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Preface 

The study of boundary layer flows over stationary or moving surfaces has gained 

much interest in recent years due to its relevance in industrial and technological 

applications. For example heat treatment of material traveling between a feed roll and 

wind-up roll or a conveyer belts, melt spinning process in the extrusion of polymers 

continuous casting, glass blowing, cooling of a large metallic plate in a bath etc. Sakiadis 

[1] started the pioneering work on the boundary layer flows over continuously moving 

flat surfaces. This idea for stretching sheet was considered by Crane [2]. A closed form 

exact analytical solution has been provided in this study. Rajagopal et al. [3] performed 

an analytical investigation of viscoelastic boundary layer flow over a stretching sheet. 

Sankara and Watson [4] discussed the flow of micropolar fluid over a stretching sheet. 

Flow of an electrically conducting power-law fluid over a stretching sheet has been 

investigated by Andersson et al. [5]. Stagnation-point flow of second grade (viscoelastic) 

fluid over a stretching sheet was considered by Mahapatra and Gupta [6]. Numerical 

investigation of mass transfer in the two-dimensional flow of viscoelastic fluid has been 

conducted by Cortell [7]. Recently various investigations concerning the boundary layer 

flow analysis of viscous and non-Newtonian fluids have been reported (see Bachok et al. 

[8], Yacob et al. [9] , Mustafa et al. [10] , Hayat et al. [11]. The mentioned studies above 

are only confined to the boundary layer flows over a linearly stretching sheet. However it 

is evident that in industrial processes the sheet can be stretched in a variety of ways. In 

this regard, few attempts on the boundary layer flow over an exponentially stretching 

sheet have been reported. For instance Magyari and Keller [1 2] examined the 

characteristics of heat and mass transfer in the flow past an exponentially stretching 

surface. Flow and heat transfer over an exponentially stretching sheet with suction has 

been studied by Elbashbeshy [13]. Analytic solutions for flow of viscoelastic fluid over 

an exponentially stretching sheet have been provided by Khan and Sanjayanand [14]. 

Homotopy solutions for flow and heat transfer over an exponentially stretching sheet with 

thermal radiation are obtained by Sajid and Hayat [1 5]. 

Choi [16] experimentally verified that addition of small amount of nanoparticles 

appreciably increases the effective thermal conductivity of the base fluid. These particles 



can be found in the metals such as (AI, Cu), oxides (Alz0 3) , carbides (SiC), nitrides 

(AIN, SiN) or nonmetals (Graphite, carbon nanotubes) contain these nanoparticles . 

Convective heat transfer in the flow of nanofluid past a flat plate has been studied by 

Kuznetsov and Nield [17]. The Cheng-Minkowcz problem for natural convective 

boundary layer flow in a porous medium filled with nanofluid taking into account the 

combined effects of Brownian motion and thermophoretic diffusion of nanoparticles has 

been analyzed by Nield and Kuznetsov [18]. Khan and Pop [19] have done the pioneering 

work on the boundary layer flow of nanofluid over a stretching sheet. Rana and Bhargava 

[20] extended this concept for a nonlinearly stretching sheet. Makinde and Aziz [21] 

numerically examined the flow of nanofluid over a linearly stretching sheet with 

convective boundary conditions. Nadeem and Lee [22] examined the boundary layer flow 

of nanofluid by stretched surface. 

Motivated by the mentioned studies, we organized this dissertation as follows . 

Chapter one includes some basic definitions and equations. 

Chapter two addresses the Boundary layer flow of nanofluid over an exponentially 

stretching surface. Series solution of the developed problem is obtained by homotopic 

approach. Plots are prepared and analyzed. 

Chapter tlu'ee studies the boundary layer flow of an electrically conducting nanofluid 

past an exponentially stretching sheet in the presence of thermal radiation. Moreover the 

viscous dissipation effects are also accounted in the present flow configuration. The 

problem is first modeled and then solved analytically by applying homotopy analysis 

method [23-3 1]. The behaviors of Brownian motion and thermophoretic diffusion of 

nanopatticles have been examined graphically. The dimensionless expressions of reduced 

Nusselt number and reduced Sherwood number have been evaluated and discussed. 
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Chapter 1

Fundamental laws

In this chapter, we describe some basic definitions and fundamental laws related to fluid flow

behavior. Also discussed solution methodology (Homotopy analysis method).

1.1 Newtonian fluids

Fluids obeying the viscosity expression by Newton are called the Newtonian fluids. These fluids

are subjected to a linear connection between the shear rate and shear stress. In mathematical

form we can write the Newton’s law of viscosity as

τyx ∝
du

dy
, (1.1)

τyx = μ
du

dy
. (1.2)

In above expression τxy is the shear stress, u is the velocity in the x-direction, du/dy is the

shear rate and μ is the constant of proportionality which is called the absolute or dynamic

viscosity. Infact dynamics of Newtonian fluids describes the flow phenomena of gases and of

liquids containing small molecules (i.e., molecules with a molecular weight of less than about

1000). Examples of Newtonian fluid include water, sugar solutions, glycerin, light-hydrocarbon

oils and silicone oils.
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1.2 Nonlinear fluids

The fluids which do not satisfy the viscosity expression given by Newton. There is nonlinear

relation between shear stress and shear rate for such fluids. Mathematically one can write

τyx ∝
µ
du

dy

¶n

, n 6= 1, (1.3)

τyx = k

µ
du

dy

¶n

. (1.4)

Here n denotes the flow behavior index and k the consistency index. Eq. (1.4) reduces to the

Newton’s law of viscosity when n = 1 and k = μ. From Eq. (1.4) we have

τyx = η

µ
du

dy

¶
, (1.5)

with the following definition of the apparent viscosity η is

η = k

µ
du

dy

¶n−1
. (1.6)

1.3 Nanofluids

These are the fluids which consist of nanometer-sized particles. The nanoparticles are typi-

cally made of metals, oxides, carbides or carbon nanotubes. Ordinary fluids include water,

ethylene glycol and oil. Traditional fluid with nanoparticle enhances the heat transfer. Novel

attributes of nanofluid made them capable to use in various applications, including engine cool-

ing, domestic refrigerator, chiller, heat exchanger, nuclear reactor coolant and in boiler flue gas

temperature reduction. Nanoparticles effect the heat and mass transfer characteristics. Ther-

mal conductivity and convective heat transfer in nanofluids are greater when compared with

the traditional fluid.
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1.4 Dimensionless numbers

1.4.1 Brownian motion parameter

Brownian motion of nanoparticles is due to their random motion in base fluid which produces

from collision of nanoparticles with base fluid. Such motion is because of size of the nanoparticles

varying the heat transfer properties. In mathematical form we have

Br =
τDB(Cw − C∞)

υ
. (1.7)

In above expression τ denotes the ratio of nanoparticles and fluid heat capacity respectively,

DB represents the Brownian diffusion coefficient, Cw and C∞ the wall and fluid concentration

and υ the kinematic viscosity.

1.4.2 Thermophoresis parameter

Such parameter is positive and negative for cold and hot surface respectively. For hot surface,

thermophoresis moves the nanoparticle concentration boundary layer away from the wall. As a

result, a particle-free layer is formed at the boundary and therefore the nanoparticle distribution

is obtained just outside. In mathematical form one can write

Tr =
τDT (Tw − T∞)

T∞υ
, (1.8)

In which DT is thermophoretic diffusion coefficient and Tw and T∞ denote respectively the wall

and fluid temperatures.

1.4.3 Lewis number

It is defined as follows

Lewis number (L) =
Thermal diffusivity
Mass diffusivity

=
ν

DB
, (1.9)

in which ν depicts the thermal diffusivity and DB the mass diffusivity. Molecular diffusivity

decreases when Lewis number is increased.
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1.4.4 Prandtl number

A number which approximates the ratio of viscous diffusivity to thermal diffusivity. Mathe-

matically one can write

Pr =
Viscous diffusivity

Thermal diffusion rate
=

ν

α
=

νρcp
k

. (1.10)

It should be pointed out that the heat diffuses very quickly relative to the velocity for small

Pr. In Eq. (1.10), υ denotes the kinematic viscosity, cp the specific heat and k the thermal

conductivity.

1.4.5 Eckert number

It yields a ratio of a flow’s kinetic energy and enthalpy. Dissipation is characterized by this

number. We can express it mathematically as follows.

E =
Kinetic energy
Enthalpy

=
u2

cp (Tu − Tl)
, (1.11)

where u is a characteristic flow velocity, cp the constant-pressure specific heat of the flow and

(Tu − Tl) a characteristic temperature difference of the flow.

1.4.6 Hartman number

Ratio of magnetic body force and the viscous force is known as Hartman number i-e

Hr =
Magnetic forces
viscous forces

=

s
B20d

2

μ0ρυλ
. (1.12)

In Eq. (1.12) μ0 represents the magnetic permeability and λ the magnetic diffusivity. Further

B0 represents characteristic magnetic field and d system length scale.
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1.4.7 Reynolds number

It is characterized as ratio of inertial force and viscous force. It is mathematically represented

by the following expression

Reynolds number =
Inertial force
Viscous force

=
ρVL

μ
=
VL

υ
, (1.13)

in which V is the mean velocity of the object relative to the fluid, L denotes the characteristic

length, μ the dynamic viscosity and ρ represents the fluid density.

1.5 Basic equations

1.5.1 Mathematical form of continuity equation

In view of no sources/sinks, one can write

∂ρ

∂t
+∇ · (ρV) = 0, (1.14)

where ρ signifies the density of fluid, t characterizes the time and V denotes the velocity of

fluid. The above equation for an incompressible fluid reduces to

∇ ·V = 0. (1.15)

1.5.2 Mathematical form of linear Momentum

We have

ρ
dV

dt
= −∇p+ μ∇2V. (1.16)

The above mathematical expression includes three forces namely the inertial, pressure and

viscous.

1.5.3 Law of conservation of energy

The energy equation for nanofluid is

7



ρcp
dT

dt
= −div �q + lp∇.

−→
j p, (1.17)

where cp is specific heat of nanofluid, lp is the specific enthalpy for nanoparticles, �q denotes the

energy flux and
−→
j p the nanoparticles diffusion mass flux. Where energy flux �q is

�q = −k∇T + lp
−→
j p. (1.18)

Substituting Eq.(1.17) into Eq. (1.18) we have

ρcp
dT

dt
= −∇.(−k∇T + lp

−→
j p) + lp∇.

−→
j p,

= k∇2T −∇.(lp
−→
j p) + lp∇.

−→
j p,

= k∇2T − lp∇.
−→
j p −

−→
j p.∇lp + lp∇.

−→
j p,

= k∇2T −−→j p.∇lp. (1.19)

Using

∇lp = cp∇T, (1.20)

one obtains from Eq. (1.19)

ρcp
dT

dt
= k∇2T − cp

−→
j p.∇T. (1.21)

in which cp is the nanoparticle specific heat of nanoparticles. Nanoparticles diffusion mass flux
−→
j p (the sum of Brownian and thermophoresis diffusion) is

−→
j p =

−→
j p,B +

−→
j p,T , (1.22)

with
−→
j p,B = −ρpDB∇C, (1.23)
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where the Brownian diffusion coefficient DB in view of Einstein—Stokes equation is

DB =
kBT

3πμdp
, (1.24)

where kB represents the Boltzmann’s constant and dp the diameter of nanoparticles.

−→
j p,T = ρpC�Vτ , (1.25)

�Vτ = −eβμ
ρ

∇T
T

, (1.26)

in which �Vτ represents the thermophoretic velocity and eβ the proportionality factor given by
eβ = 0.26 k

2k + kp
, (1.27)

where k and kp are the fluid and the particle material thermal conductivities respectively. The

thermophoresis diffusion flux can be expressed as follows.

−→
j p,T = −ρpDT

∇T
T

, (1.28)

with

DT =
eβμC
ρ

, (1.29)

as the thermophoretic diffusion coefficient. Diffusion mass flux through Eqs. (1.23) and (1.27)

is

−→
j p = −ρpDB∇C − ρpDT

∇T
T

, (1.30)

and thus Eq. (1.21) becomes

ρcp
dT

dt
= k∇2T + ρpcp

∙
DB∇C.∇T + ρpDT

∇T.∇T
T

¸
. (1.31)
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1.5.4 Law of conservation of concentration

The nanoparticles concentration equation is

∂C

∂t
+
−→
V.∇C = − 1

ρp
∇.−→j p, (1.32)

in which C denotes the concentration, ρp the mass density and
−→
j p the diffusion mass flux.

Making use of Eq. (1.30) into Eq. (1.32) we have

∂C

∂t
+
−→
V.∇C = ∇.

∙
DB∇C +DT

∇T
T

¸
. (1.33)

1.6 Solution methodology

Physical problem in fluid mechanics are always nonlinear. Exact solutions to such problems are

not easy to find. Hence the researchers then rely on the numerical and approximate solutions.

Amongst the various techniques there is one called homotopy analysis method. Series solution

is developed in this method.

1.6.1 Homotopy

Two functions are called homotopic if one function can be deformed continuously into the other

function. Two continuous maps (m1 and m2) from the topological space A into the topological

space B are called homotopic if there exists a continuous map M

M : A× [0, 1]→ B

such that for each a�A

M(a, 0) = m1(a), M(a, 1) = m2(a)

The map M is called the homotopy between m1 and m2.

10



Chapter 2

Flow of nanofluid on an

exponentially stretching sheet

Let us investigate the flow of viscous nanofluid on an exponentially stretching surface. Series

solutions to the developed equations are obtained. Plots of velocity, temperature and nanopar-

ticle concentration are given and discussed for suction/injection parameter λ, Prandtl number

Pr, Lewis number L, Brownian motion parameter Br and thermophoresis parameter Tr. In-

terpretation to various physical quantities of interest is made. The contents of this chapter

provides a review of a paper by Nadeem and Lee [22].

2.1 Mathematical development

We study the incompressible nanofluid flow induced by an exponentially stretching sheet. Sheet

possess stretching property along x−axis with velocity Uw = U0e
x
l at y = 0 and y−axis is normal

to it. The equations which govern the present flow situation are

∂u

∂x
+

∂v

∂y
= 0, (2.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
, (2.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+
(ρc)p
(ρc)f

"
DB

∂C

∂y

∂T

∂y
+

DT

T∞

µ
∂T

∂y

¶2#
, (2.3)
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u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

DT

T∞

∂2T

∂y2
. (2.4)

In above equations ρf represents the base fluid density, T denotes temperature, C the nanopar-

ticle concentration, (ρc)p shows the nanoparticles heat capacity, (ρc)f the fluid heat capacity,

α = k/(ρc)f depicts the fluid thermal diffusivity, DB denotes the Brownian diffusion coefficient

and DT represents the thermophoretic diffusion coefficient.

The subjected conditions are mentioned below.

u = Uw(x) = U0e
x
l , v = −β(x), T = Tw, C = Cw at y = 0,

u = 0, T = T∞, C = C∞ as y →∞, (2.5)

where U0 denotes reference velocity, β(x) the suction and injection velocity with β(x) > 0 and

β(x) < 0 respectively, Tw and T∞ are the respective wall temperature and temperature far

away from the surface, Cw and C∞ are the concentration of wall and ambient fluid.

Using

ς = y

r
U0
2νl

e
x
2l , u = U0e

x
l F 0(ς), v = −

r
νU0
2l

e
x
2l [F (ς) + ςF 0(ς)],

G(ς) =
T − T∞
Tw − T∞

, J(ς) =
C − C∞
Cw − C∞

. (2.6)

Eq. (2.1) is satisfied automatically and Eqs. (2.2)− (2.4) are reduced as follows.

F 000 − 2F 02 + FF 00 = 0, (2.7)

1

Pr
G00 + FG0 +BrG0J 0 + TrG02 = 0, (2.8)

J 00 + LFJ 0 +
Tr

Br
G00 = 0, (2.9)

F (0) = −λ, F 0(0) = 1, G(0) = 1, J(0) = 1,

F 0(∞) = 0, G(∞) = 0, J(∞) = 0, (2.10)

12



where the Prandtl number Pr, Lewis number L, Brownian motion parameter Br and ther-

mophoresis parameter Tr are

Pr =
ν

α
, L =

ν

DB
, Br =

(ρc)pDB (Cw − C∞)

(ρc)f ν
, Tr =

(ρc)pDT (Tw − T∞)

(ρc)f T∞ν
. (2.11)

Local skin-friction Cf , Nusselt number Nu and the Sherwood number Sh are given as

Cf =
τw|y=0
1
2ρU

2
0 e

2x
l

, Nu = − x

(Tw − T∞)

∂T

∂y

¯̄̄̄
y=0

, Sh = − x

(Cw − C∞)

∂C

∂y

¯̄̄̄
y=0

, (2.12)

Cf

r
Rex
2
= F 00(0), NuRe−1/2x

r
2l

x
= −G0(0), ShRe−1/2x

r
2l

x
= −J 0(0), (2.13)

in which Rex = U0e
x
l x/ν denotes the local Reynolds number.

2.2 Homotopy solution

Initial guess and the linear operators Ln(n = 1− 3) are chosen as

F0(ς) = 1− S − e−ς , G0(ς) = e−ς , J0(ς) = e−ς , (2.14)

LF = F 000 − F 0, LG = G00 −G, LJ = J 00 − J. (2.15)

The above operators satisfy the following expressions

LF (A1 +A2e
ς +A3e

−ς) = 0, (2.16)

LG(A4eς +A5e
−ς) = 0, (2.17)

LJ(A6eς +A7e
−ς) = 0, (2.18)

where An (n = 1− 7) are the arbitrary constants.
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2.2.1 Zeroth order deformation equations

The zeroth-order deformation problems through Eq. (2.7)−(2.9) can be constructed as follows:

(1− w)LF
h bF (ς;w)− F0 (ς)

i
= w~FNF

h bF (ς;w)i , (2.19)

bF (0;w) = −S, cF 0 (0;w) = 1, cF 0 (∞;w) = 0, (2.20)

(1− w)LG
h bG (ς;w)−G0 (ς)

i
= w~GNG

h bG (ς;w)i , (2.21)

bG (0;w) = 1, bG (∞;w) = 0, (2.22)

(1− w)LJ
h bJ (ς;w)− J0 (ς)

i
= w~JNJ

h bJ (ς;w)i , (2.23)

bJ (0;w) = 1, bJ (∞;w) = 0, (2.24)

In Eqs. (2.19)− (2.24), ~F , ~G & ~J are the non-zero convergence control parameters, and the

nonlinear operators NF

h bF (ς;w)i, NG

h bG (ς;w)i and NJ

h bJ (ς;w)i of Eqs. (2.7) − (2.9) are
given by

NF

h bF (ς;w)i = ∂3 bF (ς;w)
∂ς3

− 2
Ã
∂ bF (ς;w)

∂ς

!2
+ bF (ς;w) ∂2 bF (ς;w)

∂ς2
, (2.25)

NG

h bG (ς;w)i =
1

Pr

∂2 bG (ς;w)
∂ς2

+ bF (ς;w) ∂ bG (ς;w)
∂ς

+Br
∂ bG (ς;w)

∂ς

∂ bJ (ς;w)
∂ς

+Tr

Ã
∂ bG (ς;w)

∂ς

!2
, (2.26)

NJ

h bJ (ς;w)i = ∂2 bJ (ς;w)
∂ς2

+ L bF (ς;w) ∂ bJ (ς;w)
∂ς

+
Tr

Br

∂2 bG (ς;w)
∂ς2

, (2.27)

When w changes from 0 to 1, then bF (ς, w), bG(ς, w) and bJ(ς, w) change from initial guesses

F0(ς), G0 (ς) and J0 (ς) to the final solutions F (ς), G (ς) and J (ς), respectively. Thus

bF (ς, 0) = F0(ς), bF (ς, 1) = F (ς), (2.28)

bG(ς, 0) = G0(ς), bG(ς, 1) = G(ς), (2.29)
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bJ(ς, 0) = J0(ς), bJ(ς, 1) = J(ς). (2.30)

ExpandingcF (ς, w), bG(ς, w) and bJ(ς, w) in power series of the embedding parameter w as
bF (ς, w) = F0(ς) +

∞X
m=1

Fm(ς)w
m; Fm(ς) =

1

m!

∂m bF (ς, w)
∂wm

¯̄̄̄
¯
w=0

, (2.31)

bG(ς, w) = G0(ς) +
∞X

m=1

Gm(ς)w
m; Gm(ς) =

1

m!

∂m bG(ς, w)
∂wm

¯̄̄̄
¯
w=0

, (2.32)

bJ(ς, w) = J0(ς) +
∞X

m=1

Jm(ς)w
m; Jm(ς) =

1

m!

∂m bJ(ς, w)
∂wm

¯̄̄̄
¯
w=0

. (2.33)

We select the parameters ~F , ~G and ~J such that the Taylor series expansion of bF (ς, w),bG(ς, w) and bJ(ς, w) converge at w = 1 then by Eqs. (2.28)− (2.30), we get
F (ς) = F0 (ς) +

∞X
m=1

Fm (ς) , (2.34)

G (ς) = G0 (ς) +
∞X

m=1

Gm (ς) , (2.35)

J (ς) = J0 (ς) +
∞X

m=1

Jm (ς) . (2.36)

2.2.2 Problems at mth-order deformation

Taking the derivative of zeroth order deformation Eqs. (2.19)− (2.24) m-times with respect to

w and then setting w = 0, one has

LF [Fm (ς)− χmFm−1 (ς)] = ~FRF
m (ς) , (2.37)

Fm(0) = F 0m(0) = F 0m(∞) = 0, (2.38)

LG [Gm (ς)− χmGm−1 (ς)] = ~GRG
m (ς) , (2.39)

Gm(0) = Gm(∞) = 0, (2.40)

LJ [Jm (ς)− χmJm−1 (ς)] = ~JRJ
m (ς) , (2.41)
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Jm(0) = Jm(∞) = 0, (2.42)

RF
m (ς) =

"
F 000m−1 − 2

m−1X
i=0

F 0m−1−iF
0
i +

m−1X
i=0

Fm−1−iF
00
i

#
, (2.43)

RG
m (ς) =

1

Pr
G00m−1 +

m−1X
i=0

£
Fm−1−iG

0
i +BrG0m−1−iJ

0
i + TrG0m−1−iG

0
i

¤
, (2.44)

RJ
m (ς) =

"
J 00m−1 + L

m−1X
i=0

Fm−1−iJ
0
i +

Tr

Br
G00m−1

#
, (2.45)

χm =

⎧⎨⎩ 0, m ≤ 1

1, m > 1
. (2.46)

The general solutions can be written as

Fm(ς) = F ∗m(ς) +A1 +A2e
ς +A3e

−ς , (2.47)

Gm(ς) = G∗m(ς) +A4e
ς +A5e

−ς , (2.48)

Jm(ς) = J∗m(ς) +A6e
ς +A7e

−ς , (2.49)

with F ∗m, G
∗
m and J∗m as the particular solutions and the constants An (n = 1− 7) after using

the boundary conditions (2.38), (2.40) and (2.42) are

A1 = −F ∗m(0)−A3, A2 = A4 = A6 = 0, A3 =
∂F ∗m(ς)

∂ς

¯̄̄̄
ς=0

,

A5 = −G∗m(0), A7 = −J∗m(0). (2.50)

2.3 Convergence of HAM solution

Now the solution of Eqs. (2.7) − (2.9) along with the boundary conditions (2.10) is com-

puted using homotopy analysis method. The values of non-zero auxiliary parameters }F ,

}G and }J have a key role in the convergence of series expressions The }-curves are plot-

ted in the Figs. (2.1, 2.2 and 2.3) for velocity, temperature and concentration profiles. We

have plotted the convergence region of velocity, temperature and concentration for various
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values of suction/injection parameter λ. The range for admissible values of auxiliary para-

meters for λ = 0.2 are −1.25 ≤ }F ≤ −0.25, −1.3 ≤ }G ≤ −0.6, −1.25 ≤ }J ≤ −0.55, for

λ = 0.5 are −1.2 ≤ }F ≤ −0.2, −1.2 ≤ }G ≤ −0.5, −1.45 ≤ }J ≤ −0.5 and for λ = 1 are

−1.15 ≤ }F ≤ −0.2, −1.25 ≤ }G ≤ −0.55, −1.2 ≤ }J ≤ −0.6.

-1.5 -1 -0.5 0
ÑF

-2.5

-2

-1.5

-1

-0.5

0
F

''H0
L

Pr =L=2.0,Br =Tr =0.5

l = 1
l = 0.5
l = 0.2

Fig. 2.1: }−curves for velocity F.
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0.5

1

1.5

G
'H0

L

Pr =L=2.0, Br =Tr =0.5

l =1
l =0.5
l =0.2

Fig. 2.2: }−curves for temperature profile G.
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Fig. 2.3: }−curves for concentration profile J .

Table 2.1. Convergence of HAM solutions through different order of approximations when

Pr = 2.0 = L, λ = 0.2, Br = 0.5 and Tr = 0.5.

Order of approximations −F 00(0) −G0(0) −J 0(0)

1 1.18667 0.586667 0.306667

5 1.19315 0.312312 0.509637

10 1.19300 0.268941 0.558798

15 1.19299 0.263518 0.564679

20 1.19298 0.262803 0.565410

25 1.19298 0.262687 0.565497

30 1.19298 0.262666 0.565501

35 1.19298 0.262662 0.565502

40 1.19298 0.262661 0.565504

46 1.19298 0.262661 0.565504

50 1.19298 0.262661 0.565504

60 1.19298 0.262661 0.565504
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2.4 Discussion

The velocity F 0 for different values of suction injection parameter λ against ς is shown in Fig.

2.4. It is observed that velocity profile and boundary layer increase when λ increases. The

temperature profile G for Prandtl number Pr, Brownian motion parameter Br, thermophoresis

parameter Tr and Lewis number L is shown in the Figs. (2.5)− (2.8). In Fig. 2.5, effect of Pr

on temperature profile is shown. When Pr increases, the temperature profile decreases. The

variation of Br on G is shown in Fig. 2.6. By increasing Br, the temperature profile increases.

Influence of Tr on G is depicted in Fig. 2.7. We observe that temperature profile and thermal

boundary layer thickness increase when Tr is increased. There is a decrease in G by increasing

L (Fig. 2.8). The nanoparticle concentration J for various values of Pr, Br, Tr and L is plotted

in the Figs. (2.9) − (2.12). Effects of Pr on J are shown in Fig. 2.9. It is depicted that

concentration profile increases when there is an increase in Pr. It is observed from Fig. 2.10

that when Br increases, J and boundary layer decreases. However J and thermal boundary

layer thickness increase when Tr is increased (Fig. 2.11). Also J and thermal boundary layer

thickness decrease by increasing L (Fig. 2.12).

Figs. (2.13)− (2.16) show the change in dimensionless heat and mass transfer rates versus

Tr. It is noted from Fig. 2.13 and 2.14, that the dimensionless heat transfer rate decreases when

there is an increase in Pr and L. Effects of Pr and L on the dimensionless concentration rates

are displayed in the Figs. 2.15 and 2.16. It is observed from these Figs. that the dimensionless

concentration rates increase when Pr and L are increased.
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Fig. 2.13: Effects of Br and Pr on dimensionless heat transfer rates.
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Fig. 2.14: Effects of Br and L on dimensionless heat transfer rates.
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Fig. 2.15: Effects of Br and Pr on dimensionless concentration rates.
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Fig. 2.16: Effects of Br and L on dimensionless concentration rates.

28



2.5 Conclusions

Nanofluid flow on an exponential stretching surface with suction and injection is discussed. The

main points can be listed as follows.

• The temperature profile G decreases by increasing Prandtl number Pr and Lewis number

L.

• Temperature profile increases by increasing Brownian motion parameter Br and ther-

mophoresis parameter Tr.

• An increase in Prandtl number Pr and thermophoresis parameter Tr increases the con-

centration profile J .

• Effects of Brownian motion parameter Br and Lewis number L on the concentration

profile are quite opposite to that of Pr and Tr.

• Reduced Nusselt number is a decreasing function of Br, Pr and L while the reduced

sherwood number is an increasing function of these parameters.
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Chapter 3

MHD flow of nanofluid with viscous

dissipation and radiation effects

This study looks at the effects of magnetohydrodynamics (MHD), thermal radiation and viscous

dissipation in the flow analysis of previous chapter. The model used for the nanoparticle includes

the effects of Brownian motion and thermophoresis. Homotopy analysis method is applied to

determine the convergent series expressions of velocity , temperature and nanoparticle fraction.

Graphs are plotted to provide the physical interpretation of different parameters.

3.1 Mathematical development

We consider the flow of nanofluid bounded by an exponentially stretching sheet . Surface is

stretched along x−axis and y-axis is taken normal to x−axis. Along y-axis a uniform magnetic

field of strength B0 is applied. It is assumed that the induced magnetic field and the electric

field effects are negligible. Tw and T∞ are wall temperature and fluid temperature and Cw and

C∞ are wall concentration and concentration far away from the surface. The equations which

govern the present flow situation with radiation and viscous dissipation effects are

∂u

∂x
+

∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB20u

ρf
, (3.2)
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u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ τ

(
DB

∂C

∂y

∂T

∂y
+

DT

T∞

µ
∂T

∂y

¶2)
+

μ

(ρc)f
(
∂u

∂y
)2 +

16σ∗T 3∞
3k∗(ρc)f

∂2T

∂y2
, (3.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

DT

T∞

∂2T

∂y2
, (3.4)

where u and v represents the velocity components along the x− and y− directions respectively,

ρf denotes the fluid density, μ dynamic viscosity, ν the kinematic viscosity, p denotes the

pressure, (ρc)f the fluid heat capacity, τ = (ρc)p/(ρc)f the ratio parameter of nanoparticles

heat capacity and fluid heat capacity with ρ being the density, DB denotes the Brownian

diffusion coefficient, DT the thermophoretic diffusion coefficient, α the thermal diffusivity, σ

the electrical conductivity of the base fluid, k∗ represents the mean absorption coefficient and

σ∗ the Stefan-Boltzmann constant.

The subjected conditions are given as

u = U0e
x
l , v = 0, T = Tw, C = Cw at y = 0,

u = v = 0, T → T∞, C → C∞ as y →∞ (3.5)

in which U0 represents the reference velocity and l is a constant. Using the transformations

ς = y

r
U0
2νl

e
x
2l , u = U0e

x
l F 0(ς), v = −

r
νU0
2l

e
x
2l
£
F (ς) + ςF 0(ς)

¤
,

G(ς) =
T − T∞
Tw − T∞

, J(ς) =
C − C∞
Cw − C∞

, (3.6)

equation (3.1) is satisfied automatically and Eqs. (3.2)− (3.4) take the following form

F 000 − 2F 02 + FF 00 −HrF 0 = 0, (3.7)

1

Pr
(1 +

4

3
R)G00 + FG0 +BrJ 0G0 + TrG02 +EF 002 = 0, (3.8)

J 00 + LFJ 0 +
Tr

Br
G00 = 0, (3.9)
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with

F (0) = 0, F 0(0) = 1, G(0) = 1, J(0) = 1,

F 0(∞) = 0, G(∞) = 0, J(∞) = 0, (3.10)

where prime indicates the differentiation with respect to ς. Moreover the Prandtl number Pr,

the Eckert number E, the radiation parameter R, the Lewis number L, the Hartman number

Hr, the Brownian motion parameter Br and the thermophoresis parameter Tr are defined as

Pr =
ν

α
, E =

U20 e
2x
l

cf (Tw − T∞)
, R =

4σ∗T 3∞
k∗k

, L =
ν

DB
,

Hr =
2σB20 l

ρfU0
e−

x
l , Br =

(ρc)pDB (Cw − C∞)

(ρc)f ν
, Tr =

(ρc)pDT (Tw − T∞)

(ρc)f T∞ν
. (3.11)

The local skin friction Cf , Nusselt number Nu and the Sherwood number Sh are

Cf =
τw|y=0
1
2ρU

2
0 e

2x
l

, Nu = − x

(Tw − T∞)

∂T

∂y

¯̄̄̄
y=0

, Sh = − x

D (Cw − C∞)

∂C

∂y

¯̄̄̄
y=0

, (3.12)

Cf

r
Rex
2
= F 00(0), NuRe−1/2x

r
2l

x
= −G0(0), ShRe−1/2x

r
2l

x
= −J 0(0), (3.13)

where Rex = U0e
x
l x/ν is the local Reynolds number.

3.2 Homotopy solution

Initial approximations and auxiliary linear operators are defined as

F0(ς) = 1− e−ς , G0(ς) = e−ς , J0(ς) = e−ς , (3.14)

LF = F 000 − F 0, LG = G00 −G,LJ = J 00 − J. (3.15)

The above operators satisfy

LF (A1 +A2e
ς +A3e

−ς) = 0, (3.16)

LG(A4eς +A5e
−ς) = 0, (3.17)
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LJ(A6eς +A7e
−ς) = 0, (3.18)

where An (n = 1− 7) are the arbitrary constants.

3.2.1 Zeroth order deformation equations

Let w ∈ [0, 1] denotes an embedding parameter, ~F , ~G and ~J are the non-zero convergence

control parameters then we construct the following zeroth-order deformation problems:

(1− w)LF
h bF (ς;w)− F0 (w)

i
= w~FNF

h bF (ς;w)i , (3.19)

bF (0;w) = 0, cF 0 (0;w) = 1, cF 0 (∞;w) = 0, (3.20)

(1−w)LG
h bG (ς;w)−G0 (w)

i
= w~GNG

h bG (ς;w)i , (3.21)

bG (0;w) = 1, bG (∞;w) = 0, (3.22)

(1− w)LJ
h bJ (ς;w)− J0 (w)

i
= w~JNJ

h bJ (ς;w)i , (3.23)

bJ (0;w) = 1, bJ (∞;w) = 0, (3.24)

in which prime indicates differentiation with respect to ς and the non-linear operatorNF

h bF (ς;w)i,
NG

h bG (ς;w)i and NJ

h bJ (ς;w)i of Eqs. (3.7)− (3.9) are

NF

h bF (ς;w)i = ∂3 bF (ς;w)
∂ς3

− 2
Ã
∂ bF (ς;w)

∂ς

!2
+ bF (ς;w) ∂2 bF (ς;w)

∂ς2
−Hr

∂ bF (ς;w)
∂ς

, (3.25)

NG

h bG (ς;w)i =
1

Pr

µ
1 +

4

3
R

¶
∂2 bG (ς;w)

∂ς2
+ bF (ς;w) ∂ bG (ς;w)

∂ς
+Br

∂ bG (ς;w)
∂ς

∂ bJ (ς;w)
∂ς

+Tr

Ã
∂ bG (ς;w)

∂ς

!2
+E

Ã
∂2 bF (ς;w)

∂ς2

!2
, (3.26)

NJ

h bJ (ς;w)i = ∂2 bJ (ς;w)
∂ς2

+ L bF (ς;w) ∂ bJ (ς;w)
∂ς

+
Tr

Br

∂2 bG (ς;w)
∂ς2

, (3.27)
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As w increases from 0 to 1, bF (ς, w), bG(ς, w) and bJ(ς, w) varies continuously from initial guesses
F0(ς), G0 (ς) and J0 (ς) to the final solution F (ς), G (ς) and J (ς) . For w = 0 and w = 1, one

respectively has bF (ς, 0) = F0(ς), bF (ς, 1) = F (ς), (3.28)

bG(ς, 0) = G0(ς), bG(ς, 1) = G(ς), (3.29)

bJ(ς, 0) = J0(ς), bJ(ς, 1) = J(ς). (3.30)

Expanding bF (ς, w), bG(ς, w) and bJ(ς, w) in power series of the embedding parameter w as:
bF (ς, w) = F0(ς) +

∞X
m=1

Fm(ς)w
m; Fm(ς) =

1

m!

∂m bF (ς, w)
∂wm

¯̄̄̄
¯
w=0

, (3.31)

bG(ς, w) = G0(ς) +
∞X

m=1

Gm(ς)w
m; Gm(ς) =

1

m!

∂m bG(ς, w)
∂wm

¯̄̄̄
¯
w=0

, (3.32)

bJ(ς, w) = J0(ς) +
∞X

m=1

Jm(ς)w
m; Jm(ς) =

1

m!

∂m bJ(ς, w)
∂wm

¯̄̄̄
¯
w=0

, (3.33)

where the convergence of series (3.31) − (3.33) depends upon ~F , ~G and ~J . We select the

parameters ~F , ~G and ~J such that such that the series converge at w = 1, then by Eqs.

(3.28)− (3.30), we get

F (ς) = F0 (ς) +
∞X

m=1

Fm (ς) , (3.34)

G (η) = G0 (ς) +
∞X

m=1

Gm (ς) , (3.35)

J (η) = J0 (ς) +
∞X

m=1

Jm (ς) . (3.36)

3.2.2 Problems at mth-order deformation

Taking the derivative of zeroth order deformation Eqs. (3.19)− (3.24) m times with respect to

w then setting w = 0, we have

LF [Fm (ς)− χmFm−1 (ς)] = ~FRF
m (ς) , (3.37)

34



Fm(0) = F 0m(0) = F 0m(∞) = 0, (3.38)

LG [Gm (ς)− χmGm−1 (ς)] = ~GRG
m (ς) , (3.39)

Gm(0) = Gm(∞) = 0, (3.40)

LJ [Jm (ς)− χmJm−1 (ς)] = ~JRJ
m (ς) , (3.41)

Jm(0) = Jm(∞) = 0, (3.42)

in which

RF
m (ς) =

"
F 000m−1 − 2

m−1X
i=0

F 0m−1−iF
0
i +

m−1X
i=0

Fm−1−iF
00
i −HrF 0m−1

#
, (3.43)

RG
m (ς) =

1

Pr

µ
1 +

4

3
R

¶
G00m−1+

m−1X
i=0

£
Fm−1−iG

0
i +BrG0m−1−iJ

0
i + TrG0m−1−iG

0
i +EF 00m−1−iF

00
i

¤
,

(3.44)

RJ
m (ς) =

"
J 00m−1 + L

m−1X
i=0

Fm−1−iJ
0
i +

Tr

Br
G00m−1

#
, (3.45)

χm =

⎧⎨⎩ 0, m ≤ 1

1, m > 1
, (3.46)

and the general solutions are

Fm(ς) = F ∗m(ς) +A1 +A2e
ς +A3e

−ς , (3.47)

Gm(ς) = G∗m(ς) +A4e
ς +A5e

−ς , (3.48)

Jm(ς) = J∗m(ς) +A6e
ς +A7e

−ς , (3.49)

where F ∗m, G
∗
m and J

∗
m are the particular solutions and the constants An (n = 1−7) along with

the boundary conditions (3.38), (3.40) and (3.42) are

A1 = −F ∗m(0)−A3, A2 = A4 = A6 = 0, A3 =
∂F ∗m(ς)

∂ς

¯̄̄̄
ς=0

,

A5 = −G∗m(0), A7 = −J∗m(0). (3.50)
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3.3 Convergence of HAM solution

Now the solution of Eqs. (3.7) − (3.9) with the boundary conditions (3.10) is computed using

homotopy analysis method. We choose auxiliary parameters }F , }G and }J for the functions

F , G and J respectively. The values of non-zero auxiliary parameters have a key role in the

convergence of series expression. The }-curves are plotted in Figs. (3.1 and 3.2). The range of

admissible values of } for F is −1.05 ≤ }F ≤ −0.35, for G is −1.2 ≤ }G ≤ −0.6 and similarly

for J is −1.1 ≤ }J ≤ −0.8. It is also evident from Figs. (3.1 and 3.2) that series solutions

converge in the whole region of ς (0 < ς <∞) for }F , }G and }J = −0.9.

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0
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-1.2

-1.1

-1

F
''H0

L

Pr =L=1.0, E=Br =0.5, R=Hr =Tr =0.1

Fig. 3.1: }−curves for F.
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Fig. 3.2: }−curves for G and J.

Table 3.1. Convergence of HAM solutions for different order of approximations when

Pr = 1.0 = L, E = Br = 0.5 and R = Tr = Hr = 0.1.

Order of approximations −F 00(0) −G0(0) −J 0(0)

1 1.34500 0.310000 0.610000

5 1.32244 0.173634 0.550958

10 1.32091 0.155242 0.536540

15 1.32103 0.152030 0.533693

20 1.32101 0.151226 0.532938

25 1.32101 0.151002 0.532715

30 1.32101 0.150934 0.532645

35 1.32101 0.150913 0.532622

40 1.32101 0.150906 0.532614

46 1.32101 0.150903 0.532611

50 1.32101 0.150903 0.532611

60 1.32101 0.150903 0.532611
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3.4 Results and discussion

Here Figs. (3.3 − 3.17) are plotted for the effects of various parameters on the velocity, tem-

perature and mass fraction fields. Fig. 3.3 displays the effect of Hartman number Hr on F 0.

The velocity field F 0 is found to decrease when Hr increases. Effects of Prandtl number Pr,

Hartman number Hr, Eckert number E, radiation parameter R, Brownian motion parameter

Br, thermophoresis parameter Tr and Lewis number L on the temperature profile G and the

mass fraction field J are shown in the Figs. (3.4 − 3.17), respectively. It is noted that by in-

creasing the Prandtl number, decreases the temperature profile G and increases the boundary

layer thickness. Infact the thermal diffusivity decreases by increasing Pr and thus the heat dif-

fused away slowly from the heated surface. It is found that G increases when Hr increases. The

influence of E on the temperature profile G is shown in Fig. 3.6. It is noted that G and thermal

boundary layer increases by increasing E. The effect of R on G and thermal boundary layer

thickness is same as that of E. Further, the temperature profile G and thermal boundary layer

increase when Br and Tr are increased. Also the temperature profile G and thermal boundary

layer thickness decrease when the Lewis number L increases. This is due to the fact that an

increase in the L reduces the molecular diffusivity. It is observed that the mass fraction field J

and the associated boundary layer increase when the Prandtl number Pr and thermophoresis

parameter Tr increases, whereas it decrease when Hartman number Hr, Eckert number E,

radiation number R, Brownian motion parameter Br and Lewis number L are increased.

Figs. (3.18− 3.21) illustrates the change in dimensionless heat and mass transfer rates vs

Tr parameter. Here the effects of Pr, L, and Br on the dimensionless heat and mass transfer

rates are shown for the same Hr, E and R. Obviously the dimensionless heat transfer rates

decrease with an increase in Pr number. Fig. 3.19 shows that the dimensionless heat transfer

rates decrease by increasing Br for small L number. However, for larger value of L number,

the dimensionless heat transfer rates increase with an increase in Br. It is clear from Fig. 3.20

that the dimensionless mass transfer rates increase with the increase in Pr. The increase in

dimensionless mass transfer rates is monotonic for larger L.
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Fig. 3.18: Effects of Br and Pr on dimensionless heat transfer rates.
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Fig. 3.19: Effects of Br and L on dimensionless heat transfer rates.
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Fig. 3.20: Effects of Br and Pr on dimensionless concentration rates.
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Fig. 3.21: Effects of Br and L on dimensionless concentration rates.
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3.5 Concluding remarks

Magnetohydrodynamic (MHD) nanofluid flow on an exponentially stretching sheet is discussed.

Few interesting findings of the present study are as follows:

• The velocity profile F 0 decreases by increasing Hartman number Hr.

• Increase in the Prandtl number Pr and the Lewis number L decreases the temperature

and boundary layer thickness.

• Effects of the Hartman number Hr, the Eckert number E, the radiation parameter R, the

Brownian motion parameter Br and thermophoresis parameter Tr on the temperature

and thermal boundary layer thickness are quite opposite to that of Pr and L.

• An increase in the Hartman numberHr, Eckert number E, radiation parameterR, Brown-

ian motion parameter Br, and Lewis number L reduces the mass fraction field J and the

boundary layer thickness. By increasing Prandtl number Pr and thermophoresis parame-

ter Tr, J increases.

• Reduced Nusselt number is a decreasing function of Pr, an increasing function of lower L

and decreasing function of higher L while the reduced Sherwood number is an increasing

function.
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