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PREFACE 

The exact solutions of the Navier-Stokes equations for the flow due to non­
coaxial rotations of a disk and a fluid at infinity in different situations have 
been implied by various workers e.g. Berker [1], Coirier [2], Erdogan [3 -5], 
Rajagopal [6], Rao and Kasiviswanathan [7], Kasiviswanathan and Rao [8] 
and Hayat et al. [9-11]. As is known, the Navier-Stokes equations seem to be 
an inappropriate model for a class of real fluids, called non- Newtonian 
fluids. Recently, interest in the studies of non Newtonian fluids has been 
increased substantially. Because of complexity of fluids in nature, the non 
Newtonian fluids have been categorized into various models. Amongst 
these, there is a subclass namely the fluids of Jeffrey type for which one can 
hope to obtain an analytic solution. With this fact in view, the present 
dissertation has been arranged as follows: 
Chapter one includes some basic definitions and equations. The contents of 
this chapter provide relevant material for the succeeding chapters. 
Chapter two describes a review of a most recent research paper of Hayat et 
al. [11]. Here, the magnetohydrodynamic viscous flow due to non-coaxial 
rotations of a porous oscillating disk and a fluid at infinity has been 
analyzed. 
In chapter three, the analysis of chapter two is extended from Newtonian 
fluid to the Jeffrey fluid. The exact solutions have been constructed for 
suction and blowing in resonant and non-resonant cases. Comparison has 
also been made with the previous studies. 
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Chapter 1 

Basic definitions and laws of fluid 

mechanics 

1.1 Introduction 

This chapter deals with some basic definitions and fundamental equations. The contents of this 

chapter provide the background for the succeeding chapters . 

1.1.1 Fluid 

A fluid is an isotropic substance the individual pieces of which continue to deform as the result 

of applied surface stresses. 

1.1.2 Continuum model of a fluid 

Fluid matter, whether liquid or gaseous, is discrete on the microscopic , i.e. , the molecular 

level. When one is dealing with problem in which the dimensions are very large compared 

with molecular distances , however, it is convenient to think of lumps of fluid containing many 

molecules and to work with the average statistical properties of such large numbers of molecules . 

The detailed molecular structure is thus washed out completely and is replaced by a continuous 

model of matter having appropriate continuum properties so defined as to ensure that on the 

macroscopic scale the behavior of the real fluid. 
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1.1.3 Steady flow 

If the physical properties of the fluid are independent upon time then the flow is treated as 

st eady flow. 

1.1.4 Unsteady flow 

If the fluid properties at a given position in space vary with time then flow is unsteady. 

1.1.5 Shear force 

The force which is tangent to the surface are the shear force. 

1.1.6 Shear stress 

Shear stress at a point is the limiting value of shear force to the area as the area is reduced to 

a point . 

1.1. 7 Density 

At a given temperature and pressure, the mass per unit volume is known as density. It is 

written as 

where m is the mass and VI is the volume. 

1.1. 8 One dimensional flows 

m 
p =­

VI 
(l.1) 

These are the flows for which the stream lines may be described as the straight lines. It is 

because of the reason that a straight line, being a mathematical line posses one dimension only 

i.e ., x-axis , y-axis and z-axis directions. 

1.1.9 Two dimensional flows 

For these flows the stream lines may be represented by a curve . It is because of the reason that 

a curved stream line will be along any two mutually perpendicular directions. 
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1.1.10 Three dimensional flow 

For such flows the stream lines may be represented in space. 

1.1.11 Rotational flows 

For such flows the curl of the velocity field does not vanish. 

1.1.12 Irrotational flows 

For such flows the curl of the velocity field is always zero. 

1.1.13 Fluid rotation 

The average angular velocity of two mutually perpendicular line elements is known as fluid 

rotation. 

Mathematically 

(1.2) 

where Wx is the rotation about the x-axis, Wy is the rotation about the y-axis and W z is the 

rotation about the z - axis. The positive sense of rotation is given by the right hand rule. In 

Eq. (1.2) , i, j and k are the unit vectors in the x, y and z directions, respectively. 

1.1.14 Magnetohydrodynamics 

It is the subject in which one studies the flow of an electrically conducting fluid in the pres­

ence of magnetic field. The fluid under consideration is known as MHD fluid. The term 

magnetohydrodynamics was first introduced by Hanne's Alfven. 
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Maxwell's equations 

curlE 

divB 

curlE 

divE 

1 aE 
f.L I

J + c2 at' 
0, 

aB 
at ' 

p* 

c 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

where B is the total magnetic field, c is the velocity of light, E is the electric field, p* is the charge 

density, J is the current density, {Ll is the magnetic permeability and c is the permittivity. 

1.1.15 The substantial derivative 

Let b represent the value of some fluid property (e.g., pressure, density, velocity, entropy) for 

a particle of fixed identity. Employing the Eulerian formulation , it is desired to calculate the 

time rate of change of t he value of b associated with this particular particle of unchanging 

identity. Using Cartesian coordinates, b = b(x, y, z ) implies that for arbitrary and independent 

increments dx, dy, dz , the increment db is 

(1.7) 

Passing now from arbitrary increments to the increments perceived while following in time a 

particle of fixed identity, the increments dx, dy and dz are no longer independent but rather 

related to dt by 

dx = udt , dy = vdt, dz = wdt , (1.8) 

in which u, v and ware the components of velocity vector V along X- , y- and z -axis respec­

tively. Accordingly, the special value of ~~ associated with a material particle of fixed identity, 

to which is assigned the special symbol .g~, is given by 

Db ab ab ab ab 
-D = u-

a 
+v-

a 
+w-

a 
+ -a . 

t x Y z t 
(1.9) 
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In vector form 

Db = (V . V)b Bb 
Dt + at (1.10) 

The various name given to g~ include substantial derivative, material derivative and particle 

derivative. 

1.2 Equation of continuity 

Let V be a control volume in space. We assume that it and its surface § remain fixed in space. 

The surface is permeable so that fluid can freely enter in and leave. Equation of continuity or 

conservation of mass stems from the principle that mass cannot be created nor destroyed inside 

the control volume. Thus the mass in the control volume V is conserved at all time, i.e., 

D j' -Dt pcIV = 0, (1.10 a) 

v 

where p is the density field at time t. Reynolds transport theorem states that if ~ be a field 

(scalar, vector or tensor) associated with the fluid, then 

D J - j' (D~ ) - j' (Bib ) -Dt pcIV = . Dt + ~V.V cIV = Bt + div (~ .V) dV , (1. 10 b) 

v v v 

where f5t is the material time derivative. 

By setting ~ = p, with p the fluid density, Eqs. (1.10 a) and (1.10 b) give 

J (~~ + div (PV)) dV = o. 
v 

Since the control volume V is arbitrary, a necessary and sufficient condition for conservation of 

mass is 

~~ + div (pV) = O. 

For an incompressible fluid, the density is constant everywhere, and the conservation of mass 
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demands that 

Acceleration at a point 

By Newton's law 

divV = O. 

DV av 
- =a= (V·V)V+-
Dt at 

which , by means of vector identities, may also be expressed as 

DV (V2) av -=V - -Vx (VxV)+ -. 
Dt 2 at 

In scalar form we have 
D'LL au au a'l.L au 

ax = Dt = 'I.L ax + v ay + w 8 z + 8t ' 

Dv 8v 8v 8v 8v 
a y = Dt = u 8x + v 8y + W 8z + 8t' 

Dw 8w aw 8w 8w 
a z = Dt = u 8x + v 8y + w 8z + at' 

(1.11) 

(1.12) 

where ax, ay and az are the components of the acceleration in the x, y and z-directions respec­

tively. 

1.3 The Navier -Stokes equations 

According to the law of the conservation of momentum 

(1.13) 

where p is the density, T is the Cauchy stress tensor , hI is the body force and V is the velocity. 

For viscous fluid 

T = -pI + J,LAI ' (1.14) 
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where pI is indeterminate part of the stress, /-L is the coefficient of viscosity and Al is first 

kinematic tensor defined by 

Al = graN + (graNf· ( 1.15) 

In the component form Eq.(1.13) give 

Du 8 8 8 
P Dt = 8x (Txx ) + 8y (Txy) + a)Txz ) + pbIx, 

Dv 8 8 a 
p Dt = 8x (Tyx) + 8y (Tyy) + 8z (Tyz) + pbIy , 

Dw 8 8 8 
P Dt = 8x (Tzx ) + 8y (Tzy) + az (Tzz) + pbIz, 

where from Eq. (1.14) 

(
8V 8U) 

T xy = T yx = /-L 8x + 8y , 

(
8W 8V) 

T yz = T zy = ~l 8y + 8z ' 

(
8u aw) 

T zx = T xz = /-L 8z + ax ' 

2 8u 
T = -p - - IIV· V + 2 11 -

xx 3 r- r- 8x' 

2 8v 
T yy = -p - "3/-L V . V + 2/-L 8y , 

2 8w 
T zz = -p - "3/-LV, V + 2~l8z' 

With the help of above equations, we have 

[
81l 8u 8u a'l.l] p -+u-+v-+w- = 
8t 8x 8y 8z 

_ 8p _ ~ (~/-LV . V _ 2/-L 81l) + 
8x 8x 3 8x 

8 [ (8V 8U) ] 8 [ ( 8u aw) ] 
8y /-L (8x + 8y + pb1x + 8z /-L 8z + ax ' 
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[
8V 8v 8v 8V] P -+u-+v-+w-
8t 8x 8y 8z 

[
8W 8w 8w 8W] P -+u-+v-+w-at 8x 8y 8z 

8p 8 (2 8W) -- - - -~£V· V - 2p,- + 
8z 8z 3 8x 

8 [(8V 8W )] 8 [(8'1.£ 8W)] 8y p, 8z + 8y + pbIz + 8z ~£ 8z + 8x . 

The above set of the equations is referred to as the N avier-Stokes equations of motion. 

For in compressible flow \l·V = 0, and the above equations become 

(1.16) 

(1.17) 

(1.18) 

Where bIx , bly and bIz are the x , y and z-components of b l and for p, = 0, the above equations 

reduce to well-known equations given by Euler which hold for the ideal fluids. 

1.4 Transform technique 

Transform techniques play an important role in obtaining the solution of the partial differential 

equations , especially when the boundary conditions include the infinite or the semi infinite 

domain. In the present thesis we will use the Laplace transform. 

1.4.1 Laplace transform 

Given a function f(t) defined for all t 2 0, the Laplace transform of f is the function F defined 

by 

F(s) = L[f(t)] = 100 

e-st f(t)dt (1.19) 

10 



for all values of s (where s is a Laplace parameter) for which the improper integral converges. 

The inverse Laplace transform is given by 

1 j ,+iOO 
f(t) = -2 . F(s)estds, 'Y > O. 

7n ,-ioo 
(1.20) 

1.4.2 The error function 

The error function, abbreviated as "er 1", is defined by 

2 /x 
er f(x) = ..JiF Jo exp( - {32)d{3 . (1.21) 

1.4.3 The complementary error function 

I t is denot ed by er f c( x ) and is defined by 

2 / 00 
erfc(x ) = 1 - erf(x ) = ..JiF Jx exp( -{32)d{3. (1.22) 
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Chapter 2 

Magnetohydrodynamic flow due to 

non-coaxial rotations of a porou~/ 

oscillating disk and a fluid at infinity 

2.1 Introduction 

The time-dependent viscous flow due to non-coaxial rotations of a porous oscillating disk and 

a fluid at infinity has been studied. The fluid is conducting in the presence of a transverse 

magnetic field. The disk is non-conducting. The exact expressions for velocity profile have 

been given for the three cases i.e. when the angular velocity is greater than, smaller than 

and equal to oscillating frequency. The analytic solutions have been obtained using Laplace 

transform method. The contents of this chapter is basically a review of a recent work by Hayat 

et al. [11]. 

2.2 Mathematical formulation 

Let us consider the unsteady flow of an electrically conducting fluid (z > 0) bounded by a 

porous disk at z = O. A uniform magnetic field of strength Bo is applied transversely to the 

flow. Both the fluid and the disk have common angular velocity n = Dk (k is a unit vector 

parallel to the z-axis) . Also , the a.."Ces of rotation of both the disk and the fluid are in the plane 
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x = 0 with the distance between the axes being l. The disk and the fluid are initially rotating 

about z-axis and suddenly sets in motion; the disk rotating about the z-axis and fluid about 

z/ -axis. The appropriate boundary and initial conditions are [5J: 

u = -Oy + U cos nt, v = Ox at z = 0 for t > 0, (2.1) 

u = -Oy + U sin nt, v = Dx at z = 0 for t > 0, (2.2) 

u = -O(y -l), v = Ox as z --t 00, for all t, (2 .3) 

u = - O(y - l) , v = Ox at t = 0, z > O. (2 .4) 

where U is the reference velocity. The velocity field is defined as [4J. 

u = - Oy + f( z , t) , v = Ox + g(z , t) , (2 .5) 

in which u and v are the components of the velocity in the directions of x and y respectively. 

The governing equations are 

oV 1 1 
-0 + (V. V)V = --Vp+ vV2V + -J x B, 

t P P 

ou ov ow _ 0 
ox + oy + OZ - , 

where V = (u, v, w) is the velocity field and 

p = pressure 

p = density of t he fluid 

J = electric current density. 

B = Total magnetic field. 

B = Bo + b 

Bo = imposed magnetic field, b = induced magnet ic field. 

l/ = kinematic viscosity. 

13 
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The Maxwell equations and the generalized Ohm's law are 

aB 
divB = 0, curlB = f..hl J , curlE = - at ' 

where 

f..h = magnetic permeability 

E = electric field. 

J = O"(E + V x B), 

0" = electric conductivity of the fluid. 

Let us consider the following assumptions: 

• The quantities p, 1/, f..h and 0" are all constants throughout the flow field. 

• The magnetic field B is perpendicular to the velocity field V. 

(2.8) 

(2 .9) 

• Induced magnetic field is negligible compared with the imposed field so that the magnetic 

Reynolds number is small. 

• The electric field is assumed to be zero. 

Under the above assumption we have 

The electromagnetic force 
1 

- -(J x B) 
p 
0" 

- - [(V x B) x B] 
p 

- ~[(V. B)B - (B· B)V] 
p 
0" 

- -[-(Bo·Bo)V] 
p 

_ _ (O"B5)V 
p 

The electromagnetic force = - NV, 

where N = 17:3 has the same dimension as D. 

14 
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Using Eq. (2.10), Eq. (2.6) becomes 

8V 1 2 - + (V . V)V = --Vp + //V V - NV. 
8t p 

(2.11) 

From Eqs . (2.5) and (2 .7) one can write for uniform porous disk that 

w = constant = - wo , (2.12) 

where Wo > 0 is the suction velocity andwo < 0 is the blowing velocity and thus the velocity 

field is 

V = [u, v, w] = [-Dy + f( z, t), Dx + g(z, t), - wo] . (2.13) 

Substituting Eq. (2.13) into Eq. (2 .11) we get the following scalar equations 

8 f 8 f 1 8p 82 f . 
8t - D(Dx + g) - Wo 8z = -p 8x + // 8 z 2 - N {-Dy + f( z, tn, (2.14) 

8g 8g 18p 8 2g 
8t + D( - Dy + f) - Wo 8 z = -p 8y + // 8 z 2 - N {Dx + g(z, tn, (2.15) 

18p 
-- = Nwo. (2.16) 
p8z 

The above equations can also be written as 

8f _Dg _w08f = _~8p +D2x+//
82f 

-N{-Dy+f(z,tn, (2.17) 
8t 8 z p 8x 8z2 

8g 8g 18p 2 82g 
8t + Df - Wo 8z = - p 8y + D y + // 8z2 - N{Dx + g(z, tn , (2.18) 

18p P 8z = Nwo· (2.19) 

Since 
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and thus Eqs. (2.1 7) to Eq. (2.19) give 

a f of 1 a ( pn2r2) 02 f -- ng -wo-=--- p --- + v-- N{ - ny+f(z, tn , 
at oz pax 2 oz2 

og og 1 a ( pn2r2) 02g 
at + nf - Wo oz = --p oy p - - 2- + v Oz2 - N{nx + g(z, tn, 

op 
oz = pNwo· 

Defining the modified pressure 

we can write 
of of lap 02 f 
- - ng - wO - = --- + v - - N{ - ny + f( z, tn , at oz pax Oz2 

og og lap 02g 
at + nf - Wo oz = --p oy + v Oz2 - N {nx + g(z, t)} , 

op 
OZ = pNwQ . 

The boundary and initial conditions for f and 9 are 

f(O,t) = Ucosnt or Usinnt, g(O,t)=O,t>O, I 
f(oo,O) = nl, g(oo, t) = ° for all t, 

f( z, 0) = nl, z > 0, g(z, O) = 0, z > O. 

Differentiating Eqs. (2.24) and (2.25) with respect to z, and using Eq.(2.26) we get 

a [Of of] a [ 0
2 

f ] - - - ng - wO - = - v- -Nf (z ,t) , 
OZ at OZ OZ oz2 

a [Og Og] a [ 02g ] 
oz at + nf - Wo oz = oz v Oz2 - N g(z, t) . 

Integration of Eqs. (2.28) and (2.29) yields 
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og 8g 02g 
8t + nf - Wo 8z = v 8z2 - Ng(z, t) + C2(t), (2.31) 

where the functions of integration Cl(t) and C2(t) can be calculated by using the boundary 

condition in Eq. (2 .27) and are 

Cl (t) = Nnl, 

which upon using in Eqs. (2.30) and (2.31) yields 

of 8f 82f - - ng - wo- = v- - Nf(z t) + Nnl 
ot 8z 8z2 ' , 

og og 02g 2 
8t +nf- wo8z =V8z2 -Ng(z,t)+O l. 

Multiplying Eq.(2.33) by i and adding in Eq.(2.32), we get 

(2.32) 

(2.33) 

:t (f + ig) + in(f + ig) - Wo :z (f + ig) = v ::2 (f + ig) - N(f + ig) + nl(N + in) , 

or 

or 

or 

or 

or 

:t (f + ig) - Wo :z (f + ig) - v ::2 (f + ig) + (N + in)(f + ig) - nl(N + in) = 0 

:t (f + ig) - Wo :z (f + ig) - v ::2 (f + ig) + (N + in)(f + ig - nl) = 0, 

- at ru + ~nl - wOaz nl + ~nl - v7);'I nl + ~ru , O - a (L '.fL) a (L '.fL) a
2 (L '.fL)} 

+(N+in) (tfz +im -1) 

o = Zt (tfz + i m - 1) - Wo gz (-Ir(l + i m - 1) -) v ~ (tfz + i m - 1) }, . 

+(N + in) tfz + im - 1 

02G 8G 8G . 
v- - - +wo- - (N +~n)G = 0, 

8z2 8t oz 

17 
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where 

G(z t) = f( z ,t) + i 9(z, t) - 1 
, Ol Ol . (2.35) 

The boundary conditions (2.27) in terms of G are 

G(O, t) = ~ cos nt - 1 or G(O, t) = ~ sin nt - I , G(oo, t ) = 0, G(z, O) = 0. (2.36) 

Using 

G(z, t) = H(z , t)e- iO.t 

equation (2.34) and boundary conditions (2.36) give 

8
2 
H 8H 8H NH - 0 ) v"8z'X' - 7ft + woaz - -, 

H(O,t) = (Xz cosnt-l) eint or H(O,t) = (Xzsinnt-l)e int
, 

H(oo, t) = 0, H(z,O) = 0. 

2.3 Solution of the problem 

(2.37) 

(2 .38) 

We will find the solution by Laplace transform treatment . For that we define the Laplace 

transform pair as 

H (z, s) = L{H( z, t)} = 100 

H(z , t )e-stdt, 

and 
- 1 l>.+ioo-

H(z , t) = L- 1{H(z , s)} = -2 . H( z , s) estds. 
1T~ >.-ioo 

We first solve the problem which involve cosine oscillations in the boundary condition. The 

transformed problem for n > n is 

d2H dH -
v dz2 + wo dz - (s + N)H = O, (2.39) 

H(O s) = _U_ [ 1 + 1 ] ___ 1_ 
, 20l s-i(n+O) s+i(n+O) (n-O)' 

(2.40) 

H(oo, s) = O. (2.41) 
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The solution of Eq.(2.39) is 

(2.42) 

where the constants A and B will be determined using the boundary conditions (2.40) and 

(2.41) and are 

A=O, 

B-~[ 1 1] 1 - 2m s - i(n + D) + s + i(n - D) - s - D' 

which upon using in Eq. (2.42) yields 

H(z, s) = [_ 1 +~ 1 +~ 1 ] e (~~- ~+t+~) z 
(s - iD) 2Dl s - i(n + D) 2Dl s + i(n + D) 

Taking inverse Laplace transform we obtain 

(2.43) 

where 

{ 

w

2
. N } {W2 S N } {W2 S N } - ~+-+-z - ~+-+-z - ~+-+-z e ~v v e ~v v e 410' II II 

I = L-1 I = L-1 I = L-1 . 
1 (s -iD) ' 2 s-i(n+O)' 3 s+i(n-D) 

(2.44) 

First we find the solution of h i.e. 

Putting 

s-iO=B 
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h becomes 

or 

Using the formula 

we get 

or 

or 

In a similar way we get 

Bt-* (~+N+irl)+8 
_ eirlt j' e v 

1 -------:----de. 
1 - 21fi e 

liE.+N+irl-L (*+2 ~+N+irlt + e V 4v ...;u er f c 20 

_ l iE.+N+irl Z (*-2 ~+N+irlt ) e V 4v "Tv er f c 20 

~.+N +in z ( 
e ~ -V v er fc _z_ + 

2...jVt 

- ~+.!Y.+inz ( z +e 4v2 v v erfc __ _ 
2...jVt 

w
2 

i(n+O) N z ( -.a-+ v +-v erf c ~ + 
2vvt 

(~+~+~)vt) I. 
( ~ + ~ + i~) vt) 

eiCn+rl)t 
12 = --2--

[ 

e 

w
2 + i(n+O) +.!Y. z z 

+e - -.a- v v erf c ( 2...jVt -

20 

(2 .45) 

(2.46) 



and 

or 

e - i(nHl)t 

h = --2=---

[ 
VW2 N i'n-n' { J( 2 .)} I 3+-- .:.=......=z z W N ten-D) t 

e-i(n-D)t e 41.' v v erf c 2..jVi + -B- + Z; - v v 
h=---

+e-Y 4v7+-;;- ,., z erfc _z__ ~+N -~ vt 2 / ~ N ~ { J( 2 or~-D')} 
2..jVi 4v v v 

Now using Eqs (2.45) , (2.46) and (2.47) in Eq.(2.43) we obtain 

! 
~+N+,n z ( e 4,., -;; ---v- eri c _ z _ + 

,nt 2..jVi e 
--2 w 2 n ( 

~+1:!:+Lz e 4~'" ,., eric _ z __ 
2..jVi 

( 
U ei(n+n)t) 

+ 2Dl 2 

(2.47) 

! 
~ ~ N ( ,---( 2 -;(n..!--O'" -N) ) I 4v7+ ,., +-;; Z f Z + ~ + ~ + - vt e erc 27vt ~ v v 

X _ ~+ i(n~n)+~z f (_Z_ _ (~ + i(n+D) + N) vt) 
+e er c 2..jVi ~ v v 

Since 

(
-.lL e- i(n-n)t) 

+ 2Dl 2 

! 
/~ N ~ ( J r---( 2 -;(~-D-' ) ) I ey ~:;r+-;; - ,., Z erf c _ z _ + ~ + N - ~ vt + 

2..jVi 4v v v 

x e-V~+~-~z erfc ( _z _ J(~ + N _ i(n- D) ) vt) 
2M 4v v v 

int H(z, t) = G(z, t)e , 
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so 

(~ + !f + if1) vt) + ) 

( ~ + ~ + i~) vt) 

-~z e 2v 
G(Z,t) = -2-

Using 

G( t) = J(Z, t) + i 9(z, t) _ 1 
z, D.l D.l 

we have 

f(z,t) + ig(z,t) = 1 + e-~z 
Dl Dl 2 

! 
~~+N-+inz ( '---(~4WV2-+-NV +-iVD:---) l/t) ) e ~ v v er J e 2../Vt + ~ 

- - ~+1Y.+ in z ( z (~4WV2 + N
v 

+ iVD) vt) +e ~ v v er Je 2VVt - ~ 

+ (2~leint ) 

x 
[ 

~+~+Nz ( '---(~4WV2-+-~V-D +-N
V

:--) vt) ) e ~ v v erf e 2../Vt + ~ 

x ~+ i(n+O) +li. z ( z (~4Wv2 + i(n+
v 

D) + N
v

) vt) +e - 4v v v erf e 2VVt - ~ 

+ ( 2~l e-int ) 

! 
(~+~-~z f ( _z + /'---(~-+-N _-~--D:---) vt) + ) e V 4v er e 2VVt V"4V2" v v 

X _ / ~+li.-~z (z !( w2 N _ i(n-D)) vt) 
e V 4v v v erf e 2VVt - V ~ + v v 
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Defining the following non-dimensional variables 

we have 

where 

rn n U oB5 Wo 
~= y~z,k= n'c= 2nl,r=nt,N1 = pn ,8= 2.JVTI' 

VW5 N in 
-+-+-z = 
4v2 v V 

4vn82 (J B5 in n82 n (J B2 in --=--+--+-z= __ + ___ 0 +-z 
4v2 v P V V v pn v 

J82 + Nl + i.J2 rnz = J82 + Nl + i.J2~, y~ 

W6 N in - + - + -z = (a+iJ3)~, 
4v2 v v 

(2.51) 

(2 .52) 

(2.53) 

a + iJ3 = .J2J 8 2 + Nl + i, (2.54) 

a = J J(82 + Nl)2 + 1 + (82 + N 1 ), J3 = J J(82 + Nl)2 + 1 - (82 + Nr), (2.55) 

z 1 ~ 1 1 
2VVt = 2VVt Y n~ = v'2VtIi~ = V2T~' 

z 1 
2VVt = V2i~' (2.56) 

( w6 N in) -+-+- vt 
4v2 v v ( w5 N in) Vvt -+-+- z-

4v2 v V z 

rn1 r: . fi 
(a + iJ3)~y ~Zv vt = (a + 1,J3)y 2' 

_0 + - + _ vt = (a + iJ3) -, 
(

W2 N in) ~ 
4v2 v v 2 

(2.57) 
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(2 .58) 

482vD i (kD+D) 1crB 8 --::--- + + --z 
4v 2 V V P 

J W5 i(n+D) N -+ +-z 
4v2 lJ lJ 

8 2D i(k+1)D DcrB8 
= - + +--z 

v v v pD 

J82 +i(k+1)+N1j¥Z 
J82 + i(k + 1) + Nl\fijf;z 

= v'2J82 + i(k + 1) + N1~ = (a2 + i(32)~' (2.59) 

a2 + i(32 = v'2J 82 + i(k + 1) + N1~, (2.60) 

a2 = / J(82 + N 1)2 + (k + 1) + (82 + N 1), (32 = / J(82 + N1)2 + (k + 1) - (82 + N 1), 

(2 .61) 

(2.62) 

(2.63) 

a 1 / J(82 + N1)2 + (k - 1)2 + (82 + N 1), 

(31 - /J(82+N1)2+(k-1)2 _ (82+NJ 
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Equation (2.50) in non-dimensional variables becomes 

f( z, t) .g(z, t) e-V2SE. 
-ru + ~ru- = 1 + 2 

where 

IY J)(82+N1)2+1+(82+N1), 

f3 - J )(82 + N1)2 + 1 - (82 + N 1), 

IY1 - J )(82 + N1)2 + (k - 1)2 + (82 + N1), 

/3 1 J )(82 + Nl)2 + (k - 1)2 - (82 + N 1), 

Q2 J )(82 + N1)2 + (k + 1)2 + (82 + N1), 

/32 J )(82 + N1)2 + (k + 1)2 - (82 + Nl)' 

Now for n < D we have from Eqs. (2.38), (2.39) and (2.40) as 

d2H dH _ 
l/- + Wo- - (s + N)H = 0 

dz 2 dz 

H(O 8) = ~ [1 1] _ 1 
, 2m s - i(D + n) + s - i(D - n) s - iD 

H(oo, s) = O. 

Employing the same method of solution as for n > D we have 

(2.65) 

- [ 1 U 1 U 1 ] -(~+ ~+t+~)z 
H( z s) = - + - + - e , 

, (s - in) 2Dl s - i(n - D) 2m s - i(n + D) 
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and 

~ [ * u * U 1*] H(z, t) = e- 2" z - II + 20,/2 + 2m 3 , 

where 

. e ~2 v -;;- er f e ~ + 

[ 

~+N +'\1 z ( 
e~D.t 2vvt 

I; = - 2 ( 2 w +N+,\1z 
e a v -;;- er f e ~ -

2vvt 

( ~ + ~ + ~) vt) + I ' 
( ~ + ~ + i~ ) vt) 

[ 

/~ ~+Nz ( 
e y 4" +" v erf e 2 ~t + ei(D.-n)t v VL 

1*--~- (~:~+~) vt) + I' 
(~+~+~) vt) - y 4v2"+" v erf e --

2 - 2 . /3i i(\1-n ) +lY. z ( z 
e 2.jVt 

* ei(n+D.)t e 4v2"+ v v erf e 2../;;t + 

[ 

~ i(n+n)+N z ( 

13 = 2 _ ~ i(n+n) + N z ( 

(~+~+~)vt) + I. 
e 4';2 + v v erf e (_Z __ 

2.jVt (~ + i(n~D.) + ~) vt)) 

Using 1;, 12 and I; in (2.66) , we get 

eint 
--2-

( 

~+N +in
z 

( (5 +. N + in) vt) I e 41.' v -;;- er fe 2../;;t + 4v2 v V 

X _ ~+lY.+inz f ( z _ (~ + N + in) vt) +e 41.' v v er e 2VVt 4v v v 

(
-11- ei(n-n)t ) 

+ 2D.l 2 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

X 

( 

/~+~+~z f ( _z + r--(~-_+-~-n +-N~) vt) I e Y 41.' er e 2VVt 4V2' v v 

_ /~+ i(\1-n)+lY.z f ( z _ (~+ i(D.-n) + N ) vt ) +e Y 41.' v v er e 2VVt 4112 v v 

( 
U ei(n+n)t ) 

+ 2D.l 2 

( 

{e ~+~+~z erf e ( 2../;;t + '-(-~-2 -+-~-+-~-. n-~~D. 7") -vt) I 
x _ ~+lY.+i(n+\1)z ( _z_ _ (~+ N + i(n+D.) ) v t ) +e 41.' " v erf e 2VVt 4zJ2 v v 

(2 .70) 
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or 

-( 
x 

v~ i(!1-n ) N ( e 4" + " +-;;-Z erf c _z_ + 
2VVt 

V~ i(!1-n) N ( - ~+ +-z +e 4" " "erf c _z __ 
2VVt 

(~ +~+~)lIt) ) 
(~ + i(n;;n) + ~) lit) 

+ (2~1 eint
) 

x ( e ~+~+i(!1.;-n)z erf c ( -2Jvt-vt + (~ + ~ + ~) lit) + ) 

e - ~ +~ + i(!1';-n) Z erf c ( -2Jvt-vt _ ( ~ + ~ + i(n~n)) lit) 

In terms of non-dimensional variables, Eq. (2.71) is 

f( z , t) .g(z , t) e- V2Sf, --ru + 2ru- = 1 + 2 

where 

C¥3 + i/33 = ViJs2 + Nl + i(l - k), 

C¥3 = J J(S2 + Nl)2 + (1 - k)2 + (S2 + N 1 ), 

/3 3 = J J(S2 + Nl)2 + (1 - k)2 - (S2 + N 1 ). 
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Now for sine oscillations we have the following respective results for n < nand n > n 

x 

-1 
f(z,t) + .g(z,t) _ 1 + e-~z 

nl '/, m - 2 
,--;:;---

w
2 

N 'n ( ~+-+.Lz e ~ v v erfc _ z_ + 
2VVt 

_ ~+.!y+ in z ( +e ~ v v erfc _z __ 
2VVt 

- ( ~Kl e-
int

) 

(~ + ~ + ~) vt) ) 
( ~ + ~ + i~ ) vt) 

e / ~- i (n:-n)+~z erf c ( _z + /'--( ~-2-_-i(-n--n)-+-N-) -vt) ) 
2VVt V 4// // // 

/~ ~ N ( ( 2 ) ) +e -y ~- v +V- z erf c _z_ _ ~ _ i(n-n) + N vt 
2VVt 4// // // 

;t+.!Y+ i(n+n) z ( e 4v v v erf c _z_ + 
2VVt 

_ ;t+'!y+i(n+n) z ( +e 4v v v erf c _z __ 
2VVt 

( ~ + ~ + ~) vt) ) 
(~+ ~ + i(n~n)) vt) 

(2.76) 

-1 ( ~ + ~ + ~) vt) ) 
(~ + ~ + i~ ) vt) 
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The above expressions in terms of non-dimensional form are 

f( z, T) .g(Z, T) e- V2SI; 
m +2 OZ = 1 + 2 

f( z, t) .g(Z, t) e-V2SI; -ru + 2-ru = 1 + 2 

Resonant suction case 

If the angular velocity is equal to the frequency of oscillations (n = 0) then the problem is 

(PH 8H 8H 
1/-- - - +wo- -NH = 0 

8z2 at 8z 

H(O, t) 

H(oo,t) 

= (U cosOt -1) eiD.t 
OZ ' 

0, H(z, t) = O. 

The above problem in the transformed s-plane is of the following form: 

d2 H dH -
1/ dz2 + Wo dz - (s + N) H = 0, 
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H(O,8) 

H(oo, 8) 0. 

1 U 1 U 1 
-8 ---iO- + -20-Z 8 - 2iO + -20-Z -;, 

The solution of the above problem in 8-plane is 

_ _ [ 1 .!!-. 1 .!!-.~ ] -(~+ ~+;+~) z 
H(Z,8) - 8 _ iO + 2D.l 8 _ 2iO + 2D.l 8 e , 

which upon taking Laplace inversion becomes 

where 

{ 

w2 S N } w
2 

S N - -=rL+-+-z . st- 3+-+-z 
~ e ~"" 1 I e 4,," v h = L - 1 = h = - d8 

8 - iO 2ni . (8 - iO) , 

{ 

w2 N} w
2 N - 3+.l!.+-z . st- -=rL+.l!.+_z 

~ e 4v v v I e ~ v v 

h=L-
1 

'0 = 2'0 d8, 
8 - 2'/, . 8 - '/, 

{ 

- . ~+~+!Y z } . st- ~+.l!.+iY. z 
~ e ~ V" Ie ~"" h = L- 1 = ------d8 . 

8 . 8 

Evaluating the above integrals we can write 

+ +'''z e ~ v --;;- er fe _z_ + 
2v'vt 

[ 

w2 N.~ ( 

w
2 

N·
n 

( - +-+.!!!z +e ~" " er f e _z __ 
2v'vt 

( ~ + ~ + ~) LIt) I' 
( ~ + ~ + i~ ) LIt) 

+ +2,Oz 
e ~ v v erf e _z_ + 

2v'vt 

[ 

",2 N. ( 

- ;4 +lY. + 2;{1 z ( +e 4" " " erf e _z __ 
2v'vt 
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(~ + ~ + 2~n ) LIt)) , 
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[ 

e J ~+~z erf C (_z + 
~ 1 2VVt 
h="2 ~ 

+e - y ~+~z erf C ( _z __ 
2VVt 

(~+~) vt) I . 
(~+ ~) vt)) 

Making use of above values of h 12 and h in Eq.(2.85) we have for cosine oscillation 

~ H(z,t)=e- 2v z 

which helps us in writing 

eiOt 
--2-

xl 
w

2 
N '0 ( +_+Lz e B v v er f c _z_ + 

2VVt 

w
2 

NO ( - +_ +Lz 
+e B v v er f c _z __ 

2VVt 
( ~ e2i!1t ) + 2nl 2 

xl 
w

2 
NO ( +_+£Lz e ~ v v erf c _z_ + 

X 2VVt 

- ;4+li+ 2m z ( +e 4v v v erf c _z __ 
2VVt 

+ ( 2~1~ ) 

xl 
~ ( e B+v Z erf c _z_ + 

2VVt 

~ ( - +-z +e B v erf c _z __ 
2VVt 
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I ( ~ + N + 2in ) vt) 
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( ~ + N + 2in ) vt) 
411 II II 

(~+ ~) vt) I (5 + N ) vt) 4 112 II 
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For sine oscillations we have · 

f(z,t) + .g( z,t) _ 1 + e-~z 
nl 2 nl - 2 

- I 

Ul

2 
NO ( 

) 
+_+L z ( ~ + N + in ) vt) e ~ v v er f c _z_ + 

2v'Vt 4£1 1./ 1./ 

w
2 

N·O ( - +_+Lz ( ~ + N + in) vt) +e ~ v v er f c 2:Tvt-2 £It 4£1 v v 

+ ( iU~;t) 

x I 
~( (~ + ~) vt) ) 

e 43-+;;-z erf c _z_ + 
2v'Vt 

x 

~ ( (~+ N ) vt) - +-z +e ~ v erf c _z __ 
2v'Vt 4£12 V 

- C~~7t ) 

xl 

;t+t£+2in z ( 

) 
( ~ + N + 2in ) vt) e 4" " " erf c z + 2\Tvt 4£1 v v 

;t+lY.+2in z ( - (:~~ + N + 2in ) vt) +e 4£1 £I £I erf c _ z __ 
2v'Vt 4£1 V v 

Now in terms of non- dimensional variables the Eqs. (2 .90) and (2.91) yield 

fez, t) .g(z, t) e-..J2s~ 
nz+2nz=1+ 2 

a4 = ) )(82 + N l )2 + (82 + N 1) 

(34 = - )(82 + Nl)2 - (82 + Nd 

a5 = )(82 + Nl)2 + 4 + (82 + Nl) 

(35 = - ) ) (8 2 + N l) 2 + 4 - (8 2 + N 1 ) 
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J(z, t) ,g(z, t) e-..,f2Sf. 
----ru- + 2 -----nz = 1 + 2 

For resonant blowing we have Wo = - Wo and thus the respective expressions (2 .92) and (2.94) 

for cosine and sine oscillations become 

a = J V(S? + Nl)2 + (Sr + Nl)' 

73 = J v(Sr + Nl)2 + 1 - (Sr + Nl)' 

a4 = J VeS? + N 1 )2 + (Sr + N 1 ), 

/34 = - V(S? + Nl)2 - (S2 + Nl)' 

Q5 = v(Sr + Nr)2 + 4 + (Sr + Nl)' 

/35 = J v(St + Nl)2 + 4 - (Sr + Nl) ' 
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Chapter 3 

Time-dependent flow induced by 

non-coaxial rotations of a porous 

moving disk and a Jeffrey fluid at 

infinity 

3.1 Introduction 

The work in this chapter is concerned with deriving and solution of an equation which describes 

the flow due to non-coaxial rotations of a porous moving disk and a Jeffrey fluid at infinity. 

The unsteady situation is considered. The analysis is performed using a Laplace transform 

technique. Analytical result is determined for the velocity. The results of Navier-Stokes fluid 

are obtained as a special case. 

3.2 Problem formulation 

Let us introduce a Cartesian coordinate system with the z-axis normal to the porous disk , 

which lies in the plane z = O. The axes of rotation of both the disk and the fluid , are assumed 

to be in the plane x = 0 with the distance between the axes being l. Additionally the disk 

moves with uniform acceleration. The fluid is non-Newtonian and is taken as a Jeffrey fluid. 
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The common angular velocity of the disk and the fluid is taken as n = Dk (k is a unit vector 

parallel to the z-axis). The fluid is electrically conducting and magnetic Reynolds number is 

very small so that the induced magnetic field may be neglected. 

The unsteady motion of the conducting fluid is governed by the following laws: 

divV = 0, (3.1) 

P~~ = divT + J x B, (3.2) 

T = - pI + S, (3.3) 

where p is the fluid density, T is the Cauchy stress tensor, J is the current density, B is the 

total magnetic field, f]t is the material derivative, V is the velocity, and S is the extra stress 

which for Jeffrey fluid satisfies the following expression 

S=-- Al+),2--f-t [ DAl ] 
1 +),1 Dt ' 

(3.4) 

Al = L + LT = gradY + (gradVf, 

in .which f-t is the dynamic viscosity and ),1 and ),2 are the material parameters of the Jeffery 

fluid. 

For the problem in question, the velocity field is defined by 

u = -Dy + f( z, t), v = Dx + g(z, t) (3.5) 

which together with Eq. (3.1) gives for uniform porous disk that 

W= -Wo (3.6) 

where Wo > 0 corresponds to the suction velocity and Wo < 0 is the injection blowing velocity. 

Substituting Eq. (3.3) into Eq. (3.2) one obtains 

DV f-t [ DAl] P Dt = -Vp + 1 + ),1 div Al + ),2---rit + J x B, 
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or 

p [~~ + (V. V)V] = -Vp+ 1: Al div [AI + A2 DD~I] +J x B. (3.7) 

From Eqs.(3.4) to (3.6) we have 

or 

o 
o 

[ ~ ~ 
8z 8z 

!il ( .E!.JL 0
2 

) oz + A2 otEiz - wo~ 

div ( Al + A2 DD~I ) 

o 
- div 

!ill 
oz 

0J. + oz 

o 

o 
o 

o 
o 

o 
o 

8

2 

f 8

2 

f I N8z - Wop 

.E!.JL 8 2 

8tBz - wo~ , 

o 

2!L 0

2 

f I 8toz - Wo p 
.E!.JL 0 2 

8t8z - wo~ , 

o 

!il . (2!L 0
2 f) 

oz + A2 8t8z - Wo P 

0J. ( .E!.JL 0
2 

9 ) oz + A2 otoz - WO""§?2 

0J. ( 8
2 

8
2 

) oz + A2 atB~ - wo~ o 

o 

o 

li (2!L 0
2 f) oz + A2 8toz - Wo fh2 

0J. A ( .E!.JL W 02g ) oz + 2 otEiz - O""§?2 

0J. \ ( .E!.JL 0
2 
9 ) oz + /\2 otoz - WO""§?2 o 
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where x, y and z in the subscripts indicates the component notation. 

Using the definition of velocity and above equations, the x, y and z-components of Eq. 

(3.7) are 

§.1 D(D ) §.1 _ l£E l/ [8
2

f A 8 (8
2

f 8
2 f)]} 8t- x+g -w08z--p8x+l+Al f:h2+ 28z 7fF1h- wof:h2 , 

- N{ - Dy + f( z, t)} 

Wt + D( -Dy + f) - wo~ = -~~ + l:Al [~+ A2 tz ( fft~gz - wo~)] } 

-N{Dx+g(z,t)} , 

op oz = Nwo, 

where 

Since 

so 

N = aBo . 
p 

With the help of above expressions (3.8), (3.9) and (3.10) can be rewritten as 

of of 
- - Dg -wo­at oz 

1 0 pD2r2 v 
-pox(p - -2-) + 1 + Al 

-N {-Dy + f(z, t)}, 
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og og 
- +Df -wo­
ot oz 

Introducing 

equations (3 .11) to (3.13) become 

op 
oz = pNwo· 

of of 
--Dg-wo­
ot OZ 

= _~op + 1/ [02f +A2~ (02f _ wo 02f )] 
pox 1 + Al oz2 OZ ot8z oz2 

og og 
- +Df -wo­
ot oz 

-N {-Dy + f(z, t)}, 

op 
oz = pNwO. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

Taking partial derivative of Eqs. (3.15) and (3.16) with respect to z and then using Eq. (3.17) 

in the resulting equations we have 

~ [of _ Dg _ wo Of ] = ~ I+Al 7J1i + A2EJz EJtEJz - W07J1i , 
[ 

/.I {EPf EJ (2!:L 8
2f)} 1 

oz ot OZ OZ -Nf( z, t) 

~ [Og + Df _ Wo Og] = ~ HAl ~ + A2EJz at8~ - wo~ . 
[ 

/.I {EJ
2 

EJ ( EJ
2 

EJ
2

) } 1 
oz ot OZ oz -Ng(z,t) 

Integration of above equations gives 

(3.18) 

(3.19) 
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where Cl(t) and C2(t) are functions of integration. 

The appropriate boundary conditions are 

u(O,t) = - Oy +ct, v = Ox , t > 0, 

u(oo, t) = -O(y -l), v = Ox, for all t, 

'l.L( Z , 0) = -O(y - l) , v = Ox, z > 0, 

which in terms of j and 9 take the following form 

j(O, t) = ct , g(O , t) = 0, t > 0, ) 

j(oo, t) = m, g(oo, t) = 0, for all t, 

j(z ,O) = Oi, g(z ,O) = 0, z > 0, 

where c is the constant acceleration. 

From Eqs . (3 .18) , (3 .19) and conditions (3 .20) we obtain 

which after using in Eqs .(3 .18) and (3 .19), we get 

%f - Og - wo~ = l':Al {~+ A2;z (gt2a~ - wo~))} } 
-Nj(z, t) + NOl ' 

Wt + OJ - wo~ = l':Al {a + A2 tz ( %t~~ - wo~)} }. 
-Ng(z, t) + 02l 

The above two equations can be combined as 

where 
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(3 .20) 

(3.21) 

(3.22) 

(3 .23) 



F(z t) = f( z, t) + ig(z, t) _ 1 
, m Dl . 

Now the conditions in terms of Fare 

F(O, t) = ~~ - 1, t > 0, ) 

F(oo,t) = 0, t > 0, 

F(z, O) = 0, z > 0. 

Introducing the non-dimensional variables 

~ = {J1z, T = Dt, 

we have 

(3 .24) 

(3 .25) 

(3 .26) 

(3.27) 

Making use of Eqs.(3.27) one can write Eq.(3.23) and boundary conditions (3 .25) in non­

dimensional variables as 

F(O, T) = WI - 1, T > 0, ) 

F( 00, T) = 0, T > 0, 

F(~, T) = f(g-> + ig(~'t) - 1. 

(3.29) 
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The equation (3 .29) can also be written as 

where 

is the porosity parameter in non-dimensional variable. 

3.3 Solution of the problem 

For the solution of the problem, we define the Laplace transform pair as 

In the transformed s-plane, the governing problem becomes 

(1 + s,B ) d2~~,p) - ,B8d3~Ji 'p) + 28(1 + AI) dF~,P) = 2(1 + Al)(N + s)F } 

+2(1 + Al)iF 

F(D, s) = nls21 -~, } 

F(oo, s) = O. 

(3.30) 

(3 .31) 

(3 .32) 

, (3.33) 

(3.34) 

In general, for flow of non-Newtonian fluids, the equations of motion are of higher order than 

the Navier-Stokes equations. The adherence boundary conditions is insufficient for determinacy. 

The standard method used to overcome this difficulty is to resort to perturbation that lowers 

the order of the equation. With this fact in mind we write 

(3 .35) 

where ,B = A2D is t he perturbation parameter. 

Substituting Eq. (3.35) into Eqs.(3.33) and (3.34) and then equating the coefficients of like 
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power of f3 we get the following systems: 

3 .4 System of zero order 
2- -

d Fo dFo . -
de + 28(1 + AI) dE, - 2(1 + )..d(N + s + 2)Fo = 0, (3.36) 

Fo(O, s) = [22~21 -~, }. 
Fo(oo, s) = 0. 

(3.37) 

3.5 System of first order 

d2 F 1 dF 1 . - d3 F 0 d2 F 0 
df,2 + 2(1 + Al)8 df, - 2(1 + )..1)(N + s + 2)Fl = 8 de - s de ' (3.38) 

Fl(OO,S) = O,Fl(O,S) = 0. (3.39) 

3.6 Solution for zero order system 

The general solution of Eq.(3.36) is 

where 

)..0 = 8 2 + 2(N + s + i) 
1 + Al 

(3.40) 

(3.41) 

and AI, Bl are arbitrary constants. Using boundary condition (3.37), AI, Bl have values 

(3.42) 

which upon substituting in Eq. (3.40) yields 

or 

(3.43) 
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Laplace inversion of above expression is 

or 

or 

or 

or 

Fo(~, T) = L-1 {Fo(~, s) } , 

-~ 

_ e-(l+>"l)S~ j"'Yl +ioo (_C _ _ ~) 
Fo(~, T) - 2' f"I2 2l e 

7r2 . 'Yl -ioo H S S 

(1 + A1)282 

+2(1 + Al)(n + s + i) 

(1 + A1)282 

+2(1 + Ad(n + S + i) 
+87' 

ds, 

(3.44) 

Now using residue theory 

= 27ri [T - ~(1 + AI) 1 
V(l + Al)282 + 2(1 + Al)(n + i) 

x e-~.J(1+>"1)2S2+2(1+>"1l(n+i), 
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and so 

or 

(3.45) 

3.7 Solution for system of order one 

Substituting Eq. (3.43) into Eq. (3.38) we arrive at 

The above equation is second order non homogeneous equation. Its general solution is sum 

of complementary function and the particular integral. The complementary function and the 
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particular integral of Eq. (3.46) are 

and thus the general solution is 

(3 .47) 

where B2 and B3 are arbitrary constants. Using the boundary conditions (3.39), we get B2 = 

0 = B3 and so Eq.(3.48) reduces to 

Taking the inverse Laplace transform of Eq.(3.48), we have 

(3.49) 

where 

(3 .50) 

(3.51) 
I 
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For the solution of h, let 
1 

= [S2 + 2(N + S + i)] "2 
"1 1 + Al ' 

ds = "1(1 + Al)d"1, 

and so Eq. (3.50) gives 

( 1+.\] ) 2 
e - 2 COT 1'/1 +ioo 

h= . 
7r2 I'l-ioo 

or 

(3 .52) 

where 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 
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Solving the above integrals we finally write 

1 + )"1 ( 1+>-1 ) 2 
111 = e 2 rCO[~sinh{(l+Al)coO+Tcocosh{(l+Al)CoOl, 

Co 

S 
117 =-

2 
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(3.59) 

(3.60) 

(3 .62) 

(3.64) 

(3 .65) 

(3 .66) 



Now the value of h is 

_(1+>'1) 2 
I 2 Teo 

1 = e 

Employing a similar procedure as for h, one obtains 

or 

(3.68) 

where 

and now the expression for Fl may be written as 

(3.69) 
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where 

(3.70) 

Inserting Eqs.(3.45) and (3.69) into Eq.(3.35) we obtain F up to 0(13) as 

(3.71) 

3.8 Concluding remarks 

In this chapter, we have used the Jeffrey fluid as a non-Newtonian fluid model. This model 

describes the flow of a linear viscoelastic fluid. The presented analysis is valid under restrictive 

conditions as in particular the magnetic Reynolds number and the parameter 13 are small . 

Any how the considered model is rigorous. The salient feature of the analysis is to obtain a 

meaningful blowing solution which can be obtained by using 8 by -8 in Eq.(3.71). It is also 

very important to note that steady state cannot be achieved from the solution for any value of 

T. This is due to the fact since disk is moving with uniform acceleration for T > O. Finally, the 

results for Navier-Stokes fluid can be obtained by taking Al and ).2 equal to zero. 
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