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Introduction 

The analysis of effects of rotation and magnetic field in fluid flows has been an active 

area of research because of its geophysical and technological importance. It is well 

known that number of astronomical bodies (e.g. the Sun, Earth, Jupiter, Magnetic Stars, 

and Pulsars) possesses fluid interiors and (at least surface) magnetic fields . Changes in 

the rotation rate of such objects suggest the possible impOliance of hydro magnetic spin­

up. Hide and Robelis [lJ had made a steady state investigation of the hydro magnetic 

rotating an infinite rigid wall. Chandrasekhar [2-4] has also made significant 

contributions to the theory of hydrodynamic and hydro magnetic flow phenomenon. He 

pointed out the significant role of the corio lis force on problems of thermal instability and 

on stability of a viscous hydro magnetic flow. In order to make some applications to solar 

physics, Lelmeli [5 ,6J has presented a steady state analysis of the magneto hydrodynamic 

waves in a Newtonian incompressible rotating fluid with the same predicted certain 

significant effects of the COt'iolis force on the properties of the magneto hydrodynamic 

waves in the sun. 

Interest in flows of viscoelastic liquids has increased substantially over the past decades 

due to the occurrence of these liquids in industrial processes. The governing equations for 

viscoelastic fluids are in general of higher order and much complicated than the Navier­

Stokes equation [7-9]. The lack of boundary conditions as well as the non-linearity of the 

governing equations limits the solutions of the flows involving viscoelastic fluids. One of 

the viscoelastic fluid models which is most popular recently is called the Burger'S model 

[10-12]. This model is usually used for modeling asphalt concrete. There are numerous 

examples of the use of Burger's model to study asphalt mixes (see for example [13 ,14]). 



The Burgers model has been used to characterized food products such as Cheese [15J , 

Soil [16J , in the modeling of high temperature viscoelasticity of fine-grained 

polycrystalline Olvine [17,18J , in calculating the transient creep propeliies of the earth 

mantle and specifically related to the post-glacial uplift [19-22]. More recently, Hayat 

[23 J has discussed the exact solutions to rotating flows of a Burgers fluid. 

The object of the present thesis is discuss some unsteady, MHD rotating flows of Burgers 

fluid with heat transfer. The thesis is arranged in the fo llowing manner. 

In Chapter one, some basic definitions are given, the energy and momentum equation for 

Burger fluid have been derived . 

Chapter two is devoted for the study of unsteady unidirectional flows of second grade 

fluids in domain with heated boundaries. 

In Chapter three, the exact solutions of unsteady incompressible MI-ID rotating flows of 

Burger fluid have been discussed in the presence of heat transfer. Tlu'ee problems 

namely (i) MHD rotating flow of Burgers' fluid due to heated rigid plate oscill ating in its 

own plane (ii) MHD rotating flow of Burgers' fluid due to heated parallel plates (iii) 

Time periodic Poiseuille flow. 
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Chapter 1 

Basic Definitions of Fluid 

Mechanics 

1.1 Introduction 

This chapter deals with some basic definitions of fluid mechanics, different 

kinds of flows and fluids are defined. The equation of continuity and energy 

equation are given. The governing equations for flow of a Burger fluid is also 

derived. 

1.2 Definitions 

1.2.1 Fluid 

Fluids axe substances which are capable of flmving and which conform to the 

shape of containing vessels. 



1.2.2 F low 

It is a material t hat goes under deformation when different forces act upon it. 

If the deformation cont inuously increases wit hout limit t hen the phenomenon 

is known as flow. 

1.2.3 Fluid Mechanics 

The branch of engineering that examines the nature and properties of fluids , 

both in motion and at rest. 

1 .3 Types of Flow 

1.3 .1 Steady Flow 

Flow is steady if velocity of t he fluid remains same at successive periods of 

time i. e. 

1.3.2 Unsteady Flow 

av -a =0. t 

Flow is unsteady if velocity of the fluid changes with time i.e. 

av -a # 0. t 

1.3.3 Compressible Flow 

Flow is compressible if the density of the fluid changes during the flow i. e. 

p = p(x , y , z , t) # const ant . 
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1.3.4 Incompressible Flow 

A flow in which the density of the fluid particles does not change during the 

flow i. e. 

p = p(x, y, Z, t) = constant. 

1.3.5 Inviscid Flow 

Flows in which fluid friction is negligible are called Inviscid. 

1.3.6 Newtonian F luids 

Fluids in which the shear stress is directly proportiona1 the rate of defor­

mation are Newtonian fluids . JVlost common fluids such as water, air , and 

gasoline are Nev.rt.onian fluids . 

In other words vve can say that the fluids which obey t he Nevrton's law 

of viscosity are referred to as the Newtonian fluids. 

d'I.L 
Tyx = I-L(-l ), 

cy 

where T yx is the shear stress acting on the plane normal to the y-axis and/-L 

is the constant of proportionality, called absolute or dynamic viscosity, 'U is 

the x-component of velocity. Water and gasoline are examples of Newtonian 

fluids under norma1 conditions. 
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1.3.7 Non-Newtonian Fluids 

For non-Newtonian fluids the shear stress is directly proportional to the rate 

of angular deformation in a non linear manner i.e. 

( el1L)7t ( -J.. ) 
T'lX = J-Ll - ,n T 1 , . ely 

where n and J-L l denote the flovv behaviour index and apparent viscosity, 

respectively. Toothpaste, ketchup , shampoo, etc are non-Newtonian fluids. 

Because of complexity of fluids, t here are many rnodels for non-Ne"wt onian 

fluids. 

1.4 Some P roperties 

1.4.1 Density 

The density of fluid is defined as the mass per unit volume. rvIathematically, 

the density p at a point p may be defined as 

Om 
p = lim or.: V ' 

0\1--+0 u 

where OV is the total volume element around the point p and om is the mass 

of t he fluid wit hin OV 0 

1.4.2 Viscosity 

Viscosity of the fluid is that property which det ermines t he amount of its 

resistance to a shearing force. It is denoted by ~L . 
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1.4.3 Kinematic Viscosity 

The ratio of dynamic viscosity to the fluid density is knO\vn as kinelnatic 

viscosity and is given as 

J-i // = - . 
p 

1.4.4 Pressure 

Force per unit area is known as pressure. Mathematically, t.he pressure Pl at 

a point p may be defined as 

. i6Fi 
Pl = l,t'ln-- , 

68-+0 63 

in which 63 is an elementary area around point p and 6F is the normal force 

due to fluid on 63. 

1.4.5 Heat 

Heat is the form of energy that is transferred between t\VO bodies as a result 

of a difference in their temperature. 

1.4.6 Temperature 

Hotness or coldness of an object is expressed in terms of a quantity called 

temperature. 

1.4.7 Specific Heat 

Specific heat is the amount of heat required t.o raise the temperat.ure of a 

unit mass of a substance t luough one degree. 
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1.4.8 Thermal Conductivity 

It is the conduction of heat through the medium due to a thermal gradient 

in the medium. Thermal conductivity J( of a. substa.nce depends upon the 

material of the substance. 

1.4.9 Prandtl Number 

A dimensionless number used in the study of diffusion in flowing systems, 

equal to the kinematic viscosity divided by the molecular diffusivity 

p _ p Cp 
7' - ]( 

1.5 Equation of Continuity 

T he equation of continuity is a mathematical expression of law of conserva­

tion of mass. Consider a fluid flowing parallel to x-a ... 'Cis such that the mass 

flow through a cubical element of edges parallel to x, y, and z-axes . The 

equation of continuity for one dimensional floyv is given by 

or 

ap alL ap 
-lL- -p- =-ax ax at ' 

a (Pll,) 
ax 

ap 
at' 

(1.1) 

(1. 2) 

Using similar analysis the continuity equation for flow in three dimensions is 

a pap a p ( au avow) 
u- + v- + w- + p - + - + -ax ay az ax ay az 

or 
a p + a (pu) + a (pv) + a (pw) = 0 
at ax ay az ' 

9 

ap 
at' (1.3) 

(1.4) 



where u, v and ware t.he x, y and z- components of velocity respectively. In 

vect.or form the Eq.(1.4) can be writt.en as 

op ot + (''V.pV) = 0, (1. 5) 

where 

\7= (~~ ~) ox ' oy ' oz . (1.6) 

For steady flow Eq. (1. 4) becomes 

o (pu) + 0 (pv) + 0 (pw) = O. 
ox oy oz (1. 7) 

If a fluid is compressible t.he density will vary in space, so the Eq. (1.7) applies 

for the steady state flow of a compressible fluid. For the st.eady state flow of 

an incompressible fluid the density is constant. a.nd the continuit.y equation 

becomes 

or 

au avow 
-+-+- = 0 ax oy oz ' 

\7.V = 0. 

1.6 Energy Equation 

According to t.he law of conservation of energy, we have 

de 
p dt = T 1 . L - \7 . q + pT, 

(1.8) 

(1.9) 

where p is the densit.y, e is the specific internal energy, q is the heat fl1..L"X 

vector, T is the radiant heating and L is the gradient of the velocity vector. 

In the absence of the radiant heating Eq (1.9) takes the form 

de 
p- = Tl . L - \7 . q , 

clt 

10 
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where 

and 

q = -K'7T' , (1.11) 

where J( is the therma.l conductivity, Cp is the specific heat at constant 

pressure and T' is the temperature. vVe take the temperature field of the 

form 

T' = T'(z , t) , 

in view of Eq (1.12) we write Eq (1.11) as follows 

fJ2T' 
divq= -K~, 

u z -

(1.12) 

(1.13) 

with the help of Eq (1.13) and e = CpT', Eq (1.10) t akes the following form 

dT' fJ2T' 
pCp - = T 1 . L + J( --;::::?, 

elt uz-
(1.14) 

where 
d fJ 

- = - + (V · '7) 
dt fJt ' 

(1.15 ) 

is the material time derivative ,in which %t is the local part of material time 

derivative and (V . '7) is called the convective part of material time deriva­

tive. 

The Cauchy stress for an incompressible viscous fiuid is characterized by 

the following constitutive equation 

(1.16) 
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where f-L is the coefficient of viscosity, pI denotes the indeterminate spherical 

stress and A l is t he kinem.atical stress tensor defined by 

( 1.17) 

where "gTad " denotes t he gradient operator. Vie seek the velocity fie ld of 

the form 

v = [u(z, t ), v(z, t ), 0] . (1. 18) 

In vie\\! of Eq. (1.18) L can be written as 

0 0 au 
EJz 

L = gTadV = 0 0 ov 
oz 

(1.19) 

0 0 0 

and 

0 0 0 

LT = gTacN = 0 0 0 (1.20) 

au ov 0 oz oz 

Wit h t he help of Eqs.(1.19) and (1. 20) ,Eq. (1.17) can be written as 

0 0 EJ-u 
EJz 

Al = L + LT = 0 0 EJv 
EJz 

(1.21) 

EJu EJv 0 EJz EJz 

0 0 EJu 0 0 EJ u. 
EJz EJ:: 

AIL = 0 0 EJu 0 0 EJv 
EJz EJz 

(1.22) 

EJu EJu 0 EJu EJv 0 EJz EJz EJz EJz 
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o 0 0 

o 0 o (1.23) 

Finally T 1 . L can be ,vritten as 

(1.24) 

In view of Eq. (1.24) ,Eq. (1.14) takes the follo-wing form 

( 1.25) 

or 

C clT' = ~[(7'U)2 + (OV)2] + f{ 02~', 
P eli P OZ OZ P oz,2 (1.26) 

Eq.(1.26) can also be written as 

C clT' = ~ [ou + iOV] [OlL ;Ov ] J( 02T' (1.27) 
P clt p OZ oz oz - ~ oz + P oz,2 ' 

or 

(1.28) 

C elT' = // [OF OF] + f{ 02T' 
P elt OZ 8z p o z2 ' 

(1.29) 

where F = u + iv,F = 'LL - iv. 

Introducing the following non-dimensional variables 

T) = U Z, T = wt, F=UG e = T' - TXJ 
1/ ' To - T= 

(1.30) 

13 



Making use of Eq.(l.30) ,Qq.(l.29) takes the following form 

8e 1 82e 8C 8C 
A- = --- + Ec--

8T Pr 8rp 8'T] 8'T] 
(l.31) 

where 

(l.32) 

1.7 Equation of Motion for Burgers' Fluid 

In a rotating system the governing equations can be written as [23] 

P [dd~ +20 x V+O x (0 x r)] = -Vp+divS - CTB6v, (l.33) 

where V denotes the velocity vector , t the time, p the density, CT the 

finite electrical conductivity of the fluid, 1ft the material derivative and the 

modified pressure p including the centrifugal term is given by 

(\2 2 
~ P~l r 
P=P--

2
-, 

in which p is the pressure and 1'2 = x 2 + y2. 

In a Burgers' fluid , the constitutive equation for the extra stress S is given 

by [23] 

(l.34) 

In the above equation ~~ denotes the dynamic viscosity, A the Rivlin 

Ericksen tensor , A and f3 are relaxation times, A7• « A) is the retardation 

time and the upper convective derivative is 

8S dS . T 
~ = - - (grad V)S - S(grad V) 0, 

ut dt 
(l.35) 



\ iVhere To denotes the matrix transpose It should be noted that the Burgers' 

model reduces to that of an Oldroyd-B Huid for 13 = O. For 13 = /\,. = 0 

and 13 = /\ = /\,. = 0, we are left with the NIaxwell and classical viscous 

Huid models , respectively. In some special fiovv, this model resembles to that 

of second grade fluid model when ,6 = /\ = o. The ext.ra stress tensor and 

velocity field is assumed to be 

5'xx 5'xy 5'xz 

8( z, t) = 5'yx 5'yy 5'yz (l.36) 

5'zx 5'zy 5'zz 

V(z, t) = (u ,v,O). 

NIaking use of Eq. (l.36) ,Eqs. (l.33) - (l. 35) in component form of 

equations can be written as 

(l.37) 

[
OV 1 op 0 2 

P ot + 2D:LL = - oy + oz Syz - o-Bov, (l.38) 

op 8 
o = - oz + oz 5'zz (l.39) 

( 

£:"I £:"12 ) [ (A + 132.. ) ou S + 1 1 \ ~ 8_u_ 5' _? ot OZ xz + /\ + , xx ~ ot ot2 j3oU(OsX= _OU5'7? ) 
OZ ot oz--

( )

2 ou 
= -2p,A,. oz ' 

(l.40) 

+8 0V (Os'e> _ OU 5' ) , oz ot oz zz 
(l.41) 
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If we take that the fluid is at rest upto moment t = 0, we get Szz = 0 and 

thus Eq. (l.39) indicates that p is independent of z . NIoreover , Eqs. (1.40) 

to (1,43) gives 

( 
8 82 

) [ (A + (3 %t) ( ~~ Syz + %~ Sxz) 1 8v 
1 + A8t + (38t 2 Sxy - = -2~L'\'8z) +(3 uu uS'yz + (3 uv uS'" , 

uz ut uz ut 
(lA5) 

(lA6) 

vVith the help of Eqs. (1.37) to (1.39) and Eqs. (lA5) to (lA8) , we obtain 

1 + A- + (3- - + 2iD,F + - - + i- + _0 F = v 1 + /\1'- -. -? ' ( 8 82
) [8F 1 (8F 8F) O'B2 ] ( 8) 82F 

8t 8t2 8t P 8x 8y p 8t 8t-

(lA9) 

where F = u + iv , P = u - iv. 
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Chapter 2 

Unsteady Unidirectional Flows 

of Second Grade Fluids in 

Domain with Heated 

Boundaries 

In this chapter, the exact solutions of unidirectional, incompressible second 

grade fluid with heated boundaries have been discussed. Three problems 

namely (i) Flow Due to a Heated Rigid Plate Oscillating in its Own Plane 

(ii) Flow Between Two Infinite Parallel Plates One of ·Which is Oscillating 

(iii) Time Periodic Poiseuille Flow in a Slot, have been discussed and found 

an exact solution of the problems. This Chapter is due to Bandelli [24]. The 

essential deta.ils missing in the paper [24] are also incorporated. 

17 



2.0.1 Governing Equations 

The incompressible flow of second grade fluid is characterized by the following 

constitutive equation [25] 

(2.1) 

where f-L is the coefficient of viscosity, O!l and 0!2 are normal stress moduli, 

- pI denotes the indeterminate stress and Aland A2 are kinematic tensors 

defined by 

(2.2) 

el 
A2 = elt Al + (Al grad V) + (grad V)Al' (2.3) 

where V is the velocity, grael the gradient operator and 7ft denotes t he ma­

terial time derivative which is defined as 

el cl 
-l = ~ + (V.V). 
ct ut 

2.0.2 Momentum Equation 

(2.4) 

The balance of linear momentmTI in absence of body forces can be ,vl'itt.en as 

elV 
p- = divT. 

elt 

On substituting Eqs .(2.1) to(2.4) into Eq.(2 .5), we obtain 

18 
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~i"VV + Ctl6.Vt + 0'1 (6.wXV) + (Q!l + Ct2) 

{Al6. v + 2 div[(grad V)( grad V)T} - p(wXV)-pV t 

gradP, (2.6) 

where 
20'1 + 0!2 2 1 2 

P=P-O'l(V-\7V)- 4 IAll +2PIVI +pq), 

.6.. denotes the Laplacean, the subscript t denotes the partial derivative with 

respect to time, IAII is the trace norm of Aland w = curl V . \lYe seek the 

velocity field of the form 

v = (l/,(y,t),O , O) (2.7) 

with the help of Eq. (2.7), the Eq. (2 .6) after using the thermodynamic model 

[25] can be written as 

Setting 

a2
l/, a3u 2u ap 

f-L~ + Ctl ~ ? at - P--;:;- = -;:), uy- uy- ut uX 

ap 
0=-;:). 

u Z 

19 
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(2.10) 



The above system of equations can be written as 

8F 8F 
----0 8y - 8z - . 

Eqs.(2.11)and (2.12) implies that 

2.0.3 Energy Equations 

According to law of conservation of energy, we have 

ele 
p- = T .L + divq + pT, 

elt 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

\\1here p is the density of the fluid, e is t.he specific internal energy, q the heat 

fitL'C vector and T the radiant heating. 

In absence of radiant heating (According to [24]), Eq. (2.14) takes the 

following form 

ele 
p- = T.L + div q. 

elt 

According to Bandelli [24J for second grade fluid 

( 8u)2 
T.L = p 8y ) 

(8T) divq = -J( EJy~ ) 

20 
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e = pCp , (2.18) 

where Cp is the specific heat, K is the conductivity andl1(y, t) the temper­

ature. In view of Eqs .(2 .16) - (2.18) Eq.(2 .15) can be written as 

(2 .19) 

The above results implies the existence of the following flows in case of second 

grade fluid in the presence of heat analysis. 

2.1 Flow Due to a Rigid Plate Oscillating in 

its Own P lane 

Let us consider a semi-infinite second grade, incompressible fluid is bounded 

by an infinite rigid plate at y = 0 due to the cosine oscillations of the plate in 

its own plane \vith the frequency w. The fluid above the plate is at rest . Let 

To and Too denote respectively the temperatures of the plate and the fluid 

at infinity. The governing equation of motion and energy takes t.he following 

form Eq.(2.13) & Eq.(2.19) , 

(2.20) 

(2.21) 

where 
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\iVith the corresponding boundary conditions are 

u(y , t) U cos wt, e = 1 at y = 1, (2.22) 

u(y , t) ---7 0, e ---7 0 as y ---7 00 . 

2.1.1 . Solution of the Problem 

For solution of Eq.(2.8), we assume that 

u(y , t) = UF(y) coswt , 

or 

u(y, t) = URe[F(y)eiwt
]. (2.23) 

Substituting Eq.(2.23) , into Eq.(2.20) and the boundary conditions (2.22), 

we obtain 

el3 F . cl3 F . pelF 
I..L- + ~WC\'l- - ?,w-- = O. 

cly3 dy3 ely 
(2.24) 

F(O) 1 

F ---7 0 as y - ) 00. (2.25) 

The solution of Eq. (2.24) corresponding to the boundary conditions (2.25) 

can be written as 

(2.26) 
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where 

From Eqs.(2.25) and(2.23) , we have 

'u,(y , t) = U e-my cos(wt - ny). (2.27) 

For the solution of Eq.(2 .21) , \ve take the temperat.me field of the form 

e(y, t) = e(y)e2iwt
. (2.28) 

Substituting Eq.(2.28) into energy equation , we find , that e(y) satisfies t.he 

linear ordinary differential equation 

2iwpce - Ke" = Af(y). 

Subject to t he boundary conditions 

where 

8(0) = 1, e(oo ) = 0, 

A = f.i,[U(m + in)F 
To - Too 

f(y) = exp[-2y(m + in)], 
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(2 .29) 

(2.30) 

(2.31) 



and prime denotes the derivative with respect to y. On substituting the 

solution of Eqs.(2.29) to (2.30) into Eq.(2.28), we obtain 

e(y , t) -a1J ay [ ay ] e V2 [(1 - D] cos(2wt - V2) + sin(2wt - V2 + 

e-2mY [D cos 2(w - n)t - E sin 2(w - n)'tJ, (2.32) 

where 

a 

D -

E 

2.2 Flow Between Two Infinite, Parallel Plates 

One of Which is Oscillating 

Let us consider an incompressible unsteady second grade fluid bounded by 

infinite parallel plates at temperatmes Tl and T2 . The distance between the 

plates are considered to be el. Consider the lower plate at y = 0 oscillating 

'with velocity U cos wt and the upper plate is at rest. According to Rajagopal 

[25] using the similar procedme as discussed in previous section the solution 

of the boundary value problem can be written as 

( ) -R [U Sillhb(cl -y)ei1JJt ] uY,t - e , 
sinh bel 

(2.33) 
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where 

b2 = PW(O:lW + i/-L) 
[/-L2 + (O:lW)2]' 

On substituting Eq.(2 .33) into Eq.(2 .21) , the solution of resultant equation 

can be easily written as 

O(y, t) = Re [ { 
Dl cosh py + El sinh py 

(2.34) A (P2 )) 1 
- 2p2 1 + pL 4b2 cosh 2b(d - y + ~ 

where 

p J 2ipCw A = 1 (bU) 2 

K' Tl - T2 sinhbd 

~ (1 p2 cosh 2bel) 
2p2 + p2 - 4b2 ' 

A [ p2 ( p2 cosh 2bel) h I] . 1 + -=----::- 1 + 2 2 cos pG . 
2p2 8mh bel p2 - 4b2 P - 4b 

2.3 Time Period Poiseuille Flow in a Slot 

Let consider the flow is between two infinite parallel plates, at y = 0 and 

y = h respectively. Assume that both t he plates are at rest and let the 

pressure gradient along the x-direction, ~~ is given by 

oP ax = -p(Po + Qocoswt) . (2.35) 

To avoid the repetition using the same procedure as discussed in previous 

sections, we can ,vrite t he solution for the velocity field as 
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(, ) _ p
h2p

o [ (Y) 2] 2Qo R [ iwt ( COSh(3( l + i) - cosh (3('iX)Y/h )] 
1L y t - -- 1 - - +- e e 

, 2fL h w 2i cosh(3( l + 'i) , 

where 

By tal{ing the derivative of complex form of Eq,(2,35) and substituting into 

energy Eq,(2,21), "ve have 

C 8e 8
2
e A? , ? 2iwt C . b iwl p -8 = J( -8 ? + y- + B s111h- blye + y S111h lye ;, 

t y-
(2.36) 

where 

A 

B 

C 

We invoke the boundary conditions for the temperature field as 

e(o , t) = 0, e(h, t) = 1. (2,37) 

V"e seek the solution of Eq, (2.36) as 

(2,38) 
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Substituting Eq.(2.38) into Eqs.(2.36) and (2.37), we obtain three linear 

boundary value problems. The solution of those problems straightforward 

can be written as 

where 

(
1 A 3 3 

e1(y) = Y -, + -}' (Y - h ), 
1, 12 \. 

(2.39) 

B ( p
2 

COS2b1Y ) e2(y) = - 9 1 - 2 2 + k1 coshpy + k2 sinhpy , 
2P- P - 4b1 

(2.40) 

[y sinh b1 Y + 9
2b1 

9 cosh b1 Y + C'1 sinh py + C2 cosh PY] , 
P- - lr 1 

(2.41) 

C' [ 2b1 . ] (2 9) . 9 9 (coshbh - coshph + hsmhph) , 
p - bi smhph p- - bi 

2C'b1 

(p2 - bf)2 . 
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: 

Chapter 3 

Magnetohydrodynamic 

Rotating Flows of Burgers 

Fluid With Heat Transfer 

3.1 Introduction 

This chapter deals with the exact solution of unsteady, magnetohydrodynam­

ics, rotating, incompressible flows of burgers fluid with heated boundaries. 

The entire system is assumed to rotate about the axis normal to the plate. 

The governing equations for this investigation are solved analytically for three 

physical problems namely (i) Flmv Due to Heated Rigid P late Oscillating in 

its Own Plane (ii) Flmv Between Two Infinite Parallel Plates One of vVhich 

is Oscillating (iii) Time Periodic Poiseuille Flow in a Slot. The graphical 

results are shovvn for various physical parameters. 
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3.1.1 Pro blern Formulation 

In a coordinate system rotating with the fluid, the governing equations of 

continuity and motion are (1.8) and (1.49). If we take the velocity field of 

the form 

v = (u(z , t), v(z , t), 0) . (3.1) 

The condition of incompressibility is satisfied. Referred to the rotating frame 

of reference to unsteady motion of electrically conducting, incompressible 

Burgers' fluid is governed by Eqs. (1.37) to (1.39) and Eqs . (1.45) to (1.49). 

For our convenience we can write Eq. (1.49) as 

( a a2 
) 1 +>-- +f3-at at2 

Problem I: 

[
aF 1 (ap ap) a-B2 1 ( a) a2 F at + 2iDF + P ax + i ay + -r:-F = /J 1 + /\1' at at2 ' 

(3.2) 

3.2 Flow Due to Rigid Plate Oscillating in its 

Own Plane 

Let us introduce the Cartesian coordinates system (x, y, z) and consider the 

motion of a conducting impressible Burgers fluid bounded by a plate z = O. 

The plate at z = 0 is oscillating with velocity Uo cos wt .The fluid occupies the 

space z > O. The fluid and the plate are in a state of rigid body rotation with 

the constant angular velocity D = Dk (k is the unit vector in z-direction). A 

uniform magnetic field Eo fixed relative to the fluid is acting parallel to the 
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z-ax]s. It is assumed that no applied voltage is applied, which implies t.he 

absence of an electric field. The magnetic Reynold's number is assumed t.o 

be very sma.ll. 

The governing equation for the flmv is Eq. (3.2) . In the absence of pressure 

gradient Eq. (3.2) takes the following form 

(1 + /\~ + (3~) [OF + 2irlF + (J B; F] = /.1 (1 + /\r~ ) 0
2 

F. ot ot2 ot P ot O Z 2 
(3.3) 

The corresponding boundary conditions are 

F(O , t) = U cos wt, (3.4) 

F(oo, t) -) 0 as z -) 00. (3.5) 

Introducing the following non-dimensional variables 

U 
F=U01 7)1 - 7 r = wt, ~ , 

1./ 

Wl./ 
,6w2 = R 1 , 

n 
(3 .6) A 

U2' 
- =R3 
W 

WA R 2 , 1I1! = (J B; , W/\7' = R4. 
pw 

Making use of Eq.(3 .6) , Eqs .(3.3) to (3 .5) takes the fo llowing form 

030 1 a20 1 
ARI or3 + A [R2 + R1(2iR3 + N!) ] or2 

+A [1 + R 2 (2iR3 + N!)] °O~l + A [2iR3 + .M)] 0 1 

020 1 030 1 
07)2 +R40'rl20r' (3.7) 
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G 1 (0 , T) COS T, 

G1(OO ,T) - } O. (3.8) 

Solution of the Problem 

For t he solut ion of the above boundary value problem we take the assumed 

form of the solut ion of the form 

(3.9) 

,i\Tith the help of Eq.(3.9), Eq. (3.7) and the boundary conditions (3.8) takes 

t he following form 

(3 .10) 

(3.11) 

\vhere 

al ANI - AR2 - ARllllf - 2AR2R3, 

b1 A - AR211d - 2AR3 - 2AR1R3 . 

The solution of above differential equation with the help of boundary concli­

tion (3. 11) , can be vvritten as 
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·where 

al + blR4 + J(ai + bi) (1 + R~) 
2 (1 + R~) 

bl - CLlRI 

Using Eq.(3. 12), t he solut ion (3.9), can be written as 

ProblelTI 2: 

(3.12) 

(3. 13) 

3.3 Flow Between Two Infinite Parallel Plates 

One of Which is Oscillating 

Let us consider an incompressible rotating, Bmgers fluid bounded by two infi­

nite parallel plates. A constant magnetic field Bo is applied along z-clirection. 

The distance between the plates is d. The lower plate at z = 0 oscillates with 

velocity U cos wi while the upper plate is at rest. The governillg equation for 

the problem is Eq. (3.3) and the boundary condition are defined as 

F(O,i) 

F(d, i) 

32 

U cos wi, 

o. (3.14) 



IVlaking use of Eq.(3.6) and T)2 = ~, Al = w,~2, G2 = ty , into Eqs.(3.3) and 

(3 .14), "ve obtain 

(3.15) 

o. (3.16) 

Solution of the Problem 

To avoid t he repetit ion t he solut ion ofthis problem can be obtained by similar 

procedme as discussed in previous section the solution thus can be written 

as 

where 

P2 

eLl + blR4 + J(ai + bi) (1 + R~ ) 
2 (1 + R~ ) 

bl - CL1R4 
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Problem 3: 

3.4 Time Periodic P lane P oiseuille F low 

Let us consider two infinite parallel plates at z = ±h1 and the modified 

press m e gradient is assumed to be of the following form 

f (OF .OF) c= -0 +2-
0 

=- (P+Q coswt). 
X y 

(3 .18) 

The governing equation for t he problem is Eq.(3.2) and the boundary concli-

t ions are 

O. 

Introducing the following non-dimensional variables 

T = wt, 
Z 

772 = hI ) 

Making use of Eq.(3 .20) , Eqs.(3.2) and (3 .19) take the following form 

03G3 02G3 
AIRI OT3 + Al [R2 + Rl (2iR3 + )\;1)] OT2 

+Al [1 + R 2(2iR3 + l\I!)] °0~3 + Al (2iR3 + JIII)G3 

( 
0 Et ) + 1+R10T +R2fJT2 (P+QCOST) 

02G3 R 03G3 
0?7§ + 4 0?7§OT ' 
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(3.20) 

(3.21) 



G3 (l, r) 0, 

o. (3.22) 

Solution of the Problem 

The solution of the above problem satisfying the boundary conditions (3.22) 

can be written as 

Al (Nf + JNf2 + 4R5) 
2 

(C5 + R4d5) + V(C5 + R4 cl5)2 + (d5 - R4C5)2 

2(1 + R~) 
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Qpd2 Ppd2 

R5 = --,R6 = --. 
// V 

3.5 Heat Transfer Analysis 

3.5.1 Flow Due to I-Ieated Rigid Plate Oscillating in 

its Own Plane 

Let us consider the Burgers fluid occupy the space above the plate z = O. The 

plate at z = 0 is oscillating with velocity Uo cos wt. Let To and T,y:, denotes 

the temperature of the plate and fluid at infinity. The following solut.ion 

already calculated in eq. (3.13) can be written as 

(3.24) 

Introducing the follmving non-dimensional variables 

UZ T ' - Too , 
T = wt, 771 = - , 81 = T T' F = UG 1 , 

/) 0 - 00 

(3.25) 

the energy equation will be of the form 

Let 

(3.26) 
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be solution of energy eq.(1.23) 

A oe = ~ 02e + Ee oG 00 
OT Pr 0772 07] 07] ) 

using Eqs.(3.24) , (3.25)and (3.26) in above energy equation,the simplified 

form is 

? ( + .) 1 d2 e 1 -Ee(Tnl + inl)e--'h m1 ml = ---? - 2iAe1 (77I), 
Pr d7]i 

(3.27) 

The corresponding boundary conditions are 

(3.28) 

The solution of Eq.(3 .26) satisfying the boundary condition (3.28) are 

(3.29) 

""here 
2iAPr -(Tnl + 'ind 2 (4 + EePr) 

e ------~--------~~~---

1 - 2iAPr -4(Tnl + 'in d2 ) 

(ml + 'ind 2 EePr 
e2 = 2iA Pr -4(Tnl + inl)2' 

3.5.2 Flow Between Two Infinite Parallel P lates One 

of Which is Oscillating 

Let us consider the Burgers fluid occupy the slot between two Parallel Plates. 

The distance between the plates is d. The lower plate at z = 0 oscillates with 

velocity U cos wt while the upper plate is at rest. Let Tl and T2 denotes the 

temperature of the lower and upper plates respectively. 
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The velocity field is already computed in eq. (3.17) and is given by 

[
e-PP

/2 sinp2( 1 - 772)eiT
] 

G 2 ( 772, T) = Re ----.--'-----'-'''--'--­
smp2 

With the help of the following non-dimensional parameters 

Z T' - T2 
T = wt, 772 = r.l ' e2 = , F = UG.) , 

I.. Tl - T2 -

the energy Eq.(1.31) takes the following form 

and the boundary condition takes the form 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

The solution of eq. (3.32) satisfying the boundary conditions (3.33) is 

where 

EcPr(pi + p~) 
2 8i n 2p2 

(4pi - 4p~ - 2iAl Pr)Cos(2P2 + 2 t.an- 1 ~~) 

+8PIP2 8i n(2p2 + 2 tan- 1 ~ ) 
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and 

- E e Pr(pi + p~ ) e- (2Pl -~) 

(4pi - 4p~ - 2Uh Pr)Cos(2 tan- 1 
;;;-) 

+8P1P2 Si n(2 tan- 1 P2) 
PI 

2 Si n 2p2 Si nvA1 Pr 

3.5.3 Time Periodic P lane P oiseuille F low 

Let us consider two infinite parallel plates at z = ±h1 . The distance between 

the plates is 2h1.1et T1 and T2 denotes t.he temperature of the lower clnd 

upper plates respectively. The solution for momentum equation is already 

computed and for our convenience we can write it as 

Introducing the following non-dimensional variables 

Z T' - T1 f 

T = wi , 173 = -I ) 83 = T T' F = UG 3 , 
"1 1 - 2 

(3 .35) 

the energy equation(1.31) will be of the form 

A 083 = ~ 02
83 + Ee oC3 oCh 

OT Pr 0175 0173 0173 ' 
(3.36) 

The corresponding boundary condit ions are 

(3.37) 
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By taking the derivative of terms involving eiT in Eq.(3.34) and the bound­

ary conditions (3.37) and substituting it int.o energy Eq.(3.36) ,the solution 

can be written as 

where 

Cosec J Al Pr - + 2 2 ' . 2 [
1 Ec2 R~e-2a3'73 {( E 2 + F2 

2 d3 + d4 LhAI PI -8CL3 

(E2 - F2)(2a~ - 2b§ - iAI Pr) C b) S' h(? ~P .) + . . os2 3 1 n ~ CL3 - V .11.1 r I 
(4a~ - 4b~ - 2iAl Pr)2 + 64CL~b~ 
EF(4CL~ - 4b~ - 2iAl Pr) + 4(E2 - F2)CL3 b3 S' ?b C' 1 (? _ fAT1:":.f1. P .)}] + 'J ? 2 2 ? 1 n~ 3 os 1, ~CL3 V Fil r 1 . 

(4CL3 - 4b3 - 2'lAl Pr) + 64CL3b3 
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3.6 Results And Discussion 

vVe have plotted the velocity and temperat1.U"e fields for t hree kinds of flovv 

problems namely (1) Flow due to heated rigid plate oscillating in its own 

plane (2) Flow between two heated parallel plates one of which is oscillat­

ing (3) Time periodic poiseuille flow. The influence of different physical 

parameters such as retardation time R4 , relaxation times Rl and R2 , MHD 

parameter lvl and rotation parameter R3 on the velocity and temperature 

are investigated. Figure has been prepared to show the variation of velocity 

with the increase in nt . It is seen from the figure that velocity oscillates nea.r 

the plate \\1hile it achieves steady state behavior away from the plate. It is 

also seen that with the increase in R4 the velocity near the plate increases . 

Figme 2 shows the behavior of R2 on velocity field. In this figure the velocity 

behavior is opposite to that of the velocity behavior in the case of RL\ . The 

same effects are seen for the variation of Rl on velocity field in figm'e 3. The 

effects of 111 on velocity field are shown in figm'e 4. It is shown from the figure 

that vlith the increase in IvI the velocity near the plate increases but it goes 

to zero earlier as compared to the variation of R2 and RL\. Thus we say that 

with the increase in 111 the layer thickness reduces. In figme 5, we have seen 

the effect of rotation R3 on velocity field. It is seen from the figure that the 

rotation also causes the reduction of the boundary layer. Figures 6 to 10 are 

plotted when the flow is between the two parallel plates. From these figures 

it is shown that with the increase in R2 and R 1 , the velocity field increases 

while the increase in R4 and 111 the velocity decreases. Figme 11 to 15 are 

plotted for the case of time periodic poiseuille flmv, the similar effects are 

seen from these figures as we have already discussed. Figm'es 16 to 21 shown 
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the behavior of Eckert number Ec and Prandtl number PT on temperature 

field. In figme 16, the temperatme field decreases with the increase in Pr 

while in figure 17, there is minor effect on temperatme field wit.h the varia­

tion of Ec. In figme 18, the temperature field increases with the increase in 

Ec.Figure 19 shows the decrease in temperatme field vvith t he increase in Pro 

In figure 20 and 21, it is seen that t he temperature field decreases with the 

increase in both Ec and PT' 
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