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Preface 

The classes of atomic domains, domains satisfying ascending chain con

dition for principal ideals (ACCP), bounded factorization domains (BFDs) , 

irreducible divisors finite (idf) domains , finite factorization domains (FFDs) 

and half-factorial domains (HFDs) are frequently occurs in li terature. These 

factorization classes or properties of domains which are weaker than unique 

factorizations, that is these classes of domains are generalizations of UFDs. 

First we are giving the introduction of above factorization properties. Fol

lowing Cohn [8], we say that D is an atomic domain if each non-zero non-unit 

of D is a product of a finite number of irreducible elements (atoms) of D. 

The well-known examples are UFD and Noetherian domains. We say that an 

integral domain D satisfies the ascending chain condition on principal ideals 

(ACCP) if there does not exist an infinite strictly ascending chain of principal 

ideals of D. Every ACCP is atomic but converse does not hold cf.[13] and [18]. 

An integral domain D satisfies ACCP if and only if D[{XaJ] satisfies ACCP 

[2, page 5], but by Roitman [17], if an integral domain D is atomic then not 

necessarily its polynomial extension is atomic. By [2], an atomic domain is 

bounded factorization domain (BFD) if there exist a bound on factorization 

of each non-zero non-unit element of D . By [2, proposition 2.2]' Noetherian 

and Krull domains are BFDs. Also BFD satisfy ACCP but the converse is not 

true cf. [2 , Example 2. 1]. 

By [2], an integral domain is finite factorization domain (FFD) if each non

zero non-unit elements of D has only a finite number of non-associate divisors. 

By [2 , Theorem 5.1], an integral domain D is FFD if and only if D is atomic 

idf-domain ~here an integral domain D is idf-domain if each non-zero element 
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of D has only finitely many non-associate irreducible divisors. A Krull domain 

is both atomic and idf therefore FFD, but a Noetherian domain not necessarily 

be an FFD. Of-course a UFD is FFD. By [2, proposition 5.3]' D is FFD if and 

only if D [XJ is. 

In [19J and [20J Zaks introduce the notion of half-factorial domains (HFDs), 

which is defined as; an atomic domain is half-factorial domain if for each non

zero non-unit element xE D , if x = X l .X2 . .. Xm = Yl.Y2 ... Yn , with each Xi, 

Yj irreducibles in D, then m = n. A UFD is an HFD and an HFD is BFD 

cf. [lJ. Generally, HFDs do not response affirmatively under the polynomial 

extension. By [1 , page 11], if D[XJ is an HFD then surely D is an HFD, but 

D[XJ need not be an HFD if D is an HFD. For example, D = R+ XC [XJ is an 

HFD, but D[YJ is not an HFD because (X(l + iY))(X(l - iY)) = X2(1 + y2) 

are factors of an element in D[YJ into irreducibles with different size. HFD 

does not imply FFD and vise versa, because k[X2, X 3], where k is finite field, 

an example of FFD but it is not HFD and the Noetherian domain R+XC[XJ 

is an HFD but not FFD. 

In general, 

idf - domain ~ UFD ===} HFD ===} BFD ===} ACCP ===} Atomic. 

and 

idf - domain ~ UFD ===} FFD ===} BFD ===} ACCP ===} Atomic. 

But none of the above implication is reversible. 

In [3 , page 217], Anderson and Anderson define a criteria in order to mea

sure how far an atomic domain is being an HFD, that is 

(2(D) = {min : X l· X2··· X m = Yl·Y2 · · ·Yn , each Xi, Yi E D is irreducible}. 
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Hence 1 :::; (2(D) :::; ex) and (2(D) = 1 if and only if D is HFD. p(D) is known 

as the elasticity of D. 

In this dissertation the work is in two folds. 

In chapter 4, we review the paper [9] of Coykendall. The main result « 

Let D be an integral domain. If D[X] is HFD then D is integrally closed" of 

this paper gives the characterization of polynomial rings with the half factorial 

property. For the sake of completion and better understanding we provided the 

explanation of [9] in this chapter. 

In chapter 5 we characterize the semigroup rings with the half factorial 

property which is an attempt to generalize the polynomial case of Coykendal

l's results of [9], which are reviewed in chapter 4. We used the concepts of 

degree in semigroup rings which are coinciding the particular case of polyno

mial rings. Moreover, we introduced the notion of monic elements or pseudo 

monic polynomials in commutative semigroup rings to handle the situation. 

In this chapter we put condition on monoid S to be cyclic to use the same 

techniques of [9] and generalize Theorem 3.2.2 as "If D[X; S] is half-factorial 

semigroup ring, then D is integrally closed" T heorem 4.2.5. 

In chapter 6 we successfully attempt an open problem "when a semigroup 

ring is HFD 7". Before proving that when a semigroup ring is HFD, we 

established few new results and examples about the class group of semigroup 

rings and class group of semigroups'- In this chapter we prove a criteria for 

a semigroup ring D[X; S] relative to the class group of Krull semigroup rings 

that is " Let D be a Noetherian integrally closed domain and the monoid 

S, finitely generated by pure monomials {moJaEA of indeterminates {Xi }i=l 

over D. Then D[X; S] is HFD ¢:} Cl(D[X; S]) ~Z2" which generalizes [20 , 

Theorem 2 .4]. 

In Chapter 1, we review some technical preliminaries for commutative ring 

theory which provides a necessary foundation for understanding the forth com-
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ing concepts used in dissertation. 

Chapter 2 consider some basic preliminaries of semigroups of specific na

ture like integrability and almost integrability. Moreover we also provided the 

structure of commutative semi group rings and their integral closedness. This 

is a supply and quick understanding for notions used in chapter 4,5 and 6. 

In chapter 3, we give the introduction of class groups and class monoid 

structure for both commutative semigroups and commutative rings. vVe also 

provided the relevant results and examples for the conveniens of the reader 

to understand the concepts clearly. vVhat here we discussed is directly or 

indirectly related to our study and provides an immediate reference and supply 

to chapter 6. 

Muhammad Qasim 



Chapter 1 

Preliminaries 

1.1 Introduction 

In this chapter we review some basic concepts and results which are directly 

helpful to provide the base and understanding of commutative ring theory. 

Here we consider the homomorphisms, polynomial rings, integral dependence, 

localization and factorization in the commutative rings. For general theory of 

these we shall follow [14, 12] and material other than these will be mentioned. 

1.2 Commutative rings 

Definition 1.2.1 A ring (R , +,.) is a set R together with two binary opera

tions) an addition and a multiplication) such that) 

1: (R, +) is an abelian group (an additive group of R) 

2: The multiplication is associative i. e. x(yz) = (xy) z 

3: The multiplication is distributive i.e. (x+y) z = xz+yz and z(x+y) = 

zx + zy for all x, y, z E R. 

Rings as defined above are also called associative rings, a non associative 

ring only has the properties (1) and (3). In all later sections we also require 

the concept of identity and zero ·element. In following we define these terms. 

1 
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Identity element 

An element say 1 is called identity element if l.x = x = x .l for all x E R. 

The identity element is also called unity. A ring with an identity element 

is also called ring with identity or a ring with unity. 

Invertible e lement 

Given a ring (R , +,.) with identity element 1 an element a E R is said to 

be invertible or unit , whenever a posses a two sided inverse with respect to 

multiplication i. e. there exist a-I E R such that a.a- l = 1 = a-l.a. 

Commutative ring 

A commutative ring is a ring (R, +, .) in which multiplication is a commu

tative operation i.e., a.b = b.a for all a, bE R . 

Example 1.2.2 If Z, Q, R represents the set of integers, rational and real 

numbers, then the structure (Z , +, .), (Q, +,.) and (R, +,.) are all example of . 

commutative rings with all has a commutative identity 1. 

Example 1.2.3 Let X be any given set and P(X) be the collection of all 

subsets of X. The symmetric difference of two subsets A, B of X is the set 

A 6 B, where A 6 B = (A - B) U (B - A). If we define addition and 

multiplication in P(X) by 

A + B = A 6 Band A.B = A n B 

then the system (P( X ), +,. ) forms a commutative ring with identity X and 

zero elem ent <I>. 

Above are the examples of commutative rings . The following is the example 

for non-commutative structure . 

Example 1.2.4 Let lVln(R) represents the set of square matrices of ordern x n 

and with real entries. Now considering the usual addition and multiplication 
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of matrices, we can see (N1n(R) , +, .) forms a ring. But note that as multipli

cation is non commutative in matrices, so structure is non-commutative. 

Zero divisor 

If R is a ring and 0 i= a E R, then a is called a left (right) zero divisor in R 

if there exist some b i= 0 in R such that ab = O(ba = 0) . A zero divisor is any 

element of R that is either a left or right zero divisor. 

According to this definition, 0 is not a zero divisor , and if R contains an 

identity I , then 1 is not a zero divisor nor is any element of R which happen to 

posses a multiplicative inverse. An obvious example of a ring with zero divisor 

is Zn, where the integer n > 1 is composite; if nIn2 = n in Z (0 < nl , n2 < n), 

then the product nIn2 = 0 in Zn. 

Cancellative law 

A ring R is said to satisfy cancellative law if ab = ac and ba = ca, where . 

a i= 0, implies b = c for all a, b, c E R. 

Note that a ring R is without zero divisor if and only if it satisfies the 

cancellation laws. 

Integral Domain 

By an integral domain is meant a commutative ring with identity which 

has no zero divisor. It is important to note that some authors do not insist 

on t he presence of a multiplicative identity when defining integral domains. 

Ring of integers is an example of integral domain. Now we change our 

direction somewhat to deal with the situation where a subset of a ring again 

constitutes a ring. 

Subrings 

Let (R, +, .) be a ring and S s: R be a non empty subset of R. If the 

syst em (S, +, .) is itself a ring (using the induced operations) , then (S, +, .) is 

said to be subring of (R, +, .) . 
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Alternaively, a subset S of a ring R is a subring of R if and only if S is a 

subgroup of (R, + ), is closed under multiplication. 

A subring is called unitary if it contains the ident ity element of the ring. 

1 .2.1 Homomorphism 

A homomorphism of a ring R into a ring S is a mapping cp : R ----t S which 

preserves both the operations: 

cp(x+ y) 

cp(xy) 

cp(x) + cp(y) 

cp(x )cp(y) , for all x, y E R. 

If Rand S have identity elements, then the homomorphism of R into S 

IS usually called to be a homomorphism of rings with identity, which also 

preserves the identity element; 

The identity mapping lR on a ring R is a ring homomorphism . The 

composition of two ring homomorphisms cp : R ----t S , v : S ----t T is a ring 

homomorphism v 0 cp : R ----t T . 

Isomorphism 

An isomorphism of a ring R onto a ring S is a bijective homomorphism of 

R onto S. In this case rings Rand S are said to be isomorphism. 

Ideal 

An ideal of a ring R is a subgroup I of (R , +) such that x E I implies 

x y E I and yx E I for all y E R. This relationship is sometimes denoted 

by I ~ R. Note that multiplication is always closed in ideals, so ideals are 

of-course subrings. A proper ideal also satisfies I =I=- R . 
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The notion of an ideal carries with its natural equivalence relation. For, 

given an ideal I of the ring R , it is a routine matter to check that the relation 

defined by a rv b if and only if a - bEl is actually an equivalence relation 

on R. As such, relation induces a partition of R into equivalence classes, the 

exact nature of which is determined below. 

Equivalence Classes 

If I is an ideal of the ring R, then the equivalence classes of b E R for the 

relation rv is the set 

[bJ {a E R: a - b E I} 

[bJ {a E R : a - b = i, i E I} 

[bJ {a E R: a = b + i, i E I} 

[bJ b+I = {b+i: i E I}. 

Quotient Ring 

If I is an ideal of the commutative ring R with. 1, let us employ the symbol 

R/ I to denote the collection of all distinct equivalence classes of I in R; that 

IS, 

R/I={a+I :aER}. 

It is easy to verify that R/ I is again a ring. R/ I is called as quotient ring 

(or factor ring) of R by I . 

Field 

A commutative ring R with 1 is said to be a field provided that the set 

R - {O} is a commutative group under the multiplication of R. 

Example 1.2.5 Here are some of the more standard illustration of fields: the 

rational fi eld Q, the real field R and the extension field Q(j2] = {a + bV2 : 
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a, b E Q} of Q. In each case the operations are ordinary addition and multi

plication. 

Principal ideal 

An ideal I of the commutative ring R with 1 is said to be principal if 

I =< a > for some a E R that is generated by single element . 

Maximal ideal 

An ideal I of the ring R is said to be maximal ideal provided that I =I=- R 

and whenever J is an ideal of R with I c J ~ R , then J = R or I = J. 

Expressed somewhat loosely, an ideal is maximal if it is not the whole ring 

and is not properly contained in any larger proper ideal. The only ideal to 

contain a maximal ideal is the ring itself. It is quite difficult to prove an ideal 

is maximal directly from its definition. We therefore need several theorems to 

achieve the goal in some what easy way. One such result is the following: 

Theorem 1.2.6 Let I be a proper ideal of the commutative ring R. Then I 

is maximal ideal if and only if (1, a) = R fo r any element a E R. Here (1, a) 

denoted the ideal generated by I U {a}. 

Example 1.2.7 Consider the ring of integers (Z, +, .). Here the maximal 

ideals of Z corresponds to the prime numbers. More precisely: the princi

pal ideal (n) , n > I , is maximal if 'and only if n is prime. To prove this 

let (n) , n > 1, is a maximal ideal of Z. If the integer n is not prime, then 

n = nln2, where 1 < nl < n2 < n. This implies the ideal (nl) and (n2) are 

such that 

contrary to the maximality of (n) . 

In the opposite direction, assume now that the integer n is prime. If the prin

cipal ideal (n) is not maximal in Z, then either- (n) =Z or else there exists 
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some proper ideal (m) satisfying (n) c (m) cZ. The first case is immediately 

ruled out by the fact that I is not a multiple of any prime number. The alter

nate possibility) (n) C (m) , means that n = km for some integer k > 1; this is 

again an abused because n is prime not composite. At any rate) we conclude 

that (n) must be maximal ideal. 

Prime Ideal 

An ideal I of the commutative ring R with 1 is prime ideal if, for all 

a, bE R , ab E I implies that either a E I or b E l. 

By induction, the above definition can easily be extended to finitely many 

element: an ideal I of R is prime if, whenever a product al.a2 ... an of element 

of R belong to I , then at least one of the ai E I . 

Example 1.2.8 A commutative ring R with 1 is an integral domain if and 

only if the zero ideal {O} is prime ideal of R . 

Example 1.2.9 The prime ideals of the ring Z are precisely the ideals (n)) 

where n is a prime number) together with the two trivial ideals {O} and Z. 

Where on the other hand if n is composite (n-=f. 0, 1), then we can write n = 

nIn2 ) where 1 < nl , n 2 < n. Certainly the product n = nIn2 E (n) . However) 

Since neither nl nor n2 is an integral multiple of n) nl ~ (n) and n2 ~ (n). 

Hence) when n is composite then the ideal cannot be prime. Notice also that 

although {O} is prime) it is not maximal ideal of z. 

Example 1.2.10 For an illustration of a ring possessing a nontrivial prime 

ideal which is not maximal) take R = Z x Z, where the operations are performed 

component wise. One may readily verify that Z x {O} is a prime ideal of R. 

Since 

Z x {O} c Z X Ze c R, 

with Z x Ze an ideal of R, Z x {O} fails to be maximal. 
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N ow the prime ideals can be characterized in the following manner. 

Theorem 1.2.11 Let I be proper ideal of the ring R. Then I is prime ideal 

(resp. maximal) if and only if the quotient ring R/ I is an integral domain 

(resp. Field). 

Now the following result gives an important relation between maximal and 

prime ideals. 

Theorem 1.2.12 In a commutative ring with identity, every maximal ideal 

is a prime ideal. 

Nil Radical 

Let I be an ideal of the ring R. The nil radical of I , designated by VI = 

{r E R: rn E I for some n EZ+} 

We observe that the nil radical of I may equally well characterized as the 

set of elements r E R whose image r + I in the quotient ring R/ I is nilpotent. 

The nil radical of the zero ideal is sometimes referred to as the nil radical of 

the ring R; this set consists of all nilpotent element of the ring R. 

Example 1.2.13 In the ring Z, consider n=p~l p~2 ... p~r is a factorization of 

the positive integers n i- 1 into distinct primes Pj, then 

V< n > =< PIP2"'Pr > 

Indeed, if the integer n = PIP2" 'Pr and k = max{k l ,k2 ... ,kr}, then we have 

ak E< n >; this makes it clear that < PIP2"'Pr >~ V< n >. On the other 

hand, if m E V < n >, then m itself must be divisible by each of the primes 

PI,P2, ···,Pn and, hence a member of the ideal 

< PI > n < P2 > n ... n < Pr >= < PIP2 "'Pr > 
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Primary ideal 

An ideal I of the ring R is called primary if the conditions ab E I and a ~ I 

together imply bn E I for some positive integer n. 

Clearly, any prime ideal satisfies this definition with n = I, and thus, the 

concept of a primary ideal may be viewed as a natural generalization of that of 

a prime ideal. On the other hand a primary ideal is not necessarily a primary 

ideal. Notice that the above definition can be viewed as "An ideal I is said to 

be primary ideal if ab E I and a ~ I imply b E VI". 
In the ring Z , the primary ideals are precisely the ideals < pn > ,where p 

is a prime number and n ~ I , together wit h the two trivial ideals. 

Theorem 1.2.14 If Q is a primary ideal of the ring R , then its nil radical 

..jQ is a prime ideal, known as the associated prime ideal of Q. 

Corollary 1.2.15 If Q1, Q2, ... , Qn are a finite set of primary ideal of the ring 

R, all of them having the same associated prime ideal P, then Q = n~l Qi is 

also a primary ideal with -IQ = p. 

1.2.2 Polynomial Rings 

The next step in our program is to apply some of the previously developed 

theory to a particular class of rings,. the so called polynomial rings. For the 

moment, we shall merely remark that there are rings whose elements consist 

of "Polynomials" with coefficient from a fixed, but otherwise arbitrary, ring. 

But before going to discuss the polynomial ring structure we first discuss 

an important struCture, the formal power series; as this structure is the main 

reason in motivation in polynomial rings. 

Formal Power Series 

Consider a commutative ring Rand N be the set of natural numbers in

cluding 0, let RN = {f : f : N --t R} represents the totality of all infinite 
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sequences 

Such sequences are called formal power series, or merely power series, over 

the ring R. 

We intend to introduce suitable operations in RN , so that the resulting 

system forms a ring containing R as a subring. For this let f , 9 E RN such 

that 

f = (ao , a2, .. ) and 9 = (bo, bl , ... ) 

are considered to be equal if and only if they are equal term by term, that 

IS 

f = 9 if and only if ak = bk for all k ~ O. 

Now, the formal power series may themselves be added and multiplied as 

follows: 

f + g 

fg 

(ao + bo, al + bl , ... ) 

(Co, Cl, ... ) 

where, for each k ~ 0 is given by 

Ck = L aibj . 
k=i+j 

It is understood that the above s.ummation runs over all i , j ~ 0 subject 

to the condition that i + j = k. 

A routine check establishes that under these two operations RN forms a 

ring. It is notice that (0,0,0, ... ) is a zero element of RN. Where the additive 

inverse of (ao, aI, a2, ... ) is (-ao, - aI, -a2, ... ). Hence RN is a ring under above 

operations known as the ring of formal power series over R. 

Having reached this stage, we shall no longer distinguish between an ele

ment a E R and the special sequence (a , 0, 0, 0, .. . ) of RN. The element of R, 

regarded as a power series, are hereafter called constant series or just constant. 
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With the aid of some additional notation, it is possible to represent power 

series the way we would like them to look. As a first step in this direction, we 

let aX designated the sequence 

(0, a, 0, 0, ... ) 

That is , aX is the specific member of RN which has the element a for its 

second term and 0 for all other terms. More generally, the symbol axn, n ;? 1, 

will denote the sequence 

(0, ... ,0, a, 0, ... ), 

where the element a appear as the (n + l)th term in this sequence; for 

example we have 

aX2 (0,0 , a, 0, ... ) 

aX3 (0,0,0, a, 0, ... ) 

By use of these definitions , each power series 

can be uniquely expressed in the form 

f (ao, 0, 0, ... ) + (0 , aI, 0, 0, ... ) + ... + (0, ... 0, an, 0, ... ) + .. . 

ao + alX + a2X2 + ... + anxn + ... 

With the obvious identification of ao, with the sequence (ao, 0, 0, ... ). Thus, 

there is no loss in regarding the power series ring RN as consisting of all formal 

expressions 

f = ao + alX + a2X2 + ... + anxn + ... , 

where the elements ao, aI, .... (the coefficient of 1) lie in R. As a notational 

device, we shall often write this as f = I:: akXk. vVe should emphasize that, 
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according to our definit ion , X is simply a new symbol, or indeterminate, totally 

unrelated to the ring R. To indicate the indeterminate X, it is common practice 

to write R[[X ]] for the set RN , and f( X ) for any member of the same. From 

now on, we will make exclusive use of these notation. 

Remark 1.2.16 If the ring R happen to have a multiplicative identity I , then 

X of-course is the member of the R[[X]]. 

In this case the power series X can be written as (0,1 , 0, 0, ... ). Thus from 

this view, aX become an actual product of the members of R[[X]]. 

aX = (a, 0, 0, ... )(0, 1,0,0, ... ). 

Concerning the notation of power series, it is customary to omit terms 

with zero coefficients and to replace (-ak)Xk by -akXk. Although X is not 

to be considered as an element of R[[X]J, we shall nonetheless take the liberty 

of writing the t erm 1Xk as X k (k ~ 1). With these conventions , one should 

view, for example, the power series 

1 + X2 + X4 + ... + X 2n + .. . E Z [[X ]J, 

as representing the sequence (1 ,0,1 ,0, ... ) . 

An important definition in connection with power series is that of order, 

given below. 

Definition 1.2.17 If f(X) = L: akXk is a nonzero power series (that is, if 

not all the ak = 0) in R[[X]J, then the smallest integer n such that an =I=- ° is 

called the order of f(X) and denoted by ord(f(X)). 

Suppose f(X),g(X) E R[[X]J, with ord(f(X)) = nand ord(g(X)) = m, 

So that, 

f(X) 

g(X) 

anXn + an+l Xn+1 + .. . 

bmxm + bm+1X m+1 + .. . 
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From the definition of multiplication in R[[X]] , it can be seen easily that all 

the coefficient of f(X)g(X) upto (n + m)th are zero, ·Whence 

If we assume that one of an and bm is not a divisor of zero in R , then anbm -=1= 0 

and 

ord(J(X)g(X)) = n + m = ord(J(X)) + ord(g(X)), 

this certainly holds when R is an integral domain. Generally, we have the 

following result: 

Theorem 1.2.18 If f(X) and g(X) are nonzero power series in R[[X]L then 

1}either f(X)g(X) = 0 or ord(J(X)g(X)) :::::: ord(J(X)) + ord(g(X)), with 

equality if R is an integral domain. 

2) either f(X)+g(X) = 0 or ord((J(X)+g(X)) :::::: min(ord(J(X) , ord(g(X)r 

Corollary 1.2.19 If R is an integral domain then so as its power series ring 

R[[X]] is an integral domain. 

Lemma 1.2.20 Let R be commutative ring with identity. A formal power 

series f(X) = L akXk is invertible in R[[X]] if and only if the constant term 

ao has an inverse in R. 

Corollary 1.2 .2 1 A power series f(X) = L akXk E K[[X]L Where K is a 

field, has an inverse in K[[X]] if and only if its constant term ao -=1= o. 

Theorem 1.2.22 Let R be a commutative ring with identity. There is a one 

to one correspondence between the maximal ideals M of the ring R and the 

maximal ideals M[[X]] of its power series ring R[[X]] in such a way that 

M[[X]] corresponds to NI if and only if NI[[X:- ]] is generated by M and X; that 

is NI[ [X]] =< M, X > . 
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Polynomials 

Let R[X] denote the set of all power series in R[[X]] whose coefficients are 

zero from some index onward (the particular index varies from series to series): 

An element of R[X] is called polynomial (in X) over the ring R. 

In essence, we are defining the polynomial to be a finitely nonzero sequence 

of elements of R. It is easily verified that R[X] constitutes the subring of R[[X]], 

so called ring of polynomials over R (in an indeterminate X). 

Running parallel to the idea of the order of the formal power series is that 

of the degree of a polynomial, which is introduced below. 

Degree of a polynomial 

Given the non zero polynomial 

In R[X], we call an the leading coefficient of f(X); and the integer n, the 

degree of the polynomial. 

The degree of a nonzero polynomial is therefore is a nonnegative integer; 

no degree is assigned to the zero polynomial. Notice that the polynomials of 

degree a are precisely the nonzero constant polynomial. 

monic polynomial 

If R is a ring with identity, a polynomial whose leading coefficient is 1 is 

said to be a monic polynomial. 

As a matter of notation, we shall hereafter write deg(f(X)) for the degree 

of any nonzero polynomial f(X) E R[X]. The result below is similar to that 

given for power series. 

Theorem 1.2.23 If f(X) and g(X) are nonzero polynomial in R[X], then 

1)either f(X)g(X) = a or deg(f(X)g(X)) ~ deg(f(X)) + deg(g(X)), 
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2)either f(X)+g(X) = 0 ordeg(f(X)+g(X)) :::; max{deg(f(X)) , deg(g(X))}. 

Corollary 1.2.24 l)1f D is an integral domain then it is simple to see that 

deg(f(X)g(X)) = deg(f(X)) + deg(g(X)) 

2)lf D is an integral domain, then so as its polynomial ring extension R[X]. 

Example 1.2.25 As an illustration of what might happen if R has zero divi

sors, consider Zs, the ring of integers modulo 8. Taking 

f(X) = 1 + 2X, g(X) = 4 + X + 4X2, 

we obtain J(X)g(X)=4+X+6X2, so that, 

deg(f(X)g(X)) = 2 < 1 + 2 = deg(f(X)) + deg(g(X)).n. 

Although many properties of the ring R carryover to the associated poly

nomial ring R[X], it should be pointed out that for no ring R does R[X] form 

a field. In fact, when R is a field (or, for that matter, an integral domain), no 

element of R[X] which has positive degree can posses a multiplicative inverse. 

with deg(f(X)) > 0 if f(X)g(X) = 1 for some g(X) E R[X],we could obtain 

the contradiction 

0= deg(l) = deg(f(X)g(X)) = deg(f(X))+ deg(g(X)). 

Theorem 1.2.26 (Division Algorithm) 

Let R be commutative ring with identity and f(X), g(X) =1= 0 in R[X] with 

the leading coefficients of g(X) an invertible element. Then there exist unique 

polynomials q(X ),r(X ) E R [X ] such that 

f(X) = q(X)g(X) + r(X), 

where, either r(X) = 0 or deg(r(X)) < deg(g(X)). 
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The polynomials q(x) and r(x) appearing in the division algorithm are 

called, respectively, the quotient and remainder on dividing f(X) by g(X). 

Theorem 1.2.27 (Remainder Theorem) 

Let R be commutative ring with identity. If f(X) E R[X] and a E R, then 

there exist a unique polynomial q(X) in R[X] such that f( X) = (X -a)q(X)+ 

r(X) . 

Corollary 1.2.28 The polynomial f(X) E R[X] is divisible by (X - a) if and 

only if a is a root of f(X). 

Theorem 1.2.29 Let R be an integral domain and f(X) E R[X] be a nonzero 

polynomial of degree n. Then f(X) can have at most n distinct roots in R. 

1.2.3 Integral Dependence 

In this section we deal with some of the important features of commutative 

rings like ring extension, Integral elements, integral closedness etc. 

Unitary ring Extension 

A ~ B be a unitary commutative ring extension if A has the identity of B. 

integral element 

Let A ~ B be a unitary commutative ring extension then an element b E B 

is integral over A, if f(b) = 0 for some monic polynomial f(X) E A[X]. 

Integral extension 

A ring extension A ~ B is integral in case every element of B is integral 

over A. 

Integral closedness 

Let A ~ B be any ring extension then, the integral closure of the ring A 

in B is the ring A' of all elements of B that are integral over A . The ring A 

is integrally closed in B in case A' = A. 
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1.2.4 Localization 

Localization generalizes the construction of the field of fraction of a domain 

but applies to any commutative ring. 

Ring of fraction 

Let R be a commutative ring with identity element. A multiplicative subset 

of R is a subset S of R which contains an identity element and closed under 

multiplication (i.e, if s, t E S, then st E S). 

It is straight forward that an equivalence relation rv on R x S is defined by 

(a , s) rv (b , t) {=::::? atu = bsu for some u E 8. 

The equivalence class of (a,s) E R x S is a fraction, we denote it by a/so 

The ring of fraction of R with denominators in 8 is the set 8-1 R = (R x S)/ rv 

of all fractions , with operations given by 

(a/s) + (b/t) 

(a/s)(b/t) 

(at + bs) / st, 

ab/ st. 

It is straight forward that operations on S-l R are well defined and that 

S-l R is a ring, with zero element 0/1 and identity element 1/1. For all s, t E S, 

sit is a unit in 8-1 R, with (S/t) -l = t/ S. 

1.2.5 Factorization in Ririgs 

This section deals with some important factorization properties like Eucldean 

domains, Principal ideal domains, Unique factorization domains, GCD do

mains, Dedekind domain, Valuation ring, Discrete valuation ring and Krull 

domains. The study of these classes were developed in previous decades, but 

nowadays a very useful and fast activity is on factorization properties of do

mains known as HFDs (Halffactorial domain) , idf (irreducibles divisors finite) 

domains, FFDs (Finite factorization domains), BFDs (Bounded factorization 
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domain), ACCP (Ascending chain condition on principal ideals) and atomic 

domain, which are generalized than previous ones. But first we have to un

derstand some basic concepts. 

Prime element 

A nonzero element p in a commutative ring R is called a prime if and only 

if p is not invertible and p divides ab implies that either p divides a or else p 

divides b. 

Irreducible element 

A nonzero element q in the ring R is said to be irreducible (or non

factorizable) if and only if q is not invertible and in every factorization q = be 

with b, e E R, either b or e is invertible. 

ED 

An integral domain D is said to be Euclidean domain (ED) if there exist 

a map <p : D -t N with properties; 

1) <p(a) = 0 if and only if a = 0, a E D. 

2) <p(ab) = <p(a)<p(b), for all a, b ED. 

3) for all a, b E R with b -=J 0, there exist q, rED such that a = bq + r 

where <p(r) < <p(b) . 

PID 

An integral domain is PID if every ideal in D is principal ideal. e.g Z,Z[i] 

and K[X] , where K is field . 

UFD 

An integral domain D is said to be factorial domain or UFD, if every non

zero non-unit element xED can be written as a product of irreducibles in D 

and this factorization is unique upto order and associates. 

GCD Domain 

An integral domain D is said to be GCD domain, if every pair of elements 

in D has greatest common divisor. 

) 
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In general 

ED =} PID =} UFD =} GCD. 

But none of the above implication is reversible. 

In such rings as division rings or fields where each element has its inverse 

is of no interest. 

Theorem 1.2.30 (Guass Theorem) 

Wh en R is a UFD, then R[X] is a UFD. 

The application of above theorem can be seen in domains Z[X] and K[X] 

(where K is a field) are UFD. 

Noetherian Ring 

A commutative ring with identity R is Noetherian in case its ideals satisfies 

the ascending chain condition (acc) i.e. every ascending sequence 

of ideals of R terminates(that is there exist n > 0 such that Ii = In for all 

i ;::: n) or equivalently satisfies the following equivalent conditions. 

1) There is no strictly ascending sequence of ideals of R, II C 12 ", ~ I j ~ 

Ij+l ~ . .. . 

2)Every non-empty set S of ideals' of R has a maximal element (an element 

M of S such that there is no !VI ~ I E S). 

Theorem 1.2.31 (Hilbert Basis Theorem) 

Let R be a commutative ring with identity, if R is Noetherian then R[X] 

is Noetherian. 

Dedekind Domain 
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In this case the factorization can be carried out with ideals, using products 

rather than intersection. Before going to define the Dedekind domain, we must 

have the concept of fractional ideals and dimension of a ring. 

Dimension of a Commutative ring 

The maximum length of the chain of the prime ideals of the ring R is called 

the dimension of R. For example Z has dimension 1 and dimension of R[X] is 

equal to the dimension of R + 1. Therefore dimension of Z[X] is 2 and K[X] 

has dimension 1, because field has dimension O. 

Fractional Ideal 

A fractional ideal of R is the subset of quotient field Q(R), which has the 

form 
I a 
- = {- E Q : a E I}, 
c c 

where I is an ideal of Rand c E R , c =I=- O. 

Example 1.2.32 Let D be an integral domain and let Q(D) = K . Suppose 

{ 8 1 , S2, ... , Sn} ~ K. Then F = < S l , S2, ... , 8 n > is a fra ctional ideal, which is 

of-course finite ly generated D-submodule of K. So this fractional ideal is finitely 

gen erated and can be written as 

A fractional ideal F is invertible ih case there exist a fractional ideal F ' of 

D such that FF' = D . 

Definition 1.2.33 An integral domain D is a Dedekind domain if it satisfy 

any of the following conditions. 

(1) Every nonzero ideal of D is a product of prime ideals. 

(2) Every nonzero ideal of D can be written uniquely as a product of positive 

powers of distinct prime ideals. 

(3) Every nonzero ideal of D is invertible. 
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(4) Every nonzero fractional ideal of D is invertible. 

Alternatively, one dimensional integrally closed Noetherian domain is said 

to be Dedekind. 

Examples:[14, Page-407] 

(1) Z[VIO] is Dedekind but not PID . 

(2) Z[iV5] is Dedekind but not PID, because if it is PID then by above 

assertions this implies that Z[iV5] is UFD, but this is not true as 

6 = 2 ·3= (1 + iVs)(l - iVs). 

Valuation Ring 

Let H U {oo} be an ordered set with the conventions 00 + a = 00 and 

00 + 00 = 00. 

A map v : K ~ H U {oo} is called addit ive valuation or just a valuation 

of the field K if it satisfies the conditions: 

1) v(xy) = v(x) + v(y); 

2)v(x+y) ~ min({v(x),v(y)}; 

3)v(x) = 00 ~ x = O. where x, y E K. 

If we write K* for the multiplicative group of K then v : K* ~ H defines 

a homomorphism and Im(v) is a subgroup of H . Im(v) is called the value 

group of v . We say 

R u {x E K I v(x) ~ O} is valuatin ring of the field Kand 

Mv {x E K I v(x) > O} is the maximal ideal of Ru' 

Notice that Z is not a valuation ring. 

A valuation ring is said to be discrete valuation ring (DVR) if its value 

group is isomorphic to Z . A Noetherian valuation ring is DVR. 
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A ring between domain D and its quotient field K is said to be overring 

of D. If D is a valuation ring of the field K then every overring of D is a 

valuation ring. 

Krull Domain 

Let D be an integrally closed domain with quotient field K and F 

{v)J "\EI' be a family of valuation over-rings of D. 

1) D = n,,\v,,\ 
2) Each V,,\ is DVR. 

3) The family F has finite character (that is if 0 i= x E K , then x is a 

non-unit in only finitely many of the valuation rings in the family F). 

4) Each V,,\ is essential for D (A valuation over-ring of integral domain D 

is said to be essential for D if V is fraction ring of D) . 

Example 1.2.34 DVRs) PIDs) Dedekind and UFDs are well known examples 

of Krull domains . 

Remark 1.2.35 One dimensional Krull domains and Dedekind domains co

incides (16) Theorem 12.5}. 

Atomic Domain 

Following Cohn [8], an integral domain D is atomic if each nonzero non-unit 

of D is a product of irreducible elem.ents (atoms) of D . 

ACCP 

Following [2], an integral domain satisfies the ascending chain condition on 

princi pal ideals (A CCP), if there does not exist an infinite strictly ascending 

chain of principal integral ideals of D. 

BFD 

Following [2], an integral domain is a BFD, if D is atomic and for each 

nonzero non-unit of D , there is a bound on the length of factorization into 

products of irreducible elements. 
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HFD (Half Factorization Domain) 

Following [19] , an integral domain D is said to be HFD if D is atomic, and 

given any two irreducible factorizations of an element a E D, 

a = 7f17f2 ·· ·7fk = ~16 ... ~m, 
then k = m. 

idf-domain 

An integral domain D is said to be irreducible-divisor-finite (idf) domain 

if every non-zero, non-unit element of D has a finite number of irreducible 

divisors. 

FFDs 

An integral domain D is said to be finite factorization domain (FFD) , if 

every non-zero, non-unit element of D has a finite number of non-associate 

divisors. 

An atomic idf domain is FFD. 

In general, 

idf. - domain <=== UFD ==? HFD ==? BFD ==? ACCP ==? Atomic, 

and 

idf - domain <=== UFD ==? FFD ==? BFD ==? ACCP ==? Atomic. 

But none of the above implication is reversible. 

In [18] Zaks and in [13] gives the examples of atomic domains, which are 

not satisfying ACCP. 

Examples 

(1) By [4], R = K[X2, X 3] (K is a field) is an atomic domain which is not 

HFD, since X 2 and X3 are each irreducible element of Rand X 6 = X 3 X3 = 

X 2X 2X 2. 

(2) In. general, by [4] , for each integer n 2: 2, lin = K + xn K[X] = 

K [xn , xn+ 1 , ... , X 2n-l] is a one-dimensional Noetherian (and hence atomic) 
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domain which is not HFD , since xn and X 2n- 1 are each irreducible elements 

of Rn and x n (2n-l) = ( X2n-l)n = (Xl1-)2n-l . 



Chapter 2 

Commutative Semigroups and 
Semigroup Rings 

2 .1 Introduction 

In this chapter we review some specific properties of commutative semi

groups, such as integral closed ness and the almost integrability in the semi

groups. Moreover we also provided the structure of commutative scmigroup 

rings and their integral closedness. We refer to the reader to [12, chapter 1] 

and [15] for more detailed information on this topic. 

Semigroup 

A semigroup is a non empty set closed under an associative binary opera

tion. 

If (8, *) is a semigroup, then 8 is commutative (or abelian) if it is commu

tative under the operation * , and 8 has an identity element if there exist an 

identity element with respect to *: a semigroup with identity is called monoid . 

Throughout in this discussion We will use additive abelian semigroups e.g, N 

(The set of natural numbers) is a semigroup under addition and Z (The set 

of integers) , Q ( The set of rational numbers} are the examples of additive 

monoids. 

Numerical Semigroup and Monoid 

25 
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Following [12, page 11-12], a semigroup S is said to be numerical semigroup 

if S is subset of Z+ and a monoid S is a numerical monoid if it is a sub-monoid 

of Zoo Where Z+ and Zo are set of positive integers and non-negative integers 

respecti vely. 

Totally Ordered Semigroup 

If :S is a relation on a semigroup S then S is said to be totally order if for 

each S 1 , S2 E S, either S1 :S S 2 or S2 :S S1· 

Sub-semigroup 

A subset T of S is a sub-semigroup of S if T itself is a semigroup under 

the operation on S . 

Prime Ideal 

By [15] , an ideal I of S is prime if x + y E I implies x E I or y E I 

Cancellative element 

An element s of a semigroup S is said to be cancellative if s + a = s + b . 

implies a = b for a, b E S. 

Remark 2.1.1 The set of cancellative elements of S is denoted by C. This 

set may be empty; If C i= <I> , then C is a subsemigroup of S. If S = C then S 

is said to be cancellative semigroup . 

Example 2.1.2 Z, Q, R are the examples of cancellative semigroup. 

Theorem 2.1.3 (12, page 5-6) If C is a subsemigroup of an additive semi

group S and if each element of C is cancellative in S, then there exist an 

imbedding f of S into an abelian monoid T such that (1) f(c) has an inverse 

-f(c) in T for each cE C, and (2) T={f(s) -f(c): sE Sand cE C} . The monoid 

T is determined, up to semigroup isomorphism, by properties (1) and (2). If 

S is cancellative and S = C, then T is a group . 
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Remark 2.1.4 (12, page 5-6], the monoid T constructed as in the statement 

of above theorem is called the quotient monoid of 5 with respect to C. By abuse 

of notation, we write the elements of T in the form s-c instead of J(s)-f(c} and 

we consider 5 to be a subset of T. If S is cancellative, then the group T is 

called the quotient group of S; to within isomorphism it is the smallest group 

in which S can be imbedded. 

Ideal 

An ideal of a semigroup S is a non-empty subset I of 5 such that I ;2 

s + I = {s + i : i E I} for each s E S .By [12, page 5-6]The intersection of a 

family of ideals of 5 is an ideal, provided it is non-empty. 

Torsion Group[12 , page-6] 

An abelian group G is torsion-free if 0 is the only element of G of finite 

order. G is a torsion group, if each element of G has finite order, and G is 

called mixed if it contains elements of infinite order. and nonzero elements of 

finite order. 

Remark 2.1.5 If 5 is a cancellative semigroup with quotient group G, then 

the condition that G be torsion-free if and only if 5 satisfies the following 

condition. 

(a) For any positive integer n and any x, y E 5, the equality n x ny 

implies that x = y. 

The condition (a) used as the definition of a torsion-free semigroup. 

Torsion Free Semigroup 

A semigroup 5 is said to be torsion-free [12, chapter 7], if for any positive 

integer n and any x, y E 5, the equality nx = ny implies that x = y. 
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2.2 Integral Closedness in Semigroups 

Let T be a monoid and let S be a submonoid of T containing O. An element 

t E T is said to be integral over S if nt E S for some n E Z+. The set So of 

element t E T, that are integral over S is a submonoid of T containing S. So 

is called the integral closure of Sin T . If S = So, we say S is integrally closed 

in T. Note that So is integrally close in T. In case S is cancellative and T is 

the quotient group of S, then So is called the integral closure of Sand S is 

said to be integrally closed if S = So. 

2.3 Almost integrability in Semigroups 

An element t E T is almost integral over S if there exist 8 E S such that 

8 + nt E S V n E Z+. The set S* of all t E T that are almost integral over 

S is called the complete integral closure of S in T. It is completely integrally 

closed in T, if S = S*. In general, S* need not be completely integrally closed 

in T. 

If T is the quotient group of S, then S* is called the complete integral 

closure of S, and S is completely integraly closed if S = S*. 

Note that, if t E T is integral over S, then t is almost integral over S. 

2.4 Commutative Semigroup Rings 

By (12] and (15], assume that R is an associative ring and that (S, *) is a 

semigroup. Let J be the set of functions f from S into R that are finitely 

nonzero, with addition and multiplication defined in J as follows 
/ ~" . ,. 

U+g)(8) f(8) + g(8) 

• 
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(1g)(s) = L f(t)g(u) , (2.1 ) 

Where the symbol 2: indicates that the sum is taken over all pairs (t , u) 
t*u=s 

of elements of S such that t * u = s, and it is understood that (1g)(s) = 0 if 

s is not expressible in the form t * u for any t, u E S. Now it is easy to verify 

that J is a ring under + and'.' . This J is denoted by R[ X; S] and known as 

semigroup ring of S over R. If S is monoid, then T is called monoid ring. 

Example 2.4.1 Let us assume that S =Zo, and R is an associative ring, then 

J is simply a polynomial ring R[X] . 

Example 2.4.2 /4i, let S =< nl , n2, ... , nr >, where ni E Nand r > 1. 

Then of-course S is a proper numerical semigroup i. e. a proper submonoid 

of Z+ under addition with Z+ - S is finite. Then the semigroup ring R = 

K[S] = {2: asXs : as E K,.s E S} = K[xn1,xn2
, ••• ,xnr] is a one di-

sES 

mensional Noetherian( and hence atomic} domain which is not HFD, because 

xn1, xnr both irreducible elements of Rand xn1nr = (xnl )nr = (xnr )n1 • Also 

this implies R is not UFD. 

Representation of the elements of R[X; S] 

If the semigroup operation in S is written as +, the elements of J are written 
n 

either in the form L f(s)XS or in the form 2: f(si)XSi(n represents number 
sES i=1 

of nonzero function values) with addition and multiplication defined as for 

polynomials. Introduction of the symbol X and the notation XS has the effect 

of transforming (S, *) into the multiplicative semigroup {XS / s E S} by means 

of the isomorphism s -+ XS. And it is recommended to use the above notation 

because, it is more understandable. It can be noted that X is not neccessarily 

be the element of R[X; S]. Now for convenience if Rand S are considered to 

be unitary, then X belongs to R[X; 5]. 
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Each non-zero element f of R[X; S] has a unique representation in the form 
n 

f = 2:: f ixsi) where fi =1= 0 and Si =1= Sj for i =1= j . This representation is called 
i=l 

the canonical form of f. The support of f is denoted by supp(f) = {si}i. The 

subset < {sJi> is the supporting semigroup of f. The ideal of R generated by 

{fi}i is called the content of f and is denoted by C(f). 

2.4.1 Integrability in Semigroup Rings 

Definition 2.4.3 (12, Corollary 12.11) 

Let D be a unitary integral domain and let S be a torsion free cancellative 

monoid. Then the integral closure of D [S] is DT S]) where D' is the integral 

closure of D and Ef is the integral closure of Sand D(S} is integrally closed if 

and only if D and S are integrally closed, 



Chapter 3 

Class Groups 

3.1 Introduction 

In this chapter we give the introduction of class groups and class monoid 

structure for both semigroups and rings. We also provide the relevant results 

and examples for the convenience of the reader to understand the concepts 

clearly. Most of the material in this chapter is followed by [12] and [11]. What 

here we discussed is directly or indirectly related and provide an immediate 

reference and supply to chapter 6. 

3.2 Class Group of Semigroups 

Fractional Ideal 

Let S be a cancellative monoid with quotient group G. A non-empty subset 

I of G is called a fractional ideal of S if 

1. S+ I~I 

2. :3 s E S such that s + I ~ S. 

Note that, I is not neccessarily the semigroup of G. 

Principal Fractional Ideal 

A fractional ideal is said to be principal if I = x + S for some x E G. 

31 



CLASS GROUPS 32 

Assume tha t F (S) represents the set of all fractional ideals of S. Now one 

can see F(S) is commutative monoid with zero element S under the binary 

operation 

I + J = {i + j : i E I, j E J}. 

Definition 3.2.1 If I, J E F(S), then I : J is defined as {xE G : x + J ~ I}. 

Remark 3.2.2 I : J E F(S) that is I : J is again a fra ctional ideal. 

Divisorial Ideal 

S : (S : 1) is denoted by Iv and I is called the divisorial ideal associated 

with S, if I = Iv, then I is called divisorial. 

Remark 3.2.3 (12, Theorem 16.4) 

(1) If I , J E F(S) , then I : J E F(S). 

(2) I : (x + J) = -x + (I : J) for each x E G. In particular, S : (S : 

(x + S)) = S : (-x + S) = x + S, 

so x + S is divisorial. 

(3) If J1 ~ J2 , then I : J1 2 1 : J2 . Hence, (J1 )v ~ (J2 )v. 

(4) Iv is the intersection of the family of all principal fractional ideals of S 

that contain I. 

(5) (Iv)v = Iv· 

(6) (x+ 1)v =x+ Iv for all x E G, I E F(S). 

(7) (I + J)v = (Iv + Iv)v 

If S is a cancellative monoid with quotient group G. Then the v-operation 

induces an equivalence relation rv on F(S) defined by I rv J if Iv = Jv· 

For I E F(S), div(1) represents the equivalence class of I under rv and 

D(S) denotes the set of all divisor classes of S. Part (7) of remark 3.2.3 shows 

that the operation on D(S) defined by 

div(I) + div( J) = div(I + J) 



CLASS GROUPS 33 

is well defined. 

Under '+' the set D(S) forms a commutative with zero element div(S). 

Moreover, p(S) = {div(x + S) : x E G} is a subgroup of the group of invertible 

elements of D(S). 

Divisor Class Group 

The factor Cl(S) = D(S)j p(S) is called the divisor class monoid of S. 

If every fractional ideal is invertible then Cl(S) become a group and called 

divisor class group. Also if S is completely integrally closed and cancellative 

monoid then Cl(S) becomes a group c.f. [12 , Theorem 16.5]. 

3.3 Class Group of Rings 

Here we start this section by another look of the fractional ideal. 

Fractional Ideal 

Let R be a commutative ring with 1 (resp. integral domain) and, the total 

fractional ring of R, Q(R) = K (resp. quotient field of R), then F ~ K is 

said to be a fractional ideal of R if F is an R-submodule of K such that 

r F ~ R, where r is regular element of R. 

Note that regular elements are those elements which are not zero divisors. 

Example 3.3.1 Let D be an integral domain and let Q(D) = K. Suppose 

{Xl, X2, .. . , Xn} ~ K. Consider F =< Xl, X2, ... , Xn > i.e. if s E F, then s = 
n 

L riXi, where ri E D. It can be verify that F is R-submodule of K. Now let 
i=l 

Si = ;- E K, where T~ ED. and let r = lcm(r'l' r~, ... , r~). Then easily rF ~ D. , 
So F is a fractional ideal of K. 

Remark 3.3.2 If F ~ K, then S may not be fractional ideal of D. Specially, 

when F is not finitely generated. As not then neccessary such r in D exists 

such that rF ~ D. It is possible when K is a fractional ideal of D ¢} K = D . 
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Proposition 3.3.3 Let S ~ K is a semigroup) then < S > is a fra ctional 

ideal of D if and only if < S > is contained in a fractional ideal of D. 

Remark 3.3.4 (1) A fractional ideal F is finitely generated if it admits a 

finit e set of generators and so principle if F =< x > f or some x E K. 

(2) . A pincipal fractional ideal < x > is regular if and only if x is regular. 

Definition 3.3.5 Let D be the unitary integral domain with quotient fi eld K 

then f(D) represents the set of all fractional ideals of D in K. 

Definition 3.3.6 If F E f(D) ) then we defin e 

F - 1 = D: F = { x E K: x F ~ D}, 

and 

(F- 1) -1 = D : (D : F) = {x E K : xF-1 ~ D}. 

vVe denote (F - 1 )-1 by Fv' 

Remark 3.3.7 Note that Fv is the intersection of the family of principal frac

tional ideals of D that contains F. 

Definition 3.3.8 The mapping F -7 Fv is called v-operation on D. 

Definition 3.3.9 A fractional ideal F is called divisorial or v-ideal if F = Fv· 

3 .3 .1 Equivalence Classes 

Define a relation r-v on f(D) by I r-v J if and only if Iv = Jv' 

Now, it is easy to prove r-v is an equivalence relation 

1. Reflexive: 

Of-course if I E f(D) , then Iv = Iv implies I r-...J I. 

2. Symmetric: 
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If I , J E f(D) and I rv J easily implies that J rv I. 

3. Transitive: 

35 

Now if I , J, L E f(D) such that I rv J and J rv L implies Iv = Jv and 

Jv = Lv' Follows that Iv = Lv, this gives the required result. 

Hence - is an equivalence relation. 

Definition 3.3.10 The equivalence classes under rv are called divisor classes 

of D. The class of I E f(D) is denoted by div(I). 

Definition 3.3.11 The set of all divisor classes of D is denoted by b(D). 

The operation defined on b(D) are as, 

div(I) + div(J) = div(I J), 

under this operation b(D) is a commutative monoid with zero element 

div(D). It is simple to prove that if div(I) , div(J) E b(D), then 

div(I) + div(J) = div(I J) E b(D) as I J E f(D), 

and also associative. Further, 

div(I) + div(D) = div(I D) = div(I), 

as I D = I, because I is D-submodule of K. 

Remark 3.3.12 b(D) is a group if and only if D is completely integrally 

closed (12, page 2D8-2D9). 

Remark 3.3.13 The set p(D) = {div(xD) : x E K, x =I- O} is a subgroup of 

the group of invertible elements of b(D). Because, 

div(xD) + div(x-1 D) = div(D). 
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This implies div(xD) E Inv(D) , where Inv(D) represents the set of all in

vertible divisorial classes of D. Hence p(D) ~ Inv(D) If div(xD), div(yD) E 

p(D), then div(xD) + [div (yD)] - l = div(xy-l D) E p(D) ) as xy- l E K . Hence 

gives the required result. 

Definition 3.3.14 The divisor class monoid of D, Cl(D) is defined as Cl(D) = 

iJ(D) j p(D) . 

Now the elements of Cl(D) are [div (I)] = div(I) + p(D) for I E F (D). 

Now under the following operation Cl(D) can easily be seen as monoid. 

[div (I)] + [div (J)] 

[div (I)] + [div (J)] 

[div (I)] + [div (J)] 

(div (I) + p(D)) + (div (J) + p(D)) 

(div (I) + div (J )) + p(D) 

div(I J) + p(D) = [div (I J)] 

Note that if D is completely integrally closed then Cl(D) is divisor class 

group. 

Remark 3.3.15 If D is UFD) then it is easy to verify that every fractional 

ideal is invertible and hence p(D) = iJ(D). This implies that Cl(D) is trivial) 

c.f. (12) page 209]. 



Chapter 4 

Characterization of Polynomial 
Rings with the Half-Factorial 
Property 

4.1 Introduction 

In this chapter we review the paper [9] of Coykendall. 

The main result of this paper gives the characterization of polynomial 

rings with the half factorial property. Which is stated as " Let R be an 

integral domain. If R[X] is HFD then R is integrally closed" . For the sake of 

completion and better understanding, here we are providing the explanation 

of [9]. 

4.2 Characterization of Polynomial Rings with 
the Half-Factorial Property 

We start this chapter by the following: 

Lemma 4.2.1 (9, Lemma2.1j Let p(X) be irreducible in R[X] and 0 =J r E R. 

If rp(X) = rlr2 ... rthh···fk with ri E R for 1 :S i :S t and li E R[X] with 

o <deg(ji) <deg(p) for 1 :S i :S k, then no fi is monic. 

37 
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Proof: We prove the result by contrary. Let some fi is monic, then if 

then rp(X) can be written as, 

N ow equating the co-efficient of xm+n, xm+n-l , ... , xm. i. e 

continuing this, we get 

By above equations we have r I r n ERas qn+m E R. In the same manner, we 

get rl ri for each 0 ::; i ::; n. So, r is the factor of rn, ... , ro. Now gl(X) = rg(X) 

for g(X) E R[X], here 

rp(X) rg(X)g2(X) 

=? p(X) = g(X)g2(X), 

Since deg(g) and deg(g2) > O,therefore g(X) and g2(X) are non-unit. Hence 

p(X) is reducible. This contradicts the given hypothesis. So all fi's are non

monic. 

This lemma will play a useful role in proving the main theorem. 

Theorem 4.2.2 (9, Theorem 2.2) Let R be an integral domain. If R[X] is an 

HFD, then R is integrally closed. 

Proof: Here we are given that R[X] is an HFD =? R is HFD (If not then 

R[X] will not be an HFD [2]). So in this whole proof R will be assume to be 
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HFD. Now to prove the result let R is not integrally closed. vVe will prove 

R[X] is not HFD. Now if R is not integrally closed then there exist w E K\R, 

where K is the quotient filed of R such that w satisfies following irreducible 

monic polynomial P(X) E R[XJ, 

P(X ) = xn + Pn_Ixn-1 + ... + PIX + Po, Pi,s E R 

We can assume that w = 1'ls, 1', s E R, such that (1' , s) = 1 and of-course 

s -I- O. (It is possible as R is HFD). Now consider 

Since P(w) = 0, therefore sn P(w) = O. Hence we can write, 

sn P(X) = (sX - 1' )q(X ), q(X ) E R[X] 

One can verify that s.1'ls - l' = 0 * snp(w = 1'ls) = O. Now if s has m 

irreducible factors then, 

1. sn has mn irreducible factors and snp(x) has mn+l irreducible factors 

as P(X) is irreducible. 

2. Polynomial (sX - 1') is irreducible in R[X] as (1', s) = 1. 

Now we check how many irreducible factors q(X) has. Note that as we 

take s common from sn P(X), so leading co-efficient of q(X) is sn-I. Let 

Ii E R[X] is irreducible and 1'i E R is irreducible. 

N ow by above lemma as 

(sX - 1')q(X) 

(s X - 1')!I(X)h(X) .. .fk(X )rI1'2 ... Tt 
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=} each ii is non-monic. Since (sX - r) E R[X] and deg(sX - r) < deg(P). 

Now as sn- l is the leading coefficient of q(X) so , each ii contributes a factor 

for ii so let 

vVith each Li is non-unit leading coefficient of ii , as each ii is non-monic. Now 

sn-l E Rand R is HFD, So 

k+t :S m(n-1) as m no of factors of s and so m(n- 1) is the no factors of sn- l 

So the number of factors of sn are m(n - 1) + 1. Now 

k + t + 1 :S m(n - 1) + 1 :S mn + 1 

Since as R[X] is HFD. Therefore, the number of factors of sn for each expres

sion are equal, So m(n - 1) + 1 = mn + 1 possible only when m = 0 =} s = O. 

Hence w (j. K\R. A contradiction to the supposition, so we have the result. 

Remark 4.2.3 If R[X] is a BFD, then by a result R[X] is BFD ~ R is 

BFD. Now here it is not necessary that it is integrally closed. As it is known 

that every Noetherian is not necessarily integrally closed and also we know that 

every Noetherian is BFD. So, we can not generalize this result for BFDs. 

Remark 4.2.4 Here note that if the coefficient ring R is HFD does not nec

essarily implies R is integrally closed for example let R =Z[iV3] = {a + biV3 : 

a, b EZ} is a commutative ring which is HFD but not integrally closed because 

closure of R (R) is given by 

Hence R is not integrally closed. Further note that R is not Krull as if R is 

Krull then R must be then integrally closed. 
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Corollary 4.2.5 !9, Corollary 2.3} Let R be a Noetherian ring. Then the 

following conditions are equivalent 

(1) R is a Krull domain with Icl(R)1 :s; 2. 

(2) R[X] is an HFD. 

(3) R[Xl ' X 2 , ... , Xn] is an HFD for all n 2 1. 

(4) R[Xl ' X 2 , .. . , Xn] is an HFD for some n 2 1. 

Proof: We can observe that (3) ==> (4) and (4) ==> (2) are very obvious. 

Only (1) ==> (3) and (2) ==> (1) remains to prove. 

(1) ==> (3) 

Given that R is a Krull domain and Icl(R)1 :s; 2 then R[Xl ' X 2 , . .. , Xn] 

is also a Krull domain with Icl(R[Xl ' X 2 , ... , Xn]) 1 = IGl(R) I [7, chapter 7, 

Proposition 13]. Since if R is a Krull domain then R[X] is an HFD if and 

only if IGl(R)1 :s; 2 [20, Theorem 2.4].Using above both results we prove the 

required result inductively. 

If n = 1 then as R is Krull and IGl(R)1 :s; 2 then R[X1] is HFD. 

Suppose it is true for n = k then R[Xl' X 2 , ... , X k ] is HFD. Now it is to 

verify the second condition that R[Xl ' X 2 , ... , Xk+l] is HFD. Now as R is a 

Krull domain and IGI(R) I :s; 2. 

2. 

So, R[Xl' X 2 , ... , X k+1 ] is Krull with Icl(R [Xl' X 2 , ... , X k+1 ]) I = ICI(R) I :s; 

==> R[Xl' X 2 , ... , X k +1 ] is HFD. Hence the result . 

(2) ==> (1) 

We assume that R[X] is an HFD, then by previous theorem R is integrally 

closed. Now as R is Noetherian so R is a Krull domain. Again, by [20, Theorem 

2.4]' R[X] is HFD so IGI(R)I :s; 2. Which is the desired result . 



Chapter 5 

Characterization of Semigroup 
Rings with the Half-Factorial 
Property 

5 .1 Introduction 

In this chapter we characterize the semigroup rings with the half factorial 

property which is an attempt to generalize the polynomial case of Coykendall 's 

[9 , Theorem 2.2] . The details are already given in chapter 4. Here we used t he 

concepts of degree in semigroup rings which are coinciding the particular case 

of polynomial rings. Moreover , we introduced the term of monic elements or 

pseudo monic polynomials in commutative semigroup rings. 

5 .2 Characterization of Semigroup Rings with 
the Half-Factorial Property 

We are starting by introducing the notions in semigroup rings which coincides 

to the polynomial structure. 

Concept of Degree and Order in Semigroup Ring 

The concept of degree and order are not generally defined in semigroup 

rings. They actually depends upon the relation under which S is totally or-

42 
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dered. 

If the semigroup S is ordered under a fixed total ordered, then the usual 

notion of degree and order of elements of semigroup ring R[X; S] can be de

fined. Thus, if f = t fix si is the canonical form of the non-zero "element 
i=1 

f E R[X; S], where 81 < 82 < ... < 8 n , then 8 n is called the degree of f and we 

write deg(f) = 8n and similarly the order of f written as ord(f) = 81' Now if 

R is integral domain, then we have as usual, 

deg(fg) 

ord(fg) 

deg(f) + deg(g) 

ord(f) + ord(g) for f , 9 E R[X; S] 

Monic Element (pseudo monic polynomial) 

Now we are in position to define the monic element (pseudo monic poly

nomial) of R[X; S]. The element f of R[X; S] is monic if fn = lR (Of-course 

possible when R is unitary). 

Pseudo Integral Element 

Let D be an integral domain and S be a cyclic semigroup. Then an element 

of Q(D) is said to be integral over D if it satisfies a monic element (pseudo 

monic polynomial) of D[X; S]. Similarly, if D* represents the set of all pseudo 

integral element then D is said to be pseudo integrally closed if D* = D. 

Note that all elements ofthe coefficient ring D of D[X; S] (with D is unitary 

and S is cyclic monoid have at least one positive integer) are pseudo integral 

as if rED then r satisfies rS - XS E D[X; S], where 8 is positive integer in S. 

Lemma 5.2.1 Let S be semigroup. Then S is cyclic if and only if Sm+n = 

Sm + 8n for all Sm+n, Sm, Sn E Sand m, n E Z+. 

Proof: Let S =< a > then we prove that Sm+n = 8 m + Sn for all 

sm+n, 8m , Sn E Sand m , n E Z+. By given hypothesis we can write that 
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Sm = ma and similarly Sn = na, this implies that Sm+n = Sm + Sn, which 

is required. 

Conversely suppose that Sm+n = Sm + Sn for all Sm+n, Sm, Sn E Sand 

m , n E Z+, then we want to prove that 5 is cyclic. For t his let Sm E S. We 

can write Sm = ma = (m - l)a + a, continuing this we get at the end 

Sm = a + a + ... + a, m times, 

=} Sm = mS1 =} S =< S1 > . Also it is easy to verify that S1 is the least 

generator for Sm. Hence the result. 

Remark 5.2.2 Let S be cyclic monoid which has no invertible element and D 

be the integral domain then the unit elements of the semigroup ring D[X; S] 

are same as that of the coefficient ring D, it is deduced from (12, Theorem 

11.lJ. 

Irreducible elements in D[X; 5] 

Let S be the cyclic semigroup and D be the integral domain then an element 

f E D[X; 5] is said to be irreducible if f = hk for some h, k E D[X; 5] =} 

either h is unit or k is unit. 

By using these concepts we develop the following lemma. 

Lemma 5.2.3 Let D be an integral . domain and S is a cyclic monoid. Let 

p(X) be irreducible in D[X; S], and 0 # rED. If rp(X)=r1r2 ... rdd2 .. ·fk 

with ri E D for 1 ~ i ~ t and fi E D[X; S] with 0 < deg(fi) < deg(p(X)) for 

all 1 ~ i ~ k, then no fi is monic. 

Proof: As given S is a cyclic. Let S =< a > . We define an element S E S 

by 8 m if S = ma and a total ordered operation < by Sm < Sn if and only if 

m < n for all m , n EZ+. Consider 

p(X) = r X Sn+m + r XSn+m-l + ... + r XSo E D[X' 5] Sn+m Sn+m-l So , 
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such that So < 3 1 < ... < 3m +n . Hence the leading coefficient is 'rSn+m and the 

degree of p(X) is Sm+n. To prove the required result, let us suppose there are 

some f i's are monic. Now write, 

'rp(X) 

Note that here by using above lemma we can write, sm+n = Sm + Sn for all 

m ,n EZ+. Now equating co-efficient of XSn+m, XSn+m-l, .... , Xso we get, 

'rSn 
. .. 

'rSn _1 + 'rSn'rSm_l 'r.3m +n -l 

and similarly continuing this we get, 

. . . 
'rso +'rSl'rSm_l + .. . +'rSrn 'rSO = 'r·'rSrn · 

Consequently, we have 'r I 'r~n as 'rSm+n ED=} r I r~n_l and by continuing 

this, we have 'r I 'r~o' Hence we get that 'r I 'r~i for all 0 ~ i ~ n. So, we can 

write, 

'rp(X) 

p(X) 

'rg(X)g2(X), where g(X) E D[X; S] 

g(X)g2(X), 

where g(X) and g2(X) are non-unit =} p(X) is reducible. A contradiction. 

Hence no fi is monic. 

Example 5.2.4 Let S = ZO O'r Z, the set of non-negative intege'rs or set of 

intege'rs is a total o'rder monoid and also Sn+m = 3n + 3m , where 3n = n) 

Sm = m and Sm+n = m + n for all m, n E S. Now if D is an integral domain 

then the monoid ring obeys the above lemma. 
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Now, we are able to develop a generalized form of Coykendall 's [9, Theorem 

2.2] in the following 

Theorem 5.2.5 Let D be an integral domain and S is cyclic monoid have at 

least one positie integer. If D[X; S] is an HFD, then D is pseudo integrally 

closed. 

Proof: Here we are given that D[X; S] is an HFD =?- D is HFD. So in this 

whole proof D will assume to be HFD. Since S is cyclic therefore S =< a > . 

So we can write Sm = ma and Sm+n = Sm + Sn for all m , n EZ+ . Define a total 

order relation on S by Sm < Sn if and only if m < n. 

Let us suppose D is not integrally closed. Now, if D is not integrally closed 

then there exist W E K\D, where K = Q(D) such that w satisfies following 

irreducible pseudo monic polynomial p(X) E D[X; S], 

Where So < S l < ... < Sn, so Sn is the degree of p(X) and the leading coefficient 

is 1. Note w t/:. D shows D is not integrally closed . Also we can assume that 

w = rls, r,s E D , such that (r,s) = 1 and of-course S -# O. (It is possible as 

D is HFD). Now consider 

Since p( w) = 0, therefore snp( w) = 0, hence we can write, 

Sn P(X) = (sX - r)q(X) , q(X) E D[X; S]. 

Now one can verify s.rls - r = 0 =?- snp(w = rls) = O. Now if s has m 

irreducible factors then, 

1. sn has mn.irreducible factors and snp(X) has mn+ 1 irreducible factors 

as p(x) is irreducible. 
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2. Polynomial (sX - r) is irreducible in D[X; S] as (r, s) = 1. 

Now we check how many factors q(X) has? Note that as we take s common 

from snp(X), so the leading co-efficient of q(X) is sn-l. Let 

! i E D[X; S] are irreducible and ri E D are irreducible. By lemma 5.2 .3 

(sX - r )q(X ) 

(sX - r )!1(X )!2 (X ) ... !k(X)rlr2 .. . rt . 

Thus, each ! i is non-monic. Note (sX - r ) E D[X; S] and deg(sX - r) < 

deg(p). Now as sn-l is t he leading coefficient of q(X ) so, each ! i contributes a 

factor for q(X ) so let 

vVhere each Li is non-unit, as each !i is non-monic and leading coefficient of 

kNow sn-l E D and D is HFD, So 

k + t :s; m(n - 1) and m(n - 1) is the number of factors of sn-l. 

So number of factors of sn are m( n - 1) + 1. 

Now 

k + t + 1 :s; m (n' - 1) + 1 :s; mn + 1. 

But as D[X; S] is HFD. T herefore, the number of factors of sn for each 

expression are equal, So m (n - 1) + 1 = mn + 1 is possible only when 

m = 0 =} s = 0 =} w ~ K\D . A contradiction. Hence the proof. 



Chapter 6 

Factorization Properties 
Semigroup Rings 

6.1 Introduction 

• 
In 

In this chapter we generalize the result of [20 , Theorem 2.4], which is stated 

as "if R is Krull with IGl(R)1 ::; 2, then R[X] is HFD" for the semi group ring 

R[X; S], whenever the coefficient ring R to be Krull with IGl(R) I ::; 2. 

We begin by an example of trivial class group of a commutative ring. 

Example 6.1.1 Let D =Z and of-course Q(D) = Q = K (say). Now first we 

find the fractional ideals of D. It is easy to verify that D has the fractional 

ideal of the type S =< X l , X2, ... , Xn >, where Xi E K. Now, let rED such that 

r = lcm(rl' r2, ... , rn) where Xi = sdri, Si, ri E Z, then it is easy to verify that 

rS <;;;; D. It is observe that S =< Xl, X2, .... > is not fra ctional ideal, infact 

there does not exist an rED such that rS <;;;; D. Hence at the end we get that 

Since we know that Fv is the intersection of the family of principal fractional 

ideals that contains F, Therefore, F is contained in a principal fra ctional ideal. 

Hence it is principal fractional by itself. Thus, by {12, page-20B} Fv = F. This 
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means, iJ(D) and p(D) coincides and hence, 

Cl(D) = {p(D)} 

6.2 Construction of trivial class group of a . semlgroup 

Now, we wish to derive some conditions that yields Cl(S) is trivial (where S 

is a semigroup). For this we are establishing the following: 

Proposition 6.2.1 Let S be a cancellative completely integrally closed semi

group. Let I E F(S) and xE G,the quotient group of S, then there exist y E G 

such that (x + I + S)v = (y + S)v if and only if Cl(S) = {p(S)}(trivial class 

group). 

Proof: Suppose for all I E F(S) and x E G, there exist y E G such that 

(x + I + S)v = (y + S)v' We want to show that the class group of S is trivial. 

For this consider, 

Cl(S) - {div(I) + p(S)} 

= {{ div(I + x + S) : x E Gn 

- {{ div(y + G) : y E Gn 

{p(S)}. 

Conversely, let Cl(S) = {p(S)}. Let div(I) + p(S) E Cl(S), then by given 

hypothesis , 

div(I) + p(S) p(S) 

=? {div(x + I + S) : X E G} = {div(x + S) : x E G} 

=? div(x + I + S) = div(y + S) 

=? (x + I + S)v = (y + S)v' 
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Proposition 6.2.2 Let G be a quotient group of a cancellative completely 

integrally closed semigroup S. Suppose x+ (I + S) = S for all x E G and for 

all IE F(S) and U Ii = G for all Ii E F(S) , then Cl(S) = {{ {S}}} . 
i 

Proof: This is to show that Cl(S) = {{ {S}}} or equivalent to show that 

div(x + (I + S )) = {S } 

or equivalent ly, to show that 

x + (I + S ) rv S . Since x + (I + S ) = S but x + (I + S) rv X + (I + S ). 

It means (x + (I + S ))v Sv ' 

For this let 

x + (I + S) = J, 

then 

S: (S : J) 

S : { x' E G : x' + J ~ S} . 

Since x + (I + S) S for all x E G, therefore Jv = S : G. 

Now Sv s: (S : S). 

This implies Sv S : {x E G : x + S ~ S} 

Now as x E I , for some I E F(S ) as UI i = G, therefore 

o + x + S c S, as 0 E S 

This implies Sv 

Hence Jv 

i.e. (x + I + S )v 

Thus x + (I + S) 

S : G, so Jv = SV' 

S. 
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Now, it is remain to show that, 

x + (I + S) ,y., J i- S for all J E F (S) 

Since, (x + (I + S))v S:G 

Now, Jv S: (S : J) 

S : {x E G : x + J ~ S} 

Now we want to show that {x E G : x + J ~ S} i- G. 

As G is a group =} 0 E G and let y E J such that y tJ. S. 

We can do this because J i- S. vVe have 0 + y tJ. s, so, 0 + J ~ S. Hence 

we have 

Hence we have, 

G i- {x E G : x + J ~ S} 

=} Jv i- S: G 

=} x + (I + S) ,y., J. 

div(x + (I + S)) = {S}, 

which gives the required result. 

Remark 6.2.3 (1) Let S be a canc~llative completely integrally closed semi

group. If Cl(S) = {{ {S}}} , then Cl(S) = {p(S)} . Indeed; Let div(I) + p(S) E 

Cl(S). Then by given hypothesis, we have 

div(I) + p(S) 

and similarly p( S) 

{{S} } 

{{S}}. 

Hence, div(I) + p(S) = p(S) =} Cl(S) = {p(S)} . 

(2) Both the propositions 6.2.1 and 6. 2.2 gives the conditions on a can

cellative completely integrally closed semigroup S that make its class group 
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trivial. But in the proposition 6.2.2 the conditions on S are stronger then the 

proposition 6.2.1. 

The following example justify the above proposition 6.2.2. 

Example 6.2.4 Let S = Z a completely integrally closed cancellative m onoid, 

then quotient group G = Z by considering a cancellative subsemigroup C = 2Z 

or C = Z of S. Now S is a fractional ideal of itself. Now let 1 ~ G be 

any proper subset of S. We prove that 1 is not a fractional ideal of S. Now 

of-course 1 satisfies second condition of fractional ideals as given above i. e. 

Vs E S such that s + 1 ~ S. We check it for the second condition s + 1 ~ 1 

in otherwords s + i E 1 for all i E 1 and s E S. Now as 1 is a proper subset of 

Z so there exist s' EZ such that s' t/:. 1. Now if i E 1 then i can be written as 

i = s' + t , 

Jar sume L EZ. llow heTe t + ·i = s' t/:. I . Vv'h ich means I is not a f raction al 

ideal of S . Hence S is the only fractional ideal of itself. So F(S) = { S} and 

hen ce 

div (S) 

D(S) 

D(S) 

D(S) 

{S} => f(S) = {{S}} and 

{div( x + S)/x E G} 

{div(S)} 

{{S} } 

Cl(S) = D(S)/ p(S) = {S} + {{S}} = {{S}} = 0, 

identity ofCl(S). A trivial group. 

Also we can verify that S satisfies the conditions of 6. 2.2. as S is the only 

fractional ideal of S , so x + (I + S) = S for all xES and 1 = S is the 
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only fractional ideal of S. And the second condition is veT'y obvious, that is 

UI = G = S. Hence this example veT'ify the above propositon 6.2.2 and the 

RemaT'k 6.2.3. 

Lemma 6.2.5 Let S be any finitely genemted semigroup. Let s, SO E S, than 

theT'e exist t E S such that s = SO + t. 

Proof:Let S =< SI, S2, 00 ' , Sn > . As s, SO E S, so we can write 

s nIsI + n 2S2 + 00 ' + nnSn for ni E Z+ and 

s ° ° ° '+ 
nIsI + n 2s2 + 00. + nnsn for ni E Z 

As ni and n~ are integers, therefore we can write 

Suppose 

This implies that s = SO + t. Hence the result. 

In the following, we are giving another example, which justify the propo

sition 6.2.2 and Reamark 6.2.3. 

Example 6.2.6 Let S be any abelia"(l, group . HeT'e note that as S is a group 

then it is obvious that S is completely integrally closed and cancellative. Since 

S is an abelian group so S = G, where G is the quotient group of S. 

Since S is a group so 0 E S. Now let I ~ G is any fractional ideal of S. 

Here note that G = S, so I ~ S. We want to prove that x + (I + S) = S for all 

x E G = S and for all I E F(S). Also to prove that U Ii = G for all Ii E F(S) . 
i 

First we ahve to prove x + (I + S) = S for all x E G = S and for all 

I E F(S). Now as xES and I ~ S so this implies x + (I + S) ~ S' . So, S ~ 

x + (I + S) is remain to prove. 



FACTORIZATION PROPERTIES IN SEMIGROUP RINGS 54 

For this let s' E S. Let i E I ~ i E S ~ -i E S. But as I is a fractional 

ideal of S, so S + I ~ I ~ i + (-i) E I ~ 0 E I . Now, we can write 

s' = s' + (0 + 0) Ex + (I + S). This implies S = x + (I + S). 

Now, we prove that U Ii = G, for all Ii E F(S). But here we have I ~ 
i 

S = G and S is of-course the fractional ideal of S means S is the largest or 

maximal fractional ideal of S. This leads us to the required proof. Hence we 

prove that S satisfies both the conditions as specified in the lemma 6.2.5. Now 

to verify that lemma we show that Cl(S) is trivial. 

We first find (S), the set of all divisorial classes. For this let I E F(S) , 

then 

S 

S 

Now, S 

I = {x E G = S : X + I ~ S} 

I = {x' - i : Vi E I and x' E S}. 

(S : 1) = {x' E G = S : x' + (S : 1) ~ S} 

{x' E S : x' + (x - i) E SVi E I and XES} 

{x' + (x - i) : Vx·, xES and i E I} 

{y - i : Vy E Sand i E I}.* 

As I ~ S, this implies S : (S : 1) ~ S. 

(6.1) 

Conversly, let s E S. Since 0 E I, so by (*) s = s - 0 E S : (S : 1) 

~ S ~ S : (S : 1) . Hence 

Iv = S : (S : 1) = S, for all I E F(S). 

This implies J5( S) = {div(I)}. 

C l( S) (S)/ p(S) 

{div(I)} / {div(x + S) : x E G} 

{div(I) + div(x + S) : Vx E G} 

{div(x + (I + S)) : Vx E G} 
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But we know that Iv = S, for all I E F(S) =? Cl(S) is singleton, i.e. it has 

only one divisorial class. So 

Cl(S) 

Also, Cl(S) 

Hence the result. 

{div(x+I +S): x E G}. 

{div(x + S) : x E G} 

{p(S)}, a trivial class group. 

6.3 Half Factorial Semigroup Rings 

In this section we established a criteria for a semigroup ring to be an HFD. 

Following [12, page 192]' let F= ~ Z ei be a free abelian group with free 
iEI 

basis {ei}iEI. For j E I, the mapping 7rj : F ---t Z denoted by 7rj. ~ niei = nj is 
iEI 

called the jth projection map on F. It is, of course, rank-one discrete valuation 

on F. The family {7rihEI is of finite character, and we denote by F+ the krull 

monoid determined by this family; thus F+ = {~niei : ni ~ 0 for each i E I}, 
iEI 

the positive cone of F under the cordinal order. 

Remark 6.3.1 (12, Theorem 15.2) Let H be the group of invertible elements 

of S. The following conditions are equivalent. 

(1) S is a krull monoid. 

(2) S is of the form H EB T, where T is of the form M n F+ for some free 

group F and some subgroup M of F. 

(3) S is of the form H EB T, with T is of the form G n F+ where F is a free 

group and G is the quotient group of T. 

By [12, pge 205], if T is of the form !vI n F+, where F = L Zea is free on 
aEA 

{eoJaEA ' the monoid domain D[T] can be as a regarded as a subring of the 

polynomial ring D[{Xa}aEA] over D. Moreover, D[T] is generated as ring over 
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D by "pure monomials" X~~ X~~ ... X~~, with ei ~ 0, for each i. Conversely, each 

ring D[{m.o}.oEB], where each m.o is a pure monomial in the indeterminates X a, 

is of the from D[U], where U is the submonoid of F+. 

We start by recording [12, Theorem 15.2] as 

Remark 6.3.2 Let D be a Noetherian integrally closed domain and {Xd~l is 

a finite set of indeterminates Xi . Let T be the monoid generated by the pure 

monomials {ma}aEA of Xi, s, then for R = D[{ma}aEA] = D[T], the following 

assertions are equivalent 

(a) T is finitely generated and integrally closed. 

(b) R is Noetherian and integrally closed. 

(c) R is a Kroll domain. 

N ow we are asking the following 

Conjecture 

Is there exist a monoid which is finitely generated by pure monomials 

{ ma} aEA of indeterminates {Xi} i over the Noetherian integrally closed domain 

D? 

The response of said conjecture is in affirmation. For this we pass the 

following stages. Given D is Noetherian, so every ascending chain of ideals 

in D[X1 , X 2 , . .. , Xn] is stationary. So, therefore we consider the terminating 

ascending chain of principal ideals generated by pure monomials; 

Hence obviously there exist a monoid generated by {ma; H=l· 
In the following we are giving, when the class group of semi group ring is 

same as the class group of its coefficient ring. 
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Theorem 6.3.3 Let D be an integral domain and G be a quotient group of a 

cancellative completely integrally closed semigroup S such that x+(I + S) = S 

for all x E G and for all I E F(S) and U Ii = G for all Ii E F(S). If D[X; S] 
i 

is Krull domain, then Cl(D[X; S]) = Cl(D) . 

Proof: Since for a Krull domain D[X; S], we have Cl[D [X; SJ) ~ Cl(D) tfJ 

Cl(S). It is due to [1 2, Corollary 16.8] . Now using above proposition 6.2 .2 and 

Remark 6.2.3 to get Cl[D[X; S]) ~ Cl(D) , because Cl(S) ~ {p( S)} a trivial 

class group. 

Remark 6.3.4 In above theorem if Cl(D[X; S]) ~Z2' then Cl(D) ~Z2' 

Now we are able to say about Half Factorial semigroup rings authentically 

as' , 

Theorem 6.3.5 Let D be a Noetherian integrally closed domain and the inte

gran'!) dosed monoid S which is finitely generated by pure monomials {ma} of 

indeterminates {Xi}i=l over D. Then D[X; S] is HFD {:} Cl(D[X; SD ~Z2 ' 

Proof: By Remark 6.3.2 D[X; S] is krull and due to [12, Corollary 

16.8] Cl(D[X; S]) = Cl(D) tfJ Cl(S). Now, let us suppose D[X; S ] is HFD 

{:} ICl(D [X; S]) I ~ 2, c.f. [20, Theorem 2.4]. This implies Cl(D[X; SD ~Z2' 

Conversly, suppose Cl(D [X;S]) ;......,Z2. Since D[X;S] is krull ,and hence 

HFD, c.f. [20] . 

Remark 6.3.6 (1) The above theorem generalizes the (20, Theorem 2·4/. 

(2) In the case if D[X; S] is HFD, D must be integrally closed, which is 

same as the Coykendall's (9, Theorem 2.2) for the case of polynomial ring. 

(3) Cl(D[X; S ]) ~ G tfJ Cl(S), where G is an abelian group for which D 

is Dedekind domain (10, Theorem 14.10/. If Cl(D[X; S]) ~Z2 and G = {O}, 

then Cl(S) ~Z2' So, D[X; S] will be HFD. 



FACTORIZATION PROPERTIES IN SEMIGROUP RINGS 58 

Example 6.3.7 Since D =Z [.J=5] is Dedekind domain and let S is finitely 

generated by pure monomials {X2, XY, y2}, therefore for Krull domain 

D[X;S] = Z[.J=5]{X2,Xy,y2], Cl(D[X;SJ) =Z/2Zffi Z/2Z {6, Example 

4.7(1)j. Hence by theorem 6. 3.5 D[X; S] is not HFD. 
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