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Preface 

The study of non-Newtonian fluids has attracted much attention, because of their 

practical applications in engineering and industry particularly in extraction of crude oil 

from petroleum products, food processing and construction engineering. Due to 

complexity of fluids, various models have been proposed. The equations of motion of 

non-Newtonian fluids are highly non-linear and one order higher than the Navier-Stokes 

equations. Finding accurate analytic solutions to such equations is not easy. There is a 

particular class of non-Newtonian fluids namely the second grade fluids for which one 

can reasonably hope to obtain an analytic so lution . Important studies of second grade 

fluids in various contexts have been given by Straughan [1, 2], Rajagopal [3-5], Bandelli 

[6], Gupta [7], Liu [8], Dolapci [9] , Siddheshwar [10] and Hayat et. al [11 -15]. 

Since the pioneering work of Lighthill [16] there has been a considerable amount 

of research undertaken on the time-dependent flow problems dealing with the response of 

the boundmy layer to external unsteady fluctuations about a mean value. Important 

contributions to the topic with constant and variable suction include the work of Stuart 

[l7], Messiha [18], Kelley [19] , Soundalgekar and Puri [20] and Hayat et. al [21]. 

The primary purpose of the present dissertation is to make an investigation of the 

combined effects of rotation, and heat transfer characteristics on the flow of a second 

grade fluid past a porous plate. With this fact in view, this dissertation is organized as 

follows: 

In chapter one, some basic definitions and properties of the fluid are given. 

Equations of motion and peliurbation method are also included. 

In chapter two, the work of Soundalgekar and Puri [20] has been reviewed. This 

work deals with the flow of an elastico-viscous fluid past a porous plate with variable 

suction. 

In chapter three, the simultaneous effects of rotation and heat transfer 

characteristics are discussed on the flow of a second grade fluid past a porous plate 

having variable suction. The analytic solutions for the velocity field and temperature 

distribution are obtained. Special attention is given in finding the solutions and to 



describe the physical nature. In order to see the variations of different emergmg 

parameters, the graphs are sketched and discussed. 
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Chapter 1 

Some definitions and equations 

1.1 Introduction 

We begin our study of fluids in motion by presenting some basic definitions, concepts and 

equations . The equations of continuity for unsteady compressible and incompressible fluids are 

given. The equation of motion for any fluid satisfying the continuum is also presented. Futher, 

the perturbation treatment is explained with the help of an example. 

1. 2 Definitions 

Flow 

A material that deforms continuously under the application of shear stress. If the deforma­

tion continuously increases without limit, then the phenomenon is known as flow. 

Velocity Field 

In dealing with fluids in motion, we shall necessarily be concerned with the description of 

a velocity field. At a given im;tant the velocity field V is a function of the space coordinates 

x, y, z . The velocity a t any point in the flow field might vary from one instant to another. 

Thus the complete representation of velocity field is given by 

V=V(x,y, z, t) . (1.1) 

The velocity vector V can be written in terms of its three scalar components. Denoting the 
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components in the x, y and z directions by u, v and w we have 

v = (u,v,w). (1. 2) 

Steady F low 

A [J ow in which the properties a.t ea.ch poill t 1Il a. fl ow fie ld do not cha.llge with time. 

Mathematically 

07) = 0 
at ' 

where 7) represents any fluid property. 

Unsteady Flow 

A flow in which the fluid properties do not remain constant with time at any point . 

Compressible Flow 

A flow in which the volume and thus the density of the flowing fluid changes during the 

flow. All the gases are, generally considered as a compressible flow. 

Incompressible Flow 

A flow in which the volume and thus the density of the flowing fluid does not change during 

the Row. All the liquids are, generally considered as a incompressible flow. 

F luid Rotat ion 

It is the average angular velocity of any two mutually perpendicular line elements of the 

fluid particles. Rotation is a vector quantity. A particle moving in general three-dimensional 

flow field may rotates about all three coordinates axes . In general 

in which Dx , Dy and Dz are the rotations about the x, y and z-axes, respectively. 

Viscosity 

It is a physical property of fluids associated with shearing deformation of fluid particles 

subjected to the action of applied forces. In other words it is the resistance of a fluid to its 
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motion. It is also defined as the ratio of shear stress to the rate of shear strain, i.e. 

Kinematic Viscosity 

Shear stress 
Viscosity = fJ, = -------­

rate of shear strain 

It is the ratio of absolute viscosity fJ, to density. It is denoted by v, i. e. 

It 
// =-. 

p 

1.3 Types of Fluids 

Ideal Fluid 

An ideal fluid is one which is incompressible and has zero density. With zero viscosity, the 

fluid offers no resistance to shearing forces and hence during flow and deformation of the fluid 

all shear forces are zero. Many flow problems are simplified by assuming that the fluid is ideal. 

Real Fluid 

All real fluids have finite viscosity, and in most cases of flow in ducts and immersed bod­

ies it is necessary to consider the viscosity and the related shearing stresses associated with 

deformation of the fluid. Real fluids are futher subdivided into two main classes. 

a. Newtonian fluid 

b. Non-Newtonian fluid 

1.3.1 Newtonian Fluid 

For such fluid shear stress is directly proportional to the deformation rate. Mathematically 

or 

du 
Tyx ex: dy' 

(1.3) 

In above equation T y x is the shear strt:)ss acting on the plane normal to y-axis and in the 

direction parallel to x - axis and fJ, is the constant of proportionality, known as absolute or 
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dynamic viscosity. Eq. (1.3) represents Newton's law of viscosity. Most common fluids such as 

water, air and gasoline are Newtonian under normal conditions. 

1.3.2 Non-Newtonian Fluid 

For such fluid shear stress in not directly proportional to deformation rate. Toothpaste and 

Lucite paint are examples of these fluids. Numerous empirical equations have been proposed to 

model the observed relations between Tyx and du/dy for time dependent fluids. They may be 

adequately represented for many engineering applications by the power law model, which for 

one-dimensional flow becomes 

(
dU) n 

Tyx = k dy , (1.4) 

where the exponent, 17" is called the flow behavior iudex and k, the consistency index. This 

equation reduces to Newton's law of viscosity for n = 1 with k = f-L. Eq. (1.4) is written in the 

form 

(
dU) n-l du du 

T yx = k dy dy = 77 dy , (1.5) 

in which 7] = k (du/dyt- 1 is referred to as the apparent viscosity. Most non-Newtonian fluids 

have apparent viscosities that are relatively high compared to the viscosity of water. There are 

many models of non-Newtonian fluids. In the present dissertation, we consider elastico-viscous 

and second grade fluids. 

1.4 Equation of Continuity 

Let us consider a differential control volume 6.x6.y6. z in a cube. Here we take density and 

velocity as function of position in time and space. We compute the flux of mass per second 

through each face of the cube to get, for the three directions 

Due to matter conservation principle the sum of these must be equal to the time rate of 

change of mass 
0 ' ot (p6.x6.y6.z) . (1.7) 
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It is noted that fixed control volume b.xb.yb.z is independent of time. Combination of Eqs. 

(1.6) and (1.7) yields 

or 

which is called equation of continuity. 

ap -+v'pv=o at ' 

For an incompressible fluid, we take p =constant. Therefore, Eq. (1.9) becomes 

v·V=o, 

where 

v= (~ ~~) ax' ay' az . 

Eq. (1.10) can also be written as 

or 

d'ivV =0. 

1. 5 The Momentum Equation 

The equation of motion in vector form is 

dV 
P-d = pb+divT, 

t 

in which b are the body forces per unit mass. The Cauchy stress T is 

T = [ ::: ::: ::: I ' 
T zx T zy T zz 

6 
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(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 



where Tel;,,;, Tyy n,nd T zz nrc the llonrml HtresHes nllcl T :I:1/' T ;l: z , 7 11 ,,;, T!l z, T Z:l: a nd T Zl/ are shear 

stresses, 

1.6 Equation of Motion in R otating System 

To include the rotating in the equation of motion (1.13) , Consider the figure (1.1) showing two 

coordinates system 

y 

P 

/
~I 

r r 
I 

~~--------~~~y. 

-t', =--~--------» ... 

Fig. 1.1. 

The coordinates with prime are in rotating system and those without promes are in an 

inertial system. Here r is the position vector in the inertial system, r' is the position vector 

in the rotating system, and R is the position vector of the origin of the rotating system in the 

inertial system. Obviously 

, 
r=R+r, (1.14) 

and 
dr' dx ., de ., 

- t e +x t dt - & i' i'ill' (1.15) 

where ei , is a unit vector having magnitude one. If the primed coordina te system does not 
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rotate, the derivative dei' / dt are all zero. If the primed system is rotating with angular velocity 

n then 
dei' _ n - - ~~ xe ·, . 
dt l 

(1.16) 

Using Eqs. (1.15) and (1.16) in Eq. (1.14) we obtain 

dr dR dx., , 
- = - + _ l_ e ., + n x r . 
dt dt elt t 

( 1.17) 

The first term on the right represents the translation of the primed system with respect to 

the inertial system, the second term is the translation of the point P with respect to the primed 

system, and the third term represents the rotation of the primed system. 

Differentiating Eq. (1.17) with respect to "t" we get 

(1.18) 

Since we are going to apply the equation to a fluid , taking the acceleration of a particle in 

the primed system as 

or 

Also 

, 2 
elY = el Xi' e., 
cit elL 2 l ' 

elr', , 
-:l-=Y +nxr, 
ct 

elx./ ele., , 
-elt -elt = Y x n. 

t t 

Making use of Eqs. (1.19) and (1.20) in Eq. (1.18) we get 

el
2
r elY' el

2
R elY' (' ) eln, (' ') 

elt2 = dt = elt2 + dt + Y x n + ill x r + n x Y + n x r , 

el2r el2R elY' , ( ') eln , 
el 2 = -el 2 + -l- + 2n x Y + n x n x r + - x r , 

t t ct elt 

where 

d2i = translational acceleration of the primed system, 
, 

ddt = particle acceleration with respect to the primed system, 

2n x y' = Coriolis acceleration, 

8 
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n x (n x r') = centrifugal acceleration wi th respect to the primed system, 

~? x r' = angular acceleration in the primed system. 

For equations to the rotating system, the primed coordinate system is fixed with respect to 

the rotating system, it does not translate, it does not undergo translational acceleration, and 

the rotation is constant , so 

dR =0 
df; , 

dn = 0 
dt . 

Thus the equation of motion (1.13) for rotating system becomes 

[
elV' , ( ')] p dt + 2n x V -I- n x n x r = pb+divT. 

Neglecting the primes, the above equation can be written as 

p[dd~ +2n x v+n X(n x r)] = pb+divT. 

1. 7 Perturbation Method 

(1.22) 

(1.23) 

(1.24) 

This method yields approximate solutions for a large class of initial and boundary value prob­

lems for partial differential equations. It is used when a small parameter (or a large parameter) 

occur::; in the given equation or data or problem. The a~sumed solution i::; expn.ndecl in a series 

of powers (or inverse powers) of the parameter and the expansion is inserted into the equation. 

By equating like powers of the parameter, a collection of the problems result, whose solution 

is expected to be simpler than that of the problem. Now, if the series expansion of the solu-

tion converges , or is expected to converge the technique is referred as perturbation technique 

method. 

Example 

To apply the idea of perLurbnLion techlliqlle, we cou::;icler the followillg equation 

(1.25 ) 
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in the unit disk x 2 + y2 < 1, with the Dirichlet boundary condition 

U (x, y) = 1, x2 + y2 = 1, 

where E2 is small so that solution of Eqs. (1.25) and (1.26) is unique. 

or 

or 

or 

We find solution of Eq. (1.25) in terms of a power series of E i.e. 

00 

U (x, y) = 2:= Un (x, y) E2n = Uo + 'U1E2 + 1~2E4 + ......... 
n = O 

Substituting Eq. (1.27) into Eqs. (1.25) and (1.26) we obtain 

00 00 

\,72uo + \,72 L U n E2n + L 1~nE2n+2 = 0, 
n=1 n=O 

00 00 

\72
uo + \72 L Un E

2n + L Un _1 E2n = 0, 
71.=1 n=1 

00 

\72
uo + L [\72'un + Un-I] E2n = O. 

n=1 

From Eqs. (1.27) and (1.26) we can write 

00 

U (x, y) = Uo + L U n E2n = 1, x
2 + y2 = 1. 

n=1 

Comparing the coefficients of E2 in Eqs. (1.28) and (1.29) one obtains 

o (EO) 

Uo (x, y) = 1, x 2 + y2 = 1. 
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(1.27) 

(1.28) 

(1.29) 

(1.30) 

(1.30a) 



(1.31) 

Un (x, y) = 0, X
2 + y2 = I , n ~ 1. (1.31a) 

Equation (1.30) can be written as 

(1.32) 

Using 

the solution of above equation is 

1LO = A + Bt, 

or 

Uo = A + BlnT. ( 1.33) 

After using Eq. (1.30a) in Eq. (1.33) we get 

Uo = 1. (1.34) 

POl' n = I, Eqti. (1.31), (1.31a) and (1.34) give 

(1.35) 

Ul (x ,y) = O. (1.35a) 

In polar coordinates Eq. (1.35) becomes 
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or 

( 1.36) 

The solution of above equation is 

(1.37) 

Using boundary conditions in above equation, we have 

(1.38) 

hom Eqs. (1.34) , (1.38) and (1.27) we obta.in 

(1.39) 
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Chapter 2 

Flow of an elastico-viscous fluid with 

variable suction 

2.1 Introduction 

This chapter deals with the flow of an elastico viscous fluid past an infinite plate with time 

dependent suction. Expressions for velocity and skin frictions are given. The suction velocity is 

taken as an oscillating function of time. The present work is a review of a paper by Soundalgekar 

and Puri [20]. However, detail of mathematical calculations is incorporated properly in the 

presented analysis. 

2.2 Mathematical Formulation 

We consider the unsteady, two-dimensional incompressible elastico-viscous (Walter's liquid B') 

fluid flow parallel to an infinite plane porous plate. The x' -axis is chosen along the plate and 

y' -axis perpendicular to it. We also assume that the flow is independent of the distance parallel 

to the plate. Then the continuity equation requires that v is at most a function of time and 

retains its value at the plate throughout the flow. 

The equation of state for the liquid B ' can be written in the form 

I 

Pik = -pgik + Pik, (2.1) 
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j t ( ) !:'IXi !:'IX,k () 'ik, _ _ ' _u __ u_ (l)mT ," , 
p ( X, t) - 2 '1/) t t !:'I ' !:'I' . e :/, ,t dt, 

-00 uX m ox 1 

(2.2) 

where Pik is the stress tensor, P an arbitrary isotropic pressure, gik the metric tensor of a fixed 

co-ordinatcs t>yt>tcm .7;i, :/; ' i the pOt>ition at timc i' of thc clcmcnL which is int> Lantancously at 

the point xi at t imet, e~t) the rate of strain tensor and where 

in the above expression N (r) is the distribution function of relaxation times r. If attention is 

restricted to liquids with short memories (i .e. short relaxation times), Beard and Walters [22] 

has shown that the equation of state can be written in a simplified form 

1'J'ik = 277 e (1) ik - 2k i e (1)ik 
o 08t' (2 .3) 

where 

is the limiting viscosity a t small rates of shear 

and 8/ 8t signifies the convected differentiation of a tensor quantity, which for any contravariant 

tensor bik is given as 

(2.4) 

where vi is the velocity vector. 

The above equations along with momentum and continuity equations for the problem under 

considerations yield 

(2.5) 
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, (av' ,av') 
p at' + v ay' (2.6) 

av' 
ay' = O. (2.7) 

Equation (2.7) shows that v' is a function of time only. However following Messiha [18] we 

take 

v = -va 1 + EAe1,w t , , , ( . , ') (2,8) 

where v~ is a non-zero constant mean suction velocity, E is small and A is a real positive constant 

such that EA ~ 1. The negative sign in (2.8) indicates that the suction velocity normal to the 

plate is directed towards the plate, 

Using Eq, (2.8), the Eqs. (2.5) and (2 .6) become 

where 

au' , ( A iw' t') au' --va 1 + Ee -= at' ay' 

II = 7]? 
p 

av' 
at' 

and k* _ ka a - ,. 
p 

(2.9) 

(2 .10) 

Also from Eqs. (2.8) and (2.10) as ap'lay' is small in the boundary layer, it can be neglected. 

Hence the pressure is taken to be constant along any normal and is given by its value outside 
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the boundary layer. If U' (t') is the free-stream velocity, then from Eq. (2.9) we get 

With the use of above equation, Eq. (2.9) gives 

EJ'u' , ( . , ') EJ'u' - - v 1 + EAe1
.
W I. -

EJt' 0 EJy' 

The boundary conditions are 

, 
u = 0 

u' = u' (t') 

in which 

where U~ is a mean of U'. 

clU' EJ2,u' 
dt' + v EJy'2 

* EJu, iwt EJu [ 3' , , 3'] 
-ko EJy'2EJt' - Vo (1 + EAe ) EJy'3 . 

, 
at y = 0, 

, 
as y ~ 00, 

After using Eq. (2.14), Eq. (2.12) and boundary conditions (2.13) take the form 

EJu' , ( A iw' t') au' -, - Vo 1 + E e -, = 
EJt ay 

, 
u = 0 

, , ." a2u' 
Uoiw Ee

tW 
t + v EJ '2 

Y 

k* au, ( A iw t ) a u [ 3' , , 3'] 
-"0 ay'2at' - Vo 1 + E e ay'3' 

, 
at y = 0, 

, 
y ~ 00. 
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(2 .13) 

(2.14) 

(2,15) 

(2.16) 



Introducing the following non-dimensional variables 

I I 

yv '11 __ 0 
'1 - , 

V 

ul 

U=-I' 
Uo 

12 I 

t = Vo t 
4v ' 

I 

1£ 
U=-I' 

Uo 

4vw' 
w = -/2-' 

Vo 

k*V /2 

k=~ 
2 ' V 

Eq. (2.15) and boundary conditions (2.16) can be written as 

7.1. = 0 at 11 = 0, 

as 17 -> 00. 

2.3 Analytic Solution 

It is appropriate to write u' (y' , t
l

) of the form 

I I Iff . II I 

1£ (y ,t ) = Uo(h(y ) + Ee
tW 

L h(y )), 

(2.17) 

(2.18) 

(2.H)) 

(2.20) 

in which Wi is the frequency of the fluctuating stream, EU~ is the amplitude of the free-stream 

fluctuation, hU~ is the mean velocity in the boundary layer, EU~h is the amplitude of the 

velocity fluctuation in the boundary layer. 

In terms of non-dimensional variables Eq. (2.20) is 

(2.21) 
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Substituting Eq. (2 .21) into the Eq. (2.18) and boundary conditions (2.19) and then comparing 

the non-hormonic and hormonic terms and neglecting the coefficients of (':2, we respectively get 

(2.22) 

h =0 at 77 = 0, (2.23) 

h = 1 as 77 ---t 00, 

(2.24) 

12 =0 at 77 = 0, (2.25) 

12 = 1 as 77 ---t 00 . 

Before proceeding with the solution of the above problem it would be interesting to remark 

here that although in the classical viscous case (k = 0), we encounter differential equation of 

order two. The presence of the elasticity of the fluid increases the order to three. It would 

therefore seem that an additional boundary condition must be imposed in order to get a unique 

solution. The difficulty in the present case is removed by seeking a solution of the form [20 - 23] 

(2 .26) 

(2.27) 

which is valid for small value of k only. 

Putting Eqs. (2.26) and (2.27) into Eqs. (2.22) - (2 .25) and equating the coefficients of kO 

and kl we have from equations (2 .22) and (2.23) 
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(2.28) 

i01 = 0 at 7] = 0, (2.29) 

101 = 1 as 7] ~ 00, 

(2.30) 

ill = 0 at 77 = 0, (2.31) 

ill = 0 as 7] ~ 00 , 

and from Eqs. (2.24) and (2.25) we have 

o (kO) 

(2.32) 

102 = 0 at 7] = 0, (2.33) 

i02 = 1 as 7] ~ 00, 

(2.34) 

at 7] = 0, (2 .35) 
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h 2 = 0 as rJ --t 00. 

The solutions of the above systems are 

(2.36) 

111 = rJ e-7), (2.37) 

102 = 1 - Se-h7) - (1 - S) e-77
, (2.38) 

h2 = (1 - S) (e- h7) - (1 - rJ) e-7)) + L77e-h7), (2.39) 

where 
4iA 

(2.40) S= 1--, 
w 

1 
h = h7• -I- ihi = 2' [1 -I- J (1 -I- iw)] , (2.41) 

1 

1 a 1 1(1[ ])2 h1' = '2 -I- '2 = '2 -I- '2 '2 1 -I- J(l + w2) , 

b 1(1 )1 hi =2'=2' 2'[-1-1-J(1+w2)] 2 , 

. h2 (h + ~iw) (1 _ 4~A) 
(2.42) L = L1' + tLi = , 

)(1 -I- iw) 

[ 
1 1 1 1] !:2. + !:2. (7'+ 1) 2 _ 1'2 -1 (ill ) 2 

1 2 2 2 16 21' 
L1' = r- 2 1 1 1 1 

+ (~) (W:;2 + 1'~ (1';1 )2 + 1'216 1 (1';1)2) , 

20 



With the help of Eqs. (2.36) - (2.39) , Eqs. (2 .26) and (2 .27) become 

1 - Se-hT/ - (1 - S) e-T/ 

+k [(1- S) (e - hT/ - (1- TJ) e-T/) + LTJe- hT/ ] . 

Now the Eq. (2.21) gives 

The above equation can also be written after neglecting the imaginary part as 

where NIr , Mi are the fluctuating parts of the velocity profile and are given by 

[{ (~) (1 + k) + TJ kLi } cos hi?7 + (1 - TJ kLr ) sin hiTI] e-hrT/ 

- (~) [1 + k (1 - TJ) 1 e -T/ . 
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(2.43) 

(2.44) 

(2.46) 

(2.4 7) 

(2.48) 



From Eqs. (2.1) and (2.3) the expression for the shearing stress is 

which in term of non-dimensional variables become 

I 

P X' y' 8u 1 [82u ( iwt ) 82u] 
P:r,'j = I I I = -;:;- - -k ,:) ,:) - 4 1 + EAe ~1 2 . 

. UOVoP 011 4 U'llul, uTI 

Substitution of Eq. (2.45) into Eq. (2.50) yields 

where 

D'J= . + Ee,·wl. 

hSe-hT} + (1 - S) e-T} 

(1 - S) (-he-hT} + e-T} + (1 - 7]) e-T}) 

- Lhr;e-hT} + Le-hT} 

e-T} - 2kc-T} + k77c-1) 

-h2Se- hT} - (1 - S) e-T} 

+k ( (1- S) ( '~e(~h: :)2ee~" ) ) 
+ L h 27]e-hT} - 2Le-hT} 
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(2.49) 

(2.50) 

(2 .51) 



and now Eq. (2.51) becomes 

[ 

(l-S)(l+k-iiwk) I 
(P:LY),)-+O = 1 + Ee

iwt 
+h (S - k (1- S - iiwkS)) . 

+k (L - A - Sh2) 

From above equation we can write 

where 

Pxy = 1 + E IBI cos (wt + (J) , 

B = B,. + 7,Bi = , 
. [ (l-S)(l+k- i iWk)+h(S-k(1-S-iiWkS)) 1 

+k (L - A - Sh2) 

1 (Bi ) {J = tan- B,. , 

B,. = (1 - kA) 17". + (~ (1 + k) + k;) hi + kL,. 

-k (h2 _ h2) _ SAkh,.hi 
,. t W' 

4A (4A kW ) Bi = ~ (1 + k) - ~ (1 + k) + 4 h,. + (1 - kA) hi 

4Ak (2 2) +kLi + - h,. - hi - 2kh,.hi. 
W 
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(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 



;:J 

I f~--~-~-

0.8 

0 .6 

0.4 

1/ 
0.2 / 

I 

k=O.CE ,w=lO 
k=O, W= lOO 
k=O.CE ,w=lOO 

k=1.0 ,w=lOO 

O l~~,~--------------------------------------~ 

\ / I 
-D.2 \ J I 

\ I 
_. '_I __ ._ L -1._'--_'_ 

o 1 2 
'7 

3 

, _ ._ 1-

4 

Fig. 2.1. Velocity profiles against -'7 at wt = 7f /2, A = 0, E = 0.5. 
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To see the variation of the elastic property of the elstico-viscous fluid on the velocity profiles 

near the wall , both in case of constant and variable suction, we have plotted u against 'T/ in 

figures 2.1 to 2.3 for various values of A, w, k and E. Stuart [17] found that for E = 0. 5 and 

w = 100 ( ~w = A in Stuart 's case) the velocity is negative near the wall, which is also shown 

in figure 2. 1 for k = O. Also the graphs in figure 2. 1 for non-zero k are particularly interesting 

in the sense that , with the increase in k, the velocity becomes still more negative near the wall 

for E = 0.5 and w = 100. This leads us to study the nature of the velocity profiles for smaller 

values of E and w . In figure 2.2, it can be seen for elastico viscous fluids, (for very small values 

of k) that the velocity is negative even for smaller values of E and w i.e. E = 0.2 and w = 80. 

l-lence in the case of constant suction velocity, the separation occurs at the wall even for small 

values of E and w . Figure 2.3 is prepared to bring out the effects of the variable suction velocity 

on the separation of the fluid at the wall. This is Messiha's case. Messiha [18] has not discussed 

the nature of the velocity profiles at large w, in the presence of the variable suction velocity. 
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Figures 2.4 and 2.5 illustrate the effects of k and A on the skin-friction phase. It is observed 

by Stllart that the skin-friction phase rises from 7,e1'O at zero frequency to t7r at very high 

frequencies . This is shown in figure 2.4, where k = 0, A = 0 corresponds to Stuart's case. The 

other three curves show the effect of k on the phase of the skin-friction. It is interesting to 

note that an increase in k leads to a decrease in the phase of the skin-friction at large w. It 

is <1iso noted from this figure that tana = 0 when w = 57 and k = 0.1, from which we can 

conclude that the skin-friction oscillates in phase with the on-coming fluctuating main-stream. 

For w > 57, the phase of the skin-friction is negative. Figure 2.5 is made to compare the results 

with Messiha. It is seen that phase of skin friction decreases with an increase in A and increases 

with an increase in w. The phase of the skin fr iction is negative for small values of w. The same 

is true for elastico-viscous fluids (liquid B'). As increase in k leads to a decrease in the phase 

as in the case of constant suction velocity. At large w, the trend is again towards a decrease. 
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Chapter 3 

Heat transfer analysis on rotating 

flow of a second grade fluid past a 

porous plate with variable suction 

3.1 Introduction 

The present chapter deals with the study of momentum and heat transfer characteristics in a 

second garde rotating flow past a porous plate. The analysis is performed when the suction 

velocity normal to the plate, as well as the exLernal flow velocity, varie::; periodically with Lime. 

The plate is assumed at a higher temperature than the fluid. Analytic solutions for velocity, 

::;hear ::; tre::;ses and telllpemture arc derived. The efI'ects or viU'ion::; pa.nuneLer::; or phy::;ic;a.1 illtere::; t 

on the velocity, shear stresses and temperature are shown and discussed in detail. 

3.2 Mathematical Formulation 

Let us consider an incompressible second grade fluid past a porous plate. The plate and the 

fluid rotate in unison with an angular velocity n about the z' -axis normal to the plate. The 

plate is located at z' = 0 having temperature To. The flow far away from the plate is uniform 

and temperature of the fluid is Too. 
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For the problem under question, we consider the velocity and temperature fields as 

(3.1) 

T = T(z', t'), (3.2) 

in which u' ,v' and w' are the velocity components in x', y', and z' directions respectively and 

T indicates the temperature. 

The governing equations in absence of body forces and radiant heating are 

divV = 0, 

, [dV ] p dt' + 2n x V + n x (0 x r) = divT, 

, de 
P - = T . L - divq. 

dt' 

(3.3) 

(3.4) 

(3.5) 

In above equations d/ dt', p', e, L, and q are respectively the material derivative, density, 

the specific internal energy, the gradient of velocity, the heat flux vector and the radial distance 

r2 = x 2 + y2. The Cauchy stress T in an incompressible homogeneous fluid of second grade is 

of the form 

Al = (gradV) + (gradV) T , 

dAl T 
A2 = -l- + Al (gradV) + (gradV) AI, 

ct 

(3.6) 

(3.7) 

(3.8) 

where /.L, -pI, O'.j (j = 1,2), A land A2 are respectively the dynamic viscosity, spherical stress, 

normal sLress moduli and first two Rivlin-Ericksen tensors. The thermodynamic analysis of 

model (3.6) has been discussed in detail by Dunn and Fosdick [24]. The Clausius-Duhem 

inequality and the assumption that the Helmholtz free energy is a minimum in equilbrium 
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provide the following restrictions [25] 

f-L 2: 0, (3.9) 

It is evident from Eqs. (3.1) and (3.3) that 

OW' 
az' = o. 

The above equation shows that w' is a function of time. Following Messiha [18] and Soundal­

gekar and Puri [20] we take 

'w = - Wo 1 + EAeiw t . , , ( , ') (3.10) 

In above equation W~ is non-zero constant mean suction velocity, A is real positive constant, 

E is small such that EA ::; 1 and negative sign indicates that suction velocity normal to the plate 

is directed towards the plate. 

Now the gradient of the velocity is given by 

Bu' Bu' Bu' 
., 

Bx' ayr Bz' 

gradY = Bu' Bv' Bv' 
axr ayr a;r (3.11) 

Bw 
, 

Bw 
, 

Bw 
, 

a;r 8i! 87 

From Eqs. (3.1) and (3.11) we can write 

0 0 ou' I ' D7 
gradY = 0 0 Bv' 

a;r 
0 0 0 

0 0 

~ I (gradV)* = 0 0 

Bu' Bv' 
a;r oz' 

(3.12) 

in which (*) is the matrix transpose. 
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With the help of Eq. (3.12) , Eqs. (3.7) and (3.8) become 

au' I az' 
a ' 
a'o~ , 

av' 
8? 

o (3.13) 

o 

0 0 a2u' 'a2u' 
az' at' + W az'2 

A2 = 0 0 a2v' 'a2,/ 
lJz' /)/.' -/- 'W Dz'2 (3.14) 

a2u' , a2,,' 
az' at' + 'W az'2 

a2v' 'a2v' 
az' at' + W az'2 2 ((~f + (~) 2) 

(~) 2 (~) (~) 0 

Af= (~) (~) (~f 0 

( au' ) 2 ( av' ) 2 0 0 8? + 8? 

(3 .15) 

Using Eqs. (3.13) - (3.1 5) into Eq. (3.6) and then taking the divergence ofresulting equation 

we have 

(3.16) 

. op ou ov 
(( ') 2 ( ') 2) (dwTU = - oz' + (2al + (2) OZ' + OZ' . 

Now 

i j k 

nxv= 0 0 n = (-nv',nu',o) , (3.17) 
, , , u v W 
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i J k 

n x r = 0 0 n = (-ny' , nx' ,0) , (3.18) 

x y 0 

i j k 

n x (n x r) = 0 0 n = -x n ,-n y ,0 , ( '2 2' ) (3.19) 

-y'n nx' 0 

2 (n x V) + n x (n x r) = ( -2v' n - x' n2
, 2u' n - y' n2

, 0) . (3.20) 

From Eqs. (3.4) , (3.10) , (3.16) and (3.20) we obtain 

, , 
au , ( A iw' t') au , - - W.O 1 + E e - - 2nv = at' az' 

, , 
av , ( A iw' t') av (')' at' - Wo 1 + E e az' + 2HU 

subject to the boundary conditions 

, , 

ow' 
aL' 

u=v=o 

32 

at 

1 ap a2u' 
-,-;;;-; + 'U !:I '2 

P ux uz 
!:I3 ' * u u 

+a az'2at' 
*' iwt u", 

( 

, ') !:I3 o ,' 

-a Wo 1 + EAe az'3 ' 

1 ap a2v' 
- p' ay' + 'U az'2 

!:I3 ' * U v 
+a az'2at' 
*' iw t U 

( 
, ') !:I3 v' 

-a Wo 1 + EAe az'3 ' 

, 
z = 0, 

(3.21) 

(3.22) 

(3.23) 

(3.24) 



u' -+ U' (t'), v' -+ 0 as 
, 

z -+ 00, 

where U' (t') is the free stream velocity and the modified pressure is 

and 

~ 1 , 2 2 au av 
[( ') 2 ( ') 2] p = p - 2P D r - (2al + (2) az' + az' , 

f.1, 
1) = I, 

P 

* al a =-,. 
P 

(3.25) 

In view of Eqs. (3.10) and (3.23), ap/az' is small in the boundary and hence can be ignored 

[18, 20, 21]. The modified pressure p is assumed constant along any normal and is given by its 

value outside the boundary layer. The equations (3.21) and (3.22) for the free stream yields 

(3.26) 

1 af] , 
- p' ay' = 2DU . 

Making use of Eq. (3.26) into Eqs. (3.21) and (3.22) we have 

au' , ( A iw' i') au' n ' 
at' - Wo 1 + E e az' - 2HV = 

dU' a2u' * a3u' 
dt' + 1) az'2 + a az'2at' (3.27) 

* ' iw i U 
( 

, ') !'l3u ' 
-a Wo 1 + EAe az'3 ' 

, , 
av , ( A iW' t') av n' at' - TVo 1 + E e az' + 2HU 

!'l2 ' !'l3 ' , uV *uv 
2DU + 1) az'2 + a az'2at' (3.28) 

* ' iw i u 
( 

, ') !'l3v' 
-a Wo 1 + EAe az'3 ' 
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where U' is periodic free stream velocity given by 

u' (t') = U~ (1 + Eeiw't' ) . 

The appropriate boundary conditions for the problem are 

u v' = 0 at 
, 

z = 0, 
, , , 

u ~ U' (t'), v ~O as z ~oo. 

The Eqs. (3.27) and (3.28) after using Eq. (3.29) can be written as 

, , 
au , ( A iw' t') au (") , -, - Hlo 1 + E e -, - 2HV = 
at oz 

OV' , ( iw' t') OV' (")' 
at' - Wo 1 + EAe oz' + 2HU 

, , ." * 03u ' 
~oiw r:etW 

t + a 
oz'20t' 

2 ' , , 3' a U * w,' ( A iw t ) a U 
+v oz'2 - a 0 1 + E e oz'3 ' 

, iw t * U 
( 

, ') ~3v' 
2DUo 1 + Ee + a oz'20t' 

2 ' ! , 3' a v *' ( A iLW t ) a v 
+v oz'2 - a Wo 1 + E e oz'3 . 

Multiplying Eq. (3.32) by i and then adding to Eq. (3.31) we get 

of' '( A iw't') of' '(")' 
at' - Wo 1 + E e oz' + 22HF = 

, , ." 02F' 
~oiw Ee tW 

t + V 
oz'2 

. '( iw' t' ) * 0
3 
F' 

+22DUo 1 + Ee + a oz'20t' 

*w,' A iw t U ( 
, ') ~3F' 

-a 0 1 + E e oz'3 . 

The boundary conditions in terms of F' can be written as 

F' o at z = 0, 
, 

F U~ ( 1 + Eeiw' t' ) as 
, 

z ~oo, 
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(3.29) 

(3.30) 

(3 .31) 

(3 .32) 

(3.33) 

(3.34) 



where 
, , , 

F = u +iv. (3.35) 

Introducting the non-dimensional variables the boundary value problem consisting of Eq. 

(3.33) and conditions (3.34) yields 

z'W~ W'2' 4vw 
, 

U' a t 
77 t=-- W= W'2' U= U" V 4v ' a a 

U V F' 
u 

U" V= U" F= U" 
a a a 

1 8F ( A iwt ) 8F 'n V F - - - 1 + E e - + 22~ G--

4 8t 877 W~2 
~ (iwEeiwt ) (3.36) 
4 

F o 

where 

3.3 Analytic Solution 

'n V ( iwt) 8
2
F +22H-'-2 1 + Ee + -8 2 

Wo 7] 

( 
1 8

3 F ( A iwt) 8
3 F) 

+a '4 87]28t - 1 + E e 8773 ' 

at 7] = 0, 

as 7] ---t 00, 

*W'2 a a 
a=-~ 

v 2 

The solution of Eq. (3.36) subject to conditions (3.37) is written as 
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(3.37) 

(3.38) 



With the help of non-dimensional quantities Eq. (3.38) can be written as 

(3 .39) 

Using above equation into Eqs . (3.36) , (3 .37) and separating the harmonic and non­

harmonic terms by neglecting the coefficient of (;2 we obtain 

(3.40) 

(3.41) 

The corresponding boundary conditions are 

o at TJ = 0, (3.42) 

77 -t 00, 

¢2 0 at TJ = 0, (3.43) 

¢2 -t 1 as TJ -t 00, 

where 

N = 2Slll W 

w.'2 ' Nl = N+'4' 
0 

It is worth emphasizing that the equations (3 .40) and (3 .41) for second grade fluid are third 

order (one order higher than the Navier-stokes equation). Thus , one needs three conditions for 

the unique solution where as two conditions are prescribed. One possible way to overcome this 

difficulty is to employ a perturbation analysis [20 - 23] and write the solution as follows 

(3.44) 
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(3.45) 

Substituting Eqs. (3.44) and (3 .45) into Eqs . (3.40) - (3.43) and equating the coefficients 

of aD, a l and neglecting the coefficient of a 2 we get 

(3.46) 

<POl (0) = 0, <POl (00) = 1, 

d
2

<p11 + d<Pl1 _ 'N,J.. _ d3<p0l 
d 2 d 2 'P11 - d 3 ' 'rJ 'rJ 17 

(3.47) 

<P11 (0) = 0, <P11 (00) = 0, 

(3.48) 

<P02 (0) = 0, 

(3.49) 

4)12 (0) = 0, (/)1 2 (00) = O. 

The solutions of the above systems are 

,J.. - 1 _ e-h1TJ 
'POI - , (3.50) 
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(3.51) 

(3.52) 

(3.53) 

In above equations 

(3.54) 

. 1 + VI + 4iNl 
9 = Dr + 2 gi = 2 1 (3 .55) 

gr = ~ + ~ [~ (1 + VI + 16Nf)] 2, gi = ~ [~ ( -1 + VI + 16Nf)] 2, 

T2 = a~ + b~ = VI + 16Nf, 
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S 
_ 4Ahli 

11' -1 +-­
w 

Sl-i = 4Ahlr, 
W 

L L 'L h~ 
1 = 11' + '/, 1 i = , VI + 4iN 
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(3.56) 

(3.57) 

(3.58) 



(3.59) 
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From Eqs. (3.44), (3.45) and (3.50) - (3.53) we get 

and so from Eq. (3.39) 

(3.62) 

Using Eq. (3.35), the above equation gives 

(3.63) 

(3 .64) 
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Substitution of Eqs. (3.60) - (3.62) and (3.35) into Eqs. (3.63) and (3.64) yields 

U 

V 

Ul + Eeiwt
'l.L2 = 1 - e-h1rl1 ((1 + a:ryL1r ) cos h1i'ry + a'l7Lli sin h1i'r/) 

1 - e-grl1 ( ( 1 - 4A:Ij ) cos gi'r/ + 4A:11' sin gi'r/) 

+e-h1rl1 ( 4A:1j cos h1i'17 - 4A:1r sin hli'r/ ) 

+ae-grl1 (C5r cos gi'r/ + C5i sin gi'l7) 

-a'r/e-grl1 (Jvhr cosgi'r/ + lI!fli singi'l7) 

_ae- h1rl1 (( 'l7C3r + C5r) cos h1i'17 + ('I7C3i + C5i) sin h1i'r/) 

VI + Eeiwtv2 = e- i
t) "l1 ((1 + a17Lh') sin hli '17 + a17Lli cos h1i17) 

e-grl1 ( ( 1 - 4A~ili ) sin gi'r/ - 4A:11' cos gi'l7) 

_ e- it)"l1 ( 4A~I' li sin hIi'r/ + 4A:lr cos h li17) 

+ae-grl1 (C5i cos gi'17 - C5r sin gi'r/) 

-a'r/e-grl1 (Mli cos gi'17 - Mir singi17) 

-ae-h1rl1 (( 'r/C3i + C5i ) cos h1i'17 - ('I7C3r + C5r) sin h1i'l7) 

The drag T-r;' z ' and lateral stress Ty' z' at the plate are 

U * U 'U a ' ( a2 ' a2 ') 
T,-r;' z ' = az' + a az' at' + W az'2 ' 

V * V 'v a ' ( a2 ' a2 ') 
Ty' z' = az' + a az' at' + W az'2 ' 

which in non-dimensional form can be written as 
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(3.65) 

(3 .66) 

(3.67) 

(3.68) 

(3.69) 

(3.70) 



The above equations (3.69) and (3.70) after using Eqs. (3.65) and (3 .66) give 

T.TZ a (hii - hi!·) - hI1' - aLI1' 

91' - ~ (h1i9r + h1r9i) - 8 Ah(jhlr 

-a (9rC5!' - 9iC5i) + aA (hii - hi!·) 

-alVhl' + a (hIrC5!' - hliC5i) - aC31' 

-iaw ( ~ - ~ (h1i91' + h17'9i) - 2Ah~ihlr ) 

+a ( (9[ - g; ) (1 - 42A~11j ) + 38Ah
:;;9;9

r + ) 
I2Ahu h lr _ 4Ah lj 

w w 

hli - aLIi - 2ah1ih1r 

9i + ~ (h11'9r - h1i9i) + ~ (hir - hIi) 

-a (.9I'C5i + flic5!') - 2aAh1i h11' 

-ailifli + a (h 17,C5i + hIiC5r) - aC3i 

The Eqs. (3.71) and (3 .72) can br written as 

where 
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(3.71) 

(3.72) 

(3.73) 

(3.74) 



9 _ 4A (h 'g + h .g .) _ BAhJihlr 
l' W it l' 11 t W 

-a (g1·C51· - giC5i) + aA (hri - hrr ) 

-a]Yhr + a (hlrC51' - hliC5i) - aC3r 

-iaw ( If - ~ (hligr + hlrgi ) - 2Ah~ihl1' ) 

_ ((gt - g;) (1 - 4A~t]i ) + BAh~'9igr + ) 
-/a 2 3 l2AhJihlr _ 4Ahlj 

w w 

gr - ~ (hligr + hlrgi ) - BAh~i hlr 

-a (g1,C5r - giC5i) + aA (11,ri - hfr) 

B lr = -aJvhr + a (hl rC5r - hliC5i) - aC3r 

+a ( (gt - gn (1 - 42A~J,li ) + 3BAh
::;9i9

r + ) 
l2Ahlihlr _ 4Ahli 

w w 

gi + ~ (hl1'g1' - h1igd + ~ (hr1' - hri ) 

-a (g1,C5i + gic51') - 2aAh1ihlr 

-alvIli + a (hl1'C5i + hliC51') - aC3i 

-iaw (gi + ~ (h1rg1' - h1igi ) + ~ (hr1' - hri)) 

( 

-2gig1' + BAh~9i9r - 4A:lr (g; - gn ) 
+a 2 3 + 12Ahl1·hlj _ 4Ah1r 

w w 

gi + ~ (h 11'g1' - h1igi) + ~ (hr1' - hri) 

-a (g1'C5i + giC51') - 2aAh1ihl1' 

-alvhi + a (h17'C5i + h1iC51') - aC3i 

( 

-2gig1' + BAh~qigr - 4A~'1r (g; - gn ) 
+a 2 3 + 12AI1[,.hlj _ 4Ah1r 

w w 

(3.1 ) 

(3.76a) 

(3.76b) 

(3.2) 

(3.78a) 

(3. 78b) 

'01e now proceed to derive the energy equation appropriate for the problem under considera­

tion. We start with the energy equation (3.5). It follows from Eqs. (3.5) - (3.9) and L =gradV 
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that 

T · L (3.79) 

Following the thermodynamical considerations given in Dunn and Fosdick [24] for fluids of 

second grade and representing q by Fourier's law with a constant thermal conductivity k, Eq. 

(3.5) reduces to 

(3.80) 

where c is the specific heat . The boundary conditions for the temperature are 

T=To aL 
I 

Z = 0, (3.81) 

I 

as Z ~ 00 . 

Using 

T-To 
e = Too - To' (3.82) 

equation (3 .80) and boundary conditions (3.81) become 

(3.83) 
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at rJ = 0, (3.84) 

e-tl at rJ -t 00, 

in which 

the Prandtl number P1' 
J-LC k*U~2 
-k' the Eckert number Ec = 

(Too - To) 

and P 

To solve Eq. (3.83) with boundary conditions (3.84) we write 

(3.85) 

SlIbstitnting Eq. (3 .85) into Eq. (3.83) and boundary condition::; (3.84) and equating the 

coefficients of the harmonic and non-harmonic terms after neglecting the coefficients of (02 we 

get 

-E, [ (~~)' + (:1) '] (3.86) 

eo = ° at rJ = 0, (3.87) 

eo -t 1 as rJ -t 00, 
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(3.88) 

iw(~~+~~) dT} dT} dT} dT} 

-p 
_ (ili!:1. d2'fi + ~ d2 

V2
2 ) 

dT} dT} dTI dT} 

-A (~'t21ti + ~ 't21~) d7) dT} dT} dT} 

_ (~d2~) + ~d2v} ) 
dT} dT} dT} dT} 

at r; = 0, (3.89) 

as 17 -t 00 . 

Solving Eqs. (3 .86) and (3.88) along with the boundary conditions (3.87) and (3.89) we 

obtain 

where 

-m16e-fT} + (m7 + mg + msr;) e-2hrT} 

+ (mlO + m14 + m12r;) e-(hr +9r )T} cos (hi - 9i) 17 

+ (mll + m15 + m1317) e-(h,.+gr)71 sin (hi - 9i) 17, 

47 

(3.90) 

(3.91) 



dg = 

dlO = 

dll = 

- 4A:1r (h ll'g1· + hIi) + (1 - 4A:h) (hligl' - hll'gi ) 

+a (hll' (gl'C5i + giC5T) - hli (gl'C5l' - giC5i)) 

+a (hll'Mli - hliMll' ) + 4a~11r (gl'Lll' - giLli) 

-I-a ( 1 - 4A~J.li ) (giLll' - g1'Lli) 

4Ah~rhlj (hl1' - g1') -I- a (1 - 4A:Ij) (Lll'gl' - Lligi ) 

- a (h l1' (g1'c51' - gic5i) - hli (gl'c5i -I- gic51')) 

-I- 4a~ljr (giLll' - gl'Lli) + (1 - 4A~lh ) (gl'hl1' + gihli) 

-a (Mh·h ll' + lVhihli) 

4aAh
2 

(L . L·) 1 (1 iA&) (L L · .) I -~ l,gt - tg1' -I- a 7,1' - W l'gl' + tgt 

-a (hl' (gl'M1' + giMi) - hi (gl'Mi + giMl')) , 

- 4o:A~lrhi (g1' Ll' - giLi) + a hi ( 1 - 4~hi ) (giLl' - g1'Li) 
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d16 = 

- 8Ah
l
r hli (h L h L ) + 4aA (/- 2 f 2 ) (I I l L ) 1 W 11' 11' - Ii Ii ---w- ~11' - ~li "11' -' Ii - "Ii 11' 

+aC31' (hI1' + hIi) 

4A:l r (g; - gf) (h11' - aL11' ) + 2g1'gi ( 1 - 4A:!i ) (h11' - aL11' ) 

-2a (h11' (g1' M li - gi M 11') - h1i (g1'M11' - giM1i)) 

-a (g; - gf) (h 11'C5i - h1iC51' ) 

- (1 - 4A~tli) (g; - gf) (h li - aLIi) 

2 ' . (h + h · .) + 8Ahl r!lr9i (h . - L ·) - ag1'gt 11'C51' ltC5t w It a It 

4a~hlr (g; - gf) (h11'L17' - h1iL 1i ) + 2ag1·gi (h11'1\117' + gi1\11i) 

+a (g; - gf) (h 17·M1i - h1i M 11' ) + 8aA/~r!lr9i (h11'Lli + h1iL11') 

-a (1 - 4A~tli ) (9; - gf) (h 11·L 1i + h1iL 17·) 

+2ag1.gi (1 - 4A~t!i ) (h11'L11' - h1iL 1i) 

- 4A:1r (g; - gf) (h1i - aLIi) + 2g1·gi (1 - 4A~tli) (h1i - aLIi) 

+2a (h11' (g1'lvh1' - gilvhi) + hli (g1'lvhi - giMl1')) 

+a (g; - gf) (h 11'C51' + hliC5i) + 8Ah~9r !li (hl1' + aLl1') 

- (1 - 4A~tli) (g; - gf) (h11' - aL 11·) - 2ag1'gi (h11'C5i - h1iC51') 

- 4a~1!r (g; - gl) (hl1'Lli + h1iLl1') + 8QA /~r!lr9i (h 11·L11' - h liL 1i ) 

-2ag1'gi (1 - 4A~tj i ) (h l1.L1i + hliLl1' ) 

+2ag1' gi (h11'Mli - hliM 11·) - a (g; - gf) (hl1'lvh1' + hli M li) 

-a ( 1 - 4A:Ii) (g; - gf) (h11·Ll1' - h1iLli ) 
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gi (1 - 4A~lli) (hfr - hfi) - ahfr (grc5i + gic5r) + 2ahlrhliNhr 

+2ah17.h1i (g1·C5r - gic5i) - 2h1rgr (1 - 4A;li) (h li - aLIi) 

d21 = +4Ah!T.gr (J 2 _ J 2 ) + J 2 ( . +. ) _ 8aAhIrgr L j,. 
w ~lr ~li a ~li grc5~ g~C51' w 

8Ah
2

.gi (J L) 2 L ( 4Ah . ) (J h) + uS' ~li - a Ii - a lr 1 - ~ ~lrgi - ligr 

- 8aA '~ r h!j (L 17.gi - Lligr) + 2aLlihligi (1 _ 4A~1!j ) 

a (gr Mli + gJllhr) (hfr - hfi ) 

_8a~tJr (hfr - hfi) (L 1rg1" + L1igi) 

d22 = +2ah1r h1i (grMl1" - gilltfli) + 8aA'~lrhlj (L 1rgi - L 1igr ) 

+a (1 - 4A~tJi) (L 17·gi - L1iD1') (hfrgi - hfi) 

-2ahl1"hli (1 - 4A~lji ) (L 1rgr + L 1igi ) 
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- 9,. (1 - 4A~I' li) (hi,. - hfi) + a9TC57' (hf,. - hfi) 

(h2 1 2 ) 8AhTr 9r (J L ) +a9iC5i 17' + "Ii - w "Ii - a Ii 

+ 4A~rgi (hf,. - hfi) + 2ah IT h Ii llihi 

+2ahl,.h I i (9,.C5i + 9iC5T) 

-2h1T9i (1 - 4A~'li) (h li + aLIi) 

_ 8aAh!r9iLlr + 8aA h 1r hlj (L + L .J .) 
w W 17·91' It "It 

+2ah l i (1 - ~!I~' l i ) (LITDi - L 1iDT) 

-a ( 1 - 4A~'h ) (hf7' - hfi) (L 1,.9,. + L 1i9i ) 

(I 2 1 2 ) (M M) 8aAh!rhli (L L) -a "IT - "Ii 17·9,. - 1i9i - w 11'9,. + 1i9i 

d26 = [ 

+4a~L!r (L 17'9i - L 1i9T) (hfT - hfi) 

-2ah l ,.hi (1 - 4A~tlj ) (L1,.9i - L1i97') 

-2ah17·h1i (M1i9T + 1I!f1T9i) 
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m5 = m51" + im5i = [- (2Ec + iwP) dl1 + P (d17 + d23)] , 
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[ 

(4hr1' - 2h11' p1' )2 + (~)2l 
- 2i (4hr1' - 2h11'P1' ) (Wfr) , 

[ 

(hl1' + 91')2 - (hl i - 9i)2 - P1' (hl1' + 91') 1 
+i (-2 (hl1' + 91') (hli - 9i) + p,. (hIi - 9i) -~) , 
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(h l1' + 91')4 + (hli - 9i)4 + w-;i (hli - 9i) 
2 2 w2 p2 

-6 (h l1' + 91') (hli - 9i) + =-rt-
+p? ((1111' + 97,)2 - (hli - 9i)2) - WPr, (hl1' + 91') (hli - 9i) 

+2P7' ( - (hl7' + 97')3 + 3 (hl1' + 97') (hli - 9d
2
) 

[ 

-4 (hl1' + 97,)3 (hli - 9i) + 4 (hl1' + 91') (hli - 9i)3 I 
+2P1' (3 (h17' + 97')2 (hli - gi) - (hli - 9i)3 ) - w-;i (hl1' + g1') ) 

-2P? (h17' + g1') (hli - gi) - ~ ((1111' + g7')2 - (hli - 9i)2) 
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( Pr + Jp? + iwP1. ) 

f = fl' + iii = ~-----~ 
2 
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I 

f . = b3 = ~ [ - P; + J P~ + W 2 p;]'2 
~ 2 2 2 ' 

7'3 = a2 + b2 = J p4 + w2 p2 3 3 r r ' 

From Eqs.(3.85), (3.90) and (3.91) we can write 

in which 

e = eo + E (e lr coswt - eli sinwt) , 

_ e-J,·'T/ (7n16r sinlifJ + 7n16i cos fifJ) 

+ (7n7i + 7ngi + 7nSifJ) e-2h1r
'T/ 

[ 

(7nlOi + 7n14i + 7n12ifJ) cos (hi - 9i) 7} 1 (h + ) + e- l r gr 'T/, 

+ (7nlli + 7n15i + 7n13ifJ) sin (hi - 9i) fJ 
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Fig. 3.1 (A). Effect of D on real part of velocity profile u vs 77 for Newtonian fluid at 

a = 0, wt = 7f/2, A = 0.2, E = w = 0.5, l110 = -0.1, // = 0.1. 
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Fig. 3.1 (B). Effect of D on real part of velocity profile u vs 77 for second grade fluid at 

a = 0.4, wt = 7f /2, A = 0.2, E = w = 0.5, Wo = -0.1, 1/ = 0.1. 
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Fig. 3.2(A). Effect of n on imaginary part of velocity profile v vs 77 for Newtonian fluid at 

a = 0, wt = 1["/2, A = 0.2, E = W = 0.5 , Wo = -0.1, l/ = 0.1. 
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Fig. 3.2 (B). Effect of n on imaginary part of velocity profile v vs 77 for second grade fluid at 

a = 0.1, wt = 1[" /2, A = 0.2 , E = w = 0.5 , Wo = - 0.1, l/ = 0.1. 
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Fig. 3.5(A). Effect of Pr on real part of temperature profile er vs 17 for Newtonian fluid at 

a = 0, wt = n/2,A = E = W = 0. 5, Wa = - 0.1, v = O.l,n = 3.0,Ec = 5.0,k = 0.2,P = 0.3. 
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Fig. 3.5(B) . Effect of Pr on real part of temperature profile er vs 17 for second grade fluid at 

a = 0.05, wt = n /2, A = E = W = 0.5, TVa = -0.1, 1) = 0.1, n = 3.0, Ec = 5.0, k = 0. 2, P = 0.3. 
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Fig. 3.6(B). Effect of Pr on imaginary part of temperature profile ei VS 17 for seond grade 
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Fig. 3.7(B). Effect of Ec on real part of temperature profile e1• vs 7] for second grade fluid at 

a = 0.04, wt = 7r /2, A = E = W = 0.5, Wo-= - 0.1 , 1/ = 0.1, D = 4.0, Pr = 5.0, k = 0.2, P = 0.3. 
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3.4 Discussion 

In this chapter we consider the problem of heat transfer in rotating flow of an incompressible 

flu id of second grade. A perturbation procedure has been used to obtain the analytic solution. 

The effects of various parameters such as n, PT , and Ec on the real and imaginary parts 

of velocity (u, v) and temperature (a7·, ai ) distributions is studied and the results have been 

presented by several graphs. 

To study the effect of n on the velocity components, we have plotted u and v against 1] in 

figures 3.1 and 3.2 for Newtonian and second grade fluids . From the figure 3. 1(A), it is observed 

that near the plate u increases with the increase of n. Figure 3.1(B) indicates that u increases 

very near to the plate and then fluctuates through an increase in n. The comparison of these 

two figures reveal that u in case of second grade fluid is greater than that of Newtonian fluid. 

Al so, Lhe veloci ty bO llnclmy layer Lh ickllcss [or sccolld g rade nil icl is larger Limn the N cw Loni a ll 

fluid . It is also seen from figures 3.2(A) and 3.2(B) that v increases near the plate and then 

decreases for large value of n. The fluctuations in second grade fluid are more visible than 

that of Newtonian fluid . Also, the value of v for second grade fluid is smaller from the case of 

Newtonian fluid. 

Figures 3.3 and 3.4 show the effect of n on the real (a7·) and imaginary (ai ) parts of temper­

ature distributions. Figure 3.3(A) shows that with the increW:ie of n, aT decreases near the wall. 

As shown in figure 3.3(B), we can see that as n increases, a7• increases near the plate and then, 

at a distance of 1] = 1, the aT beguns to decrease. That is, the behavior of aT is quite opposite 

for Newtonian and second grade fluid near the plate. Figure 3.4(A) shows the variation of non 

ai . It can be seen that as n increases, the value of ai decreases at a distance of approximately 

1] = 0.8 and then increases. Figure 3.4(B) indicates that ai increases near the wall for n > l. 

In order to illustrate the variation of P7' on a7' and ai, we have prepared figures 3.5 and 3.6. 

Figure 3.5(A) and 3.6(A) explains the effect of P7' on a7' and ai, respectively for Newtonian 

fluid case. From these figures it is revealed that near the plate , a7• decreases and ai increases 

for P7' > 2. The thermal boundary layer thickness in a7• increases where as for ai decreases. For 

second grade fluid , we note t hat from figures 3.5(B) and 3.6(B) that for P7• > 2, a7' decreases 

near the wall and increases far away. Also ai decreases for p,. > 2. 

Figures 3.7 and 3.8 show the effect of Ec on a7• and ai . From figures 3.7(A) and 3.7(B) , we 
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observe that e,. near the wall decreases with the increase in Ee and increases far away. The 

thermal boundary layer thickness increases for large Ee. Moreover, it can be seen from figure 

3.8(A) that ei increases for large values of Ee. From figure 3.8(B) it can be seen that with the 

increase in the values of Ee the temperature ei decreases ncar the plate and increases far away. 

The thermal boundary layer thicknesses in both the fluids increases. 
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