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Chapter 0

Introduction

Peristalsis is a mechanism to pump a �uid by means of a moving contraction on the tube walls.

Peristaltic �ow has paramount importance in physiology. Occurrence of such �ows are quite

prevalent in nature. Particularly, these �ows are encountered in smooth muscle contraction.

Peristalsis occur in swallowing food through the esophagus, urine transport from kidney to

bladder through the ureter, transport of the spermatozoa in the ducts a¤erents of the male

reproductive tract, movement of the ovum in the fallopian tube, movement of the chyme in

the gastrointestinal tract, the transport of lymph in the lymphatic vessels and the vasomotion

in small blood vessels such as arterioles, veins and capillaries. Flows due to peristalsis has

wide range of applications in industry and engineering science. Peristaltic pumps are relatively

inexpensive to manufacture and commercially used in industries such as printing, chemical, and

food processing. They also have a variety of uses in the medical �eld. Since there is very little

damage caused by the mechanical action of the roller on the �uid, a peristaltic pump is ideal

for pumping such �uids as blood and is used for that purpose in blood �ltration devices.

Shapiro [1] gave the theoretical idea of peristaltic mechanism which was later on tested

experimentally by Latham [2]: After the work of Latham [2] ; peristalsis mechanism has become

an interesting and important topic of research for scientist and engineers. Peristaltic motion

of a viscous �uid through a pipe and a channel was investigated by Burns and Parkes [3] by

considering sinusoidal variation at the walls. Barton and Raynor [4] studied peristaltic �ow

in tubes using long wave approximation. Barton and Raynor also analyzed the case for low

Reynolds number. Ja¤rin and Shapiro [5] provided an elaborate review of the earlier literature
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regarding peristalsis. Elshehawey et al. [6] discussed the problem of peristaltic transport of an

incompressible viscous �uid in an asymmetric channel through a porous medium. Kothandapani

and Srinivas [7] have discussed the peristaltic �ow of a Je¤rey �uid in an asymmetric channel

in the presence of a transverse magnetic �eld. According to them; Je¤rey �uid is relatively

simple linear model using time derivatives instead of convective derivatives. They noted that

the size of trapped bolus in Je¤rey �uid is much smaller than the Newtonian �uid. Nadeem

and Sa�a [8] have considered the peristaltic transport of a hyperbolic tangent �uid model in

an asymmetric channel: An unsteady peristaltic transport phenomena of non-Newtonian �uid

have been studied by Ikbal et.al [9]. Johnson-Segalman �uid have been studied by Elshahed and

Haroun [10]: Haroun [11] has discussed the e¤ect of Deborah number and phase di¤erence on

peristaltic transport of a third order �uid in an asymmetric channel: A mathematical description

of peristaltic hydromagnetic �ow of Johnson-Segalmanin �uid have been investigated by Hayat

and Ali [12]: Seshadri et.al. [13] studied the peristaltic pumping in non-uniform distensible

tubes with di¤erent wave forms: Nadeem and Akbar [14] have studied the peristaltic motion

of a Herschel Bulkly �uid in a non-uniform inclined tube. Peristaltic transport of a Herschel-

Bulkley �uid in an inclined tube have been studied by Vajravelu et al. [15] :

The study of heat transfer in connection with peristaltic motion has industrial and biological

applications such as sanitary �uid transport, blood pumps in heart lungs machine and transport

of corrosive �uids where the contact of the �uid with machinery parts are prohibited. E¤ect of

heat transfer on the peristaltic �ow of an electrically conducting �uid in a porous space have

been investigated by Hayat et al [16]. The e¤ects of the elasticity of the �exible walls on the

peristaltic transport of viscous �uid with heat transfer in a two dimensional uniform channel

have been analyzed by Radhakrishnamacharya and Srinivasulu [17] : Vajravelu et. al.[18] have

discussed the interaction of peristalsis with heat transfer for the �ow of a viscous �uid in a

vertical porous annular region between two concentric tubes. They concluded that for the

large values of the amplitude ratio, the e¤ects of pressure rise on the �ow rate are negligible.

Mekheimer and Abd-Elmaboud [19] have discussed the in�uence of heat transfer and magnetic

�eld on peristaltic transport of a Newtonian �uid on a vertical annulus and concluded that the

heat transfer analysis may be used to obtain information about the properties of the tissues. Bio

heat transfer phenomena is common in many biological processes as well as in some biomedical
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applications such as in hypothermia treatment and radio frequency ablation [20]. Srinivas and

Gayathri [21] studied peristaltic transport of a Newtonian �uid in a vertical asymmetric channel

with heat transfer and porous medium. Kothandapani and Srinivas [22] analyzed the in�uence

of wall properties in the MHD peristaltic transport with heat transfer and porous medium.

Since most of the biochemical reactions in human body take place in very narrow temperature

range and the reaction rate is largely dependent on the local temperature, the heat transfer

plays a major role in many processes in living systems.

In the studies mentioned above, �uid viscosity is assumed to be constant. But this assump-

tion is not true always. In many thermal transport processes, the temperature distribution

within the �ow �eld is never uniform, i.e, the �uid viscosity may be change noticeably if a

large temperature di¤erences exists in the system. Therefore, it is highly desirable to include

the temperature dependent viscosity in the momentum and thermal transport processes. The

peristaltic transport of MHD �uid with variable viscosity was investigated by Ali et al. [23].

Nadeem and Akbar [24] have examined the e¤ects of heat transfer on the peristaltic transport

of MHD Newtonian �uid with variable viscosity and found the solution by Adomian decompo-

sition method. Hakeem et al. [25] have investigated the e¤ects of hydromagnetic �ow of �uid

with variable viscosity in a uniform tube with peristalsis. Recently Nadeem et al. [26] have

examined the variable viscosity e¤ects on the peristaltic �ow of a MHD Newtonian �uid:

The study of heat and mass transfer is also important because of its large number of applica-

tions in geothermal and geophysical engineering. Such applications are extraction of geothermal

energy, the migration of moisture in �brous insulation, under ground disposal of nuclear waste

and the spreading of chemical pollutants in saturated soil. Only a few attempts have been

made to study the combined e¤ects of heat and mass transfer in peristaltic literature. Eldabe

et al. [27] considered mixed convective heat and mass transfer in a non-Newtonian �uid at

a peristaltic surface with temperature-dependent viscosity. The in�uence of heat and mass

transfer on MHD peristaltic �ow through a porous space with compliant walls was taken into

account by Srinivas and Kothandapani [28] : Nadeem et al. [29] studied the in�uence of heat

and mass transfer on peristaltic �ow of a third order �uid in a diverging tube. In�uence of

radially varying MHD on the peristaltic �ow in an annulus with heat and mass transfer was

investigated by the Nadeem and Akbar [30]. Some more important investigations related to the
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thesis work are cited in Refs. [31� 42]:

Motivated by the above analysis the peristaltic �ows of non-Newtonian �uids have been

discussed, the purpose of the present thesis is to investigate the peristaltic �ows of some non-

Newtonian �uids in tubes and endoscope. Thesis consists of eleven chapters including chapter

zero consists literature survey and the other ten chapters are developed as follow:

In chapter one, we discuss the peristaltic �ow of a Walter;s B �uid in a uniform inclined

tube. The governing equations of Walter;s B �uid in cylindrical coordinates are �rst obtained.

The highly nonlinear partial di¤erential equations are simpli�ed with the help of transforma-

tion and nondimensional variables. Their analytical solutions are calculated by using regular

perturbation method. The content of this chapter are published in Journal of Biorheology,

24(2010)22� 28:

Peristaltic �ow of Williamson �uid model in an endoscope have been discussed in chapter

two. The governing equations of Williamson �uid model in cylindrical coordinates are given for

a two dimensional �ow. The solutions of the reduced nonlinear equations are calculated with

the help of (i) perturbation method (ii) homotopy analysis method and (iii) numerically by

the shooting method. This chapter is published in Journal of Mechanics in Medicine and

Biology. 4(2011)941� 957:

Chapter three is devoted to the study of peristaltic �ow of Sisko �uid in a uniform inclined

tube. In this chapter, we analyze an incompressible Sisko �uid through an axisymmetric uniform

inclined tube with a sinusoidal wave propagating down its walls. The present analysis of non-

Newtonian �uid is investigated under the considerations of long wavelength and low Reynolds

number approximation. The analytic solutions are obtained by using (i) regular perturbation

method and (ii) homotopy analysis method (HAM). The content of this chapter is published

in Acta Mechanica Sinica. 26(2010)675� 683:

Endoscopic e¤ects on the peristaltic �ow of a nano�uid has been examined in chapter four.

This chapter deals with the peristaltic �ow of a nano�uid in an endoscope. The �ow is investi-

gated in a wave frame of reference moving with velocity of the wave. Analytical solutions have

been calculated using homotopy perturbation method (HPM) for temperature and nanoparticle

equation while exact solutions are obtain for velocity and pressure gradient. The content of this

chapter is published in Communications in Theoretical Physics. 56(2011)761� 768:
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In chapter 5, we analyze in�uence of heat transfer on a peristaltic �ow of Johnson Segalman

�uid in a non uniform tube. The governing equations of Johnson Segalman are simpli�ed using

the long wavelength and low Reynolds number assumptions. In the wave frame of reference,

an analytical solutions are computed with the help of two techniques namely (i) perturba-

tion technique, (ii) hAM technique. The work of this chapter is published in International

Communications in Heat and Mass Transfer. 36(2009)1050� 1059.

Chapter 6 discussed the peristaltic transport of a tangent hyperbolic �uid in an endoscope.

The modelling of hyperbolic tangent �uid model for two dimensional �ow in cylindrical co-

ordinates are presented. Using the assumption of long wavelength and low Reynold number,

the governing equations of hyperbolic tangent �uid for an endoscope have been solved using

regular perturbation method and shooting method. The contents of this chapter is published

in Journal of Aerospace Engineering. 24 (2011)309:

In chapter 7, combined e¤ects of heat and chemical reactions on the peristaltic �ow of

Carreau �uid model in a diverging tube. Analysis of the chapter have been done under the con-

sideration of long wavelength in the presence of heat and mass transfer. The �ow is investigated

in a wave frame of reference moving with velocity of the wave. Two types of analytical solutions

have been evaluated (i) Perturbation method (ii) Homotopy analysis method for velocity, the

temperature and concentration �eld. The work of this chapter is accepted for publication in

International Journal of Numerical Methods in �uid 2011.

Chapter 8 described the analytical and numerical analysis of Vogel;s model of viscosity on

the peristaltic �ow of Je¤rey �uid. We have analyzed the e¤ects of temperature dependent

viscosity on the peristaltic �ow of Je¤rey �uid between two coaxial horizontal tubes: The gov-

erning problem is simpli�ed using longwave length and low Reynolds number approximations.

Regular perturbation in terms of small viscosity parameter is used to get the expressions for

the temperature and velocity for Vogel;s models of viscosity. The numerical solution of the

problem has also been computed by shooting methodd. The content of this chapter is accepted

for publication in Journal of Aerospace Engineering 2011.

Characteristics of heating scheme and mass transfer on the peristaltic �ow for an Eyring-

Powell �uid in an endoscope has been given in chapter nine. The governing equations of

proposed model are �rst modeled and then solved analytically and numerically. The content
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of this chapter is published in International Journal of Heat and Mass Transfer 2011.

55(2012)375� 383:

Chapter ten is developed to study the simulation of heat transfer on the peristaltic �ow of

a Je¤rey-six constant �uid in a diverging tube. The modeling of proposed �uid model is given

and regular perturbation method is invoked to �nd an analytical solution for the velocity and

temperature �eld. This chapter has been published in Communication in Heat and Mass

transfer. 38(2011)154� 159:
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Nomenclature

V Velocity �R Space coordinate

S Shear stress �Z Space coordinate

� Density of the �uid g Gravitational force

� Extra stress tensor � Angle of Inclination

� Vis cos ity �U Velocity in radial direction

t1 Transpose �W Velocity in axial direction

a Radius of tube �u Velocity in radial direction

b Wave of amplitude �w Velocity in axial direction

c Wave speed � Wave length

� Wave length �1 Walters B �uid parameter

t Time h Height of the tube wall

Re Reynold number P Pressure

� amplitude ratio  stream function

e Rate of strain tensor �P Pressure rise

f Body force F Frictional force

�1 In�nite shear rate viscosity Q Flow rate

�0 Zero shear rate viscosity � Time constant

a1 radius of inner tube � Second invariant strain tensor

a2 radius of outer tube " Radius ratio

r2 Height of endoscope We Weissenberg number

Br Local concentration Grashof F (0) Frictional force for inner tube

F (i) Frictional force for outer tube q Embedding parameter

hw Auxiliary parameter n Power Law index

b� Si sko �uid parameter Pr Prandtl number

k thermal conductivity, Nb B row nian motion parameter

KT thermal-di¤usion ratio, Nt Themophoresis parameter

Br Brinkmann number �C Concentration in dimensional form

� Concentration in nondimensional form �T Temperature in dimensional form
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� Temperature in nondimensional form Ec Ec ker t number

�; � Viscosities Sr Soret number

�1 Ratio of relaxation to retardation time �2 Re tardation time

A;B Cons tan ts of Vogels models � heat source parameter

Tm Temperature of the medium, �1 Vogels models parameter

u Velocity component in r-direction, �0 Re ference viscosity

Sc Schmidt number �p Density of particle

KT Thermal di¤usion ratio N;M Eyring Powell �uid parameter

Q̂ Heat �ux DT Thermophoretic di¤usion coe¢ cient

�1
Ratio between the e¤ective heat capacity

of the nano particle and heat capacity of �uid
� Kinematic Viscosity

�1; c1 Material constant of Eyring Powell �uid cp Speci�c heat

w Velocity component in z-direction, a3 Slip parameter

�D Symmetric part of the velocity gradient e1 Speci�c internal energy

�W1 Axisymmetric part of the velocity gradient r3 Radient heating

DB B row nian di¤usion coe¢ cient k Thermal conductivity

a0 Radius of inlet K Constant depend on tube length

g; i Material constant of Je¤rey six constant �uid model Gr Grashof number
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Chapter 1

Peristaltic �ow of Walter;s B �uid in

a uniform inclined tube

1.1 Introduction

In this chapter, we have investigated the peristaltic �ow of a Walter;s B �uid in a uniform

inclined tube. The governing equations of Walter;s B �uid in cylindrical coordinates have been

modeled. The highly nonlinear partial di¤erential equations are simpli�ed with the help of

transformation and nondimensional variables. The analytical solutions have been calculated by

using regular perturbation method by taking � as perturbation parameter. The expressions for

pressure rise and friction forces have been calculated using numerical integration. The graphical

results are presented to discuss the various nondimensional physical quantities of Walter;s B

�uid parameter �1, amplitude ratio �; angle of inclination � and wave length �.

1.2 Mathematical Model

For an incompressible �uid the balance of mass and momentum are given by

divV = 0; (1.1)

�
dV

dt
= divS+ �f ; (1.2)
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where � is the density, V is the velocity vector, S is the Cauchy stress tensor, f represents the

speci�c body force and d=dt represents the material time derivative. The constitutive equation

for Walter�s B��uid is given by [32]

S = � �P I+ � ; (1.3)

� = 2�e� 2k0
�1e

�1t
; (1.4)

e = rV+(rV)T ; (1.5)

�1e

�1t
=

@e

@t
+V:re� erV� (rV)T e; (1.6)

in which � �P I is the spherical part of the stress due to constraint of incompressibility, � is the

extra stress tensor, � is the coe¢ cient of viscosity, e is the rate of strain tensor T denotes the

transpose and �1=�1t denotes the convected di¤erentiation of a tensor quantity in relation to

the material motion.

1.3 Problem Formulation

We have considered an incompressible Walter�s B �uid in a uniform inclined tube. The �ow is

produced due to a sinusoidal wave trains propagating with constant speed c along the walls of

the tube and the geometry of the wall surface is de�ned in Fig. 1 (a) :

h=a+b sin
2�

�

�
�Z � c�t

�
; (1.7)

where a is the radius of the tube at inlet, b is the wave amplitude, � is the wavelength, c is the

wave speed and �t is the time. We are considering the cylindrical coordinate system ( �R; �Z), in

which �Z � axis lies along the centerline of the tube and �R is transverse to it.
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Fig. 1 (a). Geometry of the problem.

The governing equations in the �xed frame for an incompressible �ow are given as

@ �U

@ �R
+
�U
�R
+
@ �W

@ �Z
= 0; (1.8)

�

�
@

@�t
+ �U

@

@ �R
+ �W

@

@ �Z

�
�U = �@

�P

@ �R
+
1
�R

@

@ �R

�
�R�� �R �R

�
+

@

@ �Z
(�� �R �Z)�

�� ����
�R
+ �g sin�; (1.9)

�

�
@

@�t
+ �U

@

@ �R
+ �W

@

@ �Z

�
�W = �@

�P

@ �Z
+
1
�R

@

@ �R

�
�R�� �R �Z

�
+

@

@ �Z
(�� �Z �Z) + �g cos�; (1.10)

where �P is the pressure, �U; �W are the respective velocity components in the radial and axial

directions in the �xed frame respectively, g is the constant of gravity and � represent the

inclination angle. In the �xed coordinates
�
�R; �Z

�
; the �ow is unsteady, it becomes steady in

a wave frame (�r; �z) moving with the same speed as the wave moves in the �Z�direction. The

transformations between the two frames are
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�r = �R; �z = �Z � c�t; (1.11)

�u = �U; �w = �W � c; (1.12)

here �u and �w are the velocities in the wave frame. The corresponding boundary conditions are

@ �w

@�r
= 0; �u = 0 at �r = 0; (1.13a)

�w = �c; �u = �cd
�h

d�z
at �r = �h = a+ b sin

2�

�
(�z) : (1.13b)

We introduce the non-dimensional variables as

R =
�R

a
; r =

�r

a
; Z =

�Z

�
; z =

�z

�
; W =

�W

c
; w =

�w

c
; � =

a�

c�

U =
� �U

ac
; u =

��u

ac
; P =

a2 �P

c��
; t =

c�t

�
; � =

a

�
;Re =

�ca

�
;

h =
�h

a
= 1 + � sin 2�z; �1 =

k0c

�a
; E =

�c

�ga2
: (1.14)

Making use of Eqs. (1:11) ; (1:12) and (1:14) ; Eqs. (1:8) to (1:10) along with boundary

conditions (1:13a) and (1:13b) take the form

@u

@r
+
u

r
+
@w

@z
= 0; (1.15)

Re �3
�
u
@

@r
+ w

@

@z

�
u = �@P

@r
� �

r

@

@r
(r� rr)� �2

@

@z
(� rz)�

�� ��
r
+ �

cos�

E
; (1.16)

Re �

�
u
@

@r
+ w

@

@z

�
w = �@P

@z
� 1
r

@

@r
(r� rz)� �

@

@z
(� zz) +

sin�

E
; (1.17)

@w

@r
= 0; u = 0 at r = 0; (1.17a)

w = �1; u = �dh
dz
; at r = h = 1 + � sin 2�z; (1.17b)
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where

� rr = 2�
@u

@r
� 2�1

"
�2u

@2u

@r2
+ �2w

@2u

@r@z
� 2�2

�
@u

@r

�2
� @w

@r

�
@u

@z
�2 +

@w

@r

�#
;

� rz =

�
@u

@z
�2 +

@w

@r

�
� �1

�
�3u

@2u

@r2
+ �u

@2w

@r2
+ w�

@2w

@r@z
+ w

@2u

@z2
�3�

2
@u

@r

@u

@z
�3 � �

�
@u

@z
�2 +

@w

@r

��
@u

@r
+
@w

@z

�
� @w

@r

@w

@z
�

�
;

� zz = 2�
@w

@z
� 2�1

"
�2u

@2w

@r@z
+ �2w

@2w

@z2
� @u

@z
�2
�
@u

@z
�2 +

@w

@r

�
+ 2�2

�
@w

@z

�2#
;

� �� = 2
u

r
� � 2�1�2

�
u
@u

@z
� 3u

2

r2

�
:

In above equations �; Re and �1 represent the wave number, Reynolds number and Walter;s B

�uid parameter respectively. Elimination of pressure gradient from Eqs. (1:16) and (1:17), we

obtain

@

@r

24 �Re �
�
u @
@r + w

@
@z

�
w+

1
r
@
@r (r� rz) + �

@
@z (� zz) +

� cos�
E

35 = @

@z

24 �Re �3
�
u @
@r + w

@
@z

�
u+

�
r
@
@r (r� rr) + �

2 @
@z (� rz)� �

���
r + sin�

E

35 :
(1.18)

Corresponding boundary conditions in dimensionless form are

u = 0;
@w

@r
= 0; at r = 0; (1.19)

u = �dh
dz
; w = �1; at r = h = 1 + � sin 2�z: (1.20)

1.4 Solution of the Problem

Since Eq. (1:18) is highly non-linear equation so its exact solution may be not possible. There-

fore we are interested to calculate the solution with the help of perturbation method. For

perturbation solution we expand u;w and P by taking � as perturbation parameter
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w = w0 + �w1 +O(�
2); (1.21a)

u = u0 + �u1 +O(�
2); (1.21b)

P = P0 + �P1 +O(�
2): (1.21c)

Substituting Eqs. (1:21a) to (1:21c) in Eqs. (1:16) to (1:20), we get zeroth order and �rst order

system of equation then �nd the solutions of all systems we arrive at the �nal solutions which

are de�ned as

w (r; z) = �1+
�
r2 � h2
4

��
@P

@z
� sin�

E

�
+ �
�
B18

�
r6 � h6

�
+ B19

�
r4 � h4

�
+B20

�
r2 � h2

��
;

(1.22)

u (r; z) = B5r + �
�
B21r

7 +B22r
5 +B23r

4 +B24r
3 +B25r

�
; (1.23)

dP

dz
=
�8E

�
2F1 + h

2
�
+ h4 sin�

Eh4
+ �

�
B21
h4

�
: (1.24)

The corresponding stream function can be calculated as

u = �1
r

@	

@z
and w =

1

r

@	

@r
: (1.25)

The pressure rise �P and friction force F can be calculated with the help of following relations

�P =

1Z
0

dP

dz
dz; (1.26)

F =

1Z
0

h2
�
�dP
dz

�
dz; (1.27)

where dP
dz is de�ned in Eq. (1:24). The constants appears in above di¤erential equations are

de�ned as
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B1 =
1

2

�
@P0
@z

� sin�
E

�
; B2 = B21�1; B3 = �B1hh0 �

B21h
3h0

2
+
b1h

2

4
+
b1B1h

4

4
;

B4 =
B21hh

0

4
� b1
4
� b1B1h2; b1 =

�
dP0
dz

�0
; b2 =

b1B1h
4

2
; b3 =

�
dP1
dz

�0
;

B5 = �B1hh
0

2
; B6 = B5B1; a7 = ReB2; B8 =

3B02
2
+ ReB6 +ReB4; B9 = ReB3;

B10 = �1B5B1; B11 =
�1B1B

0
1

2
; B12 = �

�1B1B
0
1h
2

2
; B13 =

�1B1B
0
1

2
;

B14 = ��1B1B
0
1h
2

2
+ �B5B1 � �B21hh0; a15 =

�1B1hh
0

2

�
@P0
@z

� sin�
E

�
;

B16 =
B8
4
+B11 �B13; B17 =

B9
2
+B10 +B12 �B14 �B15; B18 =

B7
36
;

B19 =
B16
4
; B20 =

B17
2
; B21 = B18

�
�6h8

�
+B19

�
�16h6
3

�
+B20

�
�4h4

�
:

The non-dimensional expressions for the �ve considered wave forms are given [13] by the fol-

lowing equations:

1. Sinusoidal wave:

h (z) = 1 + � sin (2�z)

2. Triangular wave:

h (z) = 1 + �

(
8

�3

1X
n=1

(�1)n+1

(2n� 1) sin (2� (2n� 1) z)
)

3. Square wave:

h (z) = 1 + �

(
4

�

1X
n=1

(�1)n+1

(2n� 1) cos (2� (2n� 1) z)
)

4. Trapezoidal wave:

h (z) = 1 + �

(
32

�2

1X
n=1

sin �8 (2n� 1)
(2n� 1)2

sin (2� (2n� 1) z)
)

5. Multi sinusoidal wave:

h (z) = 1 + � sin (2m�z)
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1.5 Graphical Discussion

In this section the pressure rise, frictional forces, axial pressure gradient and stream lines

are discussed and shown graphically (see Figs. 1.1 to 1.10). The pressure rise is calculated

numerically by using Mathematica. Figs. 1.1 to 1.4 show the pressure rise �P against volume

�ow rate Q for di¤erent values of angle of inclination �; amplitude ratio �, wave length � and

Walter;s B �uid parameter �1. These �gures indicate that the relation between pressure rise

and volume �ow rate are inversely proportional to each other. Fig. 1:1 shows that with the

increase in � pressure rise increases. Peristaltic pumping occurs in the region �1 � Q � 0:5

for various values of � and �1 (see Figs.1.2 and 1:4) and �1 � Q � �0:4 for Fig. 1:3; other

wise augmented pumping occurs. Further, the pressure rise increases with an increase in �

and � while decreases with increase in �. Figs. 1:5 to 1:8 describe the variation of frictional

forces. It is seen that frictional forces have opposite behavior as compared to the pressure rise.

Figs: 1:9 (a) to 1:9 (e) are prepared to see the behavior of pressure gradient for di¤erent wave

shapes. It is observed that for z� [0; 0:5] and [1:1; 1:5] ; the pressure gradient is small, while the

pressure gradient is large in the interval z� [0:51; 1]. Moreover, it is seen that pressure gradient

increases with increase in �. The e¤ects of di¤erent parameters on streamlines for the trapping

phenomenon for �ve di¤erent wave forms can be seen through Figs. 1:10 (a to c) : It is observed
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that the size of trapping bolus in triangular wave is smaller as compared to other waves.
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Fig.1:1. Pressure rise versus �ow rate for �1 = 0:05; � = 0:01;

� = 0:4; Re = 6; E = 0:1:
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Fig.1.2. Pressure rise versus �ow rate for for �1 = 0:05;

� = 0:4; � = 0:1; Re = 8; E = 0:1:
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Fig.1:3. Pressure rise versus �ow rate for � = 0:05; �1 = 0:4;

� = 0:1; Re = 5; E = 0:1:
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Fig.1:4. Pressure rise versus �ow rate for � = 0:05; � = 0:4;

� = 0:1; Re = 6; E = 0:1:

22



0 0.5 1 1.5
­20

­10

0

10

20

30

40

50

Q

F

α = 0.0
α = 0.3
α = 0.6
α = 0.9

Fig.1:5. Frictional forces versus �ow rate for �1 = 0:05;

� = 0:01; � = 0:4; Re = 6; E = 0:1:
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Fig.1:6. Frictional force versus �ow rate for �1 = 0:05; � = 0:4;

� = 0:1; Re = 8; E = 0:1:
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Fig.1:7. Frictional force versus �ow rate for �1 = 0:05; � = 0:4;

� = 0:1; Re = 5; E = 0:1:
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Fig.1:8. Frictional force versus �ow rate for � = 0:05; � = 0:4;

� = 0:1; Re = 6; E = 0:1:
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Fig.1:9 (a). Pressure gradient versus (Sinusoidal waves) z for

� = 0:1; �1 = 0:4; Re = 8; � = 0:2; E = 0:1; Q = �1:
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Fig.1:9 (b). Pressure gradient versus (Multisinusoidal waves) z

for � = 0:1; �1 = 0:4; Re = 8; � = 0:2; E = 0:1; Q = �1:
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Fig.1:9 (c). Pressure gradient versus (Square waves) z for

� = 0:1; �1 = 0:4; Re = 8; � = 0:2; E = 0:1; Q = �1:
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Fig.1:9 (d). Pressure gradient versus (Trapezoidal waves) z for

� = 0:1; �1 = 0:4; Re = 8; � = 0:2; E = 0:1; Q = �1:
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Fig.1:9 (e). Pressure gradient versus (Triangular waves) z for

� = 0:1; �1 = 0:4; Re = 8; � = 0:2; E = 0:1; Q = �1:

Fig. (1:10) (a) : Streamlines for Sinusoidal wave when

�1 = 0:05; � = 0:4; Re = 7; E = 0:1; � = 0:1; � = 0:3; Q = �1:
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Fig. (1:10) (b) : Streamlines for square wave when �1 = 0:05;

� = 0:4; Re = 7; E = 0:1; � = 0:1; � = 0:3; Q = �1:

Fig. (1:10) (c) : Streamlines for trapezoidal wave when

�1 = 0:05; � = 0:4; Re = 7; E = 0:1; � = 1:5; � = 0:1; � = 0:3;

Q = �1:
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Fig. (1:10) (d) : Streamlines for triangular wave when

�1 = 0:05; � = 0:4; Re = 7; E = 0:1; � = 0:1; � = 0:3; Q = �1:

Fig. (1:10) (e) : Streamlines for multisinusoidal wave when

�1 = 0:05; � = 0:4; Re = 7; E = 0:1; � = 0:1; � = 0:3; Q = �1:
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1.6 Conclusion

This chapter concerns with the peristaltic �ow of Walter,s B �uid in a uniform inclined tube.

The governing two dimensional equations have been modeled and then simpli�ed using long

wave length and low Reynold;s number approximation. The main points can be summarized

as:

1. It is observed that the relation between pressure rise and volume �ow rate are inversely

proportional to each other.

2. In the peristaltic pumping region the pressure rise increases with the increase in angle of

inclination �; amplitude ratio �, wave length � and decreases with an increase in Walter;s

B �uid parameter �1.

3. It is seen that frictional forces have opposite behavior as compared to the pressure rise.

4. It is seen that pressure gradient increases with increase in �:

5. It is observed that the size of trapping bolus in triangular wave is smaller as compared to

the trapezoidal and sinusoidal waves.

6. If Walter;s B �uid parameter � = 0; the solution of Newtonian �uid can be recovered as

a special case of our problem.
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Chapter 2

Peristaltic �ow of Williamson �uid

model in an endoscope

2.1 Introduction

In this chapter, we have presented the peristaltic �ow of an incompressible Williamson �uid

model in an endoscope. The governing equations of Williamson �uid model in cylindrical coor-

dinates are modelled for two dimensional �ow. The highly nonlinear equations of Williamson

�uid model are simplify using the assumptions of longwave length and low Reynolds number.

The solutions of the reduced nonlinear equations are calculated with the help of (i) Perturbation

method (ii) Homotopy analysis method and (iii) Shooting method. An excellent agreement

between all the solutions are also presented. Also the expressions for pressure rise and velocity

for various physical parameter are discussed through graphs.

2.2 Mathematical Model

For an incompressible �uid the balance of mass and momentum are de�ned in Eqs. (1:1) and

(1:2). The constitutive equation for Williamson �uid is given by [34]

S = �P I+ � (2.1)
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� = �
h
�1 + (�0 + �1)

�
1� � _


��1i
_
; (2.2)

in which � is the extra stress tensor for Williamson �uid, �1 is the in�nite shear rate viscosity,

�0 is the zero shear rate viscosity, � is the time constant, and _
 is de�ned as

_
 =

s
1

2

X
i

X
j

_
ij _
ji =

r
1

2
�: (2.3)

Here � is the second invariant strain tensor. We consider the constitutive Eq. (2:2), the case

for which �1 = 0 and � _
 < 1: The component of extra stress tensor therefore, can be written

as

� = ��0
�
(1� � _
)�1

�
_
 = ��0

�
(1 + � _
)

�
_
: (2.4)

2.3 Mathematical Formulation

Let us consider the peristaltic transport of an incompressible Williamson �uid in a an endoscope.

The �ow is generated by sinusoidal wave trains propagating with constant speed c along the

walls. The geometry of the wall surface is de�ned as and shown through the Fig. 2:

�R1 = a1; (2.5)

�R2 = a2 + b sin
2�

�

�
�Z � c�t

�
; (2.6)

where a1 is the radius of the inner tube, a2 is the radius of the outer tube at inlet, b is the wave

amplitude, � is the wavelength, c the wave speed and �t the time.
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Fig. 2:. Geometry of the problem.

Making use of Eq. (2:4) ; Eqs. (1:1) and (1:2) in component form take the form

@ �U

@ �R
+
�U
�R
+
@ �W

@ �Z
= 0; (2.7)

�

�
@

@�t
+ �U

@

@ �R
+ �W

@

@ �Z

�
�U = �@

�P

@ �R
� 1
�R

@

@ �R

�
�R� �R �R

�
� @

@ �Z
(� �R �Z) ; (2.8)

�

�
@

@�t
+ �U

@

@ �R
+ �W

@

@ �Z

�
�W = �@

�P

@ �Z
� 1
�R

@

@ �R

�
�R� �R �Z

�
� @

@ �Z
(� �Z �Z) ; (2.9)

where �U; �W are the respective velocity components in the radial and axial directions in the

�xed frame respectively.

In the �xed coordinates
�
�R; �Z

�
; the �ow between the two tubes is unsteady. It becomes

steady in a wave frame (�r; �z) moving with the same speed as the wave moves in the �Z�direction.

The transformations between the two frames are
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�r = �R; �z = �Z � c�t;

�u = �U; �w = �W � c; (2.10)

where �u and �w are the velocities in the wave frame.

The appropriate boundary conditions in the wave frame are of the following form

�w = �c; �u = 0 at �r = �r1; (2.11)

�w = �c; at �r = �r2 + b sin
2�

�
�z: (2.12)

We introduce the non-dimensional variables

R =
�R

a
; r =

�r

a2
; Z =

�Z

�
; z =

�z

�
; W =

�W

c
; w =

�w

c
; _
 =

a2
c
_
;

U =
� �U

a2c
; u =

��u

a2c
; P =

a22
�P

c��0
; t =

c�t

�
; � =

a2
�
; Re =

�ca2
�0

;

� =
a2�

c�0
; r1 =

�r1
a2
= �; r2 =

�r2
a2
= 1 + � sin (2�z) : (2.13)

Making use of Eqs. (2:10) and (2:13) ; Eqs. (2:7) to (2:9) along with boundary conditions (2:11)

and (2:12) take the form
@u

@r
+
u

r
+
@w

@z
= 0; (2.14)

Re �3
�
u
@

@r
+ w

@

@z

�
u = �@P

@r
� �

r

@

@r
(r� rr)� �2

@

@z
(� rz) ; (2.15)

Re �

�
u
@

@r
+ w

@

@z

�
w = �@P

@z
� 1
r

@

@r
(r� rz)� �

@

@z
(� zz) ; (2.16)

w = �1; at r = r1 = "; (2.17a)

w = �1; at r = r2 = 1 + � sin (2�z) ; (2.17b)
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where

� rr = �2� [1 +We _
]
@u

@r
;

� rz = � [1 +We _
]

�
@u

@z
�2 +

@w

@r

�
;

� zz = �2� [1 +We _
] �
@w

@z
;

_
 =

"
2�2
�
@u

@r

�2
+

�
@u

@z
�2 � @w

@r

�2
+ 2�2

�
@w

@z

�2#1=2
;

in which �;Re;We represent the wave, Reynolds and Weissenberg numbers, respectively. Under

the assumptions of long wavelength � << 1 and low Reynolds number, neglecting the terms of

order � and higher, Eqs. (2:15) and (2:16) take the form

@P

@r
= 0; (2.18)

@P

@z
=

1

r

@

@r

�
r

�
1 +We

@w

@r

�
@w

@r

�
; (2.19)

w = �1; at r = r1 = "; (2.20a)

w = �1; at r = r2 = 1 + � sin (2�z) : (2.20b)

2.4 Solution of the Problem

2.4.1 Perturbation Solution

To get the solution of Eq. (2:19) ; we employ the regular perturbation to �nd the solution.

For perturbation solution, we expand w; F and P as

w = w0 +Wew1 +O(We2); (2.21a)

F1 = F10 +WeF11 +O(We2); (2.21b)

P = P0 +WeP1 +O(We2): (2.21c)

The perturbation results for small parameterWe; satisfying the conditions (2:20a) and (2:20b) ;
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for velocity and pressure gradient can be directly written as

w = �1 +
�
r2

4
+ a11 ln r + a12

�
dP

dz

+We

 
�
�
r3

12
� a11

r
+ a11r

��
dP0
dz

�2
+a13 ln r + a15)

!
; (2.22)

dP

dz
=
2F1 +

�
r22 � r21

�
a16

+We

�
�a17
a16

�
; (2.23)

where

a11 = �1
4

�
r21 � r22

ln r1 � ln r2

�
; a12 = �

�
r21
4
+ a11 ln r1

�
,

a13 = +
1

ln r1 � ln r2

�
r31 � r32
12

�
�
1

r1
� 1

r2

�
a211 + 2a11(r1 � r2)

��
dP0
dz

�2
;

a14 = �
�
r31
12
� a211

r1
+ 2a11r1

��
dP0
dz

�2
; a15 = a14 � a13 ln r1;

a16 =

 
r42 � r41
8

+ a11
�
r22 ln r2 � r21 ln r1

�
� a11

�
r22 � r21

�
2

+ a12
�
r22 � r21

�!
;

a17 = �
�
r52 � r51
30

� 2a211 (r2 � r1) + 4a11
r32 � r31
3

��
dP0
dz

�2
+a13

 
r22 ln r2 � r21 ln r1 �

�
r22 � r21

�
2

!
+ a15

�
r22 � r21

�
:

The pressure rise �P and friction forces F on inner and outer tubes F (0); F (i); are given by

�P =

1Z
0

dP

dz
dz; (2.24)

F (0) =

1Z
0

r21

�
�dP
dz

�
dz; (2.25)

F (i) =

1Z
0

r22

�
�dP
dz

�
dz; (2.26)

where dP
dz is de�ned in Eqs. (2:23).
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2.4.2 HAM Solution

In this section, we have found the HAM solutions of Eqs. (2:18) and (2:19). For that we choose

[40]

w0 = �1 +
�
r2

4
+ a11 ln r + a12

�
dP

dz
: (2.27)

as the initial guess. Further, the auxiliary linear operator for the problem is taken as

Lwr(w) =
1

r

@

@r

�
r
@w0
@r

�
: (2.28)

From Eqs. (2:18) and (2:19) we can de�ne the following zeroth-order deformation problems

(1� q)Lwr[ �w (r; q)� w0(r)] = q~wNwr[ �w (r; q)]; (2.29)

�w (r; q) = �1; at r = r1; (2.30)

�w (r; q) = �1; at r = r2: (2.31)

In Eqs. (2:30) and (2:31), ~w denote the non-zero auxiliary parameter, q�[0; 1] is the embedding

parameter and

Nwr[w(r; q)] =
@2w

@r2
+
1

r

@w

@r
+
We

r

�
@w

@r

�2
+ 2We

@2w

@r2
@w

@r
� dP

dz
: (2.32)

Obviously

ŵ (r; 0) = w0; ŵ (r; 1) = w (r) ; (2.33)

when q varies from 0 to 1; then ŵ (r; q) varies from initial guess to the solution w (r) : Expanding

ŵ (r; q) in Taylor;s with respect to an embedding parameter q; we have

ŵ (r; q) = w0 (r) +
1X
n=1

wm(r)q
m; (2.34)

wm =
1

m!

@m �w (r; q)

@qm

����
q=0

: (2.35)
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Di¤erentiating the zeroth order deformation m-times with respect to q and then dividing by

m! and �nally setting q = 0, we get the following mth order deformation problem

Lw[wm(r)� �mwm�1(r)] = ~wRwr(r); (2.36)

where

Rwr = w00m�1 +
1

r
w0m�1 +

We

r

m�1X
i=0

w0m�1w
0
m�1�i

+2We
m�1X
i=0

w0m�1w
00
m�1�i �

dP

dz
(1� �m) (2.37)

�m =

8<: 0; m � 1;

1; m > 1:
(2.38)

The solution of the above equation with the help of Mathematica can be calculated and is

presented as

wm(r) = lim
M!1

"
MX
m=0

a0m;0 +

2M+1X
n=1

 
2MX

m=n�1

2m+1�nX
k=1

akm;nr
n ln r

!#
+ lim
M!1

"
2M+1X
n=1

 
2MX

m=n�1

2m+1�nX
k=0

akm;nr
n+2

!#
;

where a0m;0 and a
k
m;n are constants.

2.4.3 Numerical Solution

The present problem consisting of Eqs. (2:18) and (2:19) and solved numerically by employing

shooting method. The numerical results are compared with the perturbation and HAM results

and get a very good agreement between the three solutions. The comparison is made for small

values of Weissenberg number.

2.5 Graphical Results and Discussion

In this section we have presented the solution of the Williamson �uid model graphically. The

expression for pressure rise �P is calculated numerically using mathematics software. The

e¤ects of various parameters on the pressure rise �P are shown in Figs. 2:3 to 2:5 for various
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values of Weissenberg number We, amplitude ratio � and radius ratio ". It is observed from

Figs. 2:3 to 2:5 that pressure rise increases with the increase in We while the pressure rise

decreases with increase in " and �. Peristaltic pumping region is (�2 � Q � �1:3) for Fig.

2:3 and (�2 � Q � 0) for Figs. 2:4 and 2:4, otherwise there is augmented pumping. Figs: 2:6

to 2:11 represent the behavior of frictional forces. It is depicted that frictional forces have an

opposite behavior as compared to the pressure rise. The pressure gradient for di¤erent values

ofWe, �, " and Q against z is plotted in Figs. 2:12 to 2:15. It is shown through the �gures that

in the region z� [0; 0:5] and z� [1; 1:5] ; the pressure gradient is small, while pressure gradient

is large in the region z� [0:6; 0:9], further it is seen that with increase in We and Q pressure

gradient decreases while pressure gradient increases with increase in � and ":

Fig.2:1. h-curve for velocity pro�le for " = 0:1; We = 0:1;

z = 0:1; � = 0:3:

39



r Numerical sol Perturbation sol Error HAM sol Error

0.1 -1.00000 -1.00000 0.00000 -1.00000 0.00000

0.2 -1.02651 -1.02672 0.00020 -1.02708 0.00055

0.3 -1.04062 -1.03992 0.00067 -1.04021 0.00040

0.4 -1.04692 -1.04669 0.00021 -1.04686 0.00210

0.5 -1.04929 -1.04927 0.00010 -1.04931 0.00005

0.6 -1.04867 -1.04864 0.00016 -1.04857 0.00009

0.7 -1.04505 -1.04534 0.00027 -1.04519 0.00013

0.8 -1.03949 -1.03967 0.00116 -1.03947 0.00116

0.9 -1.03194 -1.03184 0.00069 -1.03163 0.00001

1.0 -1.02137 -1.02199 0.00060 -1.02182 0.00044

1.1 -1.01000 -1.01023 0.00027 -1.01013 0.00012

1.2 -1.00000 -1.00000 0.00000 -1.00000 0.00000

Table. 2:1. Comparison of three methods for di¤erent values of " = 0:1; We = 0:1; z = 0:1;

� = 0:3:

0.2 0.4 0.6 0.8 1
­1.05

­1.04

­1.03

­1.02

­1.01

­1

r

w
(r

,z)

Numerical solution
Perturbation solution
HAM solution

Fig. 2.2. Comparison of velocity �eld for " = 0:1; We = 0:1;

z = 0:1; � = 0:3:
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Fig.2:3. Pressure rise versus �ow rate for " = 0:2; � = 0:2:
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Fig.2:4. Pressure rise versus �ow rate for " = 0:1; We = 0:01:
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Fig.2:5. Pressure rise versus �ow rate for We = 0:01; � = 0:1:
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Fig.2:6. Frictional force versus �ow (for inner tube) rate for

" = 0:2; � = 0:2:
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Fig.2:7. Frictional force versus �ow (for inner tube) rate for

" = 0:1; We = 0:01:
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Fig.2:8. Frictional force versus �ow (for inner tube) rate for

� = 0:1; We = 0:01:
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Fig.2:9. Frictional force versus �ow (for outer tube) rate for

" = 0:2; � = 0:1:
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Fig.2:10. Frictional force versus �ow (for outer tube) rate for

We = 0:01; " = 0:1:
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Fig.2:11. Frictional force versus �ow (for outer tube) rate for

We = 0:01; � = 0:1:
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Fig.2:12. Pressure gradient versus z for " = 0:2; Q = �0:5;

� = 0:1:
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Fig.2:13. Pressure gradient versus z for We = 0:1; Q = �0:5;

� = 0:1:
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Fig.2:14. Pressure gradient versus z for We = 0:1; Q = �0:5;

" = 0:01:
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Fig.2:15. Pressure gradient versus z for We = 0:1; � = 0:25;

" = 0:01:

2.6 Conclusion

This chapter presents the analytical and numerical treatment of peristaltic �ow of Williamson

�uid model in an endoscope. The governing two dimensional equations are modeled in cylindri-

cal coordinates system and simpli�ed using long wave length approximation. The analytical and

numerical solutions of simpli�ed equations are calculated. The results are discussed pictorially

through graphs. The main points can be discussed as follows

1. It is analyzed that analytical and numerical solutions are same upto four decimal place.

2. It is observed that in the peristaltic pumping region, pressure rise increases with the

increase in Weissenberg number We while the pressure rise decreases with increase in

amplitude ratio � and radius ratio ":

3. It is seen that frictional forces have opposite behavior as compared to the pressure rise.

4. It is depicted that with increase in We and Q pressure gradient decreases while pressure

gradient increases with increase in � and ":
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Chapter 3

Peristaltic �ow of Sisko �uid in a

uniform inclined tube

3.1 Introduction

In the present chapter, we have analyzed an incompressible Sisko �uid through an axisym-

metric uniform inclined tube with a sinusoidal wave propagating down its walls. The present

analysis of non-Newtonian �uid is investigated under the considerations of long wavelength and

low Reynolds number approximation. The analytic solution is obtained using (i) regular per-

turbation method and (ii) Homotopy analysis method (HAM). The comparison of both the

solutions are presented graphically. The results for the pressure rise, frictional forces

and pressure gradient have been calculated numerically and the results are studied for vari-

ous values of the physical parameters of interest, such as � (angle of inclination) ; b� (Sisko �uid parameter) ;

� (amplitude ratio) and n (power law index). Trapping phenomena is discussed at the end of

the article.
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3.2 Physical Model and Fundamental Equations

For an incompressible �uid the balance of mass and momentum in the presence of body forces

are given by

divV = 0; (3.1)

�
dV

dt
= divS+�f; (3.2)

S = �P I+ � ; (3.3)

where S is the Cauchy stress tensor for Sisko �uid model and � is the extra stress tensor for

Sisko �uid which is de�ned as [33]

� =

�
a� + b5

�p
��
�n�1�

A1; (3.3a)

A1 = L+ L
T; L = gradV; �� =

1

2
tr
�
A21
�
: (3.3b)

3.3 Mathematical Formulation

Let us consider the peristaltic transport of an incompressible Sisko �uid in a uniform inclined

tube. The �ow is generated by sinusoidal wave trains propagating with constant speed c along

the walls of the tube. The geometry of the wall surface is de�ned in chapter one

�h=a+b sin
2�

�

�
�Z � c�t

�
: (3.4)

The governing equations for Sisko �uid in the �xed frame of reference in component form are

given as
@ �U

@ �R
+
�U
�R
+
@ �W

@ �Z
= 0; (3.5)

�

�
@

@�t
+ �U

@

@ �R
+ �W

@

@ �Z

�
�U = �@

�P

@ �R
+
1
�R

@

@ �R

�
�R� �R �R

�
+

@

@ �Z
(� �R �Z)�

� ����
�R
+ �g cos�; (3.6)

�

�
@

@�t
+ �U

@

@ �R
+ �W

@

@ �Z

�
�W = �@

�P

@ �Z
+
1
�R

@

@ �R

�
�R� �R �Z

�
+

@

@ �Z
(� �Z �Z) + �g sin�: (3.7)
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In the �xed coordinates
�
�R; �Z

�
; the �ow is unsteady, it becomes steady in a wave frame (�r; �z)

moving with the same speed as the wave moves in the �Z�direction. The transformations

between the two frames are de�ned in Eqs. (1:11) and (1:12) : The corresponding boundary

conditions are de�ned in Eqs. (1:13) and (1:14) :

Making use of Eqs. (1:11), (1:12) and (1:15), Eq. (3:5) to Eq. (3:7) take the form

@u

@r
+
u

r
+
@w

@z
= 0; (3.8)

Re �3
�
u
@

@r
+ w

@

@z

�
u = �@P

@r
+
�

r

@

@r
(r� rr) + �

2 @

@z
(� rz)� �

���
r
+
� cos�

E
; (3.9)

Re �

�
u
@

@r
+ w

@

@z

�
w = �@P

@z
+
1

r

@

@r
(r� rz) + �

@

@z
(� zz) +

sin�

E
; (3.10)

where

� rr = 2

"
1 + b�

�
@w

@r

�n�1# @u
@r
;

� rz =

"
1 + b�

�
@w

@r

�n�1#�@u
@z
�2 +

@w

@r

�
;

� zz = 2�

"
1 + b�

�
@w

@r

�n�1# @w
@z

;

in which � = a=�; Re = �ca=� and b� = b5=a� (a=c)
n�1 represent the wave number, Reynolds

number and Sisko �uid parameter respectively. Under the assumptions of long wavelength

� << 1 and low Reynolds number, neglecting the terms of order � and higher, Eqs. (3:9) and

(3:10) take the form

@P

@r
= 0; (3.11)

@P

@z
=

1

r

@

@r

 
r

 "
1 + b�

�
@w

@r

�n�1# @w
@r

!!
+
sin�

E
; (3.12)

@w

@r
= 0; at r = 0; (3.13a)

w = �1; at r = h = 1 + � sin 2�z: (3.13b)
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3.4 Solution of the problem

3.4.1 Perturbation Solution

Since, Eq. (3:17) is non linear equation, its exact solution may be not possible, therefore, we

employ the regular perturbation to �nd the solution.

For perturbation solution, we expand w; F and P as

w = w0 + b
�w1 +O(b

�2); (3.14)

F1 = F10 + b
�F11 +O(b

�2); (3.15)

P = P0 + b
�P1 +O(b

�2): (3.16)

Substituting Eqs. (3:14) to (3:16) in Eqs. (3:11) to (3:13) and then �nd the solutions of all the

systems we arrive at the �nal solutions which are de�ned as follow

w = �1 +
�
r2 � h2
4

��
@P

@z
� sin�

E

�
+ b�

�
� a�1
n+ 1

�
rn+1 � hn+1

��
; (3.17)

dP

dz
=
�8E

�
2F1 + h

2
�
+ h4 sin�

Eh4
+ b�

�
16a�n1 h

n+3

h4

�
; (3.18)

where

a�1 =

�
dP0
dz

� sin�
E

�
1

2
.

The pressure rise �P and friction force F are de�ned as follow

�P =

1Z
0

dP

dz
dz; (3.19)

F =

1Z
0

h2
�
�dP
dz

�
dz; (3.20)

where dP
dz is de�ned in Eqs. (3:18).
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3.4.2 HAM Solution

In this section, we have found the HAM solution of Eqs. (3:16) to (3:18). For that we choose

w0 = �1 +
�
r2 � h2
4

��
@P

@z
� sin�

E

�
; (3.21)

as the initial guess. Further, the auxiliary linear operator for the problem is taken as

Lwr(w) =
1

r

@

@r

�
r
@w0
@r

�
; (3.22)

we can de�ne the following zeroth-order deformation problems

(1� q)Lwr[ �w (r; q)� w0(r)] = q~wNwr[ �w (r; q)]; (3.23)

@ �w (r; q)

@r
= 0; at r = 0; (3.24)

�w (r; q) = �1; at r = h: (3.25)

In Eqs. (3:23) to (3:25), ~w denote the non-zero auxiliary parameter, q�[0; 1] is the embedding

parameter and

Nwr[ �w(r; q)] =
@2w

@r2
+
1

r

@w

@r
+ b�n

@2w

@r2

�
@w

@r

�n�1
+
b�

r

�
@w

@r

�n
� dP

dz
: (3.26)

Obviously
@ŵ (r; 0)

@r
= w0; ŵ (r; 1) = w (r) ; (3.27)

when q varies from 0 to 1; then ŵ (r; q) varies from initial guess to the solution w (r) : Expanding

ŵ (r; q) in Taylor;s with respect to an embedding parameter q; we have

ŵ (r; q) = w0 (r) +
1X
n=1

wm(r)q
m; (3.28)

wm =
1

m!

@m �w (r; q)

@qm

����
q=0

: (3.29)
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Di¤erentiating the zeroth order deformation m-times with respect to q and then dividing by

m! and �nally setting q = 0, we get the following mth order deformation problem

Lw[wm(r)� �mwm�1(r)] = ~wRwr(r); (3.30)

where

Rwr = w00m�1 +
1

r
w0m�1 +

b�

r

�
w0m�1

�n
+ b�n

m�1X
i=0

w0m�1w
00
m�1�i

�dP
dz
(1� �m) ; (3.31)

�m =

8<: 0; m � 1;

1; m > 1:
(3.32)

The solution of the above equation with the help of Mathematica can be calculated and pre-

sented as follows

wm(r) = lim
M!1

"
MX
m=0

a0m;0 +
2M+1X
n=1

 
2MX

m=n�1

2m+1�nX
k=0

akm;nr
2n+2

!#
; (3.33)

where a0m;0 and a
k
m;n are constants.

3.5 Graphical Results and Discussion

In this section we have presented the solution of the Sisko �uid model graphically. Figs. 3:1 (a) ;

3:2 (a) and 3:3 (a) show the h-curve for velocity pro�le. Figs. 3:1 (b; c) ; 3:2 (b; c) ; 3:3 (b; c)

show the comparison of velocity �eld. The expression for pressure rise �P frictional forces F ,

pressure gradient dP=dz is calculated numerically using mathematics software. The e¤ects of

various parameters on the pressure rise �P are shown in Figs. 3:4 to 3:6 for various values of

angle of inclination �; Weissenberg number We, amplitudes ratio �; di¤erent wave forms and

for di¤erent �uids. It is observed from Figs. 3:4 to 3:6 that pressure rise increases with the

increase in �, We and �: Moreover, the peristaltic pumping occurs in the region 0 � Q � 0:3

for Figs. 3:4 and 0 � Q � 0:5 for Figs. 3:5 and 3:6; other wise augmented pumping occurs. Fig.
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3:7 shows the e¤ects of �ve di¤erent wave form on pressure rise. It is analyzed that the square

wave has best peristaltic pumping characteristics, while triangular waves has worst pumping

characteristics. The peristaltic pumping occurs in the region (0 � Q � 0:5) for Fig. 3:7;

otherwise augmented pumping occurs. Fig. 3:8 shows the e¤ects of pressure rise for di¤erent

�uids. From �gures it is seen that Newtonian �uid has best peristaltic pumping characteristics.

The variations of frictional forces are plotted in Figs. 3:9 to 3:13. It can be seen that frictional

forces have opposite behavior as compared to the pressure rise. Figs: 3:14 (a) to 3:14 (e) are

prepared to see the behavior of pressure gradient for di¤erent wave shapes. It is observed from

the �gures that for z� [0; 0:5] and [1:1; 1:5] the pressure gradient is small and large pressure

gradient occurs for z� [0:51; 1]. Moreover it is seen that with increase in � pressure gradient

increases. The e¤ects of di¤erent parameters on streamlines for the trapping phenomenon for

four di¤erent wave forms can be seen through Fig. 3:15: It is depicted that the size of trapping

bolus in triangular wave is smaller as compared to the trapezoidal and sinusoidal waves.

Case. 1 (n = 0 Shear Thinning Fluid)

Fig.3:1 (a). h-curve for velocity pro�le.
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Fig.3:1 (b). Comparison of velocity �eld for E = 0:4; z = 0:2;

� = 0:3:
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Fig.3:1 (c). Comparison of velocity �eld for E = 0:5; z = 0:2;

� = 0:3; b� = 0:01; � = 0:03; n = 1; L = 4; R = 1:25:
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Case. 2 (n = 1 Newtonian Fluid)

Fig.3:2 (a). h-curve for velocity pro�le
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Fig.3:2 (b). Comparison of velocity �eld for E = 0:5; z = 0:2;

� = 0:3; b� = 0:01; � = 0:03; n = 1:
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Fig.3:2 (c). Comparison of velocity �eld for E = 0:5; z = 0:2;

� = 0:3; b� = 0:01; � = 0:03; n = 1; L = 4; R = 1:25:

Case. 3 (n = 3 Shear Thickening Fluid)

Fig.3:3 (a). h-curve for velocity pro�le.
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Fig.3:3 (b). Comparison of velocity �eld for E = 0:5; z = 0:2;

� = 0:3; b� = 0:01; � = 0:03; n = 2:
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Fig.3:3 (c). Comparison of velocity �eld for E = 0:5; z = 0:2;

� = 0:3; b� = 0:01; � = 0:03; n = 2:
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Fig.3:4. Pressure rise versus �ow rate for b� = 0:1; E = 0:1;

n = 2; � = 0:4:
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Fig.3:5. Pressure rise versus �ow rate for n = 2; E = 0:1;

� = 0:1; � = 0:4:
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Fig.3:6. Pressure rise versus �ow rate for n = 2; E = 0:1;

� = 0:1; b� = 0:4:
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Fig.3:7. Pressure rise versus �ow rate for b� = 0:1; E = 0:1;

n = 2; � = 0:4; � = 0:2:
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Fig.3:8. Pressure rise versus �ow rate for b� = 0:1; E = 0:1;

� = 0:4; � = 0:4:
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Fig.3:9. Frictional force versus �ow rate for b� = 0:1; E = 0:1;

n = 2; � = 0:4:
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Fig.3:10. Frictional force versus �ow rate for n = 2; E = 0:1;

� = 0:1; � = 0:4:
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Fig.3:11. Frictional force versus �ow rate for n = 2; E = 0:1;

� = 0:1; b� = 0:4:
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Fig.3:12. Frictional force versus �ow rate for b� = 0:1; E = 0:1;

n = 2; � = 0:4; � = 0:2:
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Fig.3:13. Frictional force versus �ow rate for b� = 0:1; E = 0:1;

� = 0:4; � = 0:4:
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Fig.3:14 (a). Pressure gradient versus z for sinusoidal wave, for

n = 2; E = 0:1; � = 0:4; b� = 0:1:; Q = �1:5:
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Fig.3:14 (b). Pressure gradient versus z for square wave, for

n = 2; E = 0:1; � = 0:4; b� = 0:1:; Q = �1:5:
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Fig.3:14 (c). Pressure gradient versus z for Trapezoidal wave,

for n = 2; E = 0:1; � = 0:4; b� = 0:1:; Q = �1:5:
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Fig.3:14 (d). Pressure gradient versus z for triangular wave, for

n = 2; E = 0:1; � = 0:4; b� = 0:1:; Q = �1:5:
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Fig.3:14 (e). Pressure gradient versus z for multisinusoidal

wave for n = 2; E = 0:1; � = 0:4; b� = 0:1:; Q = �1:5:

Fig. 3:15 (a) : Streamlines for sinusoidal wave when � = 0:4;

b� = 0:1; � = 0:4; E = 0:1; Q = 2:5:
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Fig. 3:15 (b) : Streamlines for square wave when � = 0:4;

b� = 0:1; � = 0:4; E = 0:1; Q = 2:5:

Fig. 3:15 (c) : Streamlines for trapezoidal wave when � = 0:4;

b� = 0:1; � = 0:4; E = 0:1; Q = 2:5:
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Fig. 3:15 (d) : Streamlines for triangular wave when � = 0:4;

b� = 0:1; � = 0:4; E = 0:1; Q = 2:5:

Fig. 3:15 (e) : Streamlines for multisinusoidal wave when

� = 0:4; b� = 0:1; � = 0:4; E = 0:1; Q = 2:5:

68



3.6 Conclusion

The perturbation and HAM solutions of Eqs. (3:10) to (3:12) have been computed for velocity

pro�le. The expressions for pressure rise and pressure gradient have been discussed for �ve

wave shapes. The following observations have been found.

1. The pressure rise increases with the increase in �; b� and �:

2. It is observed that frictional forces have an opposite behavior as compared to the pressure

rise

3. The pressure rise for square wave gives larger pumping among the �ve wave shapes and

trapezoidal wave has the lowest pumping characteristics

4. The size of trapped bolus in triangular wave is smaller as compared to trapezoidal and

sinusoidal wave

5. The pressure gradient increases with increase in � for all �ve wave shapes.
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Chapter 4

Endoscopic e¤ects on the peristaltic

�ow of a nano�uid

4.1 Introduction

This chapter deals with the peristaltic �ow of a nano�uid in an endoscope. The �ow is investi-

gated in a wave frame of reference moving with velocity of the wave c. Analytical solutions have

been calculated using Homotopy Perturbation Method (HPM) for temperature and nanoparticle

equation while exact solutions have been calculated for velocity and pressure gradient. Numer-

ical integration have been used to obtain the graphical results for pressure rise and frictional

forces. The e¤ects of various emerging parameters are investigated for �ve di¤erent peristaltic

waves. Streamlines have been plotted at the end of the chapter.

4.2 Mathematical Formulation

Let us consider the peristaltic �ow of an incompressible nano�uid in an endoscope. The �ow

is generated by sinusoidal wave trains propagating with constant speed c along the walls of

the tube. Heat transfer along with nanoparticle phenomena has been taken into account. The

inner tube is rigid and maintained at temperature �T0 while the outer tube has a sinusoidal wave

traveling down its walls and maintained at temperature �T1. The geometry of the wall surfaces

is de�ned in Eqs. (2:7) and (2:8) :
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With the help of transformations (2:12) ; the governing equations along with nanoparticles

[36] take the following form
1

�r

@ (�r�u)

@�r
+
@ �w

@�z
= 0; (4.1)

�

�
�u
@�u

@�r
+ �w

@�u

@�r

�
= �@

�P

@�r
+ �

�
@2�u

@�r2
+
1

�r

@�u

@�r
+
@2�u

@�z2
� �u

�r2

�
; (4.2)

�

�
�u
@ �w

@�r
+ �w

@ �w

@�z

�
= �@

�P

@�z
+ �

�
@2 �w

@�r2
+
1

�r
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@�r
+
@2 �w

@�z2

�
+ �g�

�
�T � �T0

�
+ �g�

�
�C � �C0

�
; (4.3)

�cp

�
�u
@ �T

@�r
+ �w

@ �T
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�
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�
@2 �T

@�r2
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�r
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@�r
+
@2 �T

@�z2

�
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�
DB

�
@ �C

@�r

@ �T

@�r
+
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@�z
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@�z

�
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�T0
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�
�u
@ �C

@�r
+ �w

@ �C

@�z

�
= DB

�
@2 �C

@�r2
+
1

�r
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@�r
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@2 �C

@�z2

�
+
D �T
�T0

�
@2 �T

@�r2
+
1

�r

@ �T

@�r
+
@2 �T

@�z2

�
; (4.5)

where �C is the nanoparticle phenomena, the ambient values of �T and �C as �r approaches to �h

is denoted by �T0 and �C0, DB is the Brownian di¤usion coe¢ cient, D �T is the thermophoretic

di¤usion coe¢ cient, and �1 = (�c1)p = (�c1)f is the ratio between the e¤ective heat capacity

of the nano particle material and heat capacity of the �uid when � being the density, c is the

volumetric volume expansion coe¢ cient and �p is the density of the particle.

The corresponding boundary conditions in the wave frame are

�w = �c; �T = �T0; �C = �C0, at �r = �r1; (4.6)

�w = �c; �T = �T1; �C = �C1 at �r = �r2 = a2 + b sin
2�

�
(�z) : (4.7)
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We introduce the non-dimensional variables

R =
�R

a2
; r =

�r

a2
; Z =

�Z

�
; z =

�z

�
; W =

�W

c
; w =

�w

c
;U =

� �U

a2c
; u =

��u

a2c
;

P =
a22
�P

c��
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�
�T � �T1

��
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�
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�
; Re =
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�

; � =

�
�C � �C1

��
�C0 � �C1

� ;
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�r2
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= 1 + � sin (2�z) ; �2 =

k

(�c)f
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�
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�
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�
(�c)f �2
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�
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;
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3
2

�
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�
�2

: (4.8)

in which Pr; Nb , Nt, Gr and Br are the Prandtl number, the Brownian motion parameter , the

thermophoresis parameter, local temperature Grashof number, nanoparticle Grashof number.

With the help of Eq. (4:8); Eqs. (4:1) to (4:7) under the assumptions of long wavelength

and low Reynolds number approximation take the form

@u
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+
u
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+
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@z
= 0; (4.9)
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�
r
@�
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��
= 0: (4.13)

The corresponding boundary conditions are

w = �1; at r = r1 = "; w = �1; at r = r2 = 1 + � sin (2�z) ; (4.14a)

� = 1, at r = r1; � = 0, at r = r2; (4.14b)

� = 1, at r = r1; � = 0, at r = r2: (4.14c)
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4.3 Solution of the Problem

4.3.1 Homotopy Perturbation Solution

The homotopy perturbation method for Eqs. (4:12) and (4:13) can be de�ned as [38; 39]

H (q; �) = (1� q) [L (�)� L (�10)] + q
"
L (�) +Nb

@�

@r

@�

@r
+Nt

�
@�
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�2#
; (4.15)
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or

H (q; �) = L (�)� L (�10) + qL (�10) + q
"
Nb
@�

@r

@�

@r
+Nt

�
@�

@r

�2#
; (4.17)

H (q; �) = L (�)� L (�10) + qL (�10) + q
�
Nt
Nb

�
1

r

@

@r

�
r
@�

@r

���
: (4.18)

According to method, L = 1
r
@
@r

�
r @@r
�
as the linear operator, therefore we can choose the initial

guesses as

�10 (r; z) =

�
ln r � ln r2
ln r1 � ln r2

�
; �10 (r; z) =

�
ln r � ln r2
ln r1 � ln r2

�
: (4.19)

Let us de�ne

� (r; q) = �0 + q�1 + q
2�2 + :::::; (4.20)

� (r; q) = �0 + q�1 + q
2�2 + :::: (4.21)

Adopting the same procedure as done by [38; 39], the solution for temperature and nanoparticle

phenomena can be written as for q = 1

� (r; z) =
1

A1
((A2(log r � log r1)(2 log r �A4)� 6(Nb +Nt)(log r � log r1)

(log r � log r2) + 12A24)(log r � log r2))); (4.22)

� (r; z) =
1

A4A5
(A5(log r � log r2) +A3A4(log r � log r1)(log r � log r2)(2 log r �A4): (4.23)
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Substituting Eqs. (4:22) and (4:23) into Eq. (4:11); the exact solution for velocity and pressure

gradient can be directly written as

w (r; z) = � 1

96A34Nb
(r2(�A10 +A19 + 3A17(Nb +Nt)� (A9 + 6A8(Nb +Nt)) log r

+6A7(Nb +Nt) log r
2 � 2A6 log r3 � 24

dP

dz
Nb
�
log r31 � log r32

�
+ log r1 log r2

(A14 +A20 � 2(A15Br �A16GrNb + 36
dP

dz
Nb) log r2 + log r

2
1(A18 �A11Br

�2(A12 �Nb(A13 + 36
dP

dz
)) log r2))) + (A21 +A22

dP

dz
) log r + (A23

+A24
dP

dz
): (4.24)

dP

dz
=
F1 �A25
A26

: (4.25)

Flow rate in dimensionless form can be de�ne as [1� 5] :

F1 = 2Q�
�2

2
� 1:

The pressure rise �P and friction force F on inner and outer tubes F (0); F (i); are given by

�P =

1Z
0

dP

dz
dz; (4.26)

F (0) =

1Z
0

r21

�
�dP
dz

�
dz; (4.27)

F (i) =

1Z
0

r22

�
�dP
dz

�
dz; (4.28)

where dP
dz is de�ned in Eq. (4:25).

For analysis, we have considered �ve wave forms namely sinusoidal, multi-sinusoidal, trian-

gular, square and trapezoidal. The non-dimensional expressions for these wave forms are given

by
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1. Sinusoidal wave:

r2 (z) = 1 + � sin (2�z)

2. Triangular wave:

r2 (z) = 1 + �

(
8

�3

1X
n=1

(�1)n+1

(2n� 1) sin (2� (2n� 1) z)
)

3. Square wave:

r2 (z) = 1 + �

(
4

�

1X
n=1

(�1)n+1

(2n� 1) cos (2� (2n� 1) z)
)

4. Trapezoidal wave:

r2 (z) = 1 + �

(
32

�2

1X
n=1

sin �8 (2n� 1)
(2n� 1)2

sin (2� (2n� 1) z)
)

5. Multi sinusoidal wave:

r2 (z) = 1 + � sin (2m�z) :

4.4 Numerical Results and Discussion

In this section we have presented the solution for the peristaltic �ow of a nano�uid in an

endoscope graphically. The expression for pressure rise �P is calculated numerically using

mathematics software. The e¤ects of various parameters on the pressure rise �P against

volume �ow rate Q are shown in Figs. 4:1 to 4:3 for various values of amplitude ratio �,

thermophoresis parameter Nt and radius ratio �. It is observed that the pressure rise and

volume �ow rate give opposite results. It is analyzed from Figs. 4:1 to 4:3 that pressure

rise increases with the increase in amplitude ratio � and thermophoresis parameter Nt; while

the pressure rise decreases with the increase in radius ratio �. Peristaltic pumping region is

(�1 � Q � 0:3) ; where as augmented pumping region is (0:31 � Q � 2) for Figs. 4:1 and 4:2,

peristaltic pumping region is (�1 � Q � 0:2) and augmented pumping region is (0:21 � Q � 2)

for Fig. 4.3. Figs. 4:4 to 4:9 represents the behavior of frictional forces for inner and outer

tubes. It is depicted that frictional forces have an opposite behavior as compared to the pressure
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rise: E¤ects of temperature pro�le have been shown through Figs. 4:10 and 4:11: It is seen that

with the increase in the Brownian motion parameter Nb and the thermophoresis parameter Nt

temperature pro�le increases in the region 0:1 � r � 0:4, decreases in the region 0:41 � r � 1 for

Fig. 4:10, and increases in the whole region 0:1 � r � 1 for Fig. 4:11: It can also be analyzed

through �gures that Brownian motion parameter Nb and the thermophoresis parameter Nt

have qualitatively similar e¤ects on temperature pro�le. Maximum temperature pro�le occurs

at r = 0:7 while minimum temperature pro�le occurs at r = 0:2: The nanoparticle phenomena

� for di¤erent values of the Brownian motion parameter Nb and the thermophoresis parameter

Nt are shown in Figs: 4:12 and 4:13. We observed that the nanoparticle phenomena decrease

with an increase in Brownian motion parameter Nb and thermophoresis parameter Nt in the

region 0:1 � r � 0:3 and increases in the region 0:31 � r � 1: Brownian motion parameter Nb
and thermophoresis parameter Nt have similar e¤ects on nanoparticle phenomena. Maximum

nanoparticle phenomena is at r = 0:7 and minimum nanoparticle phenomena is at r = 0:2: Figs.

4:10 and 4:13 show that temperature pro�le and nanoparticle phenomena have qualitatively

opposite behaviour for every parameter. Figs: 4:14 (a to e) are prepared to see the behavior of

pressure gradient for di¤erent wave shapes. It is observed from the �gures that for z� [0; 0:5]

and [1:1; 1:5] ; the pressure gradient is small and large pressure gradient occurs for z� [0:51; 1],

moreover, it is seen that with increase in � pressure gradient increases and maximum change

in pressure is at r = 0:3. Figs: 4:15 (a to e) show the streamlines for di¤erent wave forms. It

is observed that the size of the trapped bolus in triangular wave is small as compared to the
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other waves.
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Fig.4.1: Pressure rise versus for r1 = 0:05; � = 0:05; Gr = 0:3;

Br = 0:2; Nt = 0:8; Nb = 0:3:
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Fig.4:2: Pressure rise versus �ow rate for r1 = 0:05; � = 0:01;

Gr = 3; Br = 0:2; Nb = 10:
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Figs.4:3: Pressure rise versus �ow rate for r1 = 0:05; � = 0:05;

Gr = 0:3; Br = 0:2; Nt = 0:8; Nb = 0:3:
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Figs.4:4: Frictional force for inner tube versus �ow rate for

r1 = 0:05; � = 0:05; Gr = 0:3; Br = 0:2; Nt = 0:8; Nb = 0:3:
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Fig.4:5: Frictional force for inner tube versus �ow rate for

r1 = 0:05; � = 0:01; Gr = 3; Br = 0:2; Nb = 10:
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Figs.4:6: Frictional force for inner tube versus �ow rate for

r1 = 0:05; � = 0:05; Gr = 0:3; Br = 0:2; Nt = 0:8; Nb = 0:3:
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Fig.4:7: Frictional force for outer tube versus �ow rate for

r1 = 0:05; � = 0:05; Gr = 0:3; Br = 0:2; Nt = 0:8; Nb = 0:3:
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Figs.4:8: Frictional force for outer tube versus �ow rate for

r1 = 0:05; � = 0:01; Gr = 3; Br = 0:2; Nb = 10:
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Fig.4:9: Frictional force for outer tube versus �ow rate for

r1 = 0:05; � = 0:05; Gr = 0:3; Br = 0:2; Nt = 0:8; Nb = 0:3:
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Figs.4:10 Temperature pro�le for Nb = 8; r1 = 0:1; � = 0:2;

z = 0:5:
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Figs.4:11 Temperature pro�le for Nt = 0:5; r1 = 0:1; � = 0:2;

z = 0:5:

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r

σ(
r,z

)

Nb = 1
Nb = 7
Nb = 13
Nb = 20

Fig.4:12: Concentration pro�le for Nt = 8, r1 = 0:1; � = 0:2;

z = 0:5:
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Figs.4:13: Concentration pro�le for Nb = 8, r1 = 0:1; � = 0:2;

z = 0:5:
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Fig.4:14 (a). Pressure gradient versus z for (Sinusoidal wave)

for r1 = 0:05; � = 0:05; Q = �2; Nt = 0:3; Gr = 0:3; Br = 0:2;

Nb = 0:3:
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Fig.4:14 (b). Pressure gradient versus z for (Square wave) for

r1 = 0:05; � = 0:05; Q = �2; Nt = 0:3; Gr = 0:3; Br = 0:2;

Nb = 0:3:
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Fig.4:14 (c). Pressure gradient versus z for (Trapezoidal wave)

for r1 = 0:05; � = 0:05; Q = �2; Nt = 0:3; Gr = 0:3; Br = 0:2;

Nb = 0:3:
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Fig.4:14 (d). Pressure gradient versus z for (Triangular wave)

for r1 = 0:05; � = 0:05; Q = �2; Nt = 0:3; Gr = 0:3; Br = 0:2;

Nb = 0:3:
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Fig.4:14 (e). Pressure gradient versus z for

(Multisinusoidal wave) for r1 = 0:05; � = 0:05; Q = �2;

Nt = 0:3; Gr = 0:3; Br = 0:2; Nb = 0:3:
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Figs.4:15 (a). Streamlines for sinusoidal wave when r1 = 0:1;

� = 0:1; Q = �2; Nt = 0:3; Gr = 0:3; Br = 0:2; Nb = 0:3:

Figs.4:15 (b). Streamlines for square wave when r1 = 0:1;

� = 0:1; Q = �2; Nt = 0:3; Gr = 0:3; Br = 0:2; Nb = 0:3:
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Figs.4:15 (c). Streamlines for trapezoidal wave when r1 = 0:1;

� = 0:1; Q = �2; Nt = 0:3; Gr = 0:3; Br = 0:2; Nb = 0:3:

Figs.4:15 (d). Streamlines for triangular wave when r1 = 0:1;

� = 0:1; Q = �2; Nt = 0:3; Gr = 0:3; Br = 0:2; Nb = 0:3:
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Figs.4:15 (e). Streamlines for multisinusoidal wave when

r1 = 0:1; � = 0:1; Q = �2; Nt = 0:3; Gr = 0:3; Br = 0:2;

Nb = 0:3:

4.5 Conclusion

This study examines the peristaltic �ow of a nano�uid in an endoscope. Homotopy perturbation

solutions have been evaluated for temperature and concentration pro�le, while exact solutions

have been calculated for velocity pro�le. The main points of the performed analysis are as

follows.

1. The pressure rise increases with the increase in � (amplitude ratio) andNt (thermophoresis parameter)

while the pressure rise decreases with the increase in � (radius ratio).

2. The frictional forces have an opposite behaviour as compared to the pressure rise.

3. It is seen that with the increase in the Brownian motion parameter Nb and the ther-

mophoresis parameter Nt temperature pro�le increases.

4. E¤ects of Brownian motion parameter Nb and the thermophoresis parameter Nt on

concentration pro�le are same.

5. Pressure gradient increases with an increase in � for all considered waves:

6. The size of trapped bolus for triangular wave is small as compared to the other waves.
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Appendix

A1 = 12(log r1 � log r2)3; A2 = �(Nb +Nt)(Nb + 2Nt); A3 = Nt(Nb +Nt)(Nb + 2Nt);

A4 = log r1 � log r2; A5 = 12Nb(log r1 � log r2)3 A6 = 2 (GrNb �BrNt) (N2
b + 3NbNt + 2N

2
t );

A7 = 2(Nb + 2Nt) (GrNb �BrNt) + (GrNb(�2 +Nb + 2Nt)�BrNt(Nb + 2Nt)) log r1

+(�BrNt(Nb + 2Nt) +GrNb (2 +Nb + 2Nt)) log r2;

A8 = 2(Nb + 2Nt) (GrNb �BrNt) + (�GrNb(2�Nb � 2Nt)�BrNt(Nb + 2Nt)) log r1

+(�BrNt(Nb + 2Nt)�GrNb (2�Nb � 2Nt)) log r2;

A9 = 2(3(Nb +Nt)(Nb + 2Nt) (GrNb �BrNt)� (�GrNb(N2
b + 3Nb (�2 +Nt) + 2(3(Nb +Nt)

(Nb + 2Nt)) +Br(N
2
bNt + 2N

3
t + 3Nb

�
4 +N2

t

�
)) log r21 + 3(Nb +Nt)(�BrNt(Nb + 2Nt)

(GrNb (2 +Nb + 2Nt)) log r2 + (�Br(N2
bNt + 2N

3
t + 3Nb

�
4 +N2

t

�
) +GrNb(N

2
b + 3Nb (2 +Nt)

+2(�6 +Nt (3 +Nt)))) log r22 + log r1(3(Nb +Nt)(GrNb(�2 +Nb + 2Nt)�BrNt(Nb + 2Nt)

+4(GrNb(6 + (Nb +Nt)(Nb + 2Nt)�Br(N2
bNt + 2N

3
t + 3Nb

�
�2 +N2

t

�
)) log r2;

A10 = �(Nb +Nt)(Nb + 2Nt) (GrNb �BrNt) + log r2(�3(Nb +Nt)(�BrNt(Nb + 2Nt) +GrNb(2

+Nb + 2Nt)) + log r2(Br(N
2
bNt + 2N

3
t + 3Nb

�
4 +N2

t

�
)�GrNb(N2

b + 3Nb (2 +Nt) + 2(�6

+Nt (3 +Nt))) + 24 (Br +Gr)Nb log r2));

A11 = N2
bNt + 2N

3
t + 3Nb

�
4 +N2

t

�
�GrNb(N2

b + 3Nb (�2 +Nt) + 2(�6 +Nt (�3 +Nt));

A12 = Br(N
2
bNt + 2N

3
t + 3Nb

�
4 +N2

t

�
); A13 = Gr(N

2
b + 3Nb (�2 +Nt) + 2

�
�6� 3Nt +N2

t

�
);

A14 = GrNb(24 + 7N
2
b + 2Nt (�3 + 7Nt) + 3Nb (�2 + 7Nt))�Br(7N2

bNt + 14N
3
t + 3Nb

�
�8 +N2

t

�
);

A15 = (N2
bNt + 2N

3
t + 3Nb

�
�8 +N2

t

�
); A16 =

�
24 + 6Nb +N

2
b + 6Nt + 3NtNb + 2N

2
t

�
;

A17 = 2(Nb + 2Nt) (GrNb �BrNt) + (GrNb(�2 +Nb � 2Nt)�BrNt(Nb + 2Nt)) log r1

�(�BrNt(Nb + 2Nt) +GrNb(2 +Nb + 2Nt)) log r2;

A18 = �2(GrNb(6� 2N2
b +Nb(3� 6Nt) + (3� 4Nt)Nt) + 2Br(N2

bNt + 2N
3
t + 3Nb(1 +N

2
t )));
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A19 = log r2(3(Nb +Nt)(�BrNt(Nb + 2Nt) +GrNb(2 +Nb + 2Nt)) + (�Br(N2
bNt + 2N

3
t + 3Nb(4 +N

2
t ))

+GrNb(N
2
b + 3Nb(2 +Nt) + 2(�6 +Nt(3 +Nt)))) log r2;

A20 = GrNb(24 + 7N
2
b + 2Nt(�3 + 7Nt) + 3Nb(�2 + 7Nt))�Br(7N2

bNt + 14N
3
t + 3Nb(�8 + 7N2

t ));

A21 =
1

96A34Nb (log r1 � log r2)
(�(A10 �A19 � 3A17(Nb +Nt))

�
r21 � r22

�
� 2A6r21 log r31 + log r21((A18

�A11Br)r21 + 6A7(Nb +Nt))r21 � (A18 �A11Br) r22 � 2(A12 �A13Nb)
�
r21 � r22

�
log r1 + r

2
2 log r2

(A9 + 6A8(Nb +Nt)� 6A7(Nb +Nt) log r2 + 2A6 log r22) + log r1(�(A9 + 6A8(Nb +Nt))r21�
r21 � r22

�
log r2(A14 +A20 + (�2A15Br + 2A16GrNb) log r2)));

A22 =

�
r21 � r22

�
(log r1 � log r2)2

4A34
;

A23 =
1

96A34Nb (log r1 � log r2)
((96A34Nb + (A10 �A19 � 3A17(Nb +Nt))r21) log r2 + log r21 log r2

(�(A18 �A11Br + 6A7(Nb +Nt))r21 + (A14 +A20) r22 + 2((A12 �A13Nb)r21 �A15Brr22

+A16NbGrr
2
2) log r2) + log r

3
1((A18 �A11Br)r22 + 2(A6r21 + (�A12 +A13Nb)r22) log r2)

+ log r1(�96A34Nb + (�A10 +A19 + 3A17(Nb +Nt))r22 + log r2((A9 + 6A8(Nb +Nt))�
r21 � r22

�
� log r2(A14 +A20)r21 � 6A7(Nb +Nt))r22 + 2((�A15Br +A16GrNb)r21 +A6r22) log r2))));

A24 = �
�
r22 log r1 � r21 log r2

�
(log r1 � log r2)2

4A34
;

A25 = � 1

6144
((r1 � r2)2 (1536A21A34Nb � 3072A23A34Nb � (16A10 � 16A19 � 3A6 � 4(A9 + 3

(4A17 +A7 + 2A8)(Nb +Nt))) (r1 � r2)2 � 3072A21A34Nb log (r1 � r2) + 4 (r1 � r2)
2

(log (r1 � r2) (�3A6 � 4(A9 + 3(A7 + 2A8)(Nb +Nt)) + 6(A6 + 4A7(Nb +Nt)) log (r1 � r2)

�8A6 log (r1 � r2)2) + 4 log r1(log r1(A18 �A11Br � 2(A12 �A13Nb) log r2) + log r2

(A14 +A20 + (�2A15Br + 2A16GrNb log r2))));

A26 =
(r1 � r2)2 (4A34(�A22 + 2A24 + 2A22 log (r1 � r2)) + (r1 � r2)

2 (log r1 � log r2)3

16A34
:
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Chapter 5

In�uence of heat transfer on a

peristaltic �ow of Johnson Segalman

�uid in a non uniform tube

5.1 Introduction

This chapter deals with the in�uence of heat transfer and magnetic �eld on a peristaltic �ow of

Johnson Segalman �uid in a non uniform tube. The governing equations of Johnson Segalman

are simpli�ed using the long wave length and low Reynolds number assumptions. In the wave

frame of reference, an analytical solutions are computed with the help of two techniques namely

(i) Perturbation technique (ii) HAM technique. The expressions for pressure rise, pressure

gradient, velocity pro�le and temperature �eld have been calculated. The behavior of di¤erent

physical parameters have been examined graphically. The pumping and trapping phenomena

of various wave forms are also studied.

5.2 Mathematical Model

Johnson Segalman model is an integral type model which can also be described in rate type

model. Consider an incompressible �uid for which continuity and momentum equation can be
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written as follow

divV = 0; (5.1)

�
dV

dt
= divS+f: (5.2)

The Cauchy stress �S for a Johnson-Segalman �uid [10] is de�ned as

S = �P I+ 2�D+ � ; (5.3)

� +m

�
d�

dt
+ � (W1 � a3D) + (W1 � a3D)T �

�
= 2�D: (5.4)

In which f body force, � and � are the viscosities, m is called the relaxation time and a3 is

called slip parameter D and W1 are the symmetric and skewsymmetric parts of the velocity

gradient respectively and can be de�ned as

D =
1

2

�
L+ LT

�
; (5.5)

W1=
1

2

�
L� LT

�
; (5.6)

where L = gradV:

In general, energy equation can be de�ned as

�
de1
dt

= � :L� div Q̂+ �r3; (5.7)

where Q̂ is the heat �ux vector, e1 = �cp is the speci�c internal energy, r3 is the radiant heating

and in the present problem we ignore the radiant heating.

According to Fourier law

Q̂ = �k grad �T ;

where k is the constant of thermal conductivity and �T is the temperature. Since we are dealing

with the two dimensional �ow, therefore,

�T = �T
�
�R; �Z

�
:
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5.3 Mathematical Formulation

Let us consider the peristaltic �ow of an incompressible Johnson-Segalman �uid in a non uniform

tube. The �ow is generated by sinusoidal wave trains propagating with constant speed c along

the walls. The geometry of the wall surface is de�ned as

Fig.(5:a) : Geometry of the problem.

�h =a
�
�Z
�
+b sin

2�

�

�
�Z � c�t

�
; (5.8)

where a
�
�Z
�
= a0+K �Z; a0 is the radius of the inlet, K is the constant whose magnitude depend

on the length of the tube, b is the wave amplitude, � is the wavelength, c is the propagation

velocity and �t is the time. We are considering the cylindrical coordinate system ( �R; �Z), where

�Z � axis lies along the centerline of the tube and �R is transverse to it.
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The governing equations in the �xed frame for an incompressible �ow are given as

@ �U

@ �R
+
�U
�R
+
@ �W

@ �Z
= 0; (5.9)

�

�
@

@�t
+ �U

@

@ �R
+ �W

@

@ �Z

�
�U = �@

�P

@ �R
+
1
�R

@

@ �R

�
�R� �R �R

�
+

@

@ �Z
(� �R �Z)�

� ����
�R

+�

�
1
�R

@

@ �R

�
�R
@ �U

@ �R

�
+
@2 �U

@ �Z2

�
+ �g cos�; (5.10)

�

�
@

@�t
+ �U

@

@ �R
+ �W

@

@ �Z

�
�W = �@

�P

@ �Z
+
1
�R

@

@ �R

�
�R� �R �Z

�
+

@

@ �Z
(� �Z �Z)

+�

�
1
�R

@

@ �R

�
�R
@ �W

@ �R

�
+
@2 �W

@ �Z2

�
+ �g sin�; (5.11)

�cp

�
@

@�t
+ �U

@

@ �R
+ �W

@

@ �Z

�
�T = � �R �R

@ �U

@ �R
+ � �R �Z

@ �W

@ �R
+ � �Z �R

@ �U

@ �Z
+ � �Z �Z

@ �W

@ �Z

+k

�
@2 �T

@ �R2
+
1
�R

@ �T

@ �R
+
@2 �T

@ �Z2

�
; (5.12)

where k denotes the the thermal conductivity and cp is the speci�c heat at constant pressure.

The corresponding boundary conditions are

@ �w

@�r
= 0; at �r = 0; (5.13a)

�w = 0; at �r = �h = a (�z) + b sin
2�

�
(�z) ; (5.13b)

@ �T

@�r
= 0; at �r = 0; (5.13c)

�T = 0; at �r = �h = a (�z) + b sin
2�

�
(�z) : (5.13d)
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We introduce the non-dimensional variables as

R =
�R

a0
; r =

�r

a0
; Z =

�Z

�
; z =

�z

�
; W =

�W

c
; w =

�w

c
;

U =
� �U

a0c
; u =

��u

a0c
; P =

a20
�P

c� (�+ �)
; t =

c�t

�
; � =

a0
�
;

Re =
�ca0
�

; � =
a0��

c�
; E =

�c

�ga20
; Ec =

c2

cp (T0 � T1)
;

Pr =
�cp
k
; We =

mc

a0
; � =

�
�T � �T1

��
�T0 � �T1

� : (5.14)

Making use of Eqs. (2:12) and (5:14); Eqs. (5:9) to (5:12) along with boundary conditions

(5:13a to 5:13d) under the assumptions of long wavelength � << 1 and low Reynolds number

take the form �
�+ �

�

�
@P

@z
=
1

r

@

@r
(r� rz) +

1

r

@

@r

�
r
@w

@r

�
+
sin�

E
; (5.15)

@P

@r
= 0; (5.16)

1

r

@

@r

�
r
@�

@r

�
= �Br

�
@w

@r
Srz

�
; (5.17)

where Br = Ec Pr and

� rr =We (1 + a)
@w

@r
Srz; (5.18)

� zz = �We (1� a)
@w

@r
Srz; (5.19)

� rz =

�
�
@w
@r

1 +W 2
e (1� a2)

�
@w
@r

�2 : (5.20)

With the help of Eqs. (5:18) to (5:20); Eqs. (5:15) to (5:17) can be written as

1

r

@

@r

"
r

 
�
�
@w
@r

1 +W 2
e

�
1� a23

� �
@w
@r

�2
!#

+
1

r

@

@r

�
r
@w

@r

�
+
sin�

E

�
�

�+ �

�
=

�
�+ �

�

�
dP

dz
; (5.21)

dP

dr
= 0; (5.22)

1

r

@

@r

�
r
@�

@r

�
= �Br

"
@w

@r

 
�
�
@w
@r

1 +W 2
e

�
1� a23

� �
@w
@r

�2
!#

: (5.23)
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in which �; Re and We represent the wave, Reynolds and Weissenberg numbers, respectively.

The relevant boundary conditions are

@w

@r
= 0;

@�

@r
= 0 at r = 0; (5.24a)

w = 0; � = 0 at r = h = 1 +
�Kz

a0
+ � sin 2�z: (5.24b)

5.4 Perturbation Solution

Since, Eqs. (5:21) and (5:23) are non linear equations, we employ the regular perturbation to

�nd the solution. For perturbation solution, we expand w; F and P as

w = w0 +W
2
ew1 +O(We4); (5.25a)

� = �0 +W
2
e �1 +O(We4); (5.25b)

F1 = F10 +W
2
e F11 +O(We4); (5.25c)

P = P0 +W
2
e P1 +O(We4): (5.25d)

Substituting Eqs. (5:25a) to (5:25d) in Eqs. (5:21) to (5:24) and then �nd the solutions of all

systems we arrive at the �nal solutions which are de�ned as

w =

�
r2 � h2
4

��
@P

@z
� b1

�
+W 2

e

�
G4
4

�
r4 � h4

��
; (5.26)

� = G10
�
r4 � h4

�
+W 2

e

�
G11

�
r8 � h8

�
+G12

�
r6 � h6

�
+G13

�
r4 � h4

��
; (5.27)

dP

dz
=
�8E

�
2F1 + h

2
�
+ h4b1

h4
+W 2

e

�
G14h

2
�
; (5.28)
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where

G1 =

�
@P0
@z

� b1
�
1

2
; G2 = �Ec Pr

�

�
G21; G3 =

@P1
@z

1

2
;

G4 =
�
1� a23

��@P0
@z

� b1
�3 �

�+ �

1

8
; G5 = �Ec Pr

�

�
G23;

G6 = �2Ec Pr
�

�
G3G2; G7 = �Ec Pr

�

�
G24; G8 =

�
1� a23

�
Ec Pr

�

�
a41;

G9 = G6 +G8; G10 =
G2
16
; G11 =

G7
64
; G12 =

G9
36
; G13 =

G5
16
;

G14 =
�
a23 � 1

��@P0
@z

� b1
�3 �

�+ �

1

6
; b1 =

sin�

E

�
�

�+ �

�
;

b2 = We2
�

�+ �

�
a23 � 1

�
:

The pressure rise �P and friction force F are given as

�P =

1Z
0

dP

dz
dz; (5.29)

F =

1Z
0

h2
�
�dP
dz

�
dz; (5.30)

where dP
dz is de�ned in Eqs. (5:28).

The non-dimensional expressions for the �ve considered wave forms have been taken into

account and are de�ned in chapter 1.

5.5 HAM Solution

In this section, we have found the HAM solution of Eqs. (5.21) to (5.24). For that we choose

w0 =

�
r2 � h2
4

��
@P

@z
� b1

�
; (5.31)

�0 =
a2
16

�
r2 � h2

�
; (5.32)
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as the initial guesses for both velocity and temperature pro�le. Further, the auxiliary linear

operators for the Eqs. (5:26) and (5:28) are chosen as

Lwr(w) =
1

r

@

@r

�
r
@w0
@r

�
; (5.33)

L�r(�) =
1

r

@

@r

�
r
@�0
@r

�
: (5.34)

The auxiliary linear operator has the property

Lwr(C1r + C2) = 0; (5.35)

L�r(C3r + C4) = 0: (5.36)

We can de�ne the following zeroth-order deformation problems

(1� q)Lwr[ �w (r; q)� w0(r)] = q~wNwr[ �w (r; q)]; (5.37)

(1� q)L�r[ �� (r; q)� �0(r)] = q~�N�r[�� (r; q)]; (5.38)

@ �w

@r
(r; q) = 0;

@��

@r
(r; q) = 0; at r = 0; (5.39)

�w (r; q) = 0; �� (r; q) = 0; at r = h: (5.40)

In Eqs. (5:37) to (5:40), ~w and ~� denote the non-zero auxiliary parameter, q�[0; 1] is the

embedding parameter and

Nwr[ �w(r; q)] =
@2w

@r2
+
1

r

@w

@r
+
b2
r

�
@w

@r

�3
+ 3b2

@2w

@r2

�
@w

@r

�2
� dP

dz
� b1; (5.41)

N�r[��(r; q)] =
@2�

@r2
+
1

r

@�

@r
+Br

�
@w

@r

�2
�BrWe2

�

�

�
1� a2

��@w
@r

�4
: (5.42)
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Obviously

@ŵ (r; 0)

@r
= 0; ŵ (r; 1) = w (r) ; (5.43)

@�̂ (r; 0)

@r
= 0; �̂ (r; 1) = � (r) ; (5.44)

when q varies from 0 to 1; then ŵ (r; q) and �̂ (r; q) varies from initial guess to the solution

w (r) and �̂ (r; q) ; varies from initial guess to the solution � (r) : Expanding ŵ (r; q) and �̂ (r; q)

in Taylor;s series with respect to an embedding parameter q; we have

ŵ (r; q) = w0 (r) +

1X
n=1

wm(r)q
m; (5.45)

�̂ (r; q) = �0 (r) +
1X
n=1

�m(r)q
m; (5.46)

wm =
1

m!

@m �w (r; q)

@qm

����
q=0

; (5.47)

�m =
1

m!

@m��(r; q)

@qm

����
q=0

: (5.48)

Di¤erentiating the zeroth order deformation m-times with respect to q and then dividing by m!

and �nally setting q = 0, we get the following mth order deformation problem

Lw[wm(r)� �mwm�1(r)] = ~wRwr(r); (5.49)

L�[�m(r)� �m�m�1(r)] = ~�R�r(r); (5.50)
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where

Rwr = w00m�1 +
1

r
w0m�1 +

b2
r

m�1X
i=0

w0m�1w
0
m�1�iw

0
m�k�1 +

3b2

m�1X
i=0

w0m�1w
0
m�1�iw

00
m�k�1 �

�
dP

dz
� b1

�
(1� �m) ; (5.51)

R�r = �00m�1 +
1

r
�0m�1 +Br

m�1X
i=0

w0m�1w
0
m�1�i

�BrWe2
�

�

�
1� a2

�m�1X
k=0

w 0
m�1�k

kX
l=0

w 0
k�l

lX
j=0

w 0
l�j

jX
i=0

w 0
j�i; (5.52)

�m =

8<: 0; m � 1;

1; m > 1:
(5.53)

The solution of the above equations with the help of Mathematica can be calculated and

presented as follow

wm(r) = lim
M!1

"
MX
m=0

a0m;0 +

2M+1X
n=1

 
2MX

m=n�1

2m+1�nX
k=0

akm;nr
2n+2

!#
; (5.54)

�m(r) = lim
M!1

"
MX
m=0

b0m;0 +
2M+1X
n=1

 
2MX

m=n�1

2m+1�nX
k=0

bkm;nr
4n+2

!#
; (5.55)

where a0m;0; b
0
m;0; a

k
m;n and b

k
m;n are constants.

5.6 Numerical Results and Discussion

In this section we have presented the solution of the Johnson Segalman �uid model graphically.

Figs. (5a) and (5b) are prepared for h-curves for velocity and temperature pro�le. Figs.5: c and

5:d show the comparison of perturbation and HAM solutions for velocity and temperature pro�le

respectively. The expression for pressure rise �P is calculated numerically using mathematics

software. The e¤ects of various parameters on the pressure rise �P and frictional forces F are

shown in Figs. 5:1 to 5:12 for various values of angle of inclination �;Weissenberg number We,

amplitudes ratio �, viscosities � and �, relaxation time m and slip parameter a3: It is observed
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from Figs.5:1 to 5:6 that pressure rise increases with the increase in �, We; � and � while

decreases with the increase in � and a3: Moreover, the peristaltic pumping occurs in the region

0 � Q � 1:4 for Figs. 5:2 to 5:5 and 0 � Q � 0:5 for Fig. 5:6; other wise augmented pumping

occurs. The variations of frictional forces are shown in Figs. 7 to 12. It can be seen that

frictional forces have opposite behavior as compared to the pressure rise. Figs: 5:13 to 5:17 are

prepared to see the behavior of pressure gradient for di¤erent wave shapes. It is seen that with

increase in � pressure gradient increases. Figs: 5:18 to 5:21 are prepared to see the behavior of

temperature pro�le physically. It is analyzed that with the increase in � temperature pro�le

increases, moreover it is seen that temperature �eld decreases with the increase in �; Br and

We: The e¤ects of di¤erent parameters on streamlines for the trapping phenomenon for �ve

di¤erent wave forms can be seen through Fig. 5:22: It is observed that the size of trapping

bolus in triangular wave is smaller as compared to the other waves.

Fig. 5:a: } curve for velocity pro�le for K = 0:04; � = 0:01;

a0 = 0:01; � = 0:3; z = 0:1; We = 0:1; � = 0:02; � = 0:02;

a = 0:5; E = 1:7; Br = 0:4:
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Fig. 5:b: } curve for temperature pro�le for K = 0:04;

� = 0:01; a0 = 0:01; � = 0:3; z = 0:1; We = 0:1; � = 0:02;

� = 0:02; a = 0:5; E = 1:7; Br = 0:4:
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Fig. 5:c: Comparison of velocity pro�le for K = 0:04; � = 0:01;

a0 = 0:01; � = 0:3; z = 0:1; We = 0:1; � = 0:02; � = 0:02;

a = 0:5; E = 1:7; Br = 0:4:
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Fig. 5:d: Comparison of temperature pro�le for K = 0:04;

� = 0:01; a0 = 0:01; � = 0:3; z = 0:1; We = 0:1; � = 0:02;

� = 0:02; a = 0:5; E = 1:7; Br = 0:4:
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Fig.5:1. Pressure rise versus �ow rate for K = 0:4; � = 0:1;

a0 = 0:1; � = 0:3; We = 0:1; � = 0:5; � = 0:5; a3 = 0:3;

E = 0:1:

103



0 0.5 1 1.5 2
­6

­5

­4

­3

­2

­1

0

1

2

3

4

Q

∆P

We = 0.1
We = 0.3
We = 0.5
We = 0.7

Fig.5:2. Pressure rise versus �ow rate for K = 0:9; � = 0:7;

a0 = 0:2; � = 0:5; � = 0:1; � = 0:5; � = 0:5; a3 = 0:3; E = 0:1:

0 0.5 1 1.5 2
­5

­4

­3

­2

­1

0

1

2

3

4

Q

∆P

µ = 0.1
µ = 0.3
µ = 0.5
µ = 0.7

Fig.5:3. Pressure rise versus �ow rate for K = 0:9; � = 0:7;

a0 = 0:2; � = 0:5; � = 0:1; We = 0:5; � = 0:5; a3 = 0:3;

E = 0:1:
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Fig.5:4. Pressure rise versus �ow rate for K = 0:9; � = 0:7;

a0 = 0:2; � = 0:5; � = 0:1; We = 0:5; � = 0:5; a3 = 0:3;

E = 0:1:
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Fig.5:5. Pressure rise versus �ow rate for K = 0:9; � = 0:7;

a0 = 0:2; � = 0:5; � = 0:1; We = 0:5; � = 0:5; � = 0:5;

E = 0:1:
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Fig.5:6. Pressure rise versus �ow rate for K = 0:01; � = 0:01;

a0 = 0:02; a3 = 0:5; � = 0:1; We = 0:5; � = 0:5; � = 0:3;

E = 0:1:
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Fig.5:7. Frictional force versus �ow rate for K = 0:4; � = 0:1;

a0 = 0:1; � = 0:3; We = 0:1; � = 0:5; � = 0:5; a3 = 0:3;

E = 0:1:
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Fig.5:8. Frictional force versus �ow rate for K = 0:9; � = 0:7;

a0 = 0:2; � = 0:5; � = 0:1; � = 0:5; � = 0:5; a3 = 0:3; E = 0:1:
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Fig.5:9. Frictional force versus �ow rate for K = 0:9; � = 0:7;

a0 = 0:2; � = 0:5; � = 0:1; We = 0:5; � = 0:5; a3 = 0:3;

E = 0:1:
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Fig.5:10. Frictional force versus �ow rate for K = 0:9; � = 0:7;

a0 = 0:2; � = 0:5; � = 0:1; We = 0:5; � = 0:5; a3 = 0:3;

E = 0:1:
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Fig.5:11. Frictional force versus �ow rate for K = 0:9; � = 0:7;

a0 = 0:2; � = 0:5; � = 0:1; We = 0:5; � = 0:5; � = 0:5;

E = 0:1:
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Fig.5:12. Frictional force versus �ow rate for K = 0:01;

� = 0:01; a0 = 0:02; a3 = 0:5; � = 0:1; We = 0:5; � = 0:5;

� = 0:3; E = 0:1:
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Fig.5:13. Pressure gradient versus z (Sinusoidal wave) for

K = 0:4; � = 0:1; a0 = 0:1; � = 0:3; Q = �1:5; We = 0:1;

� = 0:5; � = 0:5; a3 = 0:3; E = 0:1:
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Fig.5:14. Pressure gradient versus z (Multi sinusoidal wave)

for K = 0:4; � = 0:1; a0 = 0:1; � = 0:3; Q = �1:5; We = 0:1;

� = 0:5; � = 0:5; a3 = 0:3; E = 0:1:
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Fig.5:15. Pressure gradient versus z (Square wave) for

K = 0:4; � = 0:1; a0 = 0:1; � = 0:3; Q = �1:5; We = 0:1;

� = 0:5; � = 0:5; a3 = 0:3; E = 0:1:
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Fig.5:16. Pressure gradient versus z (Trapezoidal wave) for

K = 0:4; � = 0:1; a0 = 0:1; � = 0:3; Q = �1:5; We = 0:1;

� = 0:5; � = 0:5; a3 = 0:3; E = 0:1:
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Fig.5:17. Pressure gradient versus z (Triangular wave) for

K = 0:4; � = 0:1; a0 = 0:1; � = 0:3; Q = �1:5; We = 0:1;

� = 0:5; � = 0:5; a3 = 0:3; E = 0:1:
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Fig.5:18: Temperature pro�le for K = 0:4; � = 0:1; Q = 0:5;

z = 0:2; a0 = 0:1; a3 = 0:3; � = 0:1; Br = 0:5; � = 0:5; � = 0:5;

E = 0:1:
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Fig.5:19: Temperature pro�le for K = 0:4; � = 0:1; Q = 0:5;

z = 0:2; a0 = 0:1; a3 = 0:3; � = 0:1; Br = 0:5; We = 0:5;

� = 0:5; E = 0:1:
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Fig.5:20: Temperature pro�le for K = 0:4; � = 0:1; Q = 0:5;

z = 0:2; a0 = 0:1; a3 = 0:3; � = 0:1; � = 0:5; � = 0:5;

We = 0:5; E = 0:1:

0 0.5 1 1.5
­0.1

­0.09

­0.08

­0.07

­0.06

­0.05

­0.04

­0.03

­0.02

­0.01

0

r

θ (
r,z

)

η = 0.4
η = 0.5
η = 0.6
η = 0.7

Fig.5:21: Temperature pro�le for K = 0:4; � = 0:1; Q = 0:5;

z = 0:2; a0 = 0:1; a3 = 0:3; � = 0:1; Br = 0:5; � = 0:5;

We = 0:5; E = 0:1:
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Fig. 5:22 (a) : Streamlines for sinusoidal wave when K = 0:04;

� = 0:01; Q = 0:3; z = 0:2; a0 = 0:01; a3 = 0:3; � = 0:1;

� = 0:5; � = 0:5; E = 0:3:

Fig. 5:22 (b) : Streamlines for square wave when K = 0:04;

� = 0:01; Q = 0:3; z = 0:2; a0 = 0:01; a3 = 0:3; � = 0:1;

� = 0:5; � = 0:5; E = 0:3:
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Fig. 5:22 (c) : Streamlines for trapezoidal wave when K = 0:04;

� = 0:01; Q = 0:3; z = 0:2; a0 = 0:01; a3 = 0:3; � = 0:1;

� = 0:5; � = 0:5; E = 0:3:

Fig. 5:22 (d) : Streamlines for triangular wave when K = 0:04;

� = 0:01; Q = 0:3; z = 0:2; a0 = 0:01; a3 = 0:3; � = 0:1;

� = 0:5; � = 0:5; E = 0:3:
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Fig. 5:22 (e) : Streamlines for multisinusoidal wave when

K = 0:04; � = 0:01; Q = 0:3; z = 0:2; a0 = 0:01; a3 = 0:3;

� = 0:1; � = 0:5; � = 0:5; E = 0:3:

5.7 Conclusion

The perturbation and HAM solutions of Eqs. (5:21) to (5:23) have been computed for velocity

and temperature pro�le. The expressions for pressure rise frictional forces and pressure gradient

have been discussed for �ve wave shapes. The following observations have been found

1. The pressure rise increases with the increase in �; We � and � while decreases with

increase in � and a3:

2. It is observed that frictional forces have an opposite behavior as compared to the pressure

rise.

3. It is analyzed that with the increase in � temperature pro�le increases, moreover it is

seen that temperature �eld decreases with the increase in �; Br and We:

4. The size of trapped bolus in triangular wave is smaller as compared to other waves

5. The pressure gradient increases with increase in � for all �ve wave shapes.
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Chapter 6

Analytical and numerical treatment

for peristaltic transport of a tangent

hyperbolic �uid in an endoscope

6.1 Introduction

This chapter deals with the study of peristaltic �ow of a tangent hyperbolic �uid in an endo-

scope. The modelling of hyperbolic tangent �uid model for two dimensional �ow in cylindrical

coordinates are presented. Using the assumption of long wavelength and low Reynold number,

the governing equations of hyperbolic tangent �uid for an endoscope have been solved using

regular perturbation method and shooting method. The expression for pressure rise and fric-

tional forces have been calculated using numerical integrations. At the end, various physical

parameters have been shown pictorially.

6.2 Mathematical Model

For an incompressible �uid the continuity and momentum equations are de�ned in Eqs. (1:1)

and (1:2). The basic equation for hyperbolic tangent �uid is given by [8]

�S = � �P I+ � ; (6.1)
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� =
�
�1 + (�0 + �1) tanh

�
� _

�n�

_
; (6.2)

in which �1 is the in�nite shear rate viscosity, �0 is the zero shear rate viscosity, � is the time

constant, n is the power law index and _
 is de�ned as

_
 =

s
1

2

X
i

X
j

_
ij _
ji =

r
1

2
�; (6.3)

where � = 1
2 trac

�
gradV + (gradV )T

�2
: Here � is the second invariant strain tensor. We

consider the constitution Eq. (6.2), the case for which �1 = 0 and � _
 < 1: The component of

extra stress tensor therefore, take the form

� = �0
�
(� _
)n

�
_
 = �0

�
(1 + � _
 � 1)n

�
_


= �0
�
1 + n(� _
 � 1)

�
_
: (6.4)

6.3 Mathematical Formulation

We have consider the peristaltic transport of an incompressible hyperbolic tangent �uid in an

endoscope. The �ow is generated by sinusoidal wave trains propagating with constant speed c

along the walls of endoscope. The geometry of the wall surface is de�ned in Eqs. (2:13) and

(2:14).

The governing equations in the �xed frame for an incompressible �ow are

@ �U

@ �R
+
�U
�R
+
@ �W

@ �Z
= 0; (6.5)

�

�
@

@�t
+ �U

@

@ �R
+ �W

@

@ �Z

�
�U = �@

�P

@ �R
+
1
�R

@

@ �R

�
�R� �R �R

�
+

@

@ �Z
(� �R �Z)�

� ����
�R
; (6.6)

�

�
@

@�t
+ �U

@

@ �R
+ �W

@

@ �Z

�
�W = �@

�P

@ �Z
+
1
�R

@

@ �R

�
�R� �R �Z

�
+

@

@ �Z
(� �Z �Z) : (6.7)

Introducing a wave frame (�r; �z) moving with velocity c away from the �xed frame ( �R; �Z) by the

transformations which are de�ned in Eqs. (1:11) and (1:12).

The corresponding boundary conditions are the symmetry at the center line and no-slip at

the walls
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�w = �c; at �r = �r1; (6.8(a))

�w = �c; at �r = �r2 = a2 + b sin
2�

�
(�z) : (6.8(b))

De�ning

R =
�R

a2
; r =

�r

a2
; Z =

�Z

�
; z =

�z

�
; W =

�W

c
; w =

�w

c
;

U =
� �U

a2c
; u =

��u

a2c
; p =

a22
�P

c��
; t =

c�t

�
; � =

a2
�
;Re =

�ca2
�

;

r2 =
�r2
a
= 1 + � sin 2�z; _
 =

a2
c
_
; � = �

a2
�c
: (6.9)

Using the above non-dimensional quantities and the resulting equations can be written as

@u

@r
+
u

r
+
@w

@z
= 0; (6.10)

Re �3
�
u
@

@r
+ w

@

@z

�
u = �@P

@r
+
�

r

@

@r
(r� rr) + �

2 @

@z
(� rz) ; (6.11)

Re �

�
u
@

@r
+ w

@

@z

�
w = �@P

@z
+
1

r

@

@r
(r� rz) + �

@

@z
(� zz) ; (6.12)

where

� rr = 2 [1 + n(We _
 � 1)] @u
@r
;

� rz = [1 + n(We _
 � 1)]
�
@u

@z
�2 +

@w

@r

�
;

� zz = 2� [1 + n(We _
 � 1)] @w
@z

;

_
 =

"
2�2
�
@u

@r

�2
+

�
@w

@r
+
@u

@z
�2
�2
+ 2�2

�
@w

@z

�2#1=2
;

in which �;Re;We represent the wave, Reynolds and Weissenberg numbers, respectively. Under

the assumptions of long wavelength � << 1 and low Reynolds number, neglecting the terms of

order � and higher, Eqs:(6.11) and (6.12) take the form
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@P

@r
= 0: (6.13)

@P

@z
=

1

r

@

@r

�
r

�
1 + n(We

@w

@r
� 1)

�
@w

@r

�
; (6.14)

w = �1; at r = r1; (6.15a)

w = �1; at r = r2 = 1 + � sin 2�z: (6.15b)

6.4 Solution of the Problem

6.4.1 Perturbation Solution

For perturbation solution, we expand w; F1 and P as

w = w0 +Wew1 +O(We2); (6.16)

F1 = F10 +WeF11 +O(We2); (6.17)

P = P0 +WeP1 +O(We2): (6.18)

Substituting above expressions in Eqs. (6:16) to (6:19); collecting the powers of We; we obtain

the following systems

Zeroth Order System

@P0
@z

=
1

r

@

@r

�
r (1� n) @w0

@r

�
; (6.19)

w0 = �1; at r = r1; (6.20)

w0 = �1; at r = r2 = 1 + � sin 2�z: (6.21)

120



First Order System

@P1
@z

=
1

r

@

@r

�
r (1� n) @w1

@r

�
+
1

r

@

@r

 
rn

�
@w0
@r

�2!
; (6.22)

w1 = 0; at r = r1; (6.23)

w1 = 0; at r = r2 = 1 + � sin 2�z: (6.24)

Solution for Zeroth Order System

Solution of Eq:(6:19) satisfying the boundary conditions (6:20) and (6:21) can be written as

w0 = �1 +
�

r2

4(1� n) +
H3

(1� n) ln r +H4
�
@p0
@z

; (6.25)

dP0
dz

=
2F0 +

�
r22 � r21

�
H7

: (6.26)

Solution for First Order System

Substituting the zeroth-order solution (6:25) into (6:22); the solution of the resulting problem

satisfying the boundary conditions take the following form

w1 =

�
r2

4(1� n) +
H3

(1� n) ln r +H4
�
@P1
@z

� n

(1� n)3

�
r3

12
� H2

3

r

+H3r)

�
dP0
dz

�2
+

H5
(1� n) ln r +H6

!
; (6.27)

dP1
dz

=
2F1 +H8

H7
: (6.28)

Summarizing the perturbation results for small parameter We; the expression for velocity �eld

and pressure gradient can be written as

w = �1 +
�

r2

4(1� n) +
H3

(1� n) ln r +H4
�
@P

@z
+We

�
n

(1� n)3

�
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12
�

H2
3

r
+ H3r)

�
dP0
dz

�2
+

H5
(1� n) ln r +H6

�
; (6.29)
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�
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�
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+We

�
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�
; (6.30)

where
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30
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!
:

The pressure rise �P and friction forces F on inner and outer tubes F (0); F (i); are given by

�P =

1Z
0

dP

dz
dz; (6.31)

F (0) =

1Z
0

r21

�
�dP
dz

�
dz; (6.32)

F (i) =

1Z
0

r22

�
�dP
dz

�
dz; (6.33)

where dP
dz is de�ned in Eqs. (6.30).
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6.4.2 HAM Solution

In this section, we have found the HAM solution of Eqs. (6:13) to (6:15). For that we choose

w0 = �1 +
�

r2

4(1� n) +
H3

(1� n) ln r +H4
�
@P

@z
; (6.34)

as the initial guess. Further, the auxiliary linear operator for the problem is taken as

Lwr =
1

r

@

@r

�
r
@

@r

�
; (6.35)

which satisfy

Lwr(w0) = 0: (6.36)

We can de�ne the following zeroth-order deformation problems

(1� q)Lwr[ �w (r; q)� w0(r)] = q~wNwr[ �w (r; q)]; (6.37)

�w (r; q) = �1; at r = r1;

�w (r; q) = �1; at r = r2: (6.38)

In Eqs. (6.37) and (6.38), ~w denote the non-zero auxiliary parameter, q�[0; 1] is the embedding

parameter and

Nwr[ �w(r; q)] = (1� n)
@2w

@r2
+
1

r
(1� n)@w

@r
+
nWe

r

�
@w

@r

�2
+ 2nWe

@2w

@r2
@w

@r
� dP

dz
: (6.39)

Obviously

ŵ (r; 0) = w0; ŵ (r; 1) = w (r) ; (6.40)

when q varies from 0 to 1; then ŵ (r; q) varies from initial guess to the solution w (r) : Expanding

ŵ (r; q) in Taylor;s with respect to an embedding parameter q; we have

ŵ (r; q) = w0 (r) +
1X
n=1

wm(r)q
m; (6.41)
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wm =
1

m!

@m �w (r; q)

@qm

����
q=0

: (6.42)

Di¤erentiating the zeroth order deformation m-times with respect to q and then dividing by m!

and �nally setting q = 0, we get the following mth order deformation problem

Lw[wm(r)� �mwm�1(r)] = ~wRwr(r); (6.43)

where

Rwr = (1� n)w00m�1 +
1

r
(1� n)w0m�1 +

nWe

r

m�1X
i=0

w0m�1�kw
0
k + 2nWe

m�1X
k=0

w0m�1�kw
00
k

�dP
dz
(1� �m) ; (6.44)

�m =

8<: 0; m � 1;

1; m > 1:
(6.45)

The solution of the above equation with the help of Mathematica can be calculated and pre-

sented as

wm(r) = lim
M�>1

"
MX
m=0

a0m;0 +

2M+1X
n=1

 
2MX

m=n�1

2m+1�nX
k=1

akm;nr
n ln r

!#

+ lim
M�>1

"
2M+1X
n=1

 
2MX

m=n�1

2m+1�nX
k=0

akm;nr
n+2

!#
: (6.46)

6.5 Numerical Solution

The present problem consisting of Eqs (6:13) to (6:14) is also solved numerically by employing

shooting method. The numerical results are also compared with the perturbation and HAM

results and obtained a very good agreement between the three results.
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r Numerical sol Perturbation sol Error HAM sol Error

0.1 -1.00000 -1.00000 0.00000 -1.00000 0.00000

0.2 -1.02670 -1.02727 0.00005 -1.02727 0.00005

0.3 -1.04117 -1.04073 0.00004 -1.04074 0.00003

0.4 -1.04771 -1.04765 0.00005 -1.04765 0.00005

0.5 -1.05026 -1.05028 0.00001 -1.05028 0.00001

0.6 -1.05026 -1.04964 0.00004 -1.04963 0.00003

0.7 -1.04613 -1.04626 0.00001 -1.04626 0.00001

0.8 -1.04050 -1.04048 0.00001 -1.04047 0.00001

0.9 -1.03280 -1.03249 0.00004 -1.03249 0.00004

1.0 -1.02198 -1.02244 0.00004 -1.02244 0.00004

1.1 -1.01030 -1.01044 0.00001 -1.01043 0.00001

1.2 -1.00000 -1.00000 0.00000 -1.00000 0.00000

Table.6: Comparison of velocity �eld for " = 0:1; n = 0:02, We = 0:1; z = 0:1; � = 0:3:

6.6 Results and Discussion

The analytical solution of the hyperbolic tangent model is discussed. The expression for pressure

rise�P is calculated numerically using mathematics software. The e¤ects of various parameters

on the pressure rise �P are shown in Figs.6:1 to 6:12 for various values of Weissenberg number

We, amplitude ratio �; tangent hyperbolic power law index n and radius ratio �. It is observed

from Figs.6:1 to 6:4 that pressure rise increases for small values of Q (�1 � Q � 0) with the

increase in We, "; n; and for � pressure rise increases for small values of Q (�1 � Q � 0:5)

with increase in � for large Q (0:1 � Q � 1); the pressure rise decreases. We also observe that

for di¤erent values of We, "; n; and � there is a linear relation between �P and Q; i:e, the

pressure rise increases for small Q and decreases for large Q: The e¤ects of frictional forces for

inner and outer tube are illustrated in Figs. 6:5 to 6:12. It is observed that frictional forces

have opposite behavior as compared to the pressure rise.

Figs. 6:13 to 6:16 show the pressure gradient for di¤erent values of �; We; " and Q. It is
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observed that with increase in � and " pressure gradient increases while decreases with increase

in We and Q:

6.7 Trapping

Another interesting phenomenon in peristaltic motion is trapping. It is basically the formation

of an internally circulating bolus of �uid by closed streamlines. This trapped bolus pushed a

head along with the peristaltic wave. Figs. (6:17) to (6:20) shows the trapping phenomenon

for Q; n; � and We. Figs. 6:17 illustrates the streamline graphs for di¤erent values of time

mean �ow rate Q: It is observed that when we increase Q the size of trapped bolus increases.

Fig. 6:18 shows the streamlines for di¤erent values of (power law index) n: It is analyzed that

with the increase in n size and number of trapping bolus decreases. Fig. 6:19 illustrate the

streamline graphs for di¤erent values of �. It is observed that with the increase in � trapped

bolus increases. The streamlines for di¤erent values We are shown in Fig. 6:20. It is evident

from the �gure that the size of the trapped bolus increases by increasing We.

Fig. 6.a ~-curves are drawn at 20thorder of approximation for

" = 0:1; n = 0:02, We = 0:1; z = 0:1; � = 0:3:
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Fig.6:b. Comparison of velocity �eld for " = 0:1; n = 0:02,

We = 0:1; z = 0:1; � = 0:3:
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Fig.6:1. Pressure rise versus �ow rate for " = 0:4; We = 0:01;

� = 0:2:
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Fig.6:2. Pressure rise versus �ow rate for " = 0:5; We = 0:001;

n = 4:
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Fig.6:3. Pressure rise versus �ow rate for n = 4; We = 0:001;

� = 0:5:
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Fig.6:4. Pressure rise versus �ow rate for " = 0:4; n = 2;

� = 0:2:
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Fig.6:5. Frictional force(on inner tube) versus �ow rate for

" = 0:4; We = 0:01; � = 0:2:
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Fig.6:6. Frictional force (on inner tube) versus �ow rate for

" = 0:5; We = 0:001; n = 4:
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Fig.6:7. Frictional force(on inner tube) versus �ow rate for

n = 4; We = 0:001; � = 0:5:
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Fig.6:8. Frictional force(on inner tube) versus �ow rate for

" = 0:4; n = 2; � = 0:2:
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Fig.6:9. Frictional force(on outer tube) versus �ow rate for

" = 0:4; We = 0:01; � = 0:2:
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Fig.6:10. Frictional force (on outer tube) versus �ow rate for

" = 0:5; We = 0:001; n = 4:
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Fig.6:11. Frictional force(on outer tube) versus �ow rate for

n = 4; We = 0:001; � = 0:5:
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Fig.6:12. Frictional force(on outer tube) versus �ow rate for

" = 0:4; n = 2; � = 0:2:
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Fig.6:13. Pressure gradient versus z for " = 0:2; Q = �0:5;

� = 0:1; n = 0:01:
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Fig.6:14. Pressure gradient versus z for We = 0:1; Q = �0:5;

� = 0:1; n = 0:02:
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Fig.6:15. Pressure gradient versus z for We = 0:1; Q = �0:5;

" = 0:01; n = 0:02:
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Fig.6:16. Pressure gradient versus z for We = 0:1; � = 0:25;
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Fig. 6:17. Streamlines for di¤erent values of � = 0:1; 0:2;(panels (a) to (b)) The other para-

meters are We = 0:1; " = 0:5; � = 0:1; n = 0:02:
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Fig. 6:18. Streamlines for di¤erent values of n = 0:1; 0:2;(panels (c) to (d)) The other parame-

ters are We = 0:1; " = 0:5; � = 0:1; Q = 0:5:
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Fig. 6:19. Streamlines for di¤erent values of � = 0:1; 0:2;(panels (e) to (f)) The other parame-

ters are We = 0:1; " = 0:5; n = 0:1; Q = 0:5:
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Fig. 6:20. Streamlines for di¤erent values of We = 0:1; 0:2;(panels (g) to (h)) The other

parameters are � = 0:1; " = 0:5; n = 0:1; Q = 0:5:

139



6.8 Conclusion

This chapter presents the numerical and analytical analysis of peristaltic transport of a tan-

gent hyperbolic �uid in an endoscope. The governing two dimensional equations are modelled

in cylindrical geometry and simpli�ed using long wave length and low Reynolds number ap-

proximation. In the �xed frame of reference, three types of solutions named (i) Perturbation

solution (ii) HAM solution and (iii) Numerical solutions are presented. The results are dis-

cussed through graphs. The main points can be summarized as follows:

1. It is observed that the pressure rise �P and volume �ow rate Q has inversely linear

relation between each other.

2. The pressure rise increases with the increase in Weissenberg number We, tangent hyper-

bolic power law index n and radius ratio "; and decreases with an increase in amplitude

ratio �.

3. It is observed that with increase in � and " pressure gradient increases while decreases

with increase in We and Q:

4. It is seen that frictional forces have an opposite behavior as compared to the pressure

rise.

5. It is evident that the size of the trapped bolus increases by increasing We; �; and Q while

size of the trapped bolus decreases by increasing n.
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Chapter 7

Combined e¤ects of heat and

chemical reactions on the peristaltic

�ow of Carreau �uid model in a

diverging tube

7.1 Introduction

In the present chapter we have studied the peristaltic �ow of a Carreau �uid in a non-uniform

tube under the consideration of long wavelength in the presence of heat and mass transfer. The

�ow is investigated in a wave frame of reference moving with velocity of the wave c. Two types

of analytical solutions have been evaluated (i) Perturbation method (ii) Homotopy analysis

method for velocity, temperature and concentration �eld. Numerical integration have been

used to obtain the graphical results for pressure rise and frictional forces. The e¤ects of various

emerging parameters are investigated for �ve di¤erent peristaltic waves.
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7.2 Mathematical Model

For an incompressible �uid the balance of mass and momentum are de�ned in Eqs. (1:1) and

(1:2). The constitutive equation for Carreau �uid is given by [35]

(�� �1)
(�0 � �1)

=
h
1 +

�
� _

�2i (n�1)2

; (7.1)

� = ��0
�
1 +

(n� 1)
2

�
� _

�2�

_
ij ; (7.2)

in which � is the extra stress tensor, � is the time constant, n is the power law index and _
 is

de�ned as

_
 =

s
1

2

X
i

X
j

_
ij _
ji =

r
1

2
�: (7.3)

Here � is the second invariant strain tensor.

7.3 Mathematical Formulation

We have considered peristaltic �ow of an incompressible Carreau �uid in a non uniform tube.

The �ow is generated by sinusoidal wave trains propagating with constant speed c along the

walls of the tube. Heat and mass transfer phenomena has been taken into account. The walls

of the tube is maintaining at temperature �T0 and concentration �C0 while at the centre we have

used symmetry condition on both temperature and concentration. The geometry of the wall

surface is de�ned in Eq. (5:8) : The governing equations in the �xed frame for an incompressible

�ow are given as

@ �U

@ �R
+
�U
�R
+
@ �W

@ �Z
= 0; (7.4)
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The corresponding boundary conditions in the wave frame are

@ �w

@�r
= 0;

@ �T

@�r
= 0;

@ �C

@�r
= 0, at �r = 0; (7.9)

�w = 0; �T = �T0; �C = �C0; at �r = �h = a (�z) + b sin
2�

�
(�z) : (7.10)

We introduce the non-dimensional variables
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in which R and Z are the dimensionless form of radial and transverse components respectively,

Sr is the Soret number, Sc Schmidt number and We is the Weissenberg number.

With the help of Eqs. (1:11; 1:12) and (7:11); Eqs. (7:4) to (7:8) along with boundary

conditions (7:9; 7:10) under the assumptions of long wavelength and low Reynolds number

approximation take the form
@u

@r
+
u

r
+
@w

@z
= 0; (7.12)

@P

@r
= 0; (7.13)
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In the above equations �; Re represent the wave and Reynolds numbers, respectively. The

corresponding boundary conditions are

@w

@r
= 0;

@�

@r
= 0;

@�

@r
= 0; at r = 0; (7.17a)

w = 0; � = 0; � = 0; at r = h = 1 +
�kz

a0
+ � sin 2�z: (7.17b)

7.4 Solution of the Problem

7.4.1 Perturbation Solution

To get the solution of Eqs.(7:13) to (7:16); we employ the regular perturbation method to �nd

the solution. For perturbation solution, we expand w; F1; �; � and P as

w = w0 +We2w1 +O(We4); (7.18a)

F1 = F10 +We2F11 +O(We4); (7.18b)

� = �0 +We2�1 +O(We4); (7.18c)

� = �0 +We2�1 +O(We4); (7.18d)

P = P0 +We2P1 +O(We4): (7.18e)

The perturbation results for small parameterWe2; satisfying the conditions (7:17a) and (7:17b);

for velocity temperature, concentration �elds and pressure gradient can be written as

w (r; z) =

�
r2 � h2
4

�
dP

dz
�W 2

e

�
n� 1
64

��
�16F1

h4

�3 �
r4 � h4

�
; (7.19)
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The pressure rise �P and friction forces F are de�ned as follow

�P =

1Z
0

dP

dz
dz; (7.23)

F (0) =

1Z
0

r21

�
�dP
dz

�
dz; (7.24)

F (i) =

1Z
0

r22

�
�dP
dz

�
dz; (7.25)

where dP
dz is de�ned in Eq. (7:22).

For analysis, we have considered �ve waveforms namely sinusoidal, multi-sinusoidal, tri-

angular, square and trapezoidal. The non-dimensional expressions for these wave forms are

de�ned in chapter 1.

7.4.2 HAM Solution

HAM is an analytical technique to approximate the solution of highly non-linear equation. The

solution by HAM is started by some initial guess. For that we choose
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as the initial guesses of Eqs. (7:26) to (7:28). Further, the auxiliary linear operator for the

problem are taken as
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We can de�ne the following zeroth-order deformation problems

(1� q)Lwr[ �w (r; q)� w0(r)] = q~wNwr[ �w (r; q)]; (7.32)

(1� q)L�r[ �� (r; q)� �0(r)] = q~�N�r[�� (r; q)]; (7.33)

(1� q)L�r[ �� (r; q)� �0(r)] = q~�N�r[�� (r; q)]; (7.34)
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In Eqs. (7:32) to (7:37), ~w, ~� and ~� denote the non-zero auxiliary parameter, q�[0; 1] is the

embedding parameter and
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Obviously,
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when q varies from 0 to 1; then ŵ (r; q) ; �̂ (r; q) and �̂ (r; q) varies from initial guess to the

solution w (r) ; � (r) and � (r) respectively: Expanding ŵ (r; q), �̂ (r; q) and �̂ (r; q) in Taylor;s

with respect to an embedding parameter q; we have
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m; (7.45)

�̂ (r; q) = �0 (r) +

1X
n=1

�m(r)q
m; (7.46)

where

wm =
1

m!

@m �w (r; q)

@qm

����
q=0

; (7.47)

�m =
1

m!

@m�� (r; q)

@qm

����
q=0

; (7.48)
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�m =
1

m!

@m�� (r; q)

@qm

����
q=0

: (7.49)

Di¤erentiating the zeroth order deformation m-times with respect to q and then dividing by

m! and �nally setting q = 0, we get the following mth order deformation problem

Lw[wm(r)� �mwm�1(r)] = ~wRwr(r); (7.50)

L�[�m(r)� �m�m�1(r)] = ~�R�r(r); (7.51)

L�[�m(r)� �m�m�1(r)] = ~�R�r(r); (7.52)

where

Rwr = w00m�1 +
w0m�1
r

+
W 2
e (n� 1)
2

 
1

r

m�1X
k=0

w 0
m�1�k

kX
l=0

w 0
k�lw

0
l + 3

m�1X
k=0

w 0
m�1�k

kX
l=0

w 0
k�lw

00
l

!

�dP
dz
(1� �m) ; (7.53)

R�r = �00m�1+
1

r
�0m�1+Br

0@m�1X
k=0

w 0
m�1�kw

0
k +

(n� 1)
2

We2
m�1X
k=0

w 0
m�1�k

kX
l=0

w 0
k�l

lX
j=0

w 0
l�jw

0
j

1A ;

(7.54)

R�r = �00m�1 +
1

r
�0m�1 + SrSc�

00
m�1 +

SrSc
r

�0m�1; (7.55)

�m =

8<: 0; m � 1;

1; m > 1:
(7.56)

The solution of the above equations with the help of Mathematica can be calculated and

presented as follow

wm(r) = lim
M!1

"
MX
m=0

a0m;0 +
2M+1X
n=1

 
2MX

m=n�1

2m+1�nX
k=0

akm;nr
2n+2

!#
; (7.57)

�m(r) = lim
M!1

"
MX
m=0

b0m;0 +
2M+1X
n=1

 
2MX

m=n�1

2m+1�nX
k=0

bkm;nr
2n+3

!#
; (7.58)

�m(r) = lim
M!1

"
MX
m=0

c0m;0 +
2M+1X
n=1

 
2MX

m=n�1

2m+1�nX
k=0

ckm;nr
2n+3

!#
; (7.59)
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where a0m;0; a
k
m;n; b

0
m;0; b

k
m;n; c

0
m;0 and c

k
m;n are constants.

r -1.60 -1.20 -0.80 -0.40 0.00 0.40 0.80 1.20 1.60

Perturb sol 0.0000 0.4026 0.7813 1.0093 1.0859 1.0098 0.7818 0.4026 0.0000

HAM sol 0.0000 0.3960 0.7692 0.0037 1.0686 0.9937 0.7692 0.3960 0.0000
Table.1. Comparison of velocity pro�le for K = 0:4; z = 0:2; � = 0:5; a0 = 0:5; � = 0:4;

We = 0:5; n = 0:3; } = �0:7; dPdz = 0:05:

r -1.60 -1.20 -0.80 -0.40 0.00 0.40 0.80 1.20 1.60

Perturb sol 0.0000 0.0141 0.0209 0.0225 0.0226 0.0225 0.0209 0.0141 0.0000

HAM sol 0.0000 0.0145 0.0215 0.0232 0.0233 0.0232 0.0215 0.0145 0.0000
Table.2. Comparison of temperature pro�le for K = 0:4; z = 0:2; � = 0:5; a0 = 0:5; � = 0:4;

Br = 0:2; We = 0:5; n = 0:3; } = �0:7; dPdz = 0:05:

r -1.60 -1.20 -0.80 -0.40 0.00 0.40 0.80 1.20 1.60

Perturb sol 0.0000 -0.0035 -0.0052 -0.0056 -0.0057 -0.0056 -0.0052 -0.0035 0.0000

HAM sol 0.0000 -0.0036 -0.0054 -0.0058 -0.0057 -0.0058 -0.0054 -0.0036 0.0000
Table.3. Comparison of concentration pro�le for K = 0:4; z = 0:2; � = 0:5; a0 = 0:5;

� = 0:4; Br = 0:2; We = 0:5; n = 0:3; } = �0:7; dPdz = 0:05; Sr = 0:5; Sc = 0:5:

7.5 Numerical Results and Discussion

In this section we have presented the solution for the Carreau �uid model for diverging tube

graphically. The expression for pressure rise �P is calculated numerically using mathematics

software. The e¤ects of various parameters on the pressure rise �P are shown in Figs. 7:3

to 7:7 for various values of Weissenberg number We, amplitude ratio �, power law index n,

wavelength � and for di¤erent waveshapes. It is observed from Figs. 7:3 to 7:7 that pressure rise

decreases with the increase in We, �; �, while the pressure rise increases with the increase in n.

Peristaltic pumping region is (0 � Q � 0:45) and augmented pumping region is (0:46 � Q � 1)

for Figs. 7:3 to 7:7. It is also analyzed through Fig: 7:7 that square wave has best peristaltic

pumping characteristics, while trapezoidal wave has worst peristaltic pumping characteristics

as compared to the other waves. Figs. 7:8 to 7:12 represents the behavior of frictional forces.

It is depicted that frictional forces has an opposite behavior as compared to the pressure rise:

E¤ects of temperature pro�le have been shown through Figs. 7:13 and 7:14: It is seen that
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with the increase in Br temperature pro�le increases, while decreases with an increase in n.

The concentration �eld � for di¤erent values of Br and Sr are shown in Figs: 7:15 and 7:16.

We observed that the concentration �eld decreases with the increase in Br and Sr: Figs: 7:17

(a to e) are prepared to see the behavior of pressure gradient for di¤erent wave shapes. It is

observed from the �gures that for z� [0; 0:5] and [1:1; 1:5] the pressure gradient is small, and

large pressure gradient occurs for z� [0:51; 1], moreover, it is seen that with increase in � pressure

gradient increases. Figs: 7:18 shows the streamlines for di¤erent wave forms. It is observed that

the size of the trapped bolus in triangular wave is small as compared to the other waves.

Figs.7:1: (a) }-curve for velocity pro�le for K = 0:4; z = 0:2;

� = 0:5; a0 = 0:5; � = 0:4; We = 0:5; n = 0:3; Br = 0:2;

Sr = 0:5; Sc = 0:5;
dP
dz = 0:05:
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Figs.7:1: (b) }-curve for temperature pro�le for K = 0:4;

z = 0:2; � = 0:5; a0 = 0:5; � = 0:4; We = 0:5; n = 0:3;

Br = 0:2; Sr = 0:5; Sc = 0:5;
dP
dz = 0:05:

Figs.7:1: (c) }-curve for concentration pro�le for K = 0:4;

z = 0:2; � = 0:5; a0 = 0:5; � = 0:4; We = 0:5; n = 0:3;

Br = 0:2; Sr = 0:5; Sc = 0:5;
dP
dz = 0:05:
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Figs.7:2 (a) : Comparison of velocity pro�le for K = 0:4;

z = 0:2; � = 0:5; a0 = 0:5; � = 0:4; We = 0:5; n = 0:3;

Br = 0:2; Sr = 0:5; Sc = 0:5; } = �0:7; dPdz = 0:05:
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Figs.7:2 (b) : Comparison of temperature pro�le for K = 0:4;

z = 0:2; � = 0:5; a0 = 0:5; � = 0:4; We = 0:5; n = 0:3;

Br = 0:2; Sr = 0:5; Sc = 0:5; } = �0:7; dPdz = 0:05:

152



­1.5 ­1 ­0.5 0 0.5 1 1.5
­6

­5

­4

­3

­2

­1

0 x 10 ­3

r

σ(
r,z

)

Perturbation solution
HAM solution

Figs.7:2 (c) : Comparison of concentration pro�le, for K = 0:4;

z = 0:2; � = 0:5; a0 = 0:5; � = 0:4; We = 0:5; n = 0:3;

Br = 0:2; Sr = 0:5; Sc = 0:5; } = �0:7; dPdz = 0:05:
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Figs.7:3: Pressure rise versus �ow rate for K = 0:5; � = 1:5;

a0 = 0:5; � = 0:1; n = 0:05:
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Figs.7:4: Pressure rise versus �ow rate for K = 0:5; � = 1:5;

a0 = 0:5; We = 0:1; n = 0:05:
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Figs.7:5: Pressure rise versus �ow rate for K = 0:5; � = 1:5;

a0 = 0:5; � = 0:2; We = 0:1:
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Figs.7:6: Pressure rise versus �ow rate for K = 0:5; n = 0:05;

a0 = 0:5; � = 0:1; n = 0:05:
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Figs.7:7: Pressure rise versus �ow rate for K = 0:5; � = 0:05;

a0 = 0:05; � = 0:1; n = 0:5; We = 0:05:
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Figs.7:8: Frictional force versus �ow rate for K = 0:5; � = 1:5;

a0 = 0:5; � = 0:1; n = 0:05:
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Fig.7:9: Frictional force versus �ow rate for K = 0:5; � = 1:5;

a0 = 0:5; We = 0:1; n = 0:05:
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Figs.7:10: Frictional force versus �ow rate for K = 0:5; � = 1:5;

a0 = 0:5; � = 0:2; We = 0:1:
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Figs.7:11: Frictional force versus �ow rate for K = 0:5;

n = 0:05; a0 = 0:5; � = 0:1; n = 0:05:
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Figs.7:12: Frictional force versus �ow rate for K = 0:5;

� = 0:05; a0 = 0:05; � = 0:1; n = 0:5; We = 0:05:
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Figs.7:13: Temperature pro�le for n = 0:5 K = 0:05; � = 0:05;

a0 = 0:05; � = 0:1; We = 0:05:
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Figs.7:14: Temperature pro�le for Br = 0:2, K = 0:05;

� = 0:05; a0 = 0:05; � = 0:1; We = 0:05:
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Figs.7:15: Temperature pro�le for Sr = 0:5, K = 0:05;

� = 0:05; a0 = 0:05; � = 0:1; n = 0:5; We = 0:05; Sc = 0:5:
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Figs.7:16: Temperature pro�le for Br = 0:2, K = 0:05;

� = 0:05; a0 = 0:05; � = 0:1; n = 0:5; We = 0:05; Sc = 0:5:
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Fig.7:17. (a) : Pressure gradient versuz z for (Sinusoidal wave)

K = 0:02; Q = 0:1; We = 0:1; � = 0:02; a0 = 0:02; n = 0:5:
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Fig.7:17. (b) : Pressure gradient versuz z for (Square wave)

K = 0:02; Q = 0:1; We = 0:1; � = 0:02; a0 = 0:02; n = 0:5:
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Fig.7:17. (c) : Pressure gradient versuz z for

(Trapezoidal wave) K = 0:02; Q = 0:1; We = 0:1; � = 0:02;

a0 = 0:02; n = 0:5:
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Fig.7:17. (d) : Pressure gradient versuz z for (Triangular wave)

K = 0:02; Q = 0:1; We = 0:1; � = 0:02; a0 = 0:02; n = 0:5:
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Fig.7:17. (e) : Pressure gradient versuz z for

(Multisinusoidal wave) K = 0:02; Q = 0:1; We = 0:1; � = 0:02;

a0 = 0:02; n = 0:5:

162



Fig.7:18 (a). Pressure gradient versuz z for sinusoidal wave

when K = 0:02; Q = 0:1; We = 0:1; � = 0:02; a0 = 0:02;

n = 0:5; � = 0:2:

Fig.7:18 (b). Pressure gradient versuz z for square wave when

K = 0:02; Q = 0:1; We = 0:1; � = 0:02; a0 = 0:02; n = 0:5;

� = 0:2:
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Fig.7:18 (c). Pressure gradient versuz z for trapezoidal wave

when K = 0:02; Q = 0:1; We = 0:1; � = 0:02; a0 = 0:02;

n = 0:5; � = 0:2:

Fig.7:18 (d). Pressure gradient versuz z for triangular wave

when K = 0:02; Q = 0:1; We = 0:1; � = 0:02; a0 = 0:02;

n = 0:5; � = 0:2:
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Fig.7:18 (e). Pressure gradient versuz z for multisinusoidal

wave when K = 0:02; Q = 0:1; We = 0:1; � = 0:02; a0 = 0:02;

n = 0:5; � = 0:2:

7.6 Conclusion

This study examines the in�uence of heat and mass transfer on the peristaltic �ow of a Carreau

�uid in a diverging tube. Two types of solution have been evaluated. The main points of the

performed analysis are as follow

1. The perturbation solution and homotopy solutions are identical upto four digits.

2. The e¤ects of We; � and � on the pressure rise are same:

3. The frictional forces have an opposite behaviour as compared to the pressure rise.

4. E¤ects of Br and n on temperature pro�le are opposite.

5. Concentration pro�le has an opposite behaviour as compared to the temperature pro�le:

6. Pressure gradient increases with an increase in �:

7. The size of trapped bolus for triangular wave is small as compared to the other waves.
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Chapter 8

Analytical and numerical analysis of

Vogel;s model of viscosity on the

peristaltic �ow of Je¤rey �uid

8.1 Introduction

In the present chapter, we have analyzed the e¤ects of temperature dependent viscosity on

the peristaltic �ow of Je¤rey �uid through the gap between two coaxial horizontal tubes. The

inner tube is maintained at a temperature T0 and the outer tube has sinusoidal wave travelling

down its wall and it is exposed to temperature T1: The governing problem is simpli�ed using

longwave length and low Reynolds number approximations. Regular perturbation in terms of

small viscosity parameter is used to get the expressions for the temperature and velocity for

Vogel;s models of viscosity. The numerical solution of the problem has also been computed

by shooting method and an agreement of numerical solutions and analytical solutions had

been presented. The expressions for pressure rise and friction force are calculated numerically.

Graphical results and trapping phenomenon is presented at the end of the chapter to see the

physical behavior of di¤erent parameter.
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8.2 Formulation of the Problem

Consider the �ow of a Je¤rey �uid through the gap between two coaxial horizontal tubes. The

inner tube is maintained at a temperature �T0 and the outer tube has a sinusoidal wave travelling

down its wall and it is exposed to temperature �T1: We select cylindrical coordinates with �R

along the radial direction and the �Z along the centre line of the inner and outer tubes. The

shape of the two walls are de�ned in Eqs. (2:7) and (2:8) : The governing equations in the �xed

frame for an incompressible �ow are given as

@ �U

@ �R
+
�U
�R
+
@ �W

@ �Z
= 0; (8.1)
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: (8.4)

The constitutive equation for the extra stress tensor �� in Je¤rey �uid is de�ned by [7]

� =
�
�
�T
�

1 + �1
( _
 + �2�
) : (8.5)

In the above equation, �
�
�T
�
is temperature dependent viscosity, �1 is the ratio of relaxation to

retardation times, _
 (vector quantity) the shear rate, �2 the retardation time
�
~�1 = �1c=R; ~�2 = c�2=R

�
and dots denote the di¤erentiation with respect to time.
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We introduce the non-dimensional variables

R =
�R

a
; r =

�r
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cp (T0 � T1)
: (8.6)

Making use of Eqs. (1:11; 1:12; 8:5) and (8:6); Eqs. (8:1) to (8:4) take the form
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w = �1; u = 0 at r = r1 = "; (8.11a)

w = �1; at r = r2 = 1 + � sin (2�z) ; (8.11b)

� = 1, at r = r1; (8.11c)

� = 0, at r = r2; (8.11d)

where " is the radius ratio, � is the wave amplitude and

� rr =
2�� (�)

1 + �1

�
1 +

�2c�

a2

�
u
@

@r
+ w

@

@z

��
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; (8.12a)
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�
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+ w

@

@z

��
@w

@z
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Making use of Eq. (8:12a) to (8:12c) and using the assumptions of long wavelength and low

Reynolds number Re; Eqs. (8:8) to (8:10) take the form

0 =
@P

@r
; (8.13)

0 = �@P
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+
1

r

@

@r

�
r� (�)
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�
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��
; (8.14)

0 = Ec Pr

 
� (�)

1 + �1

�
@w

@r

�2!
+
@2�

@r2
+
1

r

@�

@r
: (8.15)

In typical situations, the viscosity of the real �uid varies with temperature. Therefore in the

proceeding paragraphs we consider well known Vogel;s viscosity model.

8.3 Vogel;s Viscosity Model

Vogel;s model of viscosity is de�ned as [41]

� (�) = �0 exp

�
A

B + �
� T0

�
: (8.16)

The Maclaurin�s series expansion of above equation in simpli�ed form can be written as

� (�) = n2 � �1� +O (�1)2 ; (8.17)

where

n2 = n1 + �2; �2 =
�0A

B
; n1 = �0 (1� T0) ; C =

1

B
;�1 = �2C:

Using Eq. (8:17) in Eqs. (8:14) and (8:15); we have

0 = �@P
@z

+
1

r

@

@r

�
(n2 � �1�) r
1 + �1

�
@w

@r

��
; (8.18)
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8.4 Solution of the Problem

Using regular perturbation method by considering �1 as perturbation parameter, The solutions

of the Eqs. (8:18) and (8:19) can be directly written as

w =
@P

@z

�
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4S2
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2
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�
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2
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; (8.20)
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dP

dz
=

8S22
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r22 � r21

���
r42 � r41

�
+ 8S2S11

�
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�
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�
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The corresponding stream function
�
u = �1

r
@	
@z and w = 1

r
@	
@r

�
can be written as

	 = 

1
r2 + 


2
r4 + 


3
r6 + 


4
r8 + 


5
r2 ln r + 


6
r4 ln r

+

7
r2 (ln r)2 + 


8
r4 (ln r)2 + 


9
r2 (ln r)3 : (8.23)

All the appearing constants can be evaluated by simple algebraic algorithm.
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The pressure rise �P and friction forces F on inner and outer tubes F (i); F (o); are given by

�P =

1Z
0

dP

dz
dz; (8.24)

F (i) =

1Z
0

r21

�
�dP
dz

�
dz; (8.25)

F (o) =

1Z
0

r22

�
�dP
dz

�
dz; (8.26)

where dP
dz is de�ned in Eqs. (8.22).

8.5 Comparison Between Numerical and Perturbation Solu-

tions

Here the problem consisting of equations (8:22) and (8:23) is also solved numerically by employ-

ing shooting method. A comparison of the numerical solution and the perturbation solution

has been presented through table and graphs and are shown below. The error between the two

solutions is also presented.

r Numerical Solution Perturbation Solution Error

0.10 -1.000000 -1.000000 0.000000

0.20 -1.013794 -1.013630 0.013794

0.30 -1.021658 -1.025596 0.021658

0.40 -1.024916 -1.029419 0.024916

0.50 -1.024579 -1.029579 0.024579

0.60 -1.021612 -1.025542 0.021612

0.70 -1.017000 -1.020091 0.017000

0.80 -1.011452 -1.013534 0.011452

0.90 -1.005817 -1.006817 0.005817

1.00 -1.000000 -1.000000 0.000000

171



Table.8:1: Comparison of axial velocity for perturbation and numerical solutions when �1 =

0:1; B = 0:2; A = 0:3; � = 0:6; � = 0:1; dPdz = 0:4; z = 0:5; Pr = 0:1; Ec = 0:2; T0 = 0:5; �0 = 0:4:

8.6 Numerical Results and Discussion

In order to analyze the quantitative e¤ects of the various physical parameter involved in the

present analysis we use the symbolic software Mathematical and the results are displayed graph-

ically. Figs 8:1 and 8:2 show the comparison of numerical solution and perturbation solution

for velocity and temperature pro�le. The average pressure rise �P versus time averaged mean

�ow rate Q is plotted (for Vogel,s viscosity model) for di¤erent values of viscosity parameter

�1, Je¤rey parameter �1; in Figs 8:3 and 8:4. Figs. 8:3 and 8:4 shows that the maximum

pressure rise occurs at zero �ow rate for di¤erent values of �1 and �1. It can also be analyzed

that increasing �1 and �1; pressure rise decreases in the region Q� [0; 0:45] and in the region

Q� [0:46; 1:5] the pressure rise increases with the increase in �1 and �1: Peristaltic pumping

occurs in the region 0 � Q < 0:45, otherwise augmented pumping occurs. It is also observed

that in Vogel;s viscosity model, the range of pressure rise is much smaller than in the Reynold;s

viscosity model.

The frictionless force F for inner and outer tube denoted by F (i) and F (o) respectively,

are plotted in Figs. 8:5 to 8:8. The region in which both F (i) and F (o) are positive, denotes

the region where re�ux phenomenon occurs and the region where F (i) and F (o) are negative

designate to peristaltic pumping. We observed that the frictionless force has the opposite

behavior as compared to pressure rise. It is observed that F (i) and F (o) increases with increases

in �1 and �1.

Figs. 8:9 and 8:10 represents the physical behavior of the temperature �eld: It is found that

with increasing � and �1 the temperature �eld increases.

8.7 Trapping

Another interesting phenomenon in peristaltic motion is trapping. It is basically the formation

of an internally circulating bolus of �uid by closed streamlines. This trapped bolus pushed

a head along with the peristaltic wave. Figs. 8:11 and 8:12 are prepared for Vogel;s model
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streamlines. The e¤ects of time averaged �ow rate Q on trapping can be seen through Figs.

8:11 (v to y) : It is observed that the size of the trapped bolus increases as we increase �ow

rate Q: Figs. 8:12 (h1 to i1) are plotted to see the e¤ects of �1; it is seen that trapped bolus

decreases with the increase of �1.

0.2 0.4 0.6 0.8 1
­1.03

­1.025

­1.02

­1.015

­1.01

­1.005

­1

r

w
(r

,z)

Numerical solution
Perturbation solution

Fig.8:1: Comparison of axial velocity for �1 = 0:1; B = 0:2;

A = 0:3; � = 0:6; � = 0:1; z = 0:5; Pr = 0:1; Ec = 0:2; T0 = 0:5;

�0 = 0:4:
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Fig.8:2: Comparison of temperature pro�le for

�1 = 0:1; B = 0:2; A = 0:3; � = 0:6; � = 0:1;
dP
dz = 0:4; z = 0:5;

Pr = 0:1; Ec = 0:2; T0 = 0:5; �0 = 0:4:
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Fig.8:3. Pressure rise versus �ow rate for " = 0:03; � = 0:6;

Ec = 0; Pr = 0; �1 = 0:2; �0 = 0:5; A = 1; B = 1; a = 0:1:
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Fig.8:4. Pressure rise versus �ow rate for

" = 0:03; � = 0:6; Ec = 0;Pr = 0;

� = 0:2; �0 = 0:5; A = 1; B = 1; a = 0:1:
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Fig.8:5. Frictional force on inner tube (F(i)� ) versus �ow rate

for " = 0:03; � = 0:6; Ec = 0;Pr = 0; �1 = 0:2;

�0 = 0:5; A = 1; B = 1; a = 0:1:
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Fig.8:6. Frictional force on inner tube (F(i)� ) versus �ow rate

for " = 0:03; � = 0:6; Ec = 0;Pr = 0; � = 0:2;

�0 = 0:5; A = 1; B = 1; a = 0:1:
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Fig.8:7. Frictional force on outer tube (F(0)� ) versus �ow rate

for " = 0:03; � = 0:6; Ec = 0;Pr = 0; �1 = 0:2;

�0 = 0:5; A = 1; B = 1; a = 0:1:
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Fig.8:8. Frictional force on outer tube (F(0)� ) versus �ow rate

for " = 0:03; � = 0:6; Ec = 0;Pr = 0; � = 0:2;

�0 = 0:5; A = 1; B = 1; a = 0:1:
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Fig.8:9. Temperature �eld for

�1 = 0:01; � = 0:6; Ec = �0:15;Pr = 0:25;

Q = 0:5; z = 0:1; �0 = 0:5; A = 1; B = 1; a = 0:1:
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Fig. 8:10. Temperature �eld for

� = 0:01; � = 0:6; Ec = �0:15;Pr = 0:25;

Q = 0:5; z = 0:1; �0 = 0:5; A = 1; B = 1; a = 0:1:
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Figs. 8:11. Streamlines for di¤erent values of Q = :92; :94;(panels (v) to (w)) The other

parameters are � = 0:1; Ec = 0:9; Pr = 0:1; �1 = 0:5; �1 = 0:09; " = 0:3; �0 = 0:5; A = 1; B =

1; a = 0:1:
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Figs. 8:12. Streamlines for di¤erent values of �1 = 0:1; 0:2;(panels (h1) to (i1)) The other

parameters are Q = 0:95; � = :15; Ec = 2; Pr = 0:3; �1 = 0:09; " = 0:3, �0 = 0:5; A = 1; B =

1; a = 0:1:

8.8 Conclusion

Here we have analyzed the peristaltic �ow of a Je¤rey �uid in an endoscope. The analytical

and numerical solutions have been calculated for Vogel;s viscosity models. A comparison of the

analytical and numerical solution have also been given. The graphical results are presented to

discuss the physical behavior of the problem. We have found the following observations:

1. The pressure rise decreases in peristaltic pumping region with an increase in �1 and �1.

2. The frictions forces have an opposite results as compared to the pressure rise.

3. The temperature �eld increases with the increase in � and �1:

4: It is observed that the volume and size of the trapped bolus increases with increase in

�ow rate.

5: The volume and size of the trapped bolus decreases with the increase in Je¤rey parameter.
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Chapter 9

Characteristics of heating scheme

and mass transfer on the peristaltic

�ow for an Eyring-Powell �uid in an

endoscope

9.1 Introduction

In this chapter Eyring-Powell peristaltic �uid �ow with heat and mass transfer analysis have

been investigated. New �uid model have been presented in peristaltic literature. The governing

equations for proposed Eyring-Powell �uid model are derived in cylindrical coordinates both in

�xed and moving frame of reference. Complex system of equations have been simpli�ed using

long wavelength and low Reynolds number approximation. The momentum and heat/mass

transfer balance equations are solved analytically and numerically by employing perturbation

method and shooting technique. Graphical results have been discussed for pressure rise, fric-

tional forces, temperature and concentration pro�le. Comparison of perturbation and numerical

solutions have been presented through table and �gures. Five di¤erent waves forms have been

considered for analysis. Trapping phenomena have been presented for di¤erent wave forms.
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9.2 Mathematical Model

The constitutive equation for Eyring-Powell �uid model is given by [37]

� = �rV+ 1

�1
sinh�1

�
1

c1
rV

�
; (9.1)

and

sinh�1
�
1

c1
rV

�
� 1

c1
rV�1

6

�
1

c1
rV

�3
;

���� 1c1rV
����� 1; (9.2)

where � is the coe¢ cient of shear viscosity; �1 and c1 are the material constants of Eyring-Powell

�uid model.

9.3 Mathematical Formulation

We have considered peristaltic �ow of an incompressible Eyring-Powell �uid in an endoscope.

The �ow is generated by sinusoidal wave trains propagating with constant speed c along the wall

of the upper tube. Heat and mass transfer phenomena have been consider giving temperature

�T0; �T1 and concentration �C0 and �C1 to the inner and outer tube respectively. The geometry of

the wall surfaces is de�ned in chapter two. The governing equations in the �xed frame for an

incompressible �ow are given as

@ �U

@ �R
+
�U
�R
+
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= 0; (9.3)
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We introduce the non-dimensional variables as follow
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With the help of Eqs. (1:11; 1:12) and (9:8); Eqs. (9:3) to (9:7) under the assumptions of long

wavelength and low Reynolds number approximation take the form
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In the above equations � and Re represent the wave and Reynolds numbers, respectively and

M = 1=�1�c1 and N =Mc21=6a
2c21;

where M and N are the dimensionless parameter of Eyring-Powell �uid model.
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The corresponding boundary conditions are

w = �1; � = 1; � = 1 at r = r1 = "; (9.14a)

w = �1; � = 0; � = 0; at r = r2 = 1 + � sin (2�z) : (9.14b)

9.4 Solution of the Problem

9.4.1 Perturbation Solution

Since Eqs. (9:11) to (9:13) are non-linear equation therefore we are interested in analytical

solutions with the help of perturbation method. For perturbation solution, we expand w; F; �

and P by taking N as perturbation parameter

w = w0 +Nw1 +O(N
2); (9.15a)

P = P0 +NP1 +O(N
2); (9.15b)

F1 = F10 +NF11 +O(N
2); (9.15c)

� = �0 +N�1 +O(N
2): (9.15d)

The perturbation results for small parameter N; satisfying the conditions (9:14a) and (9:14b);

the expression for velocity, temperature, concentration �eld and pressure gradient can be written

as
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; (9.16)
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=
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2
2 � r21) +N(�E6)

E5
; (9.17)
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2
1 + 6E3(1 +M)

3 � 3E1(�1 + 2M(3 +M +

(3 +M))))r6 + 144(9E21 + 4E31 +M)
3 � 2E1(1 + 4M(3 +M(3 +M))))r8

+64(3E1 � (1 +M)3)r10 + 9r12 + 4608(9E21 + 6E41 � 8E31(1 +M)3

+12E1E3(1 +M)
3 + 8E23(1 +M)

6)
r4 (ln r)2

2
) + E9 ln r + E10

!
; (9.18)
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1

(1 +M)

�
r4

64
+ E21

�
r2 ln r

2
� r2

4

�
+
E1r

2

4

��
dP

dz

�2
+ E7 ln r + E8

!

+N

�
1

36864(1 +M)7r4
(�Br(2304E61 � 9216E31(�2E3(1 +M)3 + E1(�2

+M(3 +M)))))r2 + 2304E1(E
2
1 + 6E3(1 +M)

3 � 3E1(�1 + 2M(3 +M +

(3 +M))))r6 + 144(9E21 + 4E31 +M)
3 � 2E1(1 + 4M(3 +M(3 +M))))r8

+64(3E1 � (1 +M)3)r10 + 9r12 + 4608(9E21 + 6E41 � 8E31(1 +M)3

+12E1E3(1 +M)
3 + 8E23(1 +M)

6)
r4 (ln r)2

2
) + E9 ln r + E10

!!
; (9.20)

where the involved constants (E1 to E10) have been evaluated using Mathematica.

The corresponding stream function can be de�ned as

�
u = �1

r

@	

@z
and w =

1

r

@	

@r

�
: (9.21)

The pressure rise �P and friction forces F on inner and outer tubes F (0); F (i); are given by

�P =

1Z
0

dP

dz
dz; (9.22)

F (0) =

1Z
0

r21

�
�dP
dz

�
dz; (9.23)
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F (i) =

1Z
0

r22

�
�dP
dz

�
dz: (9.24)

where dP
dz is de�ned in Eq. (9.21).

For analysis, we have considered �ve waveforms namely sinusoidal, multi-sinusoidal, tri-

angular, square and trapezoidal. The non-dimensional expressions for these wave forms are

de�ned in chapter 1.

1. Sinusoidal wave:

r2 (z) = 1 + � sin (2�z)

2. Triangular wave:

r2 (z) = 1 + �

(
8

�3

1X
n=1

(�1)n+1

(2n� 1) sin (2� (2n� 1) z)
)

3. Square wave:

r2 (z) = 1 + �

(
4

�

1X
n=1

(�1)n+1

(2n� 1) cos (2� (2n� 1) z)
)

4. Trapezoidal wave:

r2 (z) = 1 + �

(
32

�2

1X
n=1

sin �8 (2n� 1)
(2n� 1)2

sin (2� (2n� 1) z)
)

5. Multi sinusoidal wave:

r2 (z) = 1 + � sin (2m�z) :

9.4.2 Numerical Solution

Here we have presented the numerical solutions for velocity pro�le. To get the numerical solution

shooting method have been taken into account. The numerical solution is also compared with

the perturbation solution. The di¤erence between the values of two solutions are shown through

Figs. 9:1 (a) ; 9:1 (b) and table 9.1. It is noticed here that there is a small di¤erence between

perturbation and numerical solution. This happens because the perturbation solutions are

computed here only small values of N . If one take the value of N very very small both the
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solutions are 100% same which are shown in tabel 1. However, for large N , the solutions are

not identical, because the perturbation solutions are valid for small values of N .
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w
(r

,z)

Numerical Solution
Perturbation Solution

Fig.9:1 (a). Comparison of axial velocity for N = 0:1;

� = 0:4; � = 0:1; z = 0:5; M = 0:5:
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Fig.9:1 (b). Comparison of axial velocity when N = 0:5;

� = 0:4; � = 0:1; dpdz = 0:4; z = 0:5; M = 0:5:
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r Numerical Sol when (N = 0:1) Perturb Sol Numerical Sol when (N = 0:5) Perturb Sol

0:10 �1:000000 �1:000000 �1:000000 �1:000000

0:15 �1:013079 �1:014210 �1:016465 �1:010710

0:20 �1:020100 �1:021160 �1:029170 �1:018960

0:25 �1:026625 �1:030789 �1:037464 �1:025111

0:30 �1:030679 �1:031621 �1:042150 �1:031621

0:35 �1:045808 �1:038601 �1:045808 �1:035891

0:40 �1:036289 �1:040463 �1:047766 �1:038451

0:45 �1:037758 �1:041561 �1:048315 �1:039621

0:50 �1:038221 �1:041632 �1:048003 �1:037822

0:55 �1:037908 �1:040785 �1:046604 �1:038521

0:60 �1:036671 �1:037642 �1:044183 �1:037642

0:65 �1:034967 �1:036805 �1:041439 �1:029661

0:70 �1:032094 �1:033389 �1:037320 �1:028631

0:75 �1:029015 �1:029900 �1:033230 �1:025292

0:80 �1:024494 �1:024958 �1:027559 �1:022292

0:85 �1:020031 �1:020021 �1:022216 �1:018654

0:90 �1:013829 �1:014380 �1:015081 �1:014380

0:95 �1:007942 �1:007858 �1:007172 �1:006592

1:00 �1:000000 �1:000000 �1:000000 �1:000000

Table.9:1. Comparison of axial velocity for perturbation and numerical solutions when (a)

N = 0:1; (b) N = 0:5; other parameters are � = 0:4; � = 0:1; z = 0:5; M = 0:5:

9.5 Graphical Discussion

To see the variations in pressure rise, frictional force, pressure gradient and streamlines caused

by the amplitude ratio �; Eyring-Powell �uid parameters N andM; we have prepared Figs. (9:2

to 9:7). Figs. 9:2 to 9:5 show the variation of pressure versus �ow rate for di¤erent parameters of

interest. We observed that the increase in the values of � andM causes the increase in pressure

rise while with the increase in N causes the decrease in pressure rise. It is also analyzed through
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Fig: 9:5 (a) that triangular wave has best peristaltic pumping characteristics, while square wave

has worst peristaltic pumping characteristics as compared to the other waves. Moreover, the

peristaltic pumping occurs in the region �2 � Q � 0:5; and augmented pumping occurs in

the region 0:51 � Q � 2. The variations of frictional forces are plotted in Figs. 9:6 to 9:10.

It can be seen that frictional forces have opposite behavior as compared to the pressure rise.

Figs. 9:11 (a) to 9:11 (e) are prepared to see the variation of pressure gradient for di¤erent

wave shapes. It is observed from the �gures that for z� [0; 0:5] and [1:1; 1:5] ; the pressure

gradient is small and large pressure gradient occurs for z� [0:51; 1]. Moreover, it is seen that

with increase in � pressure gradient increases. The e¤ects of di¤erent parameters on streamlines

for the trapping phenomenon for �ve di¤erent wave forms can be seen through Figs. 9:12 (a) to

9:12 (e) : It is observed that the size of trapping bolus in triangular wave is smaller as compared

to the other waves. Temperature pro�le have been plotted in Figs. 9:13 (a) and 9:13 (b) : It

have been analyzed through �gures that temperature pro�le decreases with an increase in N;

while increases with an increase in Br: Figs. 9:14 (a) and 9:14 (b) are display for concentration

pro�le. It is analyzed that with an increase in Br and Sr concentration pro�le decreases.
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Figs.9:2: Pressure rise versus �ow rate for � = 0:05; r1 = 0:05;

N = 0:1; M = 5:
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Figs.9:3: Pressure rise versus �ow rate for � = 0:05; r1 = 0:05;

N = 0:1; � = 0:4:
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Figs.9:4: Pressure rise versus �ow rate for � = 0:05; r1 = 0:05;

M = 5; � = 0:4:
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Figs.9:5: Frictional force for inner tube versus �ow rate for

� = 0:05; r1 = 0:05; N = 0:1; M = 5:
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Figs.9:6: Frictional force for inner tube versus �ow rate for

� = 0:05; r1 = 0:05; N = 0:1; � = 0:4:
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Figs.9:7: Frictional force for inner tube versus �ow rate for

� = 0:05; r1 = 0:05; M = 5; � = 0:4:
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Figs.9:8: Frictional force for outer tube versus �ow rate for

� = 0:05; r1 = 0:05; N = 0:1; M = 5:
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Figs.9:9: Frictional force for outer tube versus �ow rate for

� = 0:05; r1 = 0:05; N = 0:1; � = 0:4:
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Figs.9:10: Frictional force for outer tube versus �ow rate for

� = 0:05; r1 = 0:05; M = 5; � = 0:4:
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Fig.9:11 (a). Pressure gradient versus z for Sinusoidal wave for

� = 0:05; r1 = 0:05; M = 5; Q = �0:05; N = 0:1:
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Fig.9:11 (b). Pressure gradient versus z for Square wave for

� = 0:05; r1 = 0:05; M = 5; Q = �0:05; N = 0:1:
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Fig.9:11 (c). Pressure gradient versus z for trapezoidal wave

for � = 0:05; r1 = 0:05; M = 5; Q = �0:05; N = 0:1:
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Fig.9:11 (d). Pressure gradient versus z for Triangular wave for

� = 0:05; r1 = 0:05; M = 5; Q = �0:05; N = 0:1:
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Fig.9:11 (e). Pressure gradient versus z for Multsinusoidal

wave for � = 0:05; r1 = 0:05; M = 5; Q = �0:05; N = 0:1:

Fig.9:12 (a). Streamlines for sinusoidal wave when � = 0:05;

r1 = 0:05; M = 5; Q = �0:05; N = 0:1:
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Fig.9:12 (b). Streamlines for square wave when � = 0:05;

r1 = 0:05; M = 5; Q = �0:05; N = 0:1:

Fig.9:12 (c). Streamlines for trapezoidal wave when � = 0:05;

r1 = 0:05; M = 5; Q = �0:05; N = 0:1:
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Fig.9:12 (d). Streamlines for triangular wave when � = 0:05;

r1 = 0:05; M = 5; Q = �0:05; N = 0:1:

Fig.9:12 (e). Streamlines for multisinusoidal wave when

� = 0:05; r1 = 0:05; M = 5; Q = �0:05; N = 0:1:
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Fig.9:13 (a). Temperature pro�le for Br = 0:5; � = 0:3;

r1 = 0:3; M = 5; Q = 1; � = 0:9; z = 0:1; N = 0:1:
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Fig.9:13 (b). Temperature pro�le for N = 0:3, � = 0:3; r1 = 0:3;

M = 5; Q = 1; � = 0:9; z = 0:1:
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Fig.9:14 (a). Concentration pro�le for Sr = 0:5; � = 0:1;

r1 = 0:1; N = 0:4; M = 5; Q = 1; � = 0:9; z = 0:1; N = 0:1:
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Fig.9:14 (b). Concentration pro�le for Br = 0:3; � = 0:1;

r1 = 0:1; M = 5; Q = 1; � = 0:9; z = 0:1; N = 0:1:
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9.6 Conclusions

This study examines the in�uence of heat and mass transfer on the peristaltic �ow of a Eyring-

Powell �uid in an endoscope. Analytical and numerical solutions have been evaluated using

regular perturbation and shooting technique. The main points of the performed analysis are as

follows.

1. Perturbation and numerical solutions are in good agreement for small N:

2. The e¤ects of � and M on the pressure rise are same:

3. Pressure rise decreases with an increase in N:

4. The frictional forces have an opposite behaviour as compared to the pressure rise.

5. The triangular wave has best peristaltic pumping characteristics, while square wave has

worst peristaltic pumping characteristics as compared to the other waves.

6. Pressure gradient increases with an increase in �: It is also observed that for z� [0; 0:5]

and [1:1; 1:5] the pressure gradient is small and large pressure gradient occurs for z� [0:51; 1] :

7. The size of trapped bolus for triangular wave is small as compared to the other waves.

8. Temperature pro�le has opposite behaviour for Br and N:

9. Concentration pro�le decreases with an increase in Br and Sr.
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Chapter 10

Simulation of heat transfer on the

peristaltic �ow of a Je¤rey-six

constant �uid in a diverging tube

10.1 Introduction

Here peristaltic �ow of a Je¤rey-six constant �uid in a non uniform tube is investigated under

the assumption of longwavelength and low Reynolds number approximations. The dimen-

sionless quantities are used to simplify momentum and energy equations assuming that �uid

physical/rheological properties remain constant. Regular perturbation method is invoked to

�nd an analytical solution for the velocity and temperature �eld. The variation of pressure rise

and frictional forces with the di¤erent parameter are also examined numerically. Results are

also presented graphically at the end of the chapter.
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10.2 Mathematical Model

The constitutive equation for a six-constant Je¤reys �uid model is given by [31]

��+��1

�
d��

dt
� �W1:�� + �� : �W1 + d

�
�� : �D + �D:��

�
+ b1

�
�� : �D

�
I+c2 �Dtr��

�
= 2�

�
D + ��2

�
d �D

dt
� �W1: �D + �D: �W1 + 2d �D: �D + b1

�
�D: �D

�
I

��
(10.1)

where

�D (symmetric part of velocity gradient) =
r �V+(r �V )T

2
;

�W1 (antisymmetric part of velocity gradient) =
r �V�(r �V )T

2
;

d; b1; c2 are material constant of a six-constant Je¤reys �uid model, ��1 is the relaxation time

��2 is the delay time.

10.3 Mathematical Formulation

We have considered peristaltic �ow of an incompressible Je¤rey-six constant �uid in a non

uniform tube. The �ow is generated by sinusoidal wave trains propagating with constant speed

c along the walls of the tube. The upper wall of the tube is maintaining at temperature �T0

and at the centre we have used symmetry condition on temperature. The geometry of the wall

surface is de�ned in Eq. (5:8)

The governing equations in the �xed frame for an incompressible �ow are given as

@ �U

@ �R
+
�U
�R
+
@ �W

@ �Z
= 0; (10.1)

�

�
@

@�t
+ �U

@

@ �R
+ �W

@

@ �Z

�
�U = �@

�P

@ �R
+
1
�R

@

@ �R

�
�R� �R �R

�
+

@

@ �Z
(� �R �Z) +

� ����
�R
; (10.2)

�

�
@

@�t
+ �U

@

@ �R
+ �W

@

@ �Z

�
�W = �@

�P

@ �Z
+
1
�R

@

@ �R

�
�R� �R �Z

�
+

@

@ �Z
(� �Z �Z) ; (10.3)
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: (10.4)

We introduce the non-dimensional variables as follow

R =
�R

a
; r =

�r

a
; Z =

�Z

�
; z =

�z

�
; W =

�W

c
; w =

�w

c
; � =

a�

c�

U =
� �U

ac
; u =

��u

ac
; P =

a2 �P

c��
; t =

c�t

�
; � =

a

�
;Re =

�ca

�
;

h =
�h

a
= 1 +

�Kz

a0
+ � sin 2�z; �1 =

�1c

a
; �2 =

��2c

a
;

Ec =
c2

cp �T0
; � =

�
�T � �T0

�
�T0

; Pr =
�cp
k
: (10.5)

Making use of Eqs. (1:11; 1:12) and (10:5); Eqs. (10:1) to (10:4) under the assumptions of long

wavelength � << 1 and low Reynolds number take the form

0 = �@P
@z

+
1

r

@

@r
(r� rz) ; (10.6)

@P

@r
= 0; (10.7)

1

r

@

@r

�
r
@�

@r

�
= �Br

�
@w

@r
� rz

�
; (10.8)

@w

@r
= 0;

@�

@r
= 0 at r = 0; (10.9a)

w = 0; � = 0 at r = h = 1 +
�Kz

a0
+ � sin 2�z: (10.9b)
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where

� rz =

@w
@r

h
1 + �1�2

�
1� d (d+ b2)� c2

2 (2d+ 3b2)
� �
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� �
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�
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� �� = �2

�
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�2
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�
@w
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�
b� rz;

Br = Ec Pr :

Finally, in simpli�ed form Eqs. (10:6) to (10:9b) can be written as

@P
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= 0; (10.10)
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@r

 
r

 
@w

@r
+ �2�3

�
@w

@r

�3
+ �4�

2
2

�
@w

@r

�5!!
; (10.11)

1

r

@

@r

�
r
@�

@r

�
= �Br

 �
@w

@r

�2
+ �2�3

�
@w

@r

�4
+ �4�

2
2

�
@w

@r

�6!
; (10.12)

@w

@r
= 0;

@�

@r
= 0 at r = 0; (10.13a)

w = 0; � = 0 at r = h = 1 +
�Kz

a0
+ � sin 2�z: (10.13b)

in which

�2 = 1� d (d+ b)�
c

2
(2d+ 3b) ; �3 = �1�2 � �1; �4 = ��31�2:
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10.4 Solution of the Problem

We have used perturbation method to �nd analytical solution of Eqs. (10:11) and (10:12). For

perturbation solution, we expand w; F; P and � by taking � as perturbation parameter

w = w0 + �2w1 + �
2
2w2 +O(�

3
2); (10.14)

P = P0 + �2P1 + �
2
2P2 +O(�

3
2); (10.15)

F1 = F10 + �2F11 + �
2
2F12 +O(�

3
2); (10.16)

� = �0 + �2�1 + �
2
2�2 +O(�

3
2): (10.17)

The perturbation results for small parameter �; satisfying the conditions (10:13a) and (10:13b)

can be written as

w =

�
r2 � h2
4

�
@P

@z
+ �2

�
J1

�
r4 � h4
4

��
+�22

�
J11
�
r10 � h10

�
+ J12

�
r8 � h8

�
+ J13

�
r6 � h6

�
+

J14
�
r4 � h4

��
; (10.18)

� = J16
�
r4 � h4

�
+ �2

�
J22
�
r8 � h8

�
+ J23

�
r6 � h6

�
+ J24

�
r4 � h4

��
+�22

�
J36
�
r20 � h20

�
+ J37

�
r18 � h18

�
+ J38

�
r16 � h16

�
+�

J39
�
r14 � h14

�
+ J40

�
r12 � h12

�
+ J41

�
r10 � h10

�
+ J42

�
r8 � h8

�
+J43

�
r6 � h6

�
+ J44

�
r4 � h4

��
; (10.19)

dP

dz
=
�16F
h4

+ �2

�
�4J1h

2

3

�
+ �22

�
�2
3
J2h

8 � 4
5
J3h

6 � J9h4
�
; (10.20)
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where

J1 = ��2
�
dP0
dz

�3 1
8
, J2 = ��3J31 ; J3 = �3�3

�
dP1
dz

�
J21
2
; J4 = �3�3

�
dP1
dz

�2 J1
4
;

J5 = �3

�
dP1
dz

�3 1
8
; J6 = ��3

�
dP0
dz

�5 1
32
; J7 = �3�3

�
dP0
dz

�2 J1
4
;

J8 = �3�3
�
dP0
dz

�2�dP1
dz

�
1

8
; J9 = J4 + J6 + J7; J10 = J5 + J8; J11 =

J2
10
;

J12 =
J3
8
; J13 =

J9
6
; J14 =

J10
4
; J15 = �

Br
4

�
dP0
dz

�2
; J16 =

J15
16
;

J17 = �Br�1
16

�
dP0
dz

�2
; J18 = �BrJ21 ; J19 = �BrJ1

�
dP1
dz

�
; J20 = �

Br
4

�
dP1
dz

�2
;

J21 = J19 + J17; J22 =
J18
64
; J23 =

J21
36
; J24 =

J20
16
; J25 = �100BrJ21 ;

J26 = �160BrJ11J12; J27 = �120BrJ11J13 � 64BrJ212; J28 = �80BrJ11J14 � 84BrJ12J13;

J29 = �
�
dP2
dz

�
10BrJ11 �Br64J12J14 � 36BrJ213; J30 = �

�
dP2
dz

�
8BrJ12 �Br48J13J14;

J31 = �
�
dP2
dz

�
6BrJ13 � 16BrJ214; J32 = �

�
dP2
dz

�
4BrJ14; J33 = �

�
dP2
dz

�2 1
4
Br;

J34 = ��2Br
�
dP2
dz

1

2

�6
; J35 = J34 + J31; J36 =

J25
400

; J37 =
J26
324

; J38 =
J27
256

;

J39 =
J28
296

; J40 =
J29
144

; J41 =
J30
100

; J42 =
J35
64
; J43 =

J32
36
; J44 =

J33
16
:

The corresponding stream function can be calculated as follow

u = �1
r

@	

@z
and w =

1

r

@	

@r
: (10.21)

The pressure rise �P and friction forces F are de�ned as follow

�P =

1Z
0

dP

dz
dz; (10.22)

F =

1Z
0

h2
�
�dP
dz

�
dz; (10.23)

where dP
dz is de�ned in Eqs. (10:20).
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The non-dimensional expressions for the �ve considered wave forms are de�ned in chapter

1.

10.5 Graphical Discussion

To see the variations in pressure rise, frictional force and pressure gradient caused by the

amplitude ratio �; Je¤rey-six constant �uid parameter �; relaxation time �1; retardation time

�2; we have prepared Figs. (10:2 to 10:15). Figs. 10:2 to 10:5 show the variation of pressure

versus �ow rate for di¤erent physical parameters of the problem. We observed that the increase

in the values of �2; � and �1, causes the increase in pressure rise while the increase �2 causes

decrease in pressure rise. The peristaltic pumping region for Figs. 10:2 and 10:4 is 0 � Q � 0:5,

peristaltic pumping region for Fig. 10:3 is 0 � Q � 1:1, while peristaltic pumping for Fig. 10:5

is �0:5 � Q � 0:4; other wise augmented pumping occurs. The variations of frictional forces

are plotted in Figs. 10:6 to 10:9. It can be seen that frictional forces have opposite behavior

as compared to the pressure rise. Figs. 10:10 to 10:14 are prepared to see the variation of

pressure gradient for di¤erent wave shapes. It is observed from these �gures that for z� [0; 0:5]

and [1:1; 1:5] the pressure gradient is small and large pressure gradient occurs for z� [0:51; 1].

Moreover, it is seen that with increase in � pressure gradient increases. The e¤ects of di¤erent

parameters on streamlines for the trapping phenomenon for �ve di¤erent wave forms can be

seen through Fig. 10:15: It is observed that the size of trapping bolus in triangular wave is
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smaller as compared to the other waves.
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Fig.10:2. Pressure rise versus �ow rate for �2 = 0:4;

�2 = 0:3;K = 0:4; � = 0:1; a0 = 0:1:
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Fig.10:3. Pressure rise versus �ow rate for �2 = 0:4; K = 0:4;

� = 0:1; a0 = 0:1; �1 = 0:4; �2 = 0:3:
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Fig.10:4. Pressure rise versus �ow rate for � = 0:4; K = 0:4;

� = 0:1; a0 = 0:1; �1 = 0:4; �2 = 0:3:
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Fig.10:5. Pressure rise versus �ow rate for � = 0:4; K = 0:4;

� = 0:1; a0 = 0:1; �2 = 0:4; �1 = 0:3:
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Fig.10:6. Frictional forces versus �ow rate for �2 = 0:4;

K = 0:4; � = 0:1; a0 = 0:1; �2 = 0:3:
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Fig.10:7. Frictional forces versus �ow rate for K = 0:4;

� = 0:1; a0 = 0:1; �1 = 0:4; �2 = 0:3:
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Fig.10:8. Frictional forces versus �ow rate for � = 0:4;

K = 0:4; � = 0:1; a0 = 0:1; �1 = 0:4; �2 = 0:3:
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Fig.10:9. Frictional forces versus �ow rate for � = 0:4;K = 0:4;

� = 0:1; a0 = 0:1; �2 = 0:4; �1 = 0:3:
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Fig.10:10. Pressure gradient versus z for (Sinusoidal wave)

Q = �2; K = 0:4; � = 0:1; a0 = 0:1; �2 = 0:1; �1 = 0:4;

�2 = 0:3:
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Fig.10:11. Pressure gradient versus z for

(MultiSinusoidal wave) Q = �2; K = 0:4; � = 0:1; a0 = 0:1;

�2 = 0:1; �1 = 0:4; �2 = 0:3:
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Fig.10:12. Pressure gradient versus z for (Square wave)

Q = �2; K = 0:4; � = 0:1; a0 = 0:1; �2 = 0:1; �1 = 0:4;

�2 = 0:3:

0 0.5 1 1.5
0

50

100

150

200

250

z

dP
/d

z

φ = 0.10
φ = 0.15
φ = 0.20
φ = 0.25

Fig.10:13. Pressure gradient versus z for (Trapezoidal wave)

Q = �2; K = 0:4; � = 0:1; a0 = 0:1; �2 = 0:1; �1 = 0:4;

�2 = 0:3:
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Fig.10:14. Pressure gradient versus z for (Triangular wave)

Q = �2; K = 0:4; � = 0:1; a0 = 0:1; �2 = 0:1; �1 = 0:4;

�2 = 0:3:

Fig. (10:15) (a) : Streamlines for sinusoidal wave when Q = �2;

K = 0:4; � = 0:1; a0 = 0:1; �2 = 0:1; �1 = 0:4; �2 = 0:3;

� = 0:4:
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Fig. (10:15) (b) : Streamlines for square wave when Q = �2;

K = 0:4; � = 0:1; a0 = 0:1; �2 = 0:1; �1 = 0:4; �2 = 0:3;

� = 0:4:

Fig. (10:15) (c) : Streamlines for trapezoidal wave when

Q = �2; K = 0:4; � = 0:1; a0 = 0:1; �2 = 0:1; �1 = 0:4;

�2 = 0:3; � = 0:4:
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Fig. (10:15) (d) : Streamlines for triangular wave when

Q = �2; K = 0:4; � = 0:1; a0 = 0:1; �2 = 0:1; �1 = 0:4;

�2 = 0:3; � = 0:4:

Fig. (10:15) (e) : Streamlines for multisinusoidal wave when

Q = �2; K = 0:4; � = 0:1; a0 = 0:1; �2 = 0:1; �1 = 0:4;

�2 = 0:3; � = 0:4:
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10.6 Conclusion

This chapter presents the simulation of heat transfer on the peristaltic �ow of a Je¤rey-six

constant �uid in a diverging tube. The governing two dimensional equations have been modeled

and then simpli�ed using long wave length approximation. The simpli�ed equations are solved

analytically using regular perturbation method. The results are discussed through graphs. The

main ponts of the performed analysis are as follows:

1. It is observed that the increase in the values of �2; � and �1, causes the increase in

pressure rise while the increase �2 causes decrease in pressure rise..

2. The frictional forces have an opposite behaviour as compared to the pressure rise.

3. It is seen that with increase in � pressure gradient increases.

4. It is observed that the size of trapping bolus in triangular wave is smaller as compared to

the other waves.
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Chapter 11

Conclusions

The main points of thesis can be summarized as follows

1. It is observed that the relation between pressure rise and volume �ow rate are inversely

proportional to each other.

2. In the peristaltic pumping region the pressure rise increases with the increase in angle

of inclination, amplitude ratio, wave length and decreases with an increase in Walter,s B

�uid parameter.

3. It is seen that frictional forces have opposite behavior as compared to the pressure rise.

4. It is seen that pressure gradient increases with increase in amplitude.

5. It is observed that the size of trapping bolus in triangular wave is smaller as compared to

the trapezoidal and sinusoidal waves.

6. It is observed that in the peristaltic pumping region, pressure rise increases with the

increase in Weissenberg number while the pressure rise decreases with increase in radius

ratio.

7. It is depicted that with increase in Weissenberg number and �ow rate pressure gradient

decreases while pressure gradient increases with increase in amplitude ratio.

8. The pressure rise increases with the increase Sisko �uid parameter.
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9. The pressure rise increases with the increase in amplitude ratio and thermophoresis pa-

rameter.

10. It is seen that with the increase in the Brownian motion parameter and the thermophoresis

parameter temperature pro�le increases.

11. E¤ects of Brownian motion parameter and the thermophoresis parameter on concentration

pro�le are same.

12. It is analyzed that with the increase in viscosity parameter temperature pro�le increases.

Moreover it is seen that temperature �eld decreases with the increase in Brinkman number

and Weissenberg number.

13. E¤ects of Brinkman and power law index on temperature pro�le are opposite.

14. Concentration pro�le has an opposite behaviour as compared to the temperature pro�le.

15. The pressure rise decreases in peristaltic pumping region with an increase in ratio of

relaxation to retardation time and viscosity parameter.

16. The temperature �eld increases with the increase in ratio of relaxation to retardation.

17. It is observed that the volume and size of the trapped bolus increases with increase in

�ow rate.

18. The volume and size of the trapped bolus decreases with the increase in ratio of relaxation

to retardation time.

19. Perturbation and numerical solutions are in good agreement for small Eyring Powel �uid

parameter.

20. Pressure rise decreases with an increase in Eyring Powel �uid parameter.

21. Temperature pro�le has opposite behaviour for Brinkman and in Eyring Powell �uid.

22. Concentration pro�le decreases with an increase in Brinkman and Soret number.
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