potential cr. where 
the particle velocity u is given by u = -'V cr. The total velocity potential cr( satisfies 

where 

is the wavenumher. The wavenumber k is assumed to have a small positive imaginary 
part whenever this is needed to ensure the convergence (regulality) of the Foulier 
transfOlm integrals defined subsequently. The term k2 is othelwise set to zero. The 
boundary conditions satisfied by crl on ( ~oo <. x ~ - (l) u (a ~ x < 00). y = 0% are 

± ; . cr,(x. ot. z)+ ikeXcr,(x. O:t. z)+ ik (3cr,(x. 0"'. z) = 0 

We shall refer to this as the Rawlins [8j boundary condition. The parameters a and f3 
will he identified shortly. The o± means that th~ field term is to be evaluated as y ~ 0 

(1) 

(2) 

(3) 
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through positive or negative values of y. The boundary conditions on -a < x < a, y = 0% 
are 

a,(x, 0+, z) = a,(x, 0-, z) 

and 

~,a,(x,o+.z) = ~a,(x,o-,z) 

In addition. we insist that at satisfy the edge condition as x ~ - a+ , a', 

a,(x, 0, z) = 0(1) 

and 

~ a,(x, 0, z) = O(x-Y:) 
O}I 

The plus sign indicates a limit taken from the left and the minus sign one taken from the 
right. 

It is useful to split the totallicld ar in two ways. To discuss the boundary 
condition we wIite 

(4) 

(5) 

(6) 

(7) 

(8) 

where a j is the incident wave and a, is the scattered wavefield. We insistthat as 
repr~scnt an outward radiating wawfidd. However, to discuss the diffraction problem, it 
is more useful to wlite at as 

{
a j + ar + G, y ~ 0+ 

a = , < 0-a , y_ 
(9) 

where aj is again the incident wave. a,. is the wave reflected from apelfectly rigid barrier 
and a is the scattered waveficld. It is comprised of the diffracted wave, a correction to the 
reflected wave and a transmitted wave. 

3. The Boundary Condition 

Figure 2 shows a porous banier of thickness 2h extending to infinity in the ±x 
directions. No slit is present. The space is divided into three regions. The regions V+ and 
V- ar\.! those ahove and hclow the halTier and are occupied hy a gas having density p and 
sound speed c. The region ~) is that occupied hy the porous halTier. Following a 
fonnulation that is identical to that given in Section I.B of Hanis et al. [14], the velocity 
potential a, scattered from this barrier is represented by 

a~(x) = -J [aR(x'. x)V a,(x') - a,(x')V' a g (x',x )] · n dS(x'), x e V+ u V- (10) 
s 
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where (J, is the total potential given hy Eq. (8) and (Jg is the three-dimensional, free-space 

Green ' s function. The surface S is compllsed of the upper and lower surfaces of the 
banler. it is a unit nOimal vector pointing out of the banier and 'V' indicates that the 
gradient is taken with respect to the argument x'. The vector x indicates the observation 
point and lies outside the hallier. whik the vector x' indicates the source point and lies on 
the surface S. 

Asking that the unit normal it now point only in the positive y direction, we define 
the discontinuities 

['V(J,. it] = 'V(J, (x.h.z)· it - 'V(J,(x,-h,z)· it (11) 

and 

[(J, J = (J,(x.h,z) - (1,(x,-h,z) (12) 

These are the sources of the scattered sound as can be seen by noting that, provided the 
discontinuities in Eqs. (11) and (1 2) are no larger than 0(1), then the integral Eq. (10) can 
he approximated to O( kh) by evaluating the Green's terms at y' = O. This leaves us with 

(J,(x) = - JJ {(J/t /, O. z',x )[ 'V (J, : it] - [(J,] 'V' (Jg . it }dt' dz' + O{kh) (13) 
s 

when~ x lies outside the volume enclosed by S. Note that we have approximated a 
function that we know and whose length scale is set by the wavenumber k and not by the 
wavenumber of the porous material. It is therefore the discontinuities, Eqs. (11) and (12). 
that Eq. (3) must mimic. 

Retuming to the Rawlins boundary condition, we note that if we take the limit 
kh ~ Oi of the following 

['V (J, . n] = - ik(a + {3)[ (J,(x,h,z) + (J,(x,-h,z)] ( 14) 

and 

[(J,] = - [ik( a - {3)r ['V (J,{x,h.z)· it + 'V (1, {x. - h,z) · it] (15) 

then. hy adding and subtracting Eqs. (14) and (15), we recover Eq. (3). Accordingly. by 
estimating the discontinuities. Eqs. (II) and (12). we may use Eqs. (14) and (15) to 
detelmine the parameters a and {3. 

Adapting a simple theory of porous materials given in Morse and Ingard [10, pp. 
252-256]. the equations governing the acoustical behavior of the porous barrier are 

iWI(/J.p = du2 /dy (16) 

dp/dy = iwpp[l + {icl>/ppm)]u2 

The particle velocity in the hatTier /( 2 is restricted to he in the normal direction only, the 
particle velocity in the tangl!ntial dirl!ction must be zero, and the acoustic pressure in the 
harrier is p. The parameters of the model are I( p the compressibility of the gas in the 

pores, n the porosity or fraction or the volume occupied by the pores and hence by the 

(17) 
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gas. PI' the effective density of the ga.'> in the pores and <l> the now resistance. This last 
parameter detennines the effective sound absorbing propelties of the ban·ier. At the 
boundalies of the balTicr the pressure and nonnal components of the particle velocity are 
continuous. No condition is placed on the tangential pruticle velocity components 
immediately outside the balTic ... Integrating Eqs. (16) and (17), noting that p and tt2 ru'e 
the total fields in the ban·ier and using the boundru)' conditions at the barrier walls gives 

h 

6 

[Va,. il] = -ro2pl(pn(- iwpt J pdy (18) 
- h 

and 
II 

[a,] = iwpl' [ 1 + (i cI>jPpro)](-iwpt J 1I2 dy (19) 
- II 

The barrier is both thin and absorbing. We wish to capture both these features. 

Defining K'. = I( po.. p, = p,,[ 1+ (i cI>j p"w)] and ce = (Pel(e t/2 , the effective wavenumber 

in the han'ier is k. = wlc •. We assume that p and 1I2 vary slowly enough through the 
bru·lier to he approximated accurately hy the first two terms of a Taylor series in the scaled 
thickness variable k.l1(.v / h) . This assumes that the flow resistance is not so strong as to 
cause the wavefield in the banier to ve l)' rapidly decay We are therefore able to relate Eqs. 
(14) and (15) to the porous balTier model by noting that 

1 II 2 (. ) J pdy = [a ,(x,h.z ) + a,(x,-h,z )]/2 + O(keh) (20) 
- /rop 2h _II 

and 

1 II 
~It J 1I2 dy = [Va, (x,h, z)· il + V a,(x,-h,z)· &]/2 + O(k.h)2 

-II 

(21) 

Assuming that (k.h)2 is small, we find that 

a + 13 = - ipc2
1( pnkh (22) 

and 

(23) 

Note that only (a - 13) contains the now resistance telm. 

To estimate the sizes of these terms assume that 1(1' and PI' are equal to the 

compressibility K and density p or the sllrrounding gas, so that I( pP pc2 = 1. This is not 
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quite the case because p p can be larger than p. and 1( p can be the isothe'imal 

compressibility rather than the adiabatic compressibility 1(. Nevertheless. if the batTier is 
to absorb the incident sound then ¢>/ pm must be moderately large. Morse and Ingard [10. 
pp. 252-2561 suggest a value as high as 10 at 1000 Hz. We are therefore left with the 
following estimates 

0.+ f3 = -iOkh (24) 

and 

(a - f3t = kh cl>/ pro (25) 

For "" small (a + f3) is small because n < 1. but (a - f3t need not be because. for 

effective sound absorption. cl>/ pw > I . Moreover. Ikeh l = kh(ncl>/ pm)'l2. Examining the 

approximation in Eqs. (20) and (21). we note that. provided khcl>/ pm = 0(1) or 
equivalently hcl>/ pc = 0(1). then the eli'or leading to the approximate equivalence between 
Eqs. (14) and(l5). and Eqs. (20) and (21) is O(kh) throughout. As we continue with the 

calculation we shall find that some tenns are proportional to (a + f3) and can be dropped, 

while others contain (a - f3) or (ex - f3t and cannot. We could just set (a + f3) to zero at 
this point. but. by can),ing it through the calculation the different roles of the barrier 
thickness and absorption become clean.:r. Moreover, though we are assuming that (a - f3) 
is not small. it can be set to zero to recover the case of a rigid bamer. 

The reflection R and transmission T coefficients for the velocity potential using the 
boundal)' condition Eq. (3) are given in Rawlins [8J Eq. (38). Neglecting the (a + f3). 
they are 

R(e) = sine 
[sine + (a - f3)] 

(26) 

and 

T(e) = - 2f3 
[sine+(o. -f3)] 

(27) 

Note that a=:: - f3 and thus -2f3 =:: (a - f3). The parameter f3 clearly controls 

transmission. For normal incidence. using the previous estimates T{n/2) is approximately 

- (pc / 2hcl» so that the banier allows weak transmission of sound. The coefficients have 

no poles on the real e axis (0 < e < rr). 

4. The Wiener-Hopf Problem 

We now proceed with the cakulation of the diffraction by the slit. The Fourier 
transfolm over z and its inverse a;'l ~ ddined. respectively, as 
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and 

I J- . 0', (x. y.~) = ( )1/2 11', (x. y. p)e,/Ll.dp 
2rc --

with identical dclinitions for the other potentials O'i' 0', and 0'. The problem now 
becomes 

and 

where 

y=(k"_p2Y'2. Imy>O 

The boundary conditions at y = 0 arc 

for (-oo<x<oo) 

8 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

((~ + ika )1I'(x. 0+. p) + ika[ 11';(.>:. O. p) + ",,(x. O. p)] + ik/3"'(x. 0- • J1) = 0 (34) 

(~ - ika )1I'(x. 0-. p) - ikp[ 11';(.>:. o. p) + ",,(x. O. p) + ",(x. 0+, p)] = 0 (35) 

for (--00 < X ~ -a)u (a ~ x < (0) and 

for (-a < x < a). 

lI'(x. 0+. J.1) - lI'(x. 0- . J.1) = - [lI'i (x. 0, p) + "', (x. O. p)] 

~, 11'( x. (t. ~L) - ~ lI'(x. 0-. J1) = 0 

The solution to Eg. (30). giving the incident wave "'i' is 

(36) 

(37) 
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- iJi.;:o 

"'i(X, y. Jl) = - (2: ),,2 4i H61
)( rlr - rol) (38) 

where Ir- rnl=[(x - xll )2 +(Y - YIYr~. The reflected wave "', has the same form with 

the source point replaced by its rdkcted image source (xo,-Yo,2:o)' As indicted in the 
introduction. we are interested in a situation where the source point is far from the slit. 
Accordingly. we may usc the asymptotic approximation to the Hankel function, assuming 
that \r '0\ ~ 00. to obtain 

- b( ) - iy( xcos9u+ysin8o) 
"'; - Jl e 

and 

l ( ) - iy (xcos8o - \"sin8o) ",,='}Jlf . 

where Xo = '0 coseo and .vo = '0 sin en (0 < eo ~ n/2). and x = rcose and \.v\ = rsin e 
(0 < e < n). The possibility that r is ncar 0 can always be avoided. The term b(Jl) is 
given by 

(39) 

(40) 

(41) 

Note that hy asking that 1m r > O. we have succeeded only in causing the incident and 
reflected disturbance to be damped in the negative x direction. 

We next define the Fourier transfOlm pair 

(42) 

and 

(43) 

with identical definitions for the other wavdield tenns. Note the different sign convention 
in the exponential terms from that used in Eqs. (28) and (29). We split ",(v, y, Jl) as 

(44) 

where 
oe ,-a 

- ( ) - I f ( ) ;v(x+o) Lx 
'" ± V, y, Jl - (2n )112 n.-'!: x, y, Jl e . l 

(45) 

and 
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- ( I Sa . 
IjII V. y. p) = (2Jl')112 _aljl( X. y. J1)e"'Xdx (46) 

In Eq. (45) the lirst (reading from krt to right) set of limits accompany the plus sign and 
the s~cond minus sign. 

In calculating the partial transforms. Eq. (45). of ljIi and IjIr' Eqs. (39 and (40) care 
needs to be taken as x ~ 00. Acco;'Jingly, we shall assume that lJIi and lJIr are multiplied 
hy H(x_a )e-f(t -O' for .\'>0 and hy H(x+a)ef(.t+ol for x<O. Later we shall let e~O. 
This device allows liS to smt Ollt the regions of analyticity. Because lJIr is that for a rigid 
rather than a porous hatTier. the wavdic ld lJI will contain a transmitted telm that behaves 
as e-iy(""slio)t,-f(X-II' for x>a. e-iy ( \C"sli,, ) for - a<x<a and e-iy(x':Os9o)ef(.t+ol for X<-lI . 

This fact wi ll dominate the regions of analyticity. The term lJI +( v. y, J.l) is regular for 

Imv>[Im(ycos8,1) - ie] and IjIJv,y . .u) for Imv<[Im(ycos8o)+tie]. The function 

IjII(V, y,.u) is an integral function. We shall end with two Wiener-Hcipfproblems one 

with the common region Im(ycos8o - if ) < lin v < Im(ycos8o) and one with the common 

region Im(ycos8o) < 1m v < Im(ycos8" + if ). 

Taking the Fourier transform over x of Eq. (31) and solving the resulting 
ditTcr~ntial equation, so that the radiation condition is satisfied, gives 

- {A1(V)e- YJ .Y~O+ 
ljI(v,y.j.l)= A~(v)ej'y y~O-

where 

- () ~)Y: R - 0 Y = v- - y- , e y > 

(47) 

(48) 

Transforming boundary conditions Eqs. (34) to (37). and using Eqs. (39) to (41) we get 

IjII (v. W . .u) - 1jI1 (v, 0-, p) = 2iG(v )b(J.l) , (51 ) 

dljll ( ()+ ) = dljll ( 0- ) . v, .11 v.. J1 , 
ely dy 

(52) 

In Eqs. (4<) and (50) the term a goes with the upper sign and f3 with the lower sign. The 
term G(v) is given by 
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;(\'-rco,9o )1I -;(\'-rcos 9o)n (' - e 
G(V) = ..., In ) 

(_Jr) (v - ycos8o 
(53) 

From Eq. (47) and using the hounl1;lry conditions (49) to (52) . we eliminate dV/+/dy and 
elljI_ / ely to get 

._ kb(J.1)(a _ {3)e;(\·-rcos 9o)a kb(J.1)(a _ {3)e -;( ,·-rcos9o)a_ 
(54) 

+ lyG(V)b(tl) + 1"[ ( )] - lP[ ( )] - 0 (2Jr ) - v - ycos8o - ie (21t' ) - v - ycos8o + ie 

where 

Equation (54) is the Wiener-HopI' functional equation discussed by Noble [5. pp. 196-
2(2). Note how (a - f3) enters this equation. 

5. The Diffracted Wavefield 

(55) 

The unknown functions It( v. o. J.1) and '11- (v . o. p) have been detelmined by 
using the procedure discussed by Noble l5. pp. 196-202]. Several steps in the procedure 
are given in Appendix A. Telms multiplied by (a + {3) are O(kh) and are dropped. but 
terms containing (a - {3) (that appear in L(v) and 4(v) need not be small and are 
retained. Moreover. the procedure includes asymptotically evaluating the integrals 
appearing in Eqs. (A 15) and (A 17) for large ~a, where ~ scales with k. That is, we have 
taken ka to he large. With these approximations the functions are given by 

17±(v.O.J.1)=-,,) ;l:,~} ( )[G1.2(±V)+T(±V)C1•1 (y)]. " 
\_Jr ± V 

where the SUhSC1;pt I accompanies the upper sign and the suhsclipt 2 the lower. The 
Cl. ~ (y) arc 

The GI,2 (v) arc 

where 

p , (v) = S+(v) - St(YCOS8\1) _ ik(a - {3) 
, 1.- (v + ycos8f) ) S.(ycos8o + ie)[ v + (y cos8o + ie)] 

and 

(56) 

(57) 

(58) 

(59) 
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The lirst suhsclipt accompanies the upper sign and the second the lower sign. The T(v) is 

where 

i~j!1 

E - 2 irr/1 e 
Q - e -( 2-}tI-)-;-I/""""j 

The definition of w,J::) needed in this paper is 

W ( . ) II2{1 II ' -i\'( . )1/2 f" [( • )I/~]} o -I), = rr + rr -e '-I), erIC - I), 

where y is real and positive (for our work), and erfc(z) is the complimentary en'or 
function. It is closely related to the Fresnel intcgral. 

6. Farfield Asymptotic Approximations to the Diffracted Wavefield 

Substitution of Eqs. (56) and (57) in Eq. (AS) yields 

(6l) 

(62) 

(63) 

Al ,(v) = - sgn( v) /b(~J, { ei(l.a )[ GI (v) + CI (y)T(v)] + e-(iI'tl) [G2( - v) + C2(y)T( -V)]} 
,- . 21l' - S. V S_ v (64) 

+ i sgn(y )G( v)b(p) 

where the first subscript cOITesponds to y > ° and the second to y < 0, and therefore the 
wavcficld VI(x,y,J1). Wcdividc VI as VI = VII (x, y,j1)+1jIlx,y,j1). Each part is given 
by 

( 
I ) - 1 ( ) 1 J1 J I -i\:t -71)'1 • Y cos 0 e u. 

'b( ) - {s ( () ) i(v- rcos8o)a S_(ycosllo)e-i(v-rcOs8o )a 
VII X,), J1 - sgn v -- (vee ( ) ( ) . . 2rr __ S.(v) v - ycos(}o S_(v ) v-ycos(}o 

ik(a - {3)ei(\'-YCOS llo)n ik(a _ {3)e- i(\'-r cos8o)a } 

+ S .. (v)S_(ycos(}o - ie)[v - (ycos(}u - ie)] - SJv)S .. (ycos(}o +ie)[v-(ycos(}o +ie)] 
(65) 

and 
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VI ,(x. y.l') = ,gn(y) i~~) 1Ilv,-;"" -,j,j{ :.;:) [R, (v)e;r'~',,; - C,(r)T(V)] 

+ ;~;:) [R,( -vV "'·"·· - C,(r)T( -v)l} 
(66) 

The firsttcnn lJIlr. y. )1) represents the field diffracted by the edges at x = ±a. plus the 
geometrical wavefield. not included earlier. Note that there is one pole above the contour 
and a second below it. These tcnns are the transmitted wavefield. Once these pole 
conl1ibutions are captured we can let £ -7 O. The second term lJI2(X. y.)1) gives the 
interaction of one edge with the other. 

The integrals appealing in Eqs. (65) and (66) can be evaluated asymptotically by 
using the method of steepest deSCenL'i . Hanis [15] shows that. beyond the Fresnel · 
distance. k(2a)~ / 2Tr. the exponential phase terms in the braces need not be considered and 
only the exponential with x and Iyi needs to be considered in making the steepest descents 
calculation. In other words we evaluate the diffracted wavefield at points sufficiently 
distant from the slit that it has evolved into a cylindlical wavefield (a spheroidal wavefield 
after the inversion in II) with a radiation pattem. For that. we put x = rcos8 and 
\."\ = ,. sin 8. with 0 < 8 < Tr. and dcfonn the contour by the Sommerfeld u'ansfOlmation 

v = - y cos( r). Hence. for large y". the diffracted wavefields are 

III (x. v.)1) = sgn(v) isin8b()1) F.( _ycos8)ei(yr-Jr/4) 
't'l. . (2 )112 1 

(67) 
Tryr 

and 

lJI2( x. y. )1) = sgn{v) i~;~~.~I\~) F; (- ycos8)ei(,,- -Jr/4) 

The radiation pattems arc given by 

F;(-ycosB)=- + cos 0 e _ - ycos 0 e 
{ 

S (y . '8) -iy (cosll+cusllo)a S ( 8 ) iy(cosll+cosllo)a 

S+( -ycosB)( cosB + cosBC)) S_( - ycos8)(cos8 + cos8o) 

(68) 

+ ik(a _ {3)e -iY(COSII+cosllo)a _ ik(a _ {3)e- iY(COSII.cosllo)a } . 

S.( -ycos8)S_ (ycos8o )(cos8 + cos8o) S_ (- ycosB)S.(ycosBo)( cos8 + cosBo) 

(69) 

and 
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+ [R~(ycoSe)t' i Y COS9011 _ C
2
(Y)T(YCOS8)][ e(irCOS9a )] 

S+ ycos8 

14 

(70) 

Next we take the inverse transform over J1 using Eqs. (67) and (68) in Eq. (29) . 

. . e - i[r(r+ro)+J*-zo)] 
ISIl1 f e CTdl( X,y,z ) = sgn(y) ' ( )1/ 2 F;(- Ycose)----dJ1 (71) 

8JT-"'0 _~ Y 

( . - ) - (,) i sin e f~ ( e) i[r(r+ro)+Jl(:-tol]d (72) 
CTd2 x, .h .. -sgn.' ' ( )1/ 2 F;-ycos e J1 8JT - "'0 __ 

Introduce,. + '0 = 'i2 Sin cf>12 and (z - "', ) = 'i 2 cos cf>1 2 , with 0 < cf>12 < n. Using the 
transfonnation J1 = kcos(r), Eqs. (74) and (75) are approximated as 

( ) ( ) i sin 0 ( O' ) i( krll-Ir/4) (73) CTdl x,)', Z = sgn y ( )112 F; - kcos smcf>1 2 e 
4rr 2rr k I'I'r/i 2 

and 

( ~ ) - " ( ,\ iksinOsintPI2 1:'( k O' til ) i(kr,:-Ir/4) (74) CTd2 x,y, .. -sgn )" ( )112 r 2 - cos sm"'12 e 
4JT 2JTk"'o'i2 ' 

where F;j -kl:osO sintPl2) are given hy Eqs. (69) and (70), respectively. 

7. Discussion 

We are concemcd with understanding how successfully the batTier reduces the 
sound transmission despite the presence of the slit. Moreover, we want to understand how 
the absorption of the balTier makes its presence felt. To do so we imagine that source lies 
on the positive y axis far from the slit and that the reflected sound is measured at a point 
on the y axis. also far from the slit. We take b(J1) = 1 and J1 ='0, so that y = k, in Eqs. 
(67) and (68). Moreover we set eu = rr/2. The power both cru1'ied by the reflected 
wavcficld und by wuvcficld dilTructcu from the slit is then calculuted in the furlield. The 
term resulting from their interference is then extracted. This telm is the power removed 
from the rellected waveficld by that scattered by ruld transmitted through the slit, and by 
that ahsorhed by the barlier. It is then nOlmalized by dividing by the reflected intensity 
times Mice the width of the slit. This quantity is given by 

r(k(l,a - f3) = _1 Im{[ F;(O) + kF;(O)][ 1 + (a - f3)]} 
40 2ko 

(75) 

The term F;(O) is given by 
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F. 0 - 2i/':,'/ _ 1 + 2(a - f3) 
{ ]

1I2} 
,( ) - [l + (a -fJ)] L+(a - fJl (76) 

and r;(O) is given by 

ejpkn-Jr/~) 1 
kF,_(O) = 

( 2rr) I/ ~ ( 2kofn [L+(k)f[l + (a -13 )] 
(77) 

The interesting behavior is largely confined to the second tenTI in Eq. (75). Setting 

F(ko.a - 13) = _ I Im{kF;(O)[ 1 + (a - 13)]} 
2/':0 

(78) 

Fig. 3 shows a plot of F against ko. for values of a - f3 from 0 to 1. The increasing 
effect of the absorption is apparent. The form of kF;(O) suggests that the interaction 
hetween the edges is affected more strongly by the properties of the batTier than are singly 
diffracted rays. However. because 2ka is large in our approximation. the interaction term 
is always small. 

Note that the case (a - f3) = 0 C01l'l~sponds to a rigid barrier. In this case our 
expression for r(ka.a - f3)/4a corresponds to the transmission cross-section given by 
Karp and Keller [6. Eq.(l6)]. namely. 

r(ka.a - f3) _ 1- sin(2ka - rr/4) (79) 
4a - (2rr)II1(2ka)S/2 

It is of interest to note how the parameters (a ± 13) enter the calculation', The 
parameter (a + 13) rerresenL<; essentia1!y the thickness of the barrier and appears in the 
calculation separated from the other terms. while (a - f3) represents the absorption of the 
halTier and is intimately included in the calculation through its role in the terms L± and L. 
We hclieve that the Rawlins boundary condition more adequately represents the mechanical 
response of a thin ahsorbing banier than would a boundary condition with f3 = 0, 

While we have not explored our expressions in any completeness. we conjecture 
that they are more accurate than those calculated using the geomeuical theory of diffraction 
and hence that they pclmit us to approximate the wavefields both ncar the slit and near the 
barrier itscJr. 
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Appendix A The Solution to the Wiener-Hopf Problem 

. To solve Eq . (54), we make the following factorizations 

? = K+ (v )K_ (v) = [ e-ilf/~ (v + y)1/ 2][ e- iIf /4(y _ V)1/2], (AI) 

, . and 

(A2) 

where L+(v) and K+(v) are regular for 1m v > - 1m y. and L_(v) and K_(v) are regular 
.. for 1m v < 1m y . Rawlins gives the exact factOlization of Eq. (A2) in both [8] and [9]. The 

L:I:(O) are given by 

[ ]
1/2 

L+(O) = LjO) = 1 + (a - {J)k/y (A3) 

and 

1/2 ( X J I + cos - 1 It 
L+ (y) = L_( - y) = ( X) exp - J-. - dll 

2 2rr mnll -x 
(A4) 

where sin X = - (a - {J)(k/r) . 

Usi ng Eqs. (AI) and (A2). we rewrite Eq. (54) as 

ei\'rIffJ v. 0, J.1) + (S+ (v)SJ v)r dljll (v. O. J.1) + e-i\'aff) v, O. ,u) + iG(v)b(,u) 
d" . 

kb(J.1)( 0; - f3)eill(\'-rcostJ~) [1 1] 
- (2rr)I12[ S+(v)Sjv)] (v - ycos8o) - [v - (cos 80 - ie)] 

(A5) 

kb(J.1)(a_{J)e- ia(\·-rCOS90 ) [ 1 1]_ 
+ (2rrt 2 [S+(v)Sjv)] (v -ycos80 ) - [v - (cos80 +ie)] - 0 

where. 

(A6) 

With the help of Eqs. (44), (47). and (49) to (52). the unknown functions A\(v) and ~(v) 
are given hy . 

(A7) 



25 Mar. 97 17 

The + sign is used with the subsclipt I and the - sign with the subscript 2. As we indicated 
in our discussion of the boundary conditions, telms multiplied by (a + [3) are O{kh)(after 
the inverse transforms are taken) and are dropped, but telms containing (a - fJ), that appear 
in L.(v), need not be small and are retaincd. Thus, using this approximation, Eq. (A7) 
bCl:omes 

AI (v) = - A! (v) = e;\'" T7J v.O . .u) + e-h'/I 11- (v,Q,.u) + iG(v)b(.u) (A8) 

By multiplying Eq. (A5) by SJ v)e-;I'c/ and lIsing the general decomposition 
theorcm, we obtain 

k b(.u)(a - [3)e -;;rCI's9o" _ e-;\'n dl/fl 
+ II' ( [ )] - ---(v, O,.u) (21t') -S_ rcos8o - it:) v - (reos8r) - it: SJv) dy 

_ ib(.u)e-;YCO,6oa S.(rcos8t)) _ U ( ) _ V () ib(.u)e -;(2~' -ycos6o)a S+(rcos 8o) 
( 21t't~ (v -rcos8o ) - v - v + (21t')112(V -ycos8o) 

(A9) 

kb(.u)(a _ [3)e-;YCoS6ou kb(.u)(a_[3)e-;YCoS6oa [ I 1] 
+ (21t' )I/! S.(v)( V - r cos8n) - (21t't~[ v - (r cos 80 - it:)] SJv) - S_ (rcos80 - i£) 

kb(J.l)(a_[3)e-;P\.-rcoS9oln[ I 1] 
- (21t')

1/2
S.(V) (v-Yl:os8o)-[v-(ycos8o+ie)] 

The fUlKtions U±(v) and V±(v) are the decomposition [17] of 

U(v) = SJv)lL(v, 0, .u)e-;2''(J (AlO) 

and 

_ie-;P\·-r cns9°)"b(.u) [ ] 
V(v) = ( )l/~ ( ) S .. (v) - S+(ycos8o) 

21t' v-ycos8o 
(All) 

Similarly. multiplying Eq. (A5) by S.(v)e;\·/I, we obtain 
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SJv)jL(v. o. II) - ;~,~le;r='"" l [SJv) - SJrcos8ol] + PJv) - O-(v) 
(2tr v - ycos8!) 

k b(J.1)( a - {3) eireo'Yon _ eil'u d'l'l 
- I I' [( )] - ---(v. O. J.1) 

(2tr) -5+(ycos8o+i£) v- Yl:os81)+i£ 5+(v) dy 

ib(J.1)eiY COS 8on 5_(yeos8o) () n() ib(J.1)ei(21·-rCOS8o)a5_(ycos8o) 
+ II' ) - p+ V + ~ v - 1"( ) (2tr) -(v - yeos8o (2tr) - v-yeos8o 

(A12) 

kb(Il)(a _ {3)eiYCOS6o" kb(J.1)(a_{3)eiYCOS6otl [ 1 1' ] 
- (2trt~ 5.(v)( v - yeos8r,) + (2tr)1/2[ v - (yeos8i) + ie)] 5+(v) - 5+(ycos8o + ie) 

k b().1 )(a - !3)ei(2!'-rcos 8o)" [1 1 . ] 
+ (2tr )1/2 S.(V) (v -ycos81) ) - [v - (ycos8o - i£)] 

The functions P±(v) and Q±(v) are the decomposition of 

P(v) = SJv)77+(v. O. J.1)e i21
'U (A13) 

and 

'b( ) ipl'-y cos8o )n 
-I J.1 e [ ] Q(v) = In( ) 5Jv) - 5_(ycos80) 

(2tr ) v-ycos80 

(A14) 

Let it (v) detine a fUIH.:tion equal to both sides of Eq_ (A9). The left hand side is 

regular for 1m v > Im(ycos8o - i£) and the light hand side is regular for 

1m v < Im(yc()s8,J Therefore. hy analytic continuation. the definition of A (v) can be 

extended throughout the complex v plane. The fOlm of A(v) is asceltained by examining 
the asymptotic behavior of the terms in Eq. (A9) as Ivl ~ 00. We note from Rawlins [9] 

that \L±(v)\ = 0(1) as Ivl ~ 00 and, with the help of the edge conditions Eqs. (6) and (7), 

. we find that d'l'l/dy is of O(lvl-In ) as Ivl ~ 00. Using the extended fOlm of Liouville's 

theorem. it can he seen that J; (v) can only be a constant equal to zero. Hence, from Eq. 
(A9). we obtain 

where 

(A 16) 
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Similarly. from the equality of both sides of Eq. (A1 2 in the strip 
Im(ycose() ) < v < Im(y cosen +iE). we have 

5 (v)-O (v 0 1) __ 1 - f+i.l K_(~)fr: ( ~.().p)ei2;adJ: 

19 

- 71- ,.1 2rri . L (t:)(J: _ v) ~ 
--+,d + S ~ 

ib(1l )eir COSBotr s_ (y cos eo) k b{p) (a _ f3)eiYCoSBoa 
(AI7) 

+ 1/ ' ( ) - I /' ( )[ ( )] = 0 (2rr) - v-ycoseo (2rr) -5+ ycoSeo+iE v - ycoSeo+iE 

The contours of the integrals in Eqs. (AI5) and (A17) are such that c < Im(ycoseo - iE) 

and d> Im(ycose'J + iE). These integrals must be asymptotically approximated, as 

indicated in Nohle [5. pp. 199-2021. Thus we arive at Eqs. (56) through (63). 



25 Mar. 97 

References 

[1] u. J. Kurze. 1. Acollst. Soc. Am. 55.504 (1974). 

[2] G. F. Butler. 1. SOllnd Vibr. 32.367 (1974). 

20 

[3] J. S. Asestas and R. E. Kleinman. in Electromagnetic and Acollstic Scattering by 
Simple Shapes. edited by 1. J. Bowman. T. B. A. Senior and P. L. E. Uslengi. 
Hemisphere. New York (1987). 

l4] D. S. Jones. The 771eol}, of Electro/llagnetism, Pergamon, Oxford (1964). 

[5] B. Noble. Methods Based on the Wiener-HopfTechnique, Chelsea, New York 

(1988). 

[6] S. N. Karp and J. B. Keller. Optica Acta. 8, 61 (1961). 

[71 S. Aghar. 1. Acollst. Soc. Am. 83. 812 (1988). 

[81 A. D. Rawlins. Int. 1. Engng. Sci. 15.569 (1977). 

191 A. D. Rawlins, Proc.Roy. Soc. Edin. A72. 337 (1974) 

liD] P. M. Morse and K. U. Ingard, 771eoretical Acoustics, McGraw-Hill, New York . 
. (1968). 

[11 J P. Bovik. Quart. 1. Mecl!. Appl. Math. 47. 17 (1994). 

[1 21 G.R. Wickham, 1. Nondestr. Eval. 11. 199 (1992). 

[ 1 J I R.G. Newton. Scattering TheOl)' of Waves and Particles, McGraw-Hill. New York, 
( 1966). 

[14J 1. G. Han'is, D. A. Rehinsky and G. Wickham, 1. Acollst. Soc. Am. 99, 1315 (1996). 

[15] J.G. Harris. 1. Acollst. Soc. Am. 82. 635 (1987). 



25 Mar. 97 22 
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SCATTERING OF A SPHERICAL SOUND WAVE 
BY A RIGID SCREEN WITH 

AN ABSORBENT EDGE IN A MOVING FLUID 

S. ASGHAR AND TASAWAR HAYAT 

ABSTRACT. The scattering of a spherical wave (emanating 
due to a point source) by a semi-infinite plane in the presence 
of a moving fluid is investigated . A finite region in the 
vicinity of the edge has an absorbin g boundary condition; the 
remaining part of the half plane is rigid. The problem which 
is solved is a mathematical model for a rigid barrier with an 
absorbent edge in the presence of a moving fluid. It is found 
that the absorbing material that comprises the edge need only 
be of the order of a wavelength long to have approximately the 
same effect on the sound attenuation in the shadow region of 
the barrier as a semi-infinite absorbent barrier. Also the softer 
the absorbent lining the greater the attenuation in the shadow 
region of the barrier. In the illuminated region a reduction in 
the sound intensity level can be achieved by a suitable choice 
of the absorptive material of the strip and its length . This 
investigation is important in the sense that point source is 
regarded as fundamental radiating device. It is found that a 
diffracted field is the sum of fields produced by the two edges. 
Finally, physical interpretation of the res ult is discussed. 

1. Introduction. Acoustic waves have a wide range of applications 
in modern science. These are used as diagnostic tools in determining 
the mechanical parameters of fluids and solids. In addition their ap­
plication ranges from geophysics (seismic exploration techniques, bore­
hole sounding) to quantitative nondestructive evaluat ion of mechanical 
structures, and acoustic tomography for medical purposes . Another 
important application is t he problem of noise reduction. Noise from 
motorways, railways and airports especially can be shielded by a bar­
rier which intercepts the line of hearing from the noise source to the 
receiver. The acoustic field in the shadow region of a barrier (when 
transmission through the barrier is negligible) is due to diffraction at 
the edge alone. For this reason Butler [6J suggested that the region 
in the immediate vicinity of the edge should be lined with absorbent 
material to reduce the sound level in the shadow region. This technique 
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has potential applications in engine noise shielding by aircraft wings. 
In case of noise radiated from aero-engines and inside wind tunnels , 
analysis of the acoustic diffraction from absorbing planes in moving 
fluids is required . Rawlins [20] has presented theoretical work on this 
model by considering diffraction of an acoustic wave by an absorbing 
half-plane in the presence of a moving fluid. This analysis was further 
extended to a point source by Asghar, et al. [1]. Jones [11] considered 
a time harmonic line source parallel to a semi-infinite rig id plane in 
still air as well as in a moving inviscid fluid. It was furt her extended 
by Balasubramanyam [4], and to the diffraction of a cylindrical pulse 
by Rienstra [24]. 

If the wavelength of the sound is much smaller than the length 
scale associated with the barrier, the diffraction process is governed 
to a ll intents and purposes by the solution to the canonical problem 
of diffraction by a semi-infinite rigid plane with absorbent edge. The 
aim here is to solve this mixed boundary value problem in the presence 
of a moving fluid . The present analysis is also related to Wiener-Hopf 
solutions for structural elements composed of flat plates joined end 
to end [19, 2, 3, 7, 5, 22, 17, 8, 9 , 10, 23, 24], although such 
configurations are quite distinct from the present one. The solut ion of 
the problem is obtained in terms of two Fredholm integral equations. 
The mathematical method used to obtain these Fredholm integral 
equations is Jones method and the W iener-Hopf technique [16]. A key 
attribute of such a technique is that it is not fundamentally numerical 
in nature and thus allows additional insight into the mathematical and 
physical structure of the diffracted field. The difficulty that arises is the 
solution of the integrals occurring in solving the Wiener-Hopf functional 
equations. These integrals are normally difficult to handle because of 
the presence of branch points and are only amenable to solution using 
asymptotic approximations. The analytic solution of these integ rals is 
thus obtained and finally the far fi eld is presented. 

2. Formulation of the problem. We consider a small amplitude 
sound wave on a main stream moving with a velocity U parallel to the 
x-axis. A semi-infinite plane is assumed to occupy y = 0, x ~ 0 as 
shown in Figure 1. The half plane is assumed to be infinitely thin , and 
over the interval - I < x < 0 there is an absorbing substance satisfyin g 

(1) P - Un Z a = 0, [14] 
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FIGURE 1. 

on both sides of the surface and the remainder - 00 < x < - I , of the 
half plane is rigid. In Equation (1) p is the pressure, 'UrI the normal 
component of the perturbation velocity, Za is acoustic impedance of the 
plane, and n is a normal vector pointing from the fluid into the surface. 

The perturbation velocity u of the irrotational sound wave can be 
expressed in terms of a total velocity potential Xt(x, y, z ) by u = 
grad Xt(x, y, z ). The resulting pressure in the sound field is given by 

(2) p = - po(8/8t + U 8/8x)Xt. 

where Po is the density of the undisturbed stream. We shall restrict our 
consideration to the time harmonic variation e- iwt (w is the angular 
frequency) and suppose there is a point source at (xo, Yo, zo), Yo > O. 
Then our problem becomes one of solving the convective wave equation 

subject to the following boundary conditions: 

(4) 

(5) 

8Xt(x,0±, z )/8y =0, x<- I, 

(:y ~f3M :x ±ik(3) Xt(X,O±,z) = 0, 

- I < x < 0, 
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and 

(6) 
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Xt (X,O+,z) = xdx,O-,z), 

OXt(X,O+,z) 
oy 

OXt(X,O-,z) 
oy 

X> 0, 

where k (= w/c) is the free space wave number, c is the velocity of 
sound, {3 (= poc/ zu ) is the specific admitta.nce of the absorbent surface, 
and M = U/c is the Mach number. For subsonic flow IMI < 1 and for 
acoustic absorption Re (za ) > O. 

It is assumed that a solution can be written in the form 

(7) Xt(X,y,z) = Xo(x,y,z) +X(x,y,z), 

where Xo is the incident wave which accounts for the inhomogeneous 
source term and X(x, y, z) is the solution of homogeneous wave equat ion 
(3) that corresponds to the diffracted field. 

In addition, for a unique solution of the boundary value prob lem 
Equations (3)- (7) [18], we insist that X represents an outward tra\"elling 
wave as R = (X2+y2+ Z2)1/2 -+ 00 and also satisfies the 'edge condit ion' 
[1 2] 

(8) 

Xt(X, 0, z) = 0(1) and OXt(X, 0, z) = 0(X- 1/ 2 ) 

oy 

Xt(X, 0, z ) = 0(1) 

as x ---t 0+, 

and OXt(X, 0, z ) = O((x + l)-I /"2 ) 
oy 

as x ---t - /. 

3. Solution of the problem. We define the Fourier trallsforIll pair 
by 

(9) 
1]t(X, y, s) = I: Xt(X, y, z )e- iksz dz, 

Xt(X, y, z ) = (k/27r) I: 17t(X, y , s)e ibZ ds. 
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In (9) the transform parameter is taken conveniently to be ks, s is 
nondimensional. The decomposition (9) is common in other field 
theories as well, for example, Fourier optics [15, 13]. For analytic 
convenience one can write k = kr + ik j , kr , ki > O. Transforming 
equations (3), (7) and the boundary conditions (4)- (6) with respect to 
z by using (9) , we obtain 

) ( 
2) 8

2 
. 8 8

2 
2 2 2) (10 (1 - M 8x2 + 2tkM 8x + 8y2 - k s + k Tlt( x, y, s ) 

(11) 

(12) 

(13) 

and 

(14) 

= e- iksz°<5(x - xo)<5(y - Yo) , 

BTlt(x,O±,s) = 0 
8y , x < - l , 

(:y ~(3M :x ±ik{3 )17t(X,O±,s) = 0, 

17t(X, 0+, s) = 17t(x, 0-, s), 

B17t(X,O+,s) B17t(X,O-,s ) 
~~----~ = --~----~ 

8y By 

x> 0, 

17t(X, y, s) = Xo(x, y, s) + X(x, y, s). 

- l < x < 0, 

Since we are dealing with subsonic flow, we can introduce the following 
substitutions: 
(15) 

x = (1 - M2)1/2 X, Xo = (1 - /11 2)1/2 X o, 

Y = Y, Yo = Yo, z = Z, Zo = Zo 

k = (1 - M2)1/2 K, (J = (1 - M2) 1/2B, l = (1 - AI2)1 /2 L, 

which, together with the substitution 

(16) 17t (x, y, s) = 1>t (X, Y, s) e - i K M x, 
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reduce the boundary value problem to 

) ( 
{p (j2 2 2) · ,-

(1 7 OX2 + oy2 + K A 1;0 (X, V,s) = a8(X - Xo)8(Y - }o), 

(19) 

(20) 

(21) 

where 

(22) 

x < -L, 

(o~ :r-BM 0: ± iKB) [1;0 + 1;(X ,O±,s)] = 0, 

- L < X < 0, 

1;(X ,O+, s) = 1;(X ,O- , s ), 

o1; (X, O+, s) o1;(X, O-,s ) 
o Y = ---'--'--cf)'-Y--"-

X> 0, 

• eiK M Xo-iK(l-M~)I/~ sZo 

a = ------:---:-::--
(1 - M2)1/2 

A2 = [1 - s2(1 - M2)], 

and we have used 1;t (= 1;0 + 1;) in writing Equations (17)- (21). 

Now we define t he Fourier transform ¢(o:, Y, s) of ¢(X, Y, s) as 

(23) ¢(o:, Y, s ) = 1: 1;(X, Y , s )eiOX dX , 

and inverse t ransform as 

(24) 
1 j OO+iT 

1; (X, Y , s) = ()1/2 . ¢(o:, Y , s )e- i oX dCt, 
27l' -OO+IT 
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where a = (J' + iT. The transform (23) and its inverse (24) will exist 
provided -Kj)"j < T < Kj)"j. The solution of Equation (17) can be 
written as 

¢o(X, Y, s) = - :: Hci 1)[K )"((X - Xo)2 + (Y - Yo)2)1/2] 

a. j CXl+jr e-ja(X-Xo)+j(K~>.~-a~)I / ~IY-Yol 
=- do. 

47l'i -oo+ ir (K2),,2 - 0 2 ) 1/2 

(25) 

Introducing the transformations Xo = Ro cos 190 , Yo = Ro sin do, 
a < '!90 < 7l', in (25) and letting Ro -+ 00, we obtain, using the 
asymptotic form for the Hankel function 

(26) ¢o( X, Y, s) = b(s )e- iK >'(X cos 190+ Y s ill VO), 

where 

(27) b(s) = -~ ei (K >'F4J -7r/4) • ( 2 ) 1/2 

4i 7l'K )"Ro ' 

and '!90 is t he angle of incidence measured from the x-ax is. 

Applying the transform (23) to (18) gives 

(28) 

(29) 

¢(a, Y, s) = Al (a)e iKY , Y > a, 
= A2(a)e - iKY , Y < a, 

where It = (K2),,2 - a 2)1/2 is defined on the cut sheet for which 
1m (It) > a. 

From Equations (28) and (29), 

(3aa) 

(3ab) 
e-iaL¢~ (a, a, S ) + ¢~(a,a+,s ) + ¢~(o, a ,s) = iKAdo), 

(31a) 
e-iaL¢_(a,a-,s) + ¢ 1(a, a-,s ) + ¢+ (o, a, s) = A2(0 ), 

(31b) 
e-ia L ¢~ ( a, a, s ) + ¢~( a, a -,s ) + ¢~ (a ,O ,s ) = - iKA2(0), 
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where 

¢+ (a , Y , S) = 100 

¢(X, Y, s )eioX dX, 

(32 ) ¢_ (a,Y,8 ) = i: ¢(X,Y,s )eia (X+L)dX, 

¢1(a , Y,8) = fO ¢(X , y , 8)eiaX dX. 
-L 

The primes denote differentiation with respect to Y, and the ± S ll b­
scripts denote functions which are regular and analytic in the upper 
(1m (a) > - KjAj) and lower (1m (a) < KiAj) a-plane . Eliminating 
Al(a) from (30a), (30b) , and A2(a) from (31a), (31b) , and using t he 
boundary condition (19) to obtain an expression for ¢~(Q , O, s ) gives 
the following two equations 

(33a) 
_ e-jQL~~ (a, 0, s) +¢~ (a, O±, s) +¢~ (a, 0,8) 

. - i a L - ± - ± -(33b) = ±ul:(e ¢_ (a,O ,s)+¢l(a,O ,s)+¢+ (a ,O, s)) , 

where 

On taking the Fourier transform of the boundary condition (20), we 
get 

(35a) 
- , ± - ± 
¢l(a ,O , s) ±i(K+ Ma )B¢ d a, O ,8 ) 

(35b) = - [~~ (a , 0, s) ± i(K + M Q)B~dQ , 0, s)J, 

where 

(36a) 

(36b) 

6 (a , Y, s) = fO ¢O( X, Y , s)eiaX dX , 
- L 

~~ (a , Y, s) = a~ ~ 1 (a, Y, s). 
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After eliminating ¢l(a,O+,s) from (33a) and (35a) and ¢l(a,O-,s) 
from (33b) and (35b), we arrive at 

(37a) 

± . ( -io:L;' ( O± ) 1 { - ' ( ± ) 
'l,K- e '/'- a, ,s =t= iB(K + Ata) <PI a,O ,s 

+ [€i(a, 0, s) ± i(K + M a)B€l (a, 0, s)]} + ¢+ (o, 0, S)) 
(37b) 

= -e-io:L~~ (a , O,s) + ¢~(a,O±,s) + ¢~(a , O ,s ) . 

In a similar way, by eliminating ¢~(a,O+,s) from (33a) and (35a) and 
¢~(a,O- , s) from (33b) and (35b), we get 

(38a) 
_ e-io:L~~ (a, 0, s) =t= iB(K + M a)¢l (a, O±, s) - [~~ (0 , 0, s) 

± iB(K + M a)~l(a, 0, s)] + ¢~(a, 0, s) 
-io:L - ± - ± -(38b) =±(e <p_(a,O ,s)+<Pl(a,O ,s)+¢+(a ,O,s)). 

Subtracting (37a) from (37b) and adding (38a) to (38b) gives, on a 
slight rearrangement of the resulting expressions, the following two 
equations: 

(39) e-io:L'I/J_ (a ) + Q(a)1PI(a) + 1P+ (a ) = S(a), 

(40) e- io:LA_(a) + VK)" - aQ(a)AI(a) + A+(a) = N(a), 

where 

1 - + - _ 
'I/J - (a) =2 (<p - (a,0 ,s)+cP_(a,O ,s)), 

t - + -
'l/Jl(a) = 2(cP~(a,0 ,s) - cP~( a,O-,s )), 

'I/J+(a) = ¢+(a, 0, s), 

S(a) = 6 (a, 0, s), 

_ -ivK)" - a - + - _ 
A_(a) - 2 (cP _ (a,O ,s) - cP-(a,O ,s)), 

A ( a) = ¢~ ( a, 0, s) 
+ VK).+a' 
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iB(K+Ma) - -
A1(a) = - 2 (¢1(a,0+,s) - ¢1(a,0-,s)) , 

N(a) = [~~ (a, 0, s) + e-joL~~(a, 0, s)] 
../K)...+a 

(41) Q(a) = (~+ B(M: + K)) = Q+(a)Q_(a). 

Explicit expressions for the functions Q±(a) are given in [1] . !\ow 
for proceeding further with Equations (39) and (40), it is necessary 
to know that how the various quantities in (41) grow as 101 -+ x . 
Equation (8) means that the transformed functions satisfy the following 
growth estimates as la l -+ 00 : 

'l/J-(a) ~ 0(lal- 1
), I\_(a) ~ 0(lal- 1

/
2

), 

'l/J1(a) ~ 0(lal-1/ 2
), A1(a) ~ 0(la l- 1), 

Q_(a) ~ O((IK + MaIB)-1), in 1m (a) < K)\j; 

'l/J+(a ) ~ 0(lal - 1), A+(a) ~ 0(lal- 1
), 

'l/Jl (a) ~ O(lal- l e- joL
), 

Al (a) ~ O( lal- l e- joL
), 

Q+(a) ~ O((IK + MaIB)-I), in 1m (0) > -Kj)...j. 

Now we see that Equations (39) and (40) cannot be spli t by t he stan­
dard W iener-Hopf argument because of the second term on the lefthand 
side of the equations. However, after using the above estimates and the 
procedure used in [16, pp. 196- 199]' we get Fredholm integral equa­
tions of the second kind. Although in (39) and (40) the right hand sides 
of the equality sign are of a more general form than that considered by 
Noble [16] the basic technique used follows throllgh, mutatis IIllltan­
dis, and so the exact details may be omitted here. Thus, for (~~9) O Il C 

obtains, noting that the coefficient of 1Pd a) is an even funct ion of 0 

and M (see [1, 16]), 

( 42) 



(43) 

(44) 
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r +(a) = 1/J+(a) + 1/J- (-a), 

1'+ (a) = 1/J+ (a) -1/J- (-a) . 

It is clear from (40) that the coefficient of Al(a) is not an even function 
of a and M and therefore, using the technique of Noble [16] and the 
above estimates, we get the slightly different expressions 

( 45) 

A_ (a) 1 J OO+ id ei!LA+(c) 

Q_(a)..)K)..-a =-27l'i _OO+ idQ_(C)(o-c))K)..-c
dE 

(46) 1 J OO+id ei!L l\'(c) 

- 27l'i -=+id Q-(c)(c - o))K).. - c dE, 

1m (a) < d < KiAi. 

From Equations (26), (34) and (36), we have 

, ( ) _ -K)" sin 'l3 ob(s) iKALcost9o ~ - a, 0, s - ( K \ _0 ) e , a - /lCOSVO 

(47) ~ (a 0 s) = ib(s) { e- i(a -K Ac osvo)L - I} 
1 " (a - K)" cos '13 0 ) , 

' ( 0 ) = K)" sin 'l3ob(s) {-i(a-KAcosvO) L_1} 
~l a, ,s (a _ J()..cos'l3o) e , 
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so that 

( 48) S(a) = ib(s) {e- i (o-K>, cOijt1o)L _ I} 
(a - K)' cos {)o) , 

( 49) N(a) = _ b(s)K)'sin{)o 
v' K ), + a (a - K)' cos {)o) 

4. Approximate solution of equations (42) and (43) for 
K)'L ~ 1. Restricting the path of integration in expression (42) to the 
band Ki),i cos{)o < a < Ki),i and then using (48), into equation (.12) 

and making the further substitution 

ibeiK >'L cos tio ib 

(50) r+(a) = G+(a) - ( K\ .0) ( .0 )' a + "cos vo a - K A cos vo 
gives 

G+(a) = ibeiKAL cos tio + ib 

Q+(a) (a + ](ACOS{)o)Q+(a) (a - K)' cos {)o)Q-r(o) 

b j oo+ia 1 

271" -oo+ia Q_(c)(c + a) 

(51) 
{ 

1 eiK>.Lcostlo } 

. (c + K)' cos {)o) + (c - K A cos !90 ) 

1 joo+ia eif"LG+(c) +- dl:" 
271"i _oo+iaQ-(C)(c+a) ~, 

Ki),iCOS{)O < a < Ki),i. 

The first two integrals appearing in (51) can be evaluated by distorting 
the path of integration into the lower half of the c- plane. The only 
poles captured will be c = -a and c = -K)' cos 190 , Thus 

G+(a) ibeiKALcostio 

Q+(a) (a + KACOS{)0)Q_(I{ACOS!90) 

ib 
+-:---------:-----

(52) (a - J( A cos {)o)Q+ (K)' cos !90 ) 

+ _1_ j oo+ia eif"LG+(c)Q+(c) dr, 

271"i -oo+ia Q(c)(c + 0) -

J(iAi COS{)o < a < J(jAj. 
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In a similar manner by using Equation (48) along with (43), where 
KiAi cos 190 < a < KiAj, and making the substitution 

(53) 
ib 

(0 - K)' cos 13 0 ) , 

Thus one obtains eventually 

(54) 

For the solutions of Equations (52) and (54), we use the technique gi\'ell 
by Jones [12], and the approximate express ions are respectively given 
by 

(55) 

(56) 

G+(o) = (b51(0) + 9+(0))Q+(0), 

9+(0) = (b52(0) - 9+(0))Q+(0), 

In Equations (55) and (56), 

i eiK)"LcostJo 

5do) = (0 + J(). cosvo)Q_ (J{). cos vo) 
(57) 

(58) 

t 
52 (0) = -:----, ---,-----,-----:-

(0 - J\). cos tJo)Q+(J(). cos tlo) 
ieiK)"L cos vo 

(0 + J(). cos 'vo)Q_ (I(). cos vo)' 
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(59) 
1 j oo+ia eit:LG+(c)Q+(c) 

9+(a) = -. dc, 
271"t -oo+ia Q(c)(c + a) 

(60) 
1 j oo+ia eit:Lg (c)Q (e) 

9+(a) = - + + de 
271"i -oo+ ia Q(e)(c + a) . 

Putting the values of G+(c) from Equation (55) into (59) and 9-t-k) 
from (56) into Equation (60), we have 

(61) 

(62) 

If the contour of integration in expressions (61) and (62) is distorted 
into the region 1m (a) > a, then the integrals can be asymptotically ap­
proximated, for J()"L ~ 1, by the integrals with its path of integration 
wrapped around the branch cut c = J()... The part of the integrands 
of expressions (61) and (62) within the curly brackets are regular and 
analytic in this region and, provided 19 0 # 0,71", this term will \'ary 
slowly in the vicinity of c = J()... Thus, since the dominant part of 
the integrands comes from the region e = J<,\, the terms in the cur ly 
brackets can be removed under the integral signs and c can be replaced 
by J()... The remaining integrals can be replaced by the asymptot ic 
approximation (A2) of the Appendix. Hence, 

(63) 9+(a) ~ Q~ (J<'\){ bSdJ<,\) + 9+ (J<)")} W(o), 

(64) 9+(a) ~ Q~(J<'\){bS2(J<'\) - g+(J<'\)}W(o), 

where 
(2J< ,\)1/2 

W(a) = (1 - )..f(a + J< )..)) 

. {Wo[(L(a + J<,\))1/2]_ Wo[VL/,\dL 
(2J< )..) 1/2 

)..1 = B(1< + 111 a)' 

and 9+ (J()..) and 9+(1<)..) are obtained by putting a = J<).. in Equations 
(63) and (64), respectively, and solving the resulting equations for 
(h(J()..) and 9+(J('\)· 
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From the expressions (44) , (50), (53), (55) , (56) , (63) and (64), we 
have 

(65) 

(66) 

5. Approximate solution of equations (45) and (46 ) for 
K>"L> 1. From Equations (45), (46) and (49), we have 

A+ (a) K >"b sin 190 
= 

Q+(a) 

(67) 

A_(a) ___ 1 

Q_(a)/K>" - a 
(68) 
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For the evaluation of the first integral in Equation (67), we distorted 
the path of integration into the upper half e-plane. Since 1m (n) > 
c > - KiA, then the poles at e = a and e = K A cos Vo will give rise to 
residue contributions. Hence, 

(69) 

K Ab sin 190 
Q+(a)(a - KAcos19o)(a + KA)1/2 

b(KA(1 - cOS190))1/2 
+----~--~------~-----

Q+(KAcos19o)(a - KAcos19o) 

__ 1 j OO+iC e- ioL{A _(E' )(KA - E')1/2Q_(c)} d=-

27fi -oo+ic Q(E')(e: - a)(1( A - E' )1 /2 ~ 

Im (a ) > c> -KjA j. 

Now the evaluation of the second integral in (68) is best achieved by 
distorting the path of integration into the upper ha lf of the E'-plane. 
However, this requires a knowledge of the singularities of Q _ (£) in 
Im (E' ) > -KjAj. It can be shown, by a method used in [1], that 
the only singularities of Q(E' ) are the branch points at e = ±K A; no 
poles occur in the cut plane. Hence, moving the path of integration 
vertically until it crosses the pole c = J{ A cos 190, but not the branch 
point E' = K A, gives 

(70) 

Q(E')VKA - c(c - a)' 

For K AL > 1, the dominant contribution of i:he integral in (69) comes 
from the region E' = - K A; and of the integral in (70) from the region 
E' = K A. Provided 190 i= 0, the term in the curly bracket of the 
integrands in Equations (69) and (70) are slowly varying in the vicinity 
of E' = ±K A. One can therefore replace E' by -K A in this part of the 
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integrand in (69) and rcmove it from undcr the integral sign. Silllilarly 
one can replace E: by K>' in the curly part of the integrand in (70) 
and remove it from under the integral sign. The integrals remaining 
can be replaced by the asymptotic approximation (A6) and (A8) of the 
Appendix. Thus, 

(71) 

(72) 

K >'b sin t90 

Q+(a)(a - K>' cos t9o)(a + K>.)1/2 

b(K >'(1 - cos t90))1/2 
+-=---:-::-:-':--'-:--:-:----'::'c"------::--:-

Q+(K>.cos19o)(a - K>.cos1.9o) 

+ W(a)Q+(J{>')lL(-K>'), 

beiK >'L cos Va 

(a- K>' cos 19o)Q- (K >. cos 1.90 ) 

_ W(-a)Q+(K>.) { sin 19 0 

8(K+Ma) (l-cos19o) 

+ )2K>'A+(K>')}, 

where the constants A±(±K>.) are obtained by putting Q = K)" ill 
Equation (71) and a = -K>. in (72) and solving the resulting l\\'O 

equations for the two unknowns A±(±K >.) . 

The Equations (41) in conjunction with Equations (65), (66) , (71) 
and (72) will now give explicit expressions for ¢+ (Q, 0, s), ¢~ (Q , 0, s) , 
¢_(a,O+,s) and ¢_(a,O-,s). Ada) and A2(a) can now be given 
in terms of these known quantities. For example, multiplying (30a) 
throughout by i(K + Ma)8, adding the resulting expression to (30b) 
and using (34) and (36a) gives an explicit expression for A1 (a). Simi­
larly, an explicit expression for A2(a) is obtained by multiplying (31a) 
throughout by i(K + M a)8, subtracting the resulting expression from 
(31b) and using the expressions (34) and (36b). Thus, in carrying out 
the above, we have 

(73) 

(74) 

Al (a) = bA3(a), 

A2(a) = bA4(a) , 
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where 

1 ( i A3(a = 
) KQ (a) (a - K>' cos {}o) 

(75) 

· { Q+(a) _ 2Q_ ( a ) e-i(o-KACOStJo)L 

. Q+(K>' cos {}o) Q_ (K >. cos {}o) 

_ (K>'(1 - cos{}o))1/2(a + K>')1/2 Q+(o)} 
B(K + Mo)Q+(K>. cos {}o) 

+ e- ioLQ+(K>')Q _(a) 

· {Q+~(>') (Sl(K>')+S2(K>') + ~h(~>') - g+(~>.)) 

_ i (sin{}o +y2K>'A+(K>') )}W(_O) 
B(K +Ma) (1 -cos {}o) b 

Q~(K >')W(a)Q+(a) 
+ 2 

· {Sl(K>') - S2(K>.) + rh(~>') + g+(;>.)} 

W(a)Q+(K>')Q+(a)JK>' + aA_( - K>.)) 
+ iBb(K + Ma) , 
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(76) 
_ W(a)Q+(K A)Q+(a)v'K A + aA _ ( -K A)) 

i8b(K + Ma) . 

From Equations (24), (28), (29), (73) and (74), we obtain 

(77) 

(X Y ) - s ( ) -iaX +iKY b() J
OO+iT 

¢ , ,s - ()1/2 . A3 a e da, 
271" -OO+IT 

Y > 0, 

(78) 
b(s) JOO+ i T 

. . = A (a)e- laX -IKY do 
(2 )1/2 . 4 , 

71" -OO+IT 

Y < 0, 

Now we find that, for rigid part and the absorbing strip of the half­
plane, t he reflected waves (RF1 and RF2, respect ively) as gi \"en by 

(78a) RF = b(s)R e-iK)'Rcos(!9+!90) 1,2 1,2 , 

can be calculated from (77) and (78) by deforming the contour in the 
upper half-plane, when the pole 0 = K A cos 190 is captured and we 
obtain the reflection coefficients R1,2 as given by 

(78b) 
R2 = IA sin 190 1 - 8(1 + Ai A cos 190 ) , 

IAsin 19 0 1 + 8(1 + AI A cos 19 0 ) 

where X = Rcos 19, Y = Rsin 19. 

In order to solve the integrals appearing in Equations (77) and (78) 
for the diffracted field, we put X = Rcos 19, Y = R sin 19 and deform the 
contour by the transformation a = -KACOS(19 +iqd, -00 < ql < 00. 

Hence, for large K AR, 

(79) 

¢(X, Y, s) = - b(s) sin 19A3 ( -K A cos19)(K AI R)1/2e i (K ).-"./4), 

Y > 0, 

= -b(s) sin 19A4 (- K A cos 19)(K AI R)1/2e i (K ).-". / 4), 

Y < O. 



124 S. ASGHAR AND T. HAYAT 

Now using Equations (16), (22), (27) and (79), we arrive at 

- K sin f)e - iK M(X -Xo) 

X(x,y,z ) = 47l' (27l'RRo) 1/2 

(80) . [: A3( -K'\ cos f))eiKF(Z-Zo)+iK >'(R+~) ds, Y > 0, 

- K sin f)e -iKM(X -Xo) 
= 

47l'(27l' RRo) 1/2 

(81 ) . [ : A4( -K'\ cos f))eiKF(Z -Zo)+iK >'(R+~) ds, Y < 0, 

where 
:F = s(1 - M2 )1/2. 

The integrals appearing in (80) and (81) can be evaluated asymptoti­
cally. For that we introduce the transformations Z - Zo = R12 cos 0, 
R + Ro = R12 sin 0, s = cos(O + iq2)(1 - M2) - 1/2. Hence, for large 
KR12 , 

K sin f) sin OA3 ( -K cos f) sin O)e- iK M(X -Xo) 

(82) X(x, y, z ) = 47l'(K RRoR12)l/2(1 _ M2)1/2 

. ei(K Rl~+37T/4), Y > 0, 

K sin f) sin OA4 (- K cos f) sin O)e-iK .... f(X -Xo) 

(83) X(x, y, z) = 47l'(K RRoR12)1/2(1 _ M2)1/2 

. ei(KR1~+37T/4), Y < 0, 

where A3(-Kcosf)sinO) and ~(-Kcosf)sinO) are given by (75) and 
(76), respectively. 

6. Conclusions. We have solved a new canonical diffraction 
problem of a spherical wave in the presence of a moving fluid. From 
Equations (82) and (83) we observe that, as a result of fluid motion, 
the field is increased by the factor (1 - M2)-1/2 in comparison to still 
fluid. Also, the field is independent of the direction of flow since the 
fluid velocity U appears as IUI 2 in the factor (1 - M2). The results for 
the still air case can be obtained by putting M = O. 



SCATTERING OF A SPHERICAL SOUND WAVE 125 

It is also interesting to note that Equations (82) and (83) represent 
fields diffracted from the edges x = 0 and x = - I . The radiated 
sound intensity in the illuminated region 0 < 19 < IT is due to 
constructive/destructive interference between the incident wave; the 
diffracted fields from the edges (0,0) and the joint (0, - I) between the 
absorptive strip and rigid region of the screen. For a given value of 19 0 , 

a value of the absorptive parameter given by 

B= l.>t sin19ol 
(1 + AI.>t cos 190 ) 

can make the reflected field RF2 vanish. This will reduce the maximum 
intensity of sound. The criterion that the reflected wave should vanish 
means physically that the strip absorbs all the energy incident upon it 
and does not reflect any. 

In Rawlins' paper [21] the situation where the edge region of a rigid 
barrier was connected to a soft (1.81 -1 00) strip was analyzed. The 
analysis showed that the strip need only be the order of a wavelength 
long to have the same effect on the sound attenuation in the shadow 
region as a soft half plane. By using the concept of a perfectly absorbing 
strip, it was shown in a qualitative sense that the same was true for 
an absorbing strip. The analysis presented here is concerned with the 
more general and practical case where (J is finite . A major use of the 
presented analysis is to design a barrier which would reduce noise both 
in the illuminated and shadow region. The lengths and absorptive 
properties of the strip would need to be different for the lining on the 
illuminated and shadow side of the barrier. 

ApPENDIX 

Consider the integral 

(AI) 

From the way /'i, has been defined, it has been shown [1] that for 
Re (B) > 0, Q(c) has no poles or zeros in the cut plane. Thus, in 
the region 1m (a) > a the only singularity is a branch cut at c = K.>t . 
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Distorting the path of integration in Equation (AI) into the upper E­

plane until it runs around the branch cut E = K >. , gives 

J2K>' ( .lKA eicLJE - K>' h = -2 d£ 
27fi ooK A (E + a)(1 - i>'1 JE - K >.) 

.1°OKA eicLJE-K>. ) + t dE , 
KA (E + a)(1 + i>'1 JE - K >.) 

where >'1 = J2K>'/(K + Ma)B is obtained by replacing the smoothly 
varying function J K >. + a by J2K >.. Making an obvious change of 
variables, one obtains 

I V2f{)..e
iKAL 

( 00 iuL 1/2 {II} d 
1 = 7f (1 - >'i(a + K>.)) Jo e u u+K>'+a - u+>.~2 u 

(A2) 

- (1 - >.~ K>.)) {Wo[(L(a + K>.))1/2]_ H'o[JL/>'d} 

= W(a). 

Wo can be expressed in terms of the Fresnel integral F(zd by 

ei (KAL+1r/4) 

(A3) Wo[~l= ..;y;; {1+2i.;;;zF( .;;;z)}, 

L> 0, I arg(zdl < 7r. 

Also note the aSymptotic expansion 

(A4) 

Consider the integral 

(A5) 

1 JOO+id ei!L 
h = -. dE, 

27ft - oo+id Q(E)(E - a)(K>. - E)1/2 

1m (a) < d < Ki>'i. 

Anticipating that the major contribution from the smooth functions 
under the integral sign occurs at E = K >., one obtains, on distorting 
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the path of integration round the branch cut e = K A, 

Consider the integral 

(A7) 

1 j OO+ iC e- j~L 
13 =- , 

27ri - oo+ ic Q(e)(e - Q)(J( A - e) I/2 

1m (Q) > c> KiAj. 

Letting e be replaced by (-e), c by - a), and using the fact that 
Q( -e) = Q(e), (K A + e)1/2 ~ (2K A)1/2, gives 

(A8) 
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ABSTRACT 

The space-time acoustic wave diffraction due to a spherical Gaussiall pulse 
near an absorbing half plane introducing the Kutta- loukowski condition 
(wake condition) is considered. The temporal Fourier transform is used to 
calculate the diffracted field. It is found that the field produced by the 
Kutta-loukowski condition will be substantially in excess of that ill its 
absence when the source is near the edge. © 1998 Elsevier Sclence Ltd. All 
rights reserved 

Keywords: Scattering theory, Kutta-Joukowski condition, Gaussian 
pulse, moving fluid, absorbing half plane. 

INTRODUCTION 

It was shown by Ffowcs Williams and Hall l that the aerodynamic sound 
scattered by a sharp edge is proportional in intensity to the fifth power of the 
flow velocity and inversely to the cube of the distance of the source from the 
edge. Thus, the edge is likely to be the dominant sound source, especially 
when the source is very close to the edge. Their findings were however, based 
upon the fact that there is a potential flow near the sharp edge with velocity 
becoming infinite there, In the case of a non-viscous flow the boundary con­
dition for the flow about a body is simply that the normal velocity compo­
nent of the surface vanishes_ The proper boundary condition in a viscous 
fluid is that the fluid adheres to the bounding surface. Thus both the normal 
and tangential velocities relative to the body must vanish. At a small distance 

*To whom correspondence should be addressed . . 
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from the surface, the velocity reaches a value of the order of the free stream 
value and the influence of viscosity is restricted to a small boundary layer 
with strong vorticity near the surface . However for thin wings the vortex 
layer is also thin. The vortices are carried along with the flow and for a thin 
vortex wake behind the wing. The strength of this wake can be determined 
approximately by what is called the Kutta- loukowski condition . 10nes2 

observed that in order to satisfy the Kutta- loukowski condition the ve locity 
cannot be taken as infinite at the edge. To take care of this situation he 
introduced the wake condition to examine the effect of the Kutta- loukowski 
condition at the edge of a half plane. It was observed by him that near th e 
edge the field produced in the presence of the wake was considerably larger 
than if no wake was present. Furthermore, in sti ll air the Kutta- loukowski 
condition altered the M5 (M is the Mach number) prediction of Ffowcs 
Williams and Hall to M3. Moreover, he showed that when field was con­
vected the dependence of the intensity on Mach number was At' whetha 
these conditions were applied or not. Thus, the observation of the sou nd 
intensity at low Mach number in a moving fluid failed to predict whether or 
not the Kutta-loukowski conditions had been imposed. It was further 
established that near the wake there was an acoustic surface wave which \vas 
much stronger than the distant field which did not decay down stream. This 
problem was further extended to the point source excitation by Balasu­
bramanyam3 and to the diffraction by a cylindrical impulse by Rienstra. 4 

Later on Rawlins5 addressed the diffraction of a cylindrical acoustic wave by 
an absorbing half plane in a moving fluid in the presence of a wake. This 
analysis was further extended to a spherical wave emanating from the point 
source by Asghar et al.,6 Jones,2 Balasubramanyam,3 and Rawlins5 have 
assumed the wave harmonic in time. Although harmonic waves are of great 
importance, there are significant fields whose time variation is not harmonic . 
The interpretation of these results nay not be easy for all values of time but it 
is usually possible to estimate the integrals asymptotically for large values of 
time. 

In this paper, investigations are presented for the diffraction of spherical 
Gaussian pulse from an absorbing half plane in a moving fluid introducing 
the wake condition to examine the effect of the Kutta- loukowski condition. 
The time dependence of the field requires a temporal Fourier transform in 
addition to spatial Fourier transforms. The spatial integrals appearing in the 
solution for the diffracted field are solved asymptotically in the far field 
approximation. It is found that the field due to a Gaussian pulse with the 
Kutta-loukowski condition will be substantially in excess of that in its 
absence when the source is near the edge. In other words, there is greater 
attenuation of the sound level in the trailing edge (wake producing situation) 
than the leading edge situation. We observe that the diffraction of a spherical 
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Fig. 1. Geometry of the scattering problem. 
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Gaussian pulse from a rigid barrier can be obtained as a special case of this 
problem by taking the absorption parameter equal to zero. The results for 
still air can be deduced easily by putting M = O. This investigation is a lso 
important 'since the wave field due to any transient source can be expressed 
as a linear combination of the Gaussian pulses. The wave field for the 
impulsive source can be easily obtained by using the representation of the 
Dirac delta function in terms of Gaussian pulse. 

FORMULATION OF THE PROBLEM 

Consider a small amplitude sound wave on a main stream moving with sub­
sonic velocity U parallel to the x-axis. A semi-infinite absorbing plane is 
assumed to occupy y = 0, x::;O as shown in Fig. 1. The half plane is assumed 
to be infinitely thin and satisfying an absorbing boundary condition,7 i.e. 
p-unZa = 0 on both sides of the surface where p is the pressure, Un the nor­
mal component of the perturbation velocity at a point on the surface of the 
semi-infinite plane and Za is the acoustic impedance of the material which 
makes up the half plane. The perturbation velocity II of the irrotational 
sound wave can be expressed in terms of velocity potential1/! by u = grad1/!. 
The resulting pressure in the sound field is given by 

p = -po(a/at + va/ax)1/! 

where Po is the density of the undisturbed stream. We consider a spherical 
Gaussian pulse from a source located at the position (xo ,Yo,zo)' The convective 
wave equation satisfied by 1/! in the presence of the point source pulse is 
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subject to the boundary conditions 

{
a a f3a} ± -a =F f3M -a =F -- 1//(X , O , 2' ; t) = 0, x < ° 
y x cat 

(2) 

where \72 is the usual Laplacian and f3 = Poc/Za , (' is the velocity of sound , 
M = Vic is the Mach number. We choose the co-efficients of the Gaussian pulse 
to be "s/nl / 2" so that the strength of the pulse -,. ').. .f>':· rr - l !2se - "/'tlt, is unity . 
We shall assume that the flow is subsonic, - I < M < I (for a leading edge 
situation -1 < M~O and for a trailing edge situation 0 < M < I) and 
Re(f3) > O. The trailing edge problem adds the complication of a trailing 
vortex sheet or wake attached to the absorbing half plane. The usual edge 
conditions give rise to a field which is singular at the origin for the trailing edge 
situation. Therefore, the Kutta-loukowski condition is imposed to obtain a 
unique solution of the problem. In order to satisfy the Kutta- loukowski con­
dition at the edge, 10nes2 introduced a discontinuity in the field at ° < x < 00 

and postulated the existence of a wake condition. According to him, l/r is dis­
continuous while ¥- and the pressure remain continuous or )' = 0, x > 0. The 
boundary conditio~s on y = 0, x > ° can thus be expressed as 

t 1/I(x, 0+, z; t) = t. 1/I(x , 0- , z; t) ) _ 
a a +. _ a a -. .\ > ° (at + V aJ 1/I(x, 0 , z, t) - (at + V a) l/r(x, 0 , z, t), 

(3a, h ) 

SOLUTION OF THE PROBLEM 

We define the temporal Fourier transform and its inverse by 

00 

tfr(x, y, z; w) = J l/r(x, y, z; t)eiwtdt (4 ) 

-00 

00 

I J A • l/r(x, y, z; t) = 2n l/r(x, y, z; w)e - 1wt dw (5) 

- 00 

By analogy to the time harmonic problem, we use w as the variable of the 
Fourier transform. Transforming eqns (I )-(3), we obtain 
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{
a a } A 

ay 1= fJM ax ± ikfJ 1/t(x, o±, z; w) = 0, x < 0 (7) 

:I' A :I A X > 0 (Sa, b) 
: .(fr(x, 0+, z; w) = aa, .(fr(x, 0- , z; w) I 

( - ik + M a:)1/t(x, 0+, z; w) = ( - ik + M aa,)1/t(x, 0- , z; w), 

where k = w/c. The boundary condition (8b) can be written in the alternative 
form as 

.(fr(X, 0+ , z; w) - .(fr(x, 0-, z; w) = cx(z)eikx
/
M (8c) 

In eqn (8c), a(z) can be determined by means of the Kutta- Joukowski con­
dition. We note that a(z) = 0 corresponds to the no wake situation. 

The solution of the boundary value problem consisting of eqns (6)- (8) has 
been obtained employing the procedure used by the authors in Ref. 6. In 
order to avoid repetition, the computational details are omitted and the dif­
fracted field .(frd for the spherical Gaussian pulse is directly given by 

(9) 

where 
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- KJ(1 - W) . ~ l.~ 
C22 = 2rr [BM COS 8 0 - 2 sm(8/2) sin(80 / 2)]C] e-w 

/ 4 .1 

- -
N(y) = L+(Kycos 8)L( -Kycos ( 0) 

_ _e-iKM(X-Xo ) 

C1 = -::---:---=-~===;;= 
2n sin 8J2Ro{l - W ) 

101 = KR )1 _ (1 _ W)1J2 cos 8.- cos 8 0 

( )

1/2 

· 2 sm8 

10'1 = KR )1 _ (1 _ W)1J2 l/M.- cos8 
( )

1/2 

2 sm8 

x = .Jl - WX, XO = .Jl - WXo,f3 = .Jl - WB, k = .JI - M2K 

X= Rcos8, Y= Rsin8,Xo = Rocos8o, Yo = Rosin80 

x = rcos8,y = rsin8, xo = rocos80, Yo = rosin80 
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v 

i+(v) = i+(O)exp J 9+(v)dv, £+(0) = £_(0) = (1 + Bly) l/l 

o 

ooKy 

f(p) = J ds = COS- I (PI Ky) , Re(p + Ky) > 0 
J(S2 - K2y2)(S+ p) J(K2 y2 - p2) 

Ky 

The integrals appearing on the right side of eqn (9) can be eva luated asyp­
totieally usin~ the method of steepest descent (see Appendix) and the dif­
fracted field Vtd is written as 
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( 10) 

where .(j;-dA denotes that part of .(j;- which arises when there is no wake and 
.(j;-dW when there is a wake and are explicitly given by 

and 

where 

Jl = cos 8 .+ cos 8 0 J R/2 
sm8 

JK(R + Ro + A I) 
TR - /1 

12 - JRI2 + RII 

( 1 1 ) 

(1 2 ) 

! 1/ M - cos (-) !i)JJ 
Jl = . y R/ ~ 

Sin 0) 

/ J K( R + Ro + A'l ) I 

r - J1 
Ri l - J R' + R' 

12 II 
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When the souree is very lose to the edge (KRo « 1) and the point of obser­
vation is at a lar&,e distance frol!1 the source but not near the wake, the 
dominant part of Vrd denoted by Vrdl is given by 

A A A 

Vrdl = VrdAI + VrdWI ( 13) 

where 

( 14J 

A i exp[ -iKM(X - Xo) + iKRI 2 - irr/4] sin(8/2) sin«(-:-)o/2) _ we / 4,'; 
VrdWI = - , e 

2rrJ2rrKRRoR I2(1 - M2)N(S2)(COS 8 - 1/ A,n 
( 15) 

Now using k = w/c, F(v ) ~ - L (when v --1 (0) and N({2) In eqn (13), we 
obtain 

where 

b = {::~o + 8M cos 8 0 - 2 sin(8/2) Sin{80 /2)} {Q/( 1 - M2)} 1/ 2 

1 x __ 
4rrJ2rrRRoRI2(COS 8 + cos 8 0 )L+(Ks2 cos 8)L_( -KS2 cos ~)o) 

b {( 
2) }1/2sin(8/2)sin(80/2)(1/M -COS8)- ILP 

1 = QI 1 - M "-
2rrJ2rrRRoR I2(COS 8 + cos 8 0 ) 

1 x _ _ 
L+(Ks2 cos 8)L_( -KS2 cos 8 0) 

K = wi Q, Q = cJ 1 - M2 

(17) 

( 18) 
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It is important to note that l+(K~2 cos 8 ) and L_( -K~2 cos C~)o), appearing 
in eqns (17) and (18) are independent of w (see Asghar er al.6 ) . 

In order to calculate the field Vrd( X, y, z; r) , we need to find the inverse 
temporal Fourier transform of eqn (16) . This gives, on using eqn (5): 

( 19) 
-00 

-w2/4s2 - iW(d x e e w 

where 

X-Xo=R'cos8', y- Yo=R'sin0)' 

The integral appearing in eqn (19) may be evaluated with the help o f math­
ematica.8 Thus 

where b = [R1 2 - M R' cos 8']/Q and b, b l are given by eqns (17) and (1 ~) . 
respectively. In eqn (20) Bessel I (n,t) gives the modified Bessel function of 
the first kind of order n in t. 

CONCLUSIONS 

A complete analytical description has been provided for the sca ttering of a 
spherical Gaussian pulse for trailing edge (wake present) situation. Of parti­
cular significance are the following points: 

(1) From eqn (20) , we observe that as a result of fluid motion the field is 
increased by the factor (1 - M 2r 1/2 in comparison to still fluid. A lso, . 
the field is independent of the direction of flow since the fluid velocity 
U appears as 1 UI 2 in the factor (I - M2). 
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(2) It is perhaps well to note that the wave profile at y = Yo, z = Zo moves 
along the direction of x-axis at the velocity of c + U due to the fact 
that the fluid is moving in the x-direction . 

(3) The ratio of ~dAI to ~dWI is found to be 

~dAI .[8(1 + M cos 8 0 ) - 2 sin(8/ 2) sin(80 / 2)] 
-A-':::::::. l . . 
o/dWI sm(8/ 2) sm(80 / 2) (21) 

x KRo(cos 8 - 1/ M) 

Equation (21) gives the ratio of the diffracted wave when the wake is absent 
to that due to the wake for the point source. If we calculate this ratio for the 
line source situation (see Rawlins,5 who has not explicitly shown it) , we find 
that both the ratios are exactly the same. Thus the ratio of no wake to wake 
situation is independent of the type of acoustic sources. 

(4) For the rigid half plane if we put fJ = 0 in eqn (21), this ratio becomes 

A 

1/!dAI . 
-A-= -21KRo(cos8 - 1/ M) 
1/!dWI 

(22) 

We note that this ratio is the same as calculated by Balasubramanyam.3 For 
small Mach number, the ratio (22) is effectively 2iKRo / M and is independent 
of angle. If KRo is of the order of rrM this ratio is of the order of 2rr. Con­
sequently, the dependence of the intensity on Mach number would be M 5 

whether the Kutta-loukowski condition were imposed or not. At any rate, 
observations of the sound intensity at low Mach number in a moving med­
ium would fail to detect whether or not a Kutta-loukowski condition has 
been imposed, if the observations are not near the wake and are limited to 
the dependence on angle and Mach number. This conclusion remains 
unmodified for quadruples since the ratio of the two terms is not essentia lly 
altered by derivatives with respect to either Ro or 8 0 , 

(5) We also conclude from eqn (21) that for point sources near the edge of 
absorbing half plane (Ro -t 0) , the field caused by the Kutta-loukowski 
condition will be substantially in excess of that in its absence. Also, the 
imposition of the Kutta-loukowski condition and the associated wake 
has the effect of producing a stronger scattered field away from the 
wake than that in the neighbourhood of the wake an intense sound is 
created; it is much stronger than the scattered field away from the 
wake and does not decay downstream. This is true whether or not the 
sound be near the edge. 
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(6) If the analysis of Ffowcs Williams and Hall be regarded as relevant to 
a leading edge and the present analysis to a trailing edge, it would seem 
that the sound caused by a sourCt! near the trailing edge of an aeraroil 
will be more substantial than that due to a so urce or the same magni ­
tude near the leading edge. 

(7) Near the wake e is small and an additional term is required in eqn 
(10). This extra term is given by 

where 

1 = Ro + XI M + J M'2 - II YI / AI 

It is imperative to note the smaller that M becomes the more c10sly is the 
surface wave confined to the wake. It is the pressure of this wave which is the 
main distinguishing feature in the radiated-sound between the absence or 
otherwise of the Kutta-loukowski condition. It is good to note that the 
surface wave disappears from the pressure, as given by eqn (*), but remains 
in velocity. Therefore, measurements of the pressure fluctuations alone will 
not indicate the existence of the surface wave. However, if the product of 
pressure and velocity is taken as a measure of energy, differences in the 
energy due to the surface wave will be manifest. 

(8) As regards an aerofoil at zero incidence in a moving stream let us 
assume that the leading and trailing edges are sufficiently far apart for 
their acoustic interaction to be of secondary importance . Then, the 
intensity of sound produced by a fixed source near either edge 
(KRo ~ rrM) will be about the same away from the wake. Near the 
wake the sound will be more intense than in other parts of the distant 
field. 

(9) It should be emphasized that this theory has dealt with the radiation 
from fixed given sources. Where the sources are created by the flow 
itself, as in turbulence, the production of the sources themselves ma y 
be profoundly affected by the Kutta-loukowski condition and con­
clusions we have drawn would not necessarily be applicable. 
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APPENDIX 

In this appendix, we present the evaluation of one of the integrals appearing 
in eqn (9). The other integrals can be evaluated similarly. We consider the 
following integral: 

ooJ e iK{ij(.:-zo)+( l-ij2)1 /2(R+Ro)]F(IQlldoj 

1= [K(l _ ij2) 1/2] 1/2L+(Kjicos 8)L_(-Kjicos <-)0)(1 _ M2) 1/2 (AI) 
-00 

where 

ij = 1'/(1 - M2)1/2, ij = (I _ ij2)1 /2 

F(IQ I) = F(J.L[K(1 - ij2)1/2]1 /2 ), J.L = COS(~i~ ~~S(-)Q J(R/2) 

Making use of the result 

(A2) 
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Equation (AI) can be written as 

(A3) 

Now, consider the integral 

(A4) 

By the substitutions 

ij = cos {, Z - Zo = RI cos 8 , P = RI sin 8, (I - if)I / ~ = sin ( (A S ) 

I' takes the form 

00 

I' = f f(t;)e iKRI cos((- <-l)dt; lA6) 

--00 

where 

f()
- -sint; 

{ - - -
L+(Ksin t;cos 8)L_(-Ksin (cos (~)()) 

We apply the method of steepest descent to solve the integral!'. For that. we 
deform the contour of integration to pass through the point of steepest des­
cent ( = 8, such that the major part of the integrand is given by the inte­
gration over the part of the deformed contour near 8, with ./(() slowly 
varying around it.9 Hence, we can write 

f ~ rcf(8)Jf.o
1)(KR 1) 

D! _ rc~I)(K[(z - zo )2 + p 2J
1
f2) 

- - - t; 
L+(K{ cos 8)L_( - K{ cos 8 0 ) 

(A 7) 
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where 

p 
~ -------~ 

- [(z - Zo )2 + p 2JI /2 

Using eqn (A 7), we can write eqn (A3) as 

If we make the substitutions 

2 [2 2· 2 ] 1/ 2 2 _ _ 2 2 
t = -A I + A I + RII Sin h u , RI I = (- - ~ ll) + A I 

A I = R + Ro - JJ-
2 

In eqn (A8), we obtain 

(A9) 

where 

(A 10) 

The integral eqn (A9) can be solved asymptotically by taking 
KR I I cosh u » 1. Therefore, we can rep lace the Hankel function by the first 
term of its asymptotic expansion to give 

,JJie- iTf / 4 ooJ [(Rf l sinh2 u + An l
/2 + A I]I /2 

1= - [2KR II (1 _ M2)] 1/2 L+(K{cos (~)L_ (K{cos C-),l)Jcosh II (All) 
'11 1 

x exp{iKRI I cosh lI }dll 
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If we let r = J(2KR 11 ) sinh(u/2), then 

where 

and 

J2(r) = [[r
2
(r

2 + 2KR 11 ) + ATK2r /2+A IK]I f2 
(r2 + KR I dCr2 + 2KR I d 

I x _ _ _ 
L+CK{cos 8)L_( -K{ cos 8 0 ) 

(A 12) 

An asymptotic expansion of h then follows by putting r equal to it s lower 
limit value in the non-exponential factor of the integrand plus the contribu­
tion from r = 0 depending if zero lies in the interval of integration. Hence 

,J2ii KR eiKRI2-irr/4 
1= - el 

II IoH( -£1) - £1 F(r R 12) 
J K(l - W) JK(1 - W) 

J2nCA 1 + R + Ro) 
(AI3) 

where 

H (.) is the usual Heaviside function, and 


