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Chapter 0

Introduction

Peristalsis is a mechanism to pump a fluid by means of a moving contraction on the tube walls.
Peristaltic flow has paramount importance in physiology. Occurrence of such flows are quite
prevalent in nature. Particularly, these flows are encountered in smooth muscle contraction.
Peristalsis occur in swallowing food through the esophagus, urine transport from kidney to
bladder through the ureter, transport of the spermatozoa in the ducts afferents of the male
reproductive tract, movement of the ovum in the fallopian tube, movement of the chyme in
the gastrointestinal tract, the transport of lymph in the lymphatic vessels and the vasomotion
in small blood vessels such as arterioles, veins and capillaries. Flows due to peristalsis has
wide range of applications in industry and engineering science. Peristaltic pumps are relatively
inexpensive to manufacture and commercially used in industries such as printing, chemical, and
food processing. They also have a variety of uses in the medical field. Since there is very little
damage caused by the mechanical action of the roller on the fluid, a peristaltic pump is ideal
for pumping such fluids as blood and is used for that purpose in blood filtration devices.
Shapiro [1] gave the theoretical idea of peristaltic mechanism which was later on tested
experimentally by Latham [2]. After the work of Latham [2], peristalsis mechanism has become
an interesting and important topic of research for scientist and engineers. Peristaltic motion
of a viscous fluid through a pipe and a channel was investigated by Burns and Parkes [3] by
considering sinusoidal variation at the walls. Barton and Raynor [4] studied peristaltic flow
in tubes using long wave approximation. Barton and Raynor also analyzed the case for low

Reynolds number. Jaffrin and Shapiro [5] provided an elaborate review of the earlier literature



regarding peristalsis. Elshehawey et al. [6] discussed the problem of peristaltic transport of an
incompressible viscous fluid in an asymmetric channel through a porous medium. Kothandapani
and Srinivas [7] have discussed the peristaltic flow of a Jeffrey fluid in an asymmetric channel
in the presence of a transverse magnetic field. According to them, Jeffrey fluid is relatively
simple linear model using time derivatives instead of convective derivatives. They noted that
the size of trapped bolus in Jeffrey fluid is much smaller than the Newtonian fluid. Nadeem
and Safia [8] have considered the peristaltic transport of a hyperbolic tangent fluid model in
an asymmetric channel. An unsteady peristaltic transport phenomena of non-Newtonian fluid
have been studied by Ikbal et.al [9]. Johnson-Segalman fluid have been studied by Elshahed and
Haroun [10]. Haroun [11] has discussed the effect of Deborah number and phase difference on
peristaltic transport of a third order fluid in an asymmetric channel. A mathematical description
of peristaltic hydromagnetic flow of Johnson-Segalmanin fluid have been investigated by Hayat
and Ali [12]. Seshadri et.al. [13] studied the peristaltic pumping in non-uniform distensible
tubes with different wave forms. Nadeem and Akbar [14] have studied the peristaltic motion
of a Herschel Bulkly fluid in a non-uniform inclined tube. Peristaltic transport of a Herschel-
Bulkley fluid in an inclined tube have been studied by Vajravelu et al. [15].

The study of heat transfer in connection with peristaltic motion has industrial and biological
applications such as sanitary fluid transport, blood pumps in heart lungs machine and transport
of corrosive fluids where the contact of the fluid with machinery parts are prohibited. Effect of
heat transfer on the peristaltic flow of an electrically conducting fluid in a porous space have
been investigated by Hayat et al [16]. The effects of the elasticity of the flexible walls on the
peristaltic transport of viscous fluid with heat transfer in a two dimensional uniform channel
have been analyzed by Radhakrishnamacharya and Srinivasulu [17]. Vajravelu et. al.[18] have
discussed the interaction of peristalsis with heat transfer for the flow of a viscous fluid in a
vertical porous annular region between two concentric tubes. They concluded that for the
large values of the amplitude ratio, the effects of pressure rise on the flow rate are negligible.
Mekheimer and Abd-Elmaboud [19] have discussed the influence of heat transfer and magnetic
field on peristaltic transport of a Newtonian fluid on a vertical annulus and concluded that the
heat transfer analysis may be used to obtain information about the properties of the tissues. Bio

heat transfer phenomena is common in many biological processes as well as in some biomedical



applications such as in hypothermia treatment and radio frequency ablation [20]. Srinivas and
Gayathri [21] studied peristaltic transport of a Newtonian fluid in a vertical asymmetric channel
with heat transfer and porous medium. Kothandapani and Srinivas [22] analyzed the influence
of wall properties in the MHD peristaltic transport with heat transfer and porous medium.
Since most of the biochemical reactions in human body take place in very narrow temperature
range and the reaction rate is largely dependent on the local temperature, the heat transfer
plays a major role in many processes in living systems.

In the studies mentioned above, fluid viscosity is assumed to be constant. But this assump-
tion is not true always. In many thermal transport processes, the temperature distribution
within the flow field is never uniform, i.e, the fluid viscosity may be change noticeably if a
large temperature differences exists in the system. Therefore, it is highly desirable to include
the temperature dependent viscosity in the momentum and thermal transport processes. The
peristaltic transport of MHD fluid with variable viscosity was investigated by Ali et al. [23].
Nadeem and Akbar [24] have examined the effects of heat transfer on the peristaltic transport
of MHD Newtonian fluid with variable viscosity and found the solution by Adomian decompo-
sition method. Hakeem et al. [25] have investigated the effects of hydromagnetic flow of fluid
with variable viscosity in a uniform tube with peristalsis. Recently Nadeem et al. [26] have
examined the variable viscosity effects on the peristaltic low of a MHD Newtonian fluid.

The study of heat and mass transfer is also important because of its large number of applica-
tions in geothermal and geophysical engineering. Such applications are extraction of geothermal
energy, the migration of moisture in fibrous insulation, under ground disposal of nuclear waste
and the spreading of chemical pollutants in saturated soil. Only a few attempts have been
made to study the combined effects of heat and mass transfer in peristaltic literature. Eldabe
et al. [27] considered mixed convective heat and mass transfer in a non-Newtonian fluid at
a peristaltic surface with temperature-dependent viscosity. The influence of heat and mass
transfer on MHD peristaltic flow through a porous space with compliant walls was taken into
account by Srinivas and Kothandapani [28]. Nadeem et al. [29] studied the influence of heat
and mass transfer on peristaltic flow of a third order fluid in a diverging tube. Influence of
radially varying MHD on the peristaltic flow in an annulus with heat and mass transfer was

investigated by the Nadeem and Akbar [30]. Some more important investigations related to the



thesis work are cited in Refs. [31 — 42].

Motivated by the above analysis the peristaltic flows of non-Newtonian fluids have been
discussed, the purpose of the present thesis is to investigate the peristaltic flows of some non-
Newtonian fluids in tubes and endoscope. Thesis consists of eleven chapters including chapter
zero consists literature survey and the other ten chapters are developed as follow:

In chapter one, we discuss the peristaltic flow of a Walter’s B fluid in a uniform inclined
tube. The governing equations of Walter’s B fluid in cylindrical coordinates are first obtained.
The highly nonlinear partial differential equations are simplified with the help of transforma-
tion and nondimensional variables. Their analytical solutions are calculated by using regular
perturbation method. The content of this chapter are published in Journal of Biorheology,
24(2010)22 — 28.

Peristaltic flow of Williamson fluid model in an endoscope have been discussed in chapter
two. The governing equations of Williamson fluid model in cylindrical coordinates are given for
a two dimensional flow. The solutions of the reduced nonlinear equations are calculated with
the help of (i) perturbation method (i7) homotopy analysis method and (ii¢) numerically by
the shooting method. This chapter is published in Journal of Mechanics in Medicine and
Biology. 4(2011)941 — 957.

Chapter three is devoted to the study of peristaltic flow of Sisko fluid in a uniform inclined
tube. In this chapter, we analyze an incompressible Sisko fluid through an axisymmetric uniform
inclined tube with a sinusoidal wave propagating down its walls. The present analysis of non-
Newtonian fluid is investigated under the considerations of long wavelength and low Reynolds
number approximation. The analytic solutions are obtained by using (i) regular perturbation
method and (i7) homotopy analysis method (HAM). The content of this chapter is published
in Acta Mechanica Sinica. 26(2010)675 — 683.

Endoscopic effects on the peristaltic flow of a nanofluid has been examined in chapter four.
This chapter deals with the peristaltic flow of a nanofluid in an endoscope. The flow is investi-
gated in a wave frame of reference moving with velocity of the wave. Analytical solutions have
been calculated using homotopy perturbation method (HPM) for temperature and nanoparticle
equation while exact solutions are obtain for velocity and pressure gradient. The content of this

chapter is published in Communications in Theoretical Physics. 56(2011)761 — 768.



In chapter 5, we analyze influence of heat transfer on a peristaltic flow of Johnson Segalman
fluid in a non uniform tube. The governing equations of Johnson Segalman are simplified using
the long wavelength and low Reynolds number assumptions. In the wave frame of reference,
an analytical solutions are computed with the help of two techniques namely (i) perturba-
tion technique, (#4) hAM technique. The work of this chapter is published in International
Communications in Heat and Mass Transfer. 36(2009)1050 — 1059.

Chapter 6 discussed the peristaltic transport of a tangent hyperbolic fluid in an endoscope.
The modelling of hyperbolic tangent fluid model for two dimensional flow in cylindrical co-
ordinates are presented. Using the assumption of long wavelength and low Reynold number,
the governing equations of hyperbolic tangent fluid for an endoscope have been solved using
regular perturbation method and shooting method. The contents of this chapter is published
in Journal of Aerospace Engineering. 24 (2011) 309.

In chapter 7, combined effects of heat and chemical reactions on the peristaltic flow of
Carreau fluid model in a diverging tube. Analysis of the chapter have been done under the con-
sideration of long wavelength in the presence of heat and mass transfer. The flow is investigated
in a wave frame of reference moving with velocity of the wave. Two types of analytical solutions
have been evaluated (i) Perturbation method (i) Homotopy analysis method for velocity, the
temperature and concentration field. The work of this chapter is accepted for publication in
International Journal of Numerical Methods in fluid 2011.

Chapter 8 described the analytical and numerical analysis of Vogel’'s model of viscosity on
the peristaltic flow of Jeffrey fluid. We have analyzed the effects of temperature dependent
viscosity on the peristaltic flow of Jeffrey fluid between two coaxial horizontal tubes. The gov-
erning problem is simplified using longwave length and low Reynolds number approximations.
Regular perturbation in terms of small viscosity parameter is used to get the expressions for
the temperature and velocity for Vogel's models of viscosity. The numerical solution of the
problem has also been computed by shooting methodd. The content of this chapter is accepted
for publication in Journal of Aerospace Engineering 2011.

Characteristics of heating scheme and mass transfer on the peristaltic flow for an Eyring-
Powell fluid in an endoscope has been given in chapter nine. The governing equations of

proposed model are first modeled and then solved analytically and numerically. The content



of this chapter is published in International Journal of Heat and Mass Transfer 2011.
55(2012)375 — 383.

Chapter ten is developed to study the simulation of heat transfer on the peristaltic flow of
a Jeffrey-six constant fluid in a diverging tube. The modeling of proposed fluid model is given
and regular perturbation method is invoked to find an analytical solution for the velocity and
temperature field. This chapter has been published in Communication in Heat and Mass

transfer. 38(2011)154 — 159.
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Nomenclature

Vv Velocity R Space coordinate
S Shear stress Z Space coordinate
0 Density of the fluid g Gravitational force
T Extra stress tensor « Angle of Inclination
W Vis cos ity U Velocity in radial direction
t1 Transpose W Velocity in axial direction
a Radius of tube U Velocity in radial direction
b Wave of amplitude w Velocity in axial direction
c Wave speed ) Wave length
A Wave length a3 Walters B fluid parameter
t Time h Height of the tube wall
Re Reynold number P Pressure
10} amplitude ratio P stream function
e Rate of strain tensor AP Pressure rise
f Body force F Frictional force
Moo Infinite shear rate viscosity Q Flow rate
o Zero shear rate viscosity r Time constant
a1 radius of inner tube II Second invariant strain tensor
as radius of outer tube € Radius ratio
72 Height of endoscope W, Weissenberg number
B, Local concentration Grashof FO) Frictional force for inner tube
F@) Frictional force for outer tube q Embedding parameter
R Auxiliary parameter n Power Law index
b* Sisko fluid parameter Pr Prandtl number
k thermal conductivity, Ny B row nian motion parameter
Krp thermal-diffusion ratio, Ny Themophoresis parameter
B, Brinkmann number C  Concentration in dimensional form

o  Concentration in nondimensional form T Temperature in dimensional form
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ao

g5t

Temperature in nondimensional form
Viscosities
Ratio of relaxation to retardation time
Constan ts of Vogels models
Temperature of the medium,
Velocity component in r-direction,
Schmidt number
Thermal diffusion ratio
Heat flux
Ratio between the effective heat capacity

of the nano particle and heat capacity of fluid
Material constant of Eyring Powell fluid
Velocity component in z-direction,
Symmetric part of the velocity gradient
Axisymmetric part of the velocity gradient
B row nian diffusion coefficient
Radius of inlet

Material constant of Jeffrey six constant fluid model
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as

€1

r3

f

Ecker t number

Soret number

Re tardation time

heat source parameter

Vogels models parameter

Re ference viscosity

Density of particle

Eyring Powell fluid parameter

Thermophoretic diffusion coefficient

Kinematic Viscosity

Specific heat

Slip parameter

Specific internal energy

Radient heating

Thermal conductivity

Constant depend on tube length

Grashof number



Chapter 1

Peristaltic flow of Walter's B fluid in

a uniform inclined tube

1.1 Introduction

In this chapter, we have investigated the peristaltic flow of a Walter’s B fluid in a uniform
inclined tube. The governing equations of Walter’s B fluid in cylindrical coordinates have been
modeled. The highly nonlinear partial differential equations are simplified with the help of
transformation and nondimensional variables. The analytical solutions have been calculated by
using regular perturbation method by taking § as perturbation parameter. The expressions for
pressure rise and friction forces have been calculated using numerical integration. The graphical
results are presented to discuss the various nondimensional physical quantities of Walter's B

fluid parameter «y, amplitude ratio ¢, angle of inclination « and wave length 6.

1.2 Mathematical Model

For an incompressible fluid the balance of mass and momentum are given by

divV = 0, (1.1)
dV

13



where p is the density, V is the velocity vector, S is the Cauchy stress tensor, f represents the
specific body force and d/dt represents the material time derivative. The constitutive equation

for Walter’s B’ fluid is given by [32]

S = —PI+T, (1.3)
o1e
T = 2ue—2k0$, (1.4)
e = VV+ (VW) (1.5)
dre  Oe T
T = 5, TV-Ve—eVV—(VV)'e, (1.6)

in which —PT is the spherical part of the stress due to constraint of incompressibility, 7 is the
extra stress tensor, u is the coefficient of viscosity, e is the rate of strain tensor 1" denotes the
transpose and 01/01t denotes the convected differentiation of a tensor quantity in relation to

the material motion.

1.3 Problem Formulation

We have considered an incompressible Walter’s B fluid in a uniform inclined tube. The flow is
produced due to a sinusoidal wave trains propagating with constant speed c along the walls of

the tube and the geometry of the wall surface is defined in Fig. 1 (a).
. 2T 2
h=a+bsin Y (Z —ct), (1.7)

where a is the radius of the tube at inlet, b is the wave amplitude, A is the wavelength, c is the
wave speed and ¢ is the time. We are considering the cylindrical coordinate system (R, Z), in

which Z — axzis lies along the centerline of the tube and R is transverse to it.
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uml
=

Fig. 1(a). Geometry of the problem.

The governing equations in the fixed frame for an incompressible flow are given as

ou U oW
T = L.
or "R oz =" (18)
9 _o9 _o9N. 0P 10 ,. a - .
9 % v w9 Ng=_%C L9 (pr._ _ (Fn,) — 100 1.
p<3t+UaR+W8Z> U 8R+R8R (RTgR) + 57 (Trz) 7 + pgsina,  (1.9)
o -9 - 0\~ oP 1 0 - 0
—_ — — =—— + _—— (R755; — (T35 1.1
p<8t+U8R+W0Z>W 82+R8R (RTRZ)+GZ (T7z)+ pgcosa, (1.10)

where P is the pressure, U, W are the respective velocity components in the radial and axial
directions in the fixed frame respectively, ¢ is the constant of gravity and « represent the
inclination angle. In the fixed coordinates (R, Z) , the flow is unsteady, it becomes steady in
a wave frame (7,z) moving with the same speed as the wave moves in the Z—direction. The

transformations between the two frames are

15



(1.11)

(1.12)

here u and w are the velocities in the wave frame. The corresponding boundary conditions are

ow
or

_ - 7 - - -

R = E, T‘:i, Z = —, z:i, W:K, w:g
a a A A c c
AU Al ’p t

poo ANy P A g
ac ac ) A A
h k

h = — =1+ ¢sin2nz, a1:£7 = 'MCQ.
a a pga

(1.11), (1.12) and (1.14), Egs.
conditions (1.13a) and (1.13b) take the form

Making use of Egs. (1.8) to (1.10)

Ou ju 0w _
or r 0z
0 0 oP 40 0 0T gg
3(, 9 9 __g9r 99 20 0796
Red <’U,ar+’u}az>u ar " or (7“7'1“1") 0 9 (Trz)
0 0 orP 10 0
Reé<u87~+waz)w —a—;a(ﬂ"z) 5%(7'%)
ow
5—0, u=0 at r=020,
w=—1, u:—@, at r=h=1+ ¢sin2nz,
dz

16

(1.13a)
. (1.13b)
aT
, T = —
CH
pea
M Y
(1.14)

along with boundary

(1.15)
CoS &
+ 4 T (1.16)
sin «v
T (1.17)
(1.17a)
(1.17b)



where

2 2 2
T = %&L2ml%9“+#wa“zﬁcm> 8w(”#+?0r
;

or Or? Ordz or )] or \ oz

[ Ou o Ow 3 0%u 0*w O*w 0*u 4
Tre = <8z§ + 87“) o [5 “or2 +5u8r2 +w587‘8z +w8z25 B

28u8u53_5<8u52+3w> <3u+8w> awaw(s}’

or 0z 0z or ) \or  0z) or oz
B ow 5 O%w o OPw  Ou [(Ou ., Ow 5 [ Ow 2
Tzy — 25@ — 20[1 [6 u7araz + 0 wﬁ — &5 &5 + E + 26 E 5
2
Top = 2%5 — 201162 [uau — 3u2]
r 0oz r

In above equations §, Re and «aj represent the wave number, Reynolds number and Walter's B

fluid parameter respectively. Elimination of pressure gradient from Eqs. (1.16) and (1.17), we

obtain
B —Red (ud +wl)w+ 0 —Reé® (uZ +wi)ut
or %% (r7rs) —I—(S% (T2:) + 5c%soc 0z g% (rTrr) +(52% (Trs) — (5% + si%a
(1.18)
Corresponding boundary conditions in dimensionless form are
0
u:O,B%:O, at =0, (1.19)
dh .
u=——, w=—1,at r=h=1+ ¢sin2nz. (1.20)

dz

1.4 Solution of the Problem

Since Eq. (1.18) is highly non-linear equation so its exact solution may be not possible. There-
fore we are interested to calculate the solution with the help of perturbation method. For

perturbation solution we expand u,w and P by taking § as perturbation parameter

17



w = wg+ dwy + O(6?), (1.21a)
u = ug+ duy + 0(8?%), (1.21b)

P = Py+ 6P+ 0(5?). (1.21c)

Substituting Eqgs. (1.21a) to (1.21¢) in Egs. (1.16) to (1.20), we get zeroth order and first order
system of equation then find the solutions of all systems we arrive at the final solutions which

are defined as

2 _ 12 P :
w(rz) =—1+ (r 1 : > (zz - Sl?) +0 (Bis (r® = h°) + Bio (r" = h") + By (r* = 17)) ,
(1.22)
U (7“, Z) = Bsr+6 (3217"7 + 3227"5 + 3237”4 + B24T3 + B257“) , (123)
P —8E (2F; + h?) + h'si B

ar _ (2F +17) + hlsina | o (Bo) (1.24)

dz Eh? h4

The corresponding stream function can be calculated as
1 0¥ 10¥

=——— and w=—-——. 1.25
“ r oz r Or (1.25)

The pressure rise AP and friction force F' can be calculated with the help of following relations
i dP
AP = | —d 1.26
[ (1.26)
0

1

F = /h2 (—ff;) dz, (1.27)

0

where % is defined in Eq. (1.24). The constants appears in above differential equations are

defined as

18



1 OP B2n3n bih? by Bih?t
B, = (% SN g B2, By= gy - DU DT DB
2 2 4 4
B2hh b1 dPy\’ b1 B1h* apr\’
B, = Bt ———th2b:— by = by = | —
4 4 4 1P1 ) 1 < dZ ) 2 2 s U3 dZ y
B1hh 3B,
By = — 12 , Bg=DBsBy, a7 =ReBsy, Bg= 2 + Re Bg + Re B4y, Bg = Re Bs,
a1 B1 B! a1B1 B h? a1B1 B,
By = BsB;, By =— 21 L Bia= —%, B3z = %7
alBlBihz 2 ’ alBlhh’ ap() sin o
B = —-—— BsB; — aB = —
14 5 +aBsBy —aBihl', a1 5 9, 7 )
B B B
Big = 78 + B11 — Bi3, Bir = ?9 + Big + B2 — Biy — Bys, Big = 367
B B —16h8
By = %, By = %, Bs1 = Big (—6h%) + Big ( ) + By (—4h*).

The non-dimensional expressions for the five considered wave forms are given [13] by the fol-
lowing equations:

1. Sinusoidal wave:

h(z) =1+ ¢sin (272)
2. Triangular wave:
h(z)=1 — 2 (2n —1
(2)=1+¢ 3 Z:: )s1n(7r(n ) 2)
3. Square wave:
oo n+1

h(z) —1+¢{iz o —1) cos (2w (2n — 1) )}
n=1

4. Trapezoidal wave:

h(z)—1—|-¢{3225m 1)51n(27r(2n—1)z)}
1

5. Multi sinusoidal wave:

h(z) =14 ¢sin(2mmz)
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1.5 Graphical Discussion

In this section the pressure rise, frictional forces, axial pressure gradient and stream lines
are discussed and shown graphically (see Figs. 1.1 to 1.10). The pressure rise is calculated
numerically by using Mathematica. Figs. 1.1 to 1.4 show the pressure rise AP against volume
flow rate @ for different values of angle of inclination «, amplitude ratio ¢, wave length § and
Walter's B fluid parameter a;. These figures indicate that the relation between pressure rise
and volume flow rate are inversely proportional to each other. Fig. 1.1 shows that with the
increase in « pressure rise increases. Peristaltic pumping occurs in the region —1 < @Q < 0.5
for various values of ¢ and «a; (see Figs.1.2 and 1.4) and —1 < Q < —0.4 for Fig. 1.3, other
wise augmented pumping occurs. Further, the pressure rise increases with an increase in ¢
and § while decreases with increase in a. Figs. 1.5 to 1.8 describe the variation of frictional
forces. It is seen that frictional forces have opposite behavior as compared to the pressure rise.
Figs. 1.9 (a) to 1.9 (e) are prepared to see the behavior of pressure gradient for different wave
shapes. It is observed that for ze[0,0.5] and [1.1,1.5], the pressure gradient is small, while the
pressure gradient is large in the interval ze [0.51,1]. Moreover, it is seen that pressure gradient
increases with increase in ¢. The effects of different parameters on streamlines for the trapping

phenomenon for five different wave forms can be seen through Figs. 1.10 (a to ¢) . It is observed
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that the size of trapping bolus in triangular wave is smaller as compared to other waves.

S a=0.0
lo h~'-.:o\. - ey = 03
eseccee g = 06
vmemea =0.9

0 0.5 1 15
Q

Fig.1.1. Pressure rise versus flow rate for ay = 0.05, ¢ = 0.01,

§=0.4,Re=6, E=0.1.
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sscceee f =(0.15 |1
e=af =0.20
ememef =(.25 ]

0 0.5 1 15
Q

Fig.1.2. Pressure rise versus flow rate for for oy = 0.05,

a=04,5=0.1Re=8, E=0.1.
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Fig.1.3. Pressure rise versus flow rate for a = 0.05, oy = 0.4,

¢=0.1Re=5 E=0.1.
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Fig.1.4. Pressure rise versus flow rate for a = 0.05, 6 = 0.4,

¢=0.1,Re=6, E=0.1.
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Fig.1.5. Frictional forces versus flow rate for a; = 0.05,

¢=0.01,5=04, Re=6, £ =0.1.
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Fig.1.6. Frictional force versus flow rate for oy = 0.05, a = 0.4,

5§=0.1,Re=8, £ =0.1.
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Fig.1.7. Frictional force versus flow rate for a; = 0.05, a = 0.4,

¢=0.1Re=5 E=0.1.
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Fig.1.8. Frictional force versus flow rate for a« = 0.05, § = 0.4,

¢=0.1,Re=6, E=0.1.
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Fig.1.9 (a). Pressure gradient versus (Sinusoidal waves) z for

a=01a; =04 Re=8,6§=02 E=0.1,Q=—1.
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Fig.1.9 (b). Pressure gradient versus (Multisinusoidal waves) z

fora=0.1, a1 =04, Re=8,=02, £ =0.1,Q = —1.
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Fig.1.9 (¢). Pressure gradient versus (Square waves) z for

a=01,a1 =04 Re=8,0=02 E=01,Q=—1.
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Fig.1.9 (d). Pressure gradient versus (Trapezoidal waves) z for

a=01,a1=04,Re=8,0=02, F=0.1,Q=—1.
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Fig.1.9 (e). Pressure gradient versus (Triangular waves) z for

a=01a; =04 Re=8,6§=02 E=0.1,Q=—1.
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a1 =005 ¢=04, Re=7 E=0.1,6=0.1,a=03Q=—1.
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¢=04,Re=7,E=01,6=01,a=03,Q=—1.
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Fig. (1.10) (¢). Streamlines for trapezoidal wave when
a1 =005 ¢=04,Re=7 E=0.1,0=156=01, a=0.3,
Q=-1.
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Fig. (1.10) (d) . Streamlines for triangular wave when

a1 =005 ¢=04, Re=7,E=0.1,6=01,a=03,Q=—1.
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a1 =005 ¢=04, Re=7 E=01,6=0.1,a=03Q=—1.
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1.6 Conclusion

This chapter concerns with the peristaltic flow of Walter,s B fluid in a uniform inclined tube.
The governing two dimensional equations have been modeled and then simplified using long
wave length and low Reynold’s number approximation. The main points can be summarized

as:

1. It is observed that the relation between pressure rise and volume flow rate are inversely

proportional to each other.

2. In the peristaltic pumping region the pressure rise increases with the increase in angle of
inclination «, amplitude ratio ¢, wave length § and decreases with an increase in Walter’s

B fluid parameter a;.
3. It is seen that frictional forces have opposite behavior as compared to the pressure rise.
4. Tt is seen that pressure gradient increases with increase in ¢.

5. It is observed that the size of trapping bolus in triangular wave is smaller as compared to

the trapezoidal and sinusoidal waves.

6. If Walter's B fluid parameter o = 0, the solution of Newtonian fluid can be recovered as

a special case of our problem.

30



Chapter 2

Peristaltic flow of Williamson fluid

model in an endoscope

2.1 Introduction

In this chapter, we have presented the peristaltic flow of an incompressible Williamson fluid
model in an endoscope. The governing equations of Williamson fluid model in cylindrical coor-
dinates are modelled for two dimensional flow. The highly nonlinear equations of Williamson
fluid model are simplify using the assumptions of longwave length and low Reynolds number.
The solutions of the reduced nonlinear equations are calculated with the help of (i) Perturbation
method (77) Homotopy analysis method and (iii) Shooting method. An excellent agreement
between all the solutions are also presented. Also the expressions for pressure rise and velocity

for various physical parameter are discussed through graphs.

2.2 Mathematical Model

For an incompressible fluid the balance of mass and momentum are defined in Egs. (1.1) and

(1.2). The constitutive equation for Williamson fluid is given by [34]

S=—-PI+T (2.1)
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T =—|Mx =+ (MO + :U’oo) (1 - F;)il} 51 (22)

in which 7 is the extra stress tensor for Williamson fluid, p., is the infinite shear rate viscosity,

Ho is the zero shear rate viscosity, I is the time constant, and ¥ is defined as

'Y = \/ ZZV@]V]Z - \/>H (23)

Here II is the second invariant strain tensor. We consider the constitutive Eq. (2.2), the case

for which p,, = 0 and I'y < 1. The component of extra stress tensor therefore, can be written

as

T =—po [(1=TH) 75 = —po [(1+T9)] 7. (2.4)

2.3 Mathematical Formulation

Let us consider the peristaltic transport of an incompressible Williamson fluid in a an endoscope.
The flow is generated by sinusoidal wave trains propagating with constant speed ¢ along the

walls. The geometry of the wall surface is defined as and shown through the Fig. 2.

Rl = ai, (2.5)

Ry = a2+b81n—(7—cf) (2.6)

where a7 is the radius of the inner tube, as is the radius of the outer tube at inlet, b is the wave

amplitude, \ is the wavelength, ¢ the wave speed and ¢ the time.
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Fig. 2.. Geometry of the problem.

Making use of Eq. (2.4), Egs. (1.1) and (1.2) in component form take the form

ou U oW
RN J— —_— = 2-
or "R oz =" 27)
o -0 = 0\ = orP 1 0 0
— — — - ) — — (755 2.
p<8t+U8R+W8Z)U oF ~ RoR ) ~ 57 (Tr2): 28)
o -0 — 0\ + oP 1 0 - 0
(6 Uar W az) W =5z ~ on (rad) ~ g 2 @)

where U, W are the respective velocity components in the radial and axial directions in the
fixed frame respectively.

In the fixed coordinates (R, Z) , the flow between the two tubes is unsteady. It becomes
steady in a wave frame (7, Z) moving with the same speed as the wave moves in the Z—direction.

The transformations between the two frames are
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u = U, w=W—c¢, (2.10)

where @ and w are the velocities in the wave frame.

The appropriate boundary conditions in the wave frame are of the following form

w = —c¢ u=0 at7=ry, (2.11)

2
w = —c¢, atT =73+ bsin ;2 (2.12)

We introduce the non-dimensional variables

R ; z ; W ; _
R = PR T:L7 ZZ*’ ZZE? Wzia wzgaf}/—%f%
a as A A c c c
U = >‘7U, u:&, p:a%P,t:it7 5= Re=P22
asc asc cA\ Lo A A Lo
T = %, 7‘1:1;1:6, rgzr—221+¢sin(27rz). (2.13)
Clo a2 az

Making use of Egs. (2.10) and (2.13), Egs. (2.7) to (2.9) along with boundary conditions (2.11)
and (2.12) take the form

g:er;ergf:o, (2.14)

Re 3 <“aar + w(i) u= —%—J: — g% (r7er) — 528% (Tr2) 5 (2.15)
Res <u§; ; w(i) w=-22_ 10 )52 ), (2.16)
w = —1, atr=r=¢, (2.17a)

w = —1, atr=ry =1+ ¢sin(2nz), (2.17b)
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where

Trr = —20[1+ Wed] z:f,

0 0
Tre = —[1+Wej] <8Z§2 + 81:) ,
re = 21 Wes]aor,

ou\ 2 ou ow\? ow\? V2
o= 202 = —5% - = 202 | —
7 [ < or ) + ( 0z or ) * 0z ’
in which d, Re, We represent the wave, Reynolds and Weissenberg numbers, respectively. Under

the assumptions of long wavelength ¢ << 1 and low Reynolds number, neglecting the terms of

order ¢ and higher, Egs. (2.15) and (2.16) take the form

oP
- = 2.1
oP 10 ow\ Ow
w = -1, atr=r =g, (2.20a)
w = —1, atr=ry =1+ ¢sin(27z). (2.20b)

2.4 Solution of the Problem

2.4.1 Perturbation Solution

To get the solution of Eq. (2.19), we employ the regular perturbation to find the solution.

For perturbation solution, we expand w, F' and P as

w = wg+ Wew +O(We?), (2.21a)
Py = Fio+WeFj +0(We?), (2.21b)
P = Py+WeP, +O(We?). (2.21c)

The perturbation results for small parameter We, satisfying the conditions (2.20a) and (2.200) ,
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for velocity and pressure gradient can be directly written as

1+ r +ailnr+ ar
w e — —_— a nr a e
1 11 12 )
3 2
r a dP,
+We (— (12 - % + a117“> <dz0> +aizlnr + a15)> , (2.22)
dP  2Fy + (r2 —r? -
dP 2R + (5 —19) +W€< a17> , (2.23)
dz alg a16
where
1 7‘% — 7‘% 7‘%
= —_— _— = — —_ 1
@ 4 (lnrl —Ilnry )’ a2 4 taninm f,
1 r3—r3 1 LY o Py
= —_— —_— — 2 - -
a3 +lnr1 v < 5 e Lt + 2a11(r1 — 72) )
3 2 AP\ 2
aly = — T—l—m—i-%url =20 , a15 = aig —aizlnry,
12 1 dz
4 .4 2 2
ro — 17 Ty —T
alg = ( 2 3 1 + a1 (T% Inry — 7‘% 1117"1) — a11(221 + a9 (7“% - 7’%)) )
5 5 3 3 2
rd—rp TS —T dPy
alr = — ( 230 1 —2&%1 (TQ—T1)+4(111 2 3 1> (dz)
2 2
rs—r
+ai3 (r% Inrg — r% Inr; — (221)> + ais (T% — 7’%) .

The pressure rise AP and friction forces F on inner and outer tubes F(©), F()  are given by

AP= [—de, (2.24)
0
i dp
FO = /r% <dz> dz, (2.25)
0
i dp
FO = /r% <—dz> dz, (2.26)
0

where 2€ is defined in Eqgs. (2.23).
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2.4.2 HAM Solution

In this section, we have found the HAM solutions of Egs. (2.18) and (2.19). For that we choose
[40]

2 dp
wo = —1+ <7;l +ai;Inr + a12> s (2.27)
as the initial guess. Further, the auxiliary linear operator for the problem is taken as
1 8 8wo
— . 2.2
Lor(w) = ror <T or > (2:28)

From Egs. (2.18) and (2.19) we can define the following zeroth-order deformation problems

(1= q)Lwr[ @ (r,q) = wo(r)] = ghwNuwr[w (r,q)], (2.29)
w(r,q) = —1, atr=r, (2.30)
w(r,q) = -1, atr=r. (2.31)

In Egs. (2.30) and (2.31), h,, denote the non-zero auxiliary parameter, ge[0, 1] is the embedding

parameter and

0w 18w We [ 0w\? ?wow dP
Nurlwlr o)) = Fa + 00 7 (a) Ve o T @ (2:32)
Obviously
w (r,0) =wgy, w(r,1)=w/(r), (2.33)

when ¢ varies from 0 to 1, then w (7, ¢) varies from initial guess to the solution w (r) . Expanding

w (r,q) in Taylor's with respect to an embedding parameter ¢, we have

W (r,q) = wo (r) + Z W (1)q"™, (2.34)

(2.35)

37



Differentiating the zeroth order deformation m-times with respect to ¢ and then dividing by

m! and finally setting ¢ = 0, we get the following mth order deformation problem

‘Cw[wm(r) - mem—l(r)] = hwar(T)7 (236)
where
We 22
_ " Lo we
Rwr = Wy—1 + W1 T . ; Wy—1Wyn—1—i
= dP

2W w! ——(1— 2.37
+ € ; wm 1Wm—1—4 dz ( Xm) ( )

0, m <1,
Xm = (2.38)

1, m > 1.

The solution of the above equation with the help of Mathematica can be calculated and is

presented as

+ lim

M—o0

2\ 22

n=1 m=n—1

2M+1 / 2M  2m+l-n
wm(r) = lim [Zamo—i— Z < Z Z ak T”lnr)

M—co
m=n—1

[2M+1< 2M  2m41-n

0

k
where a;,  and ay, ,, are constants.

2.4.3 Numerical Solution

The present problem consisting of Egs. (2.18) and (2.19) and solved numerically by employing
shooting method. The numerical results are compared with the perturbation and HAM results
and get a very good agreement between the three solutions. The comparison is made for small

values of Weissenberg number.

2.5 Graphical Results and Discussion

In this section we have presented the solution of the Williamson fluid model graphically. The
expression for pressure rise AP is calculated numerically using mathematics software. The

effects of various parameters on the pressure rise AP are shown in Figs. 2.3 to 2.5 for various
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values of Weissenberg number We, amplitude ratio ¢ and radius ratio €. It is observed from
Figs. 2.3 to 2.5 that pressure rise increases with the increase in We while the pressure rise
decreases with increase in ¢ and ¢. Peristaltic pumping region is (—2 < @ < —1.3) for Fig.
23 and (-2 < @ <0) for Figs. 2.4 and 2.4, otherwise there is augmented pumping. Figs. 2.6
to 2.11 represent the behavior of frictional forces. It is depicted that frictional forces have an
opposite behavior as compared to the pressure rise. The pressure gradient for different values
of We, ¢, € and @) against z is plotted in Figs. 2.12 to 2.15. It is shown through the figures that
in the region ze[0,0.5] and ze[l,1.5], the pressure gradient is small, while pressure gradient
is large in the region z€[0.6,0.9], further it is seen that with increase in We and @ pressure

gradient decreases while pressure gradient increases with increase in ¢ and ¢.

0.5

0.4

0.3

0.2

w”(rz)

—— 20th-order app.

0.1

-2.5 -2 -1.5 -1 -0.5 o 0.5

Fig.2.1. h-curve for velocity profile for ¢ = 0.1, We = 0.1,
z=0.1, ¢ = 0.3.
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T Numerical sol | Perturbation sol | Error HAM sol | Error

0.1 | -1.00000 -1.00000 0.00000 | -1.00000 | 0.00000
0.2 | -1.02651 -1.02672 0.00020 | -1.02708 | 0.00055
0.3 | -1.04062 -1.03992 0.00067 | -1.04021 | 0.00040
0.4 | -1.04692 -1.04669 0.00021 | -1.04686 | 0.00210
0.5 | -1.04929 -1.04927 0.00010 | -1.04931 | 0.00005
0.6 | -1.04867 -1.04864 0.00016 | -1.04857 | 0.00009
0.7 | -1.04505 -1.04534 0.00027 | -1.04519 | 0.00013
0.8 | -1.03949 -1.03967 0.00116 | -1.03947 | 0.00116
0.9 | -1.03194 -1.03184 0.00069 | -1.03163 | 0.00001
1.0 | -1.02137 -1.02199 0.00060 | -1.02182 | 0.00044
1.1 | -1.01000 -1.01023 0.00027 | -1.01013 | 0.00012
1.2 | -1.00000 -1.00000 0.00000 | -1.00000 | 0.00000

Table. 2.1. Comparison of three methods for different values of ¢ = 0.1, We = 0.1, z = 0.1,
¢ =0.3.

-1
-1.01
Numerical solution

BTN T U e Perturbation solution
~ TN | e HAM solution
=

-1.03

-1.04

-1.05 —

0.2 0.4 0.6 0.8 1

Fig. 2.2. Comparison of velocity field for ¢ = 0.1, We = 0.1,
z=0.1, ¢ =0.3.
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Fig.2.3. Pressure rise versus flow rate for ¢ = 0.2, ¢ = 0.2.
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Fig.2.4. Pressure rise versus flow rate for ¢ = 0.1, We = 0.01.

41



150

——c =15
- e=c=020

100 e ceeseee 2025 ]
e cmemee=030

-100

2 -1.5 -1 0.5 0 0.5 1

Q

Fig.2.5. Pressure rise versus flow rate for We = 0.01, ¢ = 0.1.
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2.6 Conclusion

This chapter presents the analytical and numerical treatment of peristaltic flow of Williamson
fluid model in an endoscope. The governing two dimensional equations are modeled in cylindri-
cal coordinates system and simplified using long wave length approximation. The analytical and
numerical solutions of simplified equations are calculated. The results are discussed pictorially

through graphs. The main points can be discussed as follows

1. It is analyzed that analytical and numerical solutions are same upto four decimal place.

2. It is observed that in the peristaltic pumping region, pressure rise increases with the
increase in Weissenberg number We while the pressure rise decreases with increase in

amplitude ratio ¢ and radius ratio e.
3. It is seen that frictional forces have opposite behavior as compared to the pressure rise.

4. It is depicted that with increase in We and @ pressure gradient decreases while pressure

gradient increases with increase in ¢ and €.
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Chapter 3

Peristaltic flow of Sisko fluid in a

uniform inclined tube

3.1 Introduction

In the present chapter, we have analyzed an incompressible Sisko fluid through an axisym-
metric uniform inclined tube with a sinusoidal wave propagating down its walls. The present
analysis of non-Newtonian fluid is investigated under the considerations of long wavelength and
low Reynolds number approximation. The analytic solution is obtained using (i) regular per-
turbation method and (i7) Homotopy analysis method (HAM). The comparison of both the
solutions are presented graphically. The results for the pressure rise, frictional forces
and pressure gradient have been calculated numerically and the results are studied for vari-
ous values of the physical parameters of interest, such as « (angle of inclination) , b* (Sisko fluid parameter),
¢ (amplitude ratio) and n (power law index). Trapping phenomena is discussed at the end of

the article.
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3.2 Physical Model and Fundamental Equations

For an incompressible fluid the balance of mass and momentum in the presence of body forces

are given by

divv = 0, (3.1)
av
p— = divS+p/f, (3.2)
dt
S=-PI+, (3.3)

where S is the Cauchy stress tensor for Sisko fluid model and 7 is the extra stress tensor for

Sisko fluid which is defined as [33]

—\ n—1
T = [a* + bs (\/ﬁ> } Ay, (3.3a)
A =L+LT L=gradV, II= %tr (AD). (3.3b)

3.3 Mathematical Formulation

Let us consider the peristaltic transport of an incompressible Sisko fluid in a uniform inclined
tube. The flow is generated by sinusoidal wave trains propagating with constant speed ¢ along

the walls of the tube. The geometry of the wall surface is defined in chapter one
_ o
h=a+bsin Y (Z —ct). (3.4)

The governing equations for Sisko fluid in the fixed frame of reference in component form are

given as
ou U oW
Rt R o7 =" (3.5)
a r T a = a — _ 8P 1 8 — o i o _@
p(@zf+U6R+Waz>U_ ok " RoR (RTRR)+aZ (Trz) 7 +rgcosa, (3.6)
9 -0 - 0. oP 1 0 ,_ 9 '
p<8t+UaR+WaZ) W = —8———1- ROR (RTRZ) —i—a—Z(TZZ)—Fpgsma. (3.7)



In the fixed coordinates (R, A ) , the flow is unsteady, it becomes steady in a wave frame (7, Z)
moving with the same speed as the wave moves in the Z—direction. The transformations
between the two frames are defined in Egs. (1.11) and (1.12). The corresponding boundary
conditions are defined in Egs. (1.13) and (1.14).

Making use of Egs. (1.11), (1.12) and (1.15), Eq. (3.5) to Eq. (3.7) take the form

ou u Ow
0 orP 60 0 T 4 cos o
3(. O o _ o 00 2 0 _ <To0
Reé (uar—i-w(9 )u o rar(rn,«)—i-é 82( rz) — 0 7 (3.9)
0 0 orP 190 sin «
R65<uar+wa)w _54_;6 (TTTZ)+58 (T22) 5 (3.10)
where
S P A S el
Trr - 87’ 87’,
. (ow\" | [Ou 5  Ow
L (ow\" | dw
T,y = 20 |1+0 <87’> ]82’

in which 6 = a/\, Re = pca/p and b* = bs/ay (a/c)" " represent the wave number, Reynolds
number and Sisko fluid parameter respectively. Under the assumptions of long wavelength
d << 1 and low Reynolds number, neglecting the terms of order § and higher, Egs. (3.9) and
(3.10) take the form

oP
o = O (3.11)
oprP 10 . (Ow\" | dw sin«
ow
5 = 0, at r=0, (3.13a)
w=-—1,at r=h=1+ ¢sin2nz. (3.13b)
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3.4 Solution of the problem

3.4.1 Perturbation Solution

Since, Eq. (3.17) is non linear equation, its exact solution may be not possible, therefore, we
employ the regular perturbation to find the solution.

For perturbation solution, we expand w, F' and P as

w = w+ b w + O(b*?), (3.14)
F = Fm—l—b*FH—i-O(b*Q), (3.15)
P = Py+b*P +0(b*). (3.16)

Substituting Egs. (3.14) to (3.16) in Egs. (3.11) to (3.13) and then find the solutions of all the

systems we arrive at the final solutions which are defined as follow

r2 — h2 OP sina ay
et (S ) (5 - v (R eeey), e
P —8E(2F1 + h?) + h'si 16a;"h" "3
ar _ (2F1 + h?) + h'sina L (16ai"h | (3.18)
dz Eht h4

where

«  (dPy sina) 1
= ez E )2

The pressure rise AP and friction force F' are defined as follow

1
dP
AP = | —d 3.19
= (3.19)
0
1 dP
F= [h?|-"2)d 2
/ ( dz) -, (3.20)
0

where % is defined in Eqgs. (3.18).
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3.4.2 HAM Solution

In this section, we have found the HAM solution of Eqs. (3.16) to (3.18). For that we choose

r?2 — h? 0P sina

as the initial guess. Further, the auxiliary linear operator for the problem is taken as

_ 19 dw
Loyr(w) = e (7" 5 > , (3.22)

we can define the following zeroth-order deformation problems

(1 =q)Lyr| w(r,q) — wo(r)] = qhyNyr|w (7, )], (3.23)
ow(r,q) _

= = 0, atr=0, (3.24)

w(r,q) = -1, atr=h. (3.25)

In Egs. (3.23) to (3.25), Ay, denote the non-zero auxiliary parameter, ge[0, 1] is the embedding

parameter and

_ Pw 10w , 0*w [Ow Loy fow\" dP
Nurlo(ra)l = 5o + 05, TV g (a) (a) e B
Obviously
P00 iy, (1) = (), (3.27)

when ¢ varies from 0 to 1, then  (r, ¢) varies from initial guess to the solution w (r) . Expanding

w (r,q) in Taylor's with respect to an embedding parameter ¢, we have

W (r,q) = wo (r) + > _ wm(r)g™, (3.28)
n=1
wyy = L 0 ) (3.29)
m! g™ 4=0
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Differentiating the zeroth order deformation m-times with respect to ¢ and then dividing by

m! and finally setting ¢ = 0, we get the following mth order deformation problem

£w[wm(r) - mem—l(r)] = hwar(T)v (330)
where
1 * m—1
Ry = w'7rb—1+;wvln—l+7( )" +b*”zwm W1
=0
dP
—— (= 3.31
7 (1= Xm), (3.31)
0, m <1,
Xm = (3.32)
1, m > 1.

The solution of the above equation with the help of Mathematica can be calculated and pre-
sented as follows

2M+1 2M  2m+1—n
Wi (r) = lim [Z al, o + Z ( > Z ak 2””)], (3.33)

M—o0
m=n—1

0 k
where ay,  and ay, ,, are constants.

3.5 Graphical Results and Discussion

In this section we have presented the solution of the Sisko fluid model graphically. Figs. 3.1 (a),
3.2(a) and 3.3 (a) show the h-curve for velocity profile. Figs. 3.1(b,c), 3.2(b,c), 3.3(b,c)
show the comparison of velocity field. The expression for pressure rise AP frictional forces F',
pressure gradient dP/dz is calculated numerically using mathematics software. The effects of
various parameters on the pressure rise AP are shown in Figs. 3.4 to 3.6 for various values of
angle of inclination a, Weissenberg number We, amplitudes ratio ¢, different wave forms and
for different fluids. It is observed from Figs. 3.4 to 3.6 that pressure rise increases with the
increase in «, We and ¢. Moreover, the peristaltic pumping occurs in the region 0 < @ < 0.3

for Figs. 3.4 and 0 < @ < 0.5 for Figs. 3.5 and 3.6, other wise augmented pumping occurs. Fig.
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3.7 shows the effects of five different wave form on pressure rise. It is analyzed that the square
wave has best peristaltic pumping characteristics, while triangular waves has worst pumping
characteristics. The peristaltic pumping occurs in the region (0 < @ < 0.5) for Fig. 3.7,
otherwise augmented pumping occurs. Fig. 3.8 shows the effects of pressure rise for different
fluids. From figures it is seen that Newtonian fluid has best peristaltic pumping characteristics.
The variations of frictional forces are plotted in Figs. 3.9 to 3.13. It can be seen that frictional
forces have opposite behavior as compared to the pressure rise. Figs. 3.14 (a) to 3.14 (e) are
prepared to see the behavior of pressure gradient for different wave shapes. It is observed from
the figures that for ze[0,0.5] and [1.1,1.5] the pressure gradient is small and large pressure
gradient occurs for ze[0.51,1]. Moreover it is seen that with increase in ¢ pressure gradient
increases. The effects of different parameters on streamlines for the trapping phenomenon for
four different wave forms can be seen through Fig. 3.15. It is depicted that the size of trapping
bolus in triangular wave is smaller as compared to the trapezoidal and sinusoidal waves.

Case. 1 (n = 0 Shear Thinning Fluid)

E=04,0=003,2z=02,dpdz=0.2356=0.3,

—— 25th-order app.

w"(h)
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Fig.3.1 (a). h-curve for velocity profile.
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Case. 2 (n =1 Newtonian Fluid)
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Fig.3.2 (b). Comparison of velocity field for E = 0.5, z = 0.2,
¢=0.3,b6*=0.01, «=0.03, n =1.
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Fig.3.3 (a). h-curve for velocity profile.
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3.6 Conclusion

The perturbation and HAM solutions of Egs. (3.10) to (3.12) have been computed for velocity
profile. The expressions for pressure rise and pressure gradient have been discussed for five
wave shapes. The following observations have been found.

1. The pressure rise increases with the increase in «, b* and ¢.

2. It is observed that frictional forces have an opposite behavior as compared to the pressure
rise

3. The pressure rise for square wave gives larger pumping among the five wave shapes and
trapezoidal wave has the lowest pumping characteristics

4. The size of trapped bolus in triangular wave is smaller as compared to trapezoidal and
sinusoidal wave

5. The pressure gradient increases with increase in ¢ for all five wave shapes.
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Chapter 4

Endoscopic effects on the peristaltic

flow of a nanofluid

4.1 Introduction

This chapter deals with the peristaltic flow of a nanofluid in an endoscope. The flow is investi-
gated in a wave frame of reference moving with velocity of the wave ¢. Analytical solutions have
been calculated using Homotopy Perturbation Method (HPM) for temperature and nanoparticle
equation while exact solutions have been calculated for velocity and pressure gradient. Numer-
ical integration have been used to obtain the graphical results for pressure rise and frictional
forces. The effects of various emerging parameters are investigated for five different peristaltic

waves. Streamlines have been plotted at the end of the chapter.

4.2 Mathematical Formulation

Let us consider the peristaltic flow of an incompressible nanofluid in an endoscope. The flow
is generated by sinusoidal wave trains propagating with constant speed ¢ along the walls of
the tube. Heat transfer along with nanoparticle phenomena has been taken into account. The
inner tube is rigid and maintained at temperature T while the outer tube has a sinusoidal wave
traveling down its walls and maintained at temperature 7. The geometry of the wall surfaces

is defined in Eqgs. (2.7) and (2.8).
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With the help of transformations (2.12), the governing equations along with nanoparticles

[36] take the following form
19(ra) | 0w

- - =0, (4.1)
{8u 8u} oP {8% 10a 0%*a u}
plu—— = 7 ;

or  Vor| T "o Hlom Tror Tom =

[_8@ _8@} oP [8% 10w 0*w
p + =

—E-l-,u 87724-778774'822} +pga(T—T0)+pga(é—Co), (4.3)
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(4.5)

where C is the nanoparticle phenomena, the ambient values of T and C as 7 approaches to h
is denoted by Ty and Cp, Dp is the Brownian diffusion coefficient, D is the thermophoretic
diffusion coefficient, and 71 = (pc1), / (pc1); is the ratio between the effective heat capacity
of the nano particle material and heat capacity of the fluid when p being the density, ¢ is the
volumetric volume expansion coefficient and p,, is the density of the particle.

The corresponding boundary conditions in the wave frame are
w=-—c, T =1 C=Cy, at T=r, (4.6)

= 2
u_J:—c,T:Tl,C:Clatf:F2:a2+bsin—7T(2). (4.7)
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We introduce the non-dimensional variables
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3(Co—C
()
v

(4.8)

in which P., Ny , N¢, G, and B, are the Prandtl number, the Brownian motion parameter , the

thermophoresis parameter, local temperature Grashof number, nanoparticle Grashof number.

With the help of Eq. (4.8), Egs. (4.1) to (4.7) under the assumptions of long wavelength

and low Reynolds number approximation take the form

ou u Ow

oP

ar
orP 10 ow
82_7“81“< or >+G9+BO’

19 [ 90 Ao 00 00\ 2
r@r( a) N gr TN <8r> =0

(o (5)) <5 Gar 05)) =0

The corresponding boundary conditions are

w = —l,atr=ri=¢, w=-1, atr=ro=1+¢sin(2nz),
0 = 1, at r=ry, 6=0, at r=ro,
o = 1, at r=mry, o=0, at r=ro.
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4.3 Solution of the Problem

4.3.1 Homotopy Perturbation Solution

The homotopy perturbation method for Eqgs. (4.12) and (4.13) can be defined as [38, 39]

H(q,0)=(1—q)[L(0)—L(010)]+q|L(O)+ Nbg(;gi + N (gi) 2] , (4.15)

(0 = (=)L) - Lowl+a|Le)+ 3 (15 (15 )] @)

) H (q,0) = L(0) — L(010) + aL (Br0) + ¢ Nb?;;gf + N (giﬂ , (4.17)
H(g,0) = L(0) — L(010) + qL (c10) + g []]\\% <i§; <r‘3§>>} : (4.18)

According to method, L = %% (r%) as the linear operator, therefore we can choose the initial

guesses as
Inr —Inrg Inr —Inrg
0 =T == 4.1
10(r,2) <lnr1 - lnr2> ;010 (1) <lnr1 - lnr2> (4.19)
Let us define
0 (r,q) =60+ qb1 + q°02 + ..., (4.20)
o (r,q) = 00+ qo1 + ¢°oa + ... (4.21)

Adopting the same procedure as done by [38, 39], the solution for temperature and nanoparticle

phenomena can be written as for ¢ = 1

1
0(r,z) = A—((Ag(logr —logri)(2logr — Ay) — 6(Ny + Ny)(logr — logry)
1
(logr —logra) + 12AZ)(logr —logm))), (4.22)
o(r,z) = M(Ag)(logr —logry) + AzAs(logr — logri)(logr —logra)(2logr — Ay).  (4.23)
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Substituting Eqgs. (4.22) and (4.23) into Eq. (4.11), the exact solution for velocity and pressure

gradient can be directly written as

1
w(r,z) = ———a—(r*(—Ap+ Arg + 3A17(Ny + N;) — (Ag 4+ 6Ag(Ny, + N;)) log
96 A3 N,

dpP
+6A7(Ny, + N;)logr? — 2Aglogr® — 24d—Nb (log 3 —log 7’5’) + logry log g
2

dP
(A14 + Aoy — 2(A15Br — A5G- Ny + SGENb) log o + log T’%(Alg — A1 B,
dP dP
—2(A12 — Nb(Alg + 36@)) log 7"2))) + (A21 + AzQ%) IOgT + (A23
dP

Agy—). 4.24
+ 24dz) ( )

dP B F1 —A25

i 4.2
dz A26 ( 5)

Flow rate in dimensionless form can be define as [1 — 5].

2

F =205 -1

The pressure rise AP and friction force F on inner and outer tubes F(©, F() are given by

AP = [ ——dz, (4.26)

1
dpP
FO = /r% <_dz> dz, (4.27)
0

1
FO = /7"% (—25) dz, (4.28)
0

where € is defined in Eq. (4.25).
For analysis, we have considered five wave forms namely sinusoidal, multi-sinusoidal, trian-

gular, square and trapezoidal. The non-dimensional expressions for these wave forms are given

by
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1. Sinusoidal wave:

ro (2) = 1+ ¢sin (27z)
2. Triangular wave:

)n+1

()_1+¢{832 )sm(27r(2n—1)z)}

3. Square wave:

ra (2 )_H(b{iz 2n—1)cos(27r(2n_1)Z)}

n:l

4. Trapezoidal wave:

r2(z)=1—|—¢{3228m 1) sm(27r(2n—1)z)}
1

5. Multi sinusoidal wave:

re (2) =14 ¢sin (2mnz).

4.4 Numerical Results and Discussion

In this section we have presented the solution for the peristaltic flow of a nanofluid in an
endoscope graphically. The expression for pressure rise AP is calculated numerically using
mathematics software. The effects of various parameters on the pressure rise AP against
volume flow rate @ are shown in Figs. 4.1 to 4.3 for various values of amplitude ratio ¢,
thermophoresis parameter N; and radius ratio A. It is observed that the pressure rise and
volume flow rate give opposite results. It is analyzed from Figs. 4.1 to 4.3 that pressure
rise increases with the increase in amplitude ratio ¢ and thermophoresis parameter Ny, while
the pressure rise decreases with the increase in radius ratio e. Peristaltic pumping region is
(-1 <@ <0.3), where as augmented pumping region is (0.31 < @ < 2) for Figs. 4.1 and 4.2,
peristaltic pumping region is (—1 < @ < 0.2) and augmented pumping region is (0.21 < @ < 2)
for Fig. 4.3. Figs. 4.4 to 4.9 represents the behavior of frictional forces for inner and outer

tubes. It is depicted that frictional forces have an opposite behavior as compared to the pressure
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rise. Effects of temperature profile have been shown through Figs. 4.10 and 4.11. It is seen that
with the increase in the Brownian motion parameter N, and the thermophoresis parameter NV;
temperature profile increases in the region 0.1 < r < 0.4, decreases in the region 0.41 < r <1 for
Fig. 4.10, and increases in the whole region 0.1 < r <1 for Fig. 4.11. It can also be analyzed
through figures that Brownian motion parameter N, and the thermophoresis parameter N;
have qualitatively similar effects on temperature profile. Maximum temperature profile occurs
at r = 0.7 while minimum temperature profile occurs at » = 0.2. The nanoparticle phenomena
o for different values of the Brownian motion parameter IV, and the thermophoresis parameter
N; are shown in Figs. 4.12 and 4.13. We observed that the nanoparticle phenomena decrease
with an increase in Brownian motion parameter N, and thermophoresis parameter N; in the
region 0.1 < r < 0.3 and increases in the region 0.31 < r < 1. Brownian motion parameter Ny
and thermophoresis parameter Ny have similar effects on nanoparticle phenomena. Maximum
nanoparticle phenomena is at r = (0.7 and minimum nanoparticle phenomena is at r = 0.2. Figs.
4.10 and 4.13 show that temperature profile and nanoparticle phenomena have qualitatively
opposite behaviour for every parameter. Figs. 4.14 (a to e) are prepared to see the behavior of
pressure gradient for different wave shapes. It is observed from the figures that for ze [0, 0.5]
and [1.1,1.5], the pressure gradient is small and large pressure gradient occurs for ze [0.51, 1],
moreover, it is seen that with increase in ¢ pressure gradient increases and maximum change
in pressure is at r = 0.3. Figs. 4.15 (a to e) show the streamlines for different wave forms. It

is observed that the size of the trapped bolus in triangular wave is small as compared to the
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other waves.
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Fig.4.1. Pressure rise versus for r;1 = 0.05, ¢ = 0.05, G, = 0.3,
B, =02, N; = 0.8, N = 0.3.
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Fig.4.2. Pressure rise versus flow rate for r; = 0.05, ¢ = 0.01,

G, =3, B, =0.2, N, = 10.
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Figs.4.3. Pressure rise versus flow rate for r; = 0.05, ¢ = 0.05,

G,=0.3, B, =02, Ny =0.8, N, =0.3.
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Figs.4.4. Frictional force for inner tube versus flow rate for

r1 = 0.05, € = 0.05, G, = 0.3, B, = 0.2, N; = 0.8, N, = 0.3.
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Fig.4.5. Frictional force for inner tube versus flow rate for

ry =0.05, ¢ = 0.01, G, = 3, B, = 0.2, N, = 10.
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Figs.4.6. Frictional force for inner tube versus flow rate for

r1 = 0.05, ¢ = 0.05, G, = 0.3, B, = 0.2, N; = 0.8, N, = 0.3.

79



10

—f =0.10

—==f =015
5} | eeeeeee f =0.20 1
cmemef =0.25

-2 -1 0 1 2
Q

Fig.4.7. Frictional force for outer tube versus flow rate for

r = 0.05, € = 0.05, G, = 0.3, B, = 0.2, N, = 0.8, N, = 0.3.
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Figs.4.8. Frictional force for outer tube versus flow rate for

r1 = 0.05, ¢ = 0.01, G, = 3, B, = 0.2, N,, = 10.
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Fig.4.9. Frictional force for outer tube versus flow rate for

r = 0.05, ¢ = 0.05, G, = 0.3, B,

=0.2, Ny =0.8, N, =0.3.

3.5 —— :
.I. .\- — Nt =1
3 i 'n'" \\\.\. LITYYY T Nt = 2 l
L .,."..'o. \o - o
25 i... o.\\\‘ ———Nt—3
) - —
¥ 15 ]
T
1 -
0.5 .
’ RN R
05} . . , ."~-—.—l¢—' <
0.2 0.4 0.6 0.8 1
r

Figs.4.10 Temperature profile for
z =0.5.
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Figs.4.11 Temperature profile for Ny = 0.5, r; = 0.1, ¢ = 0.2,
z = 0.5.

s(r,2)

0.2 0.4 0.6 0.8 1
r

Fig.4.12. Concentration profile for Ny =8, r1 = 0.1, ¢ = 0.2,
z =0.5.
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Figs.4.13. Concentration profile for N, =8, r1 = 0.1, ¢ = 0.2,

z=0.5.
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Fig.4.14 (a). Pressure gradient versus z for (Sinusoidal wave)
for 1 = 0.05, ¢ = 0.05, Q = —2, N, = 0.3, G» = 0.3, B, = 0.2,
N, = 0.3.
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Fig.4.14 (b). Pressure gradient versus z for (Square wave) for

r =0.05, e =0.05 Q= —2, N, = 0.3, G, = 0.3, B, = 0.2,

N, =0.3.
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Fig.4.14 (¢). Pressure gradient versus z for (Trapezoidal wave)
for r1 =0.05, e =0.05, Q@ = -2, N; = 0.3, G, = 0.3, B, = 0.2,
N, = 0.3.
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Fig.4.14 (d). Pressure gradient versus z for (Triangular wave)

for r1 = 0.05, € = 0.05, Q = —2, N; = 0.3, G, = 0.3, B, = 0.2,

N, = 0.3.
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Fig.4.14 (e). Pressure gradient versus z for

(Multisinusoidal wave) for r; = 0.05, € = 0.05, Q@ = —2,
Ny =03, G, = 0.3, B, = 0.2, Ny = 0.3.
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Figs.4.15 (a). Streamlines for sinusoidal wave when r = 0.1,

e=01,Q=-2 N, =03,G, =0.3, B, = 0.2, N, = 0.3.
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Figs.4.15 (b). Streamlines for square wave when 1 = 0.1,

e=01,Q=-2 N =03,G, =03, B, =0.2, N, = 0.3.
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Figs.4.15 (¢). Streamlines for trapezoidal wave when r = 0.1,

e=01,Q=-2 N, =03,G, =0.3, B, = 0.2, N, = 0.3.
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Figs.4.15 (d). Streamlines for triangular wave when 71 = 0.1,

e=01,Q=-2 N =03,G, =03, B, =0.2, N, = 0.3.
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Figs.4.15 (e). Streamlines for multisinusoidal wave when
r=01,¢e=01,Q=-2 N, =03, G =0.3, By = 0.2,
N, =0.3.

4.5 Conclusion

This study examines the peristaltic flow of a nanofluid in an endoscope. Homotopy perturbation
solutions have been evaluated for temperature and concentration profile, while exact solutions
have been calculated for velocity profile. The main points of the performed analysis are as
follows.

1. The pressure rise increases with the increase in ¢ (amplitude ratio) and NV; (thermophoresis parameter)
while the pressure rise decreases with the increase in € (radius ratio).

2. The frictional forces have an opposite behaviour as compared to the pressure rise.

3. It is seen that with the increase in the Brownian motion parameter N, and the ther-
mophoresis parameter N; temperature profile increases.

4. Effects of Brownian motion parameter N, and the thermophoresis parameter N; on
concentration profile are same.

5. Pressure gradient increases with an increase in ¢ for all considered waves.

6. The size of trapped bolus for triangular wave is small as compared to the other waves.
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Appendix

Ay = 12(logry —logra)®, Ay = —(Ny+ Np)(Np +2N;), Az = Ny(Ny + Np)(Np + 2Vy),

Ay = logr —logry, As=12Ny(logry —logry)® Ag = 2(G, Ny — B.N;) (N + 3N, Ny + 2N?),

A7 = 2(Ny+2N;) (GrNy — By Ni) + (G Ny(—2 + Ny 4 2N;) — B N(Ny + 2N;)) log 1
+(—=B; N¢(Np + 2N¢) + G- Ny (2 + Ny, + 2Ny)) log 7o,

As = 2(Ny+2N,) (GNy — B,N;) + (—GNy(2 — Ny — 2N;) — BNy (Ny + 2N;)) log r1
+(=B,Ni(Ny + 2N;) — G- Ny, (2 — Ny — 21Ny)) log 79,

Ag = 2B(Ny+ No)(No + 2N) (G Ny — By Ny) — (=G Np(Ni + 3Ny (=2 + Np) + 2(3(N, + Ny)
(Np + 2Ny)) + By (NN, + 2N + 3Ny, (4 + N72))) log rf + 3(Np + Ni)(—Br Ni(Np, + 21Ny)
(G Ny (24 Ny + 21Ny)) log o + (= Br(NEN; + 2N + 3Ny, (4 + N2)) + G Np(Nj + 3Ny, (2 + V)
+2(—6 + N; (3 + Ny))))logrs + logr1(3(Ny + Ni) (G Ny(—2 + Ny, + 2N;) — B.Ny(Ny + 21N;)
+4(Gy Ny (6 + (Np + Ny)(Np + 2N;) — B (NZN; + 2N} + 3N, (=2 + N7))) logra,

A = —(Np+ Np)(Np + 2Ny) (G- Ny — B Ny) + log ra(—=3(Ny + N¢) (=B Nie(Ny, 4 2Ny) + G- Ny (2
+Np + 2Ny)) + log ro( By (NZN; + 2N7 + 3N, (4 + N2)) — G Np(NG + 3N, (2 + N,) + 2(—6
+N¢ (34 Ny))) + 24 (B, + G,) Nylogrs)),

Air = NN +2N? +3N, (44 NP) — G-Ny(NZ + 3N, (=2 + Np) 4+ 2(—6 + Nt (=3 + Ny)),

A1y = By(NZNi+2N} 4+ 3Ny (4 + N?)), A1z = Gr(Nj + 3Ny (=2 + Ny) +2 (=6 — 3N, + N?)),

Ay = GpNy(24+ TNZ + 2Ny (=3 + TN,) + 3N, (=2 + 7TN,)) — B, (TNyN; + 14N} + 3N, (=8 + N7)),

Az = (NZN¢+2N? + 3N, (=84 N?)), Aig = (24 + 6N, + N + 6N, + 3N, N, + 2N7)

Air = 2(Ny+2N,) (GrNy — B.Ny) + (G Ny(—=2 + Ny — 2N;) — B, Ni(Ny, + 21Ny)) log 7y
— (=B Ni(Np + 2Ny) + G- Np(2 + Ny + 2Ny)) log ra,

A1y = —2(GrNy(6 —2NZ + Nyp(3 — 6Ny) + (3 — 4Ny)Ny) + 2B (NZN; + 2N2 + 3N, (1 + N?))),
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Aqg

A20

Ao

Agy

Asg

log 72(3(Ny + N ) (=B Ny (N + 2N;) + G Ny(2 + Ny + 2N;)) + (=B (NZNy + 2N} + 3N, (4 + N7?))
+GNp(N + 3Np(2 + Np) + 2(=6 + Ny (3 + Ny)))) log 72,

GrNy(24 + TNE + 2N (=3 + TNy) + 3Ny (=2 + TN;)) — B (TNEN; + 14N} + 3N, (=8 + TN?)),
1

96 ANy, (logry — logra)

—A11BT)T% + 6A7(Ny + Nt))r% — (A1s — A1 By) r% —2(A12 — A13Ny) (r% - r%) logry + r% log 79

(—(Alo — A19 — 3A17(Nb + Nt)) (7”% — 7"%) — QAGT% log ’I“if + log T‘%((Alg

(Ag + 6A8(Nb + Nt) — 6A7(Nb + Nt) log T9 + 2A6 log T‘%) + log 7‘1(—(149 + 6A8(Nb + Nt))’l“%

(7“% — 7“%) log r9 <A14 + AQO + (—2A15B,« =+ 2A16GTN[)) log 7"2))),

(r% — r%) (logry — log 7“2)2
4A3 ’
1

((96A§1Nb + (A1p — A1g — 3A17(Ny + Nt))r%) log o + log 7"% log ro

96 A3N, (logry — logra)
(—(A18 — AHBT + 6A7(Nb + Nt))?“% =+ (A14 + Ago) 7"% + 2((A12 — A13Nb)7“% — A15B7«7"%

+A16NbGrr%) logra) + log T%((Alg — AHBT)r% + 2(A67"% + (—Ap2 + A13Nb)7’%) log r2)
+log 7’1(—96142]\7(, + (—A10 + A9 + 3A17(Ny + Nt))rg +logra((Ag + 6 Ag(Ny + Ny))

(T% — T’%) — log T2(A14 + Ago)T% — 6A7(Nb + Nt))’l”g + 2((—A15B7» + A16G7Nb)7‘% + AGT%) log Tg)))),

(r% logry — 72 log 7“2) (logr — log 7’2)2
4A3 ’

_ 1
6144
(4A17 + A7 + 2A8)(Nb + Nt))) (7‘1 — 1"2)2 — 3072A21A2Nb log (7“1 — 7‘2) +4 (7“1 — 7“2)2

((r1 — 19)% (1536 A9 A3 N, — 3072493 A3 N, — (16A19 — 16419 — 34g — 4(Ag + 3

(log (11 —7r2) (=346 — 4(Ag + 3(A7 + 245)(Np + Ny)) + 6(Ag + 4A7(Np + Ny)) log (11 — 72)
—8A6 IOg (7’1 — ?"2)2) =+ 410g 71 (log 71 (Alg — AHB,« — 2(A12 — A13Nb) log ?“2) + log )

(A1 + Ao + (—2A15B, + 2A416G- Ny logra)))),
(7‘1 — T2)2 (4Ai(—A22 + 2A94 + 249 log (1“1 — 7’2)) + (7“1 — 7‘2)2 (log T — log 7“2)3
16A3 ‘
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Chapter 5

Influence of heat transfer on a
peristaltic low of Johnson Segalman

fluid in a non uniform tube

5.1 Introduction

This chapter deals with the influence of heat transfer and magnetic field on a peristaltic low of
Johnson Segalman fluid in a non uniform tube. The governing equations of Johnson Segalman
are simplified using the long wave length and low Reynolds number assumptions. In the wave
frame of reference, an analytical solutions are computed with the help of two techniques namely
(i) Perturbation technique (ii) HAM technique. The expressions for pressure rise, pressure
gradient, velocity profile and temperature field have been calculated. The behavior of different
physical parameters have been examined graphically. The pumping and trapping phenomena

of various wave forms are also studied.

5.2 Mathematical Model

Johnson Segalman model is an integral type model which can also be described in rate type

model. Consider an incompressible fluid for which continuity and momentum equation can be
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written as follow

divV =0, (5.1)
dV

The Cauchy stress S for a Johnson-Segalman fluid [10] is defined as
S=-PI+2uD+ T, (5.3)

d
T+m (C; +7 (W1 —a3D) + (Wy — azD)" r) = 2D. (5.4)

In which f body force, p and n are the viscosities, m is called the relaxation time and aj is
called slip parameter D and W, are the symmetric and skewsymmetric parts of the velocity

gradient respectively and can be defined as

D:% (L+L7), (5.5)
Wi (L- L"), (5.

where L = grad V.

In general, energy equation can be defined as

d61

P = 7.L —divQ + prs, (5.7)

where Q is the heat flux vector, e; = pc, is the specific internal energy, r3 is the radiant heating
and in the present problem we ignore the radiant heating.
According to Fourier law

Q= —kgradT,

where k is the constant of thermal conductivity and 7 is the temperature. Since we are dealing

with the two dimensional flow, therefore,

T=T(R2Z).
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5.3 Mathematical Formulation

Let us consider the peristaltic flow of an incompressible Johnson-Segalman fluid in a non uniform
tube. The flow is generated by sinusoidal wave trains propagating with constant speed c along

the walls. The geometry of the wall surface is defined as

=]l
h

Fi
W

/

Fluid o

W
ba
%l

Fig.(5.a) . Geometry of the problem.

h=a (Z) +bsin 5 (7 ), (5.8)

where a (Z ) = ag+KZ, ag is the radius of the inlet, K is the constant whose magnitude depend
on the length of the tube, b is the wave amplitude, A is the wavelength, c is the propagation
velocity and £ is the time. We are considering the cylindrical coordinate system (R, Z), where

Z — azis lies along the centerline of the tube and R is transverse to it.
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The governing equations in the fixed frame for an incompressible flow are given as

oR TR0z ="
o _ 9 _9\. 0P 10 . . 0 _ 15
p<8E+UaR+WaZ>U_ or " Ror TrR) * 57 (TRz) —

+ 19 R@ +@ + pg cos «
F\Ror\"oRr) T o72) TPIE®

o -0 9\ .- oP 10 P
102wl \w = -2 4 2 % (Rras) + -2 (14,
”(aﬁ oR az) 07 T Ton [TTR2) + 57 (T22)
+ 10 (poW +82W + pgsin a
F\Ror \ " oR oz2 ) TPISHA
Q—FUE—FWE T — 77@4_ 77@4_ 77@_’_ 77@
P\t "V or " " oz — TRRGR TTRZ R T TRy TT2Z2G7

_|_k ﬂ+l@+@
OR?2  ROR 022)’°

(5.10)

(5.11)

(5.12)

where k denotes the the thermal conductivity and ¢, is the specific heat at constant pressure.

The corresponding boundary conditions are

(?;: = 0, at =0,
- 2
w = 0, at f:h:a(i)—&—bsin;(é),
T
0 = 0, at 7=0,

ar
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We introduce the non-dimensional variables as

— _ Z _ = —
R = R; TZL; Z:77 Z:E’ Wzgv w:E7

ag aop A A & C
U — AU u:/\ﬁ - a%P ’ _ct7 5:@,

agc e A (u+n) A A

_ 2

pcag aoT He ¢

Re — 3 = —, E: 9 E =
Iz cp pgag’ ¢y (To—Th)
T-T

pr = % ye_me 4 _ (T-T) (5.14)

k‘ aq (TO —Tl)

Making use of Eqgs. (2.12) and (5.14), Egs. (5.9) to (5.12) along with boundary conditions
(5.13a to 5.13d) under the assumptions of long wavelength § << 1 and low Reynolds number
take the form

ptn)or _ 190 10 (0w)  sina
( 1 ) dz  ror (rrz) + ror \"or + E "’ (5.15)
oP
= 1
5 =0 (5.16)
10 00 ow
;5 <T8T> = _BT <a7"STZ> y (517)
where B, = E.Pr and
—w.1+a) s (5.18)
Trr = We a or Tz .
Toz = —We(l—a) 061:87"2’ (5.19)
00w
- p or _ (5.20)

Tl WR(1—a?) ()

With the help of Egs. (5.18) to (5.20), Egs. (5.15) to (5.17) can be written as

2t 681 - o
r Or 1+ W2 (1—a?) (6871:)2 ror \' Or E \p+n L dz’
dP
=0, (5.22)
10 [ 09 ow 18w
19 <T> _ B [ ( 2)] . (5.23)
ror \_ Or or 14+ W2 (1—a3) (%})
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in which 4, Re and We represent the wave, Reynolds and Weissenberg numbers, respectively.

The relevant boundary conditions are

0
((;1: = 0, 8—:0 at r=0, (5.24a)

AK
w = 0, =0 at r=h=1+22%
aop

+ ¢sin 27z, (5.24b)

5.4 Perturbation Solution

Since, Egs. (5.21) and (5.23) are non linear equations, we employ the regular perturbation to

find the solution. For perturbation solution, we expand w, F' and P as

w = wy+ Wwy +O(We?), (5.25a)

0 = 0p+ W20, +0Wet), (5.25b)
Fy = Fio+W2F; +O(We), (5.25¢)
P = Py+W2P +0O(Weh). (5.25d)

Substituting Eqgs. (5.25a) to (5.25d) in Egs. (5.21) to (5.24) and then find the solutions of all

systems we arrive at the final solutions which are defined as

w = <T2;h2> (‘ZI:—m) + W2 (i“ (r4—h4)>, (5.26)

0 = G1o (7’4 — h4) + Wg (GH (7'8 — hg) + G2 (7’6 — h6) + G113 (7’4 — h4)) R (5.27)

AP —8E (2F) + h?) + hib,
dz ht

+ Wg (G14h2) , (5.28)
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where

Gy, = |—-b Go=—E.Pr—=-Gi{, Gs=——,
! (&z 1) 2 r# ! T 9z 2
0P P 1
Gy = (1-ad3)|—-——-b1)] ———=, Gs=-E.P fc;?,
¢+ = a3)<8z 1> ntng ° '
Gs = —2ECPr%G3G2, Gr=—E.Pr G4, Gg—(l—a3)E Prual,
G2 G7 Gg G5
Gy = Gg+Gs, Gio=—, Gi1=—, Gi2=—, Giz=—
9 6 +Gsg, Gio 6 TUT g Y127 30 18T 160
0P, 3 n 1 sin o 1
Gy = 2D (Z=—=-b) —=, b= —_—
14 (a3 )<8z 1) n+n6 E \u+n)’
by = We—1— (a2—1).
? EriC
The pressure rise AP and friction force F' are given as
1dP
0
/ dP
F:/h2 (—dz> dz, (5.30)
0

where € is defined in Eqgs. (5.28).
The non-dimensional expressions for the five considered wave forms have been taken into

account and are defined in chapter 1.

5.5 HAM Solution

In this section, we have found the HAM solution of Egs. (5.21) to (5.24). For that we choose

wo = <T2 ; h2> <‘ZJ: - b1> (5.31)

0o = — (r* — h?), (5.32)
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as the initial guesses for both velocity and temperature profile. Further, the auxiliary linear

operators for the Egs. (5.26) and (5.28) are chosen as

10 Owg
10 00y
The auxiliary linear operator has the property
Loyr(Cir+C2) = 0, (5.35)
Lo (Csr+Cyq) = 0. (5.36)
We can define the following zeroth-order deformation problems
(1= @) Lur[w(r,q) — wo(r)] = qhwNu[w(r,q)], (5.37)
(1 —q)Lo[ O(r,q) — 00(r)] = ahoNg.[0 (r,q)], (5.38)
Ow o0
g (r,q) = 0, o (r,q) =0, atr=0, (5.39)
w(r,q) = 0, 0(r,q)=0, atr=nh. (5.40)

In Egs. (5.37) to (5.40), Ay and hy denote the non-zero

embedding parameter and

auxiliary parameter, ge[0,1] is the

_ Pw 10w by [Ow 3 0w [Ow\? dP
Nurlwtr ol = 55+ 05, <a> +3bzar2<ar> —g e (4D
_ %0 166 ow\? o) o [ Ow\?
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Obviously

ow (r,0)

5 = 0 wnl)=w(r), (5.43)
%gm — 0, b(rn1)=0(r), (5.44)

when ¢ varies from 0 to 1, then @ (r,¢) and 0 (r,q) varies from initial guess to the solution
w () and 6 (r, q) , varies from initial guess to the solution 6 (r) . Expanding @ (r,¢) and 8 (r, q)

in Taylor’s series with respect to an embedding parameter ¢, we have

W(r,q) = wo(r)+ Y wal(r)g™ (5.45)
n=1
0(r,q) = 00(r)+ > Om(r)g™, (5.46)
n=1
w, — LO"w(rg) (5.47)
m m! aqm q:O) .
0, = 1 .0™0(r,q) (5.48)
ml d¢™ |,

Differentiating the zeroth order deformation m-times with respect to ¢ and then dividing by m/!

and finally setting ¢ = 0, we get the following mth order deformation problem

£w[wm(r)_mem—l(r)] = hwar(T)a (549)

Lo[0m(r) = XmOm-1(r)] = hoRg(r), (5.50)
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where

b m—1
Ryr = Wp 1+ -wp,_q+ 72 Z Wy, Wy 1 Wy g1 +
=0
m—l dP
3y Z Wy, Wy g Wy, 1 — <dz - bl) (1= Xm) 5 (5.51)
1=0
1 m—1
Ry, = elrlnfl + ;Q;n,l + B, ZZ; w;n—lwin 1—i
m—1 k l J
—B,Wwe! (1 —a?) Z W, 1k Z wy_ Z w,” Z w;;, (5.52)
k=0 =0 Jj=0 1=0
0, m <1,
X = (5.53)
1, m > 1.

The solution of the above equations with the help of Mathematica can be calculated and

presented as follow

2M+1 2M  2m+1—n
ont = i |2 3 (3 S ) e
m=n—1

2M+1 2M  2m+1-n
Om(r) = lim_ Zb ot Z < > Z b, 4”“)] (5.55)

m=n—1

0 k ,, and bk

0
where a m,0 @ m,n &€ constants.

'm,0’

5.6 Numerical Results and Discussion

In this section we have presented the solution of the Johnson Segalman fluid model graphically.
Figs. (5a) and (5b) are prepared for h-curves for velocity and temperature profile. Figs.5. ¢ and
5.d show the comparison of perturbation and HAM solutions for velocity and temperature profile
respectively. The expression for pressure rise AP is calculated numerically using mathematics
software. The effects of various parameters on the pressure rise AP and frictional forces F' are
shown in Figs. 5.1 to 5.12 for various values of angle of inclination «, Weissenberg number We,

amplitudes ratio ¢, viscosities p and 7, relaxation time m and slip parameter as. It is observed
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from Figs.5.1 to 5.6 that pressure rise increases with the increase in o, We, n and ¢ while
decreases with the increase in u and asz. Moreover, the peristaltic pumping occurs in the region
0 <@ < 1.4 for Figs. 5.2to 5.5 and 0 < @ < 0.5 for Fig. 5.6, other wise augmented pumping
occurs. The variations of frictional forces are shown in Figs. 7 to 12. It can be seen that
frictional forces have opposite behavior as compared to the pressure rise. Figs. 5.13 to 5.17 are
prepared to see the behavior of pressure gradient for different wave shapes. It is seen that with
increase in ¢ pressure gradient increases. Figs. 5.18 to 5.21 are prepared to see the behavior of
temperature profile physically. It is analyzed that with the increase in u temperature profile
increases, moreover it is seen that temperature field decreases with the increase in 7, B, and
We. The effects of different parameters on streamlines for the trapping phenomenon for five
different wave forms can be seen through Fig. 5.22. It is observed that the size of trapping

bolus in triangular wave is smaller as compared to the other waves.

1.5

7

0.5

—— 25th-order app.

o

w ()

-0.5

-7

-1.5

-1.25 -7 -0.75 -0.5 -0.25 ¢ 0.25
h

Fig. 5.a. i curve for velocity profile for K = 0.04, A = 0.01,
ap =0.01, ¢ =0.3, 2=0.1, We =0.1, p = 0.02, n = 0.02,
a=05 F=17 B, =04.
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_1.25 ;1 70.‘75 4.;.5 70:25 rl.- 0.25 0.5
A
Fig. 5.b. i curve for temperature profile for K = 0.04,
A=0.01,a0=0.01,¢=03,2=0.1, We=0.1, p = 0.02,
n=0.02,a=0.5, E=1.7, B, =0.4.

= HAMSsolution
------- Perturbation solution

012 E

0 0.l2 0.l4 O.lG 0.l8 i l.l2
r
Fig. 5.c. Comparison of velocity profile for K = 0.04, A = 0.01,
ap=0.01, 9 =03, z=0.1, We = 0.1, p = 0.02, n = 0.02,
a=0.5,F=17 B, =04.
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= HAMSsOlution
002 ... Perturbation solution
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0 0.2 04 0.6 0.8 1 12 14 16
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Fig. 5.d. Comparison of temperature profile for K = 0.04,
A=0.01,a0=0.01, 9 =0.3, 2=0.1, We = 0.1, u = 0.02,
n=20.02 =05 F=17 B, =04.
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Fig.5.1. Pressure rise versus flow rate for K = 0.4, A = 0.1,
ag=0.1,¢=03 We=0.1, u=0.5,n=0.5, ag = 0.3,

E=0.1.
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Fig.5.2. Pressure rise versus flow rate for K = 0.9, A = 0.7,

ap=0.2,¢90=05,a=0.1, p=0.5,n7n=0.5,a3 =03, £ =0.1.
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Fig.5.3. Pressure rise versus flow rate for K = 0.9, A = 0.7,

ag=0.2,¢=05 a=0.1, We=0.5,1n=0.5, a3 = 0.3,
E =0.1.

104



1 l..5 2

Q

Fig.5.4. Pressure rise versus flow rate for K = 0.9, A = 0.7,
ap=0.2,¢=0.5 a=0.1, We=0.5, u =0.5, a3 = 0.3,

E=0.1.
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Fig.5.5. Pressure rise versus flow rate for K = 0.9, A = 0.7,
ap=0.2,¢=05 a=0.1, We=0.5 u=0.5,7=0.5,
E=0.1.
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Fig.5.6. Pressure rise versus flow rate for K = 0.01, A = 0.01,
ap =0.02, a3 =0.5, a =0.1, We =0.5, p = 0.5, n = 0.3,
E=0.1.
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Fig.5.7. Frictional force versus flow rate for K = 0.4, A = 0.1,
ag=0.1,¢=03 We=0.1, u=0.5,n=0.5, azg = 0.3,
E=0.1.
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Fig.5.8. Frictional force versus flow rate for K = 0.9, A = 0.7,
ap=0.2,¢0=05,a=0.1, p=0.5,1n1n=0.5,a3 =03, F=0.1.
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Fig.5.9. Frictional force versus flow rate for K = 0.9, A = 0.7,
ag=0.2,¢=05 a=0.1, We=0.5,n=0.5, a3 = 0.3,
E=0.1.
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Fig.5.10. Frictional force versus flow rate for K = 0.9, A = 0.7,
ap=0.2,¢=0.5 a=0.1, We=0.5 u =0.5, a3 = 0.3,
E=0.1.
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Fig.5.11. Frictional force versus flow rate for K = 0.9, A = 0.7,
ap=0.2,¢=05 a=0.1, We=0.5 u=0.5,7=0.5,
E=0.1.
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Fig.5.12. Frictional force versus flow rate for K = 0.01,
A=0.01, a9 =0.02, a3 = 0.5, «a = 0.1, We = 0.5, p = 0.5,

n=0.3, £F=0.1.
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Fig.5.13. Pressure gradient versus z (Sinusoidal wave) for
K=04,2=01,a0=01a=03 Q=—15 We=0.1,
w=05n1n=0.5,a3 =03, F=0.1.
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Fig.5.14. Pressure gradient versus z (Multi sinusoidal wave)
for K = 0.4, A=0.1, a0 =0.1,a = 0.3, Q = —1.5, We = 0.1,
w=0.5n1=05 a3 =03, F=0.1.
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Fig.5.15. Pressure gradient versus z (Square wave) for

K=04,2=01a=01a=03,Q=—-15 We=0.1,

uw=05n1n=0.5,a3 =03, F=0.1.
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Fig.5.16. Pressure gradient versus z (Trapezoidal wave) for
K=04A=01,a0=01,a=03,Q=—15 We=0.1,
w=0.5n1=0.5 a3 =03, F=0.1.
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Fig.5.17. Pressure gradient versus z (Triangular wave) for
K=04,1=01,a0=01a=03 Q=—15 We=0.1,
w=05n1n=0.5,a3 =03, £ =0.1.
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Fig.5.18. Temperature profile for K = 0.4, A = 0.1, Q = 0.5,

z2=02,a0=0.1,a3=03, a=0.1, B, =0.5, p = 0.5, n=0.5,
E =0.1.
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Fig.5.19. Temperature profile for K = 0.4, A = 0.1, Q = 0.5,

2=10.2,a9=0.1,a3 =03, a=0.1, B, =05 We=0.5
n=0.5,E=0.1.
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Fig.5.20. Temperature profile for K = 0.4, A = 0.1, Q = 0.5,
z2=0.2,a09p=0.1,a3 =03, a=0.1,7=0.5, p = 0.5,
We = 0.5, E=0.1.
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Fig.5.21. Temperature profile for K = 0.4, A = 0.1, Q = 0.5,
z2=02,a0=0.1,a3=0.3, a=0.1, B, =0.5, p = 0.5,
We=0.5, F =0.1.
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Fig. 5.22 (a) . Streamlines for sinusoidal wave when K = 0.04,
A=0.01,Q =03, 2=0.2, ap = 0.01, az = 0.3, & = 0.1,
=05 n=05 E=0.3.
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Fig. 5.22 (b). Streamlines for square wave when K = 0.04,
A=0.01,Q=03, 2=02 ag =001, a3 = 0.3, « = 0.1,
p=05,n1=05 E=0.3.
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Fig. 5.22(c). Streamlines for trapezoidal wave when K = 0.04,
A=0.01,Q=03,2=0.2,a9=0.01, a3 =0.3, = 0.1,
1=0.51=05 E=0.3.
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Fig. 5.22 (d) . Streamlines for triangular wave when K = 0.04,
A=0.01,Q=03, 2=02 ag =001, a3 = 0.3, @ = 0.1,
p=0.5n7=05,E=03.
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Fig. 5.22 (e) . Streamlines for multisinusoidal wave when

K =0.04, A=0.01, Q =0.3, 2 = 0.2, ag = 0.01, ag = 0.3,
a=0.1,pu=05n=05 F=0.23.

5.7 Conclusion

The perturbation and HAM solutions of Egs. (5.21) to (5.23) have been computed for velocity
and temperature profile. The expressions for pressure rise frictional forces and pressure gradient
have been discussed for five wave shapes. The following observations have been found

1. The pressure rise increases with the increase in a, We n and ¢ while decreases with
increase in p and as.

2. It is observed that frictional forces have an opposite behavior as compared to the pressure
rise.

3. It is analyzed that with the increase in p temperature profile increases, moreover it is
seen that temperature field decreases with the increase in 1, B, and We.

4. The size of trapped bolus in triangular wave is smaller as compared to other waves

5. The pressure gradient increases with increase in ¢ for all five wave shapes.
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Chapter 6

Analytical and numerical treatment
for peristaltic transport of a tangent

hyperbolic fluid in an endoscope

6.1 Introduction

This chapter deals with the study of peristaltic flow of a tangent hyperbolic fluid in an endo-
scope. The modelling of hyperbolic tangent fluid model for two dimensional flow in cylindrical
coordinates are presented. Using the assumption of long wavelength and low Reynold number,
the governing equations of hyperbolic tangent fluid for an endoscope have been solved using
regular perturbation method and shooting method. The expression for pressure rise and fric-
tional forces have been calculated using numerical integrations. At the end, various physical

parameters have been shown pictorially.

6.2 Mathematical Model

For an incompressible fluid the continuity and momentum equations are defined in Eqgs. (1.1)

and (1.2). The basic equation for hyperbolic tangent fluid is given by [8]
S=-PI+T, (6.1)
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T = [ftoo + (9 + 110o) tanh (I'9)"] 7, (6.2)

in which p., is the infinite shear rate viscosity, pq is the zero shear rate viscosity, I' is the time

constant, n is the power law index and 7 is defined as
T=4/3 Z Z Vij Vi = §H, (6.3)
i

2
where II = %trac (gradV + (grad V)T> . Here II is the second invariant strain tensor. We

consider the constitution Eq. (6.2), the case for which y., = 0 and Ty < 1. The component of

extra stress tensor therefore, take the form

T = Ko [(F’Y)n] ¥ = ko [(1 +T5 - 1)”] gl

= 4o [14n(F - D)7, (6.4)

6.3 Mathematical Formulation

We have consider the peristaltic transport of an incompressible hyperbolic tangent fluid in an
endoscope. The flow is generated by sinusoidal wave trains propagating with constant speed ¢
along the walls of endoscope. The geometry of the wall surface is defined in Eqgs. (2.13) and
(2.14).

The governing equations in the fixed frame for an incompressible flow are

ou U oW
or TR oz =Y (6.5)
0 -0 9\, OP 19 . . 8 = T
9 —-0 - 0\ oP 10 9
P (at_ + U@ + W@Z) W= YA + ROR (RTRZ) + EYA (T22)- (6.7)

Introducing a wave frame (7, Z) moving with velocity ¢ away from the fixed frame (R, Z) by the
transformations which are defined in Eqgs. (1.11) and (1.12).
The corresponding boundary conditions are the symmetry at the center line and no-slip at

the walls
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W= —c, at T =71, (6.8(a))

2
wW=—c, atT=7y=as+ bsin% (2). (6.8(b))
Defining
_ ~ 7 ~ - ~
R = Ey"ﬂzia ZZ*? ZZEv W:Ea w:E,
a2 as A A c c
g A @R o
asc asc cAL A A 7
re = Q:1+q§sin27rz, ==, T 22 (6.9)
e

or r + 9z 0 (6.10)
0 0 oP 60 0
3 v v _ g “ 2=
Red <u8r + w@z) U o + ~ (ree) + 6 % (Trz), (6.11)
0 orP 190 0
R85 (Ua + waz> w = —g 5 (TTTZ) + 5@ (Tzz) s (612)

where

Trr = 2[14+n(Wey—1)] gz,
Trz = [1 + n(We'y — 1)} <gz&2 + ?;:) )
ow

Tre = 20[1+n(Wey—1)] 55

ou\ 2 ow Ou 2 ow
o 2 [ OU ow | 0U 2 [ OW
5 = [25 <a> +<aﬁaz5) Py <8>

in which J, Re, We represent the wave, Reynolds and Weissenberg numbers, respectively. Under

)
| IS
[
~
[\

the assumptions of long wavelength 6 << 1 and low Reynolds number, neglecting the terms of

order ¢ and higher, Eqgs.(6.11) and (6.12) take the form
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oP

o= (6.13)
?;: = i; [r <1 —i—n(We(?;: — 1)) 887;}] , (6.14)
w=-1, at r=r, (6.15a)

w=—1, at r=ry =1+ ¢sin2nz. (6.15b)

6.4 Solution of the Problem

6.4.1 Perturbation Solution

For perturbation solution, we expand w, F; and P as

w = wg+ Wew; +O(We?), (6.16)
F = Fio+WeFy; +0O(We?), (6.17)
P = Py+WeP,+O(We?). (6.18)

Substituting above expressions in Egs. (6.16) to (6.19), collecting the powers of We, we obtain

the following systems

Zeroth Order System

6P0 . 10 awg

P = vor <’“<1 ~n) ar) ’ (6.19)
wyg = —1, at r=r, (6.20)
wg = —1,at r=ry=1+ ¢sin2rz. (6.21)
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First Order System

oP, 10 dwi\ 19 dwp \ >

9. T ror (Tﬂ_n) a>+a (” <a) : (6:22)
wy = 0, at r=rmr, (6.23)
wp = 0, at r=ry=1+ ¢sin2nz. (6.24)

Solution for Zeroth Order System

Solution of Eq.(6.19) satisfying the boundary conditions (6.20) and (6.21) can be written as

?“2 H3

ot (s )

9o
0z’

(6.25)

dpPy  2Fy+ (13 — %) (6.26)
dz B H7 ' '

Solution for First Order System

Substituting the zeroth-order solution (6.25) into (6.22), the solution of the resulting problem

satisfying the boundary conditions take the following form

2 Hs oP, n 3 H?
b (4(1—n)+(1—n) nr 4> 9z (1—n)3 <12 r
dPy\ Hy

dP,  2F; + Hy

o1 6.28
dz H ( )

Summarizing the perturbation results for small parameter We, the expression for velocity field

and pressure gradient can be written as

r2 H;

oP n r3
v (4(1—n> ! <1—n>1”+H4) az+W6<<1—n>3 (12‘

H2 dPy\* = H;
— + H —_— —1 H 6.29
. 3r)<dz) +(1—n) nr e ) (6:29)
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% _ 2 g% — 1) +We (Z%) : (6.30)
where
= 4?1—?)’ 2= lna _;n)m’ Hs = _f[;’
M= (g g )
= gty (37 (- ) i) ()
Hy = ﬁ Ci - :1H§ + H37"1> <dd]:0>2 _ (117—[571) I,
H; = (8231—73) + (1?370 (r% Inry — r% Inrl) — 2(1H_3 - (r% — r%) + H47(T% ; 7‘%)) ,
+(1]z5n) <r§ Inry — 7’% Inr — 7(7“3 ; T%)> .

The pressure rise AP and friction forces F on inner and outer tubes F(©, F(®)  are given by

1

P
AP = /Cflzdz, (6.31)
0
/ dp
FO = /r% (-dZ> dz, (6.32)
0
/ dp
FO = /rg <—dz> dz, (6.33)
0

where 9= is defined in Egs. (6.30).
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6.4.2 HAM Solution

In this section, we have found the HAM solution of Eqs. (6.13) to (6.15). For that we choose

2
T H3 oP
=-1 1 Hy ) — 6.34
o +(4(1—7~L)+(1—n) nrt 4) oz’ (6:34)
as the initial guess. Further, the auxiliary linear operator for the problem is taken as
10 0
EwT = ;E (T’ar> 5 (635)
which satisfy
Ly (wo) = 0. (6.36)
We can define the following zeroth-order deformation problems
(1= q)Lur[ @ (r,q) — wo(r)] = qhuwNuwr[w (1, )], (6.37)
w(r,q) = -1, atr=ry,
w(r,q) = —1, atr=ra. (6.38)

In Egs. (6.37) and (6.38), %, denote the non-zero auxiliary parameter, ge[0, 1] is the embedding

parameter and

w1 ow nWe [ow\? 0w ow  dP
Noslo(rg)] =1 -n)22 1 21 - )22 gw guwow 4.
[w(r,q)] = (1 —n) 5,2 + r( n) 5 + " <8r> +2nWe 52 r o (6.39)
Obviously
w (r,0) =wy, w(r,1)=w(r), (6.40)

when ¢ varies from 0 to 1, then w (r, ¢) varies from initial guess to the solution w (r) . Expanding

w (r,q) in Taylor's with respect to an embedding parameter ¢, we have

w (r,q) = wo (r) + Z W (1)q™, (6.41)
n=1
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w,, — L 0"w(r.q)

1 e (6.42)

q=0
Differentiating the zeroth order deformation m-times with respect to ¢ and then dividing by m!

and finally setting ¢ = 0, we get the following mth order deformation problem

‘C’w[wm(r) - memfl(r)] = hwar(T‘), (643)
where
nWe o=l m—l
Ryr = (1=n)wp_y+~(1—n)wy,_; + Z Wy, 1wk + 2nWe Z W1k Wy
k=0
dP
—— (1= 6.44
dZ ( Xm>7 ( )
0, m <1,
Xm = (6.45)
1, m > 1.

The solution of the above equation with the help of Mathematica can be calculated and pre-

sented as

2M+1 / 2M  2mtl-n
W (r) = Mlirgoo [Zamo—i— Z < Z Z ak, r”lnr)]

m=n—1

2M+1 2M  2m+1—-n
li . 6.46
+M1@W[Z(m§;1 3 )| o)

6.5 Numerical Solution

The present problem consisting of Egs (6.13) to (6.14) is also solved numerically by employing
shooting method. The numerical results are also compared with the perturbation and HAM

results and obtained a very good agreement between the three results.
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r Numerical sol | Perturbation sol | Error HAM sol | Error

0.1 | -1.00000 -1.00000 0.00000 | -1.00000 | 0.00000
0.2 | -1.02670 -1.02727 0.00005 | -1.02727 | 0.00005
0.3 | -1.04117 -1.04073 0.00004 | -1.04074 | 0.00003
0.4 | -1.04771 -1.04765 0.00005 | -1.04765 | 0.00005
0.5 | -1.05026 -1.05028 0.00001 | -1.05028 | 0.00001
0.6 | -1.05026 -1.04964 0.00004 | -1.04963 | 0.00003
0.7 | -1.04613 -1.04626 0.00001 | -1.04626 | 0.00001
0.8 | -1.04050 -1.04048 0.00001 | -1.04047 | 0.00001
0.9 | -1.03280 -1.03249 0.00004 | -1.03249 | 0.00004
1.0 | -1.02198 -1.02244 0.00004 | -1.02244 | 0.00004
1.1 | -1.01030 -1.01044 0.00001 | -1.01043 | 0.00001
1.2 | -1.00000 -1.00000 0.00000 | -1.00000 | 0.00000

Table.6. Comparison of velocity field for ¢ = 0.1, n = 0.02, We = 0.1, z = 0.1, ¢ = 0.3.

6.6 Results and Discussion

The analytical solution of the hyperbolic tangent model is discussed. The expression for pressure
rise AP is calculated numerically using mathematics software. The effects of various parameters
on the pressure rise AP are shown in Figs.6.1 to 6.12 for various values of Weissenberg number
We, amplitude ratio ¢, tangent hyperbolic power law index n and radius ratio ¢. It is observed
from Figs.6.1 to 6.4 that pressure rise increases for small values of @ (—1 < @ < 0) with the
increase in We, ¢, n, and for ¢ pressure rise increases for small values of @ (-1 < @ < 0.5)
with increase in ¢ for large @ (0.1 < @ < 1), the pressure rise decreases. We also observe that
for different values of We, €, n, and ¢ there is a linear relation between AP and @,i.e, the
pressure rise increases for small () and decreases for large (). The effects of frictional forces for
inner and outer tube are illustrated in Figs. 6.5 to 6.12. It is observed that frictional forces
have opposite behavior as compared to the pressure rise.

Figs. 6.13 to 6.16 show the pressure gradient for different values of ¢, We, € and Q. It is
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observed that with increase in ¢ and € pressure gradient increases while decreases with increase

in We and Q.

6.7 Trapping

Another interesting phenomenon in peristaltic motion is trapping. It is basically the formation
of an internally circulating bolus of fluid by closed streamlines. This trapped bolus pushed a
head along with the peristaltic wave. Figs. (6.17) to (6.20) shows the trapping phenomenon
for @, n, ¢ and We. Figs. 6.17 illustrates the streamline graphs for different values of time
mean flow rate ). It is observed that when we increase @ the size of trapped bolus increases.
Fig. 6.18 shows the streamlines for different values of (power law index) n. It is analyzed that
with the increase in n size and number of trapping bolus decreases. Fig. 6.19 illustrate the
streamline graphs for different values of ¢. It is observed that with the increase in ¢ trapped
bolus increases. The streamlines for different values We are shown in Fig. 6.20. It is evident

from the figure that the size of the trapped bolus increases by increasing We.

0.5

0.4

0.3

0.2

w(r2)

——  20th-order app.

0.1

-2.5 -2 -1.5 -1 -0.5 [ 0.5

Fig. 6.a h-curves are drawn at 20*"order of approximation for

e=01,n=002 We=0.1, z=0.1, ¢ = 0.3.
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Fig.6.b. Comparison of velocity field for e = 0.1, n = 0.02,
We=0.1,2=0.1, ¢ =0.3.
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Fig.6.1. Pressure rise versus flow rate for ¢ = 0.4, We = 0.01,

¢ =0.2.
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Fig.6.2. Pressure rise versus flow rate for ¢ = 0.5, We = 0.001,

n = 4.
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Fig.6.3. Pressure rise versus flow rate for n = 4, We = 0.001,

¢ =0.5.
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Fig.6.4. Pressure rise versus flow rate for ¢ = 0.4, n = 2,
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Fig.6.5. Frictional force(on inner tube) versus flow rate for

e=04,We=0.01, ¢ =0.2.
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Fig.6.7. Frictional force(on inner tube) versus flow rate for

n =4, We = 0.001, ¢ = 0.5.
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Fig.6.9. Frictional force(on outer tube) versus flow rate for

e=04,We=0.01, ¢p =0.2.
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Fig.6.10. Frictional force (on outer tube) versus flow rate for

e =0.5, We=10.001, n =4.
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Fig.6.11. Frictional force(on outer tube) versus flow rate for

n =4, We = 0.001, ¢ = 0.5.
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Fig. 6.17. Streamlines for different values of © = 0.1, 0.2,(panels (a) to (b)) The other para-
meters are We = 0.1, £ = 0.5, ¢ = 0.1, n = 0.02.
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Fig. 6.18. Streamlines for different values of n = 0.1, 0.2,(panels (c¢) to (d)) The other parame-
ters are We =0.1, e = 0.5, ¢ = 0.1, Q = 0.5.
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Fig. 6.19. Streamlines for different values of ¢ = 0.1, 0.2,(panels (e) to (f)) The other parame-
ters are We =0.1, e = 0.5, n = 0.1, Q = 0.5.

1.8F (9) b

Fig. 6.20. Streamlines for different values of We = 0.1, 0.2,(panels (g) to (h)) The other
parameters are ¢ = 0.1, e = 0.5, n = 0.1, @ = 0.5.
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6.8 Conclusion

This chapter presents the numerical and analytical analysis of peristaltic transport of a tan-
gent hyperbolic fluid in an endoscope. The governing two dimensional equations are modelled
in cylindrical geometry and simplified using long wave length and low Reynolds number ap-
proximation. In the fixed frame of reference, three types of solutions named (7) Perturbation
solution (i#7) HAM solution and (4i7) Numerical solutions are presented. The results are dis-

cussed through graphs. The main points can be summarized as follows:

1. It is observed that the pressure rise AP and volume flow rate () has inversely linear

relation between each other.

2. The pressure rise increases with the increase in Weissenberg number We, tangent hyper-
bolic power law index n and radius ratio €, and decreases with an increase in amplitude

ratio ¢.

3. It is observed that with increase in ¢ and ¢ pressure gradient increases while decreases

with increase in We and Q.

4. It is seen that frictional forces have an opposite behavior as compared to the pressure

rise.

5. It is evident that the size of the trapped bolus increases by increasing We, ¢, and @) while

size of the trapped bolus decreases by increasing n.
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Chapter 7

Combined effects of heat and
chemical reactions on the peristaltic
flow of Carreau fluid model in a

diverging tube

7.1 Introduction

In the present chapter we have studied the peristaltic low of a Carreau fluid in a non-uniform
tube under the consideration of long wavelength in the presence of heat and mass transfer. The
flow is investigated in a wave frame of reference moving with velocity of the wave c. Two types
of analytical solutions have been evaluated (i) Perturbation method (i¢) Homotopy analysis
method for velocity, temperature and concentration field. Numerical integration have been
used to obtain the graphical results for pressure rise and frictional forces. The effects of various

emerging parameters are investigated for five different peristaltic waves.
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7.2 Mathematical Model

For an incompressible fluid the balance of mass and momentum are defined in Egs. (1.1) and

(1.2). The constitutive equation for Carreau fluid is given by [35]

- o
oy =] (1
r:—%[y+m;i)@wﬂwm (7.2)

in which 7 is the extra stress tensor, I' is the time constant, n is the power law index and 7 is

§ = \/; zﬁ: Ej:"h'ﬂjz‘ = \/;71_[ (7.3)

Here II is the second invariant strain tensor.

defined as

7.3 Mathematical Formulation

We have considered peristaltic flow of an incompressible Carreau fluid in a non uniform tube.
The flow is generated by sinusoidal wave trains propagating with constant speed ¢ along the
walls of the tube. Heat and mass transfer phenomena has been taken into account. The walls
of the tube is maintaining at temperature Ty and concentration Cy while at the centre we have
used symmetry condition on both temperature and concentration. The geometry of the wall
surface is defined in Eq. (5.8). The governing equations in the fixed frame for an incompressible

flow are given as

ou U oW
T (74)
0 g0 \wi9\g= 92 10 p v O | T
o (5 + U3+ 55) U =57 ~ Fiop Fred) = 57 ren) — . (15)
B 8 _—oN\.. aP 19 ,. B
(6 Uar* Waz) W =52 ~ fom (s~ g 7). (19)
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The corresponding boundary conditions in the wave frame are

=0 =0 =0,at 7=
or Tor T oF carr =
~ - _ B 2
w=0, T="T, C=Cy, atr:h:a(z)+b51n7(z)
We introduce the non-dimensional variables
R r Z z W D -
R = —, T:i, Z:*7 z:E, W:iv w:E7’y:g’77
a a A A c c c
U A p T — T, t
U = £7 u = l’ = a ) 0 = ( e O) 7t = c ) 5 = a?
ac ac CALL Th A A
pcaz AT11 AT22 AT33 pDK7Ty
Re = —, tu= , T2 = , T3z = ——, Sp = =
c wlnCo
h T I
h = —=14+—+ ¢sin2nz, 7'13:7'31:@, We:c,Sc:L,
a ag Ccl a Dp
(C -Gy
o = G ,

(7.7)

(7.11)

in which R and Z are the dimensionless form of radial and transverse components respectively,

S, is the Soret number, S. Schmidt number and We is the Weissenberg number.

With the help of Egs. (1.11, 1.12) and (7.11), Egs. (7.4) to (7.8) along with boundary

conditions (7.9,7.10) under the assumptions of long wavelength and low Reynolds number

approximation take the form

or  r 0z
P
0 0.

or
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oP 10 ow\  (n—1) 5 (0w)®

9 ror ( ((a) T e (a) ) (7.14)
%0 100 ow\? (n—1)_ , (ow\*
szt o5, =B <<8T) + o We <8r) , (7.15)

1 /10 do 10 00
0=5 (o 05)) 5 (o (75)) (710

In the above equations &, Re represent the wave and Reynolds numbers, respectively. The

corresponding boundary conditions are

ow 00 do
W = 0, E = O, E = 0, at T = 0, (717&)
Ak

w = 0, =0, 0 =0, at r:h:1+a—z+¢sm2m. (7.17b)
0

7.4 Solution of the Problem

7.4.1 Perturbation Solution

To get the solution of Eqgs.(7.13) to (7.16), we employ the regular perturbation method to find

the solution. For perturbation solution, we expand w, Fi, 6, o and P as

w = wo+ Wetw + O(Wet), (7.18a)
Fy = Fi+WeF; +0(We), (7.18b)
0 = 0+ We20 +O0(Weh, (7.18c¢)
o = oo+ Welo, +O(Weh, (7.18d)
P = Py+We2P +0O(Weh). (7.18¢)

The perturbation results for small parameter We?, satisfying the conditions (7.17a) and (7.17b),

for velocity temperature, concentration fields and pressure gradient can be written as

() = <r2;h2> % w2 <n6—41> <_1ifl>3 (r* — h) (7.19)
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rt—nt\ (dP\? (1024 (n —1)* F} (r® — h®)
9(7“,2) = —-B, << 64 )(dz’) +We h24

B 4
4 5761) (‘g) (r® - h6)>> : (7.20)

e h24

4
AP () o)) =

o(r,z) = S.5.B, <<r4 _ h4> (dp>2 e (1024 (n—1)2 F3 (r® — 18)

dpP 16Fy o [ 1024 (n —1) F}
> - — .22
dz h* +We ( 310 (7.22)
The pressure rise AP and friction forces F' are defined as follow
i dP
AP = [ —d 2
[ (7.23)
0
/ dP
FO = / 2(—=—)d 7.24
Tl dz Z? ( )
0
i dP
FO = / 2 ——)d 7.25
0

where 2€ is defined in Eq. (7.22).
For analysis, we have considered five waveforms namely sinusoidal, multi-sinusoidal, tri-
angular, square and trapezoidal. The non-dimensional expressions for these wave forms are

defined in chapter 1.

7.4.2 HAM Solution

HAM is an analytical technique to approximate the solution of highly non-linear equation. The

solution by HAM is started by some initial guess. For that we choose
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w_@ r? — h?
07 dz 4 ’
dP\?* (1% — I?
w=-s(z) ()

2 2 12
oo = S:5:B; <CCZ£> (T 8h>7

(7.26)

(7.27)

(7.28)

as the initial guesses of Eqgs. (7.26) to (7.28). Further, the auxiliary linear operator for the

problem are taken as
10 0
bor = L or (a) ’
10 0
tr =15 ()

10 0
£a’7“ = ;5 (Tar> .

We can define the following zeroth-order deformation problems
(1 - Q)'er[ w (Ta Q) - wO(r)] = qthwr[w (Tv Q)]a

(1= a)Lo[ 0(r,q) — Oo(r)] = ahoNo:[0 (r,q)],

(1 =q)Lor[ 7 (r,9) = 00(r)] = ¢he Novr[o (7, q)],

O MK
UL} Y @(r,q) =0, at r=h=1+"""+¢sin2rz,
or a0
09 . K
(7">C_I) — 0’ atTZO, 9(7’,(]):0, atr:h:1+)\ Z+¢Sin27rzg
or a0
95 MK
0-(717(]) —_ 07 at?":O, 5—(7«’q):0’ atr:h:1+7z—|—¢sin2ﬂ'z.
or ao
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(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)

(7.35)
(7.36)

(7.37)



In Egs. (7.32) to (7.37), hy, hy and h, denote the non-zero auxiliary parameter, ge[0, 1] is the

embedding parameter and

_ 1w 0w W2(n-1) (1 (0w ow\? 9w
Nl ] = 55+ 32 75 (a) w3(5) G
dP
- (7.38)
_ 190 329 2 W2n—1 ow\*
Nov 0 )] = 120 4 (( o)+ =R (5) ) S (3
. 109 &0 55,00 26
Norlo(r,q)] = o + 8r2 . 87 + S5rSe o2 (7.40)
Obviously,
ow (r,0) . B
—a = 0, w(r,l)=w(r), (7.41)
a0 (r,0) - B
e 0, 6(r,1)=06(r), (7.42)
96 (r,0) . B
5 =0 d(rn)=0(r), (7.43)

when ¢ varies from 0 to 1, then & (r,q), 0 (r,q) and & (r,q) varies from initial guess to the
solution w (r), 0 (r) and o (r) respectively. Expanding & (r,q), 6 (r,q) and & (r,q) in Taylors

with respect to an embedding parameter ¢, we have

W (r,q) = wo (r) + > wm(r)g"™, (7.44)
n=1
0(r.q) =00 (r) + Y Om(r)a™, (7.45)
n=1
6 (r,q) =00 (r)+ Y om(r)g"™, (7.46)
n=1
where
wy = L 09| (7.47)
ml O¢™ |,
6, = L 0o (7.48)
m!  Og™ 4=0




Om = 1 9ma(rq) . (7.49)
ml 0g™ | g

Differentiating the zeroth order deformation m-times with respect to ¢ and then dividing by

m! and finally setting ¢ = 0, we get the following mth order deformation problem

‘C’w[wm(r) - memfl(r)] = hwar(T‘), (750)
Lo[0m(r) = XpmOm—1(r)] = hoRo, (1), (7.51)
Lsom(r) = Xmom-1(r)] = hoRor(r), (7.52)
where
whoy | WEn—1) (1= a
Rwr = w;/lfl—’_ . 1+ (2 (TZU)"IL 1— kak Y +3Z’U}m 1— kzwk lwl
k=0 1=0
dP
— (1= Xm), (7.53)
' 1 = (n—1) 2 = ' ' ' '
Ror = H;nflJF;'%nflJrBr W1k Wy, + —y  We Dy wil Yy wlw) ],
k=0 k=0 = j
(7.54)
1 S-S,
Rop =0y 1 + Um 1+ SrSelm_1 + ; 01, (7.55)
0, m <1,
Xm = (7.56)
1, m > 1.

The solution of the above equations with the help of Mathematica can be calculated and

presented as follow

2M+1 2M  2m+1-n
wWen(r) = lim Zam0+ Z < > Z ak 2”“)], (7.57)
o m=n—1

Opn(r) = lim Zb +2§1< > Qminb 2””’)- (7.58)
" M—o0 0 ’ :

m=n—1

r M 2M+1 2M  2m+1—n ]
)= [ o 3 (3 )

Lm=0 n=1 m=n—1
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where a%,o: aﬁ%n, bg"z,()’ b’fmn, c?mO and cfn’n are constants.

T -1.60 |-1.20 |-0.80 |-0.40 | 0.00 0.40 0.80 1.20 1.60

Perturb sol | 0.0000 | 0.4026 | 0.7813 | 1.0093 | 1.0859 | 1.0098 | 0.7818 | 0.4026 | 0.0000

HAM sol 0.0000 | 0.3960 | 0.7692 | 0.0037 | 1.0686 | 0.9937 | 0.7692 | 0.3960 | 0.0000

Table.1. Comparison of velocity profile for K = 0.4, z = 0.2, A = 0.5, ag = 0.5, ¢ = 0.4,
We=0.5,n=0.31=-0.7, % =0.05.

T -1.60 |-1.20 |-0.80 |-0.40 | 0.00 0.40 0.80 1.20 1.60

Perturb sol | 0.0000 | 0.0141 | 0.0209 | 0.0225 | 0.0226 | 0.0225 | 0.0209 | 0.0141 | 0.0000

HAM sol 0.0000 | 0.0145 | 0.0215 | 0.0232 | 0.0233 | 0.0232 | 0.0215 | 0.0145 | 0.0000

Table.2. Comparison of temperature profile for K = 0.4, z = 0.2, A = 0.5, ag = 0.5, ¢ = 0.4,
B, =0.2,We=05,n=03h=-0.7, %€ =0.05.

T -1.60 | -1.20 -0.80 -0.40 0.00 0.40 0.80 1.20 1.60
Perturb sol | 0.0000 | -0.0035 | -0.0052 | -0.0056 | -0.0057 | -0.0056 | -0.0052 | -0.0035 | 0.0000
HAM sol 0.0000 | -0.0036 | -0.0054 | -0.0058 | -0.0057 | -0.0058 | -0.0054 | -0.0036 | 0.0000

Table.3. Comparison of concentration profile for K = 0.4, z = 0.2, A = 0.5, ag = 0.5,
¢=04, B, =02, We=0.5,n=0.3,h=—0.7, % =0.05, S, =0.5, 5. = 0.5.

7.5 Numerical Results and Discussion

In this section we have presented the solution for the Carreau fluid model for diverging tube
graphically. The expression for pressure rise AP is calculated numerically using mathematics
software. The effects of various parameters on the pressure rise AP are shown in Figs. 7.3
to 7.7 for various values of Weissenberg number We, amplitude ratio ¢, power law index n,
wavelength A and for different waveshapes. It is observed from Figs. 7.3 to 7.7 that pressure rise
decreases with the increase in We, ¢, A, while the pressure rise increases with the increase in n.
Peristaltic pumping region is (0 < @ < 0.45) and augmented pumping region is (0.46 < @ < 1)
for Figs. 7.3 to 7.7. It is also analyzed through Fig. 7.7 that square wave has best peristaltic
pumping characteristics, while trapezoidal wave has worst peristaltic pumping characteristics
as compared to the other waves. Figs. 7.8 to 7.12 represents the behavior of frictional forces.
It is depicted that frictional forces has an opposite behavior as compared to the pressure rise.

Effects of temperature profile have been shown through Figs. 7.13 and 7.14. It is seen that
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with the increase in B, temperature profile increases, while decreases with an increase in n.
The concentration field o for different values of B, and S, are shown in Figs. 7.15 and 7.16.
We observed that the concentration field decreases with the increase in B, and S,. Figs. 7.17
(a to e) are prepared to see the behavior of pressure gradient for different wave shapes. It is
observed from the figures that for ze[0,0.5] and [1.1,1.5] the pressure gradient is small, and
large pressure gradient occurs for ze [0.51, 1], moreover, it is seen that with increase in ¢ pressure
gradient increases. Figs. 7.18 shows the streamlines for different wave forms. It is observed that

the size of the trapped bolus in triangular wave is small as compared to the other waves.

1.7
1 s
—— 25th-order app.
0.5 |
g
i ol
&
-0.f |
1l
-1.2 -7 -0.8 -0.6 -0.4 -0.2 [ 0.2

Figs.7.1. (a) h-curve for velocity profile for K = 0.4, z = 0.2,
A=0.5, ap=0.5 ¢ =04 We=05n=03, B, = 0.2,
S, = 0.5, S, = 0.5, 9 = 0.05.
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Figs.7.1. (b) h-curve for temperature profile for K = 0.4,
2 =02, A=05, a9 =05, ¢ = 0.4, We = 0.5, n=0.3,

B, =02, S, =05, S, = 0.5, 2 = 0.05.
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Figs.7.1. (¢) h-curve for concentration profile for K = 0.4,
=02, A=0.5, ag = 0.5, ¢ = 0.4, We = 0.5, n = 0.3,

B, =02, 8, =05, S. = 0.5, 9 = 0.05.
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Figs.7.2 (a) . Comparison of velocity profile for K = 0.4,
=02, A=0.5, ag = 0.5, ¢ = 0.4, We = 0.5, n = 0.3,
B, =02, S, =05, S.=0.5,i=—0.7, € = 0.05.
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Figs.7.2 (b) . Comparison of temperature profile for K = 0.4,
z2=02, A=0.5,a0=0.5,¢=04, We=0.5,n=0.3,

B, =02, S, =05, S, =0.5,i=—0.7, € = 0.05.
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Figs.7.2 (¢) . Comparison of concentration profile, for K = 0.4,
z2=02,A=0.5,a90=0.5, ¢ =04, We =0.5, n=0.3,
B, =02, S, =05, S, =0.5,i=—0.7, € = 0.05.
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Figs.7.3. Pressure rise versus flow rate for K = 0.5, A = 1.5,

ag = 0.5, ¢ =0.1, n = 0.05.
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Figs.7.4. Pressure rise versus flow rate for K = 0.5, A = 1.5,

ag = 0.5, We = 0.1, n = 0.05.
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Figs.7.5. Pressure rise versus flow rate for K = 0.5, A = 1.5,

ap = 0.5, ¢ = 0.2, We = 0.1.
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Figs.7.6. Pressure rise versus flow rate for K = 0.5, n = 0.05,

ag = 0.5, ¢ =0.1, n = 0.05.
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Figs.7.7. Pressure rise versus flow rate for K = 0.5, A = 0.05,
ag = 0.05, ¢ = 0.1, n = 0.5, We = 0.05.
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Figs.7.8. Frictional force versus flow rate for K = 0.5, A = 1.5,
ag = 0.5, ¢ =0.1, n = 0.05.
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Fig.7.9. Frictional force versus flow rate for K = 0.5, A = 1.5,
ag = 0.5, We = 0.1, n = 0.05.
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Figs.7.10. Frictional force versus flow rate for K = 0.5, A = 1.5,
ag=0.5, 9 =0.2, We =0.1.
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Figs.7.11. Frictional force versus flow rate for K = 0.5,

n = 0.05, ag = 0.5, ¢ = 0.1, n = 0.05.
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Figs.7.12. Frictional force versus flow rate for K = 0.5,

A =0.05, ag = 0.05, ¢ = 0.1, n = 0.5, We = 0.05.
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Figs.7.13. Temperature profile for n = 0.5 K = 0.05, A = 0.05,
ag = 0.05, ¢ = 0.1, We = 0.05.
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Figs.7.14. Temperature profile for B, = 0.2, K = 0.05,
A =10.05, ag = 0.05, ¢ = 0.1, We = 0.05.
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Figs.7.15. Temperature profile for S, = 0.5, K = 0.05,
A =10.05, a9 =0.05, ¢ =0.1, n = 0.5, We = 0.05, S. = 0.5.
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Figs.7.16. Temperature profile for B, = 0.2, K = 0.05,

A= 0.05, ag = 0.05, ¢ = 0.1, n = 0.5, We = 0.05, S, = 0.5.
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Fig.7.17. (a). Pressure gradient versuz z for (Sinusoidal wave)

K =0.02,Q=0.1, We = 0.1, A = 0.02, ap = 0.02, n = 0.5.
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Fig.7.17. (b). Pressure gradient versuz z for (Square wave)

K =0.02 Q=0.1,We=0.1, A\ =0.02, ap = 0.02, n = 0.5.
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Fig.7.17. (c). Pressure gradient versuz z for
(Trapezoidal wave) K = 0.02, @ = 0.1, We = 0.1, A = 0.02,
aop = 0.02, n = 0.5.
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Fig.7.17. (d) . Pressure gradient versuz z for (Triangular wave)

K =0.02 Q=0.1,We=0.1, A\ =0.02, ap = 0.02, n = 0.5.
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Fig.7.17. (e). Pressure gradient versuz z for

(Multisinusoidal wave) K = 0.02, @ = 0.1, We = 0.1, A = 0.02,
ag = 0.02, n = 0.5.
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Fig.7.18 (a). Pressure gradient versuz z for sinusoidal wave
when K =0.02, @ =0.1, We = 0.1, A = 0.02, ap = 0.02,
n=0.5, ¢=0.2.

Fig.7.18 (b). Pressure gradient versuz z for square wave when
K =0.02, @ =0.1, We=0.1, A = 0.02, ap = 0.02, n = 0.5,
¢ =0.2.
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Fig.7.18 (¢). Pressure gradient versuz z for trapezoidal wave

when K = 0.02, Q = 0.1, We = 0.1, A = 0.02, ag = 0.02,
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Fig.7.18 (d). Pressure gradient versuz z for triangular wave
when K = 0.02, Q = 0.1, We = 0.1, A = 0.02, ag = 0.02,
n=05,6=02
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Fig.7.18 (e). Pressure gradient versuz z for multisinusoidal
wave when K = 0.02, @ = 0.1, We = 0.1, A = 0.02, ag = 0.02,
n=05,¢=0.2

Conclusion

This study examines the influence of heat and mass transfer on the peristaltic flow of a Carreau

fluid in a diverging tube. Two types of solution have been evaluated. The main points of the

performed analysis are as follow

1.

2
3
4
)
6
7

The perturbation solution and homotopy solutions are identical upto four digits.

. The effects of We, A and ¢ on the pressure rise are same.

. The frictional forces have an opposite behaviour as compared to the pressure rise.

. Effects of B, and n on temperature profile are opposite.

. Concentration profile has an opposite behaviour as compared to the temperature profile.
. Pressure gradient increases with an increase in ¢.

. The size of trapped bolus for triangular wave is small as compared to the other waves.
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Chapter 8

Analytical and numerical analysis of
Vogel's model of viscosity on the

peristaltic flow of Jeffrey fluid

8.1 Introduction

In the present chapter, we have analyzed the effects of temperature dependent viscosity on
the peristaltic flow of Jeffrey fluid through the gap between two coaxial horizontal tubes. The
inner tube is maintained at a temperature Ty and the outer tube has sinusoidal wave travelling
down its wall and it is exposed to temperature 7. The governing problem is simplified using
longwave length and low Reynolds number approximations. Regular perturbation in terms of
small viscosity parameter is used to get the expressions for the temperature and velocity for
Vogel’s models of viscosity. The numerical solution of the problem has also been computed
by shooting method and an agreement of numerical solutions and analytical solutions had
been presented. The expressions for pressure rise and friction force are calculated numerically.
Graphical results and trapping phenomenon is presented at the end of the chapter to see the

physical behavior of different parameter.

166



8.2 Formulation of the Problem

Consider the flow of a Jeffrey fluid through the gap between two coaxial horizontal tubes. The
inner tube is maintained at a temperature Ty and the outer tube has a sinusoidal wave travelling
down its wall and it is exposed to temperature T;. We select cylindrical coordinates with R
along the radial direction and the Z along the centre line of the inner and outer tubes. The
shape of the two walls are defined in Egs. (2.7) and (2.8) . The governing equations in the fixed

frame for an incompressible flow are given as

o U oW

=424 = 1
or TRz =" ®.1)
o -0 -0\ - o°P 1 0 ,- 0 T
- —— ——t = ——= _= = DD ——t D7) — —T—= .2
P <8t V%R T Waz) U=k " wag Bmee) + 57 (Tr2) = 57 (82)
0 0 -0\ = oP 1 0 - 0
(Ll ywl)r = 777@+777@+r77@+r——@
Pe\or TV orR T oz) T T TRRgR T TRZIGR T TIRG7 T T2 57
0T 19T 9*T
Ll — 4+ 2 4 Z ). 8.4
* (8R2+R8R+8Z2> (84)
The constitutive equation for the extra stress tensor 7 in Jeffrey fluid is defined by [7]
(1)
=y (). (85)

In the above equation, u (T) is temperature dependent viscosity, A1 is the ratio of relaxation to
retardation times, 4 (vector quantity) the shear rate, Ay the retardation time (5\1 = \i¢/R, \y = c)\g/R>

and dots denote the differentiation with respect to time.
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We introduce the non-dimensional variables

R = Ea TZL? ZZE) ZZE? WZK? w:E7
a as A A c c
U — AU u:& :a%P _(?_Tl)7 p = o
asc asc cA L (TO — T1) k
o (T
wo) = PO s _w g pem ar
Ho A A Ho Cito
- - 2
8l T2 . ¢
= Lo p=2=1 2z), Bo= — . .
1 o €, T2 o + ¢sin (27z2), o T =T (8.6)
Making use of Eqgs. (1.11,1.12,8.5) and (8.6), Egs. (8.1) to (8.4) take the form
ou u Ow
Ty 8.7
or + r + 0z ’ (8.7)
0 oP 60 0 oT
3 u— 9. 2 0 00
Red <u8r+w8 )u 5 +r8 (rree) +96 o (Trz) o (8.8)
0 oP 10
Red (Uar + wa> w = 7 *a (TTrz> + 587 (Tzz) ) (8 9)
0 0 ou ow 20U ow
Red Pr <u8r + w@z) 0 = E.Pr (6(%7'”, + o T +6 557 + Tzzaz(s)
9?0 100 0%
AT AN 4 1
+8r2+7“07“+5 022’ (8.10)
w = -1, u=0 atr=mr=¢, (8.11a)
w = —1, atr=ry=14 ¢sin(27z), (8.11b)
0 = 1, at r=ry, (8.11c)
0 = 0, at r=ry, (8.11d)
where ¢ is the radius ratio, ¢ is the wave amplitude and
201 (0) A2cd 0 0\| Ou
= 1 w2 12
Trr 1+XM [ * az <u8r +w8z>] or (8.12a)
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) [ e (0 0] (g O
TN [1 LY (“ar Ty o 2: Tar ) (8:12b)
201 (0) Aacd 0 0\ | ow

Tzz = 1+ )\1
Making use of Eq. (8.12a) to (8.12¢) and using the assumptions of long wavelength and low
Reynolds number R, Eqgs. (8.8) to (8.10) take the form

a2

oP
0="", (8.13)
0P 10 (ru() (Ow
0- 5+ (5% (5)): (8:14)
B p(0) (ow\®\ 9% 100
O_ECPr<1+)\1 (37“ Tt ror (8.15)

In typical situations, the viscosity of the real fluid varies with temperature. Therefore in the

proceeding paragraphs we consider well known Vogel's viscosity model.

8.3 Vogel's Viscosity Model

Vogel's model of viscosity is defined as [41]

1 (6) = o exp [Bf‘w - To] | (8.16)

The Maclaurin’s series expansion of above equation in simplified form can be written as

1 (0) =ng —T10+ O (I'1)?, (8.17)
where
foA 1
ng = ny + Iy, F2=?7 n1 = po (1 —To), C=§7F1=F2C

Using Eq. (8.17) in Eqgs. (8.14) and (8.15), we have

(8.18)

0= 9P 10 [(na—Tub)r (Ow
9z ror 14+ XN\ or )|’
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10 00
ror <a> = Bk

8.4 Solution of the Problem

(ay — T'16) (?;:)2] . (8.19)

Using regular perturbation method by considering I'; as perturbation parameter, The solutions

of the Egs. (8.18) and (8.19) can be directly written as

P [ r i
1 6 ré r2 r2(lnr)®>  r2lnr 12
o r’ rt e _ _
+1((1+A1)a2[516+SZ4+S32+S4< 2 2
)3 2] 2 Inr)?
+55(n3r) ‘|‘56 <7a2nr_2>_|_5’7(n27a) —|—Sgln7“ +S111DT+512)7 (8'20)

S2 64 T Sy 4
—1—5277“6 + SQg’l"s + 5291"10 + 5307’12 + 531’!“2 Inr + 5327’4 Inr + 8331"6 Inr + 5347”8 Inr

4 2 2
o — 5, ( 1 r 52(1117’) +Blr> 4 S3Inr+ S5+ ((Sz5r2+S26r4

S512 (In 7")2 + Sser? (In 7“)2 + Sa7r® (In 7“)2 + Sy4 (In 7")5 + S45 (In r)6 + Suer? (In r)4

+ Sy7rt (In 7’)4) + S7Inr + Sg) , (8.21)
iP 852 [2F + (r] —r{)]
dz (r% - 7“‘11) + 859511 [r% Inry —r2nry — (r3 — r%) /2} —2r? (r% - r%) - B4
F18a2 (—Mg) /8 22)
(r% — Til) + 859511 [r% Inry — r% Inry — (T% — T%) /2] — 27“% (T% — T%) — [31\
The corresponding stream function (u = —%%—\5 and w = %%—‘f) can be written as
U = 717*2 + 727“4 + 737*6 + 747’8 + ’yer Inr + ’ysr4 Inr

3

+’y77’2 (In r)2 + 781”4 (In 1“)2 + 797“2 (Inr)”. (8.23)

All the appearing constants can be evaluated by simple algebraic algorithm.
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The pressure rise AP and friction forces F' on inner and outer tubes F®), F(©) are given by

where % is defined in Eqgs. (8.22).

(8.24)

(8.25)

(8.26)

8.5 Comparison Between Numerical and Perturbation Solu-

tions

Here the problem consisting of equations (8.22) and (8.23) is also solved numerically by employ-

ing shooting method. A comparison of the numerical solution and the perturbation solution

has been presented through table and graphs and are shown below. The error between the two

solutions is also presented.

r Numerical Solution | Perturbation Solution | Error

0.10 | -1.000000 -1.000000 0.000000
0.20 | -1.013794 -1.013630 0.013794
0.30 | -1.021658 -1.025596 0.021658
0.40 | -1.024916 -1.029419 0.024916
0.50 | -1.024579 -1.029579 0.024579
0.60 | -1.021612 -1.025542 0.021612
0.70 | -1.017000 -1.020091 0.017000
0.80 | -1.011452 -1.013534 0.011452
0.90 | -1.005817 -1.006817 0.005817
1.00 | -1.000000 -1.000000 0.000000
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Table.8.1. Comparison of axial velocity for perturbation and numerical solutions when A\ =
0.1,B=0.2,A=0.3,¢=0.6,e =0.1, % =04,2=0.5, P, =0.1,E. =0.2,Tp = 0.5, pg = 0.4.

8.6 Numerical Results and Discussion

In order to analyze the quantitative effects of the various physical parameter involved in the
present analysis we use the symbolic software Mathematical and the results are displayed graph-
ically. Figs 8.1 and 8.2 show the comparison of numerical solution and perturbation solution
for velocity and temperature profile. The average pressure rise AP versus time averaged mean
flow rate @ is plotted (for Vogel's viscosity model) for different values of viscosity parameter
T'y, Jeffrey parameter Aq, in Figs 8.3 and 8.4. Figs. 8.3 and 8.4 shows that the maximum
pressure rise occurs at zero flow rate for different values of I'; and \;. It can also be analyzed
that increasing I'; and A;, pressure rise decreases in the region Qe[0,0.45] and in the region
Q€ [0.46, 1.5] the pressure rise increases with the increase in I'y and A;. Peristaltic pumping
occurs in the region 0 < @ < 0.45, otherwise augmented pumping occurs. It is also observed
that in Vogel's viscosity model, the range of pressure rise is much smaller than in the Reynold’s
viscosity model.

The frictionless force F for inner and outer tube denoted by F() and F(©) respectively,
are plotted in Figs. 8.5 to 8.8. The region in which both F®) and F(©) are positive, denotes
the region where reflux phenomenon occurs and the region where F() and F(© are negative
designate to peristaltic pumping. We observed that the frictionless force has the opposite
behavior as compared to pressure rise. It is observed that F and F(©) increases with increases
in I'y and Aq.

Figs. 8.9 and 8.10 represents the physical behavior of the temperature field. It is found that

with increasing § and A; the temperature field increases.

8.7 Trapping

Another interesting phenomenon in peristaltic motion is trapping. It is basically the formation
of an internally circulating bolus of fluid by closed streamlines. This trapped bolus pushed

a head along with the peristaltic wave. Figs. 8.11 and 8.12 are prepared for Vogel’'s model
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streamlines. The effects of time averaged flow rate () on trapping can be seen through Figs.
8.11 (v to y). It is observed that the size of the trapped bolus increases as we increase flow
rate Q. Figs. 8.12(hy to i1) are plotted to see the effects of A1, it is seen that trapped bolus

decreases with the increase of Aj.

-1
Numerical solution
-1.005 ¢ -=-=- Perturbation solution /2
4
o ’
-1.01 % 4 1
"\ 1"
ﬁ L o
015 % K4 ]
2 \ 4
\ Y,
. /
102 -y s 1
o‘ .l
\ <
-1.025 | \, / 1
N, ’°
\'\ o',’
-1.03 ‘ 2emeem ‘ ‘
0.2 0.4 0.6 0.8 1

Fig.8.1. Comparison of axial velocity for Ay = 0.1, B = 0.2,
A=03,¢=06,e=0.1,2=0.5, P.=0.1, E. =0.2, Ty = 0.5,
Ho = 0.4.
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Fig.8.2. Comparison of temperature profile for

M =01,B=02 A=03,¢=06,e=0.1% =04,2=05,

P, =0.1,E,=02,T) = 0.5, iy = 0.4.

0.5 15
Q

Fig.8.3. Pressure rise versus flow rate for ¢ = 0.03, ¢ = 0.6,

E.=0,Pr=0A =02 py=05 A=1B=1a=0.1
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Fig.8.4. Pressure rise versus flow rate for
€=0.03,¢0 =0.6,E. =0,Pr =0,
f=02pu,=05A=1,B=1,a=0.1
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Fig.8.5. Frictional force on inner tube (F(;)) versus flow rate
fore =0.03,¢0 =0.6,E. =0,Pr=0,\; =0.2,
o =05,A=1,B=1,a=0.1.
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Fig.8.6. Frictional force on inner tube (Fg\z)) versus flow rate
for £ = 0.03,¢ = 0.6, E, = 0,Pr = 0, 3 = 0.2,
o =05,A=1,B=1,a=0.1.

0 0.5 1 15
Q

Fig.8.7. Frictional force on outer tube (Fg\o)) versus flow rate
fore =0.03,¢0 =0.6,E. =0,Pr=0,\; =0.2,
o =05,A=1,B=1,a=0.1.
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0 0.5 1 15
Q
Fig.8.8. Frictional force on outer tube (Fg\o)) versus flow rate
for £ = 0.03,¢ = 0.6, E, = 0,Pr = 0, 3 = 0.2,
o =05,A=1,B=1,a=0.1.
25 - T r
=01
—==-b=02 !,/_\
20F | cocccccece b=023 .'..‘_.-' . KN
----- =b=04 | T
s b=05 [ A7 N\
~ R RN
= * .o". .'o. ‘...
S ’., o P Sl o\

15

r

Fig.8.9. Temperature field for
A1 =0.01,¢ =0.6, E. = —0.15, Pr = 0.25,
Q=052=01,p=05A=1,B=1,a=0.1.
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Fig. 8.10. Temperature field for
g =0.01,¢ =0.6, E. = —0.15, Pr = 0.25,
Q=052=01,u=05A=1,B=1,a=0.1.
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Figs. 8.11. Streamlines for different values of @) = .92, .94,(panels (v) to (w)) The other
parameters are ¢ = 0.1, E. = 0.9, Pr=0.1, \; =0.5,I'1 =0.09, ¢ = 0.3, gy =0.5,A=1,B =
l,a=0.1.
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Figs. 8.12. Streamlines for different values of \; = 0.1, 0.2,(panels (h1) to (i1)) The other
parameters are ) = 0.95, ¢ = .15, E. =2, Pr=0.3,I'1 =0.09, ¢ =0.3, yg =0.5,A=1,B =
l,a=0.1.

8.8 Conclusion

Here we have analyzed the peristaltic flow of a Jeffrey fluid in an endoscope. The analytical
and numerical solutions have been calculated for Vogel's viscosity models. A comparison of the
analytical and numerical solution have also been given. The graphical results are presented to
discuss the physical behavior of the problem. We have found the following observations:

1. The pressure rise decreases in peristaltic pumping region with an increase in A1 and I';.

2. The frictions forces have an opposite results as compared to the pressure rise.

3. The temperature field increases with the increase in 8 and A;.

4. It is observed that the volume and size of the trapped bolus increases with increase in
flow rate.

5. The volume and size of the trapped bolus decreases with the increase in Jeffrey parameter.
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Chapter 9

Characteristics of heating scheme
and mass transfer on the peristaltic
flow for an Eyring-Powell fluid in an

endoscope

9.1 Introduction

In this chapter Eyring-Powell peristaltic fluid flow with heat and mass transfer analysis have
been investigated. New fluid model have been presented in peristaltic literature. The governing
equations for proposed Eyring-Powell fluid model are derived in cylindrical coordinates both in
fixed and moving frame of reference. Complex system of equations have been simplified using
long wavelength and low Reynolds number approximation. The momentum and heat/mass
transfer balance equations are solved analytically and numerically by employing perturbation
method and shooting technique. Graphical results have been discussed for pressure rise, fric-
tional forces, temperature and concentration profile. Comparison of perturbation and numerical
solutions have been presented through table and figures. Five different waves forms have been

considered for analysis. Trapping phenomena have been presented for different wave forms.
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9.2 Mathematical Model

The constitutive equation for Eyring-Powell fluid model is given by [37]

7':/LVV+isinh*1 lVV , (9.1)
B €1

and

3
sinh 1 <1vv) ~Ltyv_l (1vv) ,

C1 C1 6 C1

1
VV‘ < 1, (9.2)
c1

where (1 is the coefficient of shear viscosity, 8, and c; are the material constants of Eyring-Powell

fluid model.

9.3 Mathematical Formulation

We have considered peristaltic flow of an incompressible Eyring-Powell fluid in an endoscope.
The flow is generated by sinusoidal wave trains propagating with constant speed ¢ along the wall
of the upper tube. Heat and mass transfer phenomena have been consider giving temperature
Ty, T1 and concentration Cy and C; to the inner and outer tube respectively. The geometry of
the wall surfaces is defined in chapter two. The governing equations in the fixed frame for an

incompressible flow are given as

2 (54 Tor + Way ) U =55~ Tk (Brad) = 5 (Tan) = 2 (00)
p(gt—JrUa%ﬂLW;Z)W:—?Z?—%%(RTRz)—(%(Tzz), (9.5)
g -0 =0\ = ou ow ou ow

pCp (05+U8R+W@Z>T = TRRﬁ+TRZﬁ+TZR87+T2287

+k; ﬂ+l@+ﬂ
OR?  ROR 072)’
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o 8 9\ ~ 2C  18C  0*C
<+U+W>C = D<8R2+R8R+8Z2>

DKr (0*°T 10T 0°T
— =t ==+ —==]. 9.7
. <8R2+R6R+622 (0.7)
We introduce the non-dimensional variables as follow
L R U S Ul
as as A A c c asc
w = M p_wP_al o e oo pas T
asc CALL A A I ue
m (T —1T1) pDKrp (Ty — T1) puey
SC = = = ) S?“ = ) PT 9
Dp (To — T1) pTh, (Co — Ch) k
2 C—-C 7 7
Ec = —C =~ 0 = (— —1) , 1= E =€, 2= Q (98)
Cp (TO — Tl) ( 0— 01) as az

With the help of Egs. (1.11, 1.12) and (9.8), Egs. (9.3) to (9.7) under the assumptions of long

wavelength and low Reynolds number approximation take the form

ou u Ow

5 tot5.=0 (9.9)

(271: =0, (9.10)

or_10 r<<1+M> (‘2“]) —K(‘?”)B)] (9.11)
227§+igf:—3r<<<1+m (?”)2%(85”)4)) (9.12)

0

HCRE)SCHE) e

In the above equations § and Re represent the wave and Reynolds numbers, respectively and
M =1/pyBe; and N = M2 /6a2c,

where M and N are the dimensionless parameter of Eyring-Powell fluid model.
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The corresponding boundary conditions are

w = —1,0=1 0c=1latr=r =c¢, (9.14a)

w = —1,0=0,0=0, atr=ry =1+ ¢sin(27z2). (9.14b)

9.4 Solution of the Problem

9.4.1 Perturbation Solution

Since Egs. (9.11) to (9.13) are non-linear equation therefore we are interested in analytical
solutions with the help of perturbation method. For perturbation solution, we expand w, F, 0

and P by taking N as perturbation parameter

w = wo+ Nwy + O(N?), (9.15a)
P = Py+ NP +O(N?), (9.15b)
Fy = Fy+ NF;+O(N?), (9.15¢)

0 = 0o+ N6 +O(N?). (9.15d)

The perturbation results for small parameter N, satisfying the conditions (9.14a) and (9.14b),

the expression for velocity, temperature, concentration field and pressure gradient can be written

as

r2 FEilnr dP 1 r4 E3

= -1 Ey) —+N|[— [ — - L

w(r,2) +<4(1+z\4)+(1+z\4)+ 2) e ((1+M)4 (32 22

3Eir?2  3E;Inr Eslnr
E 9.16
+8+2)(1+M)4, (9.16)
2 .2 .

dz Es ’
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1 rd r2lnr 2 Eqr? dP\?
0 - B |— (=+F}—— - — — Erl E
(r,2) ((1+M) <64+ 1< 2 4>+ 1 )(d;;) T B
+N !
36864(1 + M)7r4
+M(3+ M))))r? + 2304E1 (B2 + 6E3(1 + M)? — 3B (=14 2M(3+ M +

(—B,(2304E% — 9216 E3 (—2E3(1 4+ M)3 + Ey (-2

(34 M))))r® + 144(9E? + 4E31 + M) — 2B, (1 +4M (3 + M (3 + M))))r®

+64(3E1 — (1 4+ M)*)r'% 4+ 9r'2 1 4608(9EF + 6Ef — 8E3 (1 4+ M)3
r (Inr)?

+12E1E3(1 4+ M)3 + 8E2(1 + M)%) 5

) + Eglnr + E10> s (918)

1 rt r2lnr 2 Eqir? dP\?
= 58 |\B | —— |~ +E? —— i Erl E.
o (r2) ( ((1+M) <64+ 1< 2 4>+ 4 )(dz) T B
+N !
36864(1 + M)7rd
+M (3 + M))))r? + 2304F1 (B2 + 6 E3(1 + M)? — 3B (=1 +2M (3 + M +

(—B,(2304E% — 9216 E3(—2E3(1 + M)3 + E1(—2

(34 M))))r® + 144(9E? + 4E31 + M)3 — 2B, (1 + 4M (3 + M (3 + M))))r®

+64(3F; — (1 + M)*)r1% +9r'2 4+ 4608(9F7 + 6B} — 8E3 (1 + M)?
3 2 6 r (lnr)2
H12B1 Ey(1+ M)* + 8E5(1+ M)*)——=) + Eglnr + Eyg | |, (9.20)

where the involved constants (F; to F1g) have been evaluated using Mathematica.

The corresponding stream function can be defined as

(u = _1ov and w = 18\1}) . (9.21)

AP = /le]:dz, (9.22)
0
i dp
FO = /r% (—dz> dz, (9.23)
0
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— /17“% <_Cf£> dz. (9.24)
0

where € °- is defined in Eq. (9.21).

For analysis, we have considered five waveforms namely sinusoidal, multi-sinusoidal, tri-
angular, square and trapezoidal. The non-dimensional expressions for these wave forms are
defined in chapter 1.

1. Sinusoidal wave:

ro (2) = 14 ¢sin (27z)
2. Triangular wave:
] o0 )n—i-l
Ty (2) = 1+¢>{WSZ T )81n(27r(2n—1)z)}
n=1

3. Square wave:

1 (2) = 1+¢{W; 2= T) cos (27 (2n — 1),2)}

4. Trapezoidal wave:

ro(2) =14 ¢ { 32 Sijfn(inl;l) sin (27 (2n — 1) z)}
n=1

5. Multi sinusoidal wave:

ro (2) = 14 ¢sin (2mnz).

9.4.2 Numerical Solution

Here we have presented the numerical solutions for velocity profile. To get the numerical solution
shooting method have been taken into account. The numerical solution is also compared with
the perturbation solution. The difference between the values of two solutions are shown through
Figs. 9.1(a), 9.1(b) and table 9.1. It is noticed here that there is a small difference between
perturbation and numerical solution. This happens because the perturbation solutions are

computed here only small values of V. If one take the value of N very very small both the
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solutions are 100% same which are shown in tabel 1. However, for large N, the solutions are

not identical, because the perturbation solutions are valid for small values of V.

-1.005
-1.01 f
-1.015 f

Numerical Solution
eseeeee Perturbation Solution

-1.02 f 5y
-1.025 f

103 b %)

w(r,z)

-1.035 }
-1.04 }

0.2 0.4 0.6 0.8 1

Fig.9.1 (a). Comparison of axial velocity for N = 0.1,
bd=04,e=01,2=05 M=0.5.
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Fig.9.1 (b). Comparison of axial velocity when N = 0.5,
¢=04,e=01,%2 =04,2=05 M =0.5.
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T

Numerical Sol when (N

Perturb Sol

Numerical Sol when (N

Perturb Sol

0.10 | —1.000000 —1.000000 | —1.000000 —1.000000
0.15 | —1.013079 —1.014210 | —1.016465 —1.010710
0.20 | —1.020100 —1.021160 | —1.029170 —1.018960
0.25 | —1.026625 —1.030789 | —1.037464 —1.025111
0.30 | —1.030679 —1.031621 | —1.042150 —1.031621
0.35 | —1.045808 —1.038601 | —1.045808 —1.035891
0.40 | —1.036289 —1.040463 | —1.047766 —1.038451
0.45 | —1.037758 —1.041561 | —1.048315 —1.039621
0.50 | —1.038221 —1.041632 | —1.048003 —1.037822
0.55 | —1.037908 —1.040785 | —1.046604 —1.038521
0.60 | —1.036671 —-1.037642 | —1.044183 —1.037642
0.65 | —1.034967 —1.036805 | —1.041439 —1.029661
0.70 | —1.032094 —1.033389 | —1.037320 —1.028631
0.75 | —1.029015 —1.029900 | —1.033230 —1.025292
0.80 | —1.024494 —1.024958 | —1.027559 —1.022292
0.85 | —1.020031 —1.020021 | —1.022216 —1.018654
0.90 | —1.013829 —1.014380 | —1.015081 —1.014380
0.95 | —1.007942 —1.007858 | —1.007172 —1.006592
1.00 | —1.000000 —1.000000 | —1.000000 —1.000000

Table.9.1. Comparison of axial velocity for perturbation and numerical solutions when (a)

N =0.1, (b) N = 0.5, other parameters are ¢ = 0.4,¢ = 0.1, z = 0.5, M = 0.5.

9.5 Graphical Discussion

To see the variations in pressure rise, frictional force, pressure gradient and streamlines caused

by the amplitude ratio ¢, Eyring-Powell fluid parameters N and M, we have prepared Figs. (9.2

t0 9.7). Figs. 9.2 to 9.5 show the variation of pressure versus flow rate for different parameters of

interest. We observed that the increase in the values of ¢ and M causes the increase in pressure

rise while with the increase in N causes the decrease in pressure rise. It is also analyzed through
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Fig. 9.5 (a) that triangular wave has best peristaltic pumping characteristics, while square wave
has worst peristaltic pumping characteristics as compared to the other waves. Moreover, the
peristaltic pumping occurs in the region —2 < @ < 0.5, and augmented pumping occurs in
the region 0.51 < @ < 2. The variations of frictional forces are plotted in Figs. 9.6 to 9.10.
It can be seen that frictional forces have opposite behavior as compared to the pressure rise.
Figs. 9.11(a) to 9.11(e) are prepared to see the variation of pressure gradient for different
wave shapes. It is observed from the figures that for ze[0,0.5] and [1.1,1.5], the pressure
gradient is small and large pressure gradient occurs for ze [0.51,1]. Moreover, it is seen that
with increase in ¢ pressure gradient increases. The effects of different parameters on streamlines
for the trapping phenomenon for five different wave forms can be seen through Figs. 9.12 (a) to
9.12 (e) . It is observed that the size of trapping bolus in triangular wave is smaller as compared
to the other waves. Temperature profile have been plotted in Figs. 9.13 (a) and 9.13 (). It
have been analyzed through figures that temperature profile decreases with an increase in N,
while increases with an increase in B,. Figs. 9.14 (a) and 9.14 (b) are display for concentration

profile. It is analyzed that with an increase in B, and S, concentration profile decreases.
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Figs.9.2. Pressure rise versus flow rate for ¢ = 0.05, r; = 0.05,

N =0.1, M =5.
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Figs.9.6. Frictional force for inner tube versus flow rate for
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Figs.9.9. Frictional force for outer tube versus flow rate for

€ =0.05,r1 =0.05, N =0.1, ¢ = 0.4.

30
N=0.1 7/
20k |eeoeee N=0.3 -"‘
--a=N=05 ..-"a' 4
eameame N\ =(.7 o"..’.:-"’
) 2 -15 -1 0.5 0 05 1 15 2

Q

Figs.9.10. Frictional force for outer tube versus flow rate for
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Fig.9.11 (a). Pressure gradient versus z for Sinusoidal wave for
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Fig.9.11 (b). Pressure gradient versus z for Square wave for
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Fig.9.11 (c). Pressure gradient versus z for trapezoidal wave
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Fig.9.11 (d). Pressure gradient versus z for Triangular wave for

€=0.05r =005 M=5,Q=-005 N =0.1.
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Fig.9.12 (a). Streamlines for sinusoidal wave when e = 0.05,

r1 =005 M=5 Q=-005 N =0.1.
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Fig.9.12 (b). Streamlines for square wave when e = 0.05,
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r1 =005 M=5 Q=-005 N =0.1.
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Fig.9.13 (a). Temperature profile for B, = 0.5, ¢ = 0.3,
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Fig.9.13 (b). Temperature profile for N = 0.3, ¢ = 0.3, r; = 0.3,
M=50Q=1¢=09,z=0.1.
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9.6 Conclusions

This study examines the influence of heat and mass transfer on the peristaltic flow of a Eyring-
Powell fluid in an endoscope. Analytical and numerical solutions have been evaluated using
regular perturbation and shooting technique. The main points of the performed analysis are as
follows.

1. Perturbation and numerical solutions are in good agreement for small N.

2. The effects of ¢ and M on the pressure rise are same.

3. Pressure rise decreases with an increase in V.

4. The frictional forces have an opposite behaviour as compared to the pressure rise.

5. The triangular wave has best peristaltic pumping characteristics, while square wave has
worst peristaltic pumping characteristics as compared to the other waves.

6. Pressure gradient increases with an increase in ¢. It is also observed that for ze[0,0.5]
and [1.1, 1.5] the pressure gradient is small and large pressure gradient occurs for ze [0.51, 1].

7. The size of trapped bolus for triangular wave is small as compared to the other waves.

8. Temperature profile has opposite behaviour for B, and V.

9. Concentration profile decreases with an increase in B, and S,.
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Chapter 10

Simulation of heat transfer on the
peristaltic low of a Jeffrey-six

constant fluid in a diverging tube

10.1 Introduction

Here peristaltic flow of a Jeffrey-six constant fluid in a non uniform tube is investigated under
the assumption of longwavelength and low Reynolds number approximations. The dimen-
sionless quantities are used to simplify momentum and energy equations assuming that fluid
physical /rheological properties remain constant. Regular perturbation method is invoked to
find an analytical solution for the velocity and temperature field. The variation of pressure rise
and frictional forces with the different parameter are also examined numerically. Results are

also presented graphically at the end of the chapter.
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10.2 Mathematical Model

The constitutive equation for a six-constant Jeffreys fluid model is given by [31]

A [CZ Wi+ 7 Wi +d (7D + D7) + by (7.D) I+CQDtrT}

_/dD - - o o
= 2u [D + Ao (dt —W1.D+ D.Wi+2dD.D + b (DD) I>:| (10.1)
where ) »
D Vv
D (symmetric part of velocity gradient) = V—i—(QVV)

. vV (V)"
W1 (antisymmetric part of velocity gradient) = VW-(VV).

d, b1, cg are material constant of a six-constant Jeffreys fluid model, A; is the relaxation time

A2 is the delay time.

10.3 Mathematical Formulation

We have considered peristaltic flow of an incompressible Jeffrey-six constant fluid in a non
uniform tube. The flow is generated by sinusoidal wave trains propagating with constant speed
c along the walls of the tube. The upper wall of the tube is maintaining at temperature Tj
and at the centre we have used symmetry condition on temperature. The geometry of the wall
surface is defined in Eq. (5.8)

The governing equations in the fixed frame for an incompressible flow are given as

ou T oW

ﬁ—i_ﬁ—l_ﬁ_o’ (10'1)
o -0 = 0\ ~ oP 1 9 - 0 Too
— —_— _— = —— —_— DD - D7 — 1 .2
p<8t+U8R+WaZ>U ok T ok TRR) * 57 (TR2) + 1 (102)
o -0 0\ + oP 10 - 0
(o U+ Woz) W =55 * ok i) + gz 7). (103)
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ONp _ . 00 oW oUW
~ TRRGR TTRIGR TTiRgy TTiZgg
o?r 107  0°F
k|l =+ ==+ —=|. 10.4
* (aR2+RaR+aZ2> (10.4)

We introduce the non-dimensional variables as follow

_ ~ 7 ~ - _
R = E7r_f’ Zzia Z_Ev W:K’w:E’T:E
a a A A c c cp
AU AT ’p t
U e —_—, u:ﬁ’ :L7 t:i’ 6:*,Re:@,
ac ac CAL A I
h AK A A
h = —:1+7Z+¢sin27rz, Alzic, )\gzic,
a ag a a
2 T — Tt
B, = & o T=T) p _we (10.5)
CpTo T() k

Making use of Egs. (1.11,1.12) and (10.5), Egs. (10.1) to (10.4) under the assumptions of long

wavelength § << 1 and low Reynolds number take the form

orP 10

= —Qa_ — rz) > 10.
0=+ o (rm) (10.6)
oP
7 10.
o 0, (10.7)
10 0o ow
;E <T87”> =B, <a7ﬂ7—rz> 5 (108)
ow o0
5 = 0, E—O at =0, (10.9a)
w o= 0, 0=0at r—h=1+22%1 ssnomrs. (10.9b)
ao
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where

9e [14 Mg (1 - d(d+by) — § (2d+3b2)) (32)°]

Try — :| )

1+)\2 (1 —d(d+by) — 2 (2d + 3by)) (%%)2

0
) 1+d+b2)—)\1(5:)(14‘01"’1)2)77’7;7

Tog = A2

0 0
Ty = A2 (aw) 1—|—d—|—b2) M (81:> (_1+d+b2)TT‘Z7
ow ow
<a> by — A1 <8r> bryz,

Pr.

B, = E,.
Finally, in simplified form Eqgs. (10.6) to (10.9b) can be written as

— =0, (10.10)

oP 19 ow ow\? 5 [Ow\®

g = ;E <’I" <67“ + 03 (87“) + 405 <8r> >> ) (1011)
10 (09 w2 ow\* NI
; ar < 87‘) —Br <<8T> + g <8T> + Q40 (87’) 5 (1012)

ow 00

- — _ = g 1 .1

o 0, o 0 at r=0, (10.13a)
AK

w = 0, 0=0at r=h=1+2""" 4 ¢sin2rz. (10.13b)
ap

in which

agzl—d(d+b)—g(2d+3b), as = Mha — A\, as= -
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10.4 Solution of the Problem

We have used perturbation method to find analytical solution of Egs. (10.11) and (10.12). For

perturbation solution, we expand w, F, P and 6 by taking « as perturbation parameter

w = wo+ aw; + adws + 0(ad), (10.14)
P = Py+ P+ o3P+ 0(ad), (10.15)
Fi = Fio+ aoF +aiFp +0(ad), (10.16)

0 = 0+ b+ a3l +O(a3). (10.17)

The perturbation results for small parameter «, satisfying the conditions (10.13a) and (10.13b)

can be written as

B r2 — h? (9P+ J r4 — pt
wo= 4 )8, T\,

—{—ozg (J11 (7“10 — th) + Jig (7‘8 — h8) + Ji3 (r6 - h6) +

Jig (r* = 1", (10.18)

0 = Jig (r* —hY) + g (Joo (r® — 1) + Jag (1% — hS) + Jog (r* — 1))
+a3
(/39
+Jaz (r® = h®) + Jaa (r* = 1Y), (10.19)

(J36 (7"20 o h20) + J37 (TIS . hlS) + J38 (T16 o h16) +
(

Fl4 h14) + Juo (7,12 _ h12) T (Tlo _ h10) + Ju (Ts _ h8)

dP  —16F ( 4.J,h?
a _ o [ —

2 4
= i 3 > + a2 (—3J2h8 — gJg,hﬁ — Jgh4> , (10.20)
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where

B dPp\*1 B P\ J dP\* Jy
J1 = —as (dz> 3’ Jo = —a3zJy, J3=—3a3 (dz> 5 Jy = —3a3 ) 1
B ar\*1 dPy\° 1 B dPy\* i
b= () g w=e () g = () T
dPy\? (dP )\ 1 J
Jg = —3a3 (-~ “L) 2 Jo=Jdit+Je+Jr, Jo=Js+Js, Ju=—
dz z /8 10’
_J3 _Jo _Jio B dPy _Jis
Jig = 3 J13—6, J14—4, J15 = 4<dz)’ J16—167
By (dRy)° dP B, (dP\?
Jir = — 16 <dz> , Jis=—DB.Ji, Jig= B, = ) Joo = T\ )
J18 J21 J20 2
= = — = — = — =—1 B?" R
Jo1 Jig + Ji7, Jao o1’ J23 36 Jo4 16 Jos 008, J3
dP: dP:
Jgg = < d;) 1OB J11 BT64J12J14 — 3GB7~J123, Jgo = — < d,22> 8B J12 B,«48J13J14,
B AP ) _ (dPy _ (dR)\’1
Js = < P ) 6B, J13 — 16B,Jiy, J32 = ( P ) 4By Jia, J33 = (dz) 15
dpy 1\° Jos J26 Jaz
J - - Br N 5 J == J J , J = —, = —,
34 Q2 ( 7 2) 35 34 + J31 36 = 7007 73T 39 38 = 556
_Jag _Ja _J30 _Jss _J3 _J33
J39 = 5067 740 = Tip’ J41—100, Jag = R Ju3 = 36 Jyg = 16

The corresponding stream function can be calculated as follow

18\11
ror’

where € is defined in Eqgs. (10.20).
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The non-dimensional expressions for the five considered wave forms are defined in chapter

10.5 Graphical Discussion

To see the variations in pressure rise, frictional force and pressure gradient caused by the
amplitude ratio ¢, Jeffrey-six constant fluid parameter «, relaxation time A1, retardation time
A2, we have prepared Figs. (10.2 to 10.15). Figs. 10.2 to 10.5 show the variation of pressure
versus flow rate for different physical parameters of the problem. We observed that the increase
in the values of as, ¢ and A1, causes the increase in pressure rise while the increase Ay causes
decrease in pressure rise. The peristaltic pumping region for Figs. 10.2 and 10.4is 0 < @ < 0.5,
peristaltic pumping region for Fig. 10.3 is 0 < @ < 1.1, while peristaltic pumping for Fig. 10.5
is —0.5 < @ < 0.4, other wise augmented pumping occurs. The variations of frictional forces
are plotted in Figs. 10.6 to 10.9. It can be seen that frictional forces have opposite behavior
as compared to the pressure rise. Figs. 10.10 to 10.14 are prepared to see the variation of
pressure gradient for different wave shapes. It is observed from these figures that for ze [0, 0.5]
and [1.1,1.5] the pressure gradient is small and large pressure gradient occurs for ze[0.51, 1].
Moreover, it is seen that with increase in ¢ pressure gradient increases. The effects of different
parameters on streamlines for the trapping phenomenon for five different wave forms can be

seen through Fig. 10.15. It is observed that the size of trapping bolus in triangular wave is

209



smaller as compared to the other waves.
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Fig.10.2. Pressure rise versus flow rate for ag = 0.4,
A =03, K =04, A=0.1, ag =0.1.
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Fig.10.3. Pressure rise versus flow rate for ap = 0.4, K = 0.4,

A=0.1, a9 =0.1, \; = 0.4, Ao = 0.3.
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Fig.10.4. Pressure rise versus flow rate for ¢ = 0.4, K = 0.4,
A=0.1,a0=0.1, \; =04, A2 =0.3.

20
—_—!,=01
0 ———l 2 =0.2 |4
. ceseeee | , =03
- cmemel =04

& 40t}
60 F
80T N
o\.:
-10Q - . .
0.5 0 0.5 1 1.5
Q

Fig.10.5. Pressure rise versus flow rate for ¢ = 0.4, K = 0.4,
A=0.1,a0=0.1, ap =04, \; =0.3.
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Fig.10.7. Frictional forces versus flow rate for K = 0.4,
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Fig.10.8. Frictional forces versus flow rate for ¢ = 0.4,
K=04,2=0.1,a9=0.1, \; =0.4, Ay = 0.3.
40 T
—l_ =01 7
35 E 2 _ P
---I 2 —02 ,‘,:‘...o 4
30| |eeerees |, =03 ot
camoame | 2 =04 :o‘...’ i
L s

15

Fig.10.9. Frictional forces versus flow rate for ¢ = 0.4, K = 0.4,
A=0.1,a0=0.1, ap =04, \; =0.3.

213



1.5
0.1,

0.4, Ao = 0.3.

z
214

O.l5
0.1, \

Fig.10.11. Pressure gradient versus z for
a2

—
< -
0 5 = ' ' '
- 2 O
ecamoSoge®
SRUR-RY — QURY T
oo oo = — cNoNeNe) o T SN
= < Seamlte
I omnmnu o [ I T 1|
e e Y Y mv 17 Y Y Y :-I
| m g4 o [ I |
. o= - . H
e wn H
I 2 |
- . L] - . L]
— [\
j - rﬁlu 3
v e D
o 0®' w S ﬂuu'l' -ouluu Q,
-\c\-‘ R oo-- m _ _ 3 'o'u'-uno'nu o2
v 2 oe g
L
,o'olu - N __
e, = — ~
£ =
| % & I
o < - ‘-‘ol.‘u.‘-uﬂ.‘.u«”u
-~ - 0®
< r.-l.l.l.l ........- ‘O
w o) Cemememiittize ™
% I
A
S o
. o — R
o
o o o o
S 3 e = re} o n S
I3V - b Al I3V = —
.-
F Zp/dp

(MultiSinusoidal wave) @ = —2, K = 0.4, A = 0.1, ag



250 — y
’ ~.\'s —f = 0,10
's.~. meef =015
200 } "~.‘ cesssee f =0.20 |1
cmemef =0.25
150 I '--o...,...... -
N el
ke
o -
ke Scew
100 [ h% |
50 1
T etk TR S n sy,
0 .
0 0.5 1 15

z

Fig.10.12. Pressure gradient versus z for (Square wave)

Q=-2K=04,A=0.1,a0=0.1, ag=0.1, \; = 0.4,

Ay =0.3.
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Fig.10.13. Pressure gradient versus z for (Trapezoidal wave)
Q=-2K=04)\=0.1,a0=0.1, az = 0.1, \; = 0.4,
A2 =0.3.
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Fig. (10.15) (a) . Streamlines for sinusoidal wave when @ = —2,
K = 04, A= 0.1, ag = 0.1, Qg = 0.1, )\1 = 04, )\2 = 03,
¢ =0.4.
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K =04, A=0.1,a0=0.1, ag = 0.1, \; = 0.4, Ay = 0.3,
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Fig. (10.15) (¢) . Streamlines for trapezoidal wave when
Q=-2K=04A=0.1,ay=0.1, as = 0.1, \; = 0.4,
A2 =0.3, ¢ = 0.4.
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Fig. (10.15) (e) . Streamlines for multisinusoidal wave when
Q=-2K=04A=0.1,ay=0.1, as = 0.1, \; = 0.4,
Ao = 0.3, ¢ = 0.4.

218



10.6 Conclusion

This chapter presents the simulation of heat transfer on the peristaltic flow of a Jeffrey-six
constant fluid in a diverging tube. The governing two dimensional equations have been modeled
and then simplified using long wave length approximation. The simplified equations are solved
analytically using regular perturbation method. The results are discussed through graphs. The

main ponts of the performed analysis are as follows:

1. It is observed that the increase in the values of as, ¢ and Aj, causes the increase in

pressure rise while the increase Ay causes decrease in pressure rise..
2. The frictional forces have an opposite behaviour as compared to the pressure rise.
3. It is seen that with increase in ¢ pressure gradient increases.

4. It is observed that the size of trapping bolus in triangular wave is smaller as compared to

the other waves.
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Chapter 11

Conclusions

The main points of thesis can be summarized as follows

1. It is observed that the relation between pressure rise and volume flow rate are inversely

proportional to each other.

2. In the peristaltic pumping region the pressure rise increases with the increase in angle
of inclination, amplitude ratio, wave length and decreases with an increase in Walter,s B

fluid parameter.
3. It is seen that frictional forces have opposite behavior as compared to the pressure rise.
4. Tt is seen that pressure gradient increases with increase in amplitude.

5. It is observed that the size of trapping bolus in triangular wave is smaller as compared to

the trapezoidal and sinusoidal waves.

6. It is observed that in the peristaltic pumping region, pressure rise increases with the
increase in Weissenberg number while the pressure rise decreases with increase in radius

ratio.

7. It is depicted that with increase in Weissenberg number and flow rate pressure gradient

decreases while pressure gradient increases with increase in amplitude ratio.

8. The pressure rise increases with the increase Sisko fluid parameter.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. The pressure rise increases with the increase in amplitude ratio and thermophoresis pa-

rameter.

It is seen that with the increase in the Brownian motion parameter and the thermophoresis

parameter temperature profile increases.

Effects of Brownian motion parameter and the thermophoresis parameter on concentration

profile are same.

It is analyzed that with the increase in viscosity parameter temperature profile increases.
Moreover it is seen that temperature field decreases with the increase in Brinkman number

and Weissenberg number.
Effects of Brinkman and power law index on temperature profile are opposite.
Concentration profile has an opposite behaviour as compared to the temperature profile.

The pressure rise decreases in peristaltic pumping region with an increase in ratio of

relaxation to retardation time and viscosity parameter.
The temperature field increases with the increase in ratio of relaxation to retardation.

It is observed that the volume and size of the trapped bolus increases with increase in

flow rate.

The volume and size of the trapped bolus decreases with the increase in ratio of relaxation

to retardation time.

Perturbation and numerical solutions are in good agreement for small Eyring Powel fluid

parameter.
Pressure rise decreases with an increase in Eyring Powel fluid parameter.
Temperature profile has opposite behaviour for Brinkman and in Eyring Powell fluid.

Concentration profile decreases with an increase in Brinkman and Soret number.
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