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Preface

Peristalsis is a distinct pattern of smooth muscle contractions that mix the food
material properly through the esophagus and intestines. Literature on peristalsis is quite
extensive i.e. with the initiative work of Latham [1]. He discussed the fluid motion in
peristaltic pump. After the Latham, Jaffrin and Shapiro [2] makes the developments on
mathematical modeling and experimental fluid mechanics of peristaltic flows. They make
the analysis under the assumption of long wave length and low Reynolds number
approximation. Peristaltic motion in both mechanical and physiological situation has
been discussed by the researchers of last few decades [3-8]. Recently peristaltic flow has
gained many attentions of the researchers due to its wide range of applications in

physiology and industry see Refs [9-13].

Nano fluid is basically the liquid suspension that contains very small particles of
diameter less than 100nm. These particles can be found in the metals such as, oxides,
carbides, nitrides or nonmetals (Graphite, carbon nanotubes). The pioneering work for the
Nano fluids was reported by Choi [14]. He observed that the small amount of these
nanoparticles significantly increases the thermal conductivity of the base fluid.
Buongiorno [15] present convective transport in Nano fluids. He proposed a
nonhomogeneous equilibrium model which predicts that increase in the thermal
conductivity occurs due to the presence of the Brownian motion and thermophoretic
parameters which are basically the diffusion of nanoparticles. Kuznetsov and Nield [16]
reported the natural convective boundary layer flow of Nano fluid past a rigid flat plate.
Sadik and Pramuanjaroenkij [17] discussed the review of convective heat transfer
enhancement with Nano fluids. Two-dimensional boundary layer flow of Nano fluid over
an impermeable stretching sheet was analyzed by Khan and Pop [18]. Heat transfer
enhancement by using nanofluids in forced convection flows was visualized by Marga et
al. [19]. Rana and Bhargava [20] extended the work of Khan and Pop for nonlinearly

stretching sheet. The influence of endoscope on the peristaltic transport of nanofluid has



been examined by Akbar and Nadeem [21]. Peristaltic flow of a Nano fluid in a non-

uniform tube has been addressed by Akbar et al. [22].

The dissertation is arranged as follows. In chapter one, we have presented the Peristaltic
movement of hyperbolic tangent fluid under the effects of heat and mass transfer in an
annulus. The two dimensional equations of tangent hyperbolic fluid are solved by using
the assumptions of low Reynolds number and long wave length and then find their

solutions analytically.

Chapter two is devoted to the study of Nano fluid model. The solutions of the simplified
problem are found analytically with the help of Adomian decomposition method and

Homotopy perturbation method. Finally the physically feature have been presented.
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Chapter 1

Peristaltic movement of hyperbolic
tangent fluid under the effects of

heat and mass transfer in an annulus

1.1 Introduction

This chapter describes the peristaltic motion of a hyperbolic tangent fluid in an annulus in the
presence of heat and mass transfer. Equations of tangent hyperbolic fluid are modelled and
simplified by constructing the suppositions of low Reynolds number as well as long wave length.
Analytical result is available for velocity profile whereas exact results are calculated for heat
and concentration field. Solutions are presented through graphs. The terms for concentration
field, temperature, pressure gradient and pressure rise are drawn for different fixed parameters.
This is the review of paper by Akbar et al [21] and the essential details missing in the paper

are incorporated.

1.2 Mathematical formulation

Equations of mass and momentum for an incompressible fluid, are specified as [21]

div A =0, (1.1)



dA -~

where A, p, f, S, gives the velocity vector, density, specific body force and Cauchy stress

tensor respectively. Governing equations for hyperbolic tangent fluid is defined as
S=-DPI+7, (1.3)

F = [l + (1101 7o) tanh(T3) ™}, (1.4)

in which 7 , 19, 7., m, I', denotes the extra stress tensor, zero shear rate viscosity, infinite

rate of shear viscosity, power law index, and time constant respectively and '~y now defined as

1 - = 1
5 22 Vi = 5T (1.5)
i

where

7 = trace(grad A + (grad A)7)2, (1.6)

in which 7 is the second invariant strain tensor. We study Eq. (1.4) in the case for ., = 0 and

I"Ty < 1. The element of extra stress tensor so inscribed as

F = nol(P)™ 4 = nol(1 + T4 = D™; = mo[1 +m(TY — D}, (1.7)

4, =L+LT (1.8)



1.3 Formulation of the Problem
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Considering the peristaltic transport in the profile of an incompressible hyperbolic tangent
fluid in an annulus. Inward cylinder is rigid, and kept at temperature Ty however outward
cylinder takes a sinusoidal wave travelling down its walls and kept at temperature T;. Wall

surface geometry is expressed as

El = Hl; (19)
~ 21~ ~
R, :Hg—l—EsmT(Z—s‘g), (1.10)

where Hi, Hy, \, E, 3, is the radius of the inward and outward cylinders, wavelength, wave
amplitude, and wave speed respectively. For an annulus, velocity, temperature, and concentra-

tion fields takes the form



T = TG.R2), C=Ci.R 7). (1.11)

For an incompressible hyperbolic tangent fluid model the leading equations in the fixed

frame are given as

W Y W_, (1.12)
OR R 0%
oU ~0U —~0U op 10RTzz) 0(Frz) T
oY g oYy o % 10T | TTRE) Tap (1.13)
o OR o7 OR R OR a7 R
OW  ~0W —~0W ob  10R7Tz;) 0(T5) ~ =
S U= AW—=2) = ——=+=— B2 FE 0 (T T
p( 5 Uag aZ) AR 7 Py I( 1)

+pga(C —Cy), (1.14)
Energy and mass concentration equations are defined as

oT ~0T —dT T 19T T

pep(—=+U—=4+W—=)=k +=—+ + Qo, 1.15
#l ot oR 82) (832 R OR 8Z)2) " ( )
(—9+U—g+w Q)——al( Q+ Q+ ¢ + (= 2= = ). (1.16)

ot OR 0%

oR> ROR 970 tm oR° ROR 97’

In the above equations G, W are the corresponding velocity components in radial as well
in axial directions respectively. U:“ is temperature, p denotes the density, whereas at constant
pressure ¢, gives the specific heat. c is the concentration of fluid, x denotes the thermal
conductivity, fm is medium temperature, d denotes the mass diffusivity coefficient and thermal-
diffusion ratio is denoted by kf. In the fixed coordinates (f{, Z) the flow among cylinders is

unsteady. It converts steady in a wave structure (I, 7) moving with similar speed as the wave
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movements in the Z direction. Both structures are connected through the following transfor-

mations.

T=R 7=72-5,1=0, §=W-3, (1.17)

>

ol

where 7, w are the velocity components in the wave structure. Suitable boundary limits in

wave structures stand

- -~ o~ - -~ 2

wW=-§ atT=1;, w=—-SatT =1 :H2—|—Esin77r(z), (1.18)
T=ToatT=1i, T="T, atT=1, (1.19)
C=CoatT=i, C=C atT=i. (1.20)

Introducing the dimensionless parameters

R T Z 7 W W AU A1
R = > > Z = = = = W = = = = = = kd
E) H27 r H27 > A7 Z A) 5 g ) w 57 H2§7 1,’;[ H2§7
HZP T-T i . H H C—C
p o= 220 g 270 Sy Mg pST _9-G
SAN To—T A A U Co—C1
. i H : i : H2§ I's n
11 H2 H2 €, 12 H2 + @ sin 27z, S 377 3 Yy H2 ’ s d,O’
2 - - ~ ~
pgazH;(To—T1) pgagH3(Co—C1)  Hy E
gr = - - ) bT = ~ y V= ¢ = Fr)
ns ns S H,
H2 dk:(To =T 7H.
p = Qo RS:M, po="1Tr ,_ T2 (1.21)
k(TO — Tl) W?m(go - Ql) k ns

In above equations b, Cs, Rs, gr, H,, ®<1 is the local concentration Grashof number,
Schmidt number, Soret number, local temperature Grashof number, Weissenberg number and

amplitude ratio respectively. Using Eqs. (1.17) and (1.21) in Eqs. (1.12) to (1.16), we obtain



oy y  Oow
o trt e, =0 (1.22)
3 oy Oy ob 20 ) )
5 Ry( a +W87) —E + 6 @(Trz) + ;a(r'rrr) — ;T@g, (123)
N ow ow op 190 ~ 0
ORy(us -+ W) = =+ 5 (170) + 05 (T2a) + 900 + bro, (1.24)
A 06 00 0% 100 .20%
oprRy(us +wom) = o5+ -+ 0 g + B, (1.25)
~, Oo do 1 10 0o 20%0 10, 00 20%0
Rbugr +u5) = GG + 8 Ga) B R0gD + 8 5g) (1.26)
where
T = 2[4 m(H - 1)@5‘,
T
. 31; 3W
- . 8W
Ty = 20[14+m(H,/Y — 1)]5,
o0 = 20[1+m(H,F - 1), (1.27)
2,00, oyu2 0w, <2, 0W . o 21y 1
= [20 (ar) (826 +g> +26 (82) +207 512 (1.28)

in which 3, P., Ry, H, be the wave, Prandtl number, Weissenberg, and Reynolds number
respectively. By suppositions of low Reynolds number and long wave length, avoiding the

relations of order & and greater, Eqs. (1.23) to (1.26) take the form

opb



0% 100 o (1.31)
or?2  ror - '

1 10 0o 10, 00

a(;a(ra)) + Rs(;a(rg)) =0. (1.32)

Eq. (1.29) displays that P is not a function of r. The consistent dimensionless boundary

conditions for the problem in consideration are defined as

w = —latr=ij=¢ w=—1latr=1iy =1+ Psin(27z),

o = O=1latr=1i, c =0=0at r =io, (1.33)

1.4 Solution of the problem

Eq. (1.31) is the second order linear nonhomogeneous partial differential equation. Its solution

sustaining the boundary limits can be straightforward inscribed as

1
0= 37(1312 Inr + f3131"2 + 814). (1.34)
11

Invoking Eq. (1.34) into Eq. (1.32) the solution of resultant equation supporting the
boundary conditions (1.33) take the form

R,S.

— B (312 Inr + 3131‘2 + 314) + By7Int + B15. (135)

g =

where all 8;; are defined in appendix.

1.5 Analytical Solution

Substitution of Eqgs. (1.34) and (1.35) into the Eq. (1.30), yields



ob 10 ow ow L

- = ___ - 2
pe o [I‘(l + m(Hy or 1)) ar ] + gr(ﬁn (B12 Inr + 8131‘ + 314))
R,C,
+br(— B (BioInt + By3r® 4 Big) + Br7lnr + Byg). (1.36)

To find the results of Eq. (1.36), we have used regular perturbation method. For regular

perturbation procedure, we expand w, F; and P as

w = wo+ H,wi+ ..,
F, = FOi“‘HyFli“‘---a

b = po+HyP1+..., (137)

where F; is flow rate.
Substituting Eq. (1.37) into Egs. (1.36) and (1.33), equating the like powers of H, we

obtain the following systems

1.5.1 Zeroth-order system

opb 10 ow
(Tzo = o (1~ m)a—r”) + 12819 + Boo Int + By, (1.38)
wo=—1,atr =ij=¢, wo=—1, r=iy = 1 + Psin 27z (1.39)

1.5.2 First-order system

8D1 . 10 8w1 aWO 2
Ozt 8r(r(1 -m) or +m Or ) (1.40)
w1 =0, atr =iy =¢, wi=0, r =iy = 1 + ®sin 27z. (1.41)

1.5.3 Zeroth-order solution

The solution of Eq. (1.38) filling the boundary conditions (1.39) takes the form

10



@( r?
dz “4(1 —m)
+B30 Int + Bo7.

wg = + BogInr + f)gg) + BQQI‘4 + 8241‘2 + 13231‘2 Inr

1.5.4 First-order solution

(1.42)

Invoking Eq. (1.42) into Eq. (1.40), the solution of resultant equation sustaining the boundary

conditions (1.41) take the form

dpl 1‘2

E(iél(l — ) + Bag Int + B2g) + 17 Bas + 19844 + r°Bys

1
+r4f345 + r3f347 + 1‘21348 + 141 — ;842 + 13491‘6 Inr

+B50r° In(r) + 8510 In1 + Bsor®(In1)? 4 Bszr?Inr
B54(Inr)

Bss.
(lfm)—i_ 55

+

The resulting expression for velocity field is defined

@( r?
dz "4(1 —m)
+830 In(r) + Bay + Hy(r7B43 + 19844 4+ 1°Bas + 1*Bag + 17847

+ Bog InT + Bog) + Boor? + Boyr? 4 Bozr?Int

1
+12B4g + B4y — ;1342 + Bagr® In(r) + Bsor° In(r) + B5rtinr
B54(InT)
(1—m)

+ﬁ521‘5 (In I‘)2 + 1[3531‘2 Inr+ + B55).

The dimensionless time mean flow rate Fp; and Fy; are defined as

iz
FOi = / I'WodI',
i1

iz
Fh' = / I‘WldI‘.
i

11

(1.43)

(1.44)

(1.45)

(1.46)



Switching Egs. (1.42) and (1.43) into Eqgs (1.45) and (1.46), we obtain

dp

Foi = 856 + 357(70), (1.47)
Z
db

Fii = B2 + 357(7;), (1.48)

with the aid of Eqs. (1.47) and (1.48) we acquire as

db F,
— = 4 B 1.49
dz B57 + b7 ( )

1.6 Volume flow rate
In the fixed coordinates volume flow rate in the instantaneous position is specified by

Ro
Q1 = 2r / RWdR, (1.50)

B1

where R, is a function of 7 and {. Invoking Eq. (1.17) into Eq. (1.50) and then integrating

produces
~ _ 2 2
Q1 = Go + m3(iy — 1), (1.51)
where
iz
Jo = 2r / T, (1.52)

i1
In the moving coordinates system the volume flow rate is independent of time as mention

in Eq. (1.52). Here iy is the function of Z alone. Using dimensionless variables we find

F; o _ /rwdr. (1.53)

12



Over a period T' = % the time-mean flow at a fixed Z position is defined as

T

- 1 _ o~

Q= Q1df. (1.54)
/

Invoking Eq. (1.51) into Eq. (1.54) and integrating, we attain

Q= Gy + 75 (73 —Tf) , (1.55)
which can be inscribed as
9 1 1+qi2—e2 (1.56)
27rH22§ 27rH22§ 2 2 ’ '
Dimensionless time-mean flow can be defined as
Q da
=—— F=—. 1.57
@ 2rH23 " 2wH33 (1.57)
With the aid of Eq. (1.57), Eq. (1.56) take the formula
1 o2
Q_Fi+2<1+2—e2>. (1.58)

The Pressure rise distribution AP and frictionl forces on the outward and inward cylinders

are F® and F? in non dimensional systems are define as

L dp
Fe /112( dp)d (1.60)
= _— 7 .
0 1 dz )
Fb—/liQ(—dp)dz (1.61)
N 0 2 dz ' ’

By substituting Eq. (1.49) into Eq. (1.59) to (1.61) with i1 = €, ia = 1 4+ ®sin(27z), we

acquire the AP (Pressure rise) and the F®, F? (frictional forces) on the outward and inward

13



cylinders as

db r r?In(r) 12 r? 16 r r?
v = & = = — — —
dz(16(1_m)+329( 2 4)+BQ82)+3226+BQ44+BQ72
r* In(r r r?In(r r?
+123( 4( ) _ E) + B3o( 2( ) _ Z) + Hy(x"B55 + 1®859 + 1" Beo

+IGB61 + 1'51362 + r4f563 + T3BG4 + 1‘2865 — 1By + 8661"8 ln(r) + B67I'7 Inr

+8gst Int + Bgort Int + B70r7(1n )2 + 87:r% In r).

(1.62)

(1.63)

(1.64)

(1.65)

(1.66)

For study, we have experimental five wave forms specifically, sinusoidal wave, square wave,

triangular wave, trapezoidal wave, and multisinusoidal wave. Expressions of above mention

waves in dimensionless form can be written as
1. Multisinusoidal wave:
ia(z) = 1+ ®sin(2fnz),
2. Square wave:

(_1 v+1

io(z) =14 @{% Z (20)_1) cos(2m(2v — 1)z)},
v=1

14

(1.67)

(1.68)



3. Triangular wave:

is(z) =1+ % Z D sm (2m(2v — 1)z)}, (1.69)
=

4. Trapezoidal wave:

2 o= sin § (20 — 1)

ir(z) =1+ @{% > RCTT sin(27(2v — 1))}, (1.70)
v=1

5. Sinusoidal wave:

i2(z) = 1+ Psin(27z), (1.71)

The expression for Pressure rise AP and the friction forces are considered numerically by

mathematica, where as constants are defined in appendix.

1.7 Results and discussion

Graphical analysis of Pressure rise, inward and outward friction forces, stream lines and Pressure
gradient are represented in this unit. Figs. (1.1) and (1.2) shows the velocity profile for different
values of ¢, and b,.. From these figures, it is detected that the velocity profile increases when
the values of g, and b, increases in the range re [0.2,0.65] otherwise decreases. Figs (1.3) to
(1.5) represent the variation of concentration field for different values of Rs (Soret number),
Cs (Schmidth number), and B (absorbtion parameter). It is also shown by these figures that
concentration field decreases when the values of Rg;, Cs and B increases. The variation of
temperature profile for various values of B is depicted in the Fig. (1.6) it is revealed that
concentration field increases when values of B (absorbtion parameter) increases. The effects of
various parameters such as Weissenberg number H,, amplitude ratio ®, power law index m,
and different wave forms, on AP (Pressure rise) are represented in the Figs. (1.7) to (1.10).
Figs. (1.7) to (1.9) shows that when the values of parameters H,, ®, m, increases, Pressure
rise decreases as well as increases for the different values of time mean flow rate. Peristaltic
pumping regions are @ € [-2,—0.1], Q € [-2,0.1], @ € [-2,—0.11], other wise it is co pumping
or augmented pumping regions. In Fig. (1.10) Peristaltic pumping region is @ € [—2,0], other

15



wise it is augmented pumping region. Moreover Trapizoidal wave shows good agreement in the
peristaltic pumping region. Behavior of the inward and outward frictional forces are displayed
in the Figs. (1.11) to (1.18). It is detected from these figures that the inward and outward
frictional forces shows the opposite behavior comparatively Pressure rise. Inward and the
outward frictional forces behave in a similar manner for the same values of emerging parameters.
Moreover it is also detected that the outward friction force is larger than inward friction force
for the similar values of emerging parameters. Figs. (1.19) to (1.23) represented the effects of
Pressure gradient for different values of ®. Figs. (1.19) to (1.21) shows that Pressure gradient
is small for the regions z € [1,1.5] and [2.1,2.5], and is large for the regions z€ [1.6,1.9].
Fig. (1.22), shows a small Pressure gradient for the regions z€ [1.1,1.3], z€ [1.6,1.8], and
z€ [2.2,2.4] and also shows that a large Pressure gradient occurs for the regions z€ [1.31,1.59],
and z€ [1.81,2.19]. Fig. (1.23) represents a small Pressure gradient for the region z€ [1.76, 2.25]
and a large Pressure gradient for the region z€ [1.25,1.75]. Effects on the streamlines due to
the different values of ® for the trapping phenomenon in the case of five different wave forms
is depicted in the Figs. (1.24) to (1.28) It is experimental that in the case of Triangular wave,

trapped bolus has small magnitude when it is related to other waves.

16



1.8 Appendix1.0

B25

B26

Bog

Ba1

B4s

Bag

B53

4(lniy —Inip), B1p = 4+ B(i? —i2), 813 = B(lniy — Iniy),

_RsCs . .
B(l% ln i1 — i% lnig) — 4ln ig, 1315 = B (812 ln 11 + 8131% + 814),
11
_RSCS . . 1 - ﬁ ‘|‘ B
(By2 Inig + By3is 4 Big), Br7 = -1 THI6
Ini; —Iniy
In ig — Bl5 In ig + 816 In i1 . grﬁlg B Rscsbrﬁlg
Inis — Ini; ’ B B11 ’
53 R,C.b,8 5 R,C.b,8
22 2 4 by, By = 2t — 2 bBis,
B11 B11 B11 B11
—Big B — —Ba0 By — Bao  Ba
16(1—m) 2 41-m) > 40-m) 4(1—-m)’
—(1—m) 4 . D1 . 2 9 .
m(ﬁgg(li’L — 1‘21) + 323(1% In 11 — 1% In 12) + 324(1% — 13)),
i2 — 12 1

e, By =1+ (B2 (if Iniy — i3 Ini;)

4(111 il —1In ig),
+B93((i2 InigIniy — i3 InigIniy) + Boyg (12 Iniy — i3 Iniy),

(ln il —In 12)

i2lnip —i2Ini _ By B — Bos Bt — 48
41 —m)(ni; —Inip)” 2 (I—m)" " @ —m) T
1 dp dp
Bz + 2824 + WT;, B3g = 5297; + B30, Bzs = 2Bas,
—mB2 —2mB3z1832 —m
1= 7?11)7 B3 = W7 37 = m@ﬁ:ﬂﬁ% + 332)7
—m —m —m
a—m) (2833834), Byo = m@ﬁwﬁ@, Bao = a=m) (2851834),
-m —m#B3 B35 —Bao
2839B33), Bao = 3B By = —2, By = ——
(1—m)( 32833), Bao (—m) b8~ 7 Bu= 5
Bﬁ _ 2mﬁ§4 B _ —839 ﬁ _ & B _ _338
5 125(1—m)’ 16 = 5 0 B = 5 Bag 1
Bas B — % By — Bag Bro — ﬂ
6 00T a5 —my DT T B2 = gy
B3s . . . . Ba2
7, 354 = (1 — m)(—ﬁg,gl% — 8511411 — 3501‘? — f3491(15 + m

. .2 .3 4 .5 -6 .7
 Bain Basly  Baziy  Baely  Basly  Baai]  Bagly

In il In il In il In il In il In il In il

. . Ini Ini B
—Bsoil Iniy) + (———— — ———)(— =2

_ D42 . .2
Aom  a-m' + igB41 + 15848
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+i3Ba7 + i5Ba6 + 15845 + i9Basg + 19843 — iF InigBs3 — if InisBs

—i2 InigBso — 18 InisBag + i2 InisBss + is IniaBs; + i3 InizBsg
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71% ln(il))a
Brn — —Bs6 — HyB7o
= .
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Fig. (1.1), Velocity field for z= 0.01, m = 0.23, @ = 0.02, & = 0.43, H, = 0.07, B = 0.06,
€ =019, Cy = 4.53, b, = 5.61, Ry = 3.82.
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Fig. (1.2), Velocity field for z= 0.01, Ry = 3.82, m = 0.23, @ = 0.02, B = 0.06, ® = 0.43,
b, =5.61, e =0.19, Cs = 4.53, H, = 0.07.
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Fig. (1.3), Concentration field for & = 0.14, H, = 0.33, € = 0.13, z= 0.3, b, = 0.13,
Ry = 0.32, Cs = 0.31, g, = 0.21.
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Fig. (1.4), Concentration field for z= 0.3, ® = 0.14, e = 0.13, b, = 0.21, H, = 0.33,
Ry =0.31, B=0.32, g, = 0.13.
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Fig. (1.5), Concentration field for H, = 0.33, ® = 0.14, z= 0.3, g, = 0.13, b, = 0.21,
Cs=0.31,¢=0.13, B=0.32.
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Fig. (1.6), Temperature field for ® = 0.14, H, = 0.33, z= 0.3, b, = 0.21, g, = 0.13,
R; =0.31, Cs =0.32, e = 0.13.
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Fig. (1.7), Pressure rise versus flow rate for ® = 0.07, B = 0.23, ¢ = 0.01, Cs = 3.91,
gr = 2.64, b, = 4.92, Ry = 3.33, m = 0.24.

Q

Fig. (1.8), Pressure rise distribution for m = 0.11, H, = 0.12, B = 0.3, e = 0.01, Cs = 0.31,
gr = 0.33, b, = 0.26, Ry = 0.42.
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Fig. (1.9), Pressure rise versus flow rate for ® = 0.28, H, = 0.63, B = 0.11, ¢ = 0.02,

C, =051, g, = 0.63, b, = 0.71, R, = 0.32.

Fig. (1.10), Pressure rise versus flow rate distribution for ® = 0.18, H, = 0.21, B = 1.09,
F=2 =009, Cy =24, g, =33 b — 4.2, Rs = 2.5 m = 0.01.
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Fig. (1.11), Friction force (on inward cylinder ) versus flow rate for H, = 0.12, B = 0.3,
Ry = 0.42, ¢ = 0.01, b, = 0.26, Cs = 0.31, m = 0.11, g, = 0.33.

05 1 15 2

Fig. (1.12), Friction force (on inward cylinder ) versus flow rate for & = 0.07, B = 0.23,
e =0.01, g, =2.64, Cs =391, b, =4.92, m = 0.24, R; = 3.33.
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Fig. (1.13), Friction force (outward cylinder ) versus flow rate for ® = 0.18, H, = 0.21,
Cy=24, g, =33, B=1.09, f =2, ¢ =0.09, m = 0.01, b, = 4.2, Ry = 2.5.
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Fig. (1.14), Friction force (inward cylinder ) versus flow rate for g, = 0.63, H, = 0.63,
Ry =0.32, B=0.11, ¢ = 0.02, Cs = 0.51, b, = 0.71, & = 0.28.
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Fig. (1.15), Friction force (outward cylinder ) versus flow rate for ® = 0.07, B = 0.23,
e=0.01, Cs =391, g, =2.64, b, =4.92, R, = 3.33, m = 0.24.
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Fig. (1.16), Friction force (outward cylinder ) versus flow rate for & = 0.28, B = 0.11,
R, =0.32, € =0.02, C;, = 0.51, g, = 0.63, b, = 0.71, H, = 0.63.
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Fig. (1.17), Friction force (inward cylinder ) versus flow rate for & = 0.18, H, = 0.21,
B=1.09,m=001,e=0.09, g =3.3, C; = 2.4, b, =42, f = 2, Ry = 2.5.
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Fig. (1.18), Friction force (outward cylinder ) versus flow rate for g, = 0.33, m = 0.11,
B=0.3,¢=001, H,=0.12, b, = 0.26, C, = 0.31, R, = 0.42.
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dp/dz

Fig. (1.19), Pressure gradient (Sinusoidal wave) for m = 0.23, H, = 0.16, B = 0.23,
Q =002, e=0.11, g, = 3.44, b, = 3.77, Ry = 2.62, C, — 3.88.

dp/dz

Fig. (1.20), Pressure gradient (trapezoidal wave) for b, = 3.77, m = 0.23, B = 0.23, ¢ = 0.11,
H, =0.16, g, = 3.44, Q = 0.02, C, = 3.88, R, = 2.62.
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Fig. (1.21), Pressure gradient (Triangular wave) for m = 0.23, H, = 0.16, B = 0.23,
e=0.11, R, =262, ) =0.02, g, = 3.44, b, = 3.77, Cs = 3.88.
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Fig. (1.22), Pressure gradient (Multisinusoidal wave) for R, = 2.62, H, = 0.16, m = 0.23,
B =0.23,e=0.11, Q = 0.02, g, = 3.44, b, = 3.77, Cs = 3.88.
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Fig. (1.23), Pressure gradient (Square wave) H, = 0.16, m = 0.23, b, = 3.77, Cs = 3.88,
B=023, Q=002 =011, g = 3.44, Ry = 2.62.

Fig. (1.24), Stream lines (Sinusoidal wave) for m = 0.02, H, = 0.14, B = 0.12, @ = 0.94,
€ =0.38, Cs = 3.99, g, = 4.44, b, = 5.22, Ry = 5.13, ® = 0.11.
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Fig. (1.25), Stream lines (Multisinusoidal wave) for m = 0.02, b, = 5.22, B = 0.12, & = 0.11,
Q =094, Hy=0.14, e = 0.38, C; = 3.99, g, = 4.44, R, = 5.13.

Fig. (1.26), Stream lines (Triangular wave) for ® = 0.11, m = 0.02, b, = 5.22, H, = 0.14,
B=0.12,Q =094, C; =3.99, e =0.38, g, = 4.44, R, = 5.13.
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Fig. (1.27), Stream lines (Square wave) for m = 0.02, R; = 5.13, Q = 0.94, b, = 5.22,
€=0.38, B=0.12, C, = 3.99, g, = 4.44, H, = 0.14, & = 0.11.

Fig. (1.28), Stream lines for (Trapezoidal wave) m = 0.02, g, = 4.44, H, = 0.14, b, = 5.22,
e=0.38, B=0.12, =0.11, @ = 0.94, C;, = 3.99, R; = 5.13.
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Chapter 2

Effects of nanoparticles on the
peristaltic motion of hyperbolic

tangent fluid model in an annulus

2.1 Introduction

In this chapter, we have presented the effects of nanoparticles on the peristaltic flow of hyperbolic
tangent fluid in an annulus. Tangent hyperbolic fluid equations are simplified by suppositions of
low Reynolds number and long wave length. Analytical solution have been computed with the
help of homotopy perturbation and Adomian decomposition method for velocity, temperature
and nanoparticle concentration. Solutions are presented through graphs. The results of AP
(Pressure rise), temperature, nanoparticle concentration and Pressure gradient are drawn for

numerous inserted parameters. The relationship of both the analytical solutions are also offered.

2.2 Flow equations

Governing equations for an incompressible hyperbolic tangent fluid for mass, momentum, energy

and nanoparticle concentration are defined as [22 — 23]

div A =0, (2.1)
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dA ~

dT ~ o = o
(be)y = = KV°T + (pepp [ VC.VT + (=) VT.VT), (2.3)
t T,
dC e~
= = dyV2Q + (=) V2T, (2.4)
dt T,

where A, is the velocity component, @ the nanoparticle phenomenon, d, the Brownian

diffusion coefficient and d% the thermophoretic diffusion coefficient.

2.3 Statement and formulation of the problem

Considering the Peristaltic tranport of an incompressible hyperbolic tangent fluid in an annulus.
Inward cylinder is rigid and sustained at temperature T and the nanoparticle velocity 60 while
the outward cylinder takes a sinusoidal wave moving down its walls having temperature T; and

nanoparticle velocity @1. The wall surface geometry is defined as

z &
4
&
=3 Ha L]
Tz
Teo
A H'_
o=
E
d = r
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E{l = H17 (25)

~ 2 ~
R, = Hy + Esin 7”(5 — ). (2.6)

where Hy, Hs denotes the inward and outward radius of cylinders, £ amplitude of wave, A
wavelength, § wave speed and { is time. With the help of Eq. (1.11), Eqs. (2.1) to (2.4) take

the following form

ou U oW

OR R 07
o0 ~0U —0 op 10RTzz) 0(Frz) T
ol 9+U£ E] y o BRI TVRES Thp (2.8)
o  "oR 97 OB R OR o7 R
OW ~0W ~0W op  10RF=;) 0(T5) ~  ~
2 +W—=) = —=+=—B2 4~ FE 4 pa~(T—T
(8‘5 oR az) 92 R OR oz il 2
+pgog(C = C1), (2.9)
oT ~aT ~8T 82T 10T 62T oC T 90 oT
( F) - &L 10 P (T, 20T,
it 7 o ROR o7 OROR 07 07
aT., IT.,
+(=2)?]}, 2.10
[(8R) (8Z) 1} (2.10)
aC  ~0C —~0 20 100 02C. dy 0T 10T O°T
(£+ Q+ W Q) d( ~(§+ o¢ Q N e A ) (2.11)
ot R o7, o8> ROR 970" TisR® ROR o7

in the above equations, C] is the nanoparticle volume fraction, dr the thermophoretic dif-

fusion coefficient, dp the Brownian diffusion coefficients of mass diffusivity 71 = EZ C;"

the ratio of the effective heat capacity in the case of nano particle material and heat capacity

depicts
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of the fluid. In the fixed coordinates (E,Z) the flow in the cylinders is unsteady, it converts

steady in a wave frame (T,7) moving with same speed as the wave moves in the Z directions.

The conversions between the wave references are

T=R,7=%2-5, u=U, =W -3, (2.12)

>

In the wave reference 7 and w are the velocity components. The boundary limits are expressed

as

~ ~ S~ . ~ . 2m

W = —§ atT=1, w=—-§atT =1y = Hy + Esin —(7),

T = Toati=i;, T=T atT=1iy,

C = CoatT=i, C=C atT=1. (2.13)

Introducing the dimensionless variables

R T W ¥ Z 7 AU
R = > = > W = > = i Z = i = i =
> H27 T H27 > é ) w 57 > A’ z )\7 U HQé?
A T H2P T-T, - H SH.
T 1;1” _§7P:v2 h= = 11,5:—2,Ry:p8 2’
Hys A 5An To— Ty A n
. HoS . R . i . I's
S 517 , 1 H2 H2 , 19 H2 + SIn 277, H2 R
o = K B, = (pc)p dp(Co — Q1)7 T = (pc)p df(zo - T1),
(po)f (po)f a (p0) Ty
pgazH3(To - T1) pgagH3(Co — C1) E FHy
gr = - - ) bT‘ = - 9 ¢ = o7 T = -
ns ns H, ns
. =
y = By o279 (2.14)
5 Co—Cy

We define T3y, b, Ry, gr, Hy, B, 5, <1 are the thermophoresis parameter, local nanoparti-
cle Grashof number, Reynolds number, local temperature Grashof number, Weissenberg number,

Brownian motion parameter, wave number and ® is the amplitude ratio respectively. Using

36



Egs. (2.12) and (2.14) into Egs. (2.7) to (2.11), we obtain

Gg u o ow
ar + + = 97 =0,
53 du Oy, 9P 20 68 5
0 Ry(yg +wo ) ==+ 0 o (Tra) + 25 (07w) = ~Top,

A oy ow op 190 ~ 0
5Ry(1}a +w BZ ) - g + ;a(m-rz) + 5&(7-%) + gT0 + er,
10 06 do 00 90,

corgr) T Bmgr gy (5" =0,

10, do 10, 00
(rﬁr( 8r))+7m(r8r( 81")) 0,

where

Tor = 28[1 + m(H,A — 1)]%1;‘,

] ou.2  Ow
ro = (L m(Hyy — D)(025 + ),

ow

T = 26(1 + m(Hyd — 1)) — 5

Too = 20(1 +m(Hy¥ — 1)),

2 04

og.2  Ow,, 2 0w,
[26 <6r) +(£6 81“)

+20 (8z)

N

2
A21
+ 25 =]2.
r2]

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

We note that Eqs. (2.16) and (2.17) are non-linear, therefore, we are interested to solve our

problem incorporating the suppositions of low Reynolds number and long wavelength, avoiding

the terms of order § and greater, Eqs. (2.16) to (2.19) take the following form
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opb

- = 2.2
or 0, (2.25)
op 19 ow ow
o, = = o U m(Hy = = 1)) + 910 + by, (2.26)
10, 00 0o 00 0.4
10, 0do T 10, 00

Cata) e, bata) =" (2.28)

Eq. (2.25) illustrates that P is not a function of r. The resultant dimensionless boundary

limits for the problem under concern are given as

w = —latr=i, w=—-1latr=1ip =1+ Psin(27z),
c = O=1latr=1;, c=0=0atr =1i,. (2.29)
2.4 Analytical solution

To achieve the solution of above equations, we used homotopy perturbation method. The

homotoby perturbation method advises that we write Egs. (2.26) to (2.28), as [24]

Hi. )= (1= D[£0) - Lom)] +5 | £0) + Z-Go0gD)] . @30)
H, §) = (1= J)LE0) ~ £0m)] 43 [ £6) + Bugl G+ Tu(GR| . 23)
H(w, ) = (1= 3) L) = L] +5 | £w) = 57 + 2 (o, (55%) + g0 + by | (232)

The linear operator and the initial guesses are chosen as

38



10, 0 10,6 0 10 0
Lo = ;a(ra)a Lor = ;&(rg)v Lyr = ;g(r(l - m)a),
r—i r—i
o20(r,2) = (i1 —i22)’ O20(r,z) = (il —i22 ;
dp() 1'2
= 1+ (77— . 2.
w2o(1) 1 Iz <4(1 . + Lag In(r) + £50) (2.33)

According to HPM, we define

0 = 90+j01+j292+...,

o = og+joi +j2(72+...,
w = W+ jwi —|—j2W2—|—...,

with the help of above equations, Egs. (2.30) to (2.32) after equating the like powers of j

give the following systems.

2.4.1 Zeroth-order problem

£(og) — £(o10) =0,

£(0,) — £(010) = 0,

£(wo) — £(w10) =0, (2.35)
0y =09=1at r =iy,

g =oc9g=0atr=1iy =1+ ®sin 2wz,

wg = —1at r =1,

wo=—1atr=iy =1+ Psin2nz. (2.36)
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2.4.2 First-order problem

T, 10,6 06
£(o1) = —£(o10) — Bfm(;a(rg)),
B dog 00g 000 .5
£(91) - _£(910)_Bm or or - m( 61") )
10 aW() ap1
£(W1) = —f(WIO) - ;a(rmHy(ﬁ)z) — gTHO — bTO'() =+ E (237)
91 = 01:Oatr:il,
1 = op=0atr=1iy =1+ ®sin2nz,
wi; = 0atr=ip,
wi = Oatr=iy=1+4 ®sin2nz. (2.38)
2.4.3 Second-order problem
Tm 10,6 00;
£(o) = —Bfm(;g(rg», (2.39)
o 091 80‘0 090 00'1 090 091
£02) = —Bnpr g B~
_ 0by 10 Owg ., 0wy
£wa) = 7 = g ()G — 9:60 = bron.
0 = o09=0atr=i,
0y = o9=0atr=1iy =1+ ®sin2nz,
wo = 0atr=i,
wop = Oatr=1ip =1+ $sin27z. (2.40)

We can write the solutions of these problems as

2.4.4 Zeroth-order solution

The zeroth order solution are defined as
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Oo(r) = v lig, (2.41)
11
oo(t) = i, (2.41a)
{13
- dpg 1“2
Wo(r) = -1+ 5(4(1 — m) + L9 ID(I‘) + 650). (2411:))

2.4.5 First-order solution

With the help of expressions (2.41) to (2.41b), solution of first order system (2.37) subject to

boundary condition (2.38) are directly defined as

01 (I‘) = r2€16 — ei + U7 ln(r) + {9, (2.42)
11
o1 (I‘) = foir + lo3 ln(r) + £o6, (242&)
1
wi(r) = 1351 + 1?52 + vls3 + l59 In(r) + ;654 + leo
dpl 1‘2
5(74(1 ) + Lag In(r) + £50). (2.42b)

2.4.6 Second-order solution

Making use of zeroth and first order solution, the solution of second order problem is defined

as

O2(r) = 1339 — 12040 + 1la1 + La31In(1) + Ly5, (2.43)
oa(r) = 12log —rlog + L34 In(r) + 35, (2.43a)
wa(r) = r'gs+1r3leg + r7lrg + 17y — %574 - % + l73r° In(r)
+78 In(r) + L77 + @(L + Lag In(r) + £50). (2.43b)
dz “4(1 —m)

Using all these solutions into Eq. (2.34), and setting j — 1, we finally arrive at

o = las1® + 1036 + l37InT + L35 (2.44)
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0= 6391‘3 + r2€46 + lyqr + g7 Int + lyg. (2.45)

r? dp
w —|—(4(1_m)—|—€4g nr+€5o)dz—|—r€68+rf7g+r€gg
1 J4
+rlg1 + ;582 — % + fg3Inr + 5731‘2 Inr + lgq. (2.46)

in which all ¢;; are defined in appendix.

The expression for Pressure gradient can be obtain as

dp  F

— = — + {go. 2.4
dZ 686 89 ( 7)

Flow rate in dimensionless form is already defined in Eq. (1.58), however for the sake of

simplicity we define it again as

1 P2

The expressions for dimensionless time mean flow rate Fj;, Pressure rise AP and friction
forces on the outward and inward cylinders are F'* and F® respectively, which are already
defined in Chapter one (see Egs. (1.59) to (1.61)). With the help of Egs. (2.47) , Egs. (1.59)
to (1.61) take the following form

1 E
AP = / (=% + fg9)dz, (2.49)
o fs6
1 F
F* = / —I‘%(fl + égg)dz, (250)
0 l36
1 F
Fb = / —12(=% + lgg)dz. (2.51)
0 lgs

The velocities and stream function relation are defined as

1) andw =12

0z r E)

151:

(2.52)

T
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Making use of Eq. (2.46) into Eq. (2.52), we get stream function

()

—12  dp r# r?ln(r) r?
S 4y Y feg—
2 +dz(16(1—m)+4g( 2 ) Thog)
1‘6 879 I‘4 681 1‘2

log— + —21° 4 lgg— + —1° + lgg— + £
+686+ 5" Thso T 3 " T Asay T bsar
r?ln(r) r? r*ln(r) r*

I
B ) -
2 ) Tl 16

—575 111(1‘) + 683(

). (2.53)

For study, we have measured five wave forms explicitly, multisinusoidal, triangular, trapezoidal,
square, and sinusoidal. For different waves dimensionaless expression can be stated as

1. Multisinusoidal wave:

ia(z) = 1+ ®sin(2dnz). (2.54)
2. Triangular wave:
o 8 o (—1¥Fl
io(7) =1+ &{ yzl =D sin(27(2y — 1)z)}. (2.55)

3. Trapezoidal wave:

3 32 e~ sinF(2y — 1) |
iy(z) = 1+<1>{7r2y; By 1P sin(2m(2y — 1)z)}. (2.56)
4. Square wave:
_ 4 K (—1)vHt
=1+d{- — 2w (2y — 1)z)}. 2.
h(e) = 1+ (2 3 (g con(eny - 1) (257)
5. Sinusoidal wave:
i2(z) = 1+ ®sin(27z). (2.58)
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2.5 Analytical solution by Adomian decomposition method

To develop the solution of Egs. (2.26) to (2.28), we employ the Adomian decomposition method.
We inscribe Egs. (2.26) to (2.28) in the operator form as [25 — 27]

T,

£r0’ + Eogre = 0, (259)
90 do a0
op 10 ow o
£W9 — E + — . ar(rmH (8 ) ) +g7“0+br0- — 0 (261)

The linear and the inverse operator are taken as

1 J, 0 10 0
Lor Loy " 81"( =) = ;a(f(l —m)a),

/ / [rldr, £5}[] = /[1 /r:r[.]dr]dr,
L] = /rg[(l—)/r,: r[.)dr]dr (2.62)

Applying £, to the Eqs. (2.59) to (2.61) and it takes the form

o(r,z) = o9(r,z) — g—m[e(r,z) — O20(r,2)], (2.63)

m

0(r,z) = O (r,2) / / 69 80 dr dr —/ / dr]dr, (2.64)

wir,z) — Wzo(r,z)+/r[r1/rr[(a;;]dr}dr—/r[r(llm)/r [1§r(rmH (%‘f) )] ] dr

T2 ( _m)

T 1 T
_ /r2 [m g (g0 + byo)dr|dr. (2.65)
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Now we decompose o, 6, w as

o= ;)O'Z, 0= ;)92, W= Z:OWZ (2.66)

Substituting Eq. (2.66) into the Eqgs. (2.63) to (2.65) and comparing. Finally we arrive in
the combine form as
Tm r — i2

O = ——\~ N
By, i — i

)+ Cilnr+Cy + ..., (2.67)

Ty T —1
0 = ——(.r 1,2)+Cglnr+C4+r2b18+rb9+b101nr
B, i1 — 1o

+b11(In1)? + bya + ..., (2.68)

1 @(rQ
21— m) dz " 2
—1)231"2 Int+ bogInr + bos + ..., (269)

w = ailnr+as+ —i% Int + b1g) — 13bg1 — 12y

where C; to Cy and a1, as are evaluated by using the following conditions

0 = o=1atr=i,

0 = o=0atr=iy =1+ &sin27z,

w = —latr=i,

w = —latr=iy=1+ ®sin2nz. (2.70)

Where as all the constants are defined in appendix
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2.6 Results and discussion

In this unit Pressure rise, inward and outward friction forces, Pressure gradient, and stream lines
are analyzed. Figs 2.2. to 2.37 are showed for this purpose. Numerical integration is performed
by using mathematics software to calculate pressure rise AP and inward and outward friction
forces. Fig. (2.1) shows the comparison of velocity profile for Homotopy perturbation Method
(HPM) and Adomian Decomposition Method (ADM). The velocity field w for different values of
Gry Bm, by, T), are presented in the Figs. (2.2) to (2.5) It is observed that the velocity increased
by increasing values of g, b., By, Tp,. r€ [0.2,0.8], re [0.2,0.75], re [0.2,0.75], re [0.65,1].
other wise decreases. Pressure rise for various physical parameters such as ®, Hy, m, T;,,, By,
and for different wave forms are observed in the Fig. 6 to 11. Peristaltic pumping regions for
¢ = 0.10, 0.15, 0.20, 0.25, are (Qe[—2,0.03], Qe[—2,0.05], Qe[—2,0.07] Qe[—2,0.09]) respectively
as shown in Fig 6, other wise augmented pumping region occur. For Figs 7, 8 and 11. peristaltic
pumping interval is (Qe[—2,0.2]). For the different values of T}, such as T,,, = 3, 5, 7, and 9,
peristaltic pumping regions are given by the intervals (Qe[—2,0.45] Qe[—2,0.5], Qe[—2,0.55],
Qe[—2,0.6]), respectively (see Fig, 9). Peristaltic pumping regions for the different values of
By, such as B, = 0.1, 0.3, 0.5, 0.7, are given by the intervals (Qe[—2,—0.35], Qe[—2,0.1],
Qe[—2,0.15], Qe[—2,0.2]), respectively as displayed in the Fig, 10. other wise it is augmented
pumping region appear for all the intervals. Figs. (2.12) to (2.23) are plotted to show the
friction forces for inward and outward cylinder . It can be observed that inward and outward
friction forces have reverse behavior related to the Pressure rise. Variation of concentration field
for different values of T,,, By, are displayed in the Figs. (2.24) and (2.25). It is noticed that
concentration field decreases when the values of T},, are increasing and it increases when the
values of By, increases Figs. (2.26) and (2.27) are presented to see the variation of temperature
profile for different values of T;,, and B,, temperature profile increases by increasing values of
T, Bm. The deviation of Pressure gradient for numerious values of ® are describes in the
Figs. (2.28) to (2.32) From Figs. (2.28) to (2.30) it is shown that in the regions z€ [0.5, 1]
, z€ [1.5,2], and z€ [1.1,1.49] small and large Pressure gradient occur respectively. Figs.
(2.31) the Pressure gradient is small for z€ [1.26,1.75], and huge Pressure gradient obtained
by the interval z€ [0.75,1.25], for Figs. (2.32) the Pressure gradient is small for z€ [0.91,1.24],
z€ [1.61,1.8] and huge Pressure gradient follows for z€ [0.6,0.9], z€ [1.25,1.6]. The trapping
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occurrence for five different wave forms can be understood in the Fig. (2.33) to (2.37). It is
depicted that the size of the trapped bolus in Triangular wave is minor as associated to the

other waves.

2.7 Conclusion

This study inspects the Effects of nanoparticles on the peristaltic flow of hyperbolic tangent

fluid in an annulus. Leading points of the phenomenon are given as:

1. The solution of non-linear coupled partial differential equations are attained by Homo-
topy perturbation Method (HPM) and combared with solutions attained by Adomian
Decomposition (ADM). Both techniques avoid linearization and other assumptions. The
solutions arrived by HPM is much easier when we compared to (ADM). To understand the
viability of this method more terms of series are calculated obviously accuracy increases
if more components are included in the series, but at the expense of large increase in the

difficulty of calculations.

2. Same behavior observed in the figures of inward and outward frictional forces but outward

friction forces are large as compared to inward forces.
3. Temperature profile grows with an increase in T}, and B,.
4. Concentration field declines with increase in T}, and increases with increase in B,,.

5. It is detected that friction forces have reverse behavior when we related to the Pressure

rise

6. The magnitude of trapping bolus in triangular wave is minor when we related to the other

waves.
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2.8 Appendix 2.0

b1 = iy —ig, b2 = gi, U3 =Ty + By, l13) = 210, + By, 14 = Inip — Inio,
11
9 . —{13 1 li5lie D S
lis = i3 — 1?, g = F%l, b7 = " + i g = 131n11 —1%11112,
—1Ini AT YA —0 014
lyg = s 2 1;1418, lag = l12 + L9, l21 = ﬁéi’ 22 = 133:37
523 = _Ezllfll, 524 = il In ig — 12 In il, 625 = 621824 - 622, 626 = 522 + 6257
—Tm V4
by = B log = ligla7, lag = gﬂ, U39 = li7lar, l31 = Laolar,
m 11
by = 15028 + 516115;29 - 5145307 lys =  liglag + ﬁz;izg + lials las = l39+ 3,
1
U35 = {31+ {33, {36 = ™ + lo1 — lag, 37 = {23 + {34,038 = {26 — L12 + 35,
—2013/016 —li3r  Bpla —l13/817 Bplas 3 .3
(39 = ——1¥U6 g0~ (= - (i =13 —
39 Y 40 4@1 + A0y, 41 ™ 0 42 =1 — 1o,
b = —{39042 — L1540 — 411541, laa = BInis — 310y, g5 = l39l4a + l18040 + £24€41’
€14 614
—(if — i3)
lyg = lig — Lo, lar = l17 + la3, lag = —l12 4 log + ly5, lag = —— 7,
4(1 — m)€14
(i2Iniy — i3 Iniy) —nH,  dpo.s gr + by
lso = = o = () o
4(1 — m)€14 12(1 — m) dz 9511(1 — m)
(g + )2 1 dpo _ —nHylyy dpo . _ nHyly dpo.,
U5y = - ——, 3= — ()% lsa= (=)%
41—m)  4(1—m) dz (1—=m)?" dz (1—m)" dz
d d —(1—m . ) . ) . .
Us5 = —549%7 lsg =1 — 550%7 U7 = (614)(551(1? —13) + €52(i7 —13) + £53(in — i2)
1 1 . .
+l54(— — —) + l55(Ini; — Inig)),
11 19
1 .31 . .37 . DRI 21 . . . . . In iy
lsg = 5(651(11 Inip —i5Iniy) + l52(if Iniy — i51niy) 4 €53(i1 Inig — iz Iniy) + 654(T
Ini
_%) + lsg(Inis — Iniy)),
2
Os7 3051 dPg
Usg = fs5+ —21 oo = g + lsg, lor = ——2t 20
59 55+(17m), 60 = t56 + £58, L6l 21 —m) dz’
s dby  dpodPy 1 sy dbg dpy
T (=m)dz @ dz dz 40—-m)2 " T 21 —m) dz dz’
Co2 ( ) d @ do A1 —m)? le3 0 —m) d + 3lagls y
U59 dPg dPo dP1 {49 dbg f54 dPg
by = ——00 @0, o8 Waolog 20 for = — 54 020
o4 2(1 —m) & A (1—m)+ 495827 g, 0 708 2(1—m) dz
dp
+€49553d707
7
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—2mHy€64 - —2mHy€65 P — _gr£17 . brfgg fop — —QmHyE%
I-m) "7 (1-m)  ? 41-m) 4(1-m) " (Q-m)
—mH, ! —(1—m . .
72167, lr6 = Q(ﬁﬁg(l% — lg) + 669( — 12) + 570(11 — 12) + f71(11 — 12)
(1 — m) l14
. . 2. 2. 1 1 1 1
+l79(Ini; — Inig) + f73(i7 Ini; —i51Iniy) + £74(g — H) + E75(i—2 — 2))
2 1

1
0 — (beg (it Inig — i Iniy) 4 Leg (i3 Iniy — i3 Iniy) + £7o(i3 Inip — i3 Iniy)
14

1 1
(i1 g — ia Iniy) + frg (2 Iy Iny — 20y Inip) — frg (12 — 111

11 12
Ini Ini
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i 13
l
b2 + 5 IGm), lrg = Loy + Us1, Lgo = Us2 + L0, g1 = Us3 + {71, lg2 = l54 — L74,
. .2 4 4 AT .2
B i3 —1iy gy 3lniy i3
Uso + brs, sa = Lo + lr7, lss = =5, ls6 = 6(1=m) +lag((— 1)
21 2 22

A g 5 —1f

ls1(i5 —13)  ea(i —14 ls5(i3 — i3 . 3lniy  iflni
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o3 .6 o9 70 .4 ln : brr o . i3 Inip
6( )+?( )+T( )+?( _1?)+7(1%_1%)+£78((22
if Ini i3 —if i3lniy ijlni i3 — i . ,

) = ) (P = ) = (Bgg)) — iz — i) — frs(In

—lnil),

lgs — L7 — Uss

lse ’

T o,  —2C3T, R -y,
(Bm(il _12)) , by = Bl —ia)’ bs = Bl — 1)’ by = — b3 —i2(C1b3 + C3b3)
—0103 ln(ig),
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.2 : \2
- C1C5(1

by = %bg —iy(Chbs + C3bs) — 13(21112) — by lni,
b —b 2(Inip)?

bG = 711% - Cg(lnlg) - bQiQ, b7 = 4115 - CS( ;112) - bQiQ - b6 lnig,
—Bpb2 b

bg = 1 3 — Zle’ by = =B, (C1bs + C3b3) — b1y, big = —Bibs — beTin,
~Bn,C1C3  T,C? —(g: + )T

- - — _Bm - va = 5 N\
b11 9 5 b12 b5 b? b13 Bm(ll _ 12)
H,a? b b
bia = C39: + Ciby, bis = Cygr + C2by, b1 = o ya17 bir = -2 + 2 In(iz),
1—-m 12 19

—i2 —i3b13 i3In(iy) i3,  bisi3

bis = —2+i2In(in), byg = —2-2 — by(2 — 2y b2

18 5 T n(iz), big 3 14( 5 4) 5
b _ —i%blg . 614 (I% ln(ig) . ﬁ) . bmi% _ blg ln(ig) b _ b13
20 91-m) (1-m) 2 4 40=m) (1-m) T 91-m)’
b1s 2b14 b14 bie b1g
b = — bogg = ———————, boyy = — — ——, bos = —by7 — byp.
22 i—m) ’1-m) 23 (i —m) 20= 4 (i—m) 25 17 — b2
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Fig. 2.1, Velocity field for m = 0.27, m; = 1.22, g, = 2.46, b, = 2.43, B, = 4.86, H, = 0.12,
Q =0.01, e = 0.13, & = 0.25, z= 0.15, & = 0.53.

Fig. 2.2, Velocity field for m = 0.96, H, = 0.02, z= 0.05, ¢ = 0.19, ® = 0.53, T}, = 6.12,
Q@ =0.02, b, =4.61, B,, = 5.21.
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Fig. 2.3, Velocity field for m = 0.94, g, = 4.8, B,,, = 4.21, T;;,, = 3.12, H, = 0.05, ) = 0.03,
z=0.03, ¢ = 0.19, & = 0.31.
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Fig. 2.4, Velocity field for m = 0.86, ® = 0.36, b, = 3.51, Q = 0.09, g, = 4.85, z= 0.46,
Ty = 5.95, H, = 0.18, ¢ = 0.19.
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Fig. 2.5, Velocity field for m = 0.61, b, = 4.55, g, = 3.95, B, = 0.1, H, = 0.16, Q = 0.02,
e =0.03, ® =0.18, z= 0.01.

Fig. 2.6, Pressure rise distribution for m = 0.02, T},, = 0.51, g, = 0.52, b, = 0.22, B,,, = 0.81,
H, =0.11, e = 0.03.
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Fig. 2.7, Pressure rise distribution for ® = 0.05, T;,, = 5.14, m = 0.1, g, = 3.32, b, = 2.22,
By, =241, e = 0.02.
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Fig. 2.8, Pressure rise distribution for B,, = 0.18, ¢ = 0.11, T}, = 0.22, g, = 0.52, H, = 0.01,
® =0.13, b, = 0.23.
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Fig. 2.9, Pressure rise distribution for m = 0.11, € = 0.01, B, = 6.49, H, = 0.14, g, = 8.92,
b, = 3.62, ® = 0.03.
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Fig. 2.10, Pressure rise distribution for ® = 0.15, m = 0.1, ¢ = 0.11, g, = 3.4, H, = 0.12,
b, =4.92, T, = 3.44.
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Fig. 2.11, Pressure rise distribution for m = 0.01, e = 0.13, g, = 2.43, ® = 0.19, T,,, = 4.77,
b, =5.71, B,, =4.82, H, = 0.14, d = 2.1.

Fig. 2.12, Frictional force (on inward cylinder) for e = 0.03, T}, = 0.51, m = 0.02, b, = 0.22,
By = 0.81, H, = 0.11, g, = 0.52.
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Fig. 2.13, Friction force (inward cylinder) for H, = 0.01, ® = 0.13, e = 0.11, T;,, = 0.22,
gr = 0.52, b. =0.23, B,, = 0.18.
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Fig. 2.14, Friction force (inward cylinder ) for m = 2.1, e = 0.13, b, = 5.71 T,,, = 4.77,
By = 4.82, m = 0.01, g, = 2.43, H, = 0.14, & = 0.19.
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Fig. 2.15, Frictional force (on inward cylinder ) for e = 0.01, b, = 3.62, ® = 0.03, H, = 0.14,
gr = 8.92, m = 0.11.
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Fig. 2.16, Frictional force (on inward cylinder ) for B,, = 2.41, T,,, = 5.14, g, = 3.32,
® = 0.05, by = 2.22, € = 0.02, m = 0.1.
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Fig. 2.17, Frictional force (on inward cylinder ) for T}, = 3.44, ® = 0.15, e = 0.11, H, = 0.12,
9r = 347 bT‘ - 492, m = 0.1.
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Fig. 2.18, Frictional force (on outward cylinder ) for m = 0.1, ® = 0.05, B,, = 2.41,
T,, = 5.14, g, = 3.32, b, = 2.22, € = 0.02.
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Fig. 2.19, Frictional force (on outward cylinder ) for m = 0.02, g, = 0.52, b, = 0.22,
T, =051, € = 0.03, By, = 0.81, H, = 0.11.
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Fig. 2.20, Frictional force (on outward cylinder )for ® = 0.15, m = 0.1, g, = 3.4, T,,, = 3.44,
H, =0.12, b, = 4.92, ¢ = 0.11,
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Fig. 2.21, Frictional force (on outward cylinder ) for & = 0.03, e = 0.01, H, = 0.14,
Bun = 6.49, g, = 8.92, b, = 3.62, m = 0.11.
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Fig. 2.22, Friction force (on outward cylinder ) for H, = 0.01, e = 0.11, & = 0.13, g, = 0.52,
Bu = 0.18, Ty = 0.22, b, = 0.23.
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Fig. 2.23, Friction force (outward cylinder ) for e = 0.13, b, = 5.71, g, = 2.43, By, = 4.82,
O =019, T, = 4.77, m = 0.01, H, = 0.14, d = 2.1.

Fig. 2.24, Concentration field for z= 0.06, B, = 3.55, ® = 0.03, ¢ = 0.14.
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Fig. 2.26, Temperature profile for z= 0.31, T}, = 0.03, & = 0.06, ¢ = 0.02.
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Fig. 2.27, Temperature profile for z= 0.31, e = 0.02, B,, = 0.03, & = 0.06.
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Fig. 2.28, Pressure gradient distribution for sinusoidal wave for H, = 0.13, B,, = 2.72,
e=0.11, g, = 2.44, Q = 0.42, m = 0.23, T}, = 2.88, b, = 2.77.
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Fig. 2.29, Pressure gradient distribution (triangular wave) for m = 0.23, e = 0.11,

By = 2.72, g, = 2.44, b, = 2.77, Q = 0.42, T}, = 2.88, H, = 0.13.
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Fig. 2.30, Pressure gradient distribution (square wave) for H, = 0.13, e = 0.11, B,,, = 2.72,
gr =244, b, =277, Q = 0.42, T,,, = 2.88, m = 0.23.
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Fig. 2.31, Pressure gradient distribution (trapezoidal wave) for m = 0.23, e = 0.11,
Ty, = 2.88, g, = 2.44, b, = 2.77, Q = 0.42, H, = 0.13, By, = 2.72.
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Fig. 2.32, Pressure gradient distribution (multisinusoidal wave) for d = 1.77, m = 0.23,
H,=0.13,b, =277, e=0.11, Q =042, T, = 2.88, g, = 2.44, B,,, = 2.72.
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Fig. 2.33, Streamlines for sinusoidal wave for b, = 5.22, ® = 0.10, € = 0.25, H, = 0.11,
T, =392, Q=053 m=0.19, g, = 4.44, B,, = 5.83,.

.4

Fig. 2.34, Streamlines for Multisinusoidal wave for Q = 0.53, ® = 0.10, m = 0.19, T,,, = 3.92,
€=0.25 m=21, H, =0.11, B,, = 5.83, g, = 4.44, b, = 5.22.
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Fig. 2.35, Streamlines for Triangular wave for 7T}, = 3.92, ® = 0.10, m = 0.19, ¢ = 0.25,
H,=0.11, By, = 5.83, b, = 5.22, @ = 0.53, g, = 4.44.

RN

Fig. 2.36, Streamlines for Square wave for B,, = 5.83, ® = 0.10, m = 0.19, H, = 0.11,
Q =0.53, g =4.44, ¢ = 0.25, b, = 5.22, T,;, = 3.92.
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Fig. 2.37, Streamlines for Trapezoidal wave for g, = 4.44, m = 0.19, ¢ = 0.25, T}, = 3.92,
B, =5.83, H,=0.11, Q = 0.53, b, = 5.22, & = 0.10.
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