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Preface

. mﬂww!’f-‘l hasi £ 1

During the past many years the study of Peristaltic flows of Newtonian

.and non-Newtonian fluids have achieved lot of importance due to its

(
lti’rechnologies and physiologist applications.Some typical applications of
Esuch flows are urine from kidney to bladder,swallowing food bolus
.F:’rowards the esophagus,chime motion in the gastrointestinal
;%Tr'ac‘r,vasomofion of small blood vessels and motion of spermatozoa in
ihuman reproductive fract. Peristaltic transport of a toxic liquid is
:,u’rilized in nuclear reactor fo retrieve permeation of the outside
%‘envir‘onmen’r. Several studies are reported regarding the peristaltic
éflows of Newtonian and non-Newtonian fluids keeping different flow

geometries.

;In the above studies the concept of induced magnetic field is taken
E_im‘o account. There are only few studies in literature which discuss the
Eperis‘ralﬁc flows of Newtonian and non-Newtonian fluids with induced
‘magnetic field effects. Actually when we consider the effects of
linduced magnetic field number of equations will increase and become
complicated which are very difficult fo solve.Some recent studies on
the topic are given in the refs[1-7].Keeping in mind the above

‘importance,the dissertation is arranged as follows:




1n chapter one, we have examined the peristaltic flow of a nanofluid in
" g uniform tube with induced magnetic field. The problem is simplified by
‘using the approximations of long wavelength and low Reynolds number
and then solved by using HPM(homotopy perﬁ‘urbaﬂon method) and
exact solution method.The expressions for velocity, stream function,
pressure rise,induced magnetic field and current density are computed

and discussed through graphs.

Chapter‘ two is devoted to the study of the peristaltic flow of a
hyperbolic tangent fluid in a uniform fube with induced magneftic
field. The problem is simplified by using the approximationof long
wavelength and then solved by using HPM(homotopy perturbation
method) and exact solution methods.The expression for velocity,
stream function, pressure rise,induced magnetic field and current

density are computed and discussed through graphs.
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Chapter 1

Influence of induced magnetic field
on peristaltic low of nanofluid in an

annulus

1.1 Introduction

This chapter looks at the peristaltic flow of nanofluid in an annulus. The flow is investigated in
a wave frame of reference moving with velocity of the wave c. Temperature and nanoparticle
equations have been solved analytically by using Homotopy Perturbation Method while exact
solutions have been calculated for velocity, axial induced magnetic field, current distribution,
pressure gradient and stream functions. The effects of various emerging parameters are inves-
tigated for sinusoidal wave. The phenomena of trapping has also been discussed at the end of

chapter.

1.2 Mathematical formulation

The basic equations of magnetohydrodynamics, neglecting the displacement currents and free
charges, are defined as [1]
(1) Maxwell’s equation

V-H"=0, (1.1)



V- -E =0, (1.2)

VxH" =71 withJ =c{E +p, (V' xHT)}, (1.3)
OH't

E/ = — _— 1.4

V X ,ue 8t/ ) ( )

(73) The continuity equation

vV =0, (1.5)
(731) The Navier-Stokes equation
DV’ - /
Py ="VP + VA tu ' xH )+ pf, (1.6)

where V' is the velocity vector, J' is the electric current density, E’ is an induced electric
field, u, is the magnetic permeability while o is the electrical conductivity and D /Dt denotes
the material derivative and 7 is the stress tensor.

(iv) The energy equation

d~

DT ~ o ~ =
(00) 1 157 = VT + (pe)p[dsVC.VT + (1) VI.VT], (1.7)
T
(v) The mass concentration
DC 209 df 2m
Dt =dyV°C+ (=)V°T, (1.8)
T

where T and (~; represent the nanoparticle phenomenon, d the Brownian diffusion coefficient
and d% the thermophoretic diffusion coefficient.
(7v) On combining Maxwell’s equations, we get induction equation as follow
oH'"
S =V {VxH 4 cv?H (1.9)

where magnetic diffusitivity is given as ( = ﬁ



1.3 Formulation of the problem

Consider unsteady flow of incompressible and electrically conducting nanofluid through the
gap between two coaxial tubes. The inner tube is uniform and rigid, and sustained at tem-
perature r_fo and nanoparticle velocity (N;JO while outer tube has a sinusoidal wave travelling
down its walls having tembperature il and nanoparticle velocity (~;1. We choose cylindrical
coordinates (R’, Z’) such that R’ is the radial coordinates and Z’ is the axial coordinate. An
external uniform magnetic field of strength HoR),/R' is applied radially which will give rise to
an induced magnetic field H' (kY (R, Z',t'),0,h, (R',Z',1')) and total magnetic field will be
H (2575 4 0,1, ).

The stress tensor for viscous fluid is given as

7 = p(grad V' + (grad V/)7).. (1.10)

The walls of the tubes are assumed to be non-conductive and geometry of the walls surface

is illustrated in Fig(1.1)

‘4 \
v [
1%

=3

Fig.(1.1) Geometry of the problem



/
Rl = a,,

2
Ry =a, + bsin% (2" —ct'),

(1.11)

(1.12)

where a,, a, are the radius of the inner and outer tubes, b is the amplitude of the wave, A

is the wavelength, c is the propagation velocity and t’ is the time.

By assuming the flow parameters independent of the azimuthal coordinates, the velocity

takes the form V' = ([7 "0, W' ) where U’ and W' are the velocity components in R’ and Z’

direction, respectively. Temperature, and concentration fields take the form

T=T(R.,Z 1), C=CR, 2.
The governing equations along with nanoparticles in the fixed frame are given as

Oy Wy | Ohy

or TR oz Y

our Ut oW

OR' "R oz’
ou'  ~,0U"  —,dU'  9F 1 d(RFrr)  O(Frz) Tee
or t Ve Wz =—arnt®w om ' oz ®

0 R o/,
! 12 ! _ Z
+/J’6hZ |:8Z/ <HO R/ + hR) 6R/ :| )

U W' —, W' 9 1 9(RTrz)  0(Fzz)
T 07" "ozt ®m omw T oz

(1.13)

(1.14)

(1.15)

(1.16)

o' 9 R! R! ~  ~
+ fe [aRZ, ~ 57 <H{,R?+h’ )] (H;R3+h’ > —l—pgaf(I—Tl)

+pgag(C = Cy).

(1.17)



Energy and mass concentration equations are defined as

- 2T 10T 0T aC a7 9C T
0 3 > 3 5
O G+ W ) = “orz " wor T oz?) T Gran T oz o7
aT 5, 0T .,
= (55 > 1.1
7 0C &, 0C *C 100 Q. dy 0*T 19T T
’ g 1oy dr. 1

Uom tWoz) =ore * mon toze) " 7. Gre Y wom T aze (1Y)

in the above equations, 6 is the nanoparticle volume fraction, dt the thermophoretic diffu-

sion coefficient, d the Brownian diffusion coefficients of mass diffusivity 71 = () depicts the

(pc)y

ratio of the effective heat capacity in the case of nanoparticle material and heat capacity of the

fluid, and the magnetic induction equations in component form is given as

o o —~, 0 . oU VR, ou’
o " Usm tWaz) ~om (H o TR T Gz
o [ 0 R, oM,
- CGZ’[<8Z’ (H ot 2 p >> - <6RZ,>], (1.20)
o o —~—, 0. ow'\|., oW [ R,
o T Uam tWoaz) =~ oz | "~ om <H"R’+hR
19 o o (0 1 R
~wam <R/ aRZ/> Y (8R’ * R’) <H,R? 1 ) | (1.21)

In the fixed coordinates (R’, Z'), the flow between the two cylinders is unsteady. It converts
steady in a wave structure (r/,z’) moving with similar speed as the wave movement in the Z’

direction. Both structures are connected through the following transformations

=R, =7 —ct, U = o, W = — ct’, (1.22)



where u/, w’ are the velocity components in the wave structure. Suitable boundary limits

in wave structures stands

w = —e¢ atr =r],h,=0,hl, =0,
.27
w' = —c, at ' =71 =ay + bsin 7(2/),

I:Ioatr':rll, I:ﬂjlatr':ré,

G:coatr’:rll, (j:élatr':ré.

Introducing the dimensionless parameters

R

T1

gr

Ny

/ / 7! / w’ / /\~/ !
§7r_va:77Z Z7W:77W_£aU: v :7”7
as as A A c c asc asc
ap’ _T-T t_Ci/ Go B2 p o pea2 _6—61

) ~ ~ - ’ - ) Y - = ~
CAL Ty - T, A A H Co—C1
r rh . a h! h
a—;:, 2:F2221+OKSIDQ7TZ,€: ;,hr—Hr,hz—on,
pgozHy(To=T1)  pgagH3(Co—C1)  (pe), dy(Co — Cy)
cp T cp o (pc)y as

¢)p d=(Tyg — T

(pc)p T(N’O )1)7Pr:ﬂ, g = k
k (pc)y

(PC)le a2

(1.23)

(1.26)

We define V¢, b, Ry, gr, Ns, 3, «, € are the thermophoresis parameter, local nanoparti-

cle Grashof number, Reynolds number, local temperature Grashof number, Brownian motion

parameter, wave number , « is the amplitude ratio and ¢ is radius ratio respectively.

Making use of above non-dimensional parameters Eqgs.(1.14) to (1.21) along with conditions

(1.23) to (1.25) take the form

Ohy  he | +Oh,
+ 0o~ =

or r+ 0z

0,

Ju u Ow

g, i, 9%y
8r+r+8z ’

(1.27)

(1.28)



3, 0w du. Ip 20 59 0 o, [+ (102  Ohy
1) Ry(ua aiz)—*aig‘k(s &(Trz)+;g(r7rr)*;799+s Ry |:(5 <r6z 31~)
oh,
—arhz} , (1.29)
N ow ow, op 10 ~ 0 9 Oh, ~[10ry Oh,
6Ry(lla +Wa) = *£+;g(r7rz)+5&(7'zz)+s Ry |:8I' 5(1’82 81‘ ):|
<r?2 + hr> +gr0+brga (130)
where
Ju
T 277
T or
ous2  Ow
Trz = (55 +§>7
ow
Tz, = 257
oo = 2%. (1.31)
Energy, mass and induction equations become
. T T 2T 19T 2dT 9COT  20C T
o2 lu&+waz =02 (32 ror 70 a?) PG e T 5 5:)
= - — 1.32
TG+ G (1.32)
. ac a0 92C 100 220, dr 8T 10T «20°T
— — | =dy(=——= + —— — )+ = - 1.
daze u8r+w8z] b(8r2+r8r+6 822)+T61(0r2+7“81"+5 822)’ (1.33)
d d 9. oul (r ~Ou o 8 [+(1dry 0h,\ Oh,
ot Tl Ty - a} (5 ) =050 = 15 {‘5 (a 92 ) ~or ]  (134)



~0 0 0 ow ow 1 10 ([ 0h,
5&“&%* az) az]hz 87"( +h) Rm[r8r<rar>

—552 <8(1 + i) (7;—2 + m)]. (1.35)

Using the long wavelength approximation and dropping terms of order § and higher, it

follows from Eqs. (1.27) to (1.35) that the appropriate equations describing the flow are

%]:f . g _o, (1.36)
2}1+?+a§§=07 (1.37)

gr; o, (1.38)

=1+ SR (2 ) + 00+ b (159

10, do Ny, 10, 00
(rar( 8r))+Nb(r8r 81“)) ’

ow /9 B 1 [10 Oh,
G (rh) == [rar <T arﬂ’ (1.42)

H?2 .
where S2 = p"T’;e and Ry, = %2 are Strommer’s number(magnetic force number) and the

(1.41)

magnetic Reynolds number respectively. Eq. (1.38) displays that p is not a function of r.

10



1.4 Rate of volume flow and boundary conditions

In the fixed coordinates volume flow rate in the instantaneous position is specified by

Ry
Q=2r / R'WAR/, (1.43)

Ry

where R} is a function of Z’' and t'. Invoking Eq. (1.22) into Eq. (1.43) and integrating

produces
Q = q+me(ry — 1), (1.44)
where
5
q= 27r/r’w'dr'. (1.45)
&1

In the moving coordinates system the volume flow rate is independent of time as mention

in Eq. (1.45). Here 7} is the function of 2" alone. Using dimensionless variables we find

T3
F= q2 = 2/rwdr. (1.46)
Tasc
7"1

Over a period T'= A/c the time-mean flow at a fixed z position is defined as

T

/_l A 4!
e_T/th. (1.47)

0

Invoking Eq. (1.44) into Eq. (1.47) and integrating, we attain

b2
0 =q+mc <a§ —a%+2> , (1.48)
which can be inscribed as
o' q >,
— = —+ 1+ — - 1.49
ma3c  maic * g € ( )

11



Dimensionless time-mean flow can be defined as

9/
0=—s. (1.50)
mcas
With the aid of Egs. (1.46) and (1.50), Eq. (1.49) takes the form
o2
0=F+1+——¢. (1.51)

2

The consistent dimensionless boundary conditions for the problem under consideration are

defined as

w = —latr=r;=¢, w=—-1latr=ry =1+ asin(27z),
h, = 0,h,=0atr=rq,
c =1 atr=r11, 0=0 at r = ra,

0 = 1 atr=r11, 6=0 at r =rs. (1.52)

1.5 Solution of the Problem

1.5.1 Homotopy Perturbation Solution

To achieve the solution of above equations, we used homotopy berturbation method. The

homotoby perturbation method advises that we write Eqgs. (1.32) to (1.33), as [15]

Hio. 2) = (1= 0)[£0) - L] +2 | £0) + L C 26T )

H(0,2) = (1 - 2)[£(6) — £(810)] + [iﬁ(&) M2y Nt(gf)Q] L (154)

) H(o,2) = £(0) — £(010) + 2L (010) + []]\2(12 rgf))} , (1.55)
H(, )= £(0) — £(010) + z£(010) + = [Nbgfg: + Nt(gf)2] . (1.56)

12



The linear operator and the initial guesses are chosen as

19,0, , 10 0

°€9r = ;a(ra% or — ;a(ra)v
o r —T9 - r —TI9
0'1()(1‘,2) = (1‘1 — 1“2)7 010(I‘,Z) = (1"1 — 1"2)‘ (157)
According to HPM, we define
6 = 90+$91+$292+...,
o = o9+ x01+ 3209+ ... (1.58)

With the help of above equations, Eqs. (1.55) and (1.56) after equating the like powers of

x give the following systems.

1.5.2 Zeroth-order problem

£(og) — £(010) =0,
£(05) — £(610) =0, (1.59)
0p=0p=1at r=r,

fp=0p=0atr=ry =1+ asin2rz. (1.60)

1.5.3 First-order problem

. N 1D b
"E(Ul) - _£(0-10) - Nb(r 81‘(r 81‘ ))7
o 80'0 890 890 2
£(61) = —£(b10) Nbﬁg Nt(g) ; (1.61)
1 = op=0atr=rq,
01 = o1=0atr=r9 =1+ asin2mz. (1.62)

13



1.5.4 Second-order problem

Ny, 10, 001

£L(og) = _Fﬁ&(rﬁ))’
891 80'() 890 80'1 690 891
£(0s) = —Bp | ==2420220) o, 20 1.63
(62) (81" 8r+8r or Yor or (1.63)
fs = oo=0atr=ryq,
fs = oo=0atr=r9 =1+ asin2nz, (1.64)
We can write the solutions of these problems as
1.5.5 Zeroth-order solution
The zeroth order solution is defined as
I — Iy
0 p—
O(Y) ] — 1o ’
I —1T9
- . 1.
oo(r) (r1 - (1.65)

1.5.6 First-order solution

With the help of expression (1.65), solution of first order system (1.61) subject to boundary
condition (1.62) is directly defined as

04 (I') = —I‘2b12 - bi + by ln(r) + b13,
1

o1(r) = rbig+ bialn(r) + b7 + b1s. (1.66)

14



1.5.7 Second-order solution

Making use of zeroth and first order solution, the solution of second order problem is defined

as

02 (1“) = 1‘3640 + 1‘2638 + rb3g + bg1 ln(r) + byo,

092 (r) = I‘2b28 + rboy + b3o ln(r) + b3q. (1.67)

Using all these solutions into Eq. (1.58), and setting  — 1, we finally arrive at

o= b281‘2 + rbss + b3q Inr + b33, (168)

0= b40r3 + r2b43 + b3or + bag Inrt + bys. (1.69)

From Eq. (1.36), and boundary condition (1.52), we come to know that h, = 0 i.e the
continuity of the normal component of the magnetic field across the boundary gives that induced

magnetic field in the radial direction is zero. Egs. (1.39) and (1.42) take the form

op 10 ow 9., Ohy (12
9 = 1) tS g () + a0+ o (1.70)
ow 0 Oh.,
~Hmr2 or  or (7’ or ) ' (L.71)

Integration of Eq. (1.71) with respect to r takes the form

6hz Rng C1
= — - — 1.72
or P ry’ ( )

where ¢ is constant.
To determine the constant ¢, we find from Eqgs. (1.3) and (1.72) that
8}7,2 RmTQ C1

Jh = — = = 1.73
0 or r w+7'1’ ( )

15



since Jy = 0 at r = ro, so ¢; = R,,79, which gives

ahz RmTQ
= — = 1). 1.74
Jo o . (w+1) (1.74)

Eliminating % ahz from Eqs. (1.70) and (1.74) , we get

op 10, ow R,
oz r@r( 82) S2R 2( +1)< )—i—gT@—i—bU (1.75)
ie
Pw 10w 573 op 2T
a2 Trae  MRvs Ty, Bl (1.76)

where M2 = 52R R,

The homogeneous and nonhomogeneous solutions of the above equation are defined as

we = corB 4 c3r™ 8, (1.77)
op r? 1 baor® byzr? b33 bysr? baa
Wp = 77— — 1 — —
P 0z (4 — B?) "\25-B2 16-B2 9-B? 4-B2 P2

bsgr? bssr? bogr b4
- - 1.78
b <4—32 9— B2 16—B2+B2 (178)
The general solution finally takes the form
2 5 4 2

B T b407’ b437’ b397’3 b457” b44

= = —1- za4

W= ear e +a 4-B?2) g <25—B2 6-B2 ' 9-B2  4-pB2 ' B2

bagr? basr> bogr? b
b < 337 357 287 34) (1.79)

4-B2 ' 9-B2 ' 16-B2 ' B2

where ¢y and c3 are constants.

16



Using the boundary conditions, we finally arrive at

(T%+B _ 2B
w=18 | bag +

) avjon \ . u(, PP iird) opon
r2B — 2B (B2 -4) a7 r2B — 2B (B2 —4)

ap 7’2 b407"5 b437"4 b397‘3 b457’2 b44
+ —1—=0r

9z (4 — B?) %B_B 16-B2 9-B 4i-B B
bagr? basr> bogr? b
—b, (2 s Ty, (1.80)
4—-B2 9-B?2 16— B? B?
The axial induced magnetic field is given as
2+B _ . 2+B
b Ry rB —7’23 bae + (rl T3 ) Op/ 0z b+ 7"131"23 (7“137“% —7“%7“23) Op/ 0z
r—B — 7“2_B n @ (7"2 — T%) B (b40 (7“5 — T‘g) bys (7‘4 — T%) b3g (7’3 — T%)
B 9z2(4—B2) T\505-B2) T 4(16—B2) | 3(9- B?)

by (2~ 13) b (10— 73)
2(4—B?) ' 3(9- B?)

b45 (7’2 — 7’%) b44
m + ? (lnr — IHT‘Q)) — br(

A
w+§(lnr—lnr2)]). (1.81)

From Egs. (1.80) and (1.81), the current density distribution become

2+B . 2+B
(17 =5") opjon \ (., rETE (PR rirB) opjon
r2B 28 (B2 —-4) u r?B — r2B (B2 —4)
n op r baor? bagr® bsor? basr! n bay
2(4—B2) \25-B2 16-B2 9-DB2 4-B2 B2

Jo = Ryro[rP71 [ by +

bgar b3sr? bogr® b4
—b, . 1.82
<4—32 9—BZ—i_16—B2 rB? ] (1.82)
From Eqs (1.46), (1.51) and (1.80), the pressure gradient takes the following form
a? 2
9 —(1+%)+e —bag
2 (1+%) . (1.83)

0z bag

17



The pressure rise P’ and the frictional forces on the outer and inner tubes F(© and F(®) in

non-dimensional form are defined as

Lop
/

P _/0 dz, (1.84)

1 0

0) _ 2P
F /0 5( % )dz, (1.85)

- 1 op

(@) — 2_“P
F /0 (-5 )dz. (1.86)

The expression for pressure rise P’ and the friction forces are considered numerically by

mathematica, where as constants are defined in appendix I.

The velocities in terms of stream functions are defined as [1]

u=— (=) and w=—(—). (1.87)

Making use of Eq. (1.80) into Eq. (1.87), we get stream function as

B+2 _ .B+2 (T“B —r2tB ) _B42 _ .-B42
r -7 1 2 Op/0z r —r
U = <1) bae + p/ ) + ( 1 )

B+2 r2B — 2B (B2 - ~B+2
ber 4 rBr8 (7‘137“% — T%TQB) Op/ 0z N rt—r}\ Op/oz B r? —r?
4T r2B _ 2B (B2 — 4) 4 ) (4-B? 2

b T _ 7 b 6 _ .6 b 5__,5
gr( 40 . r 1 + 43 . r 1 + 39 . r 1
25— B 7 16 — B 6 9-B 5
4 2 4 4
b44 T —7’1 b33 T —7‘1
+4 B2 < T ( >) b’"(4—B2 ( 4

r—r1>
-7y 7”6—7"? b 7”2—7"%
- ( >+16 BQ( - >+BQ( . >>. (1.88)
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1.6 Results and discussion

1.6.1 Pumping characteristics

This subsection explains the effects of various parameters emerging in the anaylsis on pressure
gradient %, frictional forces F(9 and F() and pressure rise per wavelength P’. These effects are
shown in Figs. 1.2 — 1.5. In Fig 1.2, the variation of pressure gradient versus axial coordinate
z is shown for different values of M and e and by fixing the remaining parameters. As M and
€ increase, the maximum amplitude of pressure gradient increases. It can be seen that in wider
part of annulus z € [0, 0.5] the pressure gradient is small and in the narrow section z € [0.5, 1] the
pressure gradient is relatively large i.e. in wider portion flow can easily pass without imposition
of large pressure gradient where as in narrow part a much larger pressure gradient is required to
maintain the same flux to pass through it, especially at the narrowest point z = 0.75. This agrees
with the physical situation. The variation of pressure rise P’ with volume flow rate 6 invested
for different values of Hartmann number M and radius ratio € is presented in F'ig. 1.3. It is
seen that there is inverse relation between pressure rise and flow rate i.e increase in flow rate
reduces the pressure rise and thus maximum flow rate is achieved at minimum pressure rise
and maximum pressure occurs at zero flow rate. Also due to increase in M and ¢, pressure rise
increases. The pumping regions, peristaltic pumping (6 > 0 and P’ > 0), augmented pumping
( > 0 and P’ < 0) and retrograde pumping (6 < 0 and P’ > 0) are also shown in Fig. 1.3. Tt
is obvious that pumping region become wider as M and ¢ increase. In Figs. 1.4 and 1.5 friction
forces for inner and outer walls versus flow rate are described. These forces posses opposite
behaviour to that of pressure rise where as inner friction force behaves similar to outer friction
force for the same values of pararmeters, moreover outer friction is larger then inner friction

force for same value of various parameters.

1.6.2 Nanoparticle Phenomena

The nanoparticle phenomena o for different values of the Brownian motion parameter N, and
the thermophoresis parameter N; is shown in Figs. 1.6 and 1.7. It is seen that with increas-
ing Brownian motion parameter N}, the concentration decreases in the region r € [0,0.2] and

increases in the region r € [0.2,1]. It can be analyzed through figures that Brownian mo-
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tion parameter N, and the thermophoresis parameter N; have opposite effects on nanoparticle
phenomena. Effects of temperature profile have also been discussed in Figs. 1.8 and 1.9. We
observe that the temperature profile decreases in the region r € [0,0.2] and increases in the
region r € [0.2, 1] for increasing Brownian motion parameter Nj. Similar behaviour is seen for

thermophoresis parameter N;.

1.6.3 Magnetic Field Characteristics

The distribution of axial induced magnetic field h, at line » = 0.4 and for other fixed set of
parameters with different values of M along axial coordinates z is displayed in F'ig.1.10. It can
be seen that by increasing the Hartmann number M the axial induced magnetic field h, also
increases. In Fig.1.11, the effects of magnetic Reynolds number R, on axial induced magnetic
field is shown. It is observed that axial induced magnetic field h, increases as magnetic Reynolds
number increases.

The Figs.1.12 to 1.14 present the variation of axial induced magnetic field h, across the
annulus for several values of §, M and R,,. By increasing the Hartmann number M, the axial
induced magnetic field h, increases. The graphical results shown in Fig.1.13, present that an
increase in magnetic Reynolds number R, results in an increase in the magnitude of axial
induced magnetic field h,. F'ig.1.14 depicts the effect of mean volume flow rate 6 on h,. Clearly
an increase in 6 is followed by an increase in axial induced magnetic field h,.

The variation of the current density J, at the inlet of annulus i.e. at z = 0, for different
values of Hartmann number M and magnetic Reynolds number R, is observed in Figs.1.15
and 1.16. It is observed that for increase in both M and R, result the increase of current

density.

1.6.4 Fluid Trapping

Trapping is the phenomena in which an internal circulating bolus of the fluid by closed stream-
line is formed and this bolus is pulled forward along with the peristaltic wave. Effects of
Hartmann number M and radius ratio € are shown in Figs.1.17 and 1.18. In F'ig.1.17, the
effect of Hartmann number M on trapping is shown, it is seen that the volume of the bolus first

increases with the increase of Hartmann number M and for M = 1, the bolus decreases. It is
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also observed that as M increases more trapped bolus appear. Similar behaviour is observed

for the variation of € in F'ig.1.18.

6
.......... e=0.3M0.5
5| —— e=03 ML
----- - e02M05
A - e02MHL
S
=3
o
2
N,
-{‘-Q.._‘ .‘"‘"—‘“w'“.“n&vx-- .

Fig. 1.2 : The variation of pressure gradient dp/dz with z for different values of M and e

at 0 = —0.5, a = 0.32, G, = 0.3, B, = 0.2, N, = 0.3, N, =0.3.

Fig. 1.3 : The variation of pressure rise P’ with 6 for different

0.32, G, =0.3, B, =0.2, N, = 0.3, N, = 0.3.
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Fig. 1.4 : The variation of friction force F'(i) (on outer wall) with 6 for different values of

M and € at « =0.32, G, =0.3, B, =0.2, N, =0.3, N =0.3.
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Fig. 1.5 : The variation of friction force F'(0) (on inner wall) with 6 for different values of

M and e at « =0.32, G, =0.3, B, =0.2, N, =0.3, N; =0.3.
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s(r,z)

Fig. 1.6 : The variation of concentration profile with r for different

0.32, G, = 0.3, B, =0.2, N, = 0.3 and z = 0.5.

values of N, and o =

Fig. 1.7 : The variation of concentration profile with r for different

0.32, G, =03, B, =0.2, N, =0.3 and z = 0.5.

values of V; and oo =
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al.z)

Fig. 1.8 : The variation of temperature profile with r for different

values of Ny and o =
0.32, G, =0.3, B, =02, N;=0.3 and z = 0.5.

ac.z)

Fig. 1.9 : The variation of temperature profile with r for different values of V; and o =
0.32, G, =0.3, B, =0.2, N, =0.3 and z = 0.5.
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Fig. 1.10 : The variation of axial induced magnetic field h, with the axial coordinate z for
different values of M at 0 =2. « =0.2,¢=0.5, R,, =5, G, =0.3, B, =0.2, N, =0.3, N; =
0.3 at r = 0.4.

0012

Fig. 1.11 : The variation of axial induced magnetic field h, with the axial coordinate z
for different values of R, at # = 2. « = 0.2, e = 0.5, M = 0.5, G, = 0.3, B, =02, N, =
0.3, Ny =03 at r=04.
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0.25

Fig. 1.12 : The variation of axial induced magnetic field h, across the annulus for § = 0.5,
a=0.2,e=0.05 R, =05,G.=0.3, B, =02, N,=0.3, Ny =0.3 and z = 0.4 and different

values of M where r € [e,73].

Fig. 1.13 : The variation of axial induced magnetic field h, across the annulus for 8 = 0.5,
a=0.2,e=0.05 M=0.5, G,=0.3, B =02, N, =0.3, N; = 0.3 and z = 0.4 and different

values of M where r € [e,72].
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Fig. 1.14 : The variation of axial induced magnetic field h, across the annulus for M = 0.5,
a=02€¢=01, R,,=07, G.=0.3, B, =02, N,=0.3, Ny =0.3 and z = 0.4 and different

values of M where r € [e,73].
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Fig. 1.15 : The variation of current density distribution .J, across the annulus for § = —0.5,

a=02,¢=05R,=1, G, =03, B, =03, N, =0.3, N; = 0.3 and z = 0 and different

values of M where r € [e, 73]
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Fig. 1.16 : The variation of current density distribution J, across the annulus for § = —0.5,

a=02e¢=05 M=6, G, =03, B, =03, N, =0.3, N; =0.3 and z = 0 and different

values of R, =1 where 7 € [, ra].
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Fig.1.17 : Plot showing streamlines for different values of Hartmann number M = 0.5, 0.75, 1
(a, b, c respectively) for « =0.03, 6 =1, e =0.2 and G, = 0.3, B, = 0.3, N, = 0.3, Ny =
0.3.
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Fig. 1.18 : Plot showing the streamlines for different values of radius ratio e = 0.05, 0.1, 0.15
(a, b, c respectively) for « =0.03, 6 =1, M =0.5 and G, = 0.3, B, =0.3, N, =0.3, N; =
0.3.

1.7 Concluding Remarks

Peristaltic flow of a nano fluid through an annulus is studied theoretically under the effects of
the induced magnetic field. The expressions for axial pressure gradient, current density, axial
magnetic field and stream functions are obtained analytically. Graphical results are shown for
pressure gradient, pressure rise per wavelength, frictional forces, axial induced magnetic field,
current density and trapping. The main points are summarized as

(i) As the radius ratio and Hartmann number increase, the maximum amplitude of pressure
gradient increases.

(ii) With increasing flow rate the pressure rise decreases i.e. there is an inverse relation
between P’ and 6.

(iii) The behaviour of inner and outer frictional forces is opposite to the pressure rise.

(iv) The effects of Brownian motion parameter NV, and thermophoresis parameter N; are
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same for temperature profile.

(v) The Brownian motion parameter N, and thermophoresis parameter N; have opposite
behaviour for concentration profile.

(vi) The axial induced magnetic field h, increases along axial coordinates as Hartmann
number and magnetic Reynolds number increase.

(vii) The axial induced magnetic field h, increases across the annulus by increasing the
Hartmann number and flow rate, and it decreases with increasing magnetic Reynolds number.

(viii) Current density and magnetic Reynolds number behave likely i.e. by increasing the
magnetic Reynolds number, the current density also increases.

(ix) The volume of trapped bolus increases as Hartmann number M increases and at M = 1,
this behaviour is reversed.

(x) By increasing the radius of the inner tube more trapped bolus are seen.
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Chapter 2

Influence of induced magnetic field
on peristaltic flow of hyperbolic

tangent fluid in an annulus

2.1 Introduction

This chapter deals with peristaltic low of hyperbolic tangent in an annulus. The flow is inves-
tigated in a wave frame of reference moving with velocity of the wave c. Velocity and pressure
gradient have been solved analytically by using Homotopy Perturbation Method . The effects
of various emerging parameters are investigated for sinusoidal wave. Streamlines have been

displayed at the end of the chapter.

2.2 Basic Equations

The basic equations of continuity, momentum and magnetohydrodynamics including magnetic

induction equation in the absence of displacement current and free charges are

vV =0, (2.1)
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DV’

P = VP T VA (I < H), (2.2)
V-HT=0, (2.3)
V-E =0, (2.4)
VxHY"=J withd =c{E +p, (V xH?)}, (2.5)
OH'*

V X E/ = —Mew, (26)

aHﬂF + 2 +
W:VX{V/XHI}-FCVH/, (2.7)

where V' is the velocity vector, J' is the electric current density, E’ is an induced electric
field, u, is the magnetic permeability while o is the electrical conductivity and D /Dt denotes
material derivative, magnetic diffusitivity is given as ¢ = 1/opu, and 7' is the stress tensor. The

stress tensor is given as

7 = (oo + (1194700 tanh(T4)")4,], (2.8)

in which ng, 15, m, I', denotes the zero shear rate viscosity, infinite rate of shear viscosity,

power law index, and time constant respectively and ';/ now defined as

'Y 1 -~ - 1
Y= 9 EZ’YU’)’]‘Z‘ = 57"7 (2.9)
(]
where
7 = trace(grad V' + (grad V/)7)?, (2.10)

in which 7 is the second invariant strain tensor. We study Eq. (2.8) in the case for 7., = 0
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and F%/ < 1. The element of extra stress tensor so inscribed as

7 = nol(P)"1¥: = nol(1+TF = 1)"[7; = no[1 +n(TF — D}, (2.11)

4, =L+LT (2.12)

2.3 Formulation of the Problem

Consider unsteady flow of incompressible and electrically conducting hyperbolic tangent fluid
through the gap between two coaxial tubes. Inner tube is uniform and rigid while outer tube
has a sinusoidal wave travelling down its walls. We choose cylindrical coordinates (R', Z’) such

that R’ is the radial coordinates and Z’ is the axial coordinate. An external uniform mag-

netic field of strength H;’;,% is applied radially which will give rise to an induced magnetic field

H' (W (R, Z',t'),0,h. (R, Z',#')) and total magnetic field will be H'* (% + Ry, 0, 1, )

The geometrical shape is already defined in previous chapter however for the sake of easiness

we define it again in F'ig. ( 2.1)
R} = a1, (2.13)
/ 2T, /
R2:a2+bsm7(Z —ct'), (2.14)

where a1, a9 are the radii of the inner and outer tubes, b is the amplitude of the wave, A is

the wavelength, c is the propagation velocity and # is the time.
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5 )

Fig.(1.2): Geometry of the problem

Egs. (2.1) to (2.12) in component form for an incompressible tangent hyperbolic fluid with

induced magnetic field take the following form

Onpy Wy Oy
orR' T R ozr

ou' U ow'
or T® "oz =Y
ou'  ~, U  —,0U'  9F 1 d(Rirr)  O(Trz)
gtV ™ Waz) = ant®m om a7

B! R on!
h/ Hl 2 h/ . 7
thelz [8Z’< o T R) 8R’]’
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(2.16)
Foo
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(2.17)



!
ot OR' W 0z’ az' OR’ 0z’

ony, 9 R} R}
[83/ 07’ (H rh ﬂ (H’R'Jrh/ ) (219

ou'  ~, oW — oW’ op’ 1 0(R T
( LT ): P T (B'Trz) | 0(T22)

ot OR' EYA OR’ R oR %

0 0 / on/,
- C@Z’ (aZ/ <HéR? +hIR>> - <8RZ’> ) (2.19)

- r7 / 7!
0 (o) O () O

0 L0~ 0 ow'l , ow' (. R,
o (UaR’+WaZ’>_8Z’ Ve = g \Hogr + ik

1 0 (_,0n, o (8 1 VR,
C[R’@R’ (R OR' ) 07 8R’+R’> <HR’+h (2:20)

In the fixed coordinates (R, Z') the flow among cylinders is unsteady. It converts steady in

a wave structure (7', 2')moving with similar speed as the wave movements in the Z’ direction.

Both structures are connected through the following transformations.

=R, =7 —ct, U = u, W =w — ct', (2.21)

where ', w" are the velocity components in the wave structure. Suitable boundary limits in

wave structures stand

2
w = —c, at ' =7], W' =—c, at ' =715 =ay —i—bsin% (). (2.22)
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Introducing the dimensionless parameters

R / 7! / w'! / AU’ A
R = ) r = Ly Z = Z z ) W ) W = 37 U = - -
as a9 A A c c azc azc
2./ !
asp ct’ - a2 pCcaz I'c
= ’ = 3 = N R 7W = )
P AL ) AT T a
! / h’ h

We define W,, R,, ) , a, eare the Weissenberg number, Reynolds number, wave number , «
is the amplitude ratio and € is radius ratio respectively.

Using Eq.(2.23), the non-dimensional form of Egs. (2.15) to (2.20) take the form

Oh, hr  ~0h,
—_ = 2.24
or + r +9 0z 0, ( )
Ou u ow_ (2.25)

o T o

3 Ou  du.  9p 20 50 5 o [+(10r2 0Oh,\ Oh,
5 Ry(Ui—i—Wi) = —74—(5 :(Trz)—F**(rTrr)—;Tog—i-S Ry |:(5 <T82 =+ 87“ > — 87‘:| hz,

(2.26)

“ ow ow, Op 10 ~ 0 9 Oh, ~[(10ry Oh, T9
5Ry(u—r—i—w—) = —7+*7(TTI~Z)+(5£(TZZ)+S Ry |: ” - 5 (T‘az + 81“ >:| (7 + hr) 5
(2.27)

T = 28[1 +n(Wey — 1)]%7
ou.2 Ow
T, = [1+n(Wed — 1)](55 + a),
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T, = 23[1+n(Weﬁ/1)]g‘Z,

To0 = 201+ n(W.A — 1)]%, (2.28)
. ~2 Ou Ju.2 Ow,, 2,0W ., 2u? 1
A =20 (ar)2+(£6 - ar) +25° (82) + 26 1 (2.29)

[0 d 8. Oul (ro Ou, & 0 [.(10ry Oh.\ Oh,
5{ (u(?i—i_ az) 87’} (7+h,«)—55hz R, 0z [5<r 6z+8z>_ 87’]’(2'30)

~| 0 0 0 ow ow (1 1 [10 Oh, ~0 [0 1\ /ro
R L S e L G R C S I
(2.31)

Under the assumption of long wavelength and dropping terms of order & and higher, Egs.
(2.24) to (2.31) take the form

o o

gf _o. (2.34)

P () ) e o),
(2o L2 (%)

where §2 = Hatie and R, = % are Strommer’s number (magnetic force number) and the

pc? ¢
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magnetic Reynolds number respectively. Eq. (2.34) displays that p is not a function of 7.

2.4 Rate of volume flow and boundary conditions

In the fixed coordinates volume flow rate in the instantaneous position is specified by

Ry
Q=2r / R'WdR/, (2.37)
R’y

where R}, is a function of Z’ and ¢'. Invoking Eq. (2.21) into Eq. (2.37) and then integrating,

we obtain
Q= q+mc(ry — 1), (2.38)
where
T
q= 27r/7"'w'dr'. (2.39)
!

In the moving coordinates system the volume flow rate is independent of time as mention

in Eq. (2.39). Here 7 is the function of 2z’ alone. Using dimensionless variables ,we find

T2
q
F=—=2 dr. 2.40
radc /rw r (2.40)
i

Over a period T' = % the time-mean flow at a fixed z position is defined as

T
0 = ;/th’. (2.41)
0

Invoking Eq. (2.38) into Eq. (2.41) and integrating, we get

b2
0 =q+mc <a% —a?+ 2) , (2.42)

which can be inscribed as
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o’ q 2
=1 1422 (2.43)
Tasc — masc 2

Dimensionless time-mean flow can be defined as

9/
2mH3 s
With the aid of Eq. (2.40) and (2.44), Eq. (2.43) take the form
o2
0:F+1+7—62. (2.45)
The consistent dimensionless boundary conditions for the problem are defined as
w = —latr=r=¢ w=—1latr=ry =1+ asin(2nz).
hy = 0,h,=0atr=ry. (2.46)

2.5 Solution of the Problem

From Eq. (2.32), and boundary condition (2.46) we come to know that h, = 0 i.e the continuity
of the normal component of the magnetic field across the boundary gives that induced magnetic

field in the radial direction is zero. Eq (2.35) and (2.36) become

op 10 8W_ ow 9., Oh, (T2
% T’ <1 o (”eaz 1)) )+ SR () (2.47)
ow 0 [ Oh,
TG = oy ( or ) ' @48

Simplification of Eq. (2.48) takes the form

th RmTQ Cg
_ % 2.49
or P ry’ ( )

where c¢g is constant.
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The value of constant cg can be determined with the help of Egs. (2.5) and (2.49) as

Jo = _Oh; _ Rmr2w+ 0767
or r r1,

since Jo = 0 at r = 72,50 ¢ = R,,r2, which gives

Oh,  Rpro
JO__aT‘_ , (w+1).

Elimination of 2 from Egs. (2.47) and (2.51), yields

ow 9w 1 0 ow 1 ow\? M2r2
W, (=) (S5 ) += (1= n) = (1o | 4=, (= ) — =2
nW. <87’><822>+r( ")ar <r8r>+rnw <6r> r2

where M? = S2RyRm,

2.5.1 Homotopy Perturbation Solution

w

(2.50)
(2.51)

op M?r2
=t 2. (2.52)

To achieve the solution of above equation, we used homotopy perturbation method. The ho-

motopy berturbation method advises that we write Eq. (2.52) as [15]

H(w, z) = (1-2)[£(w)— £(wo)] +7

ow 0w

The linear operator and the initial guesses are chosen as

L(w) — =— —

10 0. M2}

L= L rU-mg)-=5%

_ Opg k —k 2
wao(r,z) = E(aélr + abr +a2r)—1.
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According to HPM, we define

w = wo+xw1+x2w2+...,

p = po+api+aipr+ .., (2.55)

with the help of above equations, Eq. (2.53) after equating the like powers of x give the

following systems.

Zeroth-order problem

£(wg) — £(wg) =0,

wo =—1atr=rq, (2.56)
wo = —1at r=rs. (2.57)
First-order problem
1 ow,1? opr  M?3?r2 ow, 0%w

£ = —£ — ~nW, ° - 2 oW, 22, 2.58
(wi) (w30) r [ or ] * 0z + 72 e Tar2 (2:58)

wy = 0atr=rq,
wp = 0atr=ry=1+asin2nrz. (2.59)

We can write the solutions of these problems as

Zeroth-order solution

The zeroth order solution is defined as

_ 90

wo(r, z) = o <b4rk + b5 4 b2r2> -1 (2.60)
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First-order solution

With the help of expression (2.60), solution of first order system (2.58) subject to boundary
condition (2.59) is directly defined as

0 _ _ _
w1 (T’, Z) = % <b4’l“k + b5’l” k + bQT’2) + b54'l"k + b557" k + b437’2 + b447“2k 1
+basr™ FD 4 byer® + bagr ! + bagrFT + bggrF (2.61)

Using all these solutions into Eq. (2.55), and setting  — 1, we finally arrive at

0
w = 87]2:) (b47’k + b57”7]€ + b27'2> + b547"k + b557’7k + b437’2 + b447’2k71 + b457“7(2k+1)

+bagr® + barr ™' 4 bagr™ T+ byrTFT — 1 (2.62)

and pressure gradient takes the following form

617 a2 2
— 14+ =]+ + . 2.
b58 |:0 < > € :| b5g ( 63)

The axial induced magnetic field is given as

B dp 7'§ —rk rQ_k —rk r% —r? 7”2“ —rk
h, = _me[% (b4 < i —bs e ba 5 + bs4 A
-k .k 2,2 2%k—1 _  2k—1 —(2k+1) _  —(2k+1)
B 5 r Ty —T 5 r B To r
b55< k >+b43< 2 >+b44< 2% — 1 ) b45< 2% + 1 )

r3 — 3 ol ol k1 ket Pkl =kl
bas | = b (2 )t bag | 2 | by [ 2 |].(2.64
+46< 3 > 47< 1 >‘|’48 F + bag m—— ].(2.64)
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From Egs. (2.62) and (2.64), the current density distribution take the form

Jo = Rmrg[gi (b47‘k71 +byr R 4 b2r> + bsgr® T 4 b5 P - bygr + bygr? 2 4
basr P2 4 byer? 4 bagr =2 + bagr® + baor "] (2.65)

The pressure rise P’ and the frictional forces the outer and inner tubes are F(0) and F(7)

in non-dimensional formsare given by

P’:/lgpdz, (2.66)
0 Z
1
F(O):/O rg(—glz))dz, (2.67)
1
F(i):/o r%(—gs)dz. (2.68)

The expression for pressure rise P’ and the friction forces are computed numerically by
using mathematica, where as constants are defined in appendix.

The velocities in terms of stream functions are defined as [1]

—6 0V 1,0V
Making use of Eq. (2.62) into Eq. (2.69), we get stream function as
ap rkt2 _ ok pokt2 k2 -
UV = —|by|—— by | ——— L1 — b 1
az<4( iz )% —k+2 T\
Tk+2 _ Tk+2 T‘_k+2 _ T_k+2 P
byg | —— 1 — bys | ————— 22— b 1 2.70
+54< k42 05 —k+2 +43< 4 ) (2:70)
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241 2k+1 —2k+1 _ . —2k+1 5 _ .5
r —r T - o —r
byg | ——— b 2 b L
+44< 2%+ 1 >+45< okt 1 >+46< 5
2

- (7" ;@)]. (2.71)

2.6 Results and Discussion

2.6.1 Pumping Characteristics

This subsection explains the effects of various parameters emerging in the analysis on pressure
gradient %, frictional forces F'(0) and F(7) and pressure rise per wavelength P’. These effects
are shown in Figs. 2.2 — 2.13. In Fig. 2.2, the variation of pressure gradient versus axial
coordinate z is shown for different values of radius ratio € by fixing the remaining parameters.
As € increase, the maximum amplitude of pressure gradient increases. The effect of Hartmann
number M by taking various values is depicted in F'ig. 2.4 and it shows that by increasing
M pressure gradient decreases. F'ig. 2.5 describes that by raising the value of Weissenberg
number W, pressure gradient also elevates. It can be seen that in wider part of annulus
z € [0,0.5] the pressure gradient is small and in the narrow section z € [0.5,1] the pressure
gradient is relatively large i.e. in wider portion, flow can easily pass without imposition of
large pressure gradient where as in narrow part a much larger pressure gradient is required to
maintain the same flux to pass through it, especially at the narrowest point z = 0.75. This
agrees with the physical situation. The variation of pressure rise P’ with volume flow rate
0 invested for different values of Hartmann number M, radius ratio € and Weissenberg number
W, is presented in Figs. 2.5 —2.7. It can be seen that there is inverse relation between Pressure
rise and flow rate i.e. increase in flow rate reduces the pressure rise and thus maximum flow
rate is achieved at minimum pressure rise and maximum pressure occurs at zero flow rate.
Also due to increase in M, € and W, pressure rise increases. The pumping regions, peristaltic
pumping (f > 0 and P’ > 0), augmented pumping (f > 0 and P’ < 0) and retrograde pumping

(0 < 0 and P’ > 0) are also shown in Figs. It become obvious that pumping region become wider
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as M, W, and ¢ increase. In F'ig. 2.8 — 2.13 friction forces for inner and outer wall versus flow
rate are described. These forces posses opposite behaviour to that of pressure gradient where
as inner friction force behaves similar to outer friction force for the same values of pararmeters,

moreover outer friction is larger then inner friction force for same value of parameters.

2.6.2 Magnetic Field Characteristics

The distribution of axial induced magnetic field h, at line » = 0.22 and for other fixed set of
parameters with different values of M along axial coordinates z is displayed in Flig. 2.14. It
can be seen that by increasing the Hartmann number M the axial induced magnetic field h,
also increases. In Fig. 2.15, the effects of volume flow rate 6 on axial induced magnetic field is
shown. It is observed that axial induced magnetic field h, increases as volume flow increases
and similar behaviour is seen for magnetic Reynolds number R, in Fig. 2.16.

The Figs. 2.17 to 2.20 present the variation of axial induced magnetic field h, across the
annulus for several values of 8, M and R,,. By increasing the Hartmann number M, the axial
induced magnetic field h, first decreases in region [0, 0.5] and then it increases in region [0.5, 1]
and it is shown in F'ig. 2.17. The graphical results shown in F'ig. 2.18, present that an increase
in magnetic Reynolds number R,, results in an increase in the magnitude of axial induced
magnetic field h,. The graphical results shown in Fig. 2.19, present that an increase in volume
flow rate 6 results in an increase in the magnitude of axial induced magnetic field h,. Fig. 2.20
depicts the effect of Weissenbregs number W, on h,. Clearly an increase in W, is followed by
an decrease in axial induced magnetic field h, in region [0,0.5] and then it increases in region
[0.5,1].

The variation of the current density J, at the inlet of annulus i.e. at z = 0, for different
values of Hartmann number M and magnetic Reynolds number R,, is observed in Figs. 2.21

and 2.22. It is observed that increase in both M and R,, results in increase of current density.

2.6.3 Fluid Trapping

Trapping is the phenomena in which an internal circulating bolus of the fluid by closed stream-
line is formed and this bolus is pulled forward along with the peristaltic wave. Effects of Hart-

mann number M and radius ratio € are shown in Figs. 2.23 and 2.24.
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In Fig. 2.23, the effect of Hartmann number M on trapping is shown, it is seen that the
volume of the bolus increases with increasing value of Hartmann number M. It is also observed

that as M increases more trapped bolus appear. Similar behaviour is observed for the variation

of € in Fig. 2.24.

160

140

120

dp/dz

5 8 8

Fig. 2.2: The variation of pressure gradient dp/dz with z for different values of € at 6 =
—0.121, « =0.13, M =2, n=0.3 and W, = 0.16.

0 02 04 06 08 1

Fig. 2.3: The variation of pressure gradient dp/dz with z for different values of M at 6 =

50



—0.121, « = 0.13, e = 0.01, n = 0.3 and W, = 0.162.

110

100

dp/dz

Fig. 2.4: The variation of pressure gradient dp/dz with z for different values of W, at
0=-0121,=0.13,¢e=0.1, n=04, M =2.

Fig. 2.5: The variation of pressure rise P’ with 6 for different values of € at a = 0.3, n =

0.3, M =2 and W, = 0.162.
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Fig. 2.6: The variation of pressure rise P'with 0 for different values of M at a = 0.3, n =

0.3, e =0.01 and W, = 0.162.

Fig. 2.7: The variation of pressure rise P'with 6 for different values of W, at a« = 0.3, n =

0.3, M =2 and ¢ = 0.2.
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05

05

Fig. 2.8: The variation of friction force F'(z) (on outer wall) with 6 for different values of
eata=0.3, n=0.3, M =2 and W, =0.162.

1 05 0 05 1
q
Fig. 2.9: The variation of friction force F'(z) (on outer wall) with 6 for different values of
Mata=03, n=0.3, M =2and W, =0.162.
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OF |—We=0.1
---We=0.15

Fig. 2.10: The variation of friction force F'(i) (on outer wall) with 6 for different values of

Weata=0.3, n=0.3, M =2and e =0.2.

FO)

Fig. 2.11: The variation of friction force F(i) (on outer wall) with 6 for different values of

eat «=0.3, n=0.3, M =2 and W, =0.162.
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0.015

0.02

0.025

003 ‘ ‘ ‘

Fig. 2.12: The variation of friction force F'(i) (on outer wall) with 6 for different values of

M at « =0.32, n=0.3, ¢ =0.01 and W, = 0.162.

Fig. 2.13: The variation of friction force F(i) (on outer wall) with 6 for different values
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of We at « =0.3, n=0.3, M =2 and ¢ = 0.02.

8

~
o

hz
8 8 8 8 3

0.2 04 06 08 1

Fig. 2.14: The variation of axial induced magnetic field h, with the axial coordinate z for
different values of M at 8 = —0.121, a = 0.13, ¢ = 0.25, R, = 1, n = 0.99 and W, = 0.162
at r = 0.22.

0 02 04 0.6 08 1

Fig. 2.15: The variation of axial induced magnetic field h, with the axial coordinate z for

different values of # at R,, =1, « = 0.3, ¢ = 0.25, n =0.99, M = 1.5, W, = 0.162 at r = 0.22.
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Fig. 2.16: The variation of axial induced magnetic field h, with the axial coordinate z
for different values of R, at 6 = —0.121 « = 0.13, ¢ = 0.25, M = 1.75, n = 0.99, W, =
0.162 at r = 0.22.
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02 0.4 06 08 1

Fig. 2.17: The variation of axial induced magnetic field h, across the annulus for § = 0.3,
a =03, ¢=005 R, =3, n=039 W,=0.2and z = 0.5 and different values of M

where 7 € [e, 73]
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10

hz

o N A O @

Fig. 2.18: The variation of axial induced magnetic field h, across the annulus for 8 = 0.5,

a=0.2,e=0.05, R, =0.5 and z = 0.4 and different values of R,, where r € [e, 2].

Fig. 2.19: The variation of axial induced magnetic field h, across the annulus for 8 = 0.5,

a=0.2,e=0.05, R, =0.5, and z = 0.4 and different values of M where 7 € [e, ra].
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Fig. 2.20: The variation of axial induced magnetic field h, across the annulus for 8 = 0.5,

a=0.2, e=0.05 R, =0.5and z= 0.4 and different values of W, where r € [, ra].

06 065 07 075 08 08 09

Fig. 2.21: The variation of current density .J, across the annulus for 8 = 0.5, « = 0.2, € =

0.05, R, = 0.5 and z = 0.4 and different values of M where r € [e, r3].
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Fig. 2.22: The variation of current magnetic field J, across the annulus for § = 0.5,

a=0.2, e=0.05, M =0.5 and z = 0.4 and different values of R,, where r € [e, rs].
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Fig. 2.23: Plot showing streamlines for different values of Hartmann number M = 0.25, 1, 2

(a, b, c respectively) for « = 0.3, § = 0.6, ¢ = 0.4 and W, = 0.16 and n = 0.6.
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Fig. 2.24 : Plot showing streamlines for different values of radius ratio ¢ = 0.2, 0.3, 0.5.

(a, b, c respectively) for a« = 0.3, § = 0.6, ¢ = 0.4 and W, = 0.4 and n = 0.6.

2.7 Concluding Remarks

Peristaltic flow of hyperbolic tangent fluid through an annulus is studied theoretically under
the effects of the induced magnetic field. The expressions for axial pressure gradient, current
density, axial magnetic field and stream functions are obtained analytically. Graphical results
are shown for pressure gradient, pressure rise per wavelength, frictional forces, axial induced
magnetic field, current density and trapping. The main points of performed analysis are as
follows

(i) As the radius ratio and Weissenberg number increase, the maximum amplitude of pres-
sure gradient increases.

(ii) With increasing flow rate the pressure rise decreases i.e. there is an inverse relation
between P’ and 6.

(iii) The behaviour of inner and outer frictional forces is opposite to the pressure rise.

(iv) The axial induced magnetic field h, increases along axial coordinates as Hartmann
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number, Weissenberg number and magnetic Reynolds number increase.

(v) The axial induced magnetic field h, increases across the annulus by increasing the
magnetic Reynolds number and flow rate.

(vi) Current density and magnetic Reynolds number behave likely i.e. by increasing the

magnetic Reynolds number, the current density also increases.

64



2.8 Appendix II

b1

bg

bs

b14

b21
b7
b2
bse

bao
ba2

ba3

baa

bae

bag

bs1

bs2

2.k k,.2 1 2,.—k —k,.2

Ty — T Ty — T 7
by = Cbg= T2 TS pobe by = bibo,
rhpgk — Rk 2T A1 —n) - M2 7 rTkrk — ks k 278, U5 U1n2
5 o E+2 k+2) ( —k+2 fk+2> 4 4
(r3 —r}) (2 L) Ty T (rs — 1)
=2 by =2b 2b 2bg—=——~
9 s U7 4 k+2 + 5 —k+2 + 2 4 )
1 - 1 b 1
R —n) = M3 T (1—n) @k - 17— M3 " (1-n)(2k+1)? — M3
1 . 1 . 1
1—n)9-M%2 "2 (I—n)-M%2 ° 1—n)(k+1)? - M2’

1
(1=n)(~k+1)° = M3’
k (k -+ 1) bsbs, by = 2b7, bog = babs, bag = bsbs, bas = b2, bag = kb3bo,

bis = kbabs, bis = kbsbs, big = 2b2,byg = k (k — 1) babs,

k*b2b1o, bag = 4b3b1, bag = 2kbabsbia, bso = 4kbabsbis, bsy = 4kbabsbis,
k? (k — 1) b3bg, bz = k2 (k + 1) b2by1g, bzg = 2kbobsbia, bss = k2 (k — 1) bybsb1a,

k? (k + 1) b2b1g, bsy = 2kbobsbia, bsg = 2k (k — 1) babybyz, bzg = 2k (k + 1) bobsbia,
Ipo

Ipo
b17—(1—n) P

4b3b11,bar = — (1 —n) a 5, 2 25, bas,

(1) P2y~ (1) B3P bas,

(=) by~ (1) % 12 o,

W, <aap;>2 bog — 20 W, (%)2 baa, bus = —nW, (%@’)2 boy + 20 W, <%p;>2 bs,

—nW, <a§;>2 bag — 2nWe <%p;>2 bao, bar = [nWebag — 2nWe (b33 — b3s)] <%io>2 ,

[—nWebso — 2nWobsy — 2nWebss) <38i0>2 ,

@io) 2 [nWebs1 + 2nWbsy — 2nW,bsg| , bso = by (%) ,

bao+ ————7— ! — [bas (7’%7’]5 7'17“2) + b4y (Tfk Lok php2h= 1) + bys ( (zk“)ré” - r’fr;(2k+1)>

3,.k k -1,k k,.—1 k+1 k, k+1 —k+1, .k k,,—k+1
b46 <T1 T2 - 7’1 TQ) + b47 <T1 T2 - T]_ T2 ) + b48 <T1+ 2 T‘l 7"2+ ) + b49 (Tl + T2 - T]. 7'2 + > 3

2 —k —k_ 2
rir,  —1r; T 1
179 1 72 2 —k k2
bo ek —kk ,bs3 = by1 + B [b43 <T17“2 —r— 7’2>
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