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Preface

The study of non-Newtonian fluids has attracted much attention, because of their
practical applications in engineering and industry particularly in extraction of crude oil
from petroleum products, food processing and construction engineering. Due to
complexity of fluids, various models have been proposed. The equations of motion of
non-Newtonian fluids are highly non-linear and one order higher than the Navier-Stokes
equations. Finding accurate analytic solutions to such equations is not easy. There is a
particular class of non-Newtonian fluids namely the second grade fluids for which one
can reasonably hope to obtain an analytic solution. Important studies of second grade
fluids in various contexts have been given by Straughan [1, 2], Rajagopal [3-5], Bandelli
[6], Gupta [7], Liu [8], Dolapci [9], Siddheshwar [10] and Hayat et. al [11-15].

Since the pioneering work of Lighthill [16] there has been a considerable amount
of research undertaken on the time-dependent flow problems dealing with the response of
the boundary layer to external unsteady fluctuations about a mean value. Important
contributions to the topic with constant and variable suction include the work of Stuart
[17], Messiha [18], Kelley [19], Soundalgekar and Puri [20] and Hayat et. al [21].

The primary purpose of the present dissertation is to make an investigation of the
combined effects of rotation, and heat transfer characteristics on the flow of a second
grade fluid past a porous plate. With this fact in view, this dissertation is organized as
follows:

In chapter one, some basic definitions and properties of the fluid are given.
Equations of motion and perturbation method are also included.

In chapter two, the work of Soundalgekar and Puri [20] has been reviewed. This
work deals with the flow of an elastico-viscous fluid past a porous plate with variable
suction,

In chapter three, the simultaneous effects of rotation and heat transfer
characteristics are discussed on the flow of a second grade fluid past a porous plate
having variable suction. The analytic solutions for the velocity field and temperature

distribution are obtained. Special attention is given in finding the solutions and to



describe the physical nature. In order to see the variations of different emerging

parameters, the graphs are sketched and discussed.
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Chapter 1

Some definitions and equations

1.1 Introduction

We begin our study of fluids in motion by presenting some basic definitions, concepts and
equations. The equations of continuity for unsteady compressible and incompressible fluids are
given. The equation of motion for any fluid satisfying the continuum is also presented. Futher,

the perturbation treatment is explained with the help of an example.

1.2 Definitions

Flow

A material that deforms continuously under the application of shear stress. If the deforma-
tion continuously increases without limit, then the phenomenon is known as flow.

Velocity Field

In dealing with fluids in motion, we shall necessarily be concerned with the description of
a velocity field. At a given instant the velocity field V is a function of the space coordinates
z, y, 2. The velocity at any point in the flow field might vary from one instant to another.

Thus the complete representation of velocity field is given by
V=V{z,14t)- (1.1)

The velocity vector V can be written in terms of its three scalar components. Denoting the



components in the z, y and z directions by u, v and w we have
V = (u,v,w). (1.2)

Steady Flow
A flow in which the properties at cach point in a flow field do not change with time.

Mathematically
on
L=
ot '

where 7 represents any fluid property.

Unsteady Flow

A flow in which the fluid properties do not remain constant with time at any point.

Compressible Flow

A flow in which the volume and thus the density of the flowing fluid changes during the
flow. All the gases are, generally considered as a compressible flow.

Incompressible Flow

A flow in which the volume and thus the density of the flowing fluid does not change during
the flow. All the liquids are, generally considered as a incompressible flow.

Fluid Rotation

It is the average angular velocity of any two mutually perpendicular line elements of the
fluid particles. Rotation is a vector quantity. A particle moving in general three-dimensional

flow field may rotates about all three coordinates axes. In general

Q = Qi + Qyj + Lk,

in which 4, 2, and 2, are the rotations about the z, y and z-axes, respectively.
Viscosity
It is a physical property of fluids associated with shearing deformation of fluid particles

subjected to the action of applied forces. In other words it is the resistance of a fluid to its



motion. It is also defined as the ratio of shear stress to the rate of shear strain, i.e.

Shear stress

Viscosity = p = —.
rate of shear strain

Kinematic Viscosity

It is the ratio of absolute viscosity g to density. It is denoted by v, i.c.

1.3 Types of Fluids

Ideal Fluid

An ideal fluid is one which is incompressible and has zero density. With zero viscosity, the
fluid offers no resistance to shearing forces and hence during flow and deformation of the fluid
all shear forces are zero. Many flow problems are simplified by assuming that the fluid is ideal.

Real Fluid

All real fluids have finite viscosity, and in most cases of flow in ducts and immersed bod-
ies it is necessary to consider the viscosity and the related shearing stresses associated with
deformation of the fluid. Real fluids are futher subdivided into two main classes.

a. Newtonian fluid

b. Non-Newtonian fluid

1.3.1 Newtonian Fluid

For such fluid shear stress is directly proportional to the deformation rate. Mathematically

du
Tyx X E?-J',
or
du
Tya = Md_y' (1.3)

In above equation 74, is the shear stress acting on the plane normal to y — azxis and in the

direction parallel to & — azis and p is the constant of proportionality, known as absolute or



dynamic viscosity. Eq. (1.3) represents Newton’s law of viscosity. Most common fluids such as

water, air and gasoline are Newtonian under normal conditions.

1.3.2 Non-Newtonian Fluid

I'or such fluid shear stress in not directly proportional to deformation rate. Toothpaste and
Lucite paint are examples of these fluids. Numerous empirical equations have been proposed to
model the observed relations between 7., and du/dy for time dependent fluids. They may be

adequately represented for many engineering applications by the power law model, which for

" <d_“>", (1.4)

dy

one-dimensional flow becomes

where the exponent, n, is called the flow behavior index and A, the consistency index. This

equation reduces to Newton’s law of viscosity for n = 1 with k& = pu. Eq. (1.4) is written in the

n—1
Ty = k <@> B (15)

in which n = k (du/dy)™! is referred to as the apparent viscosity. Most non-Newtonian fluids
n Y

form

have apparent viscosities that are relatively high compared to the viscosity of water. There are
many models of non-Newtonian fluids. In the present dissertation, we consider elastico-viscous

and second grade fluids.

1.4 Equation of Continuity

Let us consider a differential control volume AzAyAz in a cube. Here we take density and
velocity as function of position in time and space. We compute the flux of mass per second

through each face of the cube to get, for the three directions

~ {Qg;_“)m} AyAz, — [?g’—:)Ay} AzAz, — [ag;:) Az] AzAy. (1.6)

Due to matter conservation principle the sum of these must be equal to the time rate of

change of mass

gz(pAmAyAz). (1.7)



It is noted that fixed control volume AzAyAz is independent of time. Combination of Eqgs.

(1.6) and (1.7) yields

d(pw)

0z

op  0lpw) | O(p)
ot ox dy
or
dp
kil .oV =
ET +V.p 0,

which is called equation of continuity.

For an incompressible fluid, we take p =constant. Therefore, Eq. (1.9) becomes

V-V =0,

where

Eq. (1.10) can also be written as

u o o _
oz Oy 0z
or
divV =0.

1.5 The Momentum Equation
The equation of motion in vector form is

dV _

E = pb+d7,’l)T,

in which b are the body forces per unit mass

Tax
T =

Tzzx

. The Cauchy stress T is

Ty
Tyy

Ty

Taz

Tzz

0,

)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)



where 744, T,y and 7., are the normal stresses and Tuy, Tezy Tyes Tyzr Tze and 75 are shear
stresses.
1.6 Equation of Motion in Rotating System

To include the rotating in the equation of motion (1.13). Consider the figure (1.1) showing two

coordinates system

Fig. 1.1.

The coordinates with prime are in rotating system and those without promes are in an
inertial system. Here r is the position vector in the inertial system, r’ is the position vector
in the rotating system, and R is the position vector of the origin of the rotating system in the

inertial system. Obviously

, dr  dR dr'
=T e e e T e 1.14
e T (i
and
i dr dmi: dei:
r = 11,‘1.161./, » % = Wei: +£Eil '—d—t—, (115)

where ey is a unit vector having magnitude one. If the primed coordinate system does not

7



rotate,the derivative dey /dt are all zero. If the primed system is rotating with angular velocity

Q then
di
-;—; = Qxey. (1.16)

Using Eqgs. (1.15) and (1.16) in Eq. (1.14) we obtain

dr  dR dz. /
—_= — L e P 1.1
7 L + L ey + QX (1.17)

The first term on the right represents the translation of the primed system with respect to
the inertial system, the second term is the translation of the point P with respect to the primed
system, and the third term represents the rotation of the primed system.

Differentiating Eq. (1.17) with respect to “t” we get

d*r B d’R dzxi/ dx, dey — d dr’

— =5 2 b VUV G TV el 1
e L A e S LR L (118}

Since we are going to apply the equation to a fluid, taking the acceleration of a particle in

the primed system as

av'  d*xy
—_—=—t0,. ni
a A LR35
Also
dr’ / / dx; dey /
E——V +QXI‘, dtT—V x 2. (120)

Making use of Egs. (1.19) and (1.20) in Eq. (1.18) we get

d’r dV' &R dV

dtz ~ dt 7o BT

7

+(V'xﬂ>+£ld—?-xr'+ﬂx(Vl-i-ﬂxr'),

or
d*>r d°R 4V’ : N dQ
—=——2nvn(n)—, 1.21
aE = g t g TeRX Y hRxRXE g Xy (1:21)
where
%1»}- = translational acceleration of the primed system,
dv'

o~ = Dbarticle acceleration with respect to the primed system,

202 x V' = Coriolis acceleration,



2% (ﬂ X rl> = centrifugal acceleration with respect to the primed system,

af o = — lET ST e ’
9r xr = angular acceleration in the primed system.

For equations to the rotating system, the primed coordinate system is fixed with respect to
the rotating system, it does not translate, it does not undergo translational acceleration, and
the rotation is constant, so

2
dR &R @ _ (1.22)

dt 0 dt2 T dt
Thus the equation of motion (1.13) for rotating system becomes

&V 120 %V +0x% (Q X r)} = pb+divT. (1.23)

Pl

Neglecting the primes, the above equation can be written as

P [%\{— +2Q x V4 Qx (Q x r)] = pb+divT. (1.24)

1.7 Perturbation Method

This method yields approximate solutions for a large class of initial and boundary value prob-
lems for partial differential equations. It is used when a small parameter (or a large parameter)
occurs in the given equation or data or problem. The assumed solution is expanded in a series
of powers (or inverse powers) of the parameter and the expansion is inserted into the equation.
By equating like powers of the parameter, a collection of the problems result, whose solution
is expected to be simpler than that of the problem. Now, if the series expansion of the solu-
tion converges, or is expected to converge the technique is referred as perturbation technique
method.
Example

To apply the idea of perturbation technique, we consider the following equation

Ugg + Uyy + eu =0, (1.25)



in the unit disk z? 4+ %% < 1, with the Dirichlet boundary condition

{U’(/an):l) 332+7J2:1,

2

where € is small so that solution of Egs. (1.25) and (1.26) is unique.

We find solution of Eq. (1.25) in terms of a power series of € i.e.

(o]
@, y) = Z Un (2,9) €™ = ug + 162 + uge? + ...

n=0

Substituting Eq. (1.27) into Eqs. (1.25) and (1.26) we obtain

(o] oo
v? Zunezn + € E U €™ = 0,
or
[oe] o0}
V2up + V2 Z B ™ 4 Z Une?™t? = 0,
n=1 n=0
or
(o] oo
2 2 2n on _
Veug +V Zunc + Zun_le =l
n=1 n=1
or

oo
V2up + Z [V2un + un_l] €A = 0.

n=1

Irom Egs. (1.27) and (1.26) we can write

(o0}
w iz y) =u0+Zun62” =1, 22 +¢y?>=1.

n=1

Comparing the coefficients of €2 in Eqs. (1.28) and (1.29) one obtains

o ()

V2uy = 0,

’LL()(CE,’U) =1, $2+y2 = 1.

10

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.30a)



ViU, +up—1=0, n>1,

Uy (2, 9) =10, 2?2 +y?=1, n>1.

Equation (1.30) can be written as

82U0 1 8’“0 o
or2 oy or
Using
r=e,
the solution of above equation is
ug = A + Bt,

or

ug = A+ Blnr.

After using Eq. (1.30a) in Eq. (1.33) we get

ug = 1.

For n =1, Egs. (1.31), (1.31a) and (1.34) give

V2u1 = —Up,
V2u1 = —1,
w (z,y) = 0.

In polar coordinates Eq. (1.35) becomes

Pup 10w
07‘2_ ror

11

= -1,

(1.31)

(1.31a)

(1.32)

(1.33)

(1.34)

(1.35)

(1.35a)



or

92 ou
2 e e ——20 1.36
53 + 9 5 re. ( )

The solution of above equation is

2t

up=A+Blnr - 6—4— (1.37)

Using boundary conditions in above equation, we have

(1—7r%). (1.38)

==

up =
I'rom I5gs. (1.34), (1.38) and (1.27) we obtain

62
u=1+- (1=7) + . (1.39)

12



Chapter 2

Flow of an elastico-viscous fluid with

variable suction

2.1 Introduction

This chapter deals with the flow of an elastico viscous fluid past an infinite plate with time
dependent suction. Expressions for velocity and skin frictions are given. The suction velocity is
taken as an oscillating function of time. The present work is a review of a paper by Soundalgekar
and Puri [20]. However, detail of mathematical calculations is incorporated properly in the

presented analysis.

2.2 Mathematical Formulation

We consider the unsteady, two-dimensional incompressible elastico-viscous (Walter’s liquid B)
fluid flow parallel to an infinite plane porous plate. The z'-axis is chosen along the plate and
y -axis perpendicular to it. We also assume that the flow is independent of the distance parallel
to the plate. Then the continuity equation requires that v is at most a function of time and
retains its value at the plate throughout the flow.

The equation of state for the liquid B" can be written in the form
Pik = —PYik + Pig> (2.1)

13



B oz'm da'r

where p;i, is the stress tensor, p an arbitrary isotropic pressure, g;; the metric tensor of a fixed
. ; L5 oy . . ’ . . .

co-ordinates system a*, o't the position at time ¢ of the element which is instantancously at

(1)

the point x* at time t, e;,. the rate of strain tensor and where

P (t - L/) = /Ooo @cxp [— (/, - LI) /'r] dr,

in the above expression N (7) is the distribution function of relaxation times 7. If attention is
restricted to liquids with short memories (i.e. short relaxation times), Beard and Walters [22]

has shown that the equation of state can be written in a simplified form

pik = opgeVik _ 21;0%6(1)“‘, (2.3)

where

o0
= /0 W (v dr,

is the limiting viscosity at small rates of shear

o0
ko =/ TN (1) dT,
0

and 6/6t signifies the convected differentiation of a tensor quantity, which for any contravariant

tensor b is given as

ok vk ok

e Pl = imaLk_bmkavi
6t ot Ozm Oz™m ozm’

(2.4)

where v* is the velocity vector.
The above equations along with momentum and continuity equations for the problem under

considerations yield

-  Ou op 0%
el il = e o 2.5
P <8t' Gak/ 82]/) . 8:1:/ + Mo 8y/2 ( )

14



93’ " 93
Oy'20t +¥ ay'3

_kO i ' ’ / )
_30u v 9dv @_
ay" ay"? ay’ 9y’
o O’ op 9%
= Ty = —=+MyeTs 2.6

ok ' = 193 _38_1)'_82'0'
0 ay/gat/ v 6:(/3 8yl 8’!],2 )

!

dv
e, 2.7
5 (27)
Equation (2.7) shows that v" is a function of time only. However following Messiha [18] we

take

v = —-'vé (1 + eAei‘”l‘l) 5 (2.8)

where vy is a non-zero constant mean suction velocity, € is small and A is a real positive constant
such that eA < 1. The negative sign in (2.8) indicates that the suction velocity normal to the
plate is directed towards the plate.

Using Eq. (2.8), the Egs. (2.5) and (2.6) become

ou’ / N 1 6p 0%’
g 1 A o 3 ) T = e Y 29
ot UO< SR Ay p Oz +U8y2 =0

oo 108 (2.10)

where

7
l(,)- and ky = —.

Also from Egs. (2.8) and (2.10) as op / 9y’ is small in the boundary layer, it can be neglected.

Hence the pressure is taken to be constant along any normal and is given by its value outside



the boundary layer. If U'(t') is the free-stream velocity, then from Eq. (2.9) we get

ou’ / 1 Ou du’ 0%/

= 14 eAe™? ) 57 = —F T

5~ v (1+ede 3y a oy
8311,, ’ i lt’ 8371,’
0 |:——-———8y,26t, - (1 + cAe™ ) e

The boundary conditions are
u =0 at yl ==1),
u o= U/(t') as  y — oo,

in which

U') =g (1+ eeW"') ,

% I ’
where Uy is a mean of U .

After using Eq. (2.14), Eq. (2.12) and boundary conditions (2.13) take the form

aul : X It/ au’ P ) Itl aQu/
Ft,' — Uy (1 + (:‘Ae"" ) a—]/T == UO'L(U ee“" -+ V—(_:)F
RN / N1
_k* 7 7 (1 A b ) 7 )
0[63/281& Vg | 1 + €Ae —8y3
u =0 at yl =0,

16
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(2.12)

(2.13)

(2.14)

(2.15)

(2.16)



Introducing the following non-dimensional variables

I' ! l2 4 ’
p=Y% g W0t pes 0 (2.17)
v 4v Vg
U= gfa U= ET; k= E_s%i)
Uy Uy v
Eq. (2.15) and boundary conditions (2.16) can be written as
10u oty OU w 0%u
st 4 A wt) 727 T iwt = W 2.18
150 (1+eAe )877 1€ +8772 (2.18)
O3 .y 03U
—k | == — (1 + eAe"*) —= |,
agor ~ (Lt eAd) 5
u =0 at y=0, (2.19)
u=(1+ eei“’t) as 1 — co.
2.3 Analytic Solution
It is appropriate to write u’ (y', t') of the form
(1) = Up(fiy) + e faly), (2.20)

in which w' is the frequency of the fluctuating stream, eU(') is the amplitude of the free-stream
fluctuation, f; U(/) is the mean velocity in the boundary layer, eUé f2 is the amplitude of the
velocity fluctuation in the boundary layer.

In terms of non-dimensional variables Eq. (2.20) is

u(nt) = fi(n) + ee™ fa (n). (2.21)

17



Substituting Eq. (2.21) into the Eq. (2.18) and boundary conditions (2.19) and then comparing

the non-hormonic and hormonic terms and neglecting the coefficients of €2, we respectively get

PH A df
ke L 2.22
dn®  dn? i dn L )

fi=0 at  n=0, (2.23)
fl =1 as N — o0,
d3 fy L, \d®f dfs 1 1 dfy a3 fr
—_— — —f _— == ——3 = —=1 —A—-—‘A—-‘ 224
k i + (1 4Mw> a? + dn 4zwf2 it i a3’ (2.24)
f2 == 0 at 17 = 0, (2.25)
=1 as 1 — 00.

Before proceeding with the solution of the above problem it would be interesting to remark
here that although in the classical viscous case (k = 0), we encounter differential equation of
order two. The presence of the elasticity of the fluid increases the order to three. It would
therefore seem that an additional boundary condition must be imposed in order to get a unique

solution. The difficulty in the present case is removed by seeking a solution of the form [20 — 23]

fi=fo+kfu+o(K?), (2.26)

f2 = fo2 + kfia + o (k?), (2.27)

which is valid for small value of k only.
Putting Eqs. (2.26) and (2.27) into Eqs. (2.22) — (2.25) and equating the coefficients of k°
and k! we have from equations (2.22) and (2.23)

18



d? for I dfor

=),
dn? dn
for=0 at n =0,
Jor=1 as 17— 00,

d? fi1 i dfin _ _d3f01
dn? dn dn3 ’

fir=0 at n =20,

fiu=0 as 7 — 00,

and from Eqs. (2.24) and (2.25) we have

o (k°)
d*foo  dfoa 1. 1 dfo1
ag T ay awle=—gw -4
Jo2=0 at n =0,
Joo=1 as n — 00,
o (k) ”
d?fia  dfiz 1. Bfor 1. d?foo df11 d” fo1
c 1 ST L ~ 4 iy
dn? - dn 41wf12 dn? T 4" dn? dn dn’

fia=0 at n =0,

19

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)



fiz=0 as 7 — 00.

The solutions of the above systems are

foo=1-¢™", (2.36)
fi1=ne™, (2.37)
fozo=1-8e™ _(1-8)e™, (2.38)
fiz=(1-8)(e™™ —(1-m)e™) + Lne™™, (2.39)
where
s—1-%4 (2.40)
w

. 1 4

h = hy 4 ih; = 3 [1 + /(1 + l,a,)] ; (2.41)

(2.42)

1 1 1 1
N B T 1 LRt e Ok
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With the help of Eqs. (2.36) — (2.39), Eqs. (2.26) and (2.27) become

fi=1—e+kne™, (2.43)

fo = 1-8e™M_(1-8)e™ (2.44)

+k [(1 —S)(e™ —(1-n)e ™ + Lne—""] .
Now the Eq. (2.21) gives

w(n,t) = 1l—e T+ kne™" (2.45)
1—8e™™ —(1-8)e™
+k{(1=8) (e — (1 =n)e™") + Lye~"}

Yeigg

The above equation can also be written after neglecting the imaginary part as
w(n,t)=1—e T+ kne "+ e(My coswt — M; sinwt) , (2.46)
where M,., M; are the fluctuating parts of the velocity profile and are given by

(42) (1 + k) sin hin — cos hin

M, =1+t (2.47)

+nk { Ly cos hyn + L;sin h;in}

M; = H (%‘—1) (1+k)+ ’r)kLi} cos hin + (1 — nkL,) sin hm] e~hrn (2.48)
- <4A) l+k(Q—mn)e™

w
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From Egs. (2.1) and (2.3) the expression for the shearing stress is

/ o’ 0%/ 0%
pog = = lu 7] 7 3 249

which in term of non-dimensional variables become

p;',/ ou 1, [ 0% o, O
it A L LS o b geeiny TE] 2.50
Day Ué'U(l)/)/ (-)7, 4 |:0’]0/ (1 -+ cAe ) 0’02 ( o} )
Substitution of Eq. (2.45) into Eq. (2.50) yields
1 5

Pay = D1 — 2k [Da — 4 (1 + eAc™) D3], (2.51)

where
Dy = e M+ke™ —kne™
hSe™" 4 (1 — S)e™
+ee™t i (1—=S5) (—he™™ + e+ (1 —n)e™) )

—Lhne_'”’ i Le—lu]

hSe™M 4 (1 — S)e™
Dj = eiwe™* ik (1—=8) (—=he™ ™+ e+ (1—n)e™) )
—Lhne™" 4 Le="n

e” " —2ke™ + kne™"

—h2Se~ P — (1 - S)e"

. h2e=tm — 2¢—n )
+-ce™t (L-=29)
+ ~( e

+Lhzne"”7 — 2Le~hn

&
I

.
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and now Eq. (2.51) becomes

(1-8) (1+k — jiwk)
+h (S —k(1- 58— LiwkS))
+k (L — A — Sh?)

(p:x;y)n_,o =14 ECth

From above equation we can write
Pay = 1+ €|B|cos (wt + B),

where

B=Br+iBi=
+k (L — A — Sh?)

B = tan™? <%> ,

B, = (1-kA)h.+ (% (1+k)+ %) hi + kL,
—k (/L72, - h?) . SAkhrhi,
w
4A 4A kw
By = —(1+k)- (7(1+A)+T) he + (1 — kA) h;

4Ak
+kL; + — (h? — h}) — 2khyh;.
w
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(1=S) (1+k— Jiwk) + b (S —k (1 - S — }iwkS))

(2.52)

(2.53)

(2.54)

(2.57)
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Fig. 2.2. Velocity profiles against n at wt = /2, A =0, ¢ = 0.2, k = 0.05.

24



0.8 7
0.6 /" li
l 2=0.2

0.4 /

. / | - a08
/ L -
02t
S
0.2}
0 1 2 3
n

1
i
0.75 -
/ ‘
os|l ) B
o 0" " =S 1
m {
£ P S |
0.5 ¢ o
o — "~ S P
0.5 |
0 20 40 &0

Fig. 2.4. Skin-friction phase against w

25

at A=0.




0.8 1 ;
! ,
o/ |
0.6} / - )
o] 0.4 7 l/// » -
% /;{/ /:, /
B 0.2 /
',
Y - —  A=0,k=0
04 - A=0.2 ,k=0 e
A=0.2 ,k=0.06
- B=0.2 ,k=0.1
-0.2 -—  A=0.4 ,k=0
- A=0.4 ,k=0.06
- A04,k=0.1
0 5 10 15 20

Fig. 2.5. Skin-friction phase against w.

2.4 Discussion

To see the variation of the elastic property of the elstico-viscous fluid on the velocity profiles
near the wall, both in case of constant and variable suction, we have plotted u against n in
figures 2.1 to 2.3 for various values of A, w, k and e. Stuart [17] found that for ¢ = 0.5 and
w = 100 (%w = A in Stuart’s case) the velocity is negative near the wall, which is also shown
in figure 2.1 for £ = 0. Also the graphs in figure 2.1 for non-zero k are particularly interesting
in the sense that, with the increase in k, the velocity becomes still more negative near the wall
for € = 0.5 and w = 100. This leads us to study the nature of the velocity profiles for smaller
values of € and w. In figure 2.2, it can be seen for elastico viscous fluids, (for very small values
of k) that the velocity is negative even for smaller values of ¢ and w i.e. ¢ = 0.2 and w = 80.
Hence in the case of constant suction velocity, the separation occurs at the wall even for small
values of € and w. Figure 2.3 is prepared to bring out the effects of the variable suction velocity
on the separation of the fluid at the wall. This is Messiha’s case. Messiha [18] has not discussed

the nature of the velocity profiles at large w, in the presence of the variable suction velocity.
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Figures 2.4 and 2.5 illustrate the effects of k and A on the skin-friction phase. It is observed
by Stuart that the skin-friction phase rises from zero at zero frequency to %W at very high
frequencies. This is shown in figure 2.4, where k = 0, A = 0 corresponds to Stuart’s case. The
other three curves show the effect of & on the phase of the skin-friction. It is interesting to
note that an increase in k leads to a decrease in the phase of the skin-friction at large w. It
is also noted from this figure that tana = 0 when w = 57 and k& = 0.1, from which we can
conclude that the skin-friction oscillates in phase with the on-coming fluctuating main-stream.
For w > 57, the phase of the skin-friction is negative. Figure 2.5 is made to compare the results
with Messiha. It is seen that phase of skin friction decreases with an increase in A and increases
with an increase in w. The phase of the skin friction is negative for small values of w. The same
is true for elastico-viscous fluids (liquid B'). As increase in k leads to a decrease in the phase

as in the case of constant suction velocity. At large w, the trend is again towards a decrease.

27



Chapter 3

Heat transfer analysis on rotating
flow of a second grade fluid past a

porous plate with variable suction

3.1 Introduction

The present chapter deals with the study of momentum and heat transfer characteristics in a
second garde rotating flow past a porous plate. The analysis is performed when the suction
velocity normal to the plate, as well as the external flow velocity, varies periodically with time.
The plate is assumed at a higher temperature than the fluid. Analytic solutions for velocity,
shear stresses and temperature are derived. The ellects of various parameters of physical interest

on the velocity, shear stresses and temperature are shown and discussed in detail.

3.2 Mathematical Formulation

Let us consider an incompressible second grade fluid past a porous plate. The plate and the
fluid rotate in unison with an angular velocity £ about the z'—axis normal to the plate. The
plate is located at z’ = 0 having temperature Ty. The flow far away from the plate is uniform

and temperature of the fluid is Tt.
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For the problem under question, we consider the velocity and temperature fields as

V= (ul(zl,tl),v/(z’,t,),w'(zl,tl)> 4 (3.1)

T =T(z,t), (3.2)

. . 7 ’ / @ > / / / . o .
in which u ,o° and w are the velocity components in z , 4, and z directions respectively and
T indicates the temperature.

The governing equations in absence of body forces and radiant heating are

divV = 0, (3.3)

[ dV ;
p W+29><V+Qx(ﬂxr) = divT, (3.4)
p’;i; =T.L - divq. (3.5)

In above equations d/dt', p', e, L, and q are respectively the material derivative, density,
the specific internal energy, the gradient of velocity, the heat flux vector and the radial distance
r? = 22 + y2. The Cauchy stress T in an incompressible homogeneous fluid of second grade is

of the form

T = —pl + pA1 + 1Az + aAl, (3.6)

A; = (gradV) + (gradV) ", (3.7)

Ag = (LZI + Ay (gradV) + (gradV) " A4, (3.8)
(4

where 1, —pI, o (j = 1,2), Ajand Ay are respectively the dynamic viscosity, spherical stress,
normal stress moduli and first two Rivlin-Ericksen tensors. The thermodynamic analysis of
model (3.6) has been discussed in detail by Dunn and Fosdick [24]. The Clausius-Duhem

inequality and the assumption that the Helmholtz free energy is a minimum in equilbrium
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provide the following restrictions [25]
>0, o >0, a1 +ap =0. (3.9)
It is evident from Egs. (3.1) and (3.3) that

o =

The above equation shows that w’ is a function of time. Following Messiha [18] and Soundal-

gekar and Puri [20] we take

w = —W, <1 + eAei“’Itl) . (3.10)

In above equation Wé is non-zero constant mean suction velocity, A is real positive constant,
€ is small such that eA < 1 and negative sign indicates that suction velocity normal to the plate
is directed towards the plate.

Now the gradient of the velocity is given by

ou du du
oz dy 82

/ /
gradV = v B v : (3.11)
Oz dy 0z

Q‘(_Qi ow  Bw
oz’ a_y" 9z

From Egs. (3.1) and (3.11) we can write

00 2 0 0 0
gradV=1|0 0 g_;", : (gradV)*=| 0 0 o0 |- (3.12)
o’ o
00 O ir 6;’, 0

in which () is the matrix transpose.
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With the help of Eq. (3.12), Egs. (3.7) and (3.8) become

u
0 0 -(,_)—Zi—
Ar=1 0 0 %, (3.13)
o 9 0
82 07
62 '62 !
¢ . alor TV oz
2
Ay = 0 0 04’,3—/: w g—j’; L (3.14)
0%u 1924 9%’ 192y ou’ '
e = 2((5*) +(a_’)>
rul (u’ (')vl
ONCIONE
! 3 I
@ w e e
N\ 2 N 2
du v
. () +(3)

Using Eqs. (3.13)—(3.15) into Eq. (3.6) and then taking the divergence of resulting equation

we have
dp 0%’ 3 8%
W), = — L s SR 0 ) A
(divD )y = —57 +rgz + o <8z'26t' T | L
. ap 0% %' &30
(W”M—‘@”Waﬁ+m<$ﬁﬁ+waﬁ’
B AR Ta b
: . il vl
(divT), = 5 + (201 + ) (32') + (82')
Now
i § ok
Qxv=| o000 |= (—Qv’,nu’,o) , (3.17)
’lLI ’U’ w'
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z vy 0
i ok
Qx@x)=| 000 |= <—m'§22,—§22y',0) ,
—y'Q Q' 0
2 X V) +Qx (2 x1) = (—zv’Q 20220 - y’QZ,o) .

From Egs. (3.4), (3.10), (3.16) and (3.20) we obtain

ou’ / NI / 1 op 9%/
—,-‘W(l AWt)—,—?Q S = WD)
ot e 0z v p Oz +U8z2
+a*-@i
0220t
' e Pl 6311,,
o *W (1 A uut) B
a Wy (l+ede 553
o' , W't OV , 10p 0%
= =W, (1+edet ) 22 + 20 e S
ot ol(l+eAe 82+ U 7 By +vaz2
+a*i3'l.)’__
02'20t'
' 5ot aB'UI
_ *W (1 A u.ut) =
a Wy ll+ede 573
ow __10p
o p o
subject to the boundary conditions
v =v =0 at zl=0,
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(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)



’ 7

u —-U{t),v -0 as 2z — oo,

where U'(t') is the free stream velocity and the modified pressure is

N\ 2 N
S 1 ’ 2 9 au 8'0
o e = —_— == 2
p=p 2p Q (2011 + az) <82') -t <8Z/ . (3 5)
and
v = ﬁ/) a = a_}'
P p

In view of Egs. (3.10) and (3.23), 85/0z" is small in the boundary and hence can be ignored
(18, 20, 21]. The modified pressure p is assumed constant along any normal and is given by its

value outside the boundary layer. The equations (3.21) and (3.22) for the free stream yields

4

1 0p dU

s S e 3.26
e (3.26)
1 0p ;

Rl — ZQ .
p Oy v

Making use of Eq. (3.26) into Egs. (3.21) and (3.22) we have

ou' / N Ou / U’ 6%’ Foazn
u w't') 0% _ o B « TU_ 3.27
ar o (1 e ) 57 AW it TV T 5% S
’ Gallls? 6311,,
Ak w i ey
oW, (1 + eAe ) 573"
LA, (1+ A iw't')a_”’Jrzszu’ _ ot + oL o O (3.28)
ot 4 s 0z B 0z'? 0220t '
93’

—a*I/V(; (1 + CACiw & ) W’
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s , . . .
where U is periodic free stream velocity given by

/

U'(t) =U, (1 + eei“’ltl> .

The appropriate boundary conditions for the problem are

!

u = 'UI:O at 2 =0,

v — U@{), v —0 as 2z — oo

The Egs. (3.27) and (3.28) after using Eq. (3.29) can be written as

@u' ’ iwlll Bul ’ rLo iwltl & 63UI
W —-VVO (1+(A6 ) W — 200 = Uo'lu) ce + @ m
0%’ - U\ 0%
+'U—a;,§' —Q WO (1 + eAe’ ) -6——2,5,
81)/ ! . 2t a’Ul / / o Ll 331)’
e AT zwt)____ 20 = 20 ( uut) *
57 W (1 + eAe 77 + 2Qu Upl1l+ee + o 97207
(92’01 - i b 83'Ul
+UW — WO (1 -+ eAe*™ ) W

Multiplying Eq. (3.32) by ¢ and then adding to Eq. (3.31) we get

OF , WINOF s o u gty OPF
T Wo (1 + cAe ) 57 + 2iQF = Upiw ee + v 572
. ! e = 83F'
+219U0 (1 + Ee“" & ) + « W
BF

—a*W, (1 +eAe™? ) 573

. . / .
The boundary conditions in terms of F* can be written as

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)



where

F =u+w. (3.35)

Introducting the non-dimensional variables the boundary value problem consisting of Eq.

(3.33) and conditions (3.34) yields

o ZW, . W, 2t oo U
7 - v ) e 4’U’ _W‘;2a "'Uéa
u v F
= —_— = — F — —
(4 U(I), v U(I)? Ué,
10F iwty OF o~ U I
15 (1+ eAe™t) o +21QW(;2F = 7 (iwee**) (3.36)
v ; 0’F
+2i0— (1 + ee™*) + —=
72 ( ) o2
1 0°F o O°F
+a<zm—(l+€A6 )'553— )
F = 0 at =10, (3.37)
F — 14 as 17— 09,
where
a* W2
a=—.
3.3 Analytic Solution
The solution of Eq. (3.36) subject to conditions (3.37) is written as
F'(2,t) = Up(r(2) + ee™ ¥ hy(2). (3.:38)
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With the help of non-dimensional quantities Eq. (3.38) can be written as

F(n,t) = ¢y (n) + ey ().

(3.39)

Using above equation into Egs. (3.36), (3.37) and separating the harmonic and non-

harmonic terms by neglecting the coefficient of €2 we obtain

3 2
(Lo Po oy

PR = d_'l72- = ?1; +iN¢, =iN,
P, iaw\ d®¢y  ddy . de, d*¢,
S —_— — - —= =3 — — aA——.
e e 1+ 7 e 7 +iN1¢py =iN1 + A e oY ot
The corresponding boundary conditions are
¢ = 0 at n =0,
b — 1 as T == 00,
¢ = 0 at =1,
$p — 1 as - o0,
where
2Qv w
N = N = N -
We? 1=y

(3.40)

(3.41)

(3.42)

(3.43)

It is worth emphasizing that the equations (3.40) and (3.41) for second grade fluid are third

order (one order higher than the Navier-stokes equation). Thus, one needs three conditions for

the unique solution where as two conditions are prescribed. One possible way to overcome this

difficulty is to employ a perturbation analysis [20 — 23] and write the solution as follows

¢ = o1 + gy + o0 (a?),
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by = g + gy + 0 (?) . (3.45)

Substituting Eqgs. (3.44) and (3.45) into Eqs. (3.40) — (3.43) and equating the coeflicients
of ¥, a! and neglecting the coefficient of o we get
o (a?)
d*por | ddo

gt - iy = 3 (3.47)

o (a®)
Py | dpyy p depy, .
_d"7_2 + d—n' — tNigy = —iN) — Ad—n, (3.48)
bo2 (0) =0, oz (00) =1,
o(al)
Py dbry . d3¢02 iw d2¢o2 d3¢01 doy,
dn? a dn N1z = dp® 4 dn? i dn® # dn’ (3:49)
$12 (0) =0, h12 (00) = 0.
The solutions of the above systems are
dor =1—e ™", (3.50)
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$11 = —nLie™™7, (3.51)

Po2 = 1 — 1679 — (1 — 81) e™™7, (3.52)
pr1g = cse™ 9 — nMye™9 — (ncgqcs) e M, (3.53)
In above equations
1+ I+ 4
By = e 4 dhyg = —+—2—+Z—N (3.54)
1 11 1 11 A1
B =5+ §(l+\/1+16N) , b= 5(—1+\/1+161\/) ,
1 2 1 .
iy = [5 (1+ \/1+16N2)} by = [5 (—1+\/1+16N2)} ,
r = a2+ b2 = /14 16N?2,
1+ VI¥ 4N
§=abigg=——mg— =, (3.55)
111 AP 11 <Y i
gr—«§+§[§<1+\/1+16N1)] ,gl—§[§<—1+\/1+16N1 ,

2

N e S O

ro =} +b% = \/1+ 16NZ,
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4i Al
By = il = 1 — S

—, (3.56)
4A i 1r
Sh‘:]-_l_ hl' Sli:ﬂ,
w w
Ly =Lyt iy = ——1__ 3.5
01 = Lyl = 1 i3 41,N, (‘5..)7)

) D () 4 3
+ = 1) () - Vg ()
(=0)% + (32) (2)
; 1
=L | TR oD (3
o - ()} |
2Ny (2 + 1)+ § (ra + 1) (357)
NEETY Dl S
—l'A—{uJL _(121)2+(221)(221)3
1
+AN? (352)8
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(S0

2N17‘2—l(£22——1)l+ (72+1)( 5
1

+2 (rp — 1) (2572 ) + NZ (271)2
i

8N; + 4Niro + (22571)2

)

w1 | P ) () ranp (5)E |
T2 +3 (ra +1) (272)?
—3Nj(rg —1) — 219
IR COLIRNCS)

1
+4N? (22)?
cs = ¢s5r + tesi = (C1r + Cor + car) + 3 (c11 + c21 + cai)

4p3
q=ch+mu=;§uuwl—&»,

@i—BﬁmhL

4 Ahy; Ahq,
Gl = 4 (h?, = 3]1%7,1111‘) <A -} wllz) —16 11

4Ahy; Ahyy ;4
c1i = —4 (/LIIS,,, - 3hfihlr) (A + wLu) _ 164 (h‘fr B 311%’111') ,

Co = Cop +1C2; = T

Cop = % (Lli (h’?r = 3h%ihlr) = Ly (h?i - 3h’%7‘h17’)) )

4A
Co; = ——J (Llr (h%,. - 3]1%/7,11-) + Ly; (h?z — 3h%rhli)) 5
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4A]1,1L1

ww

. 4A
€3 = C3p +1iC3; = Cyr = —— (h1iL1y + h1rLs)

4 . 16Ah1Ly (1 —2h
Cai =~ (h1rLir — h1iL1i), €4 = cap +icai = 1 Lg 1),

16A
Car = — ((1 = 2hyy) (har L1y — h1iL1i) + 2h1i (hirL1s + haiLar))

16 A
Cti = —5- ((1 = 2h1y) (harL1i + h1iL1r) — 2013 (hap L1 — h1iL1i))

From Egs. (3.44), (3.45) and (3.50) — (3.53) we get

¢ =1—(1+anLy)eMn, (3.60)

$o=1—51e9"—(1-85))e M4 q [056_9” — nM1e™ 9" — (nesqcs) e“h”’] g (3.61)
and so from Eq. (3.39)

. 1-S1e 9" —(1—8;)e P
F=1—(1+anL)eMm + ceit ' (1=5) . (3.62)
+a {(:56‘9’7 — nMie™9" — (nesgcs) e”hm}

Using Eq. (3.35), the above equation gives
u = up + ee™uy, (3.63)

v = v; + ey, (3.64)

41



Substitution of Eqs. (3.60) — (3.62) and (3.35) into Eqs. (3.63) and (3.64) yields

u =

Jgge

v =

e

ug + ee®tug = 1 — e~ Mrm ((1 + anLiy) cos h1in + anLi; sin hyin)

1 — =9 ((1 o %ﬂl) cos gin + 4—'%“ sin gm)
_|__e—‘holr7) (Muél.ll cos h’l‘LT’ — M:TLL sin hlin)
+ae= 91 (CST cos g;n + cx; Sin gm)

—amne™ 9 (M, cos g;n + Mji; sin g;n)

—aqe— e ((near + c5r) cos hiim + (nes; + csi) sin hyin)

g\

v1 + eetyg = ¢~ Mrn ((1 + anLiy) sin hyin + anLy; cos hyin)

- 4Ahy; ) o 4Ah
e 9rn ((1 — —wll) simgyy — === cosgm)
—e~hirm (%ﬂ sin hyin + %’-ﬂ cos hu??)
+ae™ 9 (cs5; cos gin — Csp Sin g;n)

—ame=9" (My; cos gin — My, sin gin)

—ae™ M ((neg; + csi) cos hiin — (esy + csp) sin hygn)

The drag T,/ + and lateral stress T,s + at the plate are

which in non-dimensional form can be written as

T:z:z =

Ty =

Tt g6 == ?_u_i +a* i +w O
'z = 37 92 ot 922 )’

7, , 0 g 0%’ W 0%’
Ve T 9y 0z' ot 02'2 |’

P, ou a0 N,
e Sl R | e NN | A wt) Y X
UgWep' — On 4 [an?t (1+eAe™) 3772]

Y v alf d® . g OGP0
. SR L . 41+ eAet) 2V
UWop'  On 4 [B'r/al, kL ol on?
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(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)



The above equations (3.69) and (3.70) after using Eqs. (3.65) and (3.66) give

Tee = a(hd;—hi.) —hi —ali, (3.71)
r 7

4 3 ’ .
gr = 24 (hiigr + hapgs) — 2L

—a (gresr — gicsi) + A (h%i = h%r)

—OJ]\/[h. + & (/7,17‘65-,‘ = hliCSi) — QC3p

+eett ;
—law (941 - g (h1igr + h1rg;) — 2%%
(gi2 _ gz) <1 _ 4Au’)11i) g BAh:‘:‘gigr_’_
L 12Ahy:h3,.  4ARY;
L w w -
Tyz = hli = aLli - 2ahlih1r (372)
gi + % (hlrgr = hligi) + % (h’%'r = h’%z)
—a (grcsi + gicsr) — 2aAhy;hy,
+€eiwt —aMi; + « (/7.1,-051' + 1111'65,-) — QC3;
—iow (g; + 22 (h1rgr — h1igi) + 42 (B3, — 1%;))
= [ ~2gig, + BAbusgige _ A (g2 _ g2
i k +12AIB,.hfi - 4A:)1‘{r i
The Eqgs. (3.71) and (3.72) can br written as
Tz = @ (h%i - h%r) — hir — Ly, + €| By cos (wt + 7) , (3.78)
Ty, = h1; — aLy; — 2ahyihiy + €| B cos (wt + 6) , (3.74)

where

_ Bu) -1 <B2i>
= tan~! , 0 =tan )
¥ <B1r B2r
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gr — 32 (h1igr + h1rgi) — w&fﬂ“

—a(gresr — gicsi) + oA (b3, — h3,)

—aMi, + a(hircsr — hiicsi) — acay

By = By, +1iBy; = . A . : (3.1)
—law (%f = (h1igr + h1rgi) — -
oo | =12 ) 5 By,
N 12Ahy:h2,.  4AR3;
- w - w =
gr — A2 (h1igr + hapg;) — 3
—a (gresr — gicsi) + aA (h?i - hfr)
Bir = —aMyr + o (hircsr — hiicsi) — acsr ; (3.76a)
14 8Ah1rgigr
oo R (1~ 200 Bl
@ 12AI!.1iIL¥r 4Ah‘1’i
L w - w .
. A 2Ahyif
B = aw <(]_ — — (h1igr + hargi) — M) ) (3.76D)
4 w w

i + 42 (hirgr — h1igi) + 44 (K2, — b))
- (grcm + giCST) — 2aAhyihr

—aMy; + a (hiprcs; + hiicsy) — acs;
By = By, +iBy; — li (hircsi + hiicsy) 34 (3.2)

—ilaw (_(ﬁ == % (h'lrg'r - h’ligi) + % (h’%r - h’%z))
8Ah1igigr _ 4Ah;.
o | s0r B o £ (g )
124h1-h2,  4AR3]
i p— B— J

gi + L (’1’17‘91‘ - hligi) + % (h’%r - h%I) .

w

—Q (ngSi + gicsr) —2aAhyihyy

Bay = —aMy; + a (hircsi + hiicsr) — acs; . (3.78a)
o | 2090 Sobuge . 48he (g2 — oF)
+12Ah1rh§i _ 4AR3,
L w w _
4A 4A
Bagi = aw (gi +— (hirgr — h1igi) + U (h, - h%i)) : (3.78b)

We now proceed to derive the energy equation appropriate for the problem under considera-

tion. We start with the energy equation (3.5). It follows from Eqs. (3.5) — (3.9) and L =gradV
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that

T L = u (d”‘, } (3.79)
0z
u d%u ' 9%y
. 'a‘;“(am L T‘
Ly (at oo T a_’?>

Following the thermodynamical considerations given in Dunn and Fosdick [24] for fluids of
second grade and representing q by Fourier’s law with a constant thermal conductivity &, Eq.

(3.5) reduces to

o 2 B
. [oT 0T o*T ou dv
L puel e = i L 80
RS {at' i Bz'] k@z'z # <8z'> = <6z'> kB0
ou' [ 9% 1 9%
vou | 8 (o + 0/ 535)
a 182 / )
+22 (i +w'Z%)

where c is the specific heat. The boundary conditions for the temperature are

T'=1g al z =1 (3.81)
T — Te as Z — 00
Using
T-Tp
0 — 3.82
— (3:52)

equation (3.80) and boundary conditions (3.81) become

520 wiy 00 P00 au\?  [ov\?
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du D% v 9%
dn dnot dn onot
; 2
+P | — iwt .@E d%u
(1 + eAe ) an W )

. 2
— (1 -+ cAe“"t) g-:;g—ng'

0=0 at =0, (3.84)
0—1 at 77 — 00,
in which
the Prandtl number P, = Be the Eckert number F, = ——%
C ™ = k ) gl = (Too . TO)
aUp
and P ot | Y
k (Too = TO)

To solve Eq. (3.83) with boundary conditions (3.84) we write
0 = 0y + ec™0,. (3.85)

Substituting Eq. (3.85) into Eq. (3.83) and boundary conditions (3.84) and equating the

coefficients of the harmonic and non-harmonic terms after neglecting the coefficients of €2 we

get
d26 by dui\?  [dv\?
ar T T “Ec[(%) () e
Lo [l dndin)
dn dn? = dn dn?

0o =0 at n=0, (3.87)

Op — 1 as 7 — 00,
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d201 d01 P d90 {dul dUQ d’U1 dvg} (3 88)

G Tl _Tryn = _pa%S_ap ot
dn? i dn g dn dn dn + dn dn

jw [(dur duz  dvy dvy
Zw(dn dy T dn dy

[ duy d%uy dvy d?v;
( dn dn + dn dn
du dvy d*v ’
Gk _21. oy
( dn dn + dn dn )
dug d dvy d*v
~{dagu + 3200

01 =0 at n =0, (3.89)

01 — 0 as 1 — 0.

Solving Eqs. (3.86) and (3.88) along with the boundary conditions (3.87) and (3.89) we

obtain

0o =1— (1+d7) e + (dy + dgn) e~2, (3.90)

0, = —mge "+ (m7 + mg + mgn) e~ 2 (3.91)

+ (myo + myq + mi2n) e~ (hrtgr) oog (hi —gi)m

+ (m11 + mys + masn) e~ (hrtgr)n gin (hi — gi) m,

where

di = =B (h}, + h3; — 2aLi;hy), do = —2Ec.aly, (W3, + h3;),

d3 = P (=h3, + 3aL1,h3, — hiyh3; + 2aLyzhiihiy + aLish;)

d4y = —2PalLizhir (h%r -+ h%i) , dy =dy + d3, dg = do + dg,
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ds dg (4]7'17' iy P’r) dg

= = )d ’
AR%, = 2Bk (4h2, —2Phy,)’ (K3, —2Phyy)

dr

| ———11‘4A£ . (hlrgr + h‘%i) + (1 — %11) (hlig'r — h’l'r‘gi)
’ +a (hir (gresi + gicsr) — hii (gresr — gicsi))

g = .
o (hip My — hyMyy) + 2280 (g, 1y, — g;Ly;)

+a (1 - %) (.(]iLlr - grLli)

2 .
"4—(1%“‘ (L1rgr + L1igi) — ahyy (1 = 4—/}‘,&“) (L1rgi — L1igr)
dig = —a (hir (gr-M1s + giM1r) — has (9r M1y — giMai))

—M—A’L“—hu (9iL1ir — grL1s) + ahyy (1 - if“) (9rL1r — giL13)

_4Ah»w]rh]i (hll’l’ . gT) + % (1 - %LL) (L]_rgr - legz)

—a (hir (gresr — gicsi) — hii (grcsi + gicsr))

dip = ’

Aedhir (6,11, — goLyi) + (1 = %1‘) (grh1r + gihai)
i —a (Mirhir + Miihis) |

12808 (Lngi = Ligyr) + oy (1= 404 (Lug, + Ligs)

dig = —a (hy (9o My + giM;) — hi (9o M; + g: M) )
_% (g-Lr — giL;) + ah; (1 = %}5> (9:Lr — grLi)

d ‘—I'L_SA’L:ITIL : (hl'r - aLlr) + acsy (h’%r + h%z)
13 = ’

+—114A$‘ L (h2, — h%) — —114"’2)[‘ L (B2, — h%) — a(hiresy + haics;)
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dig =

dis =

dig =

dig =

=8AMrhis (hy, Ly, — hyiLag) + 424 (03, — b3;) (har L — haiLar)

+acg, (h2, + h)

4z (g2 — 62) (har — aLur) +29,0: (1 — 44034 (hy, - aLyy)
—2a (har (9rMii — giMar) — hai (gr Mir — giMa;))
—a (g2 — g?) (hircsi — haicsy)

- <1 - é’%“) (92 = 92) (h1i — aLy;)

=209, gi (herSr -+ hlic5i) + 'BAIL%EL& (hli = Olei)

[ dadhar (2 02) (hy,Lir — haiLis) + 26g-gi (hiyMir + giMis)
+a (92 — g2) (hip My — haiMyy) + M&:ﬂ;ﬂ (h1rL1; + h1i L1y)
- (1 — 4—’1’)“1) (g,? — gf) (hirL1i + hiiLiy)
+2ag9,9i (1 2 ﬂ‘%"‘) (hirL1r — h1iL1;)

-

— 44l (92 — 92) (h1i — aLyi) + 29,9; (1 - i“‘—oju) (hy — aLy;)
+2a (hir (gr M1y — giMy;) + hai (90 Mai — giM1y))

+a (gf — 92) (hircsr + haicsi) + %M (hir + aLi,)

- (1 - %’f“) (92 — 92) (h1r — aL1y) — 29,9 (R1rcsi — haicsr) |

—dadhe (62 _ g2) (hy,Ly; + hiiLyp) + 3048008 (b Ly — RyiLo;)

=209, 9i (1 = i:f“) (h1rLii + h1iLyy)
+209,9i (hleri — h]i]\/fh-) -« (g,? — gf) (hlr]\/jlr -} ]lliNfli)
- (1 - %’,’“) (92 = g?) (h1rL1r — h1iL1i)
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dig

daa

i (1 — é'q—fll) (h%r — h%z) — ah%r (g9rcsi + gicsr) + 2ahiphyi My

Bdhii (B2 4 h2) — o (hY.csr + h3jesi) + ahd huics;
_ 12aAhy hyg dad :
= _— uﬁ : (hlrLlr — hfliLli) + (:} (Llrh?i — Llih?r) )

+2aey, (lz%r - ]L%i) + ahirhy; (hircs; — hiicsy)

8aAhy,hyi L 2 2\ _ 4aALy; (14 _ 14
dog = w = (h'lr + h‘li) w (’7‘11‘ hli)
- 3
—x (h‘lfrc;gr + 11:131-(331') + ahyrhy; (hl-,-C:;i — /?,11'637-)

+2ahirhy; (gresr — gicsi) — 2h1rgr (1 = éA—f“) (h1; = aL1;)

4Ah1rgr 2 2 2 8aAh? grL1r
+22552 (h, — h;) + ahd; (gresi + gicsy) — ==

3G (1 — L) - 2aLy, (1 = 4—"%“) (h1rgi — haigr)

—8aAMaMi (Ly,9; — L1igy) + 20tL1iha;gs (1 R )

o (grMy; + giMir) (R, — h3)
—8adhr (32— h3) (Lirgr + L1igs)
= | +2ahiphii (9o Mir — giMyg) + 82AmMi (1) g — Lysgr) |
+a (1 - %’f“) (Lirgi — L1igr) (h3,9: — h3;)

—2athyha (1 = ﬁf“) (L1rgr + L1igi)
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—gr (1 - 4485) (2, — %) + agrcs, (h, — W)
+agics; (h%,. 4 h%i) — -Sﬁ%)iﬁ: (h1; — aly;)
+340egs (B2 — h2) + 20hirhii M
do3 = +2ahirhai (gresi + gicsr) )
—2h1,9; (1 - &J’n) (h1s + aLy;)

_ 8aAh? giLir T 8aAIi)1rh1,~ { B i Bl

+2ahy; (1 — 4—'%'41) (L1rgi — L1igr)

—a (1 - ‘M;fli) (h2, — h%,) (L1rgr + L1igi)
— (B2, — h3;) (Mingr — Mysgs) — 285015 (1) o+ Lisgr)
dog = +4edhie (L0, — Liigr) (b}, — h3;)
—2ahirh; (1 = QA—QT”) (L1rgi — L1igr)
—2ahirhii (Miigr + Mirg:)

—a (hi,csr + hiiesi) + acs, (R3, — h3,) + BeAlcly (p2 - p2.)

8aAh3. L1,

+2ahirhiicsi — ahiphy; (h17-05i + ]lliC5r) - —h——w

dos =

AvATLqs 4 4 8aAh2]-L1.~h2]
i (h’lr + h’li) - w
d26 = ]

- (h?TCgr + h‘rls,ic;gi) — ahirhy; (lllTC3i + hliCBr)

dor = [—h}, + 3ahi, Ly, — hiphd; + 2ahyphai Ly + aLphiy]

dog = —2aLqrhyy (h%r + h’%i) )
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—-P.A (Pr (14 d7) — 2hy,d7 + dg) + PAdyy

mi = M, +1imy; =

mgr =

— (2B, + iwP) dy3 + P (dyg + das)

QR.Ahlrdg = (2Ec + ’I:LUP) d14
+PAdyg + P (d20 4= d25)

Mo = Moy + 1Mo; =

mg = Mz, + 1mg; = [—- (2Ec +iwP)dy + P (d15 -+ d21)] ,

My = My + 1My = [— (2EC + in) dig + P (dm + d22)] ’

ms = Mgy + 1Mg5; = [— (ZEC +iwP)dy; + P (d17 + dzg)] 5

me = Megr + 1Mg; = [—— (2EC + in) dip + P (d18 + 6124)] ]

my = My + 1My,

mir (4h%r -— Zhlrpr) — mM1; (%Il—an)

(4h2, — 2h1, P.)? + (2£x)?

)

™M

_ miq (4]7.%7. = 2’llr—Pr) + mip, (w_f,;)
(4h2, — 2h1, Pr)? + (2£=)?

mg = mg, -+ imgi,

mar (4h3, — 201, P.) — ma; (“’—4&)

(413, = 2h1, )" + (44)°

)
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megi

- Mmai (4h’%r - 2h’err) + mop (%)

(412, — 2 Pr)” + ()

)

)



(43, — 2hy, P + (22

ny = Ny + 'I'.'n/li =
—2i (4h?, — 2h1, Py) (25=)

5 2 wPh\? 2 why
T = (4]111_ - 2/7,1,~PT) -+ ( 1 > y M1y = —2 (4]7'1r - 2h‘l?‘Pr) < I ) )

mg = Mgy + My,

(4hyr — Pr) (n1pmoy — maing) e (4h1r — Pp) (naimeor + mainar)

2 2 ) i = 2 2 2
ni, +ni; ni, +ny;

mor =

. (hlr + gr)2 - (hli = gi)2 - P, (hlr -+ !]r)
ng = Ngp + 1Ng; = ,

+i (=2 (har + gr) (h1i — gi) + Pr (hai — gi) — 5%)

Ny = (hlr ¥+ 97‘)2 - (hli - gi)2 - B (hlr + 97') )
[

wh,
4 b

e [_2 (hir + g0) (hai — 93) + Pr (hai — g3) —

(ngrmisy — Ma3rng;)
2 2
Ny, + Ny

mig = Mgy + 1M10i, Mior =

(TLz,-m,_r,i E m3i712i)
2 2
N, + Ny




(7121'77151‘ =t m3r712r) B (7121'777,51' + 777/31'”27‘)
P] 2 y, M1 = P} 2
Ny, + Ny, n3. +n2,

miiy =

(normer — Marna;)
2 2
ng,. + ng;

mig = Migr + iMi2i, Mi2r =

(narmei — Maing;)

mig; = 5 D) y 13 = Mmigy + 1Magi,
N, + N,
. (naimer + mernay) m (noimei + meinay)
13r = D) 5 ) 13% = ) 5 y
Ny, + Ny Ny, + Ny

ng = nar +ing; = [(2 (h1r + gr) — Pr) + 5 (=2 (b1 — 9i))],

ngr = 2 (hir + gr) — Py, ngi = =2 (h1i — i), N4 = Nar + in4;,

(b + g0)" + (hai = 90)* + 252 (hai — g3)
—6 (hir + gr)? (h1s — gi) + w—?gﬁ
+P? ((h1r +91)% = (hui — gi)2> — WPy (h1r + gr) (h1i — gi)
2P, (= (hir + ) +3 (e + g0) (hai — 0)?)

Mgy =

~4 (h1y + gr)* (h1i — gi) + 4 (har + gr) (h1i — 95)°
2
ngi = | +2P; (3 (h1r + 90)? (hai — gi) = (hai — gi)3) — 28 (hir +gr) |
_QPT? (hlr I gr) (hli = gi) - w—g': ((hlr + gr)2 - (hli - gi)z)
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mMi4 = Midr + 1M14;,

Mer (NarNar + Maing;) + Mar (N4rN3i — NaiN3y)

Miqr =
& nézlr + 71’21’ ,
mei (Narnar + n4inai) + Mai (Narnzi — Nain3,)
mi4; = 2 2 )
Ng, + 5
mi5 = Misr + 1M154,
. —Mgr (Narn3i — NaiN3r) + Mar (NarN3y + NaiN3;)
150 = 5 D) )
Mg, + Ng;
- —mgi (N4rn3; — Naingr) + Mg (NarNar + N4iN3;)
1 =

) 3 )
Ng, + Ng;

mig = Mier + 1Mig;i = M7 + Mg + mig + mMi4,

Mi6r = My + Mor + Mior + Miger, Miei = M7; + Moi + Mioi + Mideq,

(P + VPTFiwP,)
: ,

f=+ifi=
3
f,=i+@=&+l P2+ /P! + w?P? ,
22 2 2 2



1
2

by _

1 |—P2%+ /P! + w2P?
2 2

2

i =

3 L
P2+ /PY+w2P2|* —P2 + /Pi+w2P2|?

az = 5 , by = 5 3
r3 = a3 + b3 = \/P1 + w?P2.
IFrom Eqgs.(3.85), (3.90) and (3.91) we can write
6 = 6y + € (01, coswt — 01; sinwt) , (3.92)
in which
01, = —e I (myg cos fin — magisin fin) (3.93)

+ (mar + Mo + mgrn) e~ 207

(maor + madr + migen) cos (hi — gi)n o= (hirtarn.
+ (ma1r + masy +masen) sin (hi — gi) m

01; = —e I (mygrsin fin + maei cos fin) (3.94)
+ (magi + mg; + mgn) e~ 2Mrn
(maoi + maai + mazin) cos (hi — gi)m o= (hirtgr)n.
+ (ma1s + masi + magin) sin (h; — g:)
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Fig. 3.1 (A). Effect of Q on real part of velocity profile u vs n for Newtonian fluid at
=0, wt=xf2, A=02, e=w=035 Wsg=-01, v=01.

25

Fig. 3.1 (B). Effect of 2 on real part of velocity profile v vs 7 for second grade fluid at
a=04, wt=n/2, A=02, e=w=0.5, Wy =-0.1, v=0.1.
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Fig. 3.2(A). Effect of Q on imaginary part of velocity profile v vs n for Newtonian fluid at
a=0,wt=xf2, A=02, e=w=05 Wp=-0.1, v=10.1.

5%, S O S s S —

Fig. 3.2(B). Effect of Q on imaginary part of velocity profile v vs 1 for second grade fluid at
a=01, wt=7/2, A=02, e=w=0.5, Wy =-0.1, v=0.1.
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Fig. 3.3(A). Effect of © on real part of temperature profile 8, vs 1 for Newtonian fluid at

a=0wt=7/2)A=€c=w=05W=-0.1,r=0.1,P =15 E, =50,k =02,P =0.3.
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Fig. 3.3(B). Effect of 2 on real part of temperature profile 0, vs n for second grade fluid at
a=004, wt=7/2,A=¢€=w=05W=—01,v=01,P = 1.5 E, = 5.0,k = 0.2, P = 0.3.
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Fig. 3.4(A). Effect of Q on imaginary part of temperature profile 6; vs n for Newtonian fluid
ata=0wt=7/2 A=e=w=05Wy=-01,v=0.1,P =15, E.=5.0,k=02P =03
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Fig. 3.4(B). Effect of {2 on imaginary part of temperature profile 8; vs 7 for second grade
fluid at a = 0.05,
wt=7/2,A=€e=w=0.5Wy=-01, v=01,P.=15,E,=5.0,k =0.2,P =0.3.

60



6 N
4 ‘\
2f \
CIS‘ - _//— /f::A:_* T b e
0 il -
e Bl
\ . ,// 2 gr:S
_ N _ 7 7 r:
o Sl B8
; ’ Pr=10
0 0.5 1 1.5 2 2.5 3
n

Fig. 3.5(A). Effect of P, on real part of temperature profile 6, vs n for Newtonian fluid at
ao=0wt=72A=é=w=05Wy=~01, v=01,9= 30,8, =50,k = 02,P =0.3.
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Fig. 3.5(B). Effect of P, on real part of temperature profile 6, vs i for second grade fluid at
a=0.05wt=nr/2,A=e=w=0.5Wp=-01, v=01,2=3.0,E, = 5.0,k =0.2,P =0.3.
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Fig. 3.6(A). Effect of P. on imaginary part of temperature profile 6; vs n for Newtonian fluid
sta=0,wt=n2,A=ec=w=05Wg=-0.1, »=0.1,0=25,E.=50,k=02,P =03
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Fig. 3.6(B). Effect of P. on imaginary part of temperature profile 6; vs n for seond grade
fluid at a = 0.04,
wt=7w/2,A=e=w=05Wy=-01, »=01,Q=25,F.= 5.0,k =0.2,P =03
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Fig. 3.7(A). Effect of E, on real part of temperature profile 0,. vs 7 for Newtonian fluid at
=0 wt=n/2,A=e=w=05W=-01, v=01,0=40,B =50,k =0.2,P =03.
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Fig. 3.7(B). Effect of E,. on real part of temperature profile @, vs i for second grade fluid at
a=004; it = 7/2; A = e =w=05Wy= =01, »=01,0=40,P. =50,k =02,P = 0.3
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Fig. 3.8(B). Effect of E, on imaginary part of temperature profile 0; vs n for seond grade
fluid at a = 0.05,
wt =2, A=e=w=05Wp=~-01,vr=01,0=25,PF = 50,k = 0.2, P = 0.3
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3.4 Discussion

In this chapter we consider the problem of heat transfer in rotating flow of an incompressible
fluid of second grade. A perturbation procedure has been used to obtain the analytic solution.
The effects of various parameters such as Q, P., and E. on the real and imaginary parts
of velocity (w,v) and temperature (0,,0;) distributions is studied and the results have been
presented by several graphs.

To study the elfect of €2 on the velocity components, we have plotted v and v against 7 in
figures 3.1 and 3.2 for Newtonian and second grade fluids. From the figure 3.1(A), it is observed
that near the plate u increases with the increase of 2. Figure 3.1(B) indicates that u increases
very near to the plate and then fluctuates through an increase in §2. The comparison of these
two figures reveal that w in case of second grade fluid is greater than that of Newtonian fluid.
Also, the velocity boundary layer thickness for seccond grade fluid is larger than the Newtonian
fluid. It is also seen from figures 3.2(A) and 3.2(B) that v increases near the plate and then
decreases for large value of 2. The fluctuations in second grade fluid are more visible than
that of Newtonian fluid. Also, the value of v for second grade fluid is smaller from the case of
Newtonian fluid.

Figures 3.3 and 3.4 show the effect of 2 on the real (0,) and imaginary (6;) parts of temper-
ature distributions. Figure 3.3(A) shows that with the increase of €, 8, decreases near the wall.
As shown in figure 3.3(B), we can see that as 2 increases, 6, increases near the plate and then,
at a distance of n = 1, the 0, beguns to decrease. That is, the behavior of @, is quite opposite
for Newtonian and second grade fluid near the plate. Figure 3.4(A) shows the variation of 2 on
0;. It can be seen that as € increases, the value of 0; decreases at a distance of approximately
n = 0.8 and then increases. Figure 3.4(B) indicates that @; increases near the wall for Q > 1.

In order to illustrate the variation of P, on @, and 6;, we have prepared figures 3.5 and 3.6.
Figure 3.5(A) and 3.6(A) explains the effect of P, on 6, and 0;, respectively for Newtonian
fluid case. From these figures it is revealed that near the plate, 0, decreases and 6; increases
for P. > 2. The thermal boundary layer thickness in 0, increases where as for 0; decreases. For
second grade fluid, we note that from figures 3.5(B) and 3.6(B) that for P, > 2, 0, decreases
near the wall and increases far away. Also 0; decreases for P, > 2.

Figures 3.7 and 3.8 show the effect of F, on 0, and 6;. From figures 3.7(A) and 3.7(B), we
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observe that 6, near the wall decreases with the increase in . and increases far away. The
thermal boundary layer thickness increases for large E.. Moreover, it can be seen from figure
3.8(A) that @; increases for large values of E.. From figure 3.8(B) it can be seen that with the
increase in the values of E. the temperature 0; decreases near the plate and increases far away.

The thermal boundary layer thicknesses in both the fluids increases.

66



Bibliography

[1]

[2]

3]

[4]

(7]

8]

[9]

B. Straughan, Energy stability in the Benard problem for a fluid of second grade, J. Appl.
Math. Phys. (ZAMP) 34, 502-508 (1983).

H. Franchi and B. Straughan, Stability and nonexistence results in the generalized theory

of a fluid of second grade, J. Math. Anal. Appl. 180, 122-137 (1993).

K. R. Rajagopal, A note on unsteady unidirectional flows of a non-Newtonian fluid, Int.

J. Non-linear Mech. 17, 369-373 (1982).

R. Bandelli, Unsteady unidirectional flows of second grade fluids in domains with heated

boundaries, Int. J. Non-linear Mech. 30, 263-269 (1995).

G. Gupta and M. Massoudi, [Flow of a generalized second grade fluid between heated plates,

Acta Mech. 99, 21-33 (1993).

K. R. Rajagopal, On the creeping flow of the second grade fluid, J. Non-Newtonian Fluid
Mech. 15, 239-246 (1984).

T. Hayat, S. Asghar and A. M. Siddiqui, Periodic unsteady flows of a non-Newtonian fluid,
Acta Mech. 131, 169-175 (1998).

T. Hayat, S. Asghar and A. M. Siddiqui, On the moment of a plane disk in a non-Newtonian
fluid, Acta Mech. 136, 125-131 (1999).

T. Hayat, S. Asghar and A. M. Siddiqui, Some unsteady unidirectional flows of a non-
Newtonian fluid, Int. J. Eng. Sci. 38, 337-346 (2000).

67



[10]

[11]

(12]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

K. R. Rajagopal, Longitudinal and torsional ocsillations of a rod in a non-Newtonian fluid,

Acta Mech. 49, 282-285 (1983).

I-Chung Liu, Effect of modulation on onset of thermal convection of a second-grade fluid

layer, Int. J. Non-linear Mech. 39, 1647-1657 (2004).

I. T. Dolapci and M. Pakdemirli, Approximate symmetries of creeping flow equations of a

second grade fluid, Int. J. Non-linear Mech. 39, 1603-1619 (2004).

T. Hayat, Masood Khan, A. M. Siddiqui and S. Asghar, Transient flows of a second grade
fluid, Int. J. Non-linear Mech. 39, 1621-1633 (2004).

T. Hayat and K. Hutter, Rotating flow of a second grade fluid on a porous plate, Int. J.
Non-linear Mech. 39, 767-777 (2004).

P. G. Siddheshwar and C. V. Sri Krishna, Unsteady non-linear convection in a second

grade fluid, Int. J. Non-linear Mech. 37, 321-330 (2002).

M. J. Lighthill, The response of laminar skin friction and heat transfer to fluctuations in

the stream velocity, Proc. R. Soc. Lond. A224, 1-33 (1954).

J. T. Stuart, A solution of the Navier-Stokes and energy equations illustrating the response
of skin friction and temperature of an infinite plate thermometer fluctuations in the stream

velocity, Proc. R. Soc. Lond. A231, 116-131 (1955).

S. A. S. Messiha, Laminar boundary layers in oscillatory flow along an infinite flat plate

with variable suction, Proc. Camb. Phil. Soc. 62, 329-337 (1966).

R. E. Kelley, The flow of a viscous fluid past a wall of infinite extent with time-dependent

suction, Quart. J. Mech. Appl. Math. 18, 287-298 (1964).

V. M. Soundalgekar and P. Puri, On fluctuating flow of an elastico-viscous fluid past an

infinite plate with variable suction, J. Fluid Mech. 35, 561-573 (1969).

T. Hayat, Q. Abbas, S. Asghar, A. M. Siddiqui, T. Farid and G. Murtaza, IFlow of an
elastico-viscous fluid past an infinite wall with time-dependent suction, Acta Mech. 153,

133-145 (2002).

68



(22] D. W. Beard and K. Walters, Elastico-viscous boundary layer flows, Proc. Camb. Phil.
Soc. 60, 667-674 (1964).

(23] P.N. Kaloni, Fluctuating flow of an elastico-viscous fluid past an infinite plate with variable

suction, Phys. Fluids 10, 1344-1346 (1967).

(24] J. E. Dunn and R. L. Fosdick, Thermodynamics, stability and boundedness of fluids of
complexity and fluids of second grade, Arch. Rat. Mech. Anal. 56, 191-252 (1974).

(25] R. L. Fosdick and K. R. Rajagopal, Anomalous features in the model of second order fluids,

Arch. Rat. Mech. Anal. 70, 145-152 (1979).

69



