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Preface 

Peristalsis is a distinct pattern of smooth muscle contractions that mIX the food 

material properly through the esophagus and intestines. Literature on peristalsis is quite 

extensive i.e. with the initiative work of Latham [1]. He discussed the fluid motion in 

peristaltic pump. After the Latham, Jaffrin and Shapiro [2] makes the developments on 

mathematical modeling and experimental fluid mechanics of peristaltic flows. They make 

the analysis under the assumption of long wave length and low Reynolds number 

approximation. Peristaltic motion in both mechanical and physiological situation has 

been discussed by the researchers of last few decades [3-8]. Recently peristaltic flow has 

gained many attentions of the researchers due to its wide range of applications in 

physiology and industry see Refs [9-13]. 

Nano fluid is basically the liquid suspension that contains very small particles of 

diameter less than 100nm. These particles can be found in the metals such as, oxides, 

carbides, nitrides or nonmetals (Graphite, carbon nanotubes). The pioneering work for the 

Nano fluids was reported by Choi [14]. He observed that the small amount of these 

nanoparticles significantly increases the thermal conductivity of the base fluid. 

Buongiorno [15] present convective transpOli in Nano fluids. He proposed a 

nonhomogeneous equilibrium model which predicts that increase in the thermal 

conductivity occurs due to the presence of the Brownian motion and thermophoretic 

parameters which are basically the diffusion of nanoparticles. Kuznetsov and Nield [16] 

reported the natural convective boundary layer flow of N ano fluid past a rigid flat plate. 

Sadik and Pramuanjaroenkij [17] discussed the review of convective heat transfer 

enhancement with Nano fluids. Two-dimensional boundary layer flow ofNano fluid over 

an impermeable stretching sheet was analyzed by Khan and Pop [18]. Heat transfer 

enhancement by using nanofluids in forced convection flows was visualized by Marga et 

al. [19]. Rana and Bhargava [20] extended the work of Khan and Pop for nonlinearly 

stretching sheet. The influence of endoscope on the peristaltic transport of nanofluid has 



been examined by Akbar and Nadeem [21 ]. Peristaltic flow of a Nano fluid in a non­

uniform tube has been addressed by Akbar et al. [22]. 

The dissertation is arranged as follows. In chapter one, we have presented the Peristaltic 

movement of hyperbolic tangent fluid under the effects of heat and mass transfer in an 

annulus. The two dimensional equations of tangent hyperbolic fluid are solved by using 

the assumptions of low Reynolds number and long wave length and then find their 

solutions analytically. 

Chapter two is devoted to the study ofNano fluid model. The solutions of the simplified 

problem are found analytically with the help of Adomian decomposition method and 

Homotopy perturbation method. Finally the physically feature have been presented. 
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Chapter 1

Peristaltic movement of hyperbolic

tangent �uid under the e¤ects of

heat and mass transfer in an annulus

1.1 Introduction

This chapter describes the þeristaltic motion of a hyþerbolic tangent �uid in an annulus in the

þresence of heat and mass transfer. Equations of tangent hyþerbolic �uid are modelled and

simpli�ed by constructing the suppositions of low Reynolds number as well as long wave length.

Analytical result is available for velocity pro�le whereas exact results are calculated for heat

and concentration �eld. Solutions are presented through graphs. The terms for concentration

�eld, temperature; þressure gradient and þressure rise are drawn for di¤erent �xed þarameters.

This is the review of paper by Akbar et al [21] and the essential details missing in the paper

are incorporated.

1.2 Mathematical formulation

Equations of mass and momentum for an incomþressible �uid, are speci�ed as [21]

div ~A = 0; (1.1)
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�
�d~A
�dȩt = div ȩS+ �f ; (1.2)

where ~A; �; f ; ȩS, gives the velocity vector; density, speci�c body force and Cauchy stress
tensor respectively. Governing equations for hyperbolic tangent �uid is de�ned as

ȩS = �eÞI+ ~� ; (1.3)

~� = [�1 + (�0+�1) tanh(�e_
)m] e_
i]; (1.4)

in which ~� , �0; �1; m; �; denotes the extra stress tensor; zero shear rate viscosity, in�nite

rate of shear viscosity; power law index, and time constant respectively and e_
 now de�ned as
e_
 =s1

2

P
i

P
j
_
ij _
ji =

r
1

2
�; (1.5)

where

� = trace(grad ~A+ (grad ~A)T )2; (1.6)

in which � is the second invariant strain tensor. We study Eq. (1:4) in the case for �1 = 0 and

�e_
 �1: The element of extra stress tensor so inscribed as
~� = �0[(�

e_
)m] e_
i = �0[(1 + �e_
 � 1)m] _
i = �0[1 +m(�e_
 � 1)] e_
i; (1.7)

e_
i = L+ LT : (1.8)
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1.3 Formulation of the Þroblem

Considering the þeristaltic transþort in the pro�le of an incomþressible hyþerbolic tangent

�uid in an annulus. Inward cylinder is rigid; and kept at temþerature ȩT0 however outward
cylinder takes a sinusoidal wave travelling down its walls and kept at temþerature ȩT1. Wall
surface geometry is expressed as

eŖ1 = H1; (1.9)

eŖ2 = H2 + E sin 2�� (eZ̧� �sȩt); (1.10)

where H1, H2; �; E; �s; is the radius of the inward and outward cylinders, wavelength, wave

amplitude; and wave speed respectively. For an annulus; velocity, temþerature, and concentra-

tion �elds takes the form
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~A = (eU̧(ȩt; eŖ; eZ̧); 0;fW̧(ȩt; eŖ; eZ̧));ȩT = ȩT(ȩt; eŖ; eZ̧); eÇ = eÇ(ȩt; eŖ; eZ̧): (1.11)

For an incompressible hyperbolic tangent �uid model the leading equations in the �xed

frame are given as

@eU̧
@eŖ + eU̧eŖ + @fW̧@eZ̧ = 0; (1.12)

�(
@eU̧
@ȩt + eU̧@eU̧@eŖ +fW̧@eU̧

@eZ̧ ) = � @eÞ@eŖ + 1eŖ @(
eR~� eŖeŖ)
@eŖ +

@(~� eŖeZ̧)
@eZ̧ �

~� ~�~�eŖ ; (1.13)

�(
@fW̧
@ȩt + eU̧@fW̧@eŖ +fW̧@fW̧

@eZ̧ ) = �@
eÞ
@eZ̧ + 1eŖ @(eŖe� eReZ)@eŖ +

@(~� eZ̧eZ̧)
@eZ̧ + �g� ȩT(ȩT� ȩT1)

+�g�eÇ(eÇ� eÇ1); (1.14)

Energy and mass concentration equations are de�ned as

�cp(
@ ȩT
@ȩt + eU̧@

ȩT
@eŖ +fW̧@ ȩT

@eZ̧ ) = �(@
2 ȩT
@eŖ2 + 1eŖ @

ȩT
@eŖ + @

2 ȩT
@eZ̧2 ) +Q0; (1.15)

(
@eÇ
@ȩt + eU̧@eÇ@eŖ +fW̧@eÇ

@eZ̧ ) = d(@
2eÇ
@eŖ2 + 1eŖ @eÇ@eŖ + @

2eÇ
@eZ̧2 ) +

dkȩtȩtm (@
2 ȩT
@eŖ2 + 1eŖ @

ȩT
@eŖ + @

2 ȩT
@eZ̧2 ): (1.16)

In the above equations eU̧; fW̧ are the corresponding velocity comþonents in radial as well

in axial directions resþectively. ȩT is temþerature; � denotes the density; whereas at constant
þressure cp gives the speci�c heat. eÇ is the concentration of �uid; � denotes the thermal

conductivity; ȩtm is medium temperature; d denotes the mass di¤usivity coe¢ cient and thermal-
di¤usion ratio is denoted by kȩt. In the �xed coordinates (eŖ; eZ̧) the �ow among cylinders is

unsteady. It converts steady in a wave structure (ȩr; ȩz) moving with similar speed as the wave
6



movements in the eZ̧ direction. Both structures are connected through the following transfor-
mations.

ȩr = eŖ; ȩz = eZ̧� �sȩt; ȩu = eU̧; ȩw =fW̧� �s; (1.17)

where ȩu; f̧w are the velocity components in the wave structure. Suitable boundary limits in

wave structures stand

ȩw = ��s; at ȩr = ei1; ȩw = ��s at ȩr = ei2 = H2 + E sin 2�
�
(ȩz); (1.18)

ȩT = ȩT0 at ȩr = ei1; ȩT = ȩT1 at ȩr = ei2; (1.19)

eÇ = eÇ0 at ȩr = ei1; eÇ = eÇ1 at ȩr = ei2: (1.20)

Introducing the dimensionless parameters

Ŗ =
eŖ
H2
; r =

ȩr
H2
; Z̧ =

eZ̧
�
; z =

ȩz
�
; W̧ =

fW̧
�s
; w =

ȩw
�s
; U̧ =

�eU̧
H2�s

; u̧ =
�ȩu
H2�s

;

Þ =
H2
2
eÞ

�s��
; � =

ȩT� ȩT1ȩT0 � ȩT1 ; ţ =
�sȩt
�
; �̂ =

H2
�
; Ry =

��sH2
�

; � =
eÇ� eÇ1eÇ0 � eÇ1 ;

i1 =
ei1
H2

=
H1
H2

=2; i2 =
ei2
H2

= 1 + � sin 2�z; Ş =
H2
ȩS

�s�
; Hy =

��s

H2
; Cs =

�

d�
;

gr =
�g� ȩTH2

2 (
ȩT0 � ȩT1)
��s

; br =
�g�eÇH2

2 (
eÇ0 � eÇ1)
��s

; _
 =
H2
�s
_
; � =

E

H2
;

B =
Q0H

2
2

k(ȩT0 � ȩT1) ; Rs =
�dkȩt(ȩT0 � ȩT1)
�ȩtm(eÇ0 � eÇ1) ; Pr = �cp

k
; � =

~�H2
��s

: (1.21)

In above equations br; Cs; Rs; gr; Hy; ��1 is the local concentration Grashof number,

Schmidt number, Soret number; local temperature Grashof number; Weissenberg number and

amplitude ratio respectively. Using Eqs. (1.17) and (1.21) in Eqs. (1.12) to (1.16); we obtain
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@u̧
@r
+
u̧
r
+
@w
@z

= 0; (1.22)

�̂
3
Ry(u̧

@u̧
@r
+ w

@u̧
@z
) = �@Þ

@r
+ �̂

2 @

@z
(� rz) +

�̂

r
@

@r
(r� rr)�

�̂

r
� ��; (1.23)

�̂Ry(u̧
@w
@r
+ w

@w
@z
) = �@Þ

@z
+
1

r
@

@r
(r� rz) + �̂

@

@z
(� zz) + gr� + br�; (1.24)

�̂prRy(u̧
@�

@r
+ w

@�

@z
) =

@2�

@r2
+
1

r
@�

@r
+ �̂

2@2�

@z2
+B; (1.25)

Ry �̂(u̧
@�

@r
+ w

@�

@z
) =

1

Cs
(
1

r
@

@r
(r
@�

@r
) + �̂

2@2�

@z2
) +Rs(

1

r
@

@r
(r
@�

@r
) + �̂

2@2�

@z2
); (1.26)

where

� rr = 2�̂[1 +m(Hy _
 � 1)]
@u̧
@r
;

� rz = [1 +m(Hy _
 � 1)](
@u̧
@z
�̂
2
+
@w
@r
);

� zz = 2�̂[1 +m(Hy _
 � 1)]
@w
@z
;

� �� = 2�̂[1 +m(Hy _
 � 1)]
u̧
r
; (1.27)

_
 = [2�̂
2
(
@u̧
@r
)2 + (

@u̧
@z
�̂
2
+
@w
@r
)2 + 2�̂

2
(
@w
@z
)2 + 2�̂

2 u̧2

r2
]
1
2 : (1.28)

in which �̂; Pr; Ry; Hy be the wave; Prandtl number, Weissenberg, and Reynolds number

respectively. By suþþositions of low Reynolds number and long wave length, avoiding the

relations of order �̂ and greater; Eqs. (1:23) to (1:26) take the form

@Þ
@r
= 0; (1.29)

8



@Þ
@z

=
1

r
@

@r
[r(1 +m(Hy

@w
@r
� 1))@w

@r
] + gr� + br�; (1.30)

@2�

@r2
+
1

r
@�

@r
+B = 0; (1.31)

1

Cs
(
1

r
@

@r
(r
@�

@r
)) +Rs(

1

r
@

@r
(r
@�

@r
)) = 0: (1.32)

Eq. (1:29) displays that Þ is not a function of r: The consistent dimensionless boundary

conditions for the problem in consideration are de�ned as

w = �1 at r = i1 = �; w = �1 at r = i2 = 1 + � sin(2�z);

� = � = 1 at r = i1; � = � = 0 at r = i2; (1.33)

1.4 Solution of the problem

Eq. (1:31) is the second order linear nonhomogeneous partial di¤erential equation. Its solution

sustaining the boundary limits can be straightforward inscribed as

� =
1

ß11
(ß12 ln r+ß13r2 +ß14): (1.34)

Invoking Eq. (1:34) into Eq. (1:32) the solution of resultant equation supporting the

boundary conditions (1:33) take the form

� = �RsSc
ß11

(ß12 ln r+ß13r2 +ß14) +ß17 ln r+ß18: (1.35)

where all ßij are de�ned in appendix.

1.5 Analytical Solution

Substitution of Eqs. (1:34) and (1:35) into the Eq. (1:30); yields

9



@Þ
@z

=
1

r
@

@r
[r(1 +m(Hy

@w
@r
� 1))@w

@r
] + gr(

1

ß11
(ß12 ln r+ß13r2 +ß14))

+br(�
RsCs
ß11

(ß12 ln r+ß13r2 +ß14) +ß17 ln r+ß18): (1.36)

To �nd the results of Eq. (1:36); we have used regular þerturbation method. For regular

þerturbation procedure; we exþand w; Fi and Þ as

w = w0 +Hyw1 + :::;

Fi = F0i +HyF1i + :::;

Þ = Þ0 +HyÞ1 + :::; (1.37)

where Fi is �ow rate.

Substituting Eq. (1:37) into Eqs. (1:36) and (1:33); equating the like þowers of Hy we

obtain the following systems

1.5.1 Zeroth-order system

@Þ0
@z

=
1

r
@

@r
(r(1�m)@w0

@r
) + r2ß19 +ß20 ln r+ß21; (1.38)

w0 = �1; at r = i1 = "; w0=� 1; r = i2 = 1 + � sin 2�z: (1.39)

1.5.2 First-order system

@Þ1
@z

=
1

r
@

@r
(r(1�m)@w1

@r
+ rm(

@w0
@r
)2); (1.40)

w1 = 0; at r = i1 = "; w1=0; r = i2 = 1 + � sin 2�z: (1.41)

1.5.3 Zeroth-order solution

The solution of Eq. (1:38) �lling the boundary conditions (1:39) takes the form
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w0 =
dÞ0
dz
(

r2

4(1�m) +ß29 ln r+ß28) +ß22r
4 +ß24r2 +ß23r2 ln r

+ß30 ln r+ß27: (1.42)

1.5.4 First-order solution

Invoking Eq. (1:42) into Eq. (1:40); the solution of resultant equation sustaining the boundary

conditions (1:41) take the form

w1 =
dÞ1
dz
(

r2

4(1�m) +ß29 ln r+ß28) + r
7ß43 + r6ß44 + r5ß45

+r4ß46 + r3ß47 + r2ß48 + rß41 �
1

r
ß42 +ß49r6 ln r

+ß50r5 ln(r) +ß51r4 ln r+ß52r5(ln r)2 +ß53r2 ln r

+
ß54(ln r)
(1�m) +ß55: (1.43)

The resulting expression for velocity �eld is de�ned

w =
dÞ
dz
(

r2

4(1�m) +ß29 ln r+ß28) +ß22r
4 +ß24r2 +ß23r2 ln r

+ß30 ln(r) +ß27 +Hy(r7ß43 + r6ß44 + r5ß45 + r4ß46 + r3ß47

+r2ß48 + rß41 �
1

r
ß42 +ß49r6 ln(r) +ß50r5 ln(r) +ß51r4 ln r

+ß52r5(ln r)2 +ß53r2 ln r+
ß54(ln r)
(1�m) +ß55): (1.44)

The dimensionless time mean �ow rate F0i and F1i are de�ned as

F0i =

Z i2

i1
rw0dr; (1.45)

F1i =

Z i2

i1
rw1dr: (1.46)
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Switching Eqs. (1:42) and (1:43) into Eqs (1:45) and (1:46); we obtain

F0i =ß56 +ß57(
dÞ0
dz
); (1.47)

F1i =ß72 +ß57(
dÞ1
dz
); (1.48)

with the aid of Eqs. (1:47) and (1:48) we acquire as

dÞ
dz
=
Fi
ß57

+ß73: (1.49)

1.6 Volume �ow rate

In the �xed coordinates volume �ow rate in the instantaneous position is speci�ed by

�Q1 = 2�

eŖ2Z
eŖ1
eŖfW̧deŖ; (1.50)

where eŖ2 is a function of eZ̧ and ȩt: Invoking Eq. (1:17) into Eq. (1:50) and then integrating
produces

�Q1 = �qa + ��s(ei22 �ei21); (1.51)

where

�qa = 2�

ei2Z
ei1
erewder; (1.52)

In the moving coordinates system the volume �ow rate is indeþendent of time as mention

in Eq. (1.52). Here ei2 is the function of eZ̧ alone. Using dimensionless variables we �nd
Fi =

�qa
2�H2

2 �s
=

ei2Z
ei1
rwdr: (1.53)
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Over a þeriod T = �
�s the time-mean �ow at a �xed

eZ̧ þosition is de�ned as
~Q =

1

T

TZ
0

�Q1dȩt: (1.54)

Invoking Eq. (1:51) into Eq. (1:54) and integrating, we attain

~Q = �qa + ��s
�ei22 �ei21� ; (1.55)

which can be inscribed as

~Q

2�H2
2 �s
=

~qa
2�H2

2 �s
+
1

2

�
1 +

�2

2
� �2

�
; (1.56)

Dimensionless time-mean �ow can be de�ned as

Q =
~Q

2�H2
2 �s
; Fi =

~qa
2�H2

2 �s
: (1.57)

With the aid of Eq. (1:57); Eq. (1:56) take the formula

Q = Fi +
1

2

�
1 +

�2

2
� �2

�
: (1.58)

The Þressure rise distribution �Þ and frictionl forces on the outward and inward cylinders

are F a and F b in non dimensional systems are de�ne as

�Þ =
Z 1

0
(
dÞ
dz
)dz; (1.59)

F a =

Z 1

0
i21(�

dÞ
dz
)dz; (1.60)

F b =

Z 1

0
i22(�

dÞ
dz
)dz: (1.61)

By substituting Eq. (1:49) into Eq. (1:59) to (1:61) with i1 = �; i2 = 1 + � sin(2�z); we

acquire the �Þ (Þressure rise) and the F b; F a (frictional forces) on the outward and inward

13



cylinders as

�Þ =
Z 1

0
(
Fi
ß57

+ß73)dz; (1.62)

F a =

Z 1

0
�i21(

Fi
ß57

+ß73)dz; (1.63)

F b =

Z 1

0
�i22(

Fi
ß57

+ß73)dz: (1.64)

The velocities interms of stream functions are de�ned as

u̧ =
�1
r
(
@	

@z
) and w =

1

r
(
@	

@r
): (1.65)

Making use of Eq. (1:44) into Eq. (1:65); we get stream function as

	 =
dÞ
dz
(

r4

16(1�m) +ß29(
r2 ln(r)
2

� r
2

4
) +ß28

r2

2
) +ß22

r6

6
+ß24

r4

4
+ß27

r2

2

+ß23(
r4 ln(r)
4

� r4

16
) +ß30(

r2 ln(r)
2

� r
2

4
) +Hy(r9ß58 + r8ß59 + r7ß60

+r6ß61 + r5ß62 + r4ß63 + r3ß64 + r2ß65 � rß42 +ß66r8 ln(r) +ß67r7 ln r

+ß68r6 ln r+ß69r4 ln r+ß70r7(ln r)2 +ß71r2 ln r): (1.66)

For study; we have experimental �ve wave forms speci�cally; sinusoidal wave, square wave,

triangular wave, traþezoidal wave; and multisinusoidal wave: Expressions of above mention

waves in dimensionless form can be written as

1. Multisinusoidal wave:

i2(z) = 1 + � sin(2f�z); (1.67)

2. Square wave:

i2(z) = 1 + �f
4

�

1X
v=1

(�1)v+1
(2v � 1) cos(2�(2v � 1)z)g; (1.68)
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3. Triangular wave:

i2(z) = 1 + �f
8

�3

1X
v=1

(�1)v+1
(2v � 1) sin(2�(2v � 1)z)g; (1.69)

4. Traþezoidal wave:

i2(z) = 1 + �f
32

�2

1X
v=1

sin �8 (2v � 1)
(2v � 1)2 sin(2�(2v � 1)z)g; (1.70)

5. Sinusoidal wave:

i2(z) = 1 + � sin(2�z); (1.71)

The exþression for Þressure rise �Þ and the friction forces are considered numerically by

mathematica; where as constants are de�ned in aþþendix.

1.7 Results and discussion

Graphical analysis of Þressure rise, inward and outward friction forces, stream lines and Þressure

gradient are represented in this unit. Figs. (1:1) and (1:2) shows the velocity pro�le for di¤erent

values of gr and br. From these �gures, it is detected that the velocity pro�le increases when

the values of gr and br increases in the range r2 [0:2; 0:65] otherwise decreases. Figs (1:3) to

(1:5) represent the variation of concentration �eld for di¤erent values of Rs (Soret number),

Cs (Schmidth number), and B (absorbtion parameter). It is also shown by these �gures that

concentration �eld decreases when the values of Rs; Cs and B increases. The variation of

temþerature pro�le for various values of B is deþicted in the Fig. (1:6) it is revealed that

concentration �eld increases when values of B (absorbtion parameter) increases. The e¤ects of

various parameters such as Weissenberg number Hy; amplitude ratio �; power law index m;

and di¤erent wave forms; on �Þ (Þressure rise) are represented in the Figs. (1:7) to (1:10).

Figs. (1:7) to (1:9) shows that when the values of parameters Hy; �; m; increases, Þressure

rise decreases as well as increases for the di¤erent values of time mean �ow rate. Peristaltic

pumping regions are Q � [�2;�0:1] ; Q � [�2; 0:1] ; Q � [�2;�0:11] ; other wise it is co pumping

or augmented pumping regions. In Fig. (1:10) Peristaltic pumping region is Q � [�2; 0] ; other

15



wise it is augmented pumping region. Moreover Traþizoidal wave shows good agreement in the

þeristaltic þumping region. Behavior of the inward and outward frictional forces are displayed

in the Figs. (1:11) to (1:18). It is detected from these �gures that the inward and outward

frictional forces shows the opposite behavior comparatively Þressure rise. Inward and the

outward frictional forces behave in a similar manner for the same values of emerging þarameters.

Moreover it is also detected that the outward friction force is larger than inward friction force

for the similar values of emerging þarameters. Figs. (1:19) to (1:23) represented the e¤ects of

Þressure gradient for di¤erent values of �. Figs. (1:19) to (1:21) shows that Þressure gradient

is small for the regions z 2 [1; 1:5] and [2:1; 2:5]; and is large for the regions z2 [1:6; 1:9]:

Fig. (1:22); shows a small Þressure gradient for the regions z2 [1:1; 1:3]; z2 [1:6; 1:8]; and

z2 [2:2; 2:4] and also shows that a large Þressure gradient occurs for the regions z2 [1:31; 1:59];

and z2 [1:81; 2:19]: Fig. (1:23) represents a small Þressure gradient for the region z2 [1:76; 2:25]

and a large Þressure gradient for the region z2 [1:25; 1:75]. E¤ects on the streamlines due to

the di¤erent values of � for the trapping phenomenon in the case of �ve di¤erent wave forms

is depicted in the Figs. (1:24) to (1:28) It is experimental that in the case of Triangular wave,

trapped bolus has small magnitude when it is related to other waves.
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1.8 Appendix1.0

ß11 = 4(ln i1 � ln i2); ß12 = 4 +B(i21 � i22); ß13 = B(ln i2 � ln i1);

ß14 = B(i22 ln i1 � i21 ln i2)� 4 ln i2; ß15 =
�RsCs
ß11

(ß12 ln i1 +ß13i21 +ß14);

ß16 =
�RsCs
ß11

(ß12 ln i2 +ß13i22 +ß14); ß17 =
1�ß15 +ß16
ln i1 � ln i2

;

ß18 =
ln i2 �ß15 ln i2 +ß16 ln i1

ln i2 � ln i1
; ß19 =

grß13
ß11

� RsCsbrß13
ß11

;

ß20 =
grß12
ß11

� RsCsbrß12
ß11

+ brß17; ß21 =
grß14
ß11

� RsCsbrß14
ß11

+ brß18;

ß22 =
�ß19

16(1�m) ; ß23 =
�ß20

4(1�m) ; ß24 =
ß20

4(1�m) �
ß21

4(1�m) ;

ß25 =
�(1�m)
ln i1 � ln i2

(ß22(i41 � i42) +ß23(i21 ln i1 � i22 ln i2) +ß24(i21 � i22));

ß26 = � i21 � i22
4(ln i1 � ln i2)

; ß27 = �1 +
1

(ln i1 � ln i2)
(ß22(i41 ln i2 � i42 ln i1)

+ß23((i21 ln i2 ln i1 � i22 ln i2 ln i1) +ß24(i21 ln i2 � i22 ln i1);

ß28 =
i21 ln i2 � i22 ln i1

4(1�m)(ln i1 � ln i2)
; ß29 =

ß26
(1�m) ; ß30 =

ß25
(1�m) ; ß31 = 4ß22;

ß32 = ß23 + 2ß24 +
1

2(1�m)
dÞ0
dz
; ß33 =ß29

dÞ0
dz

+ß30; ß34 = 2ß23;

ß35 =
�mß231
(1�m) ; ß36 =

�2mß31ß32
(1�m) ; ß37 =

�m
(1�m)(2ß31ß33 +ß

2
32);

ß38 =
�m

(1�m)(2ß33ß
2
34); ß39 =

�m
(1�m)(2ß32ß

2
34); ß40 =

�m
(1�m)(2ß31ß

2
34);

ß41 =
�m

(1�m)(2ß32ß33); ß42 =
�mß233
(1�m) ; ß43 =

ß35
7
; ß44 =

�ß40
36

;

ß45 =
ß36
5
� 2mß434
125(1�m) ; ß46 =

�ß39
16

; ß47 =
ß37
3
; ß48 =

�ß38
4
;

ß49 =
ß46
6
; ß50 =

2mß434
25(1�m) ; ß51 =

ß39
4
; ß52 =

�mß434
5(1�m) ;

ß53 =
ß38
2
; ß54 = (1�m)(�ß53i21 �ß51i41 �ß50i51 �ß49i61 +

ß42
i1 ln i1

�ß41i1
ln i1

�ß48i
2
1

ln i1
�ß47i

3
1

ln i1
�ß46i

4
1

ln i1
�ß45i

5
1

ln i1
�ß44i

6
1

ln i1
�ß43i

7
1

ln i1

�ß52i51 ln i1) + (
ln i1

(1�m) �
ln i2

(1�m))(�
ß42
i2
+ i2ß41 + i22ß48
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+i32ß47 + i
4
2ß46 + i

5
2ß45 + i

6
2ß44 + i

7
2ß43 � i21 ln i2ß53 � i41 ln i2ß51

�i51 ln i2ß50 � i61 ln i2ß49 + i22 ln i2ß53 + i42 ln i2ß51 + i52 ln i2ß50

+i62 ln i2ß49 +
ln i2ß42
i1 ln i1

� i1 ln i2ß41
ln i1

� i
2
1 ln i2ß48
ln i1

� i
3
1 ln(i2)ß47
ln i1

� i
4
1 ln(i2)ß46
ln i1

� i
5
1 ln i2ß45
ln i1

� i
6
1 ln i2ß44
ln i1

� i
7
1 ln i2ß43
ln i1

�i51 ln i1 ln i2ß52 + i52(ln i2)2ß52;

ß55 = � 1

(ln i1 � ln i2)
(� ln i1ß42

i2
+ i2 ln i1ß41 + i22 ln i1ß48 + i

3
2 ln i1ß47

+i42 ln i1ß46 + i
5
2 ln i1ß45 + i

6
2 ln i1ß44 + i

7
2 ln i1ß43 +

ln i2ß42
i1

� i1 ln i2ß41

�i21 ln i2ß48 � i31 ln i2ß47 � i41 ln i2ß46 � i51 ln i2ß45 � i61 ln i2ß44 � i71 ln i2ß43

�i21 ln i1 ln i2ß53 � i41 ln i1 ln i2ß51 � i51 ln i1 ln i2ß50 � i61 ln i1 ln i2ß49

+i22 ln i1 ln i2ß53 + i
4
2 ln i1 ln i2ß51 + i

5
2 ln i1 ln i2ß50 + i

6
2 ln i1 ln i2ß49

�i51(ln i1)2 ln(i2)ß52 + i52 ln i1(ln i2)2ß52);

ß56 =
ß22(i62 � i61)

6
+ß23((

i42 ln i2
4

� i42
16
)� ( i

4
1 ln i2
4

� i41
16
)) +

ß24(i42 � i41)
4

+ß30((
i22 ln i2
2

� i
2
1 ln i2
2

)� (i
2
2 � i21)
4

) +
ß27(i22 � i21)

2
;

ß57 =
(i42 � i41)
16(1�m) +ß29((

i22 ln i2
2

� i
2
1 ln i1
2

)� (i
2
2 � i21)
4

) +
ß28(i22 � i21)

2
;

ß58 =
ß43
9
; ß59 =

ß44
8
�ß49
64
; ß60 =

ß45
7
�ß50
49
+
2ß52
7(49)

; ß61 =
ß46
6
�ß51
36
;

ß62 =
ß47
5
; ß63 =

ß48
4
�ß53
16
; ß64 =

ß41
3
; ß65 =

ß55
2
� ß54
4(1�m) ; ß66 =

ß49
8
;

ß67 =
ß50
7
� 2ß52

49
; ß68 =

ß51
6
; ß69 =

ß53
4
; ß70 =

ß52
7
; ß71 =

ß54
2(1�m) ;

ß72 = (i92 � i91)ß58 + (i82 � i81)ß59 + (i72 � i71)ß60 + (i62 � i61)ß61 + (i52 � i51)ß62

+(i42 � i41)ß63 + (i32 � i31)ß64 + (i22 � i21)ß65 �ß42(i2 � i1) +ß66(i82 ln(i2)

�i81 ln(i1)) +ß67(i72 ln(i2)� i71 ln(i1)) +ß68(i62 ln(i2)� i61 ln(i1))

+ß69(i42 ln(i2)� i41 ln(i1)) +ß70((i72(ln(i2))2 � i81(ln(i2))2) +ß71((i22 ln(i2)

�i21 ln(i1));

ß73 =
�ß56 �Hyß72

ß57
:
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Fig. (1.1); Velocity �eld for z= 0:01; m = 0:23; Q = 0:02; � = 0:43; Hy = 0:07; B = 0:06;

� = 0:19; Cs = 4:53; br = 5:61; Rs = 3:82:
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Fig. (1.2); Velocity �eld for z= 0:01; Rs = 3:82; m = 0:23; Q = 0:02; B = 0:06; � = 0:43;

br = 5:61; � = 0:19; Cs = 4:53; Hy = 0:07:
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Fig. (1.3); Concentration �eld for � = 0:14; Hy = 0:33; � = 0:13; z= 0:3; br = 0:13;

Rs = 0:32; Cs = 0:31; gr = 0:21:
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Fig. (1.4); Concentration �eld for z= 0:3; � = 0:14; � = 0:13, br = 0:21; Hy = 0:33;

Rs = 0:31; B = 0:32; gr = 0:13:
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Fig. (1.5); Concentration �eld for Hy = 0:33; � = 0:14; z= 0:3; gr = 0:13; br = 0:21;

Cs = 0:31; � = 0:13; B = 0:32:
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Fig. (1.6); Temperature �eld for � = 0:14; Hy = 0:33; z= 0:3; br = 0:21; gr = 0:13;

Rs = 0:31; Cs = 0:32; � = 0:13:
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Fig. (1.7); Þressure rise versus �ow rate for � = 0:07; B = 0:23; � = 0:01; Cs = 3:91;

gr = 2:64; br = 4:92; Rs = 3:33; m = 0:24:
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Fig. (1.8); Þressure rise distribution for m = 0:11; Hy = 0:12; B = 0:3; � = 0:01; Cs = 0:31;

gr = 0:33; br = 0:26; Rs = 0:42:
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Fig. (1.9); Þressure rise versus �ow rate for � = 0:28; Hy = 0:63; B = 0:11; � = 0:02;

Cs = 0:51; gr = 0:63; br = 0:71; Rs = 0:32:
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Fig. (1.10); Þressure rise versus �ow rate distribution for � = 0:18; Hy = 0:21; B = 1:09;

f = 2; � = 0:09; Cs = 2:4; gr = 3:3; br = 4:2; Rs = 2:5; m = 0:01:
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Fig. (1.11); Friction force (on inward cylinder ) versus �ow rate for Hy = 0:12; B = 0:3;

Rs = 0:42; � = 0:01; br = 0:26; Cs = 0:31; m = 0:11; gr = 0:33:
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Fig. (1.12); Friction force (on inward cylinder ) versus �ow rate for � = 0:07; B = 0:23;

� = 0:01; gr = 2:64; Cs = 3:91; br = 4:92; m = 0:24; Rs = 3:33:
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Fig. (1.13); Friction force (outward cylinder ) versus �ow rate for � = 0:18; Hy = 0:21;

Cs = 2:4; gr = 3:3; B = 1:09; f = 2; � = 0:09; m = 0:01; br = 4:2; Rs = 2:5:
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Fig. (1.14); Friction force (inward cylinder ) versus �ow rate for gr = 0:63; Hy = 0:63;

Rs = 0:32; B = 0:11; � = 0:02; Cs = 0:51; br = 0:71; � = 0:28:
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Fig. (1.15); Friction force (outward cylinder ) versus �ow rate for � = 0:07; B = 0:23;

� = 0:01; Cs = 3:91; gr = 2:64; br = 4:92; Rs = 3:33; m = 0:24:
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Fig. (1.16); Friction force (outward cylinder ) versus �ow rate for � = 0:28; B = 0:11;

Rs = 0:32; � = 0:02; Cs = 0:51; gr = 0:63; br = 0:71; Hy = 0:63:
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Fig. (1.17); Friction force (inward cylinder ) versus �ow rate for � = 0:18; Hy = 0:21;

B = 1:09; m = 0:01; � = 0:09; gr = 3:3; Cs = 2:4; br = 4:2; f = 2; Rs = 2:5:
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Fig. (1.18); Friction force (outward cylinder ) versus �ow rate for gr = 0:33; m = 0:11;

B = 0:3; � = 0:01; Hy = 0:12; br = 0:26; Cs = 0:31; Rs = 0:42:
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Fig. (1.19); Þressure gradient (Sinusoidal wave) for m = 0:23; Hy = 0:16; B = 0:23;

Q = 0:02; � = 0:11; gr = 3:44; br = 3:77; Rs = 2:62; Cs = 3:88:
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Fig. (1.20); Þressure gradient (trapezoidal wave) for br = 3:77; m = 0:23; B = 0:23; � = 0:11;

Hy = 0:16; gr = 3:44; Q = 0:02; Cs = 3:88; Rs = 2:62:
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Fig. (1.21); Þressure gradient (Triangular wave) for m = 0:23; Hy = 0:16; B = 0:23;

� = 0:11; Rs = 2:62; Q = 0:02; gr = 3:44; br = 3:77; Cs = 3:88:
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Fig. (1.22); Þressure gradient (Multisinusoidal wave) for Rs = 2:62; Hy = 0:16; m = 0:23;

B = 0:23; � = 0:11; Q = 0:02; gr = 3:44; br = 3:77; Cs = 3:88:

29



1 1.5 2 2.5
­3

­2

­1

0

1

2

3

4

z

dp
/d

z

φ=0.05

φ=0.07

φ=0.09

φ=0.11

Fig. (1.23); Þressure gradient (Square wave) Hy = 0:16; m = 0:23; br = 3:77; Cs = 3:88;

B = 0:23; Q = 0:02; � = 0:11; gr = 3:44; Rs = 2:62:

Fig. (1.24); Stream lines (Sinusoidal wave) for m = 0:02; Hy = 0:14; B = 0:12; Q = 0:94;

� = 0:38; Cs = 3:99; gr = 4:44; br = 5:22; Rs = 5:13; � = 0:11:
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Fig. (1.25); Stream lines (Multisinusoidal wave) for m = 0:02; br = 5:22; B = 0:12; � = 0:11;

Q = 0:94; Hy = 0:14; � = 0:38; Cs = 3:99; gr = 4:44; Rs = 5:13:

Fig. (1.26); Stream lines (Triangular wave) for � = 0:11; m = 0:02; br = 5:22; Hy = 0:14;

B = 0:12; Q = 0:94; Cs = 3:99; � = 0:38; gr = 4:44; Rs = 5:13:
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Fig. (1.27); Stream lines (Square wave) for m = 0:02; Rs = 5:13; Q = 0:94; br = 5:22;

� = 0:38; B = 0:12; Cs = 3:99; gr = 4:44; Hy = 0:14; � = 0:11:

Fig. (1.28); Stream lines for (Trapezoidal wave) m = 0:02; gr = 4:44; Hy = 0:14; br = 5:22;

� = 0:38; B = 0:12; � = 0:11; Q = 0:94; Cs = 3:99; Rs = 5:13:
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Chapter 2

E¤ects of nanoparticles on the

þeristaltic motion of hyþerbolic

tangent �uid model in an annulus

2.1 Introduction

In this chapter; we have presented the e¤ects of nanoparticles on the þeristaltic �ow of hyþerbolic

tangent �uid in an annulus. Tangent hyþerbolic �uid equations are simpli�ed by suppositions of

low Reynolds number and long wave length. Analytical solution have been computed with the

help of homotopy perturbation and Adomian decomposition method for velocity; temþerature

and nanoparticle concentration. Solutions are þresented through graphs. The results of �P

(Þressure rise); temþerature; nanoparticle concentration and Þressure gradient are drawn for

numerous inserted þarameters. The relationship of both the analytical solutions are also o¤ered.

2.2 Flow equations

Governing equations for an incomþressible hyperbolic tangent �uid for mass;momentum; energy

and nanoparticle concentration are de�ned as [22� 23]

div ~A = 0; (2.1)
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�
�d~A
�dȩt = div ȩS+ �f ; (2.2)

(�c)f
�d ȩT
�dȩt = kr2 ȩT+ (�c)Þ[dbreÇ:r ȩT+ (d ȩTȩT1 )r ȩT:r ȩT]; (2.3)

�deÇ
�dȩt = dbr2eÇ+ (d ȩTȩT1 )r2 ȩT; (2.4)

where ~A; is the velocity component, eÇ the nanoparticle phenomenon; db the Brownian

di¤usion coe¢ cient and d ȩT the thermophoretic di¤usion coe¢ cient.

2.3 Statement and formulation of the þroblem

Considering the Þeristaltic tranþort of an incomþressible hyþerbolic tangent �uid in an annulus.

Inward cylinder is rigid and sustained at temperature ȩT0 and the nanoparticle velocity eÇ0 while
the outward cylinder takes a sinusoidal wave moving down its walls having temþerature ȩT1 and
nanoparticle velocity eÇ1. The wall surface geometry is de�ned as
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eŖ1 = H1; (2.5)

eŖ2 = H2 + E sin 2�� (ez� �sȩt): (2.6)

where H1; H2 denotes the inward and outward radius of cylinders; E amþlitude of wave; �

wavelength; �s wave speed and ȩt is time. With the help of Eq. (1:11); Eqs. (2:1) to (2:4) take
the following form

@eU̧
@eŖ + eU̧eŖ + @fW̧@eZ̧ = 0; (2.7)

�[
@eU̧
@ȩt + eU̧@eU̧@eŖ +fW̧@eU̧

@eZ̧ ] = � @eÞ@eŖ + 1eŖ @(
eR~� eŖeŖ)
@eŖ +

@(~� eŖeZ̧)
@eZ̧ �

~� ~�~�eŖ ; (2.8)

�(
@fW̧
@ȩt + eU̧@fW̧@eŖ +fW̧@fW̧

@eZ̧ ) = �@
eÞ
@eZ̧ + 1eŖ @(eŖ~� eReZ)@eR +

@(~� eZ̧eZ̧)
@eZ̧ + �g� ȩT(ȩT� ȩT1)

+�g�eÇ(eÇ� eÇ1); (2.9)

(
@ ȩT
@ȩt + eU̧@

ȩT
@eŖ +fW̧@ ȩT

@eZ̧ ) = �(
@2 ȩT
@eŖ2 + 1eŖ @

ȩT
@eŖ + @

2 ȩT
@eZ̧2 ) + �1fdb(@

eÇ
@eŖ @

ȩT
@eŖ + @eÇ@eZ̧ @

ȩT
@eZ̧ )

+
dT¾eT1 [(@

ȩT
@eŖ)2 + (@

ȩT
@eZ̧ )2]g; (2.10)

(
@eÇ
@ȩt + eU@eÇ@eŖ +fW̧@eÇ

@eZ̧ ) = db(@
2eÇ
@eŖ2 + 1eŖ @eÇ@eŖ + @

2eÇ
@eZ̧2 ) + dT¾T¾1 (@

2 ȩT
@eR2 + 1eŖ @

ȩT
@eŖ + @

2 ȩT
@eZ̧2 ); (2.11)

in the above equations; eÇ is the nanoparticle volume fraction; dT¾ the thermophoretic dif-
fusion coe¢ cient; db the Brownian di¤usion coe¢ cients of mass di¤usivity �1 =

(�c)p
(�c)f

depicts

the ratio of the e¤ective heat caþacity in the case of nano þarticle material and heat caþacity
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of the �uid. In the �xed coordinates (eŖ; eZ̧) the �ow in the cylinders is unsteady; it converts
steady in a wave frame (ȩr; ȩz) moving with same sþeed as the wave moves in the eZ̧ directions.
The conversions between the wave references are

ȩr = eŖ; ȩz = eZ̧� �sȩt; ȩu = eU̧; ȩw =fW̧� �s; (2.12)

In the wave reference ȩu and ȩw are the velocity comþonents. The boundary limits are expressed
as

ȩw = ��s; at ȩr = ei1; ȩw = ��s at ȩr = ei2 = H2 + E sin 2�
�
(ȩz);ȩT = ȩT0 at ȩr = ei1; ȩT = ȩT1 at ȩr = ei2;eÇ = eÇ0 at ȩr = ei1; eÇ = eÇ1 at ȩr = ei2: (2.13)

Introducing the dimensionless variables

Ŗ =
eŖ
H2
; r =

ȩr
H2
; W̧ =

fW̧
�s
; w =

ȩw
�s
; Z̧ =

eZ̧
�
; z =

ȩz
�
; U̧ =

�eU̧
H2�s

;

u̧ =
�ȩu
H2�s

; ţ =
~sȩt
�
; Þ =

H2
2
eÞ

�s��
; � =

ȩT� ȩT1ȩT0 � ȩT1 ; �̂ =
H2
�
; Ry =

��sH2
�

;

ȩS =
H2
ȩS

�s�
; i1 =

ei1
H2

=
H1
H2

=2; i2 =
ei2
H2

= 1 + � sin 2�z; Hy =
��s

H2
;

� =
k

(�c)f
; Bm =

(�c)p db(eÇ0 � eÇ1)
(�c)f �

; Tm =
(�c)p deT(ȩT0 � ȩT1)

(�c)f
ȩT1 � ;

gr =
�g� ȩTH2

2 (
ȩT0 � ȩT1)
��s

; br =
�g�eÇH2

2 (
eÇ0 � eÇ1)
��s

; � =
E

H2
; � =

~�H2
��s

_
 =
H2
�s
e_
; � = eÇ� eÇ1eÇ0 � eÇ1 : (2.14)

We de�ne Tm; br; Ry; gr; Hy; Bm; �̂; ��1 are the thermoþhoresis þarameter; local nanoþarti-

cle Grashof number; Reynolds number, local temperature Grashof number;Weissenberg number;

Brownian motion parameter; wave number and � is the amplitude ratio respectively. Using
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Eqs. (2:12) and (2:14) into Eqs. (2:7) to (2:11); we obtain

@u̧
@r
+
u̧
r
+
@w
@z

= 0; (2.15)

�̂
3
Ry(u̧

@u̧
@r
+ w

@u̧
@z
) = �@Þ

@r
+ �̂

2 @

@z
(� rz) +

�̂

r
@

@r
(r� rr)�

�̂

r
� ��; (2.16)

�̂Ry(u̧
@u̧
@r
+ w

@w
@z
) = �@Þ

@z
+
1

r
@

@r
(r� rz) + �̂

@

@r
(� zz) + gr� + br�; (2.17)

1

r
@

@r
(r
@�

@r
) +Bm

@�

@r
@�

@r
+ Tm(

@�

@r
)2 = 0; (2.18)

(
1

r
@

@r
(r
@�

@r
)) +

Tm
Bm

(
1

r
@

@r
(r
@�

@r
)) = 0; (2.19)

where

� rr = 2�̂[1 +m(Hy _
 � 1)]
@u̧
@r
; (2.20)

� rz = [1 +m(Hy _
 � 1)](
@u̧
@z
�̂
2
+
@w
@r
); (2.21)

� zz = 2�̂(1 +m(Hy _
 � 1))
@w
@z
; (2.22)

� �� = 2�̂(1 +m(Hy _
 � 1))
u̧
r
; (2.23)

_
 = [2�̂
2
(
@u̧
@r
)2 + (

@u̧
@z
�̂
2
+
@w
@r
)2 + 2�̂

2
(
@w
@z
)2 + 2�̂

2 u̧2

r2
]
1
2 : (2.24)

We note that Eqs. (2:16) and (2:17) are non-linear; therefore; we are interested to solve our

problem incorporating the suppositions of low Reynolds number and long wavelength; avoiding

the terms of order �̂ and greater; Eqs. (2:16) to (2:19) take the following form

37



@Þ
@r
= 0; (2.25)

@Þ
@z

=
1

r
@

@r
[r(1 +m(Hy

@w
@r
� 1))@w

@r
] + gr� + br�; (2.26)

1

r
@

@r
(r
@�

@r
) +Bm

@�

@r
@�

@r
+ Tm(

@�

@r
)2 = 0; (2.27)

(
1

r
@

@r
(r
@�

@r
)) +

Tm
Bm

(
1

r
@

@r
(r
@�

@r
)) = 0: (2.28)

Eq. (2:25) illustrates that Þ is not a function of r: The resultant dimensionless boundary

limits for the þroblem under concern are given as

w = �1 at r = i1; w = �1 at r = i2 = 1 + � sin(2�z);

� = � = 1 at r = i1; � = � = 0 at r = i2: (2.29)

2.4 Analytical solution

To achieve the solution of above equations; we used homotopy þerturbation method. The

homotoþy þerturbation method advises that we write Eqs. (2:26) to (2:28); as [24]

H(�; j) = (1� j) [$(�)�$(�20)] + j
�
$(�) +

Tm
Bm

(
1

r
@

@r
(r
@�

@r
))

�
; (2.30)

H(�; j) = (1� j)[$(�)�$(�20)] + j
�
$(�) +Bm

@�

@r
@�

@r
+ Tm(

@�

@r
)2
�
; (2.31)

H(w, j) = (1� j) [$(w)�$(w20)] + j
�
$(w)� @Þ

@z
+
1

r
@

@r
(rmHy(

@w
@r
)2) + gr� + br�

�
: (2.32)

The linear operator and the initial guesses are chosen as

38



$�r =
1

r
@

@r
(r
@

@r
); $�r =

1

r
@

@r
(r
@

@r
); $wr =

1

r
@

@r
(r(1�m) @

@r
);

�20(r; z) = (
r� i2
i1 � i2

); �20(r; z) = (
r� i2
i1 � i2

);

w20(r) = �1 + dÞ0
dz
(

r2

4(1�m) + `49 ln(r) + `50): (2.33)

According to HPM, we de�ne

� = �0 + j�1 + j
2�2 + :::;

� = �0 + j�1 + j
2�2 + :::;

w = w0 + jw1 + j2w2 + :::;

Fi = F0i + jF1i + j
2F2i + :::: (2.34)

with the help of above equations; Eqs. (2:30) to (2:32) after equating the like powers of j

give the following systems.

2.4.1 Zeroth-order problem

$(�0)�$(�10) = 0;

$(��)�$(�10) = 0;

$(w0)�$(w10) = 0; (2.35)

�0 = �0 = 1 at r = i1;

�0 = �0 = 0 at r = i2 = 1 + � sin 2�z;

w0 = �1 at r = i1;

w0 = �1 at r = i2 = 1 + � sin 2�z: (2.36)
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2.4.2 First-order problem

$(�1) = �$(�10)�
Tm
Bm

(
1

r
@

@r
(r
@�0
@r
));

$(�1) = �$(�10)�Bm
@�0
@r

@�0
@r

� Tm(
@�0
@r
)2;

$(w1) = �$(w10)�
1

r
@

@r
(rmHy(

@w0
@r
)2)� gr�0 � br�0 +

@Þ1
@z
: (2.37)

�1 = �1 = 0 at r = i1;

�1 = �1 = 0 at r = i2 = 1 + � sin 2�z;

w1 = 0 at r = i1;

w1 = 0 at r = i2 = 1 + � sin 2�z: (2.38)

2.4.3 Second-order problem

$(�2) = � Tm
Bm

(
1

r
@

@r
(r
@�1
@r
)); (2.39)

$(�2) = �Bm
@�1
@r
@�0
@r

�Bm
@�0
@r
@�1
@r

� 2Tm
@�0
@r
@�1
@r
;

$(w2) =
@Þ2
@z

� 1
r
@

@r
(2rmHy((

@w0
@r
)(
@w1
@r
)))� gr�1 � br�1:

�2 = �2 = 0 at r = i1;

�2 = �2 = 0 at r = i2 = 1 + � sin 2�z;

w2 = 0 at r = i1;

w2 = 0 at r = i2 = 1 + � sin 2�z: (2.40)

We can write the solutions of these problems as

2.4.4 Zeroth-order solution

The zeroth order solution are de�ned as
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�0(r) =
r
`11

� `12; (2.41)

�0(r) =
r
`11

� `12; (2.41a)

w0(r) = �1 + dÞ0
dz
(

r2

4(1�m) + `49 ln(r) + `50): (2.41b)

2.4.5 First-order solution

With the help of expressions (2:41) to (2:41b); solution of �rst order system (2:37) subject to

boundary condition (2:38) are directly de�ned as

�1(r) = r2`16 �
r
`11

+ `17 ln(r) + `20; (2.42)

�1(r) = `21r+ `23 ln(r) + `26; (2.42a)

w1(r) = r3`51 + r2`52 + r`53 + `59 ln(r) +
1

r
`54 + `60

+
dÞ1
dz
(

r2

4(1�m) + `49 ln(r) + `50): (2.42b)

2.4.6 Second-order solution

Making use of zeroth and �rst order solution, the solution of second order problem is de�ned

as

�2(r) = r3`39 � r2`40 + r`41 + `43 ln(r) + `45; (2.43)

�2(r) = r2`28 � r`29 + `34 ln(r) + `35; (2.43a)

w2(r) = r4`68 + r3`69 + r2`70 + r`71 �
1

r
`74 �

`75
r2
+ `73r2 ln(r)

+`78 ln(r) + `77 +
dÞ2
dz
(

r2

4(1�m) + `49 ln(r) + `50): (2.43b)

Using all these solutions into Eq. (2:34); and setting j ! 1; we �nally arrive at

� = `28r2 + r`36 + `37 ln r+ `38: (2.44)
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� = `39r3 + r2`46 + `41r+ `47 ln r+ `48: (2.45)

w = �1 + ( r2

4(1�m) + `49 ln r+ `50)
dÞ
dz
+ r4`68 + r3`79 + r2`80

+r`81 +
1

r
`82 �

`75
r2
+ `83 ln r+ `73r2 ln r+ `84: (2.46)

in which all `ij are de�ned in appendix.

The expression for Þressure gradient can be obtain as

dÞ
dz
=
Fi
`86

+ `89: (2.47)

Flow rate in dimensionless form is already de�ned in Eq. (1:58); however for the sake of

simplicity we de�ne it again as

Q = Fi +
1

2

�
1 +

�2

2
� �2

�
: (2.48)

The expressions for dimensionless time mean �ow rate Fi; Þressure rise �Þ and friction

forces on the outward and inward cylinders are F a and F b respectively; which are already

de�ned in Chapter one (see Eqs. (1:59) to (1:61)). With the help of Eqs. (2:47) ; Eqs. (1:59)

to (1:61) take the following form

�Þ =
Z 1

0
(
Fi
`86

+ `89)dz; (2.49)

F a =

Z 1

0
�r21(

Fi
`86

+ `89)dz; (2.50)

F b =

Z 1

0
�r22(

Fi
`86

+ `89)dz: (2.51)

The velocities and stream function relation are de�ned as

u̧ =
�1
r
(
@	

@z
) and w =

1

r
(
@	

@r
): (2.52)
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Making use of Eq. (2:46) into Eq: (2:52); we get stream function

	 =
�r2
2
+
dÞ
dz
(

r4

16(1�m) + `49(
r2 ln(r)
2

� r
2

4
) + `50

r2

2
)

+`68
r6

6
+
`79
5
r5 + `80

r4

4
+
`81
3
r3 + `84

r2

2
+ `82r

�`75 ln(r) + `83(
r2 ln(r)
2

� r
2

4
) + `73(

r4 ln(r)
4

� r4

16
): (2.53)

For study; we have measured �ve wave forms explicitly;multisinusoidal; triangular; traþezoidal;

square, and sinusoidal: For di¤erent waves dimensionaless expression can be stated as

1. Multisinusoidal wave:

i2(z) = 1 + � sin(2d�z): (2.54)

2. Triangular wave:

i2(z) = 1 + �f
8

�3

1X
y=1

(�1)y+1
(2y � 1) sin(2�(2y � 1)z)g: (2.55)

3. Traþezoidal wave:

i2(z) = 1 + �f
32

�2

1X
y=1

sin �8 (2y � 1)
(2y � 1)2 sin(2�(2y � 1)z)g: (2.56)

4. Square wave:

i2(z) = 1 + �f
4

�

1X
n=1

(�1)y+1
(2y � 1) cos(2�(2y � 1)z)g: (2.57)

5. Sinusoidal wave:

i2(z) = 1 + � sin(2�z): (2.58)
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2.5 Analytical solution by Adomian decomposition method

To develop the solution of Eqs. (2:26) to (2:28); we employ the Adomian decomposition method.

We inscribe Eqs. (2:26) to (2:28) in the operator form as [25� 27]

$r� +
Tm
Bm

$r� = 0; (2.59)

$r� +Bm
@�

@r
@�

@r
+ Tm(

@�

@r
)2 = 0; (2.60)

$w� �
@Þ
@z
+
1

r
@

@r
(rmHy(

@w
@r
)2) + gr� + br� = 0: (2.61)

The linear and the inverse operator are taken as

$�r = $�r =
1

r
@

@r
(r
@

@r
); $wr =

1

r
@

@r
(r(1�m) @

@r
);

$�1�r [:] =

Z r

r2
[
1

r

Z r

r2
r[:]dr]dr; $�1�r [:] =

Z r

r2
[
1

r

Z r

r2
r[:]dr]dr;

$�1wr [:] =

Z r

r2
[

1

r(1�m)

Z r

r2
r[:]dr]dr (2.62)

Applying $�1r to the Eqs. (2:59) to (2:61) and it takes the form

�(r; z) = �20(r; z)�
Tm
Bm

[�(r; z)� �20(r; z)]; (2.63)

�(r; z) = �20(r; z)�
Z r

r2
[
1

r

Z r

r2
r[Bm

@�

@r
@�

@r
]dr]dr�

Z r

r2
[
1

r

Z r

r2
r[Tm(

@�

@r
)2]dr]dr; (2.64)

w(r; z) = w20(r; z) +
Z r

r2
[

1

r(1�m)

Z r

r2
r[
@Þ
@z
]dr]dr�

Z r

r2
[

1

r(1�m)

Z r

r2
r[
1

r
@

@r
(rmHy(

@w
@r
)2)]dr]dr

�
Z r

r2
[

1

r(1�m)

Z r

r2
r(gr� + br�)dr]dr: (2.65)
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Now we decompose �; �; w as

� =
1P
z=0

�z; � =
1P
z=0

�z; w =
1P
z=0

wz (2.66)

Substituting Eq. (2:66) into the Eqs. (2:63) to (2:65) and comparing. Finally we arrive in

the combine form as

� = � Tm
Bm

(
r� i2
i1 � i2

) + C1 ln r+ C2 + :::; (2.67)

� = � Tm
Bm

(
r� i2
i1 � i2

) + C3 ln r+ C4 + r2b18 + rb9 + b10 ln r

+b11(ln r)2 + b12 + :::; (2.68)

w = a1 ln r+ a2 +
1

2(1�m)
dÞ
dz
(
r2

2
� i22 ln r+ b18)� r3b21 � r2b22

�b23r2 ln r+ b24 ln r+ b25 + :::; (2.69)

where C1 to C4 and a1, a2 are evaluated by using the following conditions

� = � = 1 at r = i1;

� = � = 0 at r = i2 = 1 + � sin 2�z;

w = �1 at r = i1;

w = �1 at r = i2 = 1 + � sin 2�z: (2.70)

Where as all the constants are de�ned in appendix
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2.6 Results and discussion

In this unit Þressure rise, inward and outward friction forces, Þressure gradient, and stream lines

are analyzed. Figs 2:2. to 2:37 are showed for this purpose. Numerical integration is performed

by using mathematics software to calculate þressure rise �Þ and inward and outward friction

forces. Fig. (2:1) shows the comparison of velocity pro�le for Homotoþy þerturbation Method

(HPM) and Adomian Decomþosition Method (ADM). The velocity �eld w for di¤erent values of

gr; Bm; br; Tm are presented in the Figs. (2:2) to (2:5) It is observed that the velocity increased

by increasing values of gr; br; Bm; Tm. r2 [0:2; 0:8]; r2 [0:2; 0:75]; r2 [0:2; 0:75]; r2 [0:65; 1]:

other wise decreases. Pressure rise for various physical parameters such as �; Hy; m; Tm; Bm

and for di¤erent wave forms are observed in the Fig. 6 to 11. Peristaltic pumping regions for

� = 0:10; 0:15; 0:20; 0:25; are (Q�[�2; 0:03]; Q�[�2; 0:05]; Q�[�2; 0:07] Q�[�2; 0:09]) respectively

as shown in Fig 6, other wise augmented pumping region occur. For Figs 7, 8 and 11. peristaltic

pumping interval is (Q�[�2; 0:2]). For the di¤erent values of Tm such as Tm = 3; 5; 7; and 9;

peristaltic pumping regions are given by the intervals (Q�[�2; 0:45] Q�[�2; 0:5], Q�[�2; 0:55];

Q�[�2; 0:6]); respectively (see Fig, 9). Peristaltic pumping regions for the di¤erent values of

Bm such as Bm = 0:1; 0:3; 0:5; 0:7, are given by the intervals (Q�[�2;�0:35]; Q�[�2; 0:1],

Q�[�2; 0:15]; Q�[�2; 0:2]); respectively as displayed in the Fig, 10. other wise it is augmented

pumping region appear for all the intervals. Figs. (2:12) to (2:23) are plotted to show the

friction forces for inward and outward cylinder . It can be observed that inward and outward

friction forces have reverse behavior related to the Þressure rise. Variation of concentration �eld

for di¤erent values of Tm; Bm are displayed in the Figs. (2:24) and (2:25). It is noticed that

concentration �eld decreases when the values of Tm; are increasing and it increases when the

values of Bm increases Figs. (2:26) and (2:27) are presented to see the variation of temperature

pro�le for di¤erent values of Tm; and Bm temperature pro�le increases by increasing values of

Tm; Bm. The deviation of Þressure gradient for numerious values of � are describes in the

Figs. (2:28) to (2:32) From Figs. (2:28) to (2:30) it is shown that in the regions z2 [0:5; 1]

, z2 [1:5; 2]; and z2 [1:1; 1:49] small and large Þressure gradient occur respectively. Figs.

(2:31) the Þressure gradient is small for z2 [1:26; 1:75]; and huge Þressure gradient obtained

by the interval z2 [0:75; 1:25]; for Figs. (2:32) the Þressure gradient is small for z2 [0:91; 1:24];

z2 [1:61; 1:8] and huge Þressure gradient follows for z2 [0:6; 0:9]; z2 [1:25; 1:6]. The trapping
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occurrence for �ve di¤erent wave forms can be understood in the Fig. (2:33) to (2:37). It is

depicted that the size of the traþþed bolus in Triangular wave is minor as associated to the

other waves.

2.7 Conclusion

This study inspects the E¤ects of nanoþarticles on the þeristaltic �ow of hyþerbolic tangent

�uid in an annulus. Leading points of the phenomenon are given as:

1. The solution of non-linear coupled partial di¤erential equations are attained by Homo-

toþy þerturbation Method (HPM) and comþared with solutions attained by Adomian

Decomposition (ADM). Both techniques avoid linearization and other assumptions. The

solutions arrived by HPM is much easier when we compared to (ADM). To understand the

viability of this method more terms of series are calculated obviously accuracy increases

if more components are included in the series, but at the expense of large increase in the

di¢ culty of calculations.

2. Same behavior observed in the �gures of inward and outward frictional forces but outward

friction forces are large as compared to inward forces.

3. Temperature pro�le grows with an increase in Tm and Bm:

4. Concentration �eld declines with increase in Tm and increases with increase in Bm:

5. It is detected that friction forces have reverse behavior when we related to the Þressure

rise

6. The magnitude of trapping bolus in triangular wave is minor when we related to the other

waves.
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2.8 Appendix 2.0

`11 = i1 � i2; `12 =
i2
`11
; `13 = Tm +Bm; `130 = 2Tm +Bm; `14 = ln i1 � ln i2;

`15 = i22 � i21; `16 =
�`13
4`211

; `17 =
1

`14
+
`15`16
`14

; `18 = i22 ln i1 � i21 ln i2;

`19 =
� ln i2
`14

� `16`18
`14

; `20 = `12 + `19; `21 =
�`13
Bm`11

; `22 =
`12`13
Bm

;

`23 =
�`21`11
`14

; `24 = i1 ln i2 � i2 ln i1; `25 =
`21`24
`14

� `22; `26 = `22 + `25;

`27 =
�Tm
Bm

; `28 = `16`27; `29 =
`27
`11
; `30 = `17`27; `31 = `20`27;

`32 =
`15`28 + `11`29 � `14`30

`14
; `33 = �

`18`28 + `24`29 + `14`31
`14

; `34 = `30 + `32;

`35 = `31 + `33; `36 =
1

`11
+ `21 � `29; `37 = `23 + `34; `38 = `26 � `12 + `35;

`39 =
�2`130`16
9`11

; `40 =
�`130
4`211

+
Bm`21
4`11

; `41 =
�`130`17
`11

� Bm`23
`11

; `42 = i31 � i32;

`43 =
�`39`42 � `15`40 � `11`41

`14
; `44 = i31 ln i2 � i32 ln i1; `45 =

`39`44 + `18`40 + `24`41
`14

;

`46 = `16 � `40; `47 = `17 + `43; `48 = �`12 + `20 + `45; `49 =
�(i21 � i22)
4(1�m)`14

;

`50 =
(i21 ln i2 � i22 ln i1)
4(1�m)`14

; `51 =
�nHy

12(1�m)3 (
dp0
dz
)2 � gr + br

9`11(1�m)
;

`52 =
(gr + br)`12
4(1�m) � 1

4(1�m)
dp0
dz
; `53 =

�nHy`49
(1�m)2 (

dp0
dz
)2; `54 =

nHy`
2
49

(1�m)(
dp0
dz
)2;

`55 = �`49
dp0
dz
; `56 = 1� `50

dp0
dz
; `57 =

�(1�m)
`14

(`51(i31 � i32) + `52(i21 � i22) + `53(i1 � i2)

+`54(
1

i1
� 1

i2
) + `55(ln i1 � ln i2));

`58 =
1

`14
(`51(i31 ln i2 � i32 ln i1) + `52(i21 ln i2 � i22 ln i1) + `53(i1 ln i2 � i2 ln i1) + `54(

ln i2
i1

� ln i1
i2
) + `56(ln i2 � ln i1));

`59 = `55 +
`57

(1�m) ; `60 = `56 + `58; `61 =
3`51

2(1�m)
dÞ0
dz
;

`62 =
`52

(1�m)
dÞ0
dz

+
dÞ0
dz
dÞ1
dz

1

4(1�m)2 ; `63 =
`53

2(1�m)
dÞ0
dz

+ 3`49`51
dÞ0
dz
;

`64 =
`59

2(1�m)
dÞ0
dz

+
dÞ0
dz
dÞ1
dz

`49
(1�m) + 2`49`52

dÞ0
dz
; `65 = �

`54
2(1�m)

dÞ0
dz

+`49`53
dÞ0
dz
;
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`66 = `249
dÞ0
dz
dÞ1
dz

+ `49`59
dÞ0
dz
; `67 = �`49`54

dÞ0
dz
; `68 =

�2mHy`61
4(1�m) �

`16gr
16(1�m)

`69 =
�2mHy`62
3(1�m) +

gr
9`11(1�m)

� br`21
9(1�m) ; `70 =

�mHy`63
(1�m) +

gr`17
4(1�m) �

br`26
4(1�m)

� gr`20
4(1�m) +

br`23
4(1�m) ;

`71 =
�2mHy`64
(1�m) ; `72 =

�2mHy`65
(1�m) ; `73 =

�gr`17
4(1�m) �

br`23
4(1�m) ; `74 =

�2mHy`66
(1�m) ;

`75 =
�mHy`67
(1�m) ; `76 =

�(1�m)
`14

(`68(i41 � i42) + `69(i31 � i32) + `70(i21 � i22) + `71(i1 � i2)

+`72(ln i1 � ln i2) + `73(i21 ln i1 � i22 ln i2) + `74(
1

i2
� 1

i1
) + `75(

1

i22
� 1

i21
));

`77 =
1

`14
(`68(i41 ln i2 � i42 ln i1) + `69(i31 ln i2 � i32 ln i1) + `70(i21 ln i2 � i22 ln i1)

+`71(i1 ln i2 � i2 ln i1) + `73(i21 ln i1 ln i2 � i22 ln i1 ln i2)� `74(
ln i2
i1

� ln i1
i2
)

+`75(
ln i1
i22

� ln i2
i21
))

`78 = `72 +
`76

(1�m) ; `79 = `69 + `51; `80 = `52 + `70; `81 = `53 + `71; `82 = `54 � `74;

`83 = `59 + `78; `84 = `60 + `77; `85 =
i22 � i21
2

; `86 =
i42 � i41

16(1�m) + `49((
i22 ln i2
2

� i
2
2

4
)

�( i
2
1 ln i1
2

� i
2
1

4
)) + `50(

i22 � i21
2

);

`87 =
`51(i52 � i51)

5
+
`52(i42 � i41)

4
+
`53(i32 � i31)

3
+ `54(i2 � i1) + `59((

i22 ln i2
2

� i
2
1 ln i1
2

)

�( i
2
2 � i21
4

) +
`60(i22 � i21)

2
;

`88 =
`68
6
(i62 � i61) +

`69
5
(i52 � i51) +

`70
4
(i42 � i41) +

`71
3
(i32 � i31) +

`77
2
(i22 � i21) + `78((

i22 ln i2
2

� i
2
1 ln i1
2

)� ( i
2
2 � i21
4

)) + `73((
i42 ln i2
4

� i
4
1 ln i1
4

)� ( i
4
2 � i41
16

))� `74(i2 � i1)� `75(ln i2

� ln i1);

`89 =
`85 � `87 � `88

`86
;

b1 = (
�Tm

Bm(i1 � i2)
)2; b2 =

�2C3Tm
Bm(i1 � i2)

; b3 =
�Tm

Bm(i1 � i2)
; b4 =

�i22
2
b23 � i2(C1b3 + C3b3)

�C1C3 ln(i2);
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b5 =
�i22
4
b23 � i2(C1b3 + C3b3)�

C1C3(ln i2)2

2
� b4 ln i2;

b6 =
�b1
2
i22 � C23 (ln i2)� b2i2; b7 =

�b1
4
i22 �

C23 (ln i2)
2

2
� b2i2 � b6 ln i2;

b8 =
�Bmb23
4

� b1
4
Tm; b9 = �Bm(C1b3 + C3b3)� b2Tm; b10 = �Bmb4 � b6Tm;

b11 =
�BmC1C3

2
� TmC

2
3

2
; b12 = �Bmb5 � b7Tm; b13 =

�(gr + br)Tm
Bm(i1 � i2)

;

b14 = C3gr + C1br; b15 = C4gr + C2br; b16 =
mHya

2
1

1�m ; b17 =
b16
i2
+
b16
i2
ln(i2);

b18 =
�i22
2
+ i22 ln(i2); b19 =

�i32b13
3

� b14(
i22 ln(i2)
2

� i
2
2

4
)� b15i

2
2

2
;

b20 =
�i32b13
9(1�m) �

b14
(1�m)(

i22 ln(i2)
2

� i
2
2

4
)� b15i22

4(1�m) �
b19 ln(i2)
(1�m) ; b21 =

b13
9(1�m) ;

b22 =
b15

4(1�m) �
2b14

8(1�m) ; b23 =
b14

4(1�m) ; b24 =
b16
i2
� b19
(1�m) ; b25 = �b17 � b20:
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Fig. 2.1; Velocity �eld for m = 0:27; mt = 1:22; gr = 2:46; br = 2:43; Bm = 4:86; Hy = 0:12;

Q = 0:01; � = 0:13; � = 0:25; z= 0:15; dÞdz = 0:53:
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Fig. 2.2; Velocity �eld for m = 0:96; Hy = 0:02; z= 0:05; � = 0:19; � = 0:53; Tm = 6:12;

Q = 0:02; br = 4:61; Bm = 5:21:
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Fig. 2.3; Velocity �eld for m = 0:94; gr = 4:8; Bm = 4:21; Tm = 3:12; Hy = 0:05; Q = 0:03;

z= 0:03; � = 0:19; � = 0:31:
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Fig. 2.4; Velocity �eld for m = 0:86; � = 0:36; br = 3:51; Q = 0:09; gr = 4:85; z= 0:46;

Tm = 5:95; Hy = 0:18; � = 0:19:
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Fig. 2.5; Velocity �eld for m = 0:61; br = 4:55; gr = 3:95; Bm = 0:1; Hy = 0:16; Q = 0:02;

� = 0:03; � = 0:18; z= 0:01:
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Fig. 2.6; Þressure rise distribution for m = 0:02; Tm = 0:51; gr = 0:52, br = 0:22; Bm = 0:81;

Hy = 0:11; � = 0:03:
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Fig. 2.7; Þressure rise distribution for � = 0:05; Tm = 5:14; m = 0:1; gr = 3:32; br = 2:22;

Bm = 2:41; � = 0:02:
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Fig. 2.8; Þressure rise distribution for Bm = 0:18; � = 0:11; Tm = 0:22; gr = 0:52; Hy = 0:01;

� = 0:13; br = 0:23:
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Fig. 2.9; Þressure rise distribution for m = 0:11; � = 0:01; Bm = 6:49; Hy = 0:14; gr = 8:92;

br = 3:62; � = 0:03:
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Fig. 2.10; Þressure rise distribution for � = 0:15; m = 0:1; � = 0:11; gr = 3:4; Hy = 0:12;

br = 4:92; Tm = 3:44:
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Fig. 2.11; Þressure rise distribution for m = 0:01; � = 0:13; gr = 2:43; � = 0:19; Tm = 4:77;

br = 5:71; Bm = 4:82; Hy = 0:14; d = 2:1:
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Fig. 2.12; Frictional force (on inward cylinder) for � = 0:03; Tm = 0:51, m = 0:02; br = 0:22;

Bm = 0:81; Hy = 0:11; gr = 0:52:
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Fig. 2.13; Friction force (inward cylinder) for Hy = 0:01; � = 0:13; � = 0:11; Tm = 0:22;

gr = 0:52; br = 0:23; Bm = 0:18:
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Fig. 2.14; Friction force (inward cylinder ) for m = 2:1; � = 0:13; br = 5:71 Tm = 4:77;

Bm = 4:82; m = 0:01; gr = 2:43; Hy = 0:14; � = 0:19:
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Fig. 2.15; Frictional force (on inward cylinder ) for � = 0:01; br = 3:62; � = 0:03; Hy = 0:14;

gr = 8:92; m = 0:11:
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Fig. 2.16; Frictional force (on inward cylinder ) for Bm = 2:41; Tm = 5:14; gr = 3:32;

� = 0:05; br = 2:22; � = 0:02; m = 0:1:
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Fig. 2.17; Frictional force (on inward cylinder ) for Tm = 3:44; � = 0:15; � = 0:11; Hy = 0:12;

gr = 3:4; br = 4:92; m = 0:1:
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Fig. 2.18; Frictional force (on outward cylinder ) for m = 0:1; � = 0:05; Bm = 2:41;

Tm = 5:14; gr = 3:32; br = 2:22; � = 0:02:
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Fig. 2.19; Frictional force (on outward cylinder ) for m = 0:02; gr = 0:52, br = 0:22;

Tm = 0:51; � = 0:03; Bm = 0:81; Hy = 0:11:
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Fig. 2.20; Frictional force (on outward cylinder )for � = 0:15; m = 0:1; gr = 3:4; Tm = 3:44;

Hy = 0:12; br = 4:92; � = 0:11:
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Fig. 2.21; Frictional force (on outward cylinder ) for � = 0:03; � = 0:01; Hy = 0:14;

Bm = 6:49; gr = 8:92; br = 3:62; m = 0:11:
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Fig. 2.22; Friction force (on outward cylinder ) for Hy = 0:01; � = 0:11; � = 0:13; gr = 0:52;

Bm = 0:18; Tm = 0:22; br = 0:23:
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Fig. 2.23; Friction force (outward cylinder ) for � = 0:13; br = 5:71; gr = 2:43; Bm = 4:82;

� = 0:19; Tm = 4:77; m = 0:01; Hy = 0:14; d = 2:1:
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Fig. 2.24; Concentration �eld for z= 0:06; Bm = 3:55; � = 0:03; � = 0:14:
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Fig. 2.25; Concentration �eld for z= 0:06; � = 0:03; � = 0:14; Tm = 3:55:
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Fig. 2.26; Temperature pro�le for z= 0:31; Tm = 0:03; � = 0:06; � = 0:02:
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Fig. 2.27; Temperature pro�le for z= 0:31; � = 0:02; Bm = 0:03; � = 0:06:
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Fig. 2.28; Þressure gradient distribution for sinusoidal wave for Hy = 0:13; Bm = 2:72;

� = 0:11; gr = 2:44; Q = 0:42; m = 0:23; Tm = 2:88; br = 2:77:
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Fig. 2.29; Þressure gradient distribution (triangular wave) for m = 0:23; � = 0:11;

Bm = 2:72; gr = 2:44; br = 2:77; Q = 0:42; Tm = 2:88; Hy = 0:13:
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.Fig. 2.30; Þressure gradient distribution (square wave) for Hy = 0:13; � = 0:11; Bm = 2:72;

gr = 2:44; br = 2:77; Q = 0:42; Tm = 2:88; m = 0:23:
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Fig. 2.31; Þressure gradient distribution (traþezoidal wave) for m = 0:23; � = 0:11;

Tm = 2:88; gr = 2:44; br = 2:77; Q = 0:42; Hy = 0:13; Bm = 2:72:
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Fig. 2.32; Þressure gradient distribution (multisinusoidal wave) for d = 1:77; m = 0:23;

Hy = 0:13; br = 2:77; � = 0:11; Q = 0:42; Tm = 2:88; gr = 2:44; Bm = 2:72:
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Fig. 2.33; Streamlines for sinusoidal wave for br = 5:22; � = 0:10; � = 0:25; Hy = 0:11;

Tm = 3:92; Q = 0:53; m = 0:19; gr = 4:44; Bm = 5:83; :

Fig. 2.34; Streamlines for Multisinusoidal wave for Q = 0:53; � = 0:10; m = 0:19; Tm = 3:92;

� = 0:25; m = 2:1; Hy = 0:11; Bm = 5:83; gr = 4:44; br = 5:22:
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Fig. 2.35; Streamlines for Triangular wave for Tm = 3:92; � = 0:10; m = 0:19; � = 0:25;

Hy = 0:11; Bm = 5:83; br = 5:22; Q = 0:53; gr = 4:44:

Fig. 2.36; Streamlines for Square wave for Bm = 5:83; � = 0:10; m = 0:19; Hy = 0:11;

Q = 0:53; gr = 4:44; � = 0:25; br = 5:22; Tm = 3:92:
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Fig. 2.37; Streamlines for Traþezoidal wave for gr = 4:44; m = 0:19; � = 0:25; Tm = 3:92;

Bm = 5:83; Hy = 0:11; Q = 0:53; br = 5:22; � = 0:10:
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