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Prefac:e 

Hcat t.ransfer plays an important role during the handling and processing of nOll­

N('\\'toniall Hu ids. The understanding of heat. tr'ansfer in boundary layer flows or 
llOIl-N('wt.onia.ll fluids is of importa.nce in lllany engineerillg applicatiolls such as t.rall­

spiml.ioll c.:ooling, drag recluc.:tioll, therlllal rec.:overy of oil, ctc. Sc!vc!l'<d stlldic's or 

boundary layer Hows of non-Newtonian fluids have been c.:a.rried out cluring the last 

decade. All these studies have beell for non-Newtoniall fluids of the clifrc~ rcntiitl or 

rate type [2] [4]-[8]. It is known that for the fluids of the different.ial typc, (~xc.:('pt. 

for t.h(' fluids of c.:omplexity 17, = I, the equation of motion arc iUI ordcr higher than 

t.hc Navier-Stokes equations, and the adherence boundary condition is insufficient to 

det.ennine t.he solution completely. For such situations, t he difficulty is removed by 
usill g perturbation expansion or by the argumentation of the bouudary cOllditions. 

A syst.ema.tic st.udy of the boullllary layer fiow and heat transfer of non-Newtoniall 

fluids has beell provided oy Shelloy and Mashelkar [7]. Rccelltly Ghosh alld D(!llllaLIi 

[1] ciiscussed the hea.t transfer to pulsatile flow of viscoelastic fluid. How(~ver, no at­

tc'lllpL has oeell made to disc.:uss the heat transfer analysis 011 the plllsatilc! flow of it 

magllctohydrociynamic viscoelastic fluid ill a porous medium. Flow through a porolls 

ll1ccli um has been of considerable interest in receut years particularly among geophys­

ical fluid clynamicts. Keeping this fact in view the arrangement of t.his dissertation is 

as follows: 

In chapter one, we give the basic definitions of fiuids and flows. The governiIlg 

eq1\at.iolls of cont.illllity and momentum a.re included. The equatioll of' Illot.ion for i\ll 

Oldl'Oycl-B fluid has been derived. Finally, the energy equation is prnsented . 

Chapter two deals "vi th the pulsatile flow of a viscoelastic fI uid between two plat(~s. 

The upper plate has higher temperatui'e than the lower plate. The assllJrH'cl preSS1\l'C! 

gradi(~llt is of Lhe oscillating type. 

Ch;'pt.cr thrcc is devot.ee! t.o t.he fiow of a visc:ocla,stic fluid l>ctw('(~n t.\\'() infillit.e' 

pamlld plates. Tlw Illot.ion is generated due Lo Lhe itpplicaLioll of 1\llsl.c~acly p),(~SSIl),(~ 

gradi(~llt. The lower plate has less temperature tllitll the llppcr 01\('. Expressions fo\' 

1 
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thr n~locity a nd the rate of heat transfer at both the plates arc givnn. 

III chapter four , a study is made of a problem of heat transfer to pulsatilc' flow of 

a viscoelastic fluid between two parallel plates of which the upper one is <1J, a teltl­

perature higher than the lower one. The fluid is electrically conducting by ('\,ppl ying 

ulliforlll rnagnctic field and the mediulll between the plates is porolls. Thc Soilltions 

for the steady and fluctuating velocity and temperature distrib1ltions arc obtaincd. 

The rate of heat transfer at the plates is a lso constructed . 



Chapter 1 

Some Basic Concepts and 
Governing Equations 

1.1 Introduction 

This clmpter illcludcs some definitions ;-"ncl basic concepts 0(' [-luid mechalli cs . Differcnt 

kinds of [-lows and fluids are defilled. The equatioll of continllity anel (~ I1('rgy eqllation 

for viscous [-luicl are given. The goveruing equation for unidircctiollal ullsteady flow 

of' ,\.11 Oldroycl·B flllid is derived. 

1.2 Definitions 

Fluid 

A [-luid is a substance that deforms continuously under the application of shear 

stress no matter hoyv small the shear stress may be. 

Fluid Mechanics 

T he branch of engineering that examines the nature and properties of flllid . boLh 

<It rest and motion is callcd Fluid M echanics. 
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Viscosity 

Viscosity is t ll (~ physical property of fluid associatecl with the shearillg dcfol'lllat iull 

of t he fluid particles subj ected to the act ion of the applied force . III other words it 

is 1"(~si stance of a flllid to its motion. It is ratio of shear stress to the rat(~ of sh(~ar 

st. ra.ill , i. e, 

shcar s trcss 
Viscosity = II, = -----:------

" ratc of shear strain 

Thc dimcnsiom; of II, is 1,1 L - IT- I . It is also callcd the coeffi cicnt of viscos ity, absolute 

viscosity or dynamic viscosity. Note that for gascs viscosity incrcases wiLli t hc illcrease 

ill temperaturc "vhile for liquids viscosity decreases with iucreasiu g tCIYl P( ~ l'HJ, l\l'( '. T II (' 

Sl lilli!, or viscos ity is Pascal-second (Pa .. s). 

Density 

Till' 1l1ass p er Ilni t volll1l1e at a gi\'clI temperature <'I,ml pressure. l\'Iathclllat"icall y 

'In 

p = iii 

where 'IlL is the lllass a,nd 1'1 is the vo lu mc. Its dimension is !II L - 3. 

Kinematic Viscosity 

It is the ra tio of dynamic viscosity to mass dcnsity. It is delloted by 1), i. e, 

P 
1) =-

p 

T ile dilllcllsions of // is L 2T- ' . Thc 81 units of kin l' lI1(l,tic viscos ity a re TlI,2/ sc r: . 

Eckert Number 

T he ratio between the square of viscosity and the temperature differences is Ci-Lllecl 

the Eckert number. 



Prandtle Number 

It is the rat.io of the product of dynamic viscosity and specific heat with conduc-

t ivity X. 

Specific Heat 

Specific heat is the amount of heat required to change the temperatlll'e of (-), unit. 

mass of a substance through one degree. 

Thermal Conductivity 

It is the conduction of heat through the medium due to a thermal gradient in the 

meciium. Thermal conductivity X of a substance depends upon the material of the 

substance. 

1.3 Types of Flow 

Steady Flow 

A flow in which the quantity of fluid Howing pel' second is COllsta.llt. III oth(~r 

words , if the properties at each point of fluid in the flow do not challge with timc, 

the flow is termed as steady flo\-v. Mathematically the definition of steady flow is 

a~ = 0 
Dt 

wJIC'J'(' ( is n,IlY rllIid pl'Op(~rLy . ror SL(~i\.dy rl ow 

ap = 0 
at ' p = p(x, y, z), 

whcl'( ~ Ii is for dcnsit.y. 

Unsteady Flow 

A time dependent flow is known as unsteady flow. 
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Incompressible Flow 

A flow in which thc volumc and thus thc dcnsity of thc fllliel docs !lot challge 

during fl ow. A ll the liquid are geuerally considcred to have the incomprcssiblc flow. 

Coutte Flow 

A flow between two pa,rallcl plates vvith one plate stationary and oth(~r plate 

moving parallel to it at a constant speed is known as Coutte flow. Thc prC'ssmc 

gmdicllt for thc Cou tte [Jow is taken to be zero, i.e ., p =constant allCI 

Poiseuille Flow 

dp = o. 
d.?; 

\ iVhen fluid is bounded between the two stationary plates and t he fl ow is callsed 

dll(~ to action of the constant pressurc gradient theY1 flow is known as Poiscllillc flow. 

1.4 Classification of Fluids 

Real Fluids 

All the fluids for which the coefficient of viscosity ~I, is not equal to 7,ero are known 

as Teal fluids . 

Ideal Fluids 

The fl1lids for which the coefficient of viscosity I/, is zero arc call ed ideal fluids. 

Newtonian Fluids 

The viscous fluids are also known as Newtonian fluids. Alternatively the fluids 

which obey Newton 's law of viscosity are known as Newtonian fluids. Mathematically 

the lewton's law of viscosity is 

rl'll 
T,/J; = ~L- , . ely 



~ 

I 

wbcre T:'F" is LLte shear stress, dn/dy is Llw defol'llmtiull raLe, aw l It is Lhe ('ollsLaIlL 

or proportionalit.,v knowll as a.bsollltc or dynamic viscosit.y. Exa.lll pics of Ncwtoniall 

fi uids are water, gasoline, etc. 

Non-Newton ian F luids 

T he fluids for which power law model holds, are called non-Newtonia:!/' .fluids. 

IVlat. bematically 

Tyx ex: ( 
l 

)

11. 
c'U 

ely , n=f. 1 

or 

where n is t he fl ow behavior index, and k is the consis tency index. T Il e exalllpl es of 

non-Newtonian fiuid s a re blood , ketchup ; toothpaste , lucite pa.ints , biologica l fiuici s, 

etc. T he non-Newtonian flui ds are fur ther divided into three broa.d gro ll pS , which 

(\,re tirnc-indepcndent, time- dependent a.nd viscoelastic .fluids. The till1c-illClepcllClellt 

nOll-Newtoniall fluids are further sllbdivided into three sub-classes, IJSendo plastic, 

dila/;rmi and Bingham plastic. These types are defined as: 

Pseudo P lastic F luids 

Pseudo plastic fiuid s are those fluid s ill which the apparen t. viscos ity dec: rc(\scs by 

increasing the deformation rate, i.e, 11 < l. Pseudo plast ic flu ids are shear t hinning 

fluids. Examples of such fluids a re polymer solu tions, paper pulp in water , etc . 

Dilatant Fluids 

T he fluid s ill which the appa.rell t viscosity increases by increasing Ul e cldorlllat io ll 

raLc, i. e, n > 1, a re called Dilatant. Dilatant fluid s a re shear thickelling fluid s. 

Examples of t his typc are sll sp ension of starch and sand. 
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Bingham Plastic Fluids 

The' fluid ,,-hich behaves like a solid until a m inimum yield sLress Ty is exceeded 

and subsequently possess a linear relation between stress and the' deformatioll fett.e , 

cil ll (~d Bingham plastic. NIatlwlllettie<1.11y it is given by 

Exalllples of this kind arc toothpaste , drilling mud and clay suspensio ll. 

T II (' tiIllC-d( ~ p(~l1d(~lIt lI oJl-Nrwtollin.1I f1llids n. J'(~ ,,,Iso slIhdi v id('d illto Cwo gro iIPS, 

Thixotropic fluid s and Rheopectic fluid s, dcfincd below as: 

Thixotropic :Fluids 

T"(~ fll\id s ill which '1/ dcen~(\scs with Limc IIl1cler Lllc CO llstallt i\,ppli(~d sheilI' stress 

arc cetlled thi.'"Cotropic fl:llids. An example of this category is paint . 

Rheopectic Fluids 

Thc fluids ""hieh show increetse in r; with timc arc ca ll ed r-heo]Jcctic .fluids. 

Viscoelastic Fluids 

T he fluids in which the pnrticles after deformation ret1lrn to Cheir o ri ginal ShiqW 

when applied shcar stress is releascd a re called viscoelastic fluids. The viscoclast ic: 

fluid s etrc furthcr subdivided into two main subgroups , namely, lincm' viscoelastic 

and non-lineaT viscoelastic .flu ids. T he linear viscoelastic fluids a rc ngain furth er 

sl\bdividcd into thrce subgroups, Ma.'Cwel-l , K elvin Voigt nnd Jeffe'l'Y 's models. 

Simila rly the non-linear viscoelast ic fluids arc furth er subdivided into Walter-'s A 

nnd B .fluid, OldTOyd's A and B fluid , Coleman and Noll (sccond , third allCl forth 

grade fluids) and GTeen cOTr-elational .flv,id. 

Since we are interested in the s t udy of heat transfer to thc pulsnting flow of 

(tn Old royd-B fluid bounded by two infinitely parallel plates , so wc will derivc the 



gOV<'l'Iling equation for all Onlroyd-B fill id ill this chapter later. 

1.5 The Equation of Continuity 

The equation of continuity is the mathematical expression of law of cOllservatioll of 

mass a,nd is defined by 

",herr V is the velocity. 

ap - + \l . (p V) = 0 at (1.5 .1) 

For incompressible Haid the density of any particle is invariable, i.e , p = c:ollstant, 

so eqllation of continuity (1.5,1) ta.kes the form as 

\l.V = 0, 

1.6 The. Momentum Equation 

T he eql\ation of motion in vector form CHIl be written as 

elV 
p- = pB + cl-ivT, 

elt 

where the Cal\chy stress tcnsor is 

[ 0", 
Tv x Tz~, 

T= T:,:'Ij av,l} 
T" I 

T:cz Tvz azz 

(1.6,1) 

(1.6,2) 

a lld pH and dicit are the body force per unit mass and material derivative respectively. 

For viscous Huid , Eq. (1.6. 1) in componcnts form can be written as 

el'u _ (aa xx aTyx aTz~: H ) 
Plt- a +a +a +P :/: , c :1.: y z 

(1.6.3) 
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dv ( [)T.1;Y DC!yy OTzy B ) 
P-l = ~ + -[) + -[) + P!J ' ( i; 0.7: y Z 

dw ( OTn OTyz DC! zz B ) P- = -- + -- + -- + P Z , 
elt; D:/; [)y [) z 

(1.6. 5) 

aud are knowll as Navier-Strokcs equations. Here 'U, v , w arc the .7; , y and Z COl1l -

poncnts of velocity, C!xx, C!yy and C!z z are used for normal stress and T:cy , T'J z and Tz :/; 

arc uscd for shear stress . The values of normal and shear stresses in E flS. (1.6.3) to 

(1.6.5) for an ill comprcssible fluid are givcn by 

whcre p is pressure. 

Du, 
C!x;c = -J] + 2p -;:;-, 

u X 

OV 
. C!yy = - J] + 2p- , oy 

O'W 
C!zz = - p + 2 jJ, O Z ' 

T.7;Y = Ty ," = /L ( ~~ + ~~ ) , 

(
DW Ov) 

Tyz = Tz y = ~t [)y + O Z ' 

(
O'U OW ) 

T zx = T.1:Z = P O Z + ox ' 

1.7 Governing Equations for Unidirectional Flow 

of an Oldroyd-B Fluid 

The constitutivc relation for all incompressible Olclroycl-B fluid is 

T = - pI + S , (1.7. 1) 
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III tlw (lbovc (:qllnt.ioll 1) is the prcssur(' , 'I the uuiL tensor am! the extra sLI'<'ss 5 

satisfies 

(1.7.2) 

where /\1 and )'2 are the relaxation and retardation times, respectively, AI is the first 

Rivlill-Erickseu Leusor given by 

and 

(1.7.<1) 

(1.7.G) 

Usillg Eqs. (1.'7.4) and (1.7.5) in Eq. (1.7.2) we have 

(1.7.G) 

We seek a velocity field V for unidirectional flow of t he form 

V = [ u(y , t;), 0, 0] . (1.7.7) 

USillg the above equation , continuity equation (1.5 .1 ) is ideutic(llly sat is fi ed rtnd equa-

bon or motion (1.6. 1) in component form with no body force gives 

a'Ll op 
p at = - 0.7: + (\7 . S) ~; , (1.7.8) 

o = - op + (\7 . 5 ) oy y' 
(1.7.9) 

OJ) 
o = - oz + (\7 . 5) z , (1.7.10) 
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wil en! Llw s llbf'cr ip ts ([Cllote Lllc COlllPOI1ClltS llotatioll. USillg Eq. (1.7.7) we geL 

(1.7.11) 

[ 
0 ~ 1 Al = l + l 'f' = . iJ!J , 
U'lL 0 
Oy 

(1.7. 12) 

(1.7.13) 

(V · \7) Al = 0, (1.7. 14) 

£A, = [ ~ ~;)' ~ ] , (J .7.15) 

lA t +AJl = " T [ 20 ( ~:.!~ ) 2 00 ] (1.7.16) 

rvla,killg usc of above equations we obtaill 

(1.7.17) 

Vie also assume t ha.t 

S = S(y , t)i, ( 1.7. 18) 

wher0. i is t he uni t vector in t he x-dircction . From Eqs. (1. 7.7) and (1.7.18) w(: obtain 

[ 

5 + ' (~ 25 on ) 
J:X / \ 1. at - x y oy 

5 + ' (osYX 5 on ) 
YJ: / \ 1 ~ - yy 0 1/ 

5 + ' (os:!;y 5 au ) 
x y /I 1 ~ - yy Dy 

5 + A (081111
) 

yy 1 Df. 

] . (1.7.19) 



1') 
.J 

From Eqs. (1.1'.6), (1.7.17) and (1.7.19) we arrive at 

(1.7.20) 

(1.7.21) 

(1.7.22) 

vVith the help of Eq. (1.7.18), Eq. (1.7.10) is identically satisfied and Eqs. (1.7.8) 

and (1.7.9) give 

0'Ll. op oSX'l) 
P- = --+ --' ot D.?; oy 

_ 0]) + D Syy = O. 
Dy oy 

T he sola t ion of Eq. (1.7.22) is given by 

(1.7.23) 

(1 .7.24) 

CI.7.2S) 

where f(y) is an arbitrary functioll. Let f(y) = 0, implies that Syy = 0 [3] anci from 

Eq. (1.7.24) we conclude that p is indepcndent of y or we can write 7) = 7)(X , t). Eqs. 

(1.7.22) and (1.7.23) willllow bCCOlllC 

oSxy OU 02U 
Sxy + /\1 ~ = fJ·-;;- + 1j,/\2~' 

ut uy utuy 
(1.7.26) 

07.l op oSxy 
Pat = - ox + oy . (1.7.27) 

fvJllltiplying Eq. (1.7.27) by /\ 1 and ciifferenti at ing the resulting equatioll with !"!':i pcct 

to t we get 

02U 02p 02 S:cy 
/\lP~ = -/\l ~+)'l~' 

ut utu.'E utuy 
(1.7.28) 

Addin g- Eqs. (1.7.27) and (1.7.28) we write 

(1.7.29) 



Differentiating Eq. (1. 7.26) with respect to y we Itave 

(1.7.30) 

Substitution of Eq. (1.7.30) into (1. 7.29) gives 

(1.7.31) 

1.8 Energy Equation for the Viscous Fluid 

According to the law of conservation of energy we have 

dE Pdt = T . L - \I . q + pr , (1.8.1) 

whore P is the density, E is the specific internal energy, q is the hen,t flll x vector , r 

is the radiant heating and L is the gradient of the velocity vector. III the (1,usence 0 (' 

the radiant heatillg, Eq, (1.8,1) will take the form 

dE 
P- = T . L - \I . q 

dt ' 
(1. 8.2) 

where E = CpT and q = -X\lT, "vhere Cp is the specific heat constfwt pl'essul'(~ aJld 

T is t.h(~ t.r.mp(~ ra. t lln\ 

T he Cauchy stress tenser T for the viscous fluid is given by 

T = -pI + pAl ' (1.8 ,3 ) 

Choosing the velocity fi eld of the form 11 = (n(y , t) , 0,0), we obtain 

[ 
0 au 1 

L = 0;11 , 



Now 

[ 
0 f)It 1 At = .c + .c'1' = . iJ IJ , 
0". 0 
DIJ 

fJu 
( )

2 

trAi = 2 uy , 

T ' .c -p.c + IJ.Al ' .c, 

d i vT == [ ~ ~ ] Dx iJy 

-tr(p.c) + jJ.tr(AI . .c) , 

( )

2 u'U 
j.t uy 

[ 
-p 0] [ + It tc o - p [ 

0 D'II' ] D iJy 
DY] D'lL 0 . 

Dy 

Now we consider the energy equation (1.8.2) neglecting radiant heat as 

dE 
P- = T ' .c - \l ' q 

dt ' 

IS 

(1.8.0) 

(l.8.6) 

(1.8.7) 

(1.8.8) 

(1.8.9) 

(1.8.10) 

where T = T(y , t) and q = -X\lT, where X is the thermal cOllductivity and T is tIle 

temperature. T hen 

[
O aT 1 

\IT = 0 ~ , (1.8 .1 2) 

aile! 

divq = -xdiv\lT, (1.8.13) 



or 

Now HS 

(divq) x 

( divq)y 

a2T 
-x~, 

uy 

o. 

d a 
- = - + (V· \7) 
elt at 

t hus the energy Eq. (1.8.2) can be wri ttell as 

C elT 
P dt 

aT 
Cp at + Cp (V . \7) T 

DT DT 
~+?L-D . 
ut. x 

Since T = T(y , t) t hercf'ore we have 

elT aT 
dt at . 

Also 

dE = C rlT = C aT 
P dt P 1) elt P P at . 

Tow from Eqs . (1.8.9) , (1.8.13) and (1.8.19) we obtain 

which is the energy eqllR.t ion fo r the viscous flu id. 

1.9 Maxwell's Equations 

IG 

(1. 8. 14) 

(1.8.1G) 

(1.8. 16) 

(1.8.17) 

(1.8.18) 

(1. 8.10) 

(1.8.20) 

The electric and magllet ic fie lcl vecto rs E ;:tnd H in the electromagll ctic t heory HXC t. h (~ 

solutions of the funclamental set of equations known as lVlaxwell 's eqm1.tions. E;:tch of' 



17 

Ll}('sc cC[lmtiow; is based on all cxpcrilJlcllLally uhscrved pl'Op(~ rLy o[ t.he elecl.ric alld 

magnctic ficld s. Wc do not prcscnt the mathcmatica,l derivation of these ('flllations 

bllt writing tb(~l1l in rnks ullits as follows: 

DB 
\7 x E =-­

Dt,' 

. DD 
\7 x H =~+ J , 

ui 

\7. B = 0, 

\7 . D = (JI' 

Til iI.ddit.ioll t!Jcj'(~ ,\'1'(' tile cO lI sl.i(,lltiV<' 1'( ~ l at.i()JJs tll;\.t. cxpj'(~ss B , D ;\.IId Jil l 1.('rlllS of' 

E anc! H , 

J =aE 

wllcl'(' D , Band J arc thc clcctric displacemcnt, the ma,gllctic indll ction ,tnd Lite Clll'-

rCllt dcnsity respectively. Further PI is the density of clcctric charge, a is the elect.r ical 

conductivity, tl is t he dielectric constant and f-.Ll is the magnctic pCl'mca,bility. 



Chapter 2 

Effect of Heat Transfer to the 
Pulsatile Flow of a Viscoelastic 
Fluid 

2 .1 Introduction 

In this chapter, a problem of heat transfer to flow of an Oldro:vd-B Huid bOlluclecl 

by illfillite pandlel plates is exalllilled . DoLlt the plaLes an~ aL rest. TII(~ lo\Ver plctLc\ 

is ill, lower Lelllpc~rn. l. llrc 1.11<1.11 Llt<! IIpp(!r OIlC. Thc flo\V is (T(~aLcd dllc 1.0 1.11(' applic·d 

pressure gradient. Expressions for velocity and rate of heat transfer at the plaJ,es arc 

givC' ll. The presented all alysis is due to Ghosh and Debnath [1]. 

2.2 Heat Transfer to Pulsatile Flow Problem 

We consider the flow of an Oldroyd-B fluid between t\Vo infinitely 10ll g parall cl plates, 

a distance h apart , which is driven by the unsteady pressure gradieut in the form 

1 op 
--~ = A {I + Eexp(iwt)} 

pux 

18 

(2.2 .1) 
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wherc A is a kllowtl CO llstallt, E is a sllitably choscll positive q1lantity and w is the: ['1'('-

quency. vVe s1l ppose that the motion is slow and hence a ll the second order qllantities 

call be neglected . 

III the rectangular Cartesian coordinate system , t he x - aX'is is t(tken along the 

lower pbte at 11 = 0 and the 11 - a.'Gis is normal to this plate. T he lowcr pla.te at 11 = 0 

and the upper plate at 11 = h arc maintained at constant temperat1ll'cs To and TI 

(TI > To) respectively. Thc govern ing equation of motion combined with cOllst iLll t iv(' 

relations of the viscoelastic fluid is given by 

(2 .2.2) 

where // = 1-" / P rmd above equation is modelled in chapter 1. Here /\1 is the l'( ~ laxatio ll 

t illl(' , /\ 2 is the rctrudation timc, (J is the density, p is the pl'(~SS l1l'( ~, // is kinematic 

yiscosi ty and 11 is the fluid velocity in the ~c- direction. The ell ergy equat ion is 

C/JT =?S:. f)2T + // (f)'U) 2 

1 fJI, (J Dy'l. Dy 

whcre Cp and X are the specific heat a lld therlllal cOllcluctiv iLy , respectively. 

T he bounda.ry conditions are 

u = 0, T = To at y = 0, 

1/, = 0, T = TL rtt Y = h. 

Illtroducing the non-dimensional para mcters 

T = wi, 
y 

1} = h' 

t lie boundary value problel1l takes the following form 

(2.2.3) 

(2.2.4) 

(2 .2.5) 

() 2 G) 
\~ .. 

(2.2 .7) 



with the boulldmy cOllditiollS as follo\\' 

1[,* = 0 at 

'L/,* = 0 at 

We aSSllme the solu tio n of the following form 

1/ = 0, 

17 = 1. 

:2 0 

(2.2 .8) 

(2.2.9) 

(2.2. 10) 

S11bstituting Eq. (2.2.10) and the boundary condi tions (2.2.8) and (2.2.9) we get t he 

following systems for velocit ies as: 

System of order zero 

System of order one 

where 

2 d 'Uo 
-l2 + 1 = 0, 
C'T) 

'Uo = 0, 17 = 0, 

Uo = 0, 'T) = 1. 

'U[ = 0, '17 = 0, 

17 = 1, 

T he so lu tion of Eq. (2.2.11) is given by 

1/2 
'/.Lo = - 2 + .A17 + B. 

(2.2.11) 

(2 .2 .12) 

p.2. 13) 

(2.2.1 -1) 

(2 .2. 15 ) 

(2 .2. 1G) 

(2.2.17) 

(2 .2.18) 
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.App l~' illg Lhe bUlIlll!;lry cOll(liLiullS (:2.2.12) amI (2.2.13) we get. B = 0 amI A = & alld 

tllllS the' above solu tion become's 

(2.2. 19) 

TI}( ~ Eq. (2 .2.14) call b( ~ wri tt.e ll as 

(2 .2.20) 

where 111 = (1 + I.) m with m = ~Rf3 . The general solu tioll of the nOll - h omog( ~ ll e() ll s 

Eq. (2.2.20) is 

'U = Celll 1J + De- M1) + _1_ 
1 n2 ' ~ . 

(2.2.21) 

where C and D are constants . j\/Iaking use of the boundary condition (2 .2.1 G) we get 

(2.2.22) 

Substituting Eq. (2.2.22) in Eq. (2.2.21) we obtain 

(2.2.23) 

Using t he boulldary condition (2.2.16) in Eq. (2.2.23) we obtain 

(2 .2.24) 

allel tl lll s Eq. (2.2.23) gives 

1 [( -A I _ ) sinh 11117 ( - MrJ) ] 
'[/,1 = - e - 1 + 1 - e 

I.R2 sinh 111 ' 
(2.2.2G) 

1 [ {e- M 1
) sinh lvI - eAr sinh 11117 + sinh 1I117} ] 

'ttl = - 1 - ' . 
~R2 sinh 1\1 

(2.2 .26) 



22 

Sill(,c 

siuh (1 + ~) m (1 - 'I I) sinh (itI - iti'l7) 

sinh it1 cosh NIr7 - cosh itI sinh !vIr7 

( 
eM 17 + e-!V{1') ( eM + C-

M) 
sinh iti 2 - 2 s inh j\1'17 

sillh itt (siull itt'l l + e- IIhl ) - (sinh j\1 + p- !II) sinh j\I'1 

(2 .2,27) 

so Eq, (2 .2 .26) can be written as 

1 [ sinh itt (1 - '17) + sinh 111] 
'IL 1 = - 1 - ----'----'-----

tJt2 si II h it1 ' 
(2.2.28) 

or 

'1/, 1 = __ ~ [1 _ sinh (1 + /.) m (1- 17) + sinh (1 + I,) 'ln17]. 
17."2 Si llli (1 + I,) 'III, 

(2.2 .20) 

From Eq. (2.2.10) the cxpression for 'u,* is 

'1/, * (2 .2.30) 

17 ( ) ED [ . sinh (1 + I,) '111 (1 - 'II) + sillil (1 + I,) '"1:1/] IT -1- '17--1- e . 
2 R2 sinh (1 + ~) 'In 

It is noted that the results for viscous fluid can be recovered as a special case by 

TOW ,"ve corne to the energy equation , i. e ., Eq. (2.2.3) as follows 

lllt.rod ucing 

T = wt, 

oT X [J2T (o'U,) 2 c - = --+// -
P 8t P 8y2 8y 

(3R 
rn = /2 ' 

'U, // 

Ah2 ' 

(32 = 1 + /,F l 

1 + ~FIF2' 
/\2 . 

F2 = -« I) , 
/\] 



alld t.h(~ 1l01l-dilllCllsiollaJ LcmpcraLlll'c () 

Eq. (2.2.3) takes the following form 

or 

where 

e = T - To 
T[-To 

23 

(2.2.32) 

(2.2.33) 

(2.2 .34) 

III thc above equation PT is the Pmndti Humber and Ec is the Eckc1·t number. 

T he bound;'\,ry cOllditions (2 .2.4) and (2 .2.5) in terms of e are 

at Tl = 0, 

e = 1 at 'r, = l. (:2.2 .30) 

TOW the temperaturc e can be assumed in the form 

(2.2.3G) 

Frolll Sq. (2.2.30) wc havc 

U'll* (1 .) (/, [M cush J'h, - JH cosh !I i (1 - "I)] I T - = - -11 + - c 
OTl 2 R2 sinh 1\11 ' 

(2 .2.37) 

or 

(
a'//,' ) 2 (1 :l ) f

2
C

2/
,T 2f l,e

lT 
. 

- - = - + 'II - 'II - .' .G('1/) + -.-.1 (-I I)· 
017 4 H I slllh2 111 R:l 

(2 .2.38) 



where 

( 
~ _ 77) [ ill cosh kh7 -. 1'\1 cosh kI (1 - "I) ] , 
2 smh il1 

(2.2.39) 

9 (77) il12 cosh 2 1'\171 + 1\12 cosh 2 il1 (1 - 77) 

-21\112 cosh il177 cosh 111(1 - 77). (2.2AO) 

Now substituting Eq. (2.2.37) into Eq. (2.2.33) , we obtain 

(:2.2,41) 

Now differentiating Eq. (2 .2.36) twice with respect to 77 we get 

(2.2.42) 

Also 

(2.2.43) 

Using Eqs, (2.2.42) and (2,2,43) ill Eq. (2.2.41) and equating the cocffici ellts o[ EOeolT , 

with the following bound ary conditions 

eo = 0 at 77 = 0, and 

F=O at 77 = 0, and 

G = 0 at 77 = 0, and 

()o = 1 at 

F=O at 

G= 0 at 

77 = 1, 

77 = 1, 

7] = 1, 

(2.2,44) 

(2.2.45) 

(2.2.46) 

(2.2.47) 

(2,2.48) 

(2.2.49) 
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wll('l'l ~ Llw fUllctiolls fe,/) ;uHI ge,/) arc defin(~d ill E qs. (:2.2.39) ,w<l (2 .2. ,10) , n'sp('('-

tivcly. 

ow intcgrating Eq. (2.2.44) with respcct to 1/ wc havc 

(2.2.50) 

where Cl and C2 are thc constants of illtegration. Now applying bOllllci ary co uciitioll s 

(2 .2.47), we get 

(2.2.51) 

and thus Eq. (2.2 .50) bccomes 

(2.2 .52) 

Eq. (2.2 .45) C;Ul also bc writtcn as 

(2 .2.53) 

I 

Now making use of N = (1 + /,) n alld n = ( ~. ) 2 R in Eq. (2.2 .53) wc he-we 

([2 Fe'7) _ N2 F(' ) 2/,~.Ecj'() = 
d 2 '7 + R2 17 O. ,17 ' 

(2.2.54) 

T il e above equatioll after lIsing Eq. (2.2.39) takes tll c following rOnll 

(2 .2.55) 

",II ('l'l' 

2"'111 PrEe 1 - e-fI[ 

R2 sinh 111/ 2 

and (2.2 .5G) 
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The so luLion of above equatioll is the 811111 of cOlllpielllc ll Lary fllnctioJl cUld UIC partiC'-

ular i 11 tegral. T he corn plcmentary fUllction is given by 

(2.2.57) 

For pmticlllm intr.gral , we lise the rnr.t1lOd 0[' Illldeterm ined cOr.fric: iCllI.S. Ld 

(2.2.58) 

whcrc Oi, 73, 1 and J a.re to be determined . Difi'erentiatillg Eq. (2.2.58) wiLh respect 

to .,/ W( ! ctl'l'i W! ett 

or 

(2.2.50) 

Comparing Eqs. (2.2.55) and (2.2.59) wc get 

Ai (JII/2 _ N 2) Oi, 

A2 (1\1/2 - N 2) 73, (2 .2.60) 

fb 20iJ11 + (111/2 - N 2) 1, 

AI -273111 + (J..!f2 - N 2
) J, 
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or we call writ( ~ 

f3 (lvJ2 - N2)' 
(2.2.G1) 

A3 21\11 At 
(j\!12 - N2) (lvJ2 _ N2) 2' 

A" 21\1 A2 ----+ 2' (lI J2 - N2) (1\12 _ N2) 

Using Eq. (2. 2.56) we can write fr, 73, 'Y R.nd (5 as 

(2.2.G2) 

- LlvJPl'Ec ( 1 - eM ) 

f3 = R2 siuh 111 1112 - N2 ' 
(2.2.G3) 

_ d\I Pl'Ec (1 - e- AI 
) (1 21\1) 

'Y = - R2 sinh 111 ,!lJ2 - N2 2' + 1112 - N2 ' 
(2.2 .G4) 

(5 = _ /,111 Pl'Ec ( 1 - eM ) (~ _ 21\1 ). 
R2 sinh 111 1\12 - N2 2 1112 - N2 

(2.2.65) 

Th( ~ complete solu tion of Eq. (2.2 .54) is of the following form 

Using the boundary conditions (2.2.48) in Eq. (2.2.66) "ve get 

o Cl + C2 + 'Y + (5, 

Solving above equations we have 
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or 

Because 

therefore 

or we can wri te 

(2.2.71) 

(2.2.72) 

Now ('rom Eqs. (2.2.62) to (2.2.65) we obta in 

(
1 21\1J ) 

'Y = - ct '2 + lI12 _ N2 ' (2.2.73) 

- -(1 2l11 ) 
15 = - (3 '2 - JVJ2 _ N2 ' (2.2 .74) 

_ -(3 2~JVI P7' EC (COSh lI1 - 1) 
a + = - ------=-

R2 sinh lI1 JVJ2 - N2 ' 
(2.2.75) 

_ - 2~JVJ P7'EC 
a - (3 = R2 (1IIJ2 _ N2) , (2 .2.7G) 

Ctnel 

- 114 -(3 ae = - , (2.2.77) 

Front above equations we can write 

- M 'J -M _ ct + /3 _ 2111 (I - -(3) 
rye + e - . 2 lI12 _ N2 a . (2.2.78) 



From Eqs. (2.2.58) ,md (2.2 .77) we ha\'e 

Fp(l) (ie A1 + 7Je- A1 + 'YeA] + "Je - A/
, 

_ (i + 7J _ 2111 (- _ -(3) 
2 lvf2 - N2 ex , 

'Y + (5 = F,J(O). 

Let LI S define 

Now from Eqs. (2.2.75) , (2.2.76) and (2.2.79) we hewe 

Rnci thus from Eqs. (2 .2.79) ane! (2.2.80) we cau write 

1 
CI = 2 . 1 N (e- N - l)L(O) , 

Sllll 

C2 = . \ T\[ ( - C N + 1) L (0) . 
2 sIn 1 j 

Now rewriting Eq. (2.2 .66) as 

where 

Now from Eqs. (2.2.81) and (2.2.82) we get 

.1 [( e-N _ 1) eN1J + (1 _ eN)e- N11] £(0) , 
2 sJIlh N 

2!) 

(2.2.79) 

(2 .2.80) 

(2.2 .81) 

(2 .2.82) 

(:2 .2.83) 

(2 .2.84) 

- £(0) 
. 1 N [sinh N17 + sinh N( l - 1/)]. (2 .2.85) 

Sill 1 
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aw l thtts frollt Bq. (2 .2.83) \V(~ eall write 

F(17) = ~L(O) [s inh N 7] + sinh N( l - 7])] + L(77). 
smh N . 

(2.2.86) 

"\lith the help of Eqs. (2.2.73), (2.2.74) and (2.2.84) we have 

( ) 
_ !V/11 Ii, ,-M11 - (1 2111) !V/11 Ii (12M ) -1\""1 

L '17 = n77C + // 17e - (\, '2 + ]..;/ 2 _ N'2 e - // '2 - 1\1'2 _ N'2 C , 

( 7] - ~) (CiicAfT) + /JC- M11) - 2],,;/ ( Oie!V[11 - /Je- M11 ) . (2.2.87) 
2 . 1112 - N2 

Also from Eqs. (2.2 .62) and (2.2.63) we obtain 

- M1/ + -(3 ·- 11/[ 1/ 
o~e e 

Similarly 

Using above vaJucs in Eq. (2.2.87) we obtain 

2L1I1PTEC [( l){ ()} 2 (2 2)' 7] - - cosh j\177 - cosh j\1 1 - '17 
R 111 - N smh 111 2 

2M 1 - 2 2 {sinh 11177 + sinh 111 (1 - 7])} . 
111 - N 

(2.2.89) 

Now from Eq. (2.2.46) we have 

(2.2.90) 

where 9(77) is defined in Eq. (2.2.40) and boundary conditions are given in Eq. 
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(2.2.49). Eq. (2.2. "10) call be writtell itS 

9(17) j\I2 (cosh2 j\11] + cosh2 j\1 (1 - 17) - 2 cosh J\11] cosh j\I(l - 1/)) 

j\12 ( _ e2M 7) + e- 2M7) + 4 + e2M (1 - 1/) + e- 2M(1 - 1/) 
4 ' 

-2 (eM7) + e-I\If1/) (eM(l-r/) + e-!vf(l-'I) ) ) , 

j\~2 [ (1 _ e- M ) 2 e2M
7) + (1 _ eM ) 2 e- 2M1) + 4 (1- cosh j\1) ]. (2.2.91) 

Substituting Eq. (2.2.91) in Eq. (2.2.90) we obtaill 

or 

where 

P,.Ec lv!2 [(1 _ e- M ) 2 (';2/1'/1/ 

Lln'1 sillh 2 At! 

+ (1 - efl'/) 2 e- 2M1) + 4 (1 - cosh j\1) ] , 

(2 .2.92) 

(2.2.93) 

V.,re note that Eq. (2.2.92) is non-homogeneous second order ordinary differential 

eqnation. The complete solution is the sum of complementary functioll and p,uticular 

illtegral. The complementary function is given by 

(2.2.94) 

where CLl and CL2 are arbitrary constants. For particular integral , we llS0. the method 

or und etermined coefficients. For tha.t we write 

(2.2.95) 



32 

DifI'(,l'elltiatillg ti le abovc cC[lI(1,t.ioll twice witllrcspcct to '17 we ge t 

(2,2,OG) 

Substituting Eqs, (2,2,95) and (2,2.06) into Ee}, (2,2.92) we get 

Comparing th(~ coefficients of e O?) e2 A17/ ) and e-2 /1h) we obtain 

~ AI 
a 

(4]\;[2 - 2LP7·R2) , 
(2,2,98) 

~ A2 
(3 

(4j\12 - 2/,PI'R2), 
(2,2,99) 

-
A3 

'Y 2LP1'R2 ' 
(2 ,2,100) 

With the help of Eq, (2,2,93) we call write Oi, 73, ancl-:Y as 

(2,2, 101) 

~ 

(3 (2.2.102) 

(2 .2. 103) 

The complete solution of Eq. (2.2.90) can thus be written as 

(2 .2. J().1) 

To find al and a2 we apply bonndary couditions (2.2,49) in Ee}. (2.2.104) amI get 
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I 

Sinc(, N = (1 + /,)n amI IL = R (/~,, ) :!, we call write J2lP7·R = J2N (lIld LlIIIS frolll 

above equations we have 

or 

al = . 1 v'2 [e-.,fiN Gp(O) - G1,(1)] , 
2 sll1h 2N 

a2 = . 1 v'2 [ _e.,fiN Gp(O) + Gp(l)] . 
2 slllh 2N 

Now frol11 Eqs. (2.2. 101) and (2 .2. 102) we have 

f3~ -2M ~ 
e = a. 

l\/Iaking use of Eq. (2,2,108) in Eq, (2.2,95) we have 

and thus from Eqs. (2.2.101), (2.2.102) etnel (2.2.103) we have 

Q(O) - (a + 0 + 9) , 

(2.2. 10G) 

(2.2. 107) 

(2.2.108) 

(2,2,109) 

( 
P7.Ec1l12 ) [ (1 - e-!\lJ ) 2 + (1 - e-M

) 2 _ 4 (1 - cosh 1\1) 1 
- 4R'I sinh2 j\1 (4 j\12 - 2LPI'R2) 2L~.R2 ' 

or 

Q(O) = 1I12PrEc [1- cosh j\1 _ 1 + cosh 2111- 2:0Sh ll1 ] . 
2RtJ sinh 2 111 N2 2 (2N12 - N2) 

(2.2. 110) 

From Eqs, (2 .2. 107), (2.2.108) a nd (2.2.110) we obtetin 

al = Q(O) (1 _ e-.,fiN ) 
2sinh..fiN ' 

Q(O) ( .,fiN ) 
CL2 = e - 1 . 

2 siuh ..fiN 
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Using above cq llaLiolls we gd 

. Q(O) [(1 _ e- ..f2N ) e..f2N71 + ( e..f2N _ 1) e- .J2N71] , 
2 smh V2N 

. Q:% [siuh 1\II' + sinh 1\1(1 - 'II)] (2.2.113) 
smh 2N 

and so from Eq. (2.2.104) we can write 

G(17) == . Q:% [sinh JiN17 + sinh hN(l - 17)] - Q('I]) , 
smh 2N . 

(2.2.114) 

where 

Q(17) = -Gp (r7) = - (ae2
/\1fTf + fje- 2M77 + 1) . (2.2.11 5) 

Now from Eqs. (2.2.101) , (2.2.102) and (2.2.103) we obtain 

_ ( P7' Ec A12 ) [ (1 - e-M )2 e2M7J + (1 - eM)2 e-2M77 _ 4 (1 - cosh lv!)] 
Q(17) = 4R" sinh2 JvI (4lvI2 - 2"P7.R2) 2DP,.R2' 

P7.EC j\12 [(1 - cosh 1\1) '(1- e- M
) 2 + (1 - efl,,)2 

-'----- - cosh 21\117 
2R" sinh2 1\1 N2 4 (2 lvI2 - N2) 

(1- eM)2 - (1 - e-M)2 1 
+ 4 (2lvJ2 _ N2 ) sinh 2lvI17 . (2.2.116) 

As 

or 

Equation (2.2.116) becomes 

Q( ) = ]\112 P7·Ec [(1 - cosh lv!) _ 1 + cosh 2lvI - 2 cosh lvI cosh 21\1r 
17 2R" sinh2 1\1 N2 2 (2lvJ2 _ N2) 7 

sinh 21\1 - 2 sinh 1\1 1 
+ 2 (2lvI2 _ N2) sinh 21\117 (2 .2 .119) 
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2.3 Rate of Heat Transfer 

The rate of heat transfer per ullit area aL the plate 7/ = 0 and 71 = 1 arc respectively 

given by 

(2.3 .1) 

and 

- - - +Ee - +c e - . ( oB ) _ (dBo) LWt (dF) 2 2LW /, (dG) 
0TJ 11= I rl77 11= I . rlTJ '11= I d77 'I C7. I 

(2.3.2) 

DiHerentiating Eqs. (2.2.52), (2.2 .86) ,(2.2.89) , (2.2.114) allel (2.2 .110) with respect 

to '11 \1'(' h;wc 

rlf)o ( Pj'Er; ( . 2 :1) ) - [- = 1 + -- 1 - G71 + 12'11 - 8'/!' , 
( 'II 24 

(2.3.3) 

dF -NL(O) elL 
-d = . J N [cosh N77 - cosh N(l - 7/)] + - , 

77 sm 1 d'i I 
(2.3. ,1 ) 

dG J2NQ(O) ( ) dQ 
-l- = . J2 cosh J2N71 - cosh J2N(1 - 77) --, 
( 77 slllh 2N ci'll 

(2.3.5) 

elL 2dH PI.Ee [ ( 21112 ) . 
d77 = R2 (1112 _ N2) sinh j\1 1 - fliP _ N'2 {cosh 1111 TJ - cosh 111 (1 - 77)} 

+ (11- D (M sinh Mry - M sinh M(l - ry)) l (23.G) 

dQ j\12 PI·Ee [2 ~ , f sinh 2111 - 2 sinh 111 1 ~ , f 
-- = 1111 cOS12MTJ 
ci'I] 2R~ sinh2 j\1 2 (21112 - N2) 

2 ~11 + cosh 2NI - 2 cosh 111 . l' ~1 1 
- 1 ( 'f2 2 ) sm 1 211 77 . 2 2M -N 

(2 .3.7) 

Using a.bove equ ations in Eq. (2.3.1) we get 

- 1 + -- - Ee' 1 - cos I N (oe ) Pj'Ee IWt{ 2dVIPI·Ee [ j\12 + N 2 
( I ~1) 

077 1)=0 - 24 R2 (1112 - N2) sinh 111 fliP - N2 

111 ] N L(O) } +- sillh 111 + . 1 (1 - cosh N) 
2 S1111 N 



.3G 

2 ') I [ j\13 P).Ee ( ) +( C-
1W 

- 2 - si llh 2JU - 2 Sillh j\I 
2R'sinh Af (2A12 - N2) 

J2NQ(O) ( ) ] +. J2 1 - cosh V2N . 
smh 2N 

(2.3.8) 

Similarly the rate of heat trallsfer per uni t area at the plate 7] = 1 is give1l by 

P1·Ec I [N L(O) 1 - - - + Ee~w , (1 - cosh N) 
24 sinh N 

2/,A;J Pj'Ec { Nf 2 + N 2 ) A;J . }] 
- R2 (A;J2 _ N2 ) sinh j\;J A;J2 _ N2 (1 - cosh A;J - 2 Sill}) A;J 

+E2e2/,w t V2NQ(O) _ l ' C X 
[ 

AI3 PE 

R" sinh 2 Ai 

{ 
- sinh 2A;J - 2 sinh Me osh 2A;J + 2 cosh AI sinh 2AI }] . 

2 (2A12 - N2) 

2.4 Numerical Results and Discussions 

(~ . 3.9) 

For Lite problem uIHJer illvc~sL i gaLioll ()o rcprescllLs the steady LCll lp CI'i\. L l lI'<~ ill 1.1 )(\ 

flllid containing OIlC lilH~(tl' t.e rm cOlTespollcling to th (~ flllicl aJ, l'(\st a llci iI.dckcl to it ;1, 

biquadratic term which arises due to viscous friction . The expression for eo given by 

(2 .2.52) remains the same for both a viscous and a visco-elastic fluid of O}droyed type 

lllldc ~ r siJllilar cOlldi t iollS. Tl\{ ~ tCIl)pC ~ ril. tIlJ'C profIles C()tTc ~sp()llclill g to On il.re slioWJi III 

Figure-2 .1 for various values of Pj'Ec. 

Regarding the rate of heat transfer in the steady-stR.te condi tion the reversal of 

heat flux from the fluid to the hotter plate take place when Pj'Ec > 24 which, ill term, 

makes the hotter plate more hot. In fact , the value of Pj'Ec provides a measllrc of t}l e 

mn olln t of heat gcnera.ted du e to fri ction which, in the present case, illcreases wi th th(\ 
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F igure 2.1: Steady tempera ture profiles. 
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'.' ... 
" 

2.5 

increase of the pressure grad iellt. As a result, if the temperature d iffercllce bctwccll 

thc pli-ltes is fix cd , heat flows from Lhe hottcr plate to the fluid as long as the pressurc 

gradient does not cxceed a ccrtain valuc i.c. , for P?'Ec 'f 24. This phCllolllclJon is 

im portant for cooling at high pressure gradients, 

Fixing P?, to 100 ,R to 1.0 and Ec to 1.0 or 3.0, the instantaneolls tempel'rtture 

profiles are plotted in F igure (2.2)-(2 .5) to find the effect of changing valll cs of the 

clastic parameters FI and F2 . F igure (2.2) represents the instantaneous temperaturc 

pro fil (~s for a viscous fluid where F2 is t;'Lken rtS Ilni ty and Ec = 1. 0. It has already 

bcen pointed out t lmt the res1ll ts for F2 = 1 aJways represent the case o[ a. visco ll s 

fluid irrespective of the values of F J.The non-steady temperature profiles for Ec = 1, 

FI = 0.1 F2 = 0. 01 are shown in F igure (2.3). Comparison of F igurcs (2.2) auel (2.3) 

shows that the presence of the elast icity of the fl1lid increases the t.cmpcrat l\l'c ill 

a region Ileal' Ul C pln,te H,lld diminislI es the same n,t t. lI e (: (~ ll tra, 1 pmt 0 [' t h (~ elI n,lIn c!. 
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Purtht'r , [Will Figurf' (2.4) we scc LImL tIle tCllllH'ratlll'C ill a yiscodasLic: fluid ill('t'(,cts('s 

ra,pid ly with the increase of Ec which in similar to that in a viscous fluid. Figlll' (~ 

(2 .5) shows that the increase of temperature ncar the plate OCClll'S mainly cl1le to t h( ~ 

in crease of relaxation time of t he fluid while t he increase in retardat ion ti lll e or t hc 

fluid produces a slight decrease of telllperature at the centra l pa r t 0 [' t he dl<lllllCI. 

11 0.9 

08 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
-0.04 -0 .02 o 0.02 0.04 0.06 0.08 0.1 0.12 

e 

Figure 2.2: Unsteady temperature profiles in viscO llS fluid . 
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Chapter 3 

Effect of Heat Transfer on the 
Viscoelastic Flow Due to Unsteady 
Pressllre Gradient 

3.1 Introduction 

An attempt is made in this chapter to invesLigate the effect of lwnt transfc;l' on flow 

of ;-UI Oldroycl-B betweell the two rigid plates. The flow is generated by itpplyillg all 

unsteady pressure gradient when both the plates are at l'()st. The upper p];ttc' has the 

higher temperature than the lower one. The resulting partial difFerelltinl cqllntiolls 

have been solved analytically and the results for steady and unsteady vcloci Ly profilc~s 

arc constructed. Finally the rate of beat t rallsfer a,t the plates arc given. 

3.2 ForlTIulation of the Problem 

Let lIS cOllsider the How o[ fluid betweell two illI-illi tely pa,mile l p l atc~s . T il ( ~ pI itt,('S arc 

at a distnnce II. apart a,nel the fluid is taken an Olclroycl-B fluid. T he flow is clue' to 

41 



1lllstcady preSSlll'C' grllcl i('lI t which is or the followill g forIll 

1 ap 
--~ = A {l + f exp(at)} . 

p u.'C 

42 

(3.2.1) 

III above cq1l ation A is a known constant, f is a sui tably choscn positive qllantity ,wei 

o~ = (-() + LW, (5 > 0) is a complex. 

\Nc consider a rectangular Cartes ian coord inate sys tem with x-axis alollg thc lowcr 

platc and y-axis normal to it. The lower and upper plates are at y = 0 and y = h 

and have constant temperaturcs To and TI , respectively. It is assumed that Tl > To· 

Thc governing equation is of the following form 

(3.2.2) 

w hcrc /\ I and '\ 2 are the relaxation and rctardation t imes, p is the density, 1) is the 

prCsslll'e, // is the kinematic viscosity and u is the vclocity in thc :l:-c\ irection. Tl)( ~ 

ellergy equatio1l is givcll by 

(.'3.2.3) 

III abovc equation Cp , X alld p arc the spccific hcat, thcrmal cond uctivity ami 

coc ffi('i ellt of c1 Yll H.lIlic viscos ity, respectively. 

For the problcm under consideration , the boundary conditions arc 

Dcfilling 

u = 0, T = To at y = 0 

u = 0, T = TI at y = h 

T] = -Lat , 
y 

71 = h' (3 .2.G) 



the iJolllldmy valtlt' problelll takes Lilt follo",iJJg fOl'll1 

with t he hOl lllci aJ',Y cond itions as fo llo"v 

'1/. ** = 0 at 1] = 0, 

'u** = 0 at 17 = 1. 

vVe take the so lu t ion of t he fo rm as 

, ** - ** ( ) ** () • ( ) u, - tto 1/ -I- eu' l 1] exp /,T [ . 

fvlaking use of Eq. (3.2. 10) iuto Eqs. (3.2.7) to (3.2.9) we have 

** 0 '1./'0 = , 1] = 0, 

** 0 '1./,0 = , 1]=1. 

System of order one 

d2 ** 
ttl n 2(32 ** (32 -l-2- - i I I ttl = - "] , [.1] . 

1] = 0, 

** 0 1/' 1 = , 1] = 1. 

III above systems 
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(3.2.8) 

(3.2.9) 

(3.2.1 0) 

(3.2.11) 

(3.2.12) 

(3 .2. 13) 

(3.2.14) 

(3.2 .15) 



Followillg the Sallie llwLhod of soluLioll as in clli·tptcr 2, the sol ll tiolls of Ule SySL(~lllS 

arc given by 

1l~*(17) = ~11 (1 - 1]) , 

, ** __ 1_ [ _ {e- MI77SinhlV!l- eM I 
Sinh. ldl 1] + sinh lvIl 1] }] 

11' 1 - 2 1 , 
d el sinh !III 

wliere }\11 = (1 + /,) '/11' 1 witb 11/,1 = ,fiR I f3 I' liVc ca.lI write 

sinh (1 + /,) ml (1 - 17) 

;\1'1.(' )' ll sing Eq . (3 .2.1 8) ill Eq . (3.2 .1 7) w(' J\(W(~ 

*.* __ 1_. [ _ sinh kh (1 - 1]) + sinh J\.f1 ] 
'ttl - 2 1 , 

/,R I sinh !l11 

01' 

'1/,** = __ /,_ [1 _ sinh (1 + I,) ml (1 - 1]) + sinh (1 + /,) m117] . 
1 Ri sinh (1 + /,) m J 

From Eqs. (3 .2.16) a.nd (3.2.20) we obtain the expression for u ** as 

'u** u** + cu** el
•
T1 

o 1 

Now let us consider thr. r.nergy equation (3.2.3). 1 ow defining 

y 
17 = -, 

h 

u** 
'LW 

;1h2 ' 

(3.2.1G) 

(3.2 .1 7) 

(3.2.18) 

(3 .2.19) 

(3.2 .20) 

(3 .2.21) 



Eq. (3.2.3) beC J llleS 

(3 .2.22) 

where the Pr:tndlc number ~. and Eckert number Ee a re given by 

p _ pDp ' 
1'- , 

X 

a llel H is the llotl-dilllellsioll al temperature . 

From Eqs. (2 .2.4) and (2.2.5) the boundary conditions in terms of 7J :trc given by 

at 77 = 0, 

at 77 = l. (3.2.23) 

Assume e to b() of the following form 

(3.2.2 L1) 

FrOlll Eqs. (3.2.21) :tnd (3.2.24) we 11<'\,\'e 

(~.2.2[j) 

2- 2- 2~ 2' 
D 0 _ d 00 d 1~ /.TI 2 rL G 2/.TI 

!::\ 2 - -d 2 + E-d 2 e + E -1 2 e , UTJ ,TJ ,TJ G,TJ 
(3 .2.2G) 

DO - 2 2 
~ = /,EF Cr/) e/,TI + 2"E e ~TI, 
UTI 

(3.2.27) 

where 

( ~ _ TJ) [lVIl cosh lvIlTJ -: j\;J, cosh j\;Jl (1 - '//) ] , 
2 smh j\;Jl 

(3.2.28) 

(3.2.20) 
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Using Eqs. (3.2.25) to (3.2 .27) into Eq. (3.2 .22) and equating the coefficients of 

Ec _() 
-P -d - 2 - R4 . h2 M 9 TJ . 

T TJ 1 S111 1 

From Eqs . (3.2.23) and (3.2.24) we have 

eo = 0 at TJ = 0, and eo = 1 at TJ = 1, 

F=O at 77 = 0, and F= 0 at 77 = 1, 

G = 0 at TJ = 0, and G=O at TJ = 1, 

The solution for eo is of the following form 

From Eq. (3.2.31) 

I 

(3 .2.30) 

(3.2.31) 

(3 .2.32) 

(3.2.33) 

(3.2.34) 

(3.2.35) 

(3.2.36) 

(3.2.37) 

Using Nl = (1 + ~) nand nl = ( ~. ) 2 Rl and Eq. (3.2.31) in above equat ion we get 

(3.2.38) 

where 

Bl = ~~.A11~.Ec 1 - e-l\I[1 

Ri sinh Ml 2 

B _ 2dVIl~·Ec 1 - el\lh 

2 - Risinh Ml 2 
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VIe note that Eq. (3.2.38) is non-homogeneous ordinary differential equation and 

the solution is the sum of complementary function and the particular integral. The 

complementary function is given by 

(3.2.40) 

"vhere c\ and C2 are constants. Using the method of undetermined coefficients the 

particular integral is given by 

where 

Oil = dVI1 PT Ec (1 e-
fvft 

) 

Ri sinh 11111 NI'f - N'f ) 

/31 = dllI1 PT E c 

RT sinh ~fI!Il 

51 = _ &.!VI1PT Ec (1 -e
MI 

) (~ _ 211111 ) 
Ri sinh Nh 1VI~ - N[ 2 NI? - N[ . 

The complete solution of Eq. (3.2.38) is thus given by 

Using the boundary conditions (3.2 .34) in above equation we get 

o 

o 

(3 .2.41) 

(3.2.42) 

(3.2.43) 

(3.2.44) 

(3.2.45) 

(3.2.47) 

(3.2.48) 
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Soh'illg Eqs. (~;.2. -17) iUH.l (3.2.48) we have 

(3.2.49) 

or 

[ :: 1 [ e~ (3.2.50) 

Since 

[ e~ e-INT ' 
so Eq . (3.2.50) gives 

[ :: 1 
or 

(3.2.53) 

(3.2.54) 

Frolll Eqs. (3.2.42) to (3.2.45) we obtain 

_ _ (1 211lh ) 
11 = - a 1 2 + !II? _ N? ' (3.2.55) 

(3 .2.56) 

(3.2.57) 

(3.2.58) 

where 

-(3 -A'/I -Ie = -aJ. (3 .2.59) 
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From Eqs. (3.2.GS) anel (3.2.GG) we GLl1 write 

----; AI 5 -All _ n] + 131 _ 21111 (- _ 7J ) 
I I e I + 1 e - 2 j\11 _ N~ a J /- ]. (3.2.GO) 

'With the help of Eqs . (3.2.41), (3.2.G9) and (3.2.60) we have 

Fp(l) ale
A/1 + Ple-AI!I + "heAlI + b1e- MI , 

_ 0'1 + /31 _ 2111t (-; _ -(3 ) 
2 1,P _ N2 al l , 

1 I 

11 + 51 = Fp(O). 

Let lI S define 

(3.2.61) 

OW frOlll Eqs . (3.2.G7), (3 .2.58) and (3.2.G1) we have 

- d\1tPl·EC ( 4~MI . ) 
L(O) = - D2( ~J2 _ "(\/2) " l!lf 1 - cosh j\1t + {2 _ N2 smh 1\11 , 

11'1 1 ' I j 1 sm 1 I j\I I L 
(3 .2.62) 

anel thus from Eqs. (3.2.61) and (3.2.62) we get 

1 
(;1 = . J N (e- NI 

- 1) L(O) , 
2 SIll I 1 

(3 .2.63) 

J (N )-
(;2 = 2 . 1 N - e I + 1 L (0) . 

sm 1 t 
(3.2.6LJ) 

Now rewriting Eq. (3.2.46) as 

(3.2 .6G) 

where 

(3.2.GG) 

From Eqs. (3.2.63) and (3.2.64) we have 
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and LllUs [rom Sq. (3.2.G5) wc havc 

- -L(O) -
F(1/) =. [sill h N\1/ + sillh N \ (1 - 17)J + L(/l). 

smh N\ 
(3.2.G8) 

\ iVit h t he help of Eqs. (3.2.55), (3.2.56) and (3 .2.66) we obtaiu 

_ flfJ'l7+-/3 - 1\'[177 - (1 + 21v'h . ) M17/ /3- (1 2.M\) - M177 
al1]e \17e - al 2" !lif _ Nf e - J 2" - !Ii? _ N~ e , 

(17 - ~) (ale Mj7/ + (Jle- MJ77) - NI;j~~f (a l eMJ77 -(Jle-I\{J77) . (3.2.69) 

From Eqs. (3.2.42) and (3 .2.43) we have 

and 

(3.2 .71) 

Using above equations, Eq. (3.2.69) becomes 

From Eq. (3.2.32) we get 

(3.2 .73) 

l\IJ;tkill g li se of Eq. (3.2 .29) and foll owing the sallle proccclllJ'c a.s in c:ha,p tcr 2 w (' 

fiu a.lly write G(17) in the following form 

(3 .2.74) 



G1 

whrrr. 

Q( ) 1I1~P1'Ec [(1 - cosh1l1J ) 1 + cosh 2111t - 2 cosh j\IJ I 2 ~J 
77 - - COS 1 111 '11 

- 2R;1 sinh2 AIL Nl 2 (21111 - Nf) , I 

sinh 2NI1 - 2 sinh 1I1[ . I ~1 1 (3 2 7 ) + ( 2 2) sm 1 2N 177. .. G 
2 2111[ - N I 

3.3 Rate of Heat Transfer 

The rate of heat transfer per unit area at the plate are given by 

( Oe ) _ ( eleo) LWt ( elF ) 2 2LWt ( elG ) - - - + EC - + E C -

OT} 11= 0 elT} 1)= 0 elrl 11= 0 d'l] '/1 = 0 ' 

(3.3.1) 

(
Oe ) ( eleo ) LWt ( elF ) 2 2/,w/, ( elG ) - = - + EC - + E e -
OT} 1)=1 ciT} 1)= 1 elT} 7J= L ciT} 7/ = 1' 

(3 .3.2) 

Differentiating Eqs. (3.2 .36), (3.2.G8), (3.2.72), (3.2.74) and (3.2.75) we obtain 

cleo ( p,.Ec ( 2 3)) - = 1 + -- 1 - G77 + 12T} - 8r,. , 
elT} 24 

(3 .3.3) 

elF -NIL(O) dL 
- = . I [cosh N[T} - cosh N1(1 - T})] + -1 ' 
elT} sm 1 N, ( T} 

(3.3.4) 

elGV2N [ Q(O) ( ) elQ 
-1- =. V2 cosh V2N,77 - cosh V2NI (1 - T}) - -L- ' 
G T} smh 2Nl (.77 

(3.3.G) 

elL 2/..AI, P1'Ec [ ( 2111~ ) 
-= 2( 2 2)' 1 - 2 2 {cosh 11117/ -cosh 1\;f1(1 - '17)} 
d'l] R1 111[' - Nl smh 1111 1111 - N J 

+ (~ - D {NI, sinh M, '7 - Al, sillh M, (1 - ry)} J (3.3.6) 

ciQ 1I1f p,.Ec [ M sinh 2Nh - 2 sinh NIl 1 ~1 
- = 2 11 cos12l\"~ 117 
elT} 2R1 Sillh2 111] . 2 (2111l - Nf) 

~1 1 + cosh 21111 - 2 cosh 1I1[ " I 2 ~1 "J 
-211, ( 2 2) Sllll 11 .111 . 

2 21111 - N[ 
(3 .3 .7) 



Usillg above equ a tiolls ill Eq. (3.3 .1 ) W(' gd 

(3.3.8) 

Similarly the rate of hea t transfer pel' ulli t area rtt the plate 77 = 1 is given by 

( DO) 
Dr = 

7 1)=1 

3.4 Conclusions and Discussions 

Analytical solutions of t he momentum transfer and the energy equations hets becl) 

developed for the flow between two parallel infini te plates . The p1llsati le fl ow of 

incom pressi ble fluid has been considered to be laminar. The flow arises duc to the 

applicettion of unsteady press m e gradient . Calculations for velocity distribu t ion and 

rate of the heat transfcr at the plates are given . . N umerical graphs are plottcd for 

velocity and temperatme. From the graphs we conclude the following points: 
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1. Figlll'e (3 .1) is depicLed to sec the cll;wge ill [; 011 the velocit.y distril)l1tioll. FrOIl! 

the graph, one finds tlmt velocity decreases with the increase of 6. 

2. T he fluctuating part of the temperature distribution is sketched against r; ill 

F igure (3. 2). Here, we find that flu ctuating temperature increases ro)' l arg(~ 

values of time. 

3. F igure (3.3) shows that the increase of temperature near t he plate occurs on ly 

due to the increase or relaxation time. Further , it is noted that increase ill 

ret ardation time produces a slight decrease of temperature. 

LJ. From Eqc; . (3.2. 16) and (3.2.36) we notc tlmt stcady pn.rts of' velocit.y a,lld 

temperature are ind ependent of the time dependent amplit11d e of the pressun~ 

gmdient. 
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Chapter 4 

Magnetohydrodynamic Flow and 
Heat ~rransfer of Viscoelastic Fluid 
Between Parallel Plates in a 
Porous Medium 

4 .1 Introduction 

T his chapter st.udies t hc magnctohydrodynamic flow and heat transfer of all OlC\royc\­

B fluid betwecn two plates in a porOllS medium. The adoptcd mathematical lllodcl 

lcads to a problcm, in \ovhich the channcl width , porosity and pcrmeability combinc 

into a shape paramcter. The fluid is driven by an osci llating prCSSlll'e grndient aIld all 

external uniform magnetic fie ld is applied perpendicular to the plates . The allalys is 

is valid for small magnetic Reynold llumber and the govcl'l1ing partial d ifFcrclltiaJ 

cquations are solved analytically. Exact solutions arc derived for thc velocity and the 

mt.c of heat trn.nsfcr per unit arca at the platcs. 
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4.2 Problem Formulation 

We cOllsider t he fl ow of an Oldl'Oyd-B fluid between two infinitely long parallel plates , 

a dista,nce h apart, which is driven by the ullsteady pressure gradient in t he form 

1 8p 
--~ = A {1 + Eexp(/,wt) } 

(J ux 
(4.2.1) 

where w is the frequency and the l'nedium b etween the two plates is porous. The 

OJdroyd-B fluid is assnmed incompressible and electrically conducting with cons tallt 

properties and the solid matrix is treated as homogeneous with respect to its porosity 

clta,ra.cteristics. T he magnetic Reynold 's number is assullled to be sllla ll so t ltil.t, tlle 

Illagnctic field is neglected. A IIniforlll lll;1,gnctic field Bo is applied pa,mlld to y-axis. 

T he ;l;-axis is taken a long the lower plate at V = 0 and v-axis is normal to it. The 

lower and upper plates , at y = 0 and y = h , have constant tClll pcra,tlll'cs To a.nd 

T l , respectively. The volume-averaged eq1lation governillg the ullsteady tnUlsport or 

stream-wise momentum can be exprcssed as 

1 ( 8) 8p ( 8) 8'271. -- 1+..\1- -+1/ 1+..\2- -
p 8t 8x 8t 8V2 

(
aB6 PEl) ( 8) - -+- 1+..\1- '1/" 

p pk 8t 
(4.2 .2) 

In Eq. (4.2.2) a is the electrical conductivity of the fluid , p is the density, El and 

k arc the porosity and permcability of the porous medium. The energy eqll ation is 

given by Eq. (1.8.20). The boundary conditions are givell by 

'/1, = 0, T = To at V = 0, 

1L = 0, T = Tl at y = h. 
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Illtroducing tItc nOll-dimcllsional pa,rC1IlJ('tcrs (2.2.G) wc obtain thc bOllndar:v valuc 

problem of thc following form 

71,* = 0 

'U* = 0 

whcre 

anel 

at 77 = 0, 

at 

A = CJBa 
pw 

TEll) 
\J =­

/.;w 

77=1. 

, 

(4.2.6) 

(4.2.7) 

(4.2.8) 

is thc shape parametcr. Using thc assumed form of the solution (2.2.12) in Eq. ( ~1.2.5) 

<l,lld t.he bOlllldary conditiolls alld thcn separating the ImrtllOllic alld llo11-ltal'lllOllic 

parts we obtaill the rollowill!!; systellls: 

System of order zero 

System of order one 

cl2,u,0 2 2 
-1 .. - R B '/'/'o + 1 = 0, 
( :1 r-

71,0 = 0, 77 = 0, 

7.Lo = 0, 77 = 1. 

cl
2

7.Ll _ C*2 . __ (32 

cl 
2 7.L[ - , 

7/ 

(4.2.10) 



where 

v , [ = 0, 11 = 0, 

'LLl=O , T} = 1, 

C * = (3RVB2 + I" 

B2 = (A + \If) , 

(32 = 1 + "F1 . 
1 + I,F [ F2 

The general solution of system of order zero is 

G9 

(4.2. 12) 

(4 .2. 13) 

(4.2. 14) 

where ~l and E.2 are constants . Makillg use of the boundary conditions we get 

- 1 (. - RB) 1 
~ [ = - R2 B 2 1 - e e1w _ e- 1w ' (4 .2. 1G) 

(4 .2 .16) 

and thus Eq. (4.2 .14) gives 

'LL = _1_ [( -RB _ 1) sinh RBT} (_ - RB1))] 
o R2 B 2 e sinh RB + 1 e , 

or 

'Lto = _1_ [1 - sinhRBT} - sinhRB (17 -1)] . 
R2B2 sinhRB 

(4.2 .18) 

Silllil a.rly the solu t ion of system of order one is given by 

(32 [ sinh C*11- sinh C*(T) - 1)] 
'Ill = - 1- . 

C *2 Sillh C * 
(4.2.19) 

From Eqs. (4.2.14), (4.2. 18) and (4.2.19) the expression for n* is 

'u,* = _ 1_ [1 - sinhRBT} - sinh RB(T} - 1)] 
R2B'2 sinhRB 

- - 1 - ((' . (J2 [ sillh C*'II - si llh C*(1'l - 1)] IT 

C*'2 sililt c* C 1. 2. 2() ) 
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Now the energy equation in nOll-dilllensional 1'01'm is given in Eq. (2.2.3G) ami fo r t Il e 

convenience of the readers the boundary value problem in terms e is given by (Eqs. 

(2. 2.36)) and (2.2 .37)), i.e. , 

R2 oe = ~ o2e E ( OU*) 2 

OT Pr OTJ2 + c OTJ ' 

at TJ = 0, ( 4.2 .22) 

a t TJ = 1, 

where 

p _ pDp 
1'- , 

X 

Assuming e of the following form 

(4.2 .23) 

and using in the system (4. 2.22) and equating the coefficients of EOeO~T, Ee~T and E2e2~T 

"ve have 

with the boundary condit ions 

e~ (o) 

F*(O) 

G*(O) 

0, 

0, 

0, 

e~ (l) = 1, 

F*(l) = 0, 

G* (l) = O. 

(4.2 .24) 

(4.2.25) 

( 4.2.26) 

( 4.2.27) 

( 4.2 .28) 

( 4.2.29) 
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Frollt Eqs. (Ll. :U8) ami (4.2. 19) we hav( ~ 

( )

2 
duo 1 2 
-- = 2 [ cosh2 RB17 + cosh RB(1] - 1) 
d1] R2 B2 sinh RB 

-2 cosh RB1] cosh RB(1} - 1)] , 

or 

(
dUO) 2 = 1 [(I_ 'e- RB) 2e2 RB17 + (eRB _1) 2e-2JWll 

d1] 4R2 B 2 sinh2 RB 

+4(1 - cosh RB)] , (4.2 .30) 

anel 

(d'U)) 2 = ~') 2 [ coSh2 C*17 + cosh2 C*(1] - 1) - 2 cosh C*''7 cosh C*(1 / - 1)] , 
d17 0.2 smh C* 

or 

Also 

or 

w!J ere 

A* 1 

A* 3 

(32 
-------'------ [coSh RB'!7 cosh C*1/ 
C* B R sinh C* sinh RB 

- cosh C* 1] cosh RB(r/- 1) + cosh RB(1] - 1) cosh C*(1] - 1) 

- cosh B R1] cosh C* (17 - 1)] , 

(32 (1 - e-C")(1 - e- BR) 

C* B R sinh C* sinh RB ' 
(32 (1 - e-c*)(1 - eBR ) 

C* B R sinh C* sinh RB ' 

A* = (32 (1 - eC")(1 - e- BR ) 
2 C* BRsinh C* sinh RB ' 

A
* = (32 (1 - eC+)(l - eBll

) 

4 C * BRsinh C* sinh RB 
allel 

/vI; = BR + C*, 1\11; = BR - C*. 

(4.2.33) 
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Frotll Eqs. ( . 1.:~ . 2 , 1 ) alld (' 1. 2.30) \\'( ~ II ;)'\,c 

d 2BO == _ ?TEc , [(1 _ r- - RB ) 2e217BI/ + (('17/3 _1)2(' - 2 /I HI/ 

ci112 LiR2 B2 sillh ~ RB 

+4(1 - cosh RB)] . (4.2.34) 

In tegrat ing Eq. (4.2.34) with respect to 17 we lmve 

P E (1 - IW)2 (JUJ 1)2 
B* T c [ - e 2RB1) e - - 2R/J1) 

0 =- e + e 
4R2 B 2 sinh 2 RB 4R2 B 2 4R2 B 2 

+2 (1 - cosh RB)1l ] + 6 '1] + ~/I ' (4.2.35) 

where 6 and (4 a re the constants of integration. Now applying the bou ndary concli-

bons (4 .2. 27) we get 

2?TE
C [ ] 6 = 1 + (2RBsinhRB)2 1- coshBR , ( 4.2.36) 

~~ [ ] ~4 = ( 2 2 ' RB )2 1 + cosh 2BR - 2 cosh BR , 2 2R B slllh 
( 4.2.37) 

and thns Eq. (L1.2.35) will take the form a,s 

?TEC [1 ( ( ) B~ = 'I] - (2RB sinh RB)2 2B2 R2 cosh 2BR'I] + cosh 2BR 'I] - 1 

-2 cosh 2BR('I] - ~)) + 2(1 - cosh RB) ('1]2 - '1])] 

~~ [ ] + 2(2R2 B2 sinh RB)2 1 + cosh 2BR - 2 cosh BR . ( 4.2.38) 

From Eqs. (4.2.25) and (4.2.33) and using N = (1 + /')n, n = RV?1.j2, we obtain 

where A~, A;, A3, A~ , j\lIt and l\!I; are given in Eq. (4.2 .33) . The solll t ion of 

Eq. (4 .2.39) is sum of complementary fun ction and the particnlar in tegml. T he 

cOlllplementary fUllction is given by 

( 4.2.40) 
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Using the method of Il mietel'luillCcl coefficients, the particular illt,('gral can be writtell 

as 

(4.2.41) 

where a*, 73*,;y* and 'b* are to be determined. Differentiating Eq. (4.2.41) we arr ive 

<1,1, 

Or 

COlllparing Eqs. (4.2.39) anci (4.2.42) we get 

'1* 

Let tt S define F
1
; (TJ) = L*(17) , i.e., 

-EcPl'A~ 
j\1*2 - N2' 

1 

-EcPl'A; 
j\!J.*2 - N2 ' 

2 

-EcPl'Aj 
NJ.*2 - N2' 

2 

-EcPl'A~ 
NJ*2 - N2 ' 

1 

T he complete solu tion of Eq. (4 .2.39) is of t he fo llowing forlIl 

F * (TJ) 

(1.2.43) 

(4.2.44) 

(4 .2.45) 

(4.2.46) 

(4.2.47) 

(4.2.48) 



Usillg thc boundary conditiolls (4 .2 .28) in Eq. (4.2.48) wc get 

o c~ + c; + L*(O) ; (4.2.49) 

o (4.2.50) 

where 

( 4.2.51) 

(4.2.52) 

From Eqs. (4.2 .33) and (4.2.36) to (4.2.4G) we have 

* IV,. 1'* 1 -(3*eM·2' ,.....;y* . a e I = U ane - I (4.2.53) 

Using Eq. (4 .:~.53) in Eq. (4.2.52) we obtain 

L*(l) = L*(O). (4.2.54) 

Solving Eqs. (4.2A9) a.lld (4.2.50) wc h,wc 

[ 1 1] [ cr ] [ - L * (0) ] 
eN e- N c; - -L*( l) ) 

or 

[ 
ct ] [ 1 1] -1 [ - L * (0) ] 
c~ - eN c - N - L*(1)· 

Bccal1se 

[ 
1 1 ]-1 -1 [ e- N 

- 1 ] 
eN e- N 2 sinll N - (/ " 1 ) 

therefore 

[ 
c~ ] 1 [ e-NL*(O) -L*( l ) ] 
c; - 2 sinh N - eN L*(O) + L*(l) ) 



or we' can wriw 

* L*(O) ( -N ) 
C1 = 2 . r N C - 1 ) sm} 

* L* (0) ( N ) 
C2 = 2 . 1 N -c + 1 . sm 1 

Thus from Eq. (4.2.48) we can write 

F *('I7) = ~*(O) [sinh N('/] - 1) - sinh N'/]] + L*(rJ). 
slnh N 

From Eqs. (4.2.33) and (4.2.43) to (4.2.46) ,"ve have 

1 *(0)- -2f3
2EcPl'(2-cosh C*-coshBR) {II} 

J - C* B R sinh C* sinh B R 11111*2 - N2 + Jl;1~2 - N2 

and 

L * ('/] ) + ---:----=---
-2f32 EcP?, { 1 + cosh 1\11~ '/] 1 + cosh J1,1;17 

C* B R sinh C* sinh B R Jl;1~2 - N2 1I1~2 - N2 

cosh (111~'/] - C*) + cosh (1I1i'/] - BR) 
Jl;1*'2 - N2 

l 

_ cosh ( j\1~'/] + C*) + cosh (111~17 - BR) } 
j\1~2 - N2 . 

'With the help of Eqs. (4.2.26) and (4.2.32) we get 

where 

GG 

(4.2. G9) 

(4.2.60) 

(4.2.6 1) 

( 4.2.G2) 

(4 .2.63) 

(4.2 .G4 ) 

\IVe note that Eq. (4.2 .64) is non-homogeneous second order ordinary different iaJ 

equation. The complete solution is the sum of complementary function and part.iclli ru 

integral. Employing the same method of solu tion as for F *('/]) we obtain 

(4 .2.66) 



GG 

whcn~ 

Q* ( ) --PI' Eef3'! [ (1 - cosh C*) 1 + cosh 2C* - 2 cosh C* I 2C* 
77 = - cos 1 7/ 

C,2 sinh2 C* N2 2 (2C*2 - N2) 

sinh 2C* - 2 sinh C* . I 2C* 1 (4 2 67) + 2 (2C*2 _ N2) 8ml 77 .. 

Q* (0) = - Pj'Ec!j" [1 - cosh C* _ 1 + cosh 2C* - 2 cosh C* ] . 
C*2 sinh2 C* N2 2 (2C*2 - N2) 

4.3 Rate of Heat Transfer 

The rate of heat transfer per unit area at the plate r/ = 0 is defined by 

( 
oe ) _ (CiBo ) f.wl (dF* ) 2 2~wl (clG* ) - - - +c:e - + E e - . 
or; 1)=0 d77 1) = 0 dr; 1)=0 clr; 1)=0 

Now from Eqs. (4.2.38), (4.2.61) , (4.2.63) , (4.2.64) and (4.2.68) we obt;-ti ll 

dBo 
dr; 

PI·Ee [ 1 ( . . ( ) 
1 - (2RB sinh RB)2 BR 8mh 2BRr; + smh 2BR r; - 1 

( 4.2.68) 

(4.3.1) 

- 2 sinh 2BR(ry - ~)) + 2(1 - cosh RB)(2ry - 1) l (4.3.2) 

dF* -NL*(O) dL* 
- = . 1 [cosh Nr; - cosh N(l - r;)] + -,-' 

d77 S111 1 N ( :1] 

dG* V2NQ*(O) dQ* 
-d = . v'2 ( coSh v'2N77 - cosh V2N(l - r;)) - -d ' 

r; smh 2N 77 

dL* 

dr; 
_2(32 EePj' { !VIi sinh lVli 'l] NI; sinh 111; 77 

C * B R sinh C* sinh B R 1\1Ij2 - N2 + 1\1:;2 - N2 

!VIi [sinh (1I1ir; - C*) + sinh (Nlir; - BR)] 
1\1i2 - N2 

_ 1112 [sinh (1112r; + C*) + sinh (1\12r; - BR)] } 
111:;2 - N2 ' 

(4.3 .3) 

( 4.3.4) 

(4.3.5) 
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dQ* -2P,.EJ3~ [ Sinh 2C* - 2 si nh C* 1 2C* 
-- = cos 1 'II -

d11 C* Sillh2 C* 2 (2C*:< - N'2) 

1 + cosh 2C* - 2 cosh C* . 1 2C'* ] 
2 (2C*2 _ N2) sm 1 17 · (4.3.6) 

Using above eqllations ill Eq. (4 .3.1) we get 

(De ) 
D1] 7) = 0 = 

Pl'Ec . [ 1 ( . . ) (. )] 
1 + (2RB sinh RBF BR smh 2BR - 2 slllh BR + 2 1 - cosh RB 

,wi [ - 2(32 Ej'),. { ( !vIt !vI; ) . 1 C* +EC ' . .. -. Slll .1 + 
C* B R sm11 C* smh B R NI;2 - N2 J\lI;2 - N2 

1\11; !vI;. } NL* (O) ., 1 ( 1I/J~2 _ N2 + 11/J;2 _ N2 ) smhBR - sinh N (1- cosh N) (4.3.7) 

2 2I'Wl[V2NQ*(O) ( In ) 2P7·Ec(34 [ sinh 2C* -2Sinh c* J] 
+t: C J2 1 - cosh v 2N - 2 ( '2 2) . 

sinh 2N C* sinh C* 2 2C* - N 

The rate of heat transfer per uni t area at the plate 1] = 1 is given by 

( ae ) Pl'Ec [ 1 ( ) )] 73 = 1 - (2RB sinh RB)2 BR sinh 2BR - 2 sinh BR + 2(1 - cosh RB 
1] 7)=1 

tWl [NL*(O) N 2(32 EcPl' { JIIJ;SinhlI1; +t:c (1 - cosh ) - --=-------=----=_=_ 
sinh N C* BRsinh C* sinh BR 111;2 - N2 

NI; sinh NI; ( 111]* 111;) . 1 C* 
+ !vI*2 _ N2 - 111*2 _ N2 - NI*2 _ N2 sm 1 

2 1 2 

( 
111* NI* ) }] 

- NI{2 ~ N2 + 111;2 ~ N2 sinh B R 

+t:2e2tWl [ _ J2NQ*(O) (1 - coshV2N) 
sinh V2N 

_ 2Pl'Ec(34 [ - sinh 2C* + 2 sinh C* ]]. (4 .3.8) 
C* sinh2 C* 2(2C*2 - N2) 
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4.4 Concluding Remarks 

Calculations have been carried out to study the flow between two iufinite parallel 

plates. The efFect of an external uniform magnetic field as well as the act ion of a. 

shape parameter together with the influence of relaxation and retardation times on 

the velocity di stribution and the rate of heat transfer at the plates are reported. 

From the analytical solutions and graphs it is found that the velocity distribution 

is noticeably influenced by the presence of applied magnetic field , shape parameter, 

relaxation and retardation times and oscillating frequency. More precisely: 

1. The magnetic filed accelerates the fluid motion when the relaxation time IS 

greater t.han the retardation time (see Figure (4.1)). 

2. From Figure (4.2) it is noted that the velocity increases with the increase of oscil-

lating frequency which resul ts in decrease of boundary layer thickness. Further , 

it is also concluded tbat velocity illcreases for t he la rge vall\(~s of ti lll (~. 

finds that u increases for greater values of /\ 1 ' 

4. Figure (4.4) is prepared to see the effect of retardation time on the velocity 

distribution. From the graphs, it is clearly seen that velocity decreases with the 

increase in retardation time. 

5. Figure (4.5) represents the influence of shape parameter \lJ on the velocity. It is 

indicated from the graph that increasing the shape parameter \lJ decreases the 

velocity. 
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6. From Eqs. (4.2.18), (4.2.19), (L1. 2.23), (4.2 .38), (4 .2.61) and (4 .2.6G), it is COIl-

eluded that steady parts of the velocity and temperature do not depcnd on the 

relaxation aIld retardation t inlCs where as the fluctuating parts depend. highly 

on the relaxation and retarda tioIl times. Further , it is also seen tha.t steady and 

fluctuating parts of velocity and temperature are dependent on magnetic and 

shape parameters. 
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