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Preface 

A great deal of mathematical literature describes the solution of variolls types of fluids . 

The Newtonian fluid is the simplest to be so lved, not only numerically but also 

analytically. However, its application is limited, as a few types of fluids obey the law of 

Newtonian fluid. In practice, such as chemical, mechanical and nuclear industries, 

geophysics and bioengineering, the behavior of several fluids is greatly deviated f1-0111 

Newtonian fluids. In mathematical literature, the non-Newtonian fluids are principally 

classified on the basis of their behavior in shear. A fluid with a linear relationship 

between the shear stress and the shear rate, is always characterized to bc Newtonian fluid. 

Based on the knowledge of the solutions to Newtonian fluids, the different fluids can be 

extended. In recent years, interest in boundary layer flows of non-Newtonian fluids has 

increased. Amongst many models that have heen used to describe the non-Newtonian 

behavior exhibited by the certain fluids, the fluids of differential type (including second 

order). Several exact solutions have been presented for the flo w of these fluid s 

(Rajagopal [1], Rajagopal and Gupta [2,3], Hayat et al [3-6],Siddiqui and Benharbit [7] 

and Siddiqui et al [9]). 

This dissertation consists of three chapters. Chapter 1 includes the basic definitions of 

fluid mechanics and magnetohydrodynamics, the equation of continuity and momentum 

equation up to second order fluid. 

Chapter 2 describes the problem [9] of hydro magnetic viscous tlow past a porous plate 

with Hall effects. 

In chapter 3, an investigation is made of the flow of a second order conducting liquid past 

an infInite porous plate taking Hall effects into account. The plate is subjected to suction 

or blowing and this study is likely to have bearing on the problem of transposition 

cooling of a vehicle. It is shown that the asymptotic solution for velocity and magnetic 

field exists both for suction or blowing at the plate. 
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Chapter 1 

Basics of Fluid Mechanics 

1.1 Introduction 

This chapter includes definitions and derivations of some basic equations like conti

nuity eqnation, eqnation of momentum, eqnation of law of conservation of ch::trge and 

Ohm's law. Finally, the equations of motion for magnetohydrodynamic viscons and 

second order fluids are derived. 

1.2 Definitions 

Fluid 

Fluid is a substance which cannot sustain shearing forces when at rest or flnid is 

a substance that deforms continuonsly nnder the influence of external forces. 

Fluid Mechanics 

The branch of applied sciences analyzing the properties and behavior of fll lids 

3 
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both in motion and at rest is called fluid mechanics. 

Types of fluids 

Fluids are usually classified as follows: 

Ideal fluid 

An incompressible fluid with zero viscosit.y is called ideal fluid. 

Incompressible fluid 

A fluid is said t.o be incompressible when its densit.y is const.ant. 

Viscous fluid 

A fluid with non zero viscosity is called viscous fluid . All real fluids are viscOllS 

fluids. 

Types of flows 

There are many types of flows yet. t.he following are important from t.he subject. 

point of view. 

Uniform flow 

A flow in which the velocities of liqllid part.ides at all sections of channel are equal 

is called uniform flow. 

N on -uniform flow ' 

A flow in which the velocities of liqnid particles at. all sect.ions of t.he channel are 

not equal is called a non-uniform flow 

Laminar flow 

A flow in which each fluid part.icle has a definite path and paths of individual 

part.icles do not. cross each other is called laminar flow. 
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'IUrbulent flow 

A flow in which each fluid particle does not have a definite path and the paths of 

individual particles cross each other is called a turbulent or irregular flow. 

Steady flow 

A flow in which the quantity of fluid flowing per second is constant is called a 

steady flow. A steady flow may be uniform or non-uniform. Mathematically 

O'rJ 
'rJ = 17 (x, y , z) or 8t = 0, (1.1 ) 

where 'rJ is any fluid quantity. 

Unsteady flow 

A flow in which the quantity of fluid flowing per second is not const.ant, is called 

unst.eady flow. 

Compressible flow 

A flow in which the volume and thus density of the fluid changes during the flow is 

called a compressible flow. All the gases al'f~ generally considered to have compressible 

flows. 

Rotational flow 

A flow in which the fluid particles also rotate (i.e. have angular velocity) abont 

their own axes while flowing is called rotational flow . 

Irrotational flow 

A flow in which the fluid part.icles do not. rotate about their axes and ret.ain their 

original orientations is called an irrot.a t.ional flow . 
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Types of forces present in a moving fluid 

When a fluid is in motion, some forces are always involved in the phenomenon of 

flow but t here are always one or two forces which dominate the other forces . They 

governed t.he flow of the finid and keep it. in motion. The following forces which are 

present in moving fluid are import.ant from the sub ject point of view. 

Inertia force 

The inertia force Fi is t.he product of mass and accelerat.ion of the flowing fluid 

and is always existing in the phenomenon of flllid flow. 

Viscous force 

The viscous force Fv is the product of shear stress due to viscosity and the cross 

sectional area of flow. 

Gravity force 

The gravity force Fg is the product of mass of the flllid and accelerat.ion of the 

flowing fluid due to gravity. 

Surface tension force 

The surface tension force Ft is the product of tension per unit length and the 

length of surface of the flowing fluid. 

Pressure force 

The pressure force Fp is the product of intensity of pressure and area of the flowing 

fluid. 

Elastic force 

The elastic force is the product of the elas tic st.ress and the area of flowing fluid . 



..., 
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Magnetohydrodynamics 

The branch of science that deals with stlldy of motion of an elect.rirally conducting 

fluid in the presence of magnetic field. The fluid uncleI' consideration is 1-.('l'l1wrl ai:i 

magnetohydrodynamic fluid or simply I\.II-ID fluid. 

Permeability 

The absolute permeability i::; t.he ratio of the magnit.ude of t.he magnet.ic induct.ion 

to the magnitude of magnetic intensit.y i.e. 

B 
J.Le = H ' (l.2) 

where B is magnitude of magnetic induction and H is magnitude of magnetic intensity. 

Electric field intensity 

It is defined as the force experienced by unit. posit.ive charge placed in an elec t.ric 

field at specific point. Mathematically 

E=F 
q 

, ( l.3) 

where E is an electric field intensity and has unit. Newt.on per Col1lmn and F is a 

force acting on unit positive test charge q. 

Magnetic field intensity 

The force acting on a unit north pole in a magnetic field at a particular point is 

called magnetic field intensity at that point i. e. 

( 1.4) 

where H is magnetic field int.ensity, F is force acting on nort.h pole and mn is s t.rength 

of nort.h pole. 
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M agnetic induction 

T he magnetic lines of force falling on n, nn it armL is called magnet ic flnx density or 

magnet ic induction. It is fonnd tha t. magnetic illdllction is proportiollal t.o magnetic 

field int ensity i. e. 

( l. 5) 

where J-Le is magnetic permeabilit.y. 

Current density 

The time rate of flow of charges per nllit area is cn,lled current density. It. is llsnally 

denoted by J given by 

( 1.6) 

where A is area, Q is amount of charges passillg throngh condnct.or ullder considcra-

tion. 

C h arge density 

The amount of charges passing throngh per nnit volume is called charge density. 

It is denoted by Pc and is given by 

Q 
Pc = =- , 

V 
(1.7) 

where Q is amount of charges and V is volume throngh which Q is passmg. In 

differential form 

dQ 
Pc = -=-

dV 
( 1.8) 

and illtegral form is 

Q =/ (Je riV. ( l.9 ) 

V 



Reynold number 

The ratio of t.he inert.ial force t.o viscous force is called Reynold number i.e. 

or 

or 

or 

or 

R = Inert.ial force 
ViSCOllS force ' 

R = l'vlass x Accelerat.ion 
Shear s tress x Cross sect.ional area' 

Volume x Mass density x veTlocit
y 

R = lin e 
Shear st.ress x Cross sectional area' 

R = velocity x Ivlass densit.y x velocit.y 
Shear st.ress ' 

pU2 pU2 UL 
R=-=-=-

I L £i'IL II !!.. v' 
r- £iy r L 

9 

(1. 10) 

where L is dimension of system under considerat.ion and U is uniform velocity at. 

infinity. 

When the Reynold number of the syst.em is small , then viscous force is predomi-

mmt and the effect of viscosit.y is important . "\iVhen the Reynold number is largp, t.he 

inertial force is predominant and effect. of viscosity is important only in t.he narrow 

boundary layer region near the solid boundary. 
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1.3 Newton's law of Viscosity 

The Newton's law of viscosity stat.es t.hat. the shear stress that deforms t.lle fil1id 

element.s is directly proportional t.o t.he velocity gradient.. Tvlathcmatically 

(1.11) 

where T yx is shear st.ress acting on fiuid element and {i is constant of proport.ionalit.y 

called coefficient of viscosit.y or simply viscosity. 

Newtonian fluids. 

The fluid that obeys Newt.on's law of viscosit.y is called Nmvt.onian fiuid. 

Non-Newtonian fluids 

The fluid which does not obey Newton's law of viscosit.y is called non-Newt.onian 

fluid. 

--1.4 Continuity 'equation 

The law of conservation of maRS states that rnat.t.er cannot be creat.ed or dest.royed 

in any classical system i.e. in any fluid flow system, fluid mass is conserved . This 

fact leads to establish a relation between t.he fluid density and fluid velocity at. any 

point. Mathematical form of this relat.ion is called equation of continuity which can 

be derived as followR: 

Let liS consider a cont.rol VO]UIl l0. V ('lw]os(,d by control s lll·fac(' S. Ld. rlV 1)(' slmtll 

volulIle elelllent. ew :losed by s lIl'Can' (' I ('I IH ' II t. !IS . 



The fluid entering through small surface element dS is 

pq. ndS, 

where n is outward unit. normal at. s1ll'f().cc element. dS. 

The fluid entering t.hrough whole slll'face S is 

I pq. ndS. 

5 

By divergence theorem we have 

1 pq. ndS = 1 V· (pq) dV. 

5 V 

The rate at which the fluid is leaving t.he volume V is 

a 1 --- pdV. at 
v 

Law of conservat.ion of mass implies t.hat. 

j . - a1-V . (pq) dV = - at pdV, 

v 

or 

1 (V. (pq) + ~~) dV = O. 
v 

Since V is arbitrary, t.herefore int.egrand must vanish i.e. 

and is called continuity equation. 

ap 
V· (pq) + - = 0 at 

For st.eady flows ?Jff = 0 and t.hus Eq. (1. 18) becomes 

V· (pq) = O. 

11 

(1. 12) 

(1.13) 

(1.14) 

(1.15 ) 

(1.16) 

(1.17) 

(1.18) 

(1.19) 
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If fluid is incompressible (p = const.ant.) t.hen Eq. (1.19) t.akes t.he form 

V·q=O (1.20) 

which is cont.inuit.y equation for st.eady flmv of incompressible fluids. 

1 .5 Equation of momentum 

Every particle of fluid at. rest. or in st.eady or accelerat.ed motion obeys Newton's 

second law of motion which st.atp.s t.hat. "the t.ime rate of change of linear Inomcntllln 

is equal to the net force". To derive the clifferential form of the moment.um eqnat.ion , 

we shall apply Newton's second law to an infinitesimal fluid partide of mass drn. Thlls 

for an infinitesimal system of mass drn, the Newt.on's second law can be written as 

or 

dq 
dF = dm dt ' 

[ 
oq oq oq Oq] 

dF = drn u ax + 11 oy + 'W oz + at ' 

(1.21) 

(1. 22) 

where !u is called the tot.al or substantial derivative and dF is the net force acting on 

the infinitesimal system. 

Since the forces acting on a fluid element may be classified as body forces and 

surface forces. Surface forces include both normal forces and tangential (shear) forces. 

We shall consider the x-component of the force, acting on a differential element of 

mass dm and volume dV = dxdydz. Only those stresses that act in the x-direction 

will give rise to surface forces in the x-direction. If the stresses at the center of the 

differential element. are t.aken t.o be (T Xl: , T yx and T zx , where () xx is t.he normal st.ress 



z 

)' 

aaxxax : -+ 

or,.,. 0 ' 
T\,\"+ --
. ~\' 2 

a,.,. - ax :! f- --+! ___ -{ 
+- --- . -

cr.,. a= r --'--.. ,. a= 2 

-1--+ a + _aa_". ax 
n a~ 2 

/------------+x 

Figure 1.1 : 
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and T yx, T zx are the shear or tangential st.resses, then the stresses acting in the :c-

direction on all faces of the element. (obt.ained by a Taylor series expansion about. t.he 

t:p.ntre of t.he element) are as shown in figure: 

To obtain the net stress force in the x-direction, dFsx , we must SlIm t.he stress 

forces in the x-direction. Thlls 

( 
oaxx dX) ( oaxx dX) a + --- dydz - a· - --- dydz = fu 2 = fu 2 

( 
OTyx dY) ( OTyx dY ) + T yx + oy 2 dxdz - T yx - oy 2 dxdz 

( 
OTzx dZ) ( OTzx dZ) + Tzx + &2 dxdy - Tzx - &2 dxdy , (1.23) 

or 

( 
Orr.xx OT yx OT zx ) 

dFsx = fu + oy + & d:l:dydz . (1. 24) 

Let pBx be the body force per llnit. volume in the x-direction. Then t.he net. forc e in 
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the x-direction dFx is given by 

( 
f)(J xx f)T yx f)T zx ) 

dFx = dFB + dFs. = pBx + -f) + -f) + -f) dxdyriz . 
x x x y z 

(1. 25) 

Similarly the net forces in the y- and z-directions are 

( 1.26) 

( 
f)T xz f)T yz f)(J zz ) 

dFz = dFBz + dFsz = pBz + -f)' + -f) + -f)- dxdydz . 
. 1: y z 

(1.27) 

Using Eqs. (1.25) to (1.27) into the x-, y- and z-components of Eq. (1.22) and t.hen 

dividing throughout by dx dydz, we obtain 

du _ (f)(J xx f)Tyx f)T zx B ) 
p dt - f)x + f)y + f) z + p x , (1.28) 

dv _ (f)Txy f)(Jyy f)T zy B ) 
p dt - f)x + f)y + f) z + p y , (1.20) 

dw _ (f)'T xz f)'T yz f)(J zz B ) 
p dt - f)x + f)y + f) z + P z . (1.:3U) 

Equations (1.28) to (1.30) are the differential eqnations of motion for any finid satis-

fying the continuum. 

In vector form Eqs. (1. 28) to (1.30) take the form 

dq . 
p dt = pB + d'wT, (1.3 1) 

where 

(J xx 'T yx 'T zx 

T= 'T xy (J yy 'T zy (1. 32) 

'T xz 'T yz (J zz 

is the Cauchy stress t ensor . 
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1.6 Law of conservation of charge 

Let us consider a conducting medium of volume V enclosed by closed surface S. The 

charge per unit time (current) leaving V through surface S is 

- = J ·ndS dQ j' 
dt ' 

5 

where n is outward unit normal at small surface element dS. 

By divergence theorem we have 

~~ = J J . ndS = J V . J dV. 

5 V 

Also 

dQ = -~ J pd\! . 
dt at e 

From Eqs. (1.34) and (1.35) we have 

or 

J V· JdV =- J apciv 
at ' 

v v 

1 (V. J + a~e ) dV = O. 
v 

Since V is an arbitrary, therefore integrand must be identically zero i .e. 

V. J + a~e = o. 

(1.33) 

(1.3'1) 

(1.3.5) 

(1.36) 

(1.37) 

(1.38) 

This is mathematical form of law of cOllservation of charge or cont.inuit.y equation for 

flow of charges (cnrrents). 

For steady currents 

ape = a 
at 

(1.39) 
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and t.hus Eq. (1.38) t.akes t.he form 

(1.40) 

which st.at.es that. the net. current ent.ering or leaving any closed surface is zero. 

1 .7 Maxwell's equations 

James Clerk Maxwell derived a set. of equaLions known as Maxwell 's equations etnd 

are given by 

1 BE 
VxH=J+-C2~' 

/j,e ut 

V·H=O, 

(1.41) 

(1.42) 

(1.4:1 ) 

(1.44) 

where H is the t.ot.al magnet.ic field , C is t.he velocit.y of light. , E is t.he elect.ric field , 

p t.he charge density, J t.he current. density, f-Le the magnet.ic permeabilit.y and E is the 

permittivity. 

1.8 Hall effect 

In the presence of magnetic field the motion of electrons and holes give rise t.o a 

galvanomet.ric effects. The most. effective is the Hall effec t. discovered by I-I.E. Hall 

in 1879. When the current carrying conductor is placed in a magnet.ic field, then 

elect.ric field is produced which is normal or perpendicular t.o bot.h t.he direction of 
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the current and the magnp.t.ir. field . This phenomenon is known as Hall effect. and t.he 

field produced is called Hall field. 

Consider a conducting mat.erial of rc'ctanglliar shaped bar. Vve first consider the 

situation when magnetic field is not introduced and there is an elect.ric: current. flow

ing through the rectangular shaped bar and cond1lction electrons are drifted in t.he 

direction opposite to the direct.ion of current.. When t.ransverse magnetic field is ill

troduced then the moving charges experience a force called Lorentz force which is 

given by 

(1.45) 

where V d, e and H denote respectively drift velocity, charge on electron and imposed 

magnetic field. This force causes t.he der.t.rons t.o bend downwards. The positive 

charge carriers are left on top of t.he specimen bar and t.he negative charge carri ers 

are pushed down to t.he bottom of t.he bar. This effect. is called Hall effec t. and 

produces elect.ric field E H • The potential difference across t.he bar is called Hall 

potential difference (Hall voltage). The combinat.ion of positive charge carriers on 

t.he upper side and negat.ive charge carriers on the lower side of the bar gen8rates 

downward electric field called Hall field E H . It exert.s an upward force on electrons 

partially cancelling the force of magnetic: field . This force is called Hall force and 

equals to 

FH = eEH . (1.46) 

The net. force F on electrons is gi yell by 

F = Lorentz force - Hall force (1.47) 

\ 
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or 

( 1.48) 

In equilibrium both forces cancel ont each other and hence 

(1.49) 

or 

(1. 50) 

From Eqs. (1.45) and (1.46) we have 

(1. 51) 

or 

(1. 52) 

The drift velocity V d of n e electrons in t erm of current density J is 

(1. 53) 

Using Eq. (1.53) in Eq. (1. 52) we have 

Eli = - J-L P. (J x H ) . 
en e 

(1. 51) 

Above equation shows that Eli is proport.ional to J x Hand - ;:e is const.ant of 

proportionality called Hall co-efficient and is denoted by Rli i. e. 

(1. 55 ) 

A similar analysis can be carried out for P-type charge carriers. For P-type charge 

carriers Hall co-efficient is given by · 

RJ-f = _J-Le, 
ep 

(1. 56) 
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where p is equal to charge on elect.ron. 

Equations (1.55) and (1.56) are very u~eflll for t.he measnrement. of carriers C011-

centrat.ion in semi- conductor or met.als . 

1.9 Ohm's law 

Let. current. I be passing t.hrough a conuuct.or of lengt.h L and area of cross-sect.ion 

A. It is experimentally proved that. the current passing through the conductor is 

proport.ional t.o the voltage U applied across the ends of conductor i. e. 

U=IR, 

where R is constant of proportionalit.y and is called resistance of conductor. 

The resistance of any conductor is defined as 

where Pr is resistivity of the conduct.or and thus Eq. (1.57) becomes 

Since ~ = J called current density, so Eq. (1.59) takes the form 

where a is conductivity of conductor. 

As 

U 
J=rr

L' 

U = EL 

(1. 57) 

(1.58) 

(1. 59) 

(1.60) 

(1.61 ) 
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so Eqs. (1.60) and (1.61) imply that 

J = a E (1. 62) 

which is called Ohm's law and states that the C1ll'rent. density J is direct.ly proportional 

t.o electric field int.ensity E . 

Now we consider the case of Cllrrent. carrying conductor moving III a llllifonn 

transverse magnetic field. There are t.hree types of electric fields in this case. 

1. Electric field E due t.o C1ll'rent I. 

2 . Elect.ric field Em due t.o indllced magllet.ic field. 

3. Electric field EH due to Hall effect. 

The electric field int.ensit.y Em induced due t.o t.he mot.ion of conductor across the 

t.ransverse magnetic field is 

(1. 63) 

and elect.ric field int.ensit.y EH due t.o Hall effect. is 

fl'e E 1-1 = - -J x H, 
en e 

(1.64) 

where ne is number of electrons and e is charge on electron . 

If E is elect.ric field int.ensit.y due t.o C1ll'rent. I passing t.hrough the conduct.o]' t.hen 

net elect.ric field int.ensity is 

(1.05) 

or 

(1.66) 
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Eqnat.ion (1.62) t.akes t.he form 

(1.67) 

which is known as generalized Ohm's law. 

1.10 Equation of motion for magnetohydrodynamic 

viscous fluid 

All fluids in motion obey law of conservat.ion of momentum which is given by 

dq . 
p dt = dwT + f-LeJ x H, ( 1.68) 

where p mass density of the fluid, f-Le magnetic permeability of the fluid and T is 

Cauchy stress tensor defined by 

(1.69) 

where f-L is coefficient of viscosit.y, p is pressure and Al is kinemat.ical t.ensor which is 

defined by 

Al = gra.dq + (gra.dqf. (1.70) 

We assume t.he velocity field of the form 

q = [u (x, y, z, t) , v (x, y, z, t) , w (x, y, z, t)]. (1.71) 

From above equation we have 

au au au 
ax ay az 

gra.dq = L = av av av 
ax ay az (1.72) 

aw 8w aw 
ax ay az 
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V'll av aw 
ax ax ax 

T T au av ow (gradq) = L = 
oy oy oy 

(1. 73) 

aIL rJv aw 
az oz oz 

Using Eqs. (1.72) and (1.73) in Eq. (1.70) \ve obtain 

2 ou 
ax 

au + av 
ay ox 

au + ow 
oz ox 

A l = L + LT = ou + ov 
oy ox 2°V 

oy 
oV + ow 
oz oy 

(1.74) 

o'u + uw 
Dz Ox 

ov + Dw 
dz fly 2°W 

OZ 

Taking divergence of (1.69) we obtain 

divT = div (- pI) + f.LdivA1 . (1. 75) 

Writing divA l and div (- pI) in component. form we have 

(1.76) 

(1.77) 

(1.78) 

(1. 79) 

(1.80) 

(1.81) 

Taking x, y , z-components of Eq. (1.65) we get 

(1. 82) 

(1. 83) 



(1.84) 

Writing J x H in component form we have 

(1.85) 

(1.86) 

(1.87) 

In Eq. (1.68) 1t = %t + q. V is called mat.erial derivat.ive and so Eq. (1.68) CELn be 

writt.en as 

[a
q ]. p at +(q·V)q =dwT+f.1eJ x H . ( 1.88) 

Now making use of the Eqs. (1.82) t.o (1.87) in component. form of above eq\lat.ion \,e 

get. 

au au au au 
- +u- +v- +wat ax ay az 

av av av av 
- +u- +v- +wat ax ay az 

ow ow ow ow 
- +u- +v- +wat ax ay az 

(1.89) 

_ _~ a]] + v [2a2u + a2
u., + 0

2
'11 + a2u + a2w] 

pax Dx2 ay2 a.Tay 8z2 axaz 
+ f.1e [JzHx - JxHz] , (1.90) 

p 

(1.91) 

where v = /!:. is called kinematic viscosit.y. 
p 
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1.11 Equation of motion for magnetohydrodynamic 

second order fluid 

The Cauchy stress tensor for an incoll1J.)l"('ssible second order flnid is given by 

(1.92) 

where J-l is coefficient of viscosity, a l and a2 are material moduli wh ich a.re lls llally 

referred to as the normal stress moduli , p is pre~S1ll'e ::tnd Al and A2 are kinemn.tical 

tensors defined by 

Al = gradq + (gradq)T, (1. 93) 

(l. 94) 

If an incompressible fluid of second order is to have motiolls which are incompat. ibl e 

with thermodynamics in the sense of Clausills-Duhem incqlln.lity and t.he condit.ion 

that the Helmholtz free energy be minimum when the fluid is at rest., thell follo'w ing 

conditions mllst be sat.isfied 

(U:lG) 

We assnme the velocity field of t.he form 

q = [u (x, y , z, t) , 1) (.'.I:, y, z, t ) , w (x , y, z, t)] (l. 96) 

and hence we have 

a'U av aw 
[h: ax ax 

(gradqf ="= LT = au 01) ow 
oy oy oy (1. 97) 

0'U ov ow 
oz oz oz 
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2au 
ax 

au + av 
ay ih: 

au + ow 
az fh 

Al = L + LT = au + av 
ay ax 2071 

ay av + aw 
az ay (1. 98) 

au + Q W 
uZ ox 

av + oW 
OZ fly 2°W 

GZ 

29.2!: ( au + ov ) 2au ( aU + 011.') 

4 ( ~~ ) 2 
ax Dy ax ax oz aX 

+20V ( au + ov ) + c~u + ov ) 
+ ( ou+ov f 

oy oy ax ay ox 
oy ax 

+ ( g~ + ~~ ) + ( au t ow ) 
+ ( au + aW )2 

oz' oy 
oz ax 

+ ( av+aw ) +2r7W ( ~u + r7w ) oz oy az az aX 

20U ( au + av ) ( au+av ) ax ay ax ( r ay a.T; 
OIL ov 

+20V ( au + av ) 
oy + ax 

+(au+aW) 
Ai= ay ay ax 

+4 ( av r + 
oz ax 

+ (au + aw) 
oy 

+2 av (av + ow) az ax ( r ay az ay 
au + ow 

+(g~+~~) 
oz ay 

+2aw ( av + ow) oz az oy 

2au (au + OW) (~'/L + OW) ax az ax uz ax 
( ~~ + ~~ ) 2 

+ ( ~~+~~ ) + ( ou +av ) ay ax '> 

+ ( 01) + ow r 
+ C~u + av ) +2(1) ( av + aw ) 

OJ; flu 

oy a:c ay az ay 
+4 (~~ ) 2 

+2aw (au + ow ) +20W ( av + aw ) J 
az az ax az oz ay 

( 1.99) 

2 a2u a2u a2v a2u a2w 
axot ayol. + axot azot + axot 

aAI 02u a~v 2 a2v a2v 02w (1. 100) --
at oyot + axot ayat azoL + ayaL 

02u a2w a2v a2w 2 02w -+- ozal. + ayat ozot oxol. ozoL 



26 

2 (~~/ ? au 011 
~ox ay 

2 au au 
a:r az 

+av (a11 + ov ) ox oy ox +av ( au + ov ) ay ay ox + av ( 011 + OV ) OZ oy ox 

+ ow (":lu + OW) ox oz o~: 
+ Dw ( on + ow) OJ) oz ox + ow (OIL + ~w ) oz oz 0.[; 

ou ( ou+ov) ox oy 0:" 011 (au + ov) oy ay Ox ou ( ou+ ov) oz oy ox 

A1gradq = +20V oU ox ay +2 ( ov r ay +2°VOV 
aJ) Dz 

+ow (av + ow ) ox oz ay +ow ( ou + DW ) aJ) az OJ) +ow ( ?u + ow ) oz az DJ) 

ou ( ou + ow ) ox OZ O~: 
flu ( ou aw ) 
oy iJz + Eh: 

ou ( au ow ) oz az + ax 

+ov ( ov + ow ) oX az ay +ov ( av + ow ) oy oz oy +ou ( au + 8W ) oz az oy 

+20W oW ox OZ 
+?OWOW 
~ ay oz 2 (i1 w)2 + 0:[; 

(1.101 ) 

2 (~~)2 a,u(au+ov) ox oy ox au ( OU + ow) ox oz ox 

+av ( o'u + ov) ox oy ox 
+20V fJv 

ox oy +?V ( av + ow ) ox oz oy 

ow (O'U Dw ) + ox oz + ox +ow ( ov + ow ) ox Dz oy 
+20W oW Ox OZ 

2011 ou 
ux oy a'll (ou+ov) oy ay ox ou ( ou + aw) oy fJz ax 

(gradqf Al = +ov ( ou + ov ) oy oy ox +2 ( ~~r +ov ( fJV + ow ) oy oz ay 

+ow (ou + 92£ ) ay oz ax + aw ( ov + Ow ) ay az oy +2 0W oW ay oz 
l 

20uau au ( au+av ) au (aU + OW ) ax az az oy ox az oz ox 

+ov ( ou + ov ) az oy ax . 
20V ov 

az ay +ov ( ov + aw ) az az ay 

+aw (ou + ow ) oz oz ox . + aw ( ov + ow ) oz oz ay +2 ( OW )2 ax J 
(1. 102) 
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U-----E: 

8x2 

2 +71 a2
u 

ax8y 

+w a2
u 

8 x8z 

+v 8
2

v + w a2
v 

8xay 8xaz 

U 8
2
u + v 8

2
1' 

ax8:: 8y8" 

+V a2
w + w EJ2w 

8xay 8x8z 

'U (P v V 8
2

u 
' axay + ay2 

+v 8 2
,u + w a2

v 
ax8y ax8z 

2 

U 82
v + 11 8

2
1) 

8x8z ay8z 

+v a2
w + w 8

2
w 

8y8y azov 

C:J2w u--8xflz 

2 +'11 a2
w 

a yaz 

+w a2W 
f) z 2 

In component form the divergence of Eqs, (1.98) to (1.103) yields 

(
diV OAt I ) _ 03u + _0_

3
_'11_ + 2_0_3_v_ + _0_3_v_ + 03w 

o y oxoyot ox20t oy20t oz20t oyozot' 
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(1.103) 

(1.104) 

(1.105) 

(1. lOG) 

(1.107) 

(1.108) 

(1.109) 



28 

83u thu 82u 83w 8lL 82 w 83 w 
+w-- + --;:-- + 71, + --- + 7' ---::-

8:I;2Dz ay ayaz ax'2ay Dy ax2 a:cDy2 
8v a2w a3w aw 82w a a3v , au a2u 

+---+w +---+_·u +---
ayaxay ax8y8z 8y D:r:8z 8z 8x8z'2 az 8x:8z 

83u 87) a2,u 83u 8w 82u 83w 
+v-- + ---+w- + --+u--

8y8z2 8z ay8z 8z3 8z 8z2 ax28z 
au a2w 83 w av a2 w 83 w +-' -- + 11 + --- + w---::-
8z 8x2 8x8y8z 8z 8x8y 8x8z2 

aw 82w 
+ 8z 8x8z' (1. ]10) 

(div ((q. V) Adt 

(1.112) 
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OV EPw ow 02w 
+---+4---

OZ ozoy· ox oxoz' (l.115) 
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div ((gradq)T AI) z 

OV 02w ow 02w 
+---+4---oz oyoz ox oxoz' (1.118) 
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(divAit 
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aw a2W fJ271 a'll a2v au a2u aw ( 2
1) aw 

+2--+--+ -+-- + -
az ax2 ay2 az Dxay2 az ay2 ax axay2 ax 

a2u a'll au a2w D2·u av a2w av a2v av 
+--- + --- + --- + --- + 2--

ayaz ay ayaxay ayaz ax axayax ay2 az 
( 2

1) aw av a2'/} (1) fFw a2w a11 a2w aw 
+2-- + 2--- + 2--- + 2--- + 2----

ay2 ay ay oyaz oyay2 oyDz az ayDz Dy 
ow 02v aw D2w au 02U ou a2w awa2u 

+2--- + 2-- + 2--- + 2--- + 2--
az ayaz az ay2 az Dz2 az axaz Dx az2 

Dw a2w ov a2v (1) a2w 02v Dw a2w aw 
+2--- + 2--- + 2--- + 2-- + 2----

ax Dxaz az DZ2 az ayaz az2 Dy oyaz ay 
awa2w 

+8~!:l2 ' (1.121) 
u Z u Z 

Taking divergence of Eq. (1.94) we have 

div (A2) = div (a~1 ) + div ((q. V) Ad + div (AIgr-adq) + div ((gr-adqf AI) . 

( 1.122) 

Now using Eqs. (1.107) to (1.121) in Eq. (1.122) we have 

( 1.123) 
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Taking divergence of Eq. (1.92) we have 

(1.126) 

and in component form we have 

(divT) x 



( 1.127) 

(divT)y 

0 .128) 

(divT) z 
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Now using Eqs. (l.127) to (l.129) in Eq. (l.88) we obtain 

fJu fJu fJu fJu 
- +u-+v- +w
fJt fJx fJy f) z 

(l.129) 



Ov Ov Ov Ov 
- +u- +v- +wot Ox oy oz 
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8w 8w 8w 8w 
-+u-+v-+w-
8t 8x 8y 8z 

(1.131) 
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(1.132) 

where 

a3 = 4a2 + 5al , (1.133) 

a4 = 2a2 + 3al, (1.134) 

a5=a2+ a l, (1.135) 

a6 = 2a2 + aI, ( 1.136) 

a7=a2+ 2al . (1.137) 
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Chapter 2 

Hydromagnetic Flow of a Viscous 

Fluid Past a Porous Infinite Plate 

2.1 Introduction 

In this chapter an investigation is made of the steady flow of an electrically conducting 

incompressible fluid past an infinite porous non-conducting plate taking Hall effects 

into account.. The fluid is being permeated by a uniform transverse magnetic field. It 

is shown t.hat the asymptot.ic solutions for the velocity and the magnetic field exist 

both for suction and blowing at the plate. Finally, the case when magnetic Reynold 

number is very small is also discussed. This problem is due to A. S. Gupta [9J. 
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2.2 Mathematical formulation 

Consider t.he st.eady flow of an electrically conducting incompressible fluid past. an 

infinit.e non-conducting porous plate coinciding wit.h t.he plane V = 0 such that x-

axis is along t.he plate and parallel t.o t.he flow with v-axis normal t.o the plate. A 

uniform t.ransverse magnetic field Ho is imposed along the y-axis and the plate is 

t.aken as electrically non-conduct.ing. Since the plat.e is infinite, all physical variables 

depend on y only in the steady stat.e. Taking z-axis normal to xv-plane and assuming 

t.hat. t.he velocit.y q and t.he induced magnet.ic field H have component.s (u , v, w) and 

T he cont.inuit.y equat.ion for incompressible fluid is given by 

ou ov ow _ 0 
ox + oy + 8z - . 

Vve assume the velocity field of t.he form 

q = [u (V) , v (V) , w (V) 1 . 

From Eqs. (2.1) and (2.2) we have 

dv 
dy = O. 

The above equat.ion shows t.hat. v =I v (y). Hence 

where the constant Va > 0 for suction and Va < 0 for blowing. 

By t.he solenoidal relation one yields 

8Hx oHy oHz -+-+-=0 ox oy oz 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 



which implies that 

Integration of above equation yields 

dHy = O. 
dy 

were Ho is imposed uniform magnetic field. 
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(2.6) 

(2.7) 

If [lx, Jy , Jz] are t.he component.s of electric currcnt. densit.y J, t.hcn equat.ion of 

conservat.ion of charge is 

(2.8) 

or 

Jy = cons tan t. (2.9) 

For simplicity, we take the value of constant to be zero and thus 

(2.10) 

at the plate because it is electrically non-conducting and thus Jy = 0 everywhere in 

t.he flow. 

The equat.ion of motion for magnetohydrodynamic: fluid is 

(2.11 ) 

where p is mass densit.y of t.he fluid, T is Cauchy st.ress t.ensor and j.Le is t.he magnet.ic 

permeability of the fluid. 

The Cauchy stress t.ensor T for viscous fluid is given by 

(2.12) 
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where pis pressnre, I is unit. t.ensor, /-L is coefficient. of viscosit.y alld AI is kinemat.ical 

t.ensor defined by 

T Al = ,r}'J'(ulq + (gTadq) . 

Equat.ion (2 .11) can also be writ.t.en as 

p [~~ + (q. V )q] = divT + /-LeJ x H 

which for st.eady st.at.e situation gives that 

p (q . V)q = divT + /-Le(J X H) . 

From Eqs. (2.2) and (2.4) we obtain 

0 du 0 dy 

gTadq = 0 0 0 

0 dw 0 dy 

0 0 0 

(gTadq)T = du 0 dw 
dy dy 

0 0 0 

0 du 0 dy 

Al= du 0 dw 
dy dy 

0 dw 0 dy 

d2u 
(divA1) x = -2' 

dy 

(divAdy = 0, 

d2w 
(divA1) z = -2 ' 

dy 

(2.13) 

(2.14) 

(2 .15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2 .20) 

(2.21) 



. 8p 
(d'w (-pI))x = - 8x' 

8p 
(div(-pI))y = - 8y' 

. 8p 
(dw (-pI)) z = - 8z ' 

Taking divergence of Eq. (2.12) one oht.ains 

di1 )T = div ( -pI) + J-LdivAl. 

Making use of Eqs. (2.19) to (2 .24) in Eq. (2.25) we have 

. d2u 8p 
(d'LVT)x = J-L dy2 - 8x ' 

. 8p 
(dwT)y = - 8y' 

. d2w 8p 
(dwT) z = J-L dz2 - 8z ' 

Now writing J x H in component form as follows 

Now llsing Eqs. (2.26) to (2.31) in Eq. (2. 15) we arrive at 

where J-Le is the magnetic permeability. 

45 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2. 29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 
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Elimination of p from Eqs. (2 .32) and (2.34) gives 

(2. 35) 

(2.36) 

Integrating Eqs. (2.35) and (2.36) with respect to y we obtain 

(2 .37) 

(2 .38) 

where BI and B2 are constants of integration. 

In free stream, t.he magnetic field is uniform so that there is no current and thus 

Jx --+ 0, Jy --+ ° as y --+ 00. (2.39) 

F\uther 

u --+ U, W --+ 0, Hx --+ 0, Hz --+ 0, as y --+ 00, (2.40) 

where U is the uniform free stream velocity. 

The use of the boundary conditions (2.39) and (2.40) in Eqs. (2 .37) and (2.38) 

gives that 

(2.41) 

and hence Eqs. (2.37) and (2 .38) become 

du d2u J-leHo 
-v - = 1/- - --J °d d 2 z, Y Y P 

(2 .42) 

(2.43) 
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In M.K.S. system the Maxwell's equations are 

v x H = J, (2.44) 

v x E = 0, (2.45) 

where E is electric field. 

In component form, Eqs. (2.44) and (2.45) are 

J 
_ dHz dHx 

Jy = 0, x - dy , Jz = - dy , Ex = cons tan t, Ez = cons tan t (2.46) 

and the generalized Ohm's law is [10] 

[ 
~e 1 ] J = (j E + ~eq X H - -J x H + -VPe , 

ene ene 
(2.47) 

where (J", e, ne and Pe denote respectively the electrical conductivity in absence of mag-

netic field, electric charge, the number density of elec:t.rons and the electron pressure. 

The third and last terms on the right hand side of Eq. (2.47) represent the effects 

due to Hall current and electron pressure gradient. In writing Eq. (2.47), when ion 

slip and thermoelectric effects are neglected ('\1Pe = 0) . Further it is assumed that 

WeTe ,......, 0(1) and WiTi (;1, where We, Wi are cyclotron frequencies of electrons and 

ions, and Te and Ti are the collision times of electrons and ions. Thus from Eq. (2.47) 

one obtains 

J = (j [E + ~eq X H - ~e J x H]. 
ene 

(2.48) 

The above expression in component form can be writ.ten as 

(2.49) 
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(2.50) 

Solving for Jx and Jz we get 

Here m stands for the Hall parameter [10J and is given by 

(2.53) 

with 

(J'= 

2 e neTe 
(2.54) 

(2.55) 

Mult.iplying Eq. (2.43) by i and then adding into Eq. (2.42) we get 

(2.56) 

Introducing 

u + iw = V, Hx + iHz = H (2.57) 

equation (2.56) becomes 

(2.58) 

Mutiplying Eq. (2.52) by i and then adding the resulting equation int.o Eq. (2.51) 

oIle obtains 

. dH (J' (m + i) . 
-~-d = (1 2) [-~E + f.Le (HoV + voH)] , 

Y + Tn . 
(2.59) 
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where 

(2.60) 

Now using the boundary conditions given by Eqs. (2.39) and (2.40) in Eqs. (2.51) 

and (2.52) we get 

(2.61) 

Equations (2.61) show that. Ex and Ez are const.ants because Ho, U and I-le are con-

st.ants that. confirms Eq. (2.46) . 

From Eqs. (2 .59), (2 .60) and (2.61) we can write 

(2.62) 

Int.egrat.ion of Eq. (2.58) wit.h respect. t.o y yields 

(2.63) 

where B3 is const.ant. of integration. 

The boundary conditions given by Eqs. (2.39) and (2.40) imply that 

(2.64) 

and thus from Eq. (2.63) we have 

(2.65) 

which gives induced magnetic field. 

Introducing the following dimensionless quantit.ies 

(2.66) 
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and using Eqs. (2.65) and (2.66) in Eq.(2.62) we have 

d
2
V + [s+ Mo.

2
(I-im) ] dV _ l\1(I-o.

2
)(I-im) (V - I) = 0 

d2T) S (1 + m 2) dT) (1 + m 2) , 
(2.67) 

where M~ and VA represent the Hartmann number and Alfven velocity respectively. 

The boundary conditions in term of V reflecting no-slip at. t.he wall and the uniform 

free stream at infinity are 

V = 0 at T) = 0, V ~ 1 as T) ~ 00 . (2.68) 

Since the plate is electrically non-conducting, the magnetic boundary conditions are 

given by 

H (0) = 0, H (00) = O. (2.69) 

Equation (2 .67) is non-homogeneous which can be made homogeneolls by making t.he 

following substitution 

(2.70) 

which by differentiating gives 

(2.71) 

and hence Eq. (2.67) becomes 

d
2
T [s 1\1/0.

2 (1 - im)] dT M (1 - 0.2) (1 - im) () -+ + -- TT)=O 
dT)2 S (1 + m 2) dT) (1 + m 2) 

(2 .72) 

and t.he boundary condit.ions are 

T(O) = 1 and T(oo) = O. (2.73) 
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The characteristic equation corresponding to differential Eq. (2.72) is 

D2 + [8 + Ma
2 

(1 - im)] D _ M (1 - a
2

) (1 - im) = O. (2.74) 
8 (1 + m 2

) (1 + m 2
) 

.The roots of above equation are 

_ (8 + Ma2 (1-im) ) _ (8 + Ma2 (1-im) ) 2 + 4J\I (1-a 2 )( 1-im) 
S(1+m2) S(1+m2) (1+m2) 

Dl =----------------~-----------------------
2 

(2.75) 

_ (8 + Mo:2 (1-im)) + (8 + lVla2(1-im) )
2 + 4'\/ (1-u2 ) (1 - im) 

S(1+m2) S(1+m2) (1+m2) 
D2 =----------------~---2-------------------- (2.76) 

The solution of Eq. (2 .72) is 

(2.77) 

where conditions (2.73) give that 

B4 = 1, Bs = 0 (2.78) 

and thus Eq. (2.77) becomes 

(2.79) 

From Eqs. (2.75) and (2.79) we have 

w 

u 

(2.81) 
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where 

-B 'B _ {(8- Ma2 (1-im))2 4M(1-a2)(1- 'im)' 
7 + '/, 8 - V + 8 (1 + m 2) + (1 + m 2 ) . 

(2.82) 

Separating real and imaginary parts we have 

1 

B7 = (~) 2 [( t 2 + 1) ~ + 1] ~ , (2.83) 

B, ~ G) I [( t' + l) I - ll' , (2.84) 

M (1 - m 2
) a 4 

- 2M82 (1 + m 2
) a 2 + 8 2 (1 + m 2

) (4M + 8 2 + 8 2m) 
A=--~--~~------~----~----~~--~~----------~ 

8 2 (1 + m 2 )2 ' 
(2.85) 

2 [M2ma4 
- 8 2 Aim (1 + m 2

) a 2 + 282 Mm (1 + m 2
)] 

t---~--~--------~--~~~~~~--~~----~~=-~ 
- M (1 - m 2 ) a 4 - 2M82 (1 + m 2 ) a 2 + 8 2 (1 + m 2 ) (4M + 8 2 + 8 2m)' 

(2.86) 

When Hall effects are absent i.e. m = 0, there will not be cross flow so that w = 0 

and Eq. (2 .67) reduces to the equation derived by Kakutani [11]. It can be shown 

from Eq. (2.67) that when m = 0, an asymptotic solution for velocity and magnetic 

field satisfying the boundary conditions (2.68) and (2.69) will exist only when there 

is suction at the wall (vo > 0) and (vo > VA) as found by Kakutani [11]. On the 

other hand when WeT e =I- 0, a little analysis will show that asymptotic solution for 

velocity and magnetic field sat.isfying Eqs. (2 .68) and (2.69) exists both for suction 

and blowing at the plate. 

2.3 The solution of the problem in case of blowing 

Since, for blowing 8 < 0 so we put 8 = -80 for 80 > 0 in Eq. (2.72) i. e. 

(2.87) 
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with 

T(O) = 1, and T(oo) = O. (2.88) 

Following the same method of solut.ion as for suction we have t.he solution of t.he 

following form 

u 

u 

(2 .89) 

w 

u 

(2.90) 

where 

(2.91) 

(2.92) 

(2.94) 

2.4 The solution of the problem for suction when 

magnetic Reynold number is small 

Now we discuss the solution of the problem when t he magnetic Reynold number is 

small. T his number is defined as 

(2.95) 
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where Rp is called the magnetic pressure number and eqnals t.o 

(2.96) 

It is well known t.hat Rp is a measure of the extent. to which t.he magnet.ic lines of 

force are distort.ed by the flow [10]. When Rcr « 1, t.he induced maglletic field can be 

neglected in comparison with imposed magnetic field Ho i.e. 0 = H = Hx + iHz, so 

that the components of the current density J given by Eqs. (2.51) and (2.52) reduce 

to 

al-LeHo [ ( )] 
Jx = (1 + m2) -w + m u - U , (2.97) 

al-LeHo [ ] Jz = ( 2) U - U + mw . 
l+m 

(2.98) 

Combining Eqs. (2.42) and (2.43) and using Eqs. (2.65) , (2.97) and (2.98) we arrive 

at 

d2V dV (1 - im) 
-d2 + S -d -( 2)M[V-1]=0. 

17 1] l+m 
(2.99) 

The boundary condi t.ions in t.erm of V are 

V = 0 at 1] = 0, V ~ 1 as 17 ~ 00. (2.100) 

Defining 

W (1]) = 1 - V (2.101) 

Eqs. (2.100) and (2 .101) become 

d2vV SdW _ (1 - im) M ()_ 
d1]2 + d1] (1 + m2) W 1] - O. (2.102) 

W(O) = 1, W(oo) = O. (2.103) 



The roots of Eq. (2.102) are given by 

D = ~ [-S - J S2 4M (1 - im)] 
1 2 + 1 + m 2 ' 

1 [ . D2 =:2 -S + S2 + 4JvI (1 - im)]. 
1 +m2 

The solution of Eq. (2.102) can be written as 

The boundary conditions given by Eqs. (2.103) imply that 

which gives 

and hence 

u [ (S + A2) 1 A37] U = 1 - exp - 2 7] cos 2 ' 

W [ (S + A2 ) ] . A37] U = - exp - 2 7] sm 2' 

where 

- A 'A - JS 2 4M(1 - im) 
2+ 2 3- + 2' 

l+m 

Separating real and imaginary parts we have 

( A2 ) ~ [J l ~ A2 = 2 (q~ + 1) + 1 , 
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(2.104) 

(2 .105) 

(2.106) 

(2 .107) 

(2.108) 

(2.109) 

(2.110) 

(2. 111) 

(2.112) 

(2.113) 

(2. 114) 
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4mM 
(2.115) 

It is int.erest.ing t.o not.e t.hat. t.his velocity dist.ribution is in t.he form of a logarithmic 

spiral and similar 1.0 Ekman velocity spiral for flow past. a flat. plat.e in a rot.ating fluid 

Batchelor [12]. Thus we may conclude that for a small magnetic Reynold number, Hall 

effects, which introduce a cross-flow, are similar to that of rot.ation . It is also clear 

from Eqs . (2.109) and (2.110) that the flow exhibits a bOllndary layer behavior wit.h 

boundary layer t.hickness of O(S;A2)' This shows t.hat increase in snction parameter 5 

causes thinning of the boundary layer. 

Now from Eqs. (2.112) t.o (2.115) we have 

2 [ 2 4M (52 + 4M) 1 ~ [ 2 4M 1 ~ 
2A2 = 5 + (1 + m2) 52 + 4M + 5 + 1 + m2 (2.116) 

Since for fixed 5 and M, each term on right hand side of Eq. (2.109) decreases 

with increase in the Hall parameter m, it follows that A2 decreases with increase in 

m. Thus for fixed 5 and M, the boundary layer thickness, being of 0 C";A) and 

increases with increase in m. 

Again from Eqs. (2. 109) and (2.110) we have 

1 (dU) 
U dTJ 1)=0 

1 (dW) 
U dTJ 7)=0 

(2.117) 

Since 5, A2 and A3 are all positive, Eq. (2.117) shows that t.he boundary layer 

can never separate. Since A2 increases with increase in m, we conclude from Eq. 

(2.117) t.hat. t.he skin friction dne t.o the primary flow decreases wit.h increase in Hall 

parameter for fixed 5 and M. 
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2.5 The solution of the problem in case of blow-

ing (8 < 0) when magnetic Reynold number is 

small 

In this section, we discuss the existence of solution for the blowing case at the plate 

.Since, for blowing S < 0 so we put S = -So for So > O. In this case, the solution of 

Eq. (2.102) satisfying Eq. (2.103) is 

U [(So - A4)] A57J U = 1 - exp 2 17 cos -2- , (2.118) 

w [( So - A4 ) ] . A57J U = - exp 2 7J S111 2 ' (2.119) 

where 

(2.120) 

(2.121) 

(2. 122) 

4mM 
(2.123) 

Since from Eqs .(2.120) and (2. 122) , A4 > vx;- > So, 111 (17) clearly tends to zero as 

7J ~ 00. Equations (2.118) and (2.119) also represent velocity field similar to Ekman 

spiral. The solntion given by Eqs. (2. 118) and (2.119) confirms om previolls assertion 

that asymptotic solution for velocity exists even for the case of blowing at plat.e when 

Hall effects are considered. 
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2.6 Remarks 

The presented analysis brings out two result.s of physical intcrest. 

1. In the presence of Hall effect the asymptotic solntions for thc velocity and the 

magnetic field exist both for suction and blowing at. the plat.e. 

2. When magnetic Reynold number is very small, the flow pattern with Hall effect.s 

is remarkably similar to that of non-conducting flow past a flat. plate in a ro

tating frame of course, the assumption of very small magnetic Reynold number 

will be valid for flow of liquid metals or slightly ionized gas. For slightly ionized 

gas, the last term in Eq. (2.47) is significant. with Pe = ~, while ion slip term 

can be neglected. 



Chapter 3 

Hydromagnetic Flow of a Second 

Order Fluid Past a Porous Infinite 

Plate 

3.1 Introduction 

In this chapter the influence of Hall current on generalized Hartmann flow of a second 

order fluid is investigated. Effects of uniform suction (or blowing) and Hall parameter 

on the flow phenomena are analyzed. The solutions for small magnetic Reynold's 

number are also constructed. Several known results of interest are fonnd as particular 

cases of the problem considered. 
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3.2 Problem formulation 

We consider the steady hydromagnetic flow induced in a semi-infinite expanse of an 

electrically conducting second order fluid bounded by an infinite porons plate at. y = O. 

A uniform t.ransverse magnetic field Ho is applied along the y -axis normal to the 

plate with uniform suction or blowing. The steady hydromagnetic flow is governed 

by following the equations of motion, continuity and the Maxwell's eqnat.ion in t.he 

form 

p (q . V )q = divT + J.Le(J x H ) , 

V· q = O, 

V·H= O, 

V·J=O, 

v x H = J, 

v x E = 0, 

(3. 1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

where q, p, T, J, Hand E denot.e respect.ively t.he velocity field, mass densit.y of 

fluid, Cauchy stress tensor , current density, magnetic field and electric field. 

Since the plate is infinite, all physical variables depend on y in st.eady flow and 

if (Hz;, Hy , Hz) and (lx, Jy , Jz) are the component.s of magnetic field H and electric 

current density J then Eqs. (3.3) and (3.4) give 

(3 .7) 

Jy = 0 (3 .8) 
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at the plate because it is electrically non-conducting and thus Jy = 0 everywhere in 

t.he flow . 

In component form Eqs. (3.5) and (3.6) are given by 

J J = dHz J = _ dHx E E 
y = 0, x dy' z dy' x = cons tan t, z = cons tan t. (3.9) 

It is assumed that there is no applied or polarization voltage so that E = 0 and the 

induced magnetic field is negligible so that the total magnetic field H = (0,0, Ho ), 

where Ho is applied magnetic field parallel to y-axis normal to the plate. The latter 

assumption is justified in flow of liquid metals. When the strength of the magnetic 

field is very large, the generalized Ohm's law is modified to induce Hall current so 

that 

WeT e ( ) [ 1 1 J+-- J X H = 0' E + I-Leq X H - -VPe , 
Ho ene 

(3.10) 

where We is a cyclotron frequency, T e is the electron collision time, e is charge on 

electron and Pe is electron pressure. The ion-slip and thermoelectric effects are not 

included in Eq. (3.10) i.e. VPe = O. Further, it is assumed that WeTe r"o.J 0 (1) 

and WiTi ::; 1, where Wi and Ti are cyclotron frequency and collision time for ions 

respectively. Thus 

(3.11) 

Above equation in component form can be written as 

(3. 12) 

(3.13) 
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Simplifying Eqs. (3.12) and (3 .13) one obtains 

(3.14) 

(3.15) 

where 

(3.16) 

The Cauchy stress tensor for an incompressible second order fluid is given by 

(3.17) 

where J.L is coefficient of viscosity, CY.I and CY.2 are material moduli which are llsually 

referred to as the normal stress moduli, p is pressure and Al and A2 are kinematical 

tensors defined by 

Al = gradq + (gradqf, (3.18) 

(3.19) 

If an incompressible fluid of second order is to have motions which are compatible 

with thermodynamics in the sense of Clausius-Duhem inequality and the condition 

that the Helmholtz free energy be minimum when the fluid is at rest, then following 

conditions must be satisfied 

(3. 20) 

We assume the velocity field of the form 

q = (u (y) , v (y) , w (y)) . (3.21) 
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Equat.ions (3 .2) and (3 .21) yield 

(3.22) 

where Vo > 0 for suction and Vo < 0 for blowing. Hence Eq. (3 .21) becomes 

q = (u(y) ,-vo ,w(y)). (3 .23) 

From Eqs. (3 .18) , (3 .19) and (3. 23) we have 

0 du 0 dy 

gradq = 0 0 0 (3.24) 

0 dw 0 dy 

0 0 0 

(gradqf = du 0 dw 
dy dy 

(3. 25) 

0 0 0 

r 0 du 0 dy 

A1 = du 0 dw 
dy dy 

(3.26) 

0 dw 0 dy 

(~~r 0 dudw 
dy dy 

Ai= 0 ( ~~r + (~~) 2 0 (3.27) 

dudw 0 (~~r dy dy 

0 d2u 
- VO d2y 0 

A 2= d2u 
2 ( ( ~~ r + ( ~; ) 2) d2w 

- VO d2y -VoTy (3.28) 

0 d2w 
- Vo d2y 0 
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Taking divergence of Eq. (3 .17) we have 

Writing divAl' divAf, divA2 and div (- pI) in component form we obtain 

d2u 
(divAl) x = dy2' (3.30) 

(divA1)y = 0, (3.31) 

d2w 
(divA1) z = dy2' (3.32) 

d3u 
(divA2)x = -Va d

y
3 ' (3.33) 

( du d
2
u dw d

2
w ) 

(divA 2)y = 4 dy dy2 + dy dy2 ' (3.34) 

d3w 
(divA2)z = -Va dy3 ' (3.35) 

(divA~t ='0, (3.36) 

. 2 ( du d
2
u dw d

2
w ) 

(dwA1)y = 2 dy dy2 + dy dy2 ' (3.37) 

(div Ai) z = 0, (3.38) 

(div (-pI))x = - ~~, (3.39) 

(div(-pI)) = _ 8p
, 

y 8y (3.40) 

(div (-pI)) z = - ~~. (3.41 ) 

Taking the x, y, z-components of Eq. (3.29) we have 

(3 .42) 

(3.43) 



Now J x H in component form can be written as 

and also 

( du dW ) 
(J (q . V ) q = -Vo dy ,0, -Vo dy . 

Using Eqs. (3.42) to (3.48) in Eq. (3.1) we have 

where v=1!:. is called kinematic viscosity and Ile is the magnetic permeability. 
p 

From Eq. (3 .50) we have 

'" 

aa P 
= Ile (HxJz - HzJx) , 

y p 

where 

p~ p - (2", + ",) [ (~~ ) , + (~;) 'J. 
Taking partial derivative with respect to x and z of Eq. (3.53) we get 

a P = ap and a p = ap 
ax ax ay ay 
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(3.44) 

(3.45) 

(3.46) 

(3.47) 

(~.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

(3 .54) 
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and hence Eqs. (3.49) and (3 .51) becomes 

- v du __ ~ {) P _ a lva d
3
u + I/ d2u + Me H J 

a dy - p {)x P dy3 dy2 p az, (3.55) 

(3.56) 

On eliminating the pressure gradient from Eqs. (3.55) and (3.56) we have 

(3.57) 

(3.58) 

Integration of equations yield 

(3.59) 

(3.60) 

where C6 and C7 are constants of integration. 

The boundary conditions are of the form 

Jx -t 0, Jy -t 0 as y -t 00, (3.61) 

U -t U, W -t 0, Hx -t 0, Hz -t 0, as y -t 00, (3.62) 

where U is the uniform free stream velocity. 

Making use of the boundary conditions (3.61) and (3.62) in Eqs. (3.59) and (3.60) 

gives that C6 = 0 = C7 and thus from Eqs.(3.61) and (3.62)we have 

du al Va d3u d2u MeHa 
-v - = ----- + 1/ - - --J 

a dy p dy 3 dy2 P z.' 
(3.63) 

dw a ·1 Va d3w · dw MeHa 
-Va- = - ---- + 1/- + - -Jx . 

dy p dy3 dy p 
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Multiplying Eq. (3.64) by i and then adding into Eq. (3.63) we get. 

(3.65) 

where 

v = u + iw, H = Hx + iHz. (3.66) 

Using the boundary conditions (3 .61 ) and (3 .62) in Eqs. (3.12) and (3.13) we obtain 

(3.67) 

which shows that Ex and Ez are constants that confirms t.he Eq. (3.9) . Mutiplying 

Eq. (3.15) by i and then adding the resulting equation into Eq. (3.14) we have 

. dH (J (m + i) . 
-2d; = (1 + m 2) [-2E + I-Le (HoV + voH)] , (3.68) 

where 

E = Ex +iEz. (3.69) 

From Eqs. (3.67) and (3.68) we have 

(3.70) 

Integration of Eq. (3.65) with respect to y gives 

(3.71) 

where C8 is constant of integration. 

From Eqs. (3.62) and (3.71) we have 

(3.72) 
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and thus Eq. (3.71) becomes 

(3.73) 

Now making use of Eq. (3.73) in Eq. (3.70) we obt.ain 

alVa d
3
V _ [PI/ + aa

l
v 2] d

2
V _ [ pva _ apI/Va (im - 1)] dV 

l1e dy3 l1e a dy2 l1e 1 + m 2 y 

(3.74) 

Defining 

2H 2 U H V 
s= Va M=O"l1e al/ '11= y, Va vA = l1e a , V=- (3 .75) 

U ' pU2' " V a = VA' P U 

equation (3.74) yields 

alVaU d
3
V _ ')'d

2
V _ [s + Ma

2 
(1 - im) ] dV + M (1 - a

2
) (1 - im) (V _ 1) = 0 

v2p dr,3 dT/2 S (1 + m 2 ) dT/ 1 + m 2 ' 

(3 .76) 

where M~ and VA represent the Hartmann number and Alfvcn velocity respectively 

and 

(3.77) 

(3.78) 

T he boundary conditions are 

V ---> 0 at T/ = 0, V ---> 1 as T/ ---> 00 . (3.79) 

Using 

F (T/) = 1- V (3.80) 
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in Eq. (3.76) we have 

(3 d
3
F d2F [8 Ma

2
(1 -im) ] dF M(1-a

2
)(1-im)F( )-0 (3.81) 

d'rJ3 - I d'rJ2 - + 8 (1 + m 2) d'rJ + 1 + m2 'rJ - , 

where 

F(O) = 1, F(oo ) = 0, (3. 82) 

(3.83) 

The characteristic equation corresponding to Eq. (3 .81) is 

(3D3 _ D2 _ [8 + Ma
2 

(1 - im) ] D + M (1 - a
2

) (1 - im) = O. (3.84) 
I 8 (1 + m 2 ) 1 + m 2 

For small value of (3, one can find the roots of Eq. (3.84) by using perturbat.ion 

expansion method i.e. 

(3.85) 

Using Eq. (3 .85) in Eq. (3.84) and comparing like powers of f3 we have 

(3.86) 

(3 .87) 

(3.88) 

(3.89) 

(32 . C2 [8 Nla
2 

(1 - im)] C _ 
. I 1 + + 1 2 2 - O. +m 
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Solving Eqs. (3 .86) t.o (3 .90) we get. 

C- 1 = (0 , 0,,) , 

1 [Ma
2 

(Mma
2

)] Co = - 2, 8 + 1 + m2 + A6 - i 1 + m 2 + A7 , 

8 (1 + m 2
) C~ 

C1 
= 2,8 (1 + m 2 ) Co + Ma2 - iMma2 ' 

C _ _ ' ,8 (1 + m 2
) Cr 

2 - 82 (1 + m 2) + Ma2 (1 - im)' 

[ 

M2 (1 - m 2) a 4 + 282M2 (1 + m 2) (1 - 2,) a 2+ ] 

82 (1 + m 2) (4M, + 8 2 + 8 2m 2) 
A4=~------------------~----------~ 

8 2 (1 + m 2)2 

2 [M 2a 4 + 82 lvI2m (1 + m 2
) (1 - 4,) a 2 + 4M 8 2m, (1 + m 2)] 

q4=~--~------~--~~--~----------~~~ I M2 (1 - m 2) a 4 + 282M2 (1 + m 2) (1 - 2,) a 2 ] , 

l +82 (1 + m 2) (4M, + 82 + 8 2m 2) 

Co = -;, [8 + 1'~:2 + A6 - i (~+::: - A7) 1 ' 
- 8 (1 + m 2

) C~ 
C1 = - , 

2,8 (1 + m 2) Co + 82 (1 + m 2) + lvI a 2 - ilvIma2 

C _ ,8 (1 + m 2) Cr 
2 - - 82 (1 + m 2) + M a 2 (1 - im) , 

~ 8 2 + 8 2m 2 + M a 2 
- ilvIma2 

Co = --------,,--,--------------
,82 (1 + m 2 ) 

C _ 8 (1 + m 2) C~ 
1 - 2, (1 + m 2 ) Co + 82 (1 + m 2) + M a 2 (1 - im) , 

D2 = _ ,8 (1 + m 2
) Dr . 

52 (1 + m 2 ) + Jv1a 2 (1 - im.) 

(3.91) 

(3.92) 

(3.93) 

(3.94) 

(3.95) 

(3.96) 

(3.97) 

(3.98) 

(3.99) 

(3.100) 

(3.101) 

(3.102) 

(3.103) 

(3.104) 
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Thus roots of Eq. (3.84) are 

(3 .105) 

(3. 106) 

(3. 107) 

and the solut.ion of Eq. (3.81) is given by 

(3.108) 

Now llsing physical condition t.hat. velocity reduces t.o t.he Newt.onian (viscous) case 

as f3 ~ 0, t herefore we neglect t he soln t.ion corresponding t.o the root. D3 . So we have 

(3. 109) 

The boundary conditions (3.82) implies that 

Cg = 1, C lO = 0 (3.110) 

and thus Eq. (3.109) becomes 

(3.1 11 ) 

Let 

(3 .112) 

where 

(3 .113) 

(3 .114) 
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Separating real and imaginary parts of Co, C1 and C2 we have 

+ (Mma 2 - 2,8 - 2,8m2
) C~I 

C1R = ---:=---=-----------------=----=-

[ 

[28, (1 + m 2) CoR + 8 2 (1 + m 2) + M 2a 2J2 ] 

+ [28, (1 + m 2) Col - NIma2J2 

L - (82 + 8 2m 2 + Ma 2
) C~J 

ClI= -~-~~------------=~ 

[ 

[28, (1 + m 2) CoR + 8 2 (1 + m 2) + M 2a 2J2 ] 

+ [28, (1 + m2) Col - Mma2J2 

[ 

M8, (1 + m 2
) (CrR - CrI - 2mClI C1R ) 0.

2
] 

+83
, (1 + m 2)2 (CrR - ClI) 

C2R = --=---------------------;;-~ 
M (1 + m 2) (M + 282 ) 0.4 + 8 4 (1 + m 2)2 

[ 

M8, (1 + m 2
) (mClR - mCrI + 2ClICIR ) 0.

2
] 

+283, (1 + m 2)2 ClICIR 
C21 - - -=------------------;:---=--

- NI (1 + m 2) (M + 282) 0.4 + 8 4 (1 + m2)2 

With the help of Eqs. (3.111) and (3.112) the solution of the problem is 

(3.115) 

(3.116) 

(3 .117) 

(3.118) 

(3 .119) 

(3.120) 

(3.121) 
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(3.122) 

. Skin friction 

The skin friction is defined as the shear stress at the s1ll'face of the plate over 

which fluid is flowing i.e. 

(3.123) 

From (3.121) , (3.122) and (3.123) we have 

(3.124) 

(3.125) 

Since p, U, ~l and ~2 are constant so boundary layer separation does not occm. 

Induced magnetic field H 

Using Eqs. (3.121) and (3.122) in Eq. (3.73) we get 

(3.126) 

(3.127) 

(3.128) 

Electric field E 

From Eqs. (3.67) we have 

Ex = 0, (3.129) 

Ey = 0, (3.130) 

(3.131) 
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Current density J 

Using Eqs. (3. 126) and (3.127) in Eqs . (3 .9) we obtain 

(3 .132) 

(3.133) 

(3.134) 

(3 .135) 

(3 .136) 

Pressure p 

Now using Eqs. (3.1 21) to (3.134) in Eqs. (3.50) we have 

Integtrating above equation wi t.h respect. t.o y we have 

(3.1 38) 

where C is constant. of integration. 

3.3 The solution of the problem in case of blowing 

In this case t.he suction parameter S < 0 and va < 0, so we put S = -So (So > 0) 

and va = - 1h (1)1 > 0) in Eq. (3.81) t.o obtain 

f31
d3F +", d

2
F _ [So+kJa2 (1-im)] dF _ kJ(1-a

2
)(1-im)F( ) =0 

dl73 I dr;2 So (1 + m 2 ) dr; 1 + m2 r; , (3.139) 



F(O) = 1, F(oo ) = 0, 

where 

. T he solution of the boundary value problem is of the following form 

( (~l U ) ~2U ) 
U = U 1 - exp ----;;- y cos ----;;- y , 

( (~1 U ) . ~')U ) w = - U exp ----;;- y 8m -=;;- y , 

where 

C R = - - -So + + A8 - 1 [ Ma2 
] 

o 2,. 1 + m 2 ' 

- 1 [( Mma2 
)] Co! = - 2, 1 + m 2 - Ag , 

2 2 - -2 
+mlVI (lVIrna + 2So, + 2,Som ) Col Co R. 

- (lVIma2 + 2,So + 2,Som2) C~l 
CIR.=--------~--------------------------------~ 

[2So, (1 + m 2) CoR. - S; (1 + m 2) _ .M2a2] 2 

+ [2Su, (1 + m 2) COl + 1I17nCl:2] 2 

75 

(3 .140) 

(3.141) 

(3. 142) 

(3. 143) 

(3 .144) 

(3.145) 

(3.146) 

(3.147) 

(3. 148) 
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+ (5~ + 5~m2 + N1(2) C~l 
ClI=--------~------------------------~ 

[250, (1 + m 2) CoR - 5; (1 + m 2) _ M2C~2] 2 

+ [250, (1 + m 2) Col + N1ma2] 2 

[ 

M50, (1 + m 2) (mC~R - mC~1 + 2ClIC IR ) a 2 ] 

3 2 2- -
+250, (1 + m ) ClICIR 

C21 = ~----------------------------~~ 
N1 (1 + m 2 ) (M + 25;) a 4 + 5; (1 + m 2 )2 

1 • 

As = (~5) 2 [( q; + 1) 4 + 1] 4 ) 

[ 

N12 (1 - m 2) a 4 + 25~M2 (1 + m 2) (1 - 2,) a 2+ ] 

5~ (1 + m 2) (4M, + 5; + 5;m2) 
A5=~------------------~----------~ 

5'; (1 + m 2)2 

q5 = 2 [M2a 4 + 5;M2m (1 + m 2) (1 - 4,) a2 + 4M5~m, (1 + m 2)] 

[ 

N12 (1 - m 2) a 4 + 25;1'/12 (1 + m 2) (1 - 2,) a2 ] . 

+5; (1 + m 2) (4N1, + 5; + 5;m2) 

(3.149) 

(3.150) 

(3.151) 

(3.152) 

(3.153) 

(3.154) 

(3.155) 



77 

3.4 The solution of the problem for suction case 

when magnetic Reynold number is small 

The small magnetic Reynold number is defined by 

JV! = RaRp, (3.156) 

where 

R = /-LeH ; 
P pU2' (3.157) 

When Ra < < 1, the induced magnetic field H can be neglected in comparison with 

imposed magnetic field Ho i.e. 0 = H = Hx + iHz, so that the components of t.he 

current densit.y J given by Eqs .(3 .14) and (3.15) toget.her wit.h Eq. (3.67) , reduce t.o 

(3.158) 

(3 .159) 

Mult.iplying Eq. (3.159) by i and then adding into Eq. (3.158) we get. 

(3.160) 

From Eqs. (3.9) , (3.58) and (3 .160) we have 

(3.161) 

Substitut.ion of Eq. (3.161) in Eq. (3.65) yields 

(3.162) 
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Now using Eqs. (3 .75) in Eq. (3.162) we obt.ain 

where 

v = 0 at f} = 0, V --? 00 as f} --? 00. 

Substituting W (f}) = 1- V in Eqs. (3.163) and (3.164) we obtain 

with 

W (0) = I , W (00) = O. 

Following t.he same procedure as in suct.ion case, t.he solution is given by 

where 

[ ( ~ u ) . ~ u 1 w = -u exp --;-y Sll1-;-Y , 

G oR = - [ ~ + (~6) [( q~ + 1) ~ + 1] ~ 1 ' 

G of = - (~6 ) [( q~ + 1) ~ - 1] ~ , 

G _ 2G~R + SG~R - 3SGoRG~J - 2G~1 
lR - (2GoR + S)2 + 4G~J ' 

GlI = _ 4G~RGoJ + 3SG~RGoJ + 4GoRG~I - SG~J 
(2GoR + S)2 + 4G~J 

(3.163) 

(3.164) 

(3.165) 

(3.166) 

(3.167) 

(3.168) 

(3.169) 

(3.170) 

(3.171) 

(3.172) 

(3.173) 

(3.174) 
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G - Gil - GiR 
2R - S ' (3.175) 

(3 .176) 

A - S2 41\11 
6 - + 1 + m2 ' (3.177) 

4mNI 
(3.178) 

3.5 The solution of the problem in case of blowing 

when magnetic Reynold number is small 

Since in case of blowing at the plate, the suction parameter S < 0 and Vo < 0, so we 

put S = -So and Vo = -1)1 in Eq. (3 .165) and get 

(3.179) 

with 

W(0)=1, W(oo) =0, (3.180) 

(3.181) 

The solution of the above problem can be written as 

(3.182) 

(3.183) 

where 

(3 .184) 
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~ [So ()..7) [( 2 )1 ] ~ ] GaR = - 2 - 2 q7 + 1 2 + 1 , 

~ ()..7) [2 1 ] ~ GaR = 2 (q7 + 1) 2 - 1 , 

~4 ~3 ~ ~2 ~4 

G~ _ 2GoR - SaGaR + 3SoGoRGoI - 2Go1 
IR - ( ~ )2 ~2 

2GoR - So + 4Go1 

~ ~ 

G~ _ 2G IRG ll 
2[-

So 

2 4M 
)..7 = So + 1 2' +m 

4mM 

3.6 Conclusions 

(3.185) 

(3.186) 

(3.187) 

(3 .188) 

(3.189) 

(3.190) 

(3.191) 

( 3.192) 

(3.193) 

In this work, we have studied the flow of a hydrodynamically compatible incompress-

ible fluid of order two past an infinite porous plate. The fluid is couduct.ing . The 

governing equations are made dimensionless and t.he resulting ordinary differential 

equation is solved analytically. It is demonstrated that the perturbat.ion method 

yields physically acceptable results which are valid through the region. From the 

results (3.121), (3.122), (3.142), (3.143), (3.167) , (3.168), (3.182) and (3.183), it is 

conduded that the flow field is not.iceable influenced by the presence of the applied 

magnet.ic field , Hall, SUCt.iOll and blowing parameters. f\Iore precisely: 
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1. The asymptotic solutions for suct.ion and blowing exist. 

2. As t.he value of t.he suction paramet.er is increased, t.he st.ream lines are pushing 

t.owards t.he plate, indicat.ing t.he boundary layer t.hi ckne~s decreasing , which is 

as expect.ed. 

3. The magnetic field decelerates the fluid motion. 

4. The boundary layer separation does not occur as the skin friction at. the surface 

of t.he plat.e is const.ant.. 

5. It is not.ed t.hat the boundary layer thickness increases with t.he increase of 

material modulus (al) of the second order fluid . 

o 


