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Preface 
The flows of non-Newtonian fluids present some interesting and exciting challenges to 

researchers in engineering, applied mathematics and computer science. Engineers can 

design effective viscometers and other instruments to measure the non-Newtonian fluid 

parameters. The constitutive equations of non-Newtonian fluids are very complex 

involving a number of parameters. Such equations give rise to problems which are far 

from trivial. Typically, these equations lead to problems in which the order of differential 

equations exceeds the number of available boundary conditions. Therefore 

mathematicians can derive the proofs for existence of unique or multiple solutions. 

Computer Scientists can design efficient algorithms for computing the flows. 

With the advent of computer and corresponding development of software for 

numerical integration of differential equations, the task of computing the flows in fluid 

dynamics became much simpler. The numerical solution of ordinary differential 

equations (ODE) has reached a state of art where given almost any ODE with appropriate 

boundary conditions, it is possible to obtain its accurate numerical solution. Nevertheless, 

the problem arising in the study of flow of non-Newtonian fluids still pose a challenge to 

applied mathematicians, numerical analysts and computer simulationists. These stem 

from the fact that the viscoelasticity of the fluid introduces some extra terms in the 

momentum equations which include in particular terms that have the higher order 

derivative than the number of available boundary conditions. The investigators 

accordingly have avoided the problem of getting the numerical solution and found it 

convenient to obtain the perturbation solution. 



In the present thesis, our concern is to investigate the HAM (homotopy analysis 

method) and numerical solutions for some highly non-linear flow problems of the third 

and fourth order fluids. Due to these facts in mind the layout of the thesis is as follows: 

Chapter 1 is introductory in nature, and chapter 2 includes all basic definitions and 

equations which are used in the subsequent chapters. 

Chapter 3 is devoted for the flow of a micropolar fluid. Here two-dimensional 

equations are first modelled and then solved for a geological problem. Lie group method 

has been employed in obtaining the analytic solution. In order to see the variation of 

velocity, various graphs are sketched and analyzed. 

In chapter 4 the flow of third grade fluid in a porous space is considered. A 

modified Darcy's law for a third grade fluid has been introduced. The well known Stokes' 

first problem has been studied. Numerical simulations have been performed using 

Newton's method. The results show that for large values of time the behavior of non­

Newtonian fluids is similar to that of Newtonian fluid. 

The steady flow of a third grade fluid over a jerked plate is discussed in chapter 5. 

The third grade fluid fills the porous half space. Explicit analytic solutions are obtained 

using homotopy analysis method (HAM). Recurrence formulas are obtained and 

convergence of the results is discussed. Various graphs are plotted in order to see the 

behavior of the involved parameters on the velocity profile. It is noted that here the 

velocity decreases by increasing the porosity parameter. 

The flow of the third grade fluid in a rotating frame of reference is carried out in 

chapter 6. The Stokes' first problem has been addressed. The effects of various emerging 



parameters including the rheological constants are seen. It is found that with the increase 

in third grade parameter the real part of velocity increases and imaginary part decreases. 

Chapter 7 describes the analysis for the Stokes ' first problem for a fourth order 

fluid in a porous space. Flow analysis is given using modified Darcy's law. The problem 

is solved using Newton's method. Different graphs are sketched just to see the behavior 

of the velocity. It is revealed that increase in the fourth order parameter depicts the 

decrease in the velocity. 

In chapter 8 numerical solution of an oscillatory flow over a porous plate is 

considered. The constitutive equation for fourth order fluid is used. The governing non­

linear partial differential equation is first modelled and then solved using Newton's 

method. The variation of various parameters of interest is shown on the velocity. 

Numerical simulation indicates that the boundary layer thickness increases owing to an 

increase in the suction parameter. 

Chapter 9 describes the unidirectional steady flow of a 10hnson-Segalman fluid 

bounded by two plates. The flow is induced due to motion of the upper plate. The general 

solution of the governing non-linear ordinary differential equation is developed. 

Numerical solution for the Couette flow is further included. The effects of Weissenberg 

number, Hartmann number and ratio of viscosities on the velocity are discussed. It is 

noted that the velocity increases by increasing the Hartmann number. 
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Chapter 1 

Introduction 

Mechanics of non-linear fluids present a special challenge to engineers, physicists 

and mathematicians. The non linearity can manifest itself in a variety of ways. The for­

mulation of the shear stress for non-Newtonian fluids is a difficult problem which has not 

progressed very far from a theoretical point of view. However, there is no single model 

available in the literature which clearly exhibits all the properties of the non-Newtonian 

fluids. For a more fundamental understanding several empirical descriptions have estab­

lished rheological models. One of the simplest ways in which the viscoelastic fluids have 

been classified is the methodology given by Rivilin and Ericken [1] and Truesdell and Noll 

[2], who present constitutive relations for the stress tensor as a function of the symmetric 

part of the velocity gradient, and its higher (objective) derivatives. Another class of models 

are the rate type fluid models, such as the Oldroyd model [3]. A discussion of the various 

differential, rate-type and integral models can be found in the books by Schowalter [4] and 

Huilgol [5], and the survey article by Rajagopal [6] . 
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The theory of microfluids, a subclass of generalized fluids, was first time introduced 

by Eringen [7] in 1964 and has become very popular in the recent years. These are the fluids 

which exhibit certain microscopic effects, arising from the local structure and rnicromotions 

of the fluid elements. These fluids can support stress and body moments and are influenced 

by the spin inertia. The stress tensor for such fluid is non-symmetric. Eringen's theory 

has provided a good model to study a number of complicated fluids, including the flow of 

low concentration suspensions, liquid crystals, blood and turbulent shear flows. In 1966, 

Eringen [8] introduced the subclass of micro fluids named as the theory of micropolar fluids, 

which exhibit micro-rotational inertia. This class of fluids possess a certain simplicity and 

elegance in their mathematical formulation and are more easily amenable to solution, which 

has a great attraction for mathematicians. 

Recently the studies of micropolar fluids have acquired the special status due to 

their industrial applications. Such applications include the extrusion of polymer fluids, 

solidification of liquid crystals, cooling of metallic plate in a bath, animal bloods, exotic 

lubricants and colloidal and suspension solutions. Undoubtedly, the classical Navier-Stokes 

theory is inadequate for such fluids. Several workers in the field have made the useful 

investigations that involve micropolar fluid. For example, Srinivasacharya and Rajyalakshmi 

[9] studied the creeping flow of a micropolar fluid past a porous sphere. Iyengar and Vani 

[10] examined the flow of micropolar fluid between two concentric spheres, induced by their 

rotary oscillations. Kasiviswanathan and Gandhi [11 J discussed the Hartman steady flow of 

a micropolar fluid between two infinite, parallel non-coaxially rotating disks. AI-Bary [12] 

developed the exponential solution of the problem of two dimensional motion of micropolar 
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fluid in a half-plane. Dubey et al. [13] analyzed the flow of a micropolar fluid between two 

parallel plates rotating about two non-coincident axes under variable surfaces charges. Goda 

et al. [14] studied the heat transfer analysis on the boundary layer flow of a micropolar 

fluid. Ibrahem et al. [15] presented the non-classical heat conduction effects in Stokes' 

second problem for unsteady micropolar fluids flow. Seedek [16] studied the Hartman flow 

of a micropolar fluid past a continuously moving plate. Kim and Lee [17] made an interesting 

study for Hartman oscillatory flow problem of a micropolar fluid. Agarwal [18] presented 

finite element solution of unsteady three dimensional micropolar fluid flow at a stagnation 

point. Abo-Eldahab and Ghonaim [19] discussed the numerical solution in order to see the 

radiation effect on heat transfer of a micropolar fluid. 

The study of physics of the flows through porous media have many applications. 

Such flows are important because of their applications in geothermal fields, soil pollution, 

fibrous insulation, nuclear-waste disposal in agriculture engineering, seepage of water in river 

beds, in petroleum technology for the study of the movement of natural gas, oil and water 

through the oil reservoirs, in chemical engineering for filtration and purification process. 

In the geophysical context, Raptis et al. [20 - 23] presented a series of investigations for 

flow through a porous medium bounded by an infinite porous plate. Nield et al. [24] has 

discussed the convection in porous media. Vafai [25] has explained the applications of porous 

media. In recent studies, Fang et al. [26] has presented the solution for the incompressible 

Couette flow with porous walls and Hooman [27] has discussed the forced convection in a 

fluid saturated porous medium tube with isoflex walls. 

Because of its practical applications, the Stokes' problem for the flat plate has 
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been the subject of numerous theoretical studies. Such studies for Navier-Stokes fluid and 

different types of non-Newtonian fluids include t he work of Zierep [28], Soundalgekar [29], 

Rajagopal and Na [30], Puri [31], Bandelli et al.[32J, Tigoill [33], Fetecau and Zierep [34] and 

Fetecau and Fetecau [35 ,36] . More recently, Tan and Masuoka [37,38] discussed the Stokes ' 

first problem for second grade and Oldroyd-B fluid models using modified Darcy's law. 

They obtained the solution analytically. The second grade and Oldroyd-B fluids for steady 

unidirectional flow do not exhibit the rheological characteristics. The third grade fluid 

model for steady flow exhibits such characteristics even in steady state situation. Moreover, 

the viscoelastic flows in porous space are quite prevalent in many engineering fields such as 

enhanced oil recovery, paper and textile coating and composite manufacturing processes. 

Also the modeling of polymeric flow in porous space has essential focus on the numerical 

simulation of viscoelastic flows in a specific pore geometry model, for example, capillary 

tubes, indulating tubes, packs of spheres or cylinders. 

Rotation plays a significant role in several important phenomenon in cosmical fluid 

dynamics. Similarly, a great deal of meteorology depends upon the dynamics of a revolving 

fluid. The large scale and the moderate motions of the atmosphere are greatly affected by 

the vorticity of the earth's rotation. In the case of infinite fluid rotating as a rigid body 

about an axis, the amount of energy possessed by the fluid is infinite and it is of great 

interest to know how small disturbances propagate in such a fluid. Recently, the study 

of rotating flows has gained considerable importance due to their applications in cosmical 

and geophysical fluid dynamics. Several workers have been engaged to the rotating viscous 

flows in various directions. Extensive literature is available on the topic dealing with the 
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time-dependent and time-independent flows in the rotating frame. But there is yet another 

area of such flows in which no considerable attention has been given. This is the area of 

the rotating flows in non-Newtonian fluid dynamics. Little work sp.ems to have been done 

in this area. Recently Hayat et al. [39 - 43,88] presented a series of investigations for the 

non-Newtonian fluid in the rotating frame. Rajagopal et al. [44] has given the existence 

theorem for the flow of a non-Newtonian fluid past an infinite porous plate. 

Extensive research has been undertaken for unidirectional flows of a second grade 

fluid (simplest subclass of a differential type fluids). This is perhaps due to the fact that in 

second grade fluid, the governing equation for unidirectional flow is linear whereas it is non­

linear in third and fourth order fluids. But the steady unidirectional flows of a second grade 

fluid over rigid boundaries do not include the rheological characteristics in the solution. 

Because of this fact the third and fourth order models have gained much importance. Such 

models include the rheological properties even for the steady unidirectional flows over rigid 

boundaries. Important contributions regarding the unidirectional flows of third and fourth 

grade fluids are given in the studies [45 - 49]. Chen et al. [83 - 85] has discussed the 

unsteady unidirectional flows with different given volume flow rate conditions. Siddiqui et 

al. [87,89 - 91] has done series of investigations for the steady and unsteady flows of non­

Newtonian fluids. It is known that in general the governing equations for the non-Newtonian 

fluids are of higher order than the Navier-Stokes equations and thus the adherence conditions 

become insufficient. The critical review regarding the boundary conditions, the existence 

and uniqueness of the solution has been given by Rajagopal [50,51]' Rajagopal et al. [44] 

and Rajagopal and Kaloni [45]. 
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It is generally recognized that non-Newtonian fluids are more important and appro­

priate in technological applications than Newtonian fluids. P olymer solut ions and polymer 

melts provide the most common examples of non-Newtonian fluids. Using the Newt onian 

fluid model to analyze, predict and simulate the behavior of the non-Newtonian fluid have 

been widely adopted in industries. However, the flow characteristics of a non-Newtonian 

fluids have been found to be quite different from those of a Newtonian fluids. Thus we 

cannot replace non-Newtonian fluid by a Newtonian fluid for practical applications. Hence, 

it is necessary to study the flow behavior of non-Newtonian fluids in order to obtain a thor­

ough cognition and to improve the utilization in various manufactures. Due to variety of 

fluids, several non-Newtonian fluid models have been proposed. Amongst these there is a 

Johnson-Segalman fluid model. This model is developed to allow for non-affine deformation 

[52]. Some researchers [53 , 54] used this model to explain the phenomenon of "spurt": in 

which there is a large increase in the volume throughout at a critical pressure gradient 

for a small increase in the driving pressure gradient. Experimentalists usually associate 

"spurt" with slip at the wall and there have been a number of experiments [55 - 62J to 

support this hypothesis. Rao and Rajagopal [63] and Rao [64J have made advances towards 

explaining this phenomenon. However, no attempt has been made to discuss the flow of 

the Johnson-Segalman fluid in the context of magnetohydrodynamics (MHD) . Examples of 

non-Newtonian fluids which might be conductors of electricity are given by Sarpkaya [65], 

e.g., flow of nuclear slurries and of mercury amalgams, and lubrication with heavy oils and 

greases. 

Due to all the afore mentioned facts in mind, the present thesis is arranged in 
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the following form. Chapter 2 includes the basic definitions and equations which are quite 

helpful for the succeeding chapters. In chapter 3 the analytic solution for the flow of a 

micropolar fluid is developed using Lie group method. The translation type symmetry has 

been taken into account. The various graphs are plotted to see the variation of velocity 

profile for the various values of the involved parameters. The contents of this chapter are 

published in Acta Mechanica, 188,93 -102 (2007) . 

In chapter 4 we have modeled the differential equation for the third grade fluid in 

the porous half space using modified Darcy's law. Stokes' first problem has been discussed 

using Newton's method. Variation of the various emerging parameters is seen on the velocity 

profile. To the best of our knowledge the modified Darcy's law has been introduced first time 

in the literature. It is found that for T :?: 61T the non-Newtonian effects become weak and 

the flow field behaves as if it is a Newtonian fluid. The contents of this chapter have been 

accepted for publication in Communications in Non-Linear Science and Numerical 

Simulations. 

Chapter 5 has been prepared just to provide an analytic solution for the steady 

flow of the third grade fluid in a porous medium. Expression for velocity has been obtained 

using a newly developed method namely the homotopy analysis method (HAM) . The non­

linear problem has been solved for the series solution. Recurrence formulas are obtained. 

Convergence of the obtained solution is discussed. The influence of various parameters of 

interest are first sketched and then discussed for the velocity profile. The contents of this 

chapter are published in Applied Mathematical Modelling, 31 (11), 2424 ~ 2432 (2007) . 

Chapter 6 provides the modelling for the rotating flow of a third grade fluid. 
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Numerical solution has been presented for Stokes' first problem using Newton's method. 

Various graphs are plotted in order to see the behavior of the involved parameters on the 

velocity distribution. The contents of this chapter have been accepted for publication in 

Nonlinear Analysis Real World Applications Series B. 

In chapter 7 we have modeled the differential equation for the flow of a fourth 

order fluid in the porous half space using modified Darcy's law. The governing equation is 

solved for the Stokes' first problem using Newton's method. Effects of material parameters 

are shown on the velocity. It is worth mentioning that modified Darcy's law for the fourth 

order fluid has been introduced first time in the literature here. The contents of this chapter 

are published in Acta Mechanica Sinica, 23, 17 - 21 (2007). 

Chapter 8 contains the numerical solution for oscillatory flow of a fourth order 

fluid. The effects of Newtonian and non-Newtonian fluid parameters are anlyzed on the 

velocity distribution. The contents of this chapter have been submitted for publication in 

Meccanica. 

In chapter 9 the Couette flow of a Johnson-Segalman fluid is discussed in the 

presence of the uniform magnetic field. One-dimensional, steady and incompressible flow of 

a Johnson-Segalman fluid is studied. The flow is created due to motion of the upper plate. 

The combined effects of viscoelascity and magnetic field are considered. The governing 

equation of the problem is first reduced to a non-linear ordinary differential equation and 

then solved for a general solution. The Couette flow has been also discussed numerically 

using Newton's method. The influence of the Weissenberg number, Hartmann number and 

ratio of viscosities upon the velocity have been explained. The contents of this chapter have 
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been submitted for publication in Mathematical Methods in the Applied Sciences. 
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Chapter 2 

Preliminaries 

This chapter contains some basic definitions and equations. Newton's and homo­

topy analysis methods are also included in this chapter. 

2.1 Non-Newtonian fluids 

A non-Newtonian fluid is a fluid in which the viscosity changes with the applied 

shear force. As a result, non-Newtonian fluids may not have a well defined viscosity. Al­

though the concept of viscosity is commonly used to characterize a material, it can be in­

adequate to describe the mechanical behavior of the substance, particularly non-Newtonian 

fluids. They are best studied through several other rheological properties which relate 

the relations between the stress and strain tensors under many different flow conditions, 

such as oscillatory shear, or extensional flow which are measured using different devices or 

rheometers. The rheological properties are better studied using tensor-valued constitutive 

equations, which are common in the field of continuum mechanics . 
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An inexpensive, non-toxic sample of a non-Newtonian fluid can be made easily. 

Just add corn starch to a cup of water. Add the starch in small portions and stir in slowly. 

When the suspension nears the crit ical concentration, then so called "shear thickening II 

property of this non-Newtonian fluid becomes apparent. The application of force from the 

spoon, your fingers etc causes the fluid to behave in a more solid like fashion. If left at 

rest it will recover its liquid like behavior. Shear thickening fluids of this sort are being 

researched for bullet resistant body armor, useful for their ability to absorb the energy of 

a high velocity projectile impact but remain soft and flexible when struck at low velocities . 

A familiar example of the opposite, a shear thinning fluid , is paint . One wants the 

paint to flow readily off the brush when it is being applied to the surface being painted, but 

not to drip excessively. 

P.!:Q Ud o. pj:a~ ti Q 

Fig. 2.1 The relation of shear rate with shear stress. 
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2.2 Differential type fluids 

Due to complexity of fluids, there are several models of non-Newtonian fluids. One 

of these is a class of differential type fluids. The detail review on the topic is given by Dunn 

and Rajagopal [66]. The most general subclass of differential type fluids is a fourth order 

fluid. 

The constitutive relation for the fourth order fluid is 

(2.1) 

where 

(2.2) 

(2.3) 

In the above equations T is the Cauchy stress tensor, p is the hydrostatic pressure, I is the 

identity tensor, J.L is the coefficient of viscosity called dynamic viscosity and Cii (i = 1,2), (3j 

(j = 1 to 3), Tk (k = 1 to 8) are material constants. Note that for Tk = 0 (k = 1 to 8) the 

fourth order fluid model reduces to the third order model, while when f3 j = 0 (j = 1 to 3) 

and 'Yk = 0 (k = 1 to 8) the model (2.1) reduces to a second order fluid and if Cii = 0 

(i = 1,2) , (3j = 0 (j = 1 to 3) and Tk = 0 (k = 1 to 8) it becomes the classical Navier-Stokes 

model. The kinematical tensors Alto A4 are defined through the following expressions 

(2.4) 

(2.5) 
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L=VV, (2.6) 

in which V denotes the velocity field, V is the gradient operator and d/ dt is the material 

time derivative given by 

d a 
- = - +(V·V) 
dt at ' 

(2 .7) 

in which the first and second term on the right hand side indicate the local and convective 

parts of the derivative. 

For third grade fluids, physical considerations were taken into account by Fos-

dick and Rajagopal [67]. They obtained that IL, aI, a2 and (33 must satisfy the following 

hypothesis 

(2.8) 

and for second grade fluids , physical considerations were discussed by Dunn and Fosdick 

[75] 

(2.9) 

and hence the constitutive equation for second and third grade fluids are 

(2.10) 

(2 .11) 

respectively. 

2.3 Equation of continuity 

At any point in the fluid, the continuity equation is defined as 

ap 
at + \7. (pV) = o. (2.12) 
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This is also called the "consevation of mass equation". 

For an incompressible fluid the density p is constant and Eq. (2.12) may be 

simplified as 

v.v = o. (2.13) 

2.4 T he mom entum equation 

The fundamental equation describing the flow of an incompressible fluid is 

p (:t + (V.V)) V = divT+ pb, (2.14) 

where pb are the body forces per unit mass and matrix form of Cauchy stress t ensor is 

Txx Txy Txz 

T= Tyx Tyy Tyz 

Tzx T zy T zz 

where T xx, T yy and T zz are the normal stresses and T xy, T xz, T yx, T yz, T zx and T zy are t he 

shear stresses. 

The scalar form of Eq. (2 .14) may be written as 

[
au au au au] _ aT xx aT xy aT xz b 

P - +u-+v- +w- + + +p 
at a x ay a z - ax ay a z x, 

(2.15) 

(2.16) 

(2.17) 

where u, v and ware the velocity components in the x , y and z directions. Here pbx , pby 

and pbz are the body forces per unit mass in the x, y and z directions, respectively. 
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2.5 Porous medium 

A porous medium is a continuous solid phase with intervening void or gas pock­

ets. Natural porous media include soil, sand, mineral salts, sponge, wood and others. 

Synthetic porous media include paper, cloth filters, chemical reaction catalysts, and mem­

branes. Porous medium is also used in geology, building science and hydrogeology. Porous 

medium is also defined as a medium that has numerous interstices , whether connected or 

isolated. Further porous medium is that medium for which the permeability is non-zero. 

2.6 Couette flow 

The term Couette flow refers to the laminar flow of a viscous fluid in the space 

between two smfaces, one of which is moving relative to the other. The flow is driven by 

virtue of viscous drag forces acting on the fluid. This type of flow is named in honor of 

Maurice Frederic Alfred Couette, a Professor of Physics at the French University of Angers 

in the late 19th century. 

Most commonly, the term II Couette flow ll refers to the flow between two planes 

moving relative to one another (but with constant separation between the two planes). 

Other examples include the flow between two concentric spheres with a common axis of 

rotation, or the flow between two coaxial cylinders with one of the cylinders rotating at 

some angular velocity relative to the other. This latter type of flow is usually referred to as 

Taylor-Couette flow , which honors the work of G. 1. Taylor on the theoretical hydrodynamic 

stability of this flow. 
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2.7 Numerical technique and discritization process 

Non-linearity is a big problem for engineers, physicists and mathematicians for 

a long time. It is not always possible to obtain the analytic solution for the non-linear 

problems. Therefore, the solution by numerical techniques in such cases has got its impor-

tance. The process of obtaining the computational solution of certain problem requires the 

following two steps. 

2.7.1 Step 1 

Convert the non-linear partial differential equation and the auxiliary conditions 

into discrete system of algebraic equations by using the following formulas 

8f 1 
81' = k (/i, j - !i,j - I) , (2.18) 

82f 1 
81'2 = k2 (/i,j+1 - 2fi ,j + !i,j - I ) , (2 .19) 

8f 1 
8r} = 2h Ui+I,j - Ii-I,j) , (2.20) 

82 f 1 
87

72 = h2 (/i+I,j - 2fi,j + Ii-I,j ) , (2.21) 

83f 1 
87J3 = 2h3 Ui+2,j - 2fi+l,j + 2fi-l,j - fi-2,j) , (2.22) 

84f 1 
87J4 = h4 Ui+2,j - 41i+I,j + 6/i,j - 4fi-l,j - fi-2,j ) , (2.23) 

8sf 1 
R?')S = 0h5 Ui+3 ,j - 41i+2 ,j - 3fi+l ,j - 5/i-I ,j + 4/i-2,j - 2/i-3,j) , (2. 4) 
\J I, &J I fI 

83f 1 
87J281' = h2k Ui+I,j - fi+l ,j-1 - 2/i,j + 2/i,j-1 + h - I,j - h-I,j-I ) , (2.25) 

~ = _1_ ( fi+2,j - fi+2,j-1 - 2fi+l,j + 2fi+l ,j-1 ) (2.26) 
8r}381' 2h3k ' 

+2h-l,j - 2h-l,j-l - fi-2,j + fi-2,j-l 



etc. 

8 5 f = _1_ ( Ii+l,j - 3fi+l,j- l + fi+l,j -2 - fi+l,j-3 - 2fi,j + 4fi,j-l 

8",2873 h2k3 
-4/i,j-l - 4/i,j-2 +2/i,i - l + li-l,j-2 - li-l,j-3 

). 
) 

I 

8 4 f 1 ( fi+l ,j - 21i+l,j-l - 2fi,j + f i+l,j-2 

8TJ2872 = h 2k 2 

+4 fi,j - l - 2/i,j-2 + Ii-l,j - 21i-l,j-l + li-l,j-2 

This process is known as discritization. 

2.7.2 Step 2 
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(2 .27) 

(2.28) 

The solution process requires a numerical method for the solution of the system 

of algebraic equations. For the solution of a linear system of algebraic equations we have 

Gauss-Seidal, Gauss-Jordan and S.O.R methods. For the solution of a non-linear system of 

algebraic equations, we can use Newton's method. 

2.8 Newton's method 

The discritization process gives us a system of algebraic equations which can be 

written in the following form 

AX=B, (2.29) 

where X is a column matrix of unknown nodal values. A contains algebraic coefficients 

arising from discritization and B is made up of known values. 

The Eq. (2.29) can also be written as 

R= AX-B = O. (2.30) 
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Note that R is known as residual. This R ---to as the computational solution will tend to 

the exact solution of Eq. (2.29). The Newton's method can be written as 

(2.31) 

where k is the iteration level and Jk is the Jacobian. An element of Jk is 

(2.32) 

Eq. (2 .31) can also be written as 

(2 .33) 

in which 

Newton's method demonstrate quadratic convergence, if the current iteration Xk is suffi-

ciently close to the converge solution Xc. 

Quadratic convergence implies that 

(2.34) 

The criterion for the convergence of Newton's method can be developed as follows : 

1. JO has an inverse with its norm bounded by a, i.e. 

(2.35 ) 

2. ~XO has a norm bounded by b, i.e. 

(2.36) 
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3. R has continuous second order derivative satisfying 

N I 8
2

R,.,. I C L 8x8x· ~ N' 
j=1 • J 

for all X in II .6.XO II < 2b. (2.37) 

If abc ~ 0.5, the Newton's method will converge to the solution 

at which 

and 

The vector norms are maximum norm i.e. 

IIXII = max IXil· • 

The matrix norm are maximum natural norms, i.e. 

The main difficulty with the Newton's method is that the radius of convergence b decreases 

so that XO must be close to Xc to ensure convergence. 

The main contribution to the execution time in using Newton's method is the 

factorization of Jk in the solution of Eq. (2.33) . It is possible to reduce the execution time 

by freezing the value of Jk for a number of steps I:!..k, i.e., Jk need only be factorized once 

every I:!..k steps. However, more iterations are required to reach the convergent solution. 
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2.8.1 Advantages of Newton's method 

The Newton's method has the following advantages: 

1. Rapid convergence, i.e., few iterations are required. 

2. Can be modified to overcome many explicit disadvantages. 

3. Approximate solution can be exploited. 

2.8.2 Disadvantages of Newton's method 

The Newton's method has the following disadvantages: 

1. Small radius of convergence if we have large number of unknowns. 

2. Factorization of J at each iteration is computationally expensive. 

3. Fails to converge if J becomes ill-conditioned. 

2.9 Homotopy 

The homotopy comes from topology. Two continuous functions or two mathemat­

ical objects are said to be homotopic if one can be continuously deformed into the other. 

2.9.1 Definition of homotopy 

A family of maps ht : X -t Y, indexed by the real numbers, is called a homotopy 

if the function 1t : X x [0,1] -t Y, defined by 

1t (x, t) = ht (x) , (x E X, t E 1) 

is continuous. Here ho and hI are called respectively the initial map and the terminal map 

of the homotopy ht . 
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Two maps 1: X --+ Y and 9 : X --+ Yare said to be homotopic (notation: 1 ~ g) , 

if there exist s a homotopy, ht : X --+ Y , (0 ::; t ::; 1), such t hat ho = 1 and hI = g. In this 

case ht is called the homotopy connecting 1 and g, and is denoted by 

ht : f ~ g. 

Intuitively, 1 and 9 are homotopic if and only if each can be changed continuously into the 

other. Some special cases of homotopies are of importance. Let us suppose that X is a 

subspace of Y. Then the homotopy ht : X --+ Y is said to be a deformation of X in Y if ho 

is the inclusion map i: X c Y. In this case we say that X is deformable into Y. 

Further if 1 is homotopic to g, then there exist a parametric family 

{1ip : P E [0 , I]} 

of continuous functions such that Hp : IR x [0, 1] --+ IR defined by 

1ip (x) = (1 - p) 1 (x) + pg (x) , for all x E IR and P E [0,1]. 

Such a homotopy is usually called as linear homotopy. 

2.9.2 Homotopy analysis method (HAM) 

The homotopy analysis method as proposed by Liao [68,76 - 82] is successfully 

applied to obtain the analytic solution of the differential equations. The details of the 

application algorithm of homotopy analysis method is given in chapter 5 and therefore 

omitted here. 
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Chapter 3 

Analytic solution for flow of a 

micropolar fluid 

This chapter looks at the analytic solution for the flow of an incompressible mi-

cropolar fluid. The governing two-dimensional equations are first modeled and then solved 

for a geological problem. Lie group method has been used in obtaining the solution. The 

graphs are displayed and discussed. 

3.1 Equations of motion 

In tensorial notation, the basic equations which govern the flow of a micropolar 

fluid are: 

Conservation of mass 

(3.1) 

where II, II denotes the partial derivative and repeated indices means the Einstien 
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summation convention. 

Balance of momentum 

(3.2) 

Balance of first stress moments 

(3.3) 

where p is the mass density, Vk is the velocity vector, tkl is the stress tensor, il is the body 

force per unit mass, Sml is the micro-stress tensor, Aklm is the first stress moments, 11m is 

the first body moments per unit mass and eJlm is the inertial spin. 

The stress tensor t and the micro-stress tensor S are defined as [8] 

t = [-n + Atrd + Aotr (b - d) ] I + 2fJ-d + 2fJ-o (b - d) + 2fJ-l (bT 
- d) , (3.4) 

S = [-n + Atrd + 7Jotr (b - d)] I + 2fJ-d + ~l (b - bT 
- 2d) , (3.5) 

in which I is the unit tensor, A, AO, fJ-, fJ-o , fJ-l , 770 and ~l are the viscosity coefficients. Also 

tT denotes the trace and a superscript T indicates the transpose. 

Furthermore, the rate of deformation tensor is 

1 
dk1 = 2 (Vk,l + Vl,k ) (3.6) 

and micro-deformation rate tensor of second order is 

(3.7) 

For micropolar fluids, we have 

(3.8) 
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Using Eqs. (3.4) - (3 .8) in Eqs. (3.1) - (3 .3) the two dimensional equations for an incom-

pressible micropolar fluid become [70] 

(3 .9) 

(3.10) 

(3.11) 

(3.12) 

where u and v are the components of the velocity field in the x and y direction, (f (x, Y) 

is the micro-rotation component and p = p(x, Y) is the pressure distribution. Here fL, kl , 

Gland J are coefficient of viscosity, coupling constant , micro-rotation constant and local 

micro inertia. 

Defining 

u v x y 
u 

U ' V= u' X= L ' Y= L' 
p (f 

j J 
P = p ' (J"= - = l' (J" * ' 

(3.13) 

the Eqs. (3.9) - (3.12) reduce to 

(3.14) 

(3.15) 

(3.16) 

(3.17) 



where 

fJ. 
pLU ' 

Gl J 
pLUj' 

kl kl cr* P 
E2 = pLU' E3 = pU2' E4 = pU2' 

2kl LJ klJ 
E6 = ----. , E7 = ---=:: , 

pUJ pcr*J 

and El and E2 are the reciprocal Reynolds numbers . 

3.2 Symmetry analysis 

27 

(3.18) 

In order to obtain the analytical solution, we use Lie group theory to Eqs . (3.14)-

(3.17). For this we write 

x* x + e~ 1 (x, y, u , v, p) + 0 (c
2

) , 

y* Y + e~2 (x, y, u, v,p) + 0 (e
2

) , 

u* u + e 7h (x, y, u, v,p ) + 0 (e
2

) , 

v* = v + e 77 2 (x, y, u, v,p) + 0 (c
2

) , 

p* P + e 7]3 (x, y, u, v,p) + 0 (c:2) , 

cr* cr + e 7]4 (x, y, u, v,p) + 0 (e
2

) (3.19) 

as the infinitesimal Lie point transformations. We have assumed that the Eq. (3.14) to 

(3.17) are invariant under the transformations given in Eq. (3.19) . The corresponding 

infinitesimal generator is 

(3.20) 

where ~l ' ~2' 771, 7]2, 773 and 7]4 are the infinitesimals corresponding to x, y, u , v, p and cr 

respectively. Since our equations are atmost of order two, therefore, we need second order 
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prolongation of the generator in Eq. (3 .20) and then apply the invariance condition to get 

the following infinitesimals [69 - 72]. 

~ l b, ~2 = C, 

"11 = 0, "12 = 0, "13 = d, "14 = e. (3. 21 ) 

Therefore, equations admits four parameter Lie group of transformations. Parameters b, c, 

d and e correspond to translations in the x, y , p and (J' coordinates, respectively. By consid­

ering the translations in x, y directions and choosing d, e = ° and solving the corresponding 

characteristic equation the similarity variables and functions are given as 

~ = y - mx, u=f(O, v=g(~), p=h(O , 

(J' N(~) , (3.22) 

where m = c/b be an arbitrary parameter. In view of variables and functions in Eq. (3.22), 

Eqs. (3.14) - (3.17) become 

- m!' + g' = 0, 

(- mff' + g!') = (El + E2) (1 + m 2
) 1" + E3N' + E4mh' , 

(- mfg' + gg') = (El + E2) (1 + m 2
) g" + E3mN' - E4h', 

(-mfN' + gN') = E5 (1 +m2) Nil - f,6N - f,7 (mg' +!,) . 

Integration of Eq. (3 .23) yields 

Eliminating h (~) from Eqs. (3.24) and (3.25) and making use of Eq. (3.26) we get 

(3.23) 

(3.24) 

(3.25 ) 

(3.26) 

(3 .27) 

(3.28) 
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From Eqs. (3.26) and (3.27), one can write 

(3 .29) 

Now Integrating Eq. (3.25) and then using Eqs. (3 .27) and (3.28) , we obtain 

h - C2 - , (3.30) 
£4 

in which C1 and C2 are any arbitrary constants. Eliminating f (~) between Eqs. (3.28) and 

(3.29), we have 

where 

A = 

B 

C 

N iv 
- AN'" + BN" + CN' = 0, 

C1 (£5+£1+£2) 

£5 (1 + m 2) (£1 + (2) ' 

[Ct - (1 +m2) {£6 (£1 + (2) + E3 EdJ 
£5 (1 + m2)2 (E1 + (2) 
C1E6 

The solution of Eq. (3 .31) is given by 

(3.31 ) 

(3.32) 

(3.33) 

where C3, C4 , C5 and C6 are any arbitrary constants and ai (i = 1,2,3) are the roots of 

the following equation 

(3.34) 

From Eqs. (3.29) and (3.33) , the expression for f (0 is 

(3 .35 ) 
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in which C7 is any arbitrary constant and ~i (i = 1,2,3) are given through the following 

~ . = Ci+2 [€5 (1 + m 2
) a; - E6 - C1ai] 

t E7 (1 + m 2) ai 

In the form of original variable we have 

C2 p(x,y)=-. 
E4 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

Eqs. (3.37) - (3.40) give the solution of Eqs. (3.14) - (3.17) that involve seven unknown 

constants . For determining the values of these constants we consider a problem that occur 

in geology. Consider a magmatic micropolar fluid and a plate over it. The plate occupies 

the position y = O. The positive y goes deep into the fluid beneath the plate. The relevant 

boundary conditions are of the form: 

u (x, 0) 
au 

= Uo, u(x,oo)=O, ax(O,y)=O, v(x,O)=-Vo, 

a (x, 0) 0, a (x, 00) = 0, P (x, 00) = PO. (3.41 ) 

The expressions (3 .37) to (3.40) subject to the conditions in the above equation become 

u(x,y)= -Uo (,l e-aY_,2e-f3Y ), 
12 - 11 

V (x , y) = m ( - Uo (,1 e-ay - 12e-f3Y)) - mUo - Vo, 
12 - II 

(3.42) 

(3.43) 
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(3.44) 

P (x, y) = Po, (3.45 ) 

where 

(3.46) 

(3.47) 

and -a and -(3 are the negative roots of Eq. (3.34). 

3.3 Discussion 

This section deals with the interpretation of the translational parameter m and 

the magmatic fluid penetrating parameter Va on the x and y components of the velocity and 

on the angular velocity (J". Figs. 3.1, 3.2 and 3.4 - 3.7 have been prepared for the velocity 

components where as Fig. 3.3 holds for the angular velocity. It is found from Figs. 3.1 and 

3.2 that velocity components u and v are decreasing functions of m. It is also evident from 

Fig. 3.3 that the behavior of m on the angular velocity is opposite to that of u and v. 

From Eqs. (3.42) - (3.44), we note that the magmatic fluid penetrating parameter 

only enters into the y-component of the velocity. The x-component of the velocity u and of 

(J" are independent of Vo. It is found from Fig. 3.4 and 3.5 that the x-component of velocity 

increases by increasing the value of Va for either Va > 0 or Vo < O. It is clear from the Figs. 

3.6 and 3.7 that the behavior of Va on the y-component of the velocity is opposite to that 

of the x-component of the velocity distribution. 
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3.4 Concluding remarks 
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In this chapter, we have presented the analytical solution for the steady two di-

mensional equations of a micropolar fluid. Lie group analysis has been employed and the 

solutions corresponding to the translational symmetry are developed. The results are also 

sketched graphically. These results show the similar behaviour as that of numerical solu-

tion [19] . The contents of this chapter are published in "Acta Mechanica" 188, 93 - 102 

(2007) . 
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Chapter 4 

Stokes' first problem for a third 

grade fluid in a porous half space 

This chapter investigates the flow of a third grade fluid in a porous space. A 

modified Darcy's law for a third grade fluid has been introduced. Stokes' first problem has 

been studied. Numerical simulations have been performed using Newton's method. The 

numerical solution indicates that for a short time non-Newtonian effect is present in the 

velocity field. However, for a long time the velocity field becomes a Newtonian one. 

4.1 Governing equations 

In a porous space, the equations describing the flow of an incompressible third 

grade fluid are Eqs . (2.1) - (2 .8) and 

P (:t + (V.V)) V = -Vp+divT+r, ( 4.1) 
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where r is the Darcy resistance for a third grade fluid in a porous space. 

4.2 Problem formulation 

Consider a C~rtesian coordinate system OXYZ with y-axis in the upward direc-

tion. The incompressible third grade fluid flows through a porous space y > 0 and in contact 

with an infinite flat plate at y = O. Initially both fluid and plate are at rest. At t = 0+, the 

plate is impulsively brought to the constant velocity Uo. Under the stated assumptions, we 

may write the velocity in the following form: 

V =lL(y, t) i, (4.2) 

where i and u are respectively the unit vector and velocity in the x-direction. The above 

equation automatically satisfies the continuity equation. Further Eqs. (2.4) - (2.6) and 

(2.10) give 

(4.3) 

( 4.4) 

(Bu)2 (Bu)2 
T yy = 2Ql By + Q2 By , (4.5) 

T xz = T z z = 0, Txy = T yx , Tyz = T zy , Txz = T zx · (4.6) 

In an unbounded porous medium the Darcy's law holds for viscous fluid flows , having low 

speed. This law relates the pressure drop induced by the frictional drag and velocity and 

ignores the boundary effects on the flow (i.e., invalid where there are boundaries of the 

porous medium). According to this law the induced pressure drop is directly proportional 

to the velocity. For the porous medium with boundaries, Brinkman proposed an equation 
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describing the locally averaged flow. Although the equation proposed by Brinkman holds 

only for steady viscous flows but there are several modified Darcy's laws available in the 

literature for viscous flows in a porous medium. Much attention has not been given to math-

ematical macroscopic filtration models concerning viscoelastic flows in a porous medium. 

On the basis of Oldroyd constitutive equation, the following law for describing both relax-

ation and retardation phenomenon in an unbounded porous medium has been suggested 

[38]: 

( 1 + A~) V p = - /uP (1 + A ~) V at k r 8t ' 
(4.7) 

where k is the permeability, A and Ar are the constant relaxation and retardation times 

respectively and ¢ is the porosity of the porous medium. Note that for A = Ar = 0, 

Eq. (4.7) reduces to well-known Darcy's law of viscous fluids . By analogy with Maxwell's 

constitutive relationship the following phenomenological model has been available in the 

literature [73]: 

1 + >' - Vp= --V. ( a) J.l¢ 
8t k 

(4.8) 

For unidirectional flow of second grade fluid the constitutive equation can be obtained 

from that of an Oldroyd-B fluid by taking >. = 0 [36, 74]. Thus, in a porous medium, the 

relationship between Vp and V for unidirectional flow of a second grade fluid can be written 

from Eq. (4.7) as follows: 

(4.9) 

where 
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Employing the same idea as in Eqs. (4.7) - (4.9), we propose the following constitutive 

relationship between the pressure drop and velocity for unidirect ional flow of a third grade 

fluid: 

(4.10) 

The pressure gradient in the above equation can also be interpreted as a measure of the 

resistance to flow in the bulk of the porous medium and Tx (x-component of r) is a measure 

of the flow resistance offered by the solid matrix. Thus r can be inferred from Eq. (4.10) 

to satisfy the following equation: 

(4.11) 

Substituting Eqs. (2.4) - (2.6) , (4.2) and (4.11) in Eq. (2 .10) and then neglecting 8p/8x, 

we obtain 

The relevant boundary and initial conditions are 

u(O , t) = Uo , u(y, t) ---t 0 as y ---t 00 j u(y,O) = O. 

Introducing the following non-dimensional variables 

Uo T) = -y, 
v 

U? 
T = ~t, 

v 

u 
1 = Uo ' 

the problem becomes 

1(0, T) = 1, 1(T) , T) ---t ° as T) ---t 00 , 1(T), 0) = 0, 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 



where 

b - f33U6 
- pl/3 ' 

4.3 Numerical results and discussion 

d= UI¢ 

pk ' 
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(4.17) 

We note that Eq.(4.15) is a third order partial differential equation. It is perhaps 

not possible to obtain the exact analytic solution. Due to this, we seek the numerical 

solution. For this purpose the Eq. (4.15) is transformed into system of algebraic equations 

by substituting the approximations to the derivatives given in section 2.7 as 

(
1 + d) 1 ~ (Aj - fi,j-d - h2 UHI,j - 2Aj + fi-I,j) 

a 
- h2k UHI,j - fHI ,j-1 - 2Aj + 2fi,j- 1 + fi-I,j - fi - I,j - d 

- 4
6
: 4 [Ui+1,j + 1i_l,j)2 (1i+1 ,j - 2fi,j + Ii-I,j)] 

2e 2 
+cAj + 4h2 (fi+I,j - f i-I,j) Aj 

== O. (4.18) 

The above system of algebraic equations also gives 

-L 1/ /2 f ' v £2 £ , T/ r.3 . T," " J" + ;;'J" 
I H4Ji-l,j H I ,j T H5Ji-l,jJi,j -r I\.6Ji- l,j -r1\.7li+1,jJi-l,j i,j .L i,j-l 

+G fHl ,j-l + H fi-l ,j-I, (4.19) 
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where 

A 

c 

K3 = -Kl' K4 = -Kl, Ks = K2, 

6b e F = _ (1 + d) _ 2a K6 K 1 , K7 = - h4 - h2' k h2k' 

G 
a 

H=G. 
h2k' 

(4.20) 

Now the initial and boundary conditions can be written in the following form 

fo . = 1 ,J , !Iv/,j = 0, f 'o = 0 " , i = 0,1,2, ... , M j = 0, 1,2,3 .... (4.21) 

Here M denotes an integer large enough such that Mh approximates infinity. Since our Eq. 

(4.15) is of third order while given boundary conditions are two, therefore, we introduce an 

augmented boundary condition 

af (00, T) = 0 
a", ' (4.22) 

and consequently the problem becomes well-posed. This boundary condition is discretized 

to give 

fM+l,j - fM,j 0 
h =, 

i.e. , 

fM+l,j = fM,j' (4.23) 

The problem consisting of Eq.(4.15) and conditions given in Eq.(4.16) has been solved 

numerically by employing the Newton method. Solutions for the non-Newtonian fluid mod-

els are obtained for T = 27l'. From the numerical solution f is used to express the non-

dimensional velocity profile parallel to x-axis. Results for the flow are obtained for various 
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values of the parameters a, b, c, d and e. The discussion of emerging parameters on the 

velocity is as follows : 

Fig. 4.1 presents the velocity profile f for various values of a and d. This figure 

shows that increasing the parameter a or d decreases the velocity and the boundary layer 

thickness. Fig. 4.2 elucidates the influence of band e on the velocity profile f. It is evident 

from the figure that an increase in these parameters results in a decrease of the velocity 

profile. The effect of porosity parameter on f is displayed in Fig. 4.3. It is clear that 

both velocity and boundary layer thickness decrease by increasing the porosity parameter. 

Fig. 4.4 shows how the velocity changes with the value of the second grade parameter in a 

non-porous space. It is found that here the velocity increases by increasing a. 
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for c = 0, a = 0.1, d = 0.1 at T = 27f . 
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Fig. 4.4 Variation of second grade parameter on f with 

b = c = d = e = 0 at T = 211" . 

4.4 Concluding remarks 
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In the present chapter, Stokes ' first problem is analyzed for the third grade fluid 

in a porous space. The governing constitutive relationship for modified Darcy's law in 

a third grade fluid has been proposed. To the best of our knowledge such relationship 

is not available in the literature. It is noted that modified Darcy's law in unidirectional 

flow of a third grade fluid yields non-linear expression in terms of velocity whereas it is 

linear for Newtonian , Oldroyd-B, Maxwell and second grade fluids. The governing non­

linear problem that comprised the balance laws of mass and momentum has been solved 

numerically. Results for velocity are presented. It is important to note that variation of 

second grade parameter on the velocity in porous and non-porous space is quite different . 

It is further fo und that for T ;::: 611" the non-Newtonian effects become weak and the flow 

field behaves like a Newtonian fluid. 
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Chapter 5 

Analytical solution for the steady 

flow of a third grade fluid in a 

porous half space 

This chapter deals with the homotopy analysis method (HAM) solution for steady 

flow of a third grade fluid over a jerked plate. The solution is developed when the fluid fills 

the porous half space. Recurrence formulas are given. Convergence of the obtained results 

is analyzed. The graphs for velocity are sketched and influence of various parameters of 

interest is seen. 

5.1 Problem formulation 

Let us consider the steady flow of a third grade fluid in a porous half space. Taking 

the positive y-axis of a Cartesian coordinate system in the upward direction, let the third 
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grade fluid fills the porous half space y > 0 above and in contact with a plate occupying 

the xz-plane. The flow is induced due to suddenly moved plate. The fluid far away from 

the plate is at rest. Under these conditions, no flow occurs in y and z-directions and steady 

flow velocity at a given point in the porous half space depends only on its y coordinate. 

From Eqs. (2.4) - (2.6), (2 .10) and (4.11) the governing problem is 

~ d2
u + 6{33 (du) 2 d

2
u _ [f.L + 2{3 (dU) 2] cpu = 0, 

P dy2 P dy dy2 3 dy pk 

u(O) = Uo, u(y) ~ 0 as y --) 00. 

The Eq. (5.1) can also be written as 

where 

*d
2
u b* (du)2 d

2
u b* (dU) 2 A. 0 f.L - + 1 - - - 2 - U - '1'1 U = , dy2 dy dy2 dy 

b; = 

p+ cx1¢/k' 

2{33¢/k 
p+ cx1¢/k' 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

Introducing the non-dimensional variables as defined in Eq. (4.14) the problem becomes 

in which 

1(0) = 1, 

b - bi U6 
1 - * 2' f.L v 

(5.5) 

f(rJ) ~ 0 as rJ --) 00, (5.6) 

b _ b2U8 
2 - *' f.L 

(5.7) 

The second order differential Eq. (5.5) subject to boundary conditions (5.6) can be solved 

using homotopy analysis method (HAM). 
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5.2 Analytic solution 

In order to obtain the HAM solution, we choose 

10 (z) = e-T/, (5.8) 

£(1)=1"+1', (5.9) 

as initial approximation of 1 and auxiliary linear operator £ satisfying 

(5.10) 

in which C1 and C2 are arbitrary constants. If p E [0,1] is an embedding parameter and ti 

is an auxiliary nonzero parameter then 

(1 - p) £ [8 (71,P) - 10 (71)] = pftN [8 (71,P)] , (5.11) 

8 (O,p) = 1, 8 (oo,p) = 0, (5. 12) 

where 

N[8( _)] = B
2
e(71,p) +b (Be(71,p))2 B2e (71,P) _ be( ) (Be(ry,p)) 2 _ _ e ( -) 

71, P Bry2 1 B71 B712 2 71, P Bry C 71, P . 

(5.13) 

For p = 0 and p = 1, we have 

e (71,0) = 10 (ry) , e(71,l) = 1(71)· (5.14) 

As p increases from 0 to 1, e (71 ,P) varies from 10 (71) to 1 (71). By Taylor's theorem and Eq. 

(5.11) one obtains 
00 

e (71,P) = 10 (71) + L 1m (ry) pm, (5.15) 
m = l 
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where 

(5.16) 

and the convergence of the series (5 .15) depends upon n. Assume that h is selected such 

that the series (5.16) is convergent at f; = 1, then due to Eq. (5.13) we get 

00 

f (77) = fo (77) + L fm (77) . (5.17) 
m=1 

For the mth order deformation problem, we differentiateEq. (5 .11) m times with respect 

to p, divide by m! and then set f; = O. The resulting deformation problem at the mth order 

IS 

(5.18) 

(5.19) 

where 

R () = h[d2fm-I_-f ] +h1~dfm-I-k~ [dfk- 1 ( b d
2
fl_b f)] 

nt 'T) d 2 C nt-I ~ d ~ dId 2 2 I , 
77 k=O 'T) 1=0 'T) 77 

(5.20) 

{ 

0, 
Xm= 

I , 

m ::; 1, 
(5 .21) 

m > l. 

The solution of the above problem up to first few order of approximations may be obtained 

using the symbolic computation software MATHEMATICA. The solution of the problem 

can be expressed as an infinite series of the form 

2m+12m+I-2n 

fm(77) = L L m~O. (5 .22) 
n=O q=O 



50 

Invoking Eq. (5 .18) into Eq. (5 .22) we get the following recurrence formulas for the coeffi-

cient a'!n,11 of 1m ('T}) when m 2: 1, 0::; n ::; 2m + 1 

2m+12m+1-2n 

a~l,l = XmX2m-la~'-1,1 - L L r'!n,nf..L~,o, (5.23) 
n=2 q=O 

o ::; k ::; 2m + 1, (5.24) 

2m 
k_ k "'rq q 

am,l - XmX2m-l-ka m-l,1 - ~ m,lf..Ll,k' 1 ::; k ::; 2m - 1, (5.25) 
q=k-l 

2m+1-2n 

k k '" am,n = Xm X2m+1-2n-k am-l,n + ~ 2 ::; n ::; 2m + 1,0 ::; k ::; 2m + 1 - 2n, 

q=k 

(5.26) 

where 

2m+12m+1-2n 

r~l ,n = Ii L L [X2m+1-2n- Q (a2~_1 ,n - ca~_l ,n + b103'!n,n - b2 04'!n ,n)] , (5.27) 
n=O q=O 

q - q! 
f..Ll ,k - k!' 0 ::; k::; 2q+ l,q 2: 0, (5.28) 

q-k 

q '" q! 
f..Ln,k = ~ k!nP+1 (n _ l)q-p+1' 

0 ::; k::; 2q,q 2: O,n 2: 2, (5.29) 

m-l k r=min{n,2k+2} s=min{q,2k+2-2r} 

o3~,n = L L L L 111k,ra1~-~1_k ,n_r' (5.30) 
k=O l=O r=max{0,n-2k+2m-l} s=max{0,q-2m+2n-2r+l} 

m-1 k r=min{n,2k+2} s=min{q,2k+2-2r} 

o4'!n,n = L L L L 112k,ral~~1_k,n_r' (5.31) 
k=O l=O r=max{0,n-2k+2m- l} s=max{0,q-2m+2n-2r+l} 

j=min{r,2l+ 1} i=min{s,2l+1-2j} 

111k,7' = L L a2La1~=~,r_j' (5 .32) 
j=max{0,r-2k+2l-1} i=max{0,s-2k+2l+27'-2j -1} 

j=min{r,2l+1} i=min{s,2l+1-2j} 

112s 
'" '" Ii l

s
-

i 
k,r = ~ ~ a l,ja k-l,r-j' (5 .33) 

j=max{0,r-2k+2l - 1} i=max{0,s-2k+2l+2r-2j - I} 

a1~ 11 = (q + 1) a;:'; - na;n n' , " 
(5.34) 

a2~n = (q + 1) al;:,; - na1~n' , " 
(5.35) 
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Utilizing the above recurrence formulas, all coefficients a~,n can be computed using only 

the first two 

ago = 0, , aoO 1 = 1, 
,~ 

(5 .36) 

given by the initial guess approximation in Eq. (5.8). The corresponding Mth order ap-

proximation of Eqs. (5 .5) and (5.6) is 

(5.37) 

and the explicit analytic solution of the problem is 

(5.38) 

5.3 Convergence of the analytic solution 

Clearly Eq. (5.38) contains the auxiliary parameter n. As pointed out by Liao 

[68J, the convergence region and rate of approximation given by HAM are strongly depen-

dent upon n. For this purpose, the n curve is plotted for f up to the seventeenth order 

approximation. It is obvious from Fig. 5.1 that the range for the admissible value for n is 

- 1 ~ n ~ - 0.15. Our calculations indicate that the series of the velocity field in Eq. (5.38) 



converges in the whole region of z when Ii = - 0.2. 
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5.4 Results and discussion 
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In Fig. 5.2, the velocity field f is plotted for the different values of the parameter 

b1 . It is apparent from this figure that by increasing 61 the velocity increases. Fig. 5.3 

elucidates the effects of the parameter 62 . It is noted from Fig. 5.3 that the velocity 

decreases by increasing 62. Fig. 5.4 shows the velocity distribution for various values of the 



parameter c. Here the velocity decreases by increasing c. 
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5.5 Concluding remarks 
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In this chapter, HAM solution for steady flow of a third grade fluid in porous space 

is developed. The governing constitutive relationship for modified Darcy's law in a third 

grade fluid has been used. It is noted that modified Darcy's law even for unidirectional 

steady flow of a third grade fluid yields non-linear expression in terms of velocity whereas it 

is linear for Newtonian, Oldroyd-B, Maxwell and second grade fluids. It is further noted that 

unlike the Newtonian, Oldroyd-B, Maxwell and second grade fluids, the modified Darcy's 

law for third grade fluid exhibits the rheological characteristics even in steady state situation. 

The contents of this chapter have been accepted for publication in Applied Mathematical 

Modelling. 
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Chapter 6 

Stokes' first problem for the 

rotating flow of a third grade fluid 

In this chapter the non-linear rheological effects of third grade fluid over a jerked 

plate is addressed in a rotating frame. Numerical solution for the non-linear problem is 

given. The non-linear effects on the velocity is shown and discussed. This reveal that 

characteristics for shear thickening/shear thinning behavior of a fluid are dependent upon 

the rheological properties. 

6.1 F low analysis 

An infinite plate (loc::l.ted at z = 0) and the third grade fluid (which is in contact 

with the jerked plate and occupies the whole of the region z ~ 0) are in uniform rotation. 

For the sake of simplicity, the angular velocity n is taken parallel to z-axis. We examine 

the flow of third grade fluid described by the constitutive equation (2.10) above the plate 
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in the rotating system. The fluid is assumed to be incompressible. Referred to the rotating 

frame of reference, the incompressibility condition is (2.13) and the momentum equation is 

p [88~ + (V.V)V + 20 x V + Ox (0 x r 1) ] = div T, (6.1) 

in which rl is the radial coordinate with rt = x2 + y2 . 

We assume the velocity field in the form 

v = [u (z, t) , v (z, t), w (z , t)]. (6.2) 

It follows from the the incompressibility condition (2 .13) that w = O. 

Upon making use of Eq. (6.2) into Eq. (2.10), we obtain 

(
8Ur T x x =a2 8z ' (6.3) 

(
8Vr Tyy=a2 8z ' (6.4) 

[ ~w ( .'w ) (au ) ' ] ( 8w ) 2 8z8t + w 8z2 + 8z 
T zz 2{L a + al 

z + (g~)2 + 2 (~~) 2 

[CU)' (au) ' (00)'] +a2 8z + 8z + 4 8z 

HiJ3 [ (~:) '+ (~~ ) '+ 2 ( ~: ) '] (:) , (6.5) 

T xy = a2 (~~) (~~) , (6.6) 

Txz = (8u) [ 8
2

u (8
2

u) (au) (8W)] 
{L 8z + Ql 8z8t + w 8z2 + 8z 8z 

+2a, (::) (~:) + 2iJ3 [ (~~: ~~:)' ] G:), (6.7) 
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and 

Txy = T yx , Txz = T zx , Tyz = T zy · (6.8) 

Using Eqs. (6.3) - (6.7) into Eq. (6.1), we obtain 

OU -20v = _~ op + ~ [p,OU +al o2u +2(33~ (OU {(OU) 2 + (ov) 2})] , (6.9) ot pox p oz ozot oz oz oz oz 

ov + 20u = _~ op + ~ [p, ov + al o2v + 2(33~ (ov {(OU) 2 + (ov) 2})] , (6.10) ot poy p oz ozot oz oz oz oz 
o __ ~ op 
- p8z ' (6.11) 

where the modified pressure 

(6.12) 

and Pi: p(z), which is obvious from Eq. (6.11) 

The relevant boundary and initial conditions are: 

u = UQ, v = 0, at z = 0, t> 0, 

U --4 0, V -t 0 as z ---t 00 for all t, 

U (z, 0) 0, v(z,O) = 0, z> O. (6 .13) 

Combining Eqs. (6 .9) and (6.10) and then neglecting the pressure gradient we arrive at 

of + 2iOF = /J 8
2 F + al 8

3 F + 2(33 ~ {(OF) 2 OF} , (6.14) 
ot 8z2 P 8z28t p 8z OZ OZ 



where 

F = u + iv, F = u - iv. 

In terms of F', the conditions (6.13) reduce to the following 

F(O,t) = Uo, F(z, t) - 0 as z --+ 00 , 

The emerging non-dimensional parameters are defined as 

Uo 
1] = -;;z, F 

1 = Uo' 

By means of above non-dimensional parameters we can write 

1(0, r) = 1, 1(7], r) - 0 as 1] --+ 00, 

in which 

b - f3 1 U6 
- pv3 ' 

6. 2 Numerical results and discussion 
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(6.15) 

F(z,O) = O. (6.16) 

c= U6 n. 
v 

(6 .17) 

(6.18) 

1(7],0) = 0, (6.19) 

(6.20) 

Here we note that Eq. (6.18) is a third order non-linear partial differential equation 

and it is difficult to obtain the exact analytic solution. The governing Eq. (6 .18) is trans-

formed into an algebraic equation by substituting the approximations to the derivatives 
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given in section 2.7 and get 

a 
+ h2k (fi+1,j - f i+1,j-1 - 2!i,j + 2!i,j-1 + 1i-1,j - 1i- 1,j - t) 

+~4 [ (fi+1,j+Ii-1,j)(fi+l,j-2 fi ,j+li-l,j) (fi+1 ,j +fi-=-1,j)] . (6 .21) 

+~ (fi+1 ,j + 1i_1,j)2 (fi+1 ,j - 2fiJ + fi-=-l ,j) 

The following system of algebraic equations is obtained 

where 

;0 . = 1 J I ,J , f M ' = 0 ,J , f ·o = 0 t, , i = 0,1,2, .. . , NI j = 0, 1,2,3 ... , 

A [1 2 2a ] k + h2 + h2k + 2iD , B = - [:2 + h~k] , 

C - [:2 + h~k] , 
3b 

K1 = -2h4' 
b 

K2 = h4 ' 

K3 
b 

K4 = K3, Ks = K 2 , 
2h4 1' 

K6 K 1, 
2b 

K7 = h4 ' Ks = K2 , 

Kg -K7, K 10 = - K7 , Kl1 = K 2, 

K12 K2, K13 = -K7, (1) 2a 
F=- k - h2k ' 

G 
a 

H = G. 
h2k ' 

(6.22) 

(6.23) 

(6.24) 
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It is worth mentioning that Eq. (6 .18) is third order and we have two boundary conditions. 

Therefore, we need a third boundary condit ion. Due to this fact we resolve the difficulty 

here through the augmentation procedure and vrrite t he augment ed boundary condition as 

f)f (00 , T) = 0 
f)ry . (6.25) 

The problem now is well-posed. This boundary condition is discretized to give 

fM+l ,j - fM,j = 0 
h ' 

(6 .26) 

i.e., 

fM+l,j = fM,j' 

The non-linear differential system consisting ofEq.(6.18) and conditions (6.19) has 

been solved numerically by means of the Newton method. Solutions for the non-Newtonian 

fluid models are obtained for T = 1. From the numerical solution f is used to express the 

non-dimensional velocity profile. Results for the flow are obtained for various values of the 

parameters a, b, C and r. 

Fig.6 .l (a & b) presents the velocity profile f for various values of b. These 

figures indicate that increasing the parameter b increases real part of the velocity. However, 

imaginary part of the velocity decreases for large values of b. Fig. 6.2 (a & b) shows the 

influence of C on the velocity profile f. It is evident from the figure that an increase in 

C results in a decrease of the real and imaginary parts of the velocity. The effect of the 

second grade parameter on f is illustrated in Fig. 6.3. (a & b). It is noted that the velocity 

increases in the real part whereas in the imaginary part it first increases and then decreases 

by increasing the second grade parameter. Fig. 6.4 (a & b) shows how the velocity varies 
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for different values of T. It is found that here the real part of the velocity increases and the 

imaginary part of the velocity decreases by increasing T . In Fig. 6.5 (a & b) the velocity 

distribution is presented in the Newtonian case for the various values of C. It is obServed 

that the influence of C in Newtonian and third grade fluid are similar. 
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Fig. 6.1. Influence of the velocity distribution for the various values of the third grade 

parameter for T = 1. 
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distribution for T = 1. 
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Fig. 6.5. Influence of the velocity distribution for the various values of n for the Newtonian 

case. 

6.3 Concluding remarks 

The Stokes ' first problem of a third grade fluid is discussed in a rotating frame of 

reference. The problem that comprised the balance laws of mass and momentum has been 

first non-dimensionalized and then solved numerically. Results for the real and imaginary 

parts of t he velocity are presented. It is found that at T = 1 and different values of C, the 

flow characteristics in a third grade fluid are similar to that of Newtonian fluid. 
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Chapter 7 

Stokes' first problem for the fourth 

order fluid in a porous half space 

Based on modified Darcy's law, Stokes' first problem for a fourth order fluid in a 

porous half space is investigated here. To the best of our knowledge such modified Darcy's 

law has been introduced for the first time in this chapter. Numerical solution of the velocity 

field is obtained and discussed. Several limiting cases are deduced as the special cases of 

the present analysis. 

7.1 Problem formulation 

vVe consider the flow of a fourth order fluid in a porous half space, taking the 

positive y-axis of a Cartesian coordinate system in the upward direction. A fourth order 

fluid flows through a porous space y > 0 above and in contact with a flat plate occupying 

the xz-plane. Initially both the fluid and the plate are at rest. For t > 0, the plate suddenly 
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starts to slide in its plane with a constant speed Uo. The velocity field is the same as the 

one defined in Eq. (4 .2) . Using Eq. (4 .2), Eqs. (2.1) - (2 .6) yield 

(7.1) 

Txy 

(7 .2) 

Txz = 0, (7.3) 

(7.4) 

T zz = 0, (7.5) 

Txy = Tyx, Tyz = T zy , Txz = T zx · (7.6) 

Employing the same idea as in section 4.3, we propose the following constitutive relationship 

between the pressure drop and velocity for unidirectional flow of a fourth order fluid: 

EJp = _ [ f.L + al %t + f31 ~ + 2 (f32 + (33) (~~ r +'1" ] ejxu. (7.7) 

EJx (8 ) (82) k + (6'2 + 2'3 + 2'4 + 2'5 + 6'7 + 2'8) fJ~ fJyat 
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The pressure gradient in above equation can also be interpreted as a measure of the res is-

tance to flow in the bulk of the porous medium and r is a measure of the flow resistance 

offered by the solid matrix. Thus 7'x can be inferred from Eq. (7.7) to satisfy the following 

equation: 

r - - (7.8) 
[ 

f.L + Cll %t + i31' + 2 (f3 2 + f3 3) (~~) 2 + 'Y1 ~ ] cPu 

x - - + (6'Y2 + 2'Y3 + 2'Y4 + 2'Y5 + 6'Y7 + 2'Y8) ( ~~ ) (%:at) k' 

Substituting Eqs. (7.1) - (7.8) in Eq.(4 .1) and then neglecting 8p/8x, we obtain 

[

a 82 
( 8u ) 2 83 

f.L + Cll at + f3 1 atr + 2 (f32 + f33) 8y + 'Y18t! 

+ (6'Y2 + 2'Y3 + 2'Y4 + 2'Y5 + 6'Y7 + 2'Y8) ( ~~) (t:at) 
(7.9) 

The relevant boundary and initial conditions are 

u(O, t) = Uo, u(y, t) ----+ 0 as y ----+ 00 ; u(y,O) = O. (7.10) 

The above problem in non-dimensional form is 

1(0, T) = 1, l(ry, T) ---) 0 as ry ----+ 00, f('r),O) = 0, (7.12) 



in which 

a = 

. 
d = 

V3 = 

UIUg 
PV2 ' 

¢V2 

ku,2 ' 0 

f33¢UJ 
pkv 

, 

q= 'i~8 (i=1,2,3,4,5,7,8), 
pv 

f32¢UJ 
V2 = k ' p v 
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(7.13) 



7.2 Numerical results and discussion 

Using Eqs. (2. 18) - (2.28) and (7.13) we can write 

a 
+ h2k (ji+l,j - !i+1,j - 1 - 2Aj + 2!i ,j - 1 + Ii-I,j - Ii-I,j- I) 

~ ( !i+I,j - 2!i+I,j-1 + !i+I,j-2 - 2Aj + 4!i,j-1 ) 
+ h2k2 

-2Aj-2 + !i-I,j - 21i-I,j- 1 + 1i-I,j-2 

6 (b2 + b3) [ 2 ] 
4h4 (ji+I,j + Ii-I,j) (ji+l,j - 2Aj + !i-I,j) 

q (!i+1,j - 3!i+I,j-1 + !i+I,j-2 - Ii+1,j - 3 - 2Aj + 4Aj- 1 ) 
+h2k3 + 

-4Aj-1 - 4!i,j-2 + 2!i,j-1 + Ii-I,j-2 - !i- l ,j-3 

(6C2 + 2C3 + 2C4 + 2cs + 6C7 + 2cs) 
2h4k 

. 

(ji+I ,j - ! i-I ,j ) 

(ji+1 ,j - 2A j + Ii- I,j) 

(ji+I,j - !i+I ,j - 1 - Ii-I,j + Ii-I,j-I) 

+ (Ii+1,j - Ii_I ,j) 2 

( 

!i+I,j - ! i+I ,j - 1 - 2Aj ) 

+2Aj-1 + Ii-I,j - Ii-I,j-I 

. e 9 
- d Aj - k (Ii ,j - Aj-I) - k2 (Aj - 2!i,j-1 + Aj-2) 

(V2 + V3) L 
2h2 Aj (ji+I,j - Ii-I,j) - k3 (Aj - 3!i,j-1 + 3Aj- 2 - !i,j-3) 

I \ 
6m2 + 2m3 + 2m4 

--'----4-h~2k-" ----:- !~,J (j~+1,J - !~-I ,J) 

- Ii-I,j + Ii-I,j-I 
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(7.14) 
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and thus the resulting system is 

+G fi+l ,j-1 + H fi - I ,j - I + I fi+l ,j-2 + J fi ,j-2 

+J(fi-l,j-2 + Mfi+l,j-3 + Nfi-l,j-3 + PAj-I, (7.15) 

fa . = 1 ,J , fM ' =0 ,J , f 'o = 0 ~, , i=O,l,2, ... ,l'vI j = 0, I, 2, 3 .. . , (7.16) 
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where 

3 (b2 + b3) 1 
h4 + h4k (6C2 + 2C3 + 2q + 2C5 + 6C7 + 2cs) 

1 1 
+ 4h4k (6m2 + 2m3 + 2m4 + 2m5 + 6m7 + 2ms) + 2h4k' 

3 (b2 + b3) 1 
](3 = -](1, ](4 = h4 + 4h4k' 

3 (b2 + b3) 1 
](5 = h4 + h4k (6C2 + 2C3 + 2q + 2C5 + 6C7 + 2cs) 

1 1 
+ 4h2k (6m2 + 2m3 + 2m4 + 2m5 + 6m7 + 2ms) + 2h4k' 

3 (b2 + b3) 1 
2h4 - 4h4k' 

6 (b2 + b3) 2 
- h4 - h4k (6C2 + 2C3 + 2C4 + 2C5 + 6C7 + 2cs) 

1 1 
- 2h2k (6m2 + 2m3 + 2m4 + 2nL5 + 6nL7 + 2ms) - h4k ' 

1 1 
](s = 2h4k (6C2 + 2C3 + 2C4 + 2C5 + 6C7 + 2cs) , ](g = ](s + 4h4k' 

1 
](10 = h4k (6C2 + 2C3 + 2C4 + 2C5 + 6C7 + 2cs) 

1 
- 4h2k (6m2 + 2m3 + 2m4 + 2m5 + 6nL7 + 2m,s), 

K11 
1 

= h4k (6C2 + 2C3 + 2q + 2C5 + 6C7 + 2cs) 

1 
+ ' h'" (6m2 + 2m3 + 2m4 + 2m~ + 6m7 + 2ms), , 4 "k; , v 



G 

1 
= -Ks + 4h4k' K 15 = K 11 , 

1 
- h4k (6C2 + 2C3 + 2C4 + 2C5 + 6C7 + 2cs) 

-4:2k (6m2 + 2m3 + 2m4 + 2m5 + 6m7 + 2ms) 

1 1 
= ](s, ](lS = - 2h4 k ' ](19 = 4h4k' 

111 
= - 2h4k' K21 = - h4k' K22 = - 2h4k ' 

1 K 1 K _ (V2 + V3) 
= h4k' 24 = - 2h4k' 25 - 2h2 

= -K25 , F_l 2a 4b1 6C1 e" 3L 2g . 
- k - h2k - h2k2 - h2k3 - k - k3 - k2 ' 

a 2b1 3C1 a 2b1 

h2k + h2k2 + h2k3' H = h2k + h2k2 ' 

L 
P = - k3 ' 

By the process of augmentation we can write 

81(00,7)=0 
8T) , 

82 1 (00, T) = 0 
8T)2 ' 

83 1 (00, T) _ 0 
87)3 -, 
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(7.17) 

(7.18) 

(7.19) 

(7.20) 

and consequently the problem becomes well-posed. These boundary conditions are dis-

cretized to incorporate in the numerical scheme. 

The non-linear differential system consisting of Eq. (7.11) and conditions (7.12) 

has been solved numerically by employing the Newton method. Solutions for the non-
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Newtonian fluid models are obtained for T = 27r. From the numerical solution f is used 

to express the non-dimensional velocity profile parallel to x-axis. Results for the flow are 

obtained for various values of the involved parameters . 

Fig. 7.1 presents the velocity profile f for various values of CI. This figure shows 

that increasing the fourth order parameter Cl decreases both the velocity and the bound­

ary layer thickness. Fig. 7.2 indicates the influence of the fourth order parameters Ci 

(i = 2,3,4, 5,7,8) on the velocity profile f. It is evident from the figure that an increase 

in these parameters yields a decrease in velocity profile. The effect of porosity and fourth 

order parameters on f is displayed in Fig. 7.3. It is interesting to note that both velocity 

and boundary layer thickness increase by increasing these parameters. Fig. 7.4 shows the 

variation of the porosity parameter on the velocity. It is found that here the velocity de­

creases by increasing this parameter. Figs. 7.5 and 7.6 depict the velocity distribution for 

various values of the third and second order fluid parameters. The behavior of the velocity 

is quite similar for second and third order fluid parameters . The velocity increases for the 

large values of the second and third order parameters. 
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7.3 Concluding remarks 

In the present chapter, Stokes ' first problem is generalized for the fourth order 

fluid in a porous space. The governing constitutive relationship for modified Darcy's law 

in a fourth order fluid has been proposed. To the best of our knowledge such relationship 

is not available in the literature. It is noted that modified Darcy's law for unidirectional 

flow of a fourth order fluid yields a non-linear expression in terms of the velocity while it 

is linear for Newtonian, Oldroyd-B, Maxwell and second grade fluids. The governing non­

linear problem has been solved numerically. It is observed that for T ~ 511" the fourth order 

fluid behaves like a Newtonian fluid. The contents of this chapter have been accepted for 

publication in "Acta Mechanica Sinica ll. 
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Chapter 8 

Oscillatory flow of a fourth order 

fluid over a porous plate 

In this chapter, a numerical solution of an oscillatory flow over a porous plate 

is considered. The fluid is considered as a fourth order. The governing non-linear partial 

differential equation is first modelled and then solved using Newton's method. The variation 

of various parameters of interest is shown on the velocity. The differences among the velocity 

fields corresponding to various fluid models are delineated. 

8.1 Problem formulation 

Let us consider the flow of an incompressible fourth order fluid with constant 

properties. The fluid is over an oscillating plate at y = O. The x-axis is chosen parallel 

to the plate. Moreover, the plate is porous and oscillates in its own plane. The flow is 

independent upon x [i.e u = u(y, t), u is the velocity in the x direction, v = Vo, w = 0]. 
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Under t he assumptions given in the above section we have the following stress components 

(8.1) 

Tyy 

(8.2) 

T zz = - p , (8.3) 

Txy 

(8.4) 

Tx z = Tzy = 0, (8.5) 

where T xy = T yx , T xz = T zx , T yz = T zy and Va < 0 corresponds to the suction case and 

Va > 0 indicates blowing situation. 

The scalar momentum equations are 

[
au Vr au] _ aT xx aT xy aT x z 

P at + a ay - ax + ay + a z ' (8.6) 

(8.7) 



0- OTzx OTzy OTzz 
---a;;+ay+Tz' 

Inserting the stress components in above equations we obtain 

+ (~~ r a~~~t 
+2VO(~~)(~) 

+Vo ( ~~)2 (~) 
where modified pressure gradient term has been neglected. 

The boundary and initial conditions for the flow are 

u (0, t) w > 0, t> 0, 

u (y , t) ---+ 0 as y ---+ 00, U(y,O) = 0, y > 0, 

where Uo is the reference velocity and w is the oscillating frequency. 

Introducing the following non-dimensional variables 

T} = {f;y, T =wt, 
u 

f = Uo ' 
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(8.8) 

(8 .9) 

(8.10) 

(8.11) 



we get 

f(ry , T) ----+ 0 as ry ----+ 00, 

+ (*r (a~~iT ) 
+d (~~) (~) 

+V2d (~r (~) 
f(ry,O) = 0, 

where v is the kinematic viscosity and 

QIW 
b~' /31w

2 
•• /32WUJ 

a =--, b2 = 2' pv pv pv 

d 
.. Va 'YI w3 

= 
2..jVW' cl =-- , 

pv 

i = 2,3,4,5, 7, 8. 
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(8.12) 

(8.13) 

(8. 14) 
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8.2 Numerical results and discussion 

The governing equation (8.12) is transformed into an algebraic equation by sub-

stituting the approximations to the derivatives given in section 2.7. Thus we have 

(1) VidA A 1 
k (fi,j - fi,j-I) + ---v;- (fHI,j - !i-I,j) = 2h2 (fHI,j - 2fi,j + Ii-I,j) 

+~ [ ~ (fi+l,j - fHI,j -1 - 2fi,j + 2h,j-1 + Ii-I,j - Ii-I,j-I) 1 
2 .. 

+~ (fH2 ,j - 2fHI,j + 21i-I,j - fi-2 ,j) 

I (fi+l,j - 2fHI ,j-1 + 1i+I,j-2 - 2fi,j + 4fi,j-1 ) 
fi.'1k 

-2fi,j-2 + Ii-I,j - 21i-I,j-1 + 1i-I ,j-2 

b~ A r ( fH2,j - fH2,j-l - 2fHl,j + 2fHI,j-1 ) 
+2 +2kh3 

+2!i-I,j - 21i-I,j-1 - 1i-2,j + 1i-2,j-1 

2d""2 ( fH2,j - 4fHI ,j + 6fi ,j ) 
+/i4 

-4fi-l,j + fi-2,j . 

f HI,j - 3fHI,j-1 + f HI,j-2 - fHl,j-3 

I 
""ii.'IP -2fi,j + 4fi,j-1 - 4h,j - 1 - 4fi,j-2 + 2fi,j-1 

+ fi-l,j-2 -!i-I,j - 3 

+ C; T V2h3k2l +4 i+1j- l - 2[,+1,}-2 + 2f;-lj - 4f;-lj-l 

+2ft-l,J-2 - fl-2,J + 2ft-2,J-I - ft-2,J-2 

6d"" ( fH2,j - fH2 ,j-1 - 4fHI,j + 4fHI,j-l + 6fi,j ) 
+fi4iC 

-lOh,j-l + 4fi-l,j-1 + 41i- 2,j - 1i-2,j-l 

£"3 ( fH3,j - 4fH2,j - 3fHI ,j ) 
+ V2h5 

- 5!i- l,j + 4fi-2,j - 2fi-3,j 



4~4k UHl,j - i i-l,j ) 

(]'+l . - 2f· . + f '- l .) l ,) l,) l,) 

UHl,j - iHl,j-l - Ii-l,j + ii-l ,j-l) 

+ 4~4k UHl,j - ii_l ,j)2 

( 

i i+l ,j - iHl,)-l - 2fi,j ) 

+2il,j-l + ii- I ,) - ii-l ,j- l 

+~ UHl,j - i i- l ,j) 

(ii+l ,j - 2h,j + fi-l,j) 

+ I,f UHl,j - ii_l,j)2 

U H2 ,j - 2iHl ,j + 2ii-l ,j - i i-2,j ) 
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(8.15) 
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and the system of algebraic equations is 

~ = Afi,j + Bfi+l ,j + eli- I,j + Dfi+2,j + EIi-2,j + Edi+3 ,j 

+ K 2sii+l ,j f i-I, j fi- 2,j + F li.j-I + G fi+l,j-1 + H Ii- I,j - I 

+ I fi+2,j-2 + J 1i-2,j-1 + K fi+l,j-2 + Lfi ,j-2 + M li-l,j-2 

+N li-l ,j-3 + p 1i+I,j -3 + Qfi+2,j-2 + R!i-2,j-2, (8.16) 

fo ,} = 1, fM ' = 0 ,J , f ' o = 0 t, , i=0,1,2, .. . ,M j=0,1,2,3 ... , (8.17) 
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where 

A 
1 1 a b1 6b1 d c1 

[ •••••• 2 •• 

k + h2 + h2k + h2k2 - --,;:r- + h2k3] , 

[ d 1 0" oI h"" hI 1 
B = - V2h ~'~2 - 2h2~. + ~ ~ 2h~k2 .. + .. :kh3 , 

4b I d ~ ~ 3cI d + h4 - 2h k + V2k2h3 + 2V2hS 

[ .. 1 0 oI h"" hI 1 
C - V2h - W"-'~2h2k - ""2 ~"3 - ~~~~~3 - ~kh3 , 

+ 4b) d ~ 5cl d 
h4 - V2k2h3 + 2V2hS 

D = 
[_ a" d"" _ b;" £" _ b;" £"' _ 3d"" c;" ;/2c;" £"'] 

4h3 4h3k h4 2V2k2h3 + h5 ' 

E --+--- + -[a" d"" b;" £" b;" £"' 3£" c;" ;/2c;" i"'] 
4h3 4h3k h4 2V2k2h3 h5 ' 

"" ""3 "" "" 3 

El = 
c1 d E _ cl d 
2V2h5 ' 2 - V2h5 ' 

Kl 
3 (b;" + b;") 

- 2:4k (6c;" + 2c;" + 2c~ " + 2c~ " + 6c;" + 2c~") 
8h4 

" " 

- :h5 (6c;" + 2c;" + 2c~" + 2c~" + 6c;" + 2c~") , 

K 2 = 
3 (b;" + b;") 1 ( "" "" "" "" " . "" ) 

4h4 + 2h4k 6c2 + 2c3 + 2c4 + 2c5 + 6c7 + 2cs , 

K3 
3 (b;" + b;") 1 ( " . " " " " " " " " " " ) 

8h4 + 2h4k 6~ + 2c3 + 2c4 + 2c5 + 6c7 + 2cs 
" " 

- ~~5 (6c;" + 2c;" + 2c~ " + 2c~" + 6c;" + 2c~ " ) , 

K4 = 
3 (b; " + b;") 1 ( "" "" "" "" "" "" ) 

8h4 + 4h4k 6c2 + 2c3 + 2c4 + 2c5 + 60 + 2cs 
" " 

+ ~~5 (6c;" + 2c;" + 2c~" + 2c~" + 60" + 2C~ " ) , 

K5 = 
3 (b;" + b;") 

2h4 

K6 
3 (b;" + b;" ) 1 ( " " " " " " " " " " " " ) 

- 8h4 + 4h4k 6c2 + 2c3 + 2c4 + 2c5 + 6c7 + 2cs 
"" 

- :h
5 

(6 C;" + 2c;" + 2c~" + 2c~" + 60" + 2c~") , 

K7 = -
3 (b;" + b;") 

- 2:4k (6c;" + 2c;" + 2c~" + 2c~" + 6c;" + 2c~ " ) , 2h4 



Kg = Kg , KlO = -Kg, Kn = K g, 

](15 - ](8, ](16 = ](15, ](17 = -2](151 

K ig K 151 K i g = ~~ (6c;- + 2c~ - + 2c~- + 2c~ - + 6c;- + 2c~-) 1 

K20 4KIg, K2I = KI91 K22 = -K20, 

K23 = - :~~ (6C;- + 2c~- + 2c~ - + 2c~ - + 6c; - + 2c~ - ) , 

K24 = - :~~ (6c;- + 2c~- + 2c~ - + 2c~- + 6c; - + 2c~ - ) , 
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(8.18) 

Since our equation (8.12) is of order five while given boundary conditions are two , 

therefore we introduce the process of augmentation and consequently the problem becomes 
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well-posed. These boundary conditions are discretized and incorporated in the numerical 

scheme. 

Here, the non-linear differential equation (8.12) under the boundary and initial 

conditions described in Eq. (8.13) is numerically solved using Newtons ' method. A nu­

merical solution is given for r = 27T. The numerical solution f is used to express the 

non-dimensional velocity profile parallel to x-axis . Results for the flow are obtained for 

various values of the involving parameters. 

The influence of suction and blowing on the velocity f is shown in Fig. 8.1. This 

Fig. shows the variation of d· - for the case of the Newtonian fluid. Here it is noted that 

suction causes reduction in the boundary layer thickness whereas blowing increases the layer 

thickness. 

In order to illustrate the influence of suction and blowing on f in the case of a 

fourth grade fluid, we made Fig. 8.2. This Fig. elucidates the similar characteristics as the 

ones in Fig. 8. 1. But it is found that boundary layer thickness in case of fourth order fluid 

is larger than that of Newtonian fluid . Fig. 8.3. has been plotted just to see the variation of 

'Yi (i = 2 to 8) on f while other parameters in the fourth order fluid are fixed. It is revealed 

that boundary layer thickness decreases by increasing 'Yi (i = 2 to 8). Fig. 8.4 shows the 

variation of the fourth order parameter c~ - on f. Here it is observed that f increases by 

increasing c~ - . Fig. 8.5 and 8.6 indicate the variation of f in third and second order fluids, 

respectively. These Figs. show that boundary layer thickness in a third order fluid is less 

than that of t he second order fluid. However, the boundary layer in both the fluids is less 

when compared with fourth order fluid. 
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8.3 Concluding remarks 

The effects of suction and blowing on the flows of an incompressible Newtonian 

and non-Newtonian fluids have been studied. The governing equation with the boundary 

and initial conditions have been non-dimensionalized. Numerical solution of the non-linear 

problem has been obtained. From the present analysis, it may be concluded that: 

• The boundary layer thickness decreases owing to an increase in the suction parameter. 

• The boundary layer thickness in blowing case is greater than the one obtained with 

suction. 

• The boundary layer thickness in fourth order fluid is larger than that of Newtonian fluid. 

• The results for Newtonian, second grade and third grade fluid models can be recovered as 

the limiting cases of the present solution by taking appropriate values of the material 

constants. 
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Chapter 9 

Couette flow of a 

Johnson-Segalman fluid in the 

presence of a uniform magnetic 

field 

This chapter describes the one-dimensional, steady and incompressible flow of a 

Johnson-Segalman fluid between two plates. The flow is induced due to motion of the upper 

plate. The combined effects of viscoelascity and magnetic field are considered. The magnetic 

field is applied transversely to the direction of the flow. The governing equation of the 

problem is reduced to a non-linear ordinary differential equation and is solved analytically 

in general. The Couette flow has been discussed numerically using Newton's method. The 

influence of the Weissenberg number, Hartmann number and ratio of viscosities upon the 
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velocity has been discussed. 

9.1 Mathematical analysis 

Consider the steady, unidirectional and incompressible flow of an electrically con-

ducting Johnson-Segalman fl~id past an infinite plate. A magnetic field with a constant 

magnetic flux density Bo is applied perpendicular to the plate. We assume that the induced 

magnetic field produced by the motion of an electrically conducting fluid is negligible. The 

assumption is justified since the magnetic Reynolds number is small, which is generally the 

case in normal aerodynamic applications. Since no external electric field is applied and the 

effect of polarization of the ionized fluid is negligible, we can also assume that the electric 

field E = O. The flow under consideration is governed by Eq. (2 .13) and 

p dV = div T + j x B, 
dt 

(9.1 ) 

where T is the Cauchy stress tensor and the third term on the right hand side of Eq. (9.1) 

is the Lorentz force which through the aforementioned assumptions is given by 

j x B = 0'1 (V X B) x B. (9.2) 

Here 0'1, j and B are the electric conductivity, current density, and total magnetic field 

respectively. Note that B = Bo + b (Bo and b are applied and induced magnetic fields). 

The constitutive equation for T is [52] 

T = -pI+S, (9.3) 

- (dS - T-) S+>' ill + S (W - aD) + (W - aD) S = 2TJD, (9.4) 
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(9.5) 

In Eqs. (9.3) and (9.4), TJ is the viscosity, >.. is the relaxation time and a is the slip parameter. 

When a = 1, A = f..L = 0 the model (9.3) reduces to the Newtonian model and when a = 1, 

f..L = 0 it reduces to the Maxwell fluid . 

We consider the following forms for the velocity and extra stress tensor: 

v = (u(y), 0, 0), S = S(y) . (9.6) 

Using the assumed form of velocity, Eq. (2.13) is identically satisfied and from Eqs. (9.1) 

to (9.6) we have the following equations for the non-zero components of S: 

~~Sx + 1/ d
2
u _ 0'1B5 u = ~ ap 

p dy Y dy2 P P ax ' 

~s = ~ 8p 
dy YY P 8y' 

o = ~ ap , 
paz 

- du-
Sxx - A (1 + a) dy Sxy = 0, 

- A [ - - ] dv, du 
Sxy + 2' (1 - a) Sxx - (1 + a) Syy dy = 7] dy' 

- du -
Syy + >.. (1 - a) dy Sxy = 0, 

(9 .7) 

(9.8) 

(9 .9) 

(9.10) 

(9.11) 

(9.12) 

where Eq. (9 .9) indicates that p is not a function of z. Thus p is at most a function of x 

and y. 

Defining the dimensionless quantities 

* Uo x =-x 
1/ ' 

* Uo y =-y, 
1/ 

and modified pressure P' by 

* u u =-
Uo ' 

..... * S* p = p - yy' 

p* p 
- pUJ 

(9.13) 

(9.14) 



Eqs. (9 .7) to (9 .12) becomes 

¢~S* + !:!. d
2
u* _ N u* = afj* 

dy* x y TJ dy*2 ax* ' 

afj* 
0=­

ay* ' 

S* ( ) S* du* 
xx - We 1 + a xy dy* = 0, 

S* W e [( ) S* ( ) S* ] du* 1 du* 
x y + 2" 1 - a xx - 1 + a yy dy* = ¢ dy* ' 

S* ( ) S* du* 
yy + We 1 - a x y dy* = O. 
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(9.15) 

(9.16) 

(9. 17) 

(9.18) 

(9 .19) 

We note from Eq. (9 .16) that fj* is not a function of y* and the Weissenberg number We, 

Hartmann number N and the ratio of viscosities ¢ are given by 

W 
_ ).,US 

e- , 
V 

¢= p,+TJ , 
TJ 

From Eqs. (9.17) - (9 .19) we can write 

(
dU* ) 2 

S* = We (1 + a) d? 
xx ", [ 2] , 

'I' 1 + W: (1 - a2) ( ~~: ) 

(
dU* ) 

S* = ~ d? 
x y '" [ 2] , 

'I' 1 + W: (1 - a2 ) (~~: ) 

S
* = _ W e (1 - a) ( ~ ) 2 

¢ 1 + W: (1 - a2) ( ~~: ) W [ 2]' 

(9. 20) 

(9 .21) 

(9. 22) 

(9.23) 

Now eliminating the pressure fj* from Eqs. (9.15) and (9 .16) and then using Eq. (9.22) in 

the resulting equation we obtain 

!:!:. d
2
u* + ~ { (~) } _ Nu* = kl 

TJ dy*2 dy* [1 + W: (1 - a2) (~~: r] , (9.24) 

where k = dp* / dx is t he const ant pressure gradient. 



9.2 General solution 

We can write Eq. (9 .24) as follows : 

where 

We let 
duO 

P
* f..t du* dy· =--+ 2 ' 

7J dy* 1 + a ( ~~: ) 

Then Eq. (9.25) can be written as 

dP* 
- - Nu* - kl = O. 
dy* 

Equation (9.26) can be solved for du* / dy* in terms of P*. This gives 
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(9.25) 

(9 .26) 

(9.27) 

du* =..!L [3 B + VB2 - 4A3 + 3 B _ VB2 - 4A3 + !Lp* (9.28) 
dy* af..t 2 2 2 2 3f..t) 

where 

A 

B (9.29) 

We utilise Eq. (9.27) to obtain P* as function of y* with the insertion of Eq. (9.28) into 

Eq. (9.27). We have 

d
2 
P * [7J 3 B VB2 - 4A3 7J VB VB2 - 4A3 7J *J 

--2 -N - -+ +- -- +-P =0. 
dy* af..t 2 2 af..t 2 2 3f..t 

(9.30) 
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The first integral of Eq. (9.30) gives 

dP* 
-=± 
dy* 

2Nj' [.'L~ B + VB2 - 4A3 + .'L~ B _ VB2 - 4A' + lLp .] dP* + G1 , 
Q/-L 2 2 Q/-L 2 2 3/-L 

(9.31) 

where C1 is an arbitrary constant. The double integration of Eq. (9.30) results in 

(9.32) 

where G2 is another arbitrary constant. The substitution of Eq. (9.31) into Eq. (9 .27) 

yields 

Nu* = ± 2N j. [ry ,B V B2 - 4A3 ry ~ B V B2 - 4A3 ry P*] dP* C k - -+ +- -- +- + 1- 1· 
Q/-L 2 2 Q/-L 2 2 3/-L 

(9.33) 

So the general solution of Eq. (9.25) is given in parametric form by Eqs. (9 .32) and (9.33) 

up to the evaluation of an integral. Note that Eq. (9.25) is of second order and thus there 

are two arbitrary constants G1 and G2. Also the constant pressure gradient k occurs in Eq. 

(9.33). Simplified version of the integral in Eq. (9 .32) is given in the Appendix. 

9.3 Numerical solution for boundary value problem 

Let us now consider the flow of a Johnson-Segalman fluid between two parallel 

plates of infinite length at y = 0 and y = d. The flow here is maintained by setting one 

of the plates in motion. In this case, it is assumed that the bottom plate is moving with 

velocity Uo and the top plate is at rest. The governing dimensionless boundary conditions 
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are of the following form: 

u* 1 for y* = 0, 

u* o for y* = d*, (9.34) 

where d* = Uod/l/. 

Note that Eq.(9.25) is the second order non-linear differential equation and it is 

solved numerically. The governing equation (9.25) is transformed into an algebraic equation 

by substituting the approximations to the derivatives given in section 2.7 and get 

(
0 ~!:;, 
v.UUj 



The system of algebraic equations can be expressed as 

in which 

A = 

= 

-N, 
4a 

KI = h4 ' 

b 
K4 = 2h4 ' 

c - g 
16h6' K7 = K6, Ks = 16h4 ' 

a hI 2a 
Ks, KlO = h4 + h2' Kn = - h4 ' 

b 6g 
K I4 =-2h4 -16h4 ' 

c c 
- 4h6 + 16h6 ' 

c c 

16h6 - 4h6 ' 

c d 9 
- 4h6 - 16h4' K23 = 4h4 ' 

2b e c d 
h4 + h2' K26 = 2h6 + 4h4 ' 

C d 3d 
= 2h6 + 4h4' K 29 = -Sh4 ' 

99 

(9,36) 

(9,37) 
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The initial and boundary conditions are 

fo = 1, fM =0, fi = 0, i = 0,1,2, ... , M j = 0,1,2,3 .... (9.38) 

In order to obtain the numerical solution, the Newton's method has been utilized. The 

results of various interesting parameters including Weissenberg number, Hartmann number 

and ratio of viscosities are presented in the following. 

Fig. 9.1 shows the influence of Weissenberg number on the velocity profile u*. It 

is evident from the figure that an increase in a results in the decrease of the velocity. Fig. 

9.2 depicts the variation of Hartmann number on the velocity. It is found that the velocity 

increases with an increase in N. The boundary layer thickness decreases. This means that 

the magnetic force provides a mechanism to the control boundary layer thickness. In Fig. 

9.3 the velocity distribution is presented for the various values of viscosities. It is observed 

that the velocity decreases by increasing the influence of /.lIT!. 
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9.4 Conclusion 
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The Couette flow between two parallel plates filled with a magnetohydrodynamic 

Johnson-Segalman fluid is studied numerically. A non-linear constitutive model for the 

fluid is used. The model is substituted into the governing equations and the resulting 

one dimensional equation for MHD flow is derived. This equation is solved analytically in 

general to study the sensitivity of the flow to the parameters that are used in the constitutive 

model. The various dimensionless parameters seem to affect the velocity profile a lot. The 

velocity profile is greatly influenced by the Weissenberg and Hartmann numbers . The 

obtained solution is valid for all values of Weissenberg number. However, the specific 

Eq. (9.25) that is to be solved can be rather daunting, as it leads to the evaluations of 
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complicated expression in Eqs. (9.32) and (9 .33). Finally the boundary value problem 

is solved numerically and the results are presented graphically for the various values of 

the interesting involved parameters . It is found that the velocity of the fluid increases 

by increasing the Hartmann number whereas it decreases by increasing the Weissenberg 

number and viscosit ies ratio. 

9.5 A ppendix 

We evaluate the integral appearing in Eq. (9.32) i.e. 

I = I dP* 

± 2N f' [..!L3(ll.. + v'B
L

4A3 + ..!L 3/ ll.. - v'B
L

4A3 + .!L P*] dP* + C 
. CtJ.L V 2 2 CtJ.L V 2 2 3J.L 1 

Taking 

a p* '3 = q, 

from Eq. (9.29) we have 

Substit uting 

q = cosh3B 

1 

8' 

and using Eq. (A3) we have the value of the denominator as 

(A3) 

± 2N - - + + - - - + - P * dP* + C1 j. [rJ 3 B JB2 - 4A3 rJ VB JB2 - 4A3 rJ 1 
all- 2 2 a ll- 2 2 31l-

2J3N 
= ±--Jcosh6B + 3cosh4B + 6 cosh 2B + C3, 

a 
(A5) 
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in which 

From Eqs. (A1), (A4) and (A5) we can write 

I 3V3 J sinh 3BdB 
= ± 2VN vcosh 6B + 3 cosh 4B + 6 cosh 2B + C3 . 



105 

Bibliography 

[1] RS. Rivlin and J.L. Ericksen, Stress deformation relations for isotropic materials , J. 

Rat . Mech. Anal. 4 (1955) 323 - 425. 

[2] C. Truesdell and W . Noll, The non-linear field theories of mechanics, 2nd edition 

Springer, 1992. 

[3] G. Oldroyd, On the formulation of rheological equations of state, Proc. Roy. Soc. Lond. 

A 200 (1950) 523 - 541. 

[4] W.R Schowalter, Mechanics of non-Newtonian fluids , Pergamon, 1978. 

[5] RR Huilgol, Continuum mechanics of viscoelastic liquids (Hindustan publishing cor­

poration, 1975). 

[6] K.R Rajagopal, Mechanics of non-Newtonian fluids, in Recent Developments in The­

oretical Fluid Mechanics, Pitman Res. Notes Math. Ser.291 , eds. G. P. Gladi and 

J .Necas, Springer, 1993; pp. 129 - 162. 

[7] A.C. Eringen, Simple Microfluids, Int. J. Engg. Sci. 2 (1964) 205 - 217. 

[8] A.C. Eringen, Theory of micropolar fluids , J . Math. Mech. 16 (1966) 1 - 18. 



106 

[9] D. Srinivasacharya and 1. Rajyalakshmi, Creeping flow of micropolar fluid past a porous 

sphere. App. Math. and Computation (in press). 

[10] T.K.V. Iyengar and V.G. Vani , Oscillatory flow of a micropolar fluid generated by the 

rotary oscillations of two concentric spheres. Int. J. Engg. Sci. 42 (2004) 1035 - 1059. 

[11] S.R Kasiviswanathan and M.V. Gandhi , A class of exact solutions for the magneto­

hydrodynamic flow of a micropolar fluid. Int. J. Engg. Sci. 30 (1992) 409 - 417. 

[12] A.A. EI-Bary, Exponential solution of a problem of two-dimensional motion of microp­

olar fluid in a half plane, Appl. Math. and Computation 165 (2005) 81 - 93. 

[13] RK. Dubey, RS. Chauhan and RP. Sing, Flow of a micropolar fluid between two 

parallel plates rotating about two non-coincident axes under variable surface charges. 

Int. J. Engg. Sci. 28 (1990) 389 - 397. 

[14] R.S.R Gorla, R. Pender and J. Eppich, Heat transfer in micropolar boundary layer 

flow over a flat plate. Int. J. Engg. Sci. 21 (1983) 791 - 798. 

[15] F.S. Ibrahem, LA. Hassanien and A.A. Bakr, Thermal effects in Stokes'second problem 

for unsteady micropolar fluid flow. Appl. Math. and Computation (in press). 

[16] M.A. Seedek, F low of a magneto-micropolar fluid past a continuously moving plate. 

Physics Letters A. 306 (2003) 255 - 257. 

[17] Y.J. Kim and J .C. Lee, Analytical studies on MHD oscillatory flow of a micropolar fluid 

over a vertical porous plate. Surface and Coatings Technology. 171 (2003) 187 - 193. 



107 

[18] R.S. Agarwal, R. Bhargava and A.V.S. Balaji , F inite element solution of nonsteady 

three dimensional micropolar fluid flow at a stagnation point. Int. J. Engg. Sci. 28 

(1990) 851 - 857. 

[1 9] E .M. Abo-Eldahab and A.F. Ghonaim, Radiation effect on heat transfer of micropolar 

fluid through porous medium, App. Math. and Computation (in press). 

[20] A. Raptis, G. Perdikis and G. Tzivanidis , Free convection flow t hrough a porous 

medium bounded by a vertical surface. J . Phys. D . Appl. Phys. 14 (1981) 99 - 102. 

[21] A. Raptis , G. Tzivanidis and N. Kafousios , Free convection and mass transfer flow 

through a porous medium bounded by an infinite vertical limiting surface with constant 

suction. Letter Heat Mass Transfer. 8 (1981) 417 - 424. 

[22] A. Raptis , N. Kafousios and C.Massalas, Free convection and mass transfer flow 

through a porous medium bounded by an infinite vertical porous plate with constant 

heat flux. ZAMM 62 (1982) 489 - 491. 

[23] A. Raptis , Unsteady free convection flow through porous medium. Int . J. Engg. Sci. 

21 (1983) 345 - 348. 

[24] D.A. Nield and A. Bejan, Convection in porous media, Springer-verlag, New York , 

1991. 

[25] K. Vafai (Ed) Handbook of porous media, Marcel Dekker, New York, 2000. 

[26] T . Fang, A note on the incompressible Couette flow with porous walls. Int. Comm. 

Heat Mass Transfer. 31 (2004) 31 - 41. 



108 

[27] K. Hooman and A.A.R. Kani, Forced convection in a fluid saturated porous medium 

tube with isoflex wall. Int. Comm. Heat Mass Transfer. 30 (2003) 1015 - 1026. 

[28] J. Zierep, Similarity laws and modeling, Marcel Dekker, New York, 1971. 

[29] V.M. Soundalgekar, Stokes' problem for elastico-viscous fluid. Rheol. Acta 13 (1981) 

177 -179. 

[30] K.R. Rajagopal and T.Y. Na, On Stokes' problem for a non-Newtonian fluid. Acta 

Mech. 48 (1983) 233 - 239. 

[31] P. Puri, Impulsive motion of a flat plate in a Rivlin-Ericksen fluid. Rheol. Acta 23 

(1984) 451 - 453. 

[32] R. Bandelli, K.R. Rajagopal and G.P. Galdi, On some unsteady motions of fluids of 

second grade. Arch. Mech. 41 (4) (1995) 661 - 667. 

[33] V. Tigoiu, Stokes flow for a class of viscoelastic fluids. Rev. Roum. Math. Pures Appl. 

45 (2) (2000) 375 - 382. 

[34] C. Fetecau and J. Zierep, On a class of exact solutions of the equations of motion of a 

second grade fluid. Acta Mech. 150 (2001) 135 - 138. 

[35] C. Fetecau and C. Fetecau, A new exact solution for the flow of a Maxwell fluid past 

an infinite plate. Int. J. Non-Linear Mech. 38 (2003) 423 - 427. 

[36] C. Fetecau and C. Fetecau, The first problem of Stokes for an Oldroyd-B fluid. Int. J. 

Non-Linear Mech. 38 (2003) 1539 - 1544. 



109 

[37] W. Tan and T. Masuoka, Stokes' first problem for a second grade fluid in a porous half 

space with heated boundary. Int. J. Non-Linear Mech. 40 (2005) 515 - 522. 

[38] W . Tan and T. Masuoka, Stokes' first problem for an Oldroyd-B fluid in a porous half 

space. Phys. Fluids. 17, (2005) 023101 - 023107. 

[39] T . Hayat, S. Nadeem, S. Asghar and A.M. Siddiqui, MHD rotating flow of a third order 

fluid on an oscillating porous plate. Acta Mech. 152 (2001) 177 - 190. 

[40] S. Asghar, S. Parveen, S. Hanif, A.M. Siddiqui and T. Hayat, Hall effects on the 

hydromagnetic flows of an Oldroyd-B fluid. Int. J. Eng. Sci. 41 (2003) 609 - 619. 

[41] T. Hayat, S. Nadeem, S. Asghar and A.M. Siddiqui, An oscillating hydromagnetic 

non-Newtonian flow in a rotating system. Appl. Math. Lett. 17 (2004) 609 - 614. 

[42] T . Hayat, Oscillatory flow of a Johnson-Segalman fluid in a rotating system. Z. Angew. 

Math. Mech. (ZAMM). 18 (2005) 313 - 321. 

[43] T. Hayat , S. Nadeem and S. Asghar, Hydromagnetic Couette flow of an Oldroyd-B 

fluid in a rotating system. Int. J . Eng. Sci. 42 (2004) 65 - 78. 

[44] KR. Rajagopal, A.Z. Szeri and W. Troy, An existence theorem for the flow of a non­

Newtonian fluid past an infinite porous plate. Int. J . Non-Linear Mech. 21 (1986) 

279 - 289. 

[45] KR. Rajagopal and P.N. Kaloni, Some remarks on boundary conditions for fluids 

of differential type in: G.A.C.Graham, S.KMalik (Eds) Continuum mechanics and 

applications. Hemisphere, New York (1989) pp. 935 - 942. 



110 

[46] KR Rajagopal and T .Y. Na, On Stokes problem for non-Newtonian fluid. Acta Mech. 

48 (1983) 233 - 239. 

[47] M.E. Erdogan, Plane surface suddenly set in motion in a non-Newtonian fluid. Acta 

Mech. 108 (1995) 179 - 187. 

[48] T. Hayat, A.H. Kara and E. Momoniat, The unsteady flow of a fourth grade fluid past 

a porous plate. Math. Computer Modell. 41 (2005) 1347 - 1353. 

[49] M.E. Erdogan, Steady pipe flow of a fluid of fourth grade. Z. Angew. Math. Mech. 

(ZAMM) 61 (1981) 466 - 469. 

[50] KR. Rajagopal, On the boundary conditions for the fluid of the differential type, in: A. 

Squire (Ed), Navier-Stokes equations and related non-linear problems. Plenum press, 

New York, (1995) pp. 273 - 278. 

[51] KR Rajagopal, Boundedness and uniqueness of fluids of the differential type. Acta 

Cienca Indica 18 (1982) 1 - 11. 

[52] Jr M.W. Johnson and D. Segalman, A model for viscoelastic fluid behavior which allows 

non-affine deformation. J. Non-Newtonian Fluid. Mech. 2 (1977) 255 - 270. 

[53] RW. Kolkka, D.S. Malkus, M.G. Hansen, G.R Ierly and RA. Worthing, Spurt phe-

nomenon of the Johnson-Segalman fluid and related models. J. Non-Newtonian Fluid. 

Mech. 29 (1988) 303 - 335. 

[54] T.C.B. McLeish and RC. Ball, A molecular approach to the spurt effect in polymer 

melt flow. J. Polym. Sci. 24 (B) (1986) 1735 - 1745. 



111 

[55] D.S. Malkus, J.A. Nobel and B.J. Plohr, Dynamics of shear flow of a non-Newtonian 

fluids. J. Comput. Phys. 87 (1990) 464 - 497. 

[56J D.S. Malkus, J.A. Nobel and B.J. Plohr, Analysis of new phenomenon in shear flow of 

non-Newtonian fluids . SIAM J . Appl. Math. 51 (1991) 899 - 929. 

[57J K.B. Migler, H. Hervert and L. Leger, Slip transition of a polymer melt under shear 

stress. Phys. Rev. Lett. 70 (3) (1990) 287 - 290 . 

[58J K.B. Migler, G. Massey, H. Hervert and L. Leger , The slip transition at the polymer­

solid interface. J. Phys. Condens Matter. 6 (1994) A301 - A304. 

[59J A.V. Ramamurthy, Wall slip in viscous fluids and the influence of material of construc-

tion. J . Rheol. 30 (2) (1986) 337 - 357. 

[60] A.M. Kraynik and W.R. Schowalter, Slip at the wall and extrudate roughness with 

aqueous solutions of polyvinyl alcohol and sodium borate. J. Rheol. 25 (1) (1981) 

95 - 114. 

[61] F.J. Lim and W.R. Schowalter, Wall slip of a narrow molecular weight distribution 

polybutadienes. J. Rheol. 33 (8) (1987) 815 - 834. 

[62] D.S. Kalika and M.M. Denn, Wall slip and extrudate distortion in linear low density 

polyethylene. J. Rheol. 31 (8) (1987) 815 - 834. 

[63] 1.J. Rao and K.R. Rajagopal, Some simple flows of a Johnson-Segalman fluid. Acta 

Mech. 132 (1999) 209 - 219. 



112 

[64] LJ . Rao, Flow of a Johnson-Segalman fluid between rotating co-axial cylinders with 

and without suction. Int . J . Non-Linear. Mech. 34 (1999) 63 - 70. 

[65] T . Sarpkaya, Flow of non-Newtonian fluids in a magnetic field . AIChE J . 7 (1961) 

324 - 328. 

[66] J. E . Dunn and K. R Rajagopal, Fluids of differential type: Critical review and ther­

modynamic analysis. Int. J. Eng. Sci. 33 (1995) 689 - 729. 

[67] RL. Fosdick and K.R Rajagopal, Thermodynamics and stability of fluids of third 

grade. Proc. Roy. Soc. Lond. A 339 (1980) 351 - 377. 

[68] S. Liao, Beyond perturbation: Introduction to homotopy analysis method, Boca Raton: 

Chapman & Hall/CRC Press. 2003. 

[69] G.W. Bluman and S. Kumei, Symmetries and Different ial Equations, Springer, New 

York, 1989. 

[70] G. Lukaszewicz, IIMicropolar fluids , Theory and Applications" , Birkhauser, Boston­

Basel-Berlin, 1999. 

[71] L.V. Ovsiannikov, Group Analysis of Differential Equations; Academic press, New 

York, 1982. 

[72] N.H. Ibragimov, CRC handbook of Lie group analysis of differential equations, Vol 3, 

Boca Ralon, FL:CTC press 1998. 

[73] M.G. Alishayev, Proceedings of Moscow pedagogy institute (in Russian), Hydrome­

chanics. 3 (1974) 166 - 174. 



113 

[74] T. Hayat, S. Asghar, A.M. Siddiqui, Periodic unsteady flows of a non-Newtonian fluid. 

Acta Mech. 131 (1998) 169 - 175. 

[75] J.E. Dunn and R.L. Fosdick, Thermodynamics stability and boundedness of fluids of 

complexity 2 and fluids of second grade. Arch. Rat. Mech. Anal. 56 (1974) 191 - 252. 

[76] C. Yang and S. Liao, On the explicit purely analytic solution of Von Karman swirling 

viscous flow. Comm. Non-linear Sci. Numer. Simm. 11 (2006) 83 - 93. 

[77] S.J. Liao , A new branch of solutions of boundary-layer flows over an impermeable 

stretched plate. Int . J . Heat and Mass Transfer. 48 (12) (2005) 2529 - 2539 . 

[78] S.J. Liao, An analytic solution of unsteady boundary-layer flows caused by an impul­

sively stretching plate. Comm. Non-linear Sci. Numer. Simul. 11 (2006) 326 - 339. 

[79] J. Cheng, S.J. Liao and 1. Pop, Analytic series solution for unsteady mixed convection 

boundary layer flow near the stagnation point on a vertical surface in a porous medium. 

Transport in Porous Media. 61 (2005) 365 - 379. 

[80] H. Xu and S.J . Liao, Analytic solutions of magnetohydrodynamic flows of non­

Newtonian fluids caused by an impulsively stretching plate. J. Non-Newtonian Fluid 

Mech. (accepted). 

[81] S.J. Liao , A uniformly valid ana.lytic solution of 2D viscous flow past a semi-infinite 

flat plate. J . Fluid Mech. 385 (1999) 101 - 128. 

[82] S.J. Liao and A. Campo, Analytic solutions of the t emperature distribution in Blasius 

viscous flow problems. J . Fluid Mech. 453 (2002) 411 - 425. 



114 

[83] C.I Chen, Y.T. Yang and C.K. Chen, Unsteady unidirectional flow of a Voigt fluid 

between the parallel surfaces with different given volume flow rate conditions. Appl. 

Math. Comput. 144 (2003) 249 - 260. 

[84] C.L Chen, C.K. Chen and Y.T. Yang, Unsteady unidirectional flow of an Oldroyd -B 

fluid in a circular duct with different given volume flow rate conditions. Heat and Mass 

Transfer. 40 (2004) 203 - 209. 

[85] C.L Chen, C.K. Chen and Y.T. Yang, Unsteady unidirectional flow of a second grade 

fluid between the parallel plates with different given volume flow rate conditions. Appl. 

Maths. Comput. 137 (2) (2003) 437 - 450. 

[86] P.N. Kaloni and A.M. Siddiqui, A note on the flow of a viscoelastic fluid between 

eccentric disks. J . Non-Newtonian Fluid Mech. 26 (1987) 125 - 133. 

[87] A.M. Siddiqui, T. Hayat and S. Asghar, Periodic flows of a non-Newtonian fluid be­

tween two parallel plates. Int. J. Non-Linear Mech. 34 (1999) 895 - 899. 

[88] T. Hayat, S. Nadeem, S. Asghar and A.M. Siddiqui, Fluctuating flow of a third grade 

fluid on a porous plate in a rotating medium. Int. J. Non-Linear Mech. 36 (2001) 

901 - 916. 

[89] A.M. Siddiqui, T. Hayat and S. Asghar, Some exact solutions of an elastico-viscous 

fluid. Appl. Math. Lett. 14, (2001) 571 - 579. 

[90] A.M. Siddiqui, T. Haroon, T. Hayat and S. Asghar, Unsteady MHD flow of a non­

Newtonian fluid due to ecentric rotations of a porous disk and fluid at infinity. Acta. 

Mech. 147, (2001) 99 - 109. 



115 

[91] A.M. Siddiqui, M.R. Mohyuddin, T . Hayat and S. Asghar, Some more inverse solutions 

for steady flows of a second grade fluid. Arch Mech. 55, (2003) 373 - 387. 



Published/Accepted work of the author 



Acta Mechanica 188, 93-102 (2007) 

DOl 10.1007/s00707-006-0398-4 

Printed in The Netherlands 

Analytic solution for flow 
of a micro polar fluid 

Acta Mechanica 

F. Shahzad, M. Sajid, T. Hayat, and M. Ayub, Islamabad, Pakistan 

Received September 21, 2005; revised July 25, 2006 
Published online: October 12, 2006 © Springer-Verlag 2006 

Summary. The time-independent equations for the two dimensional incompressible micropolar fluid have 
been considered. Using group method the equations have been reduced to ordinary differential equations 
and then solved analytically. Finally the boundary value problem has been discussed, and the graphical 
results are in good agreement with the numerical solution. 

1 Introduction 

Eringen [I] , [2] developed the theory of microfluids which exhibit microscopic effects arising 

from the local structure and micro-motions of the fluid elements. Such fluids support stress and 

body moments and include the local rotary inertia. The equations based on the theory of 

micro fluids are much more complicated even for the case of a constitutively linear situation, 

and the non-trivial solution in the field is not easy to obtain. There is a subclass of microfluids 
namely the micropolar fluids for which one can reasonably hope to obtain a non-trivial analytic 

solution. The micropolar fluids support couple stress, body couples, micro-rotational effects 

and micro-rotational inertia. The mathematical theory of equations of micropolar fluids 
and application of these fluids in the theory of lubrication and in the porous space is given 
in [3]. 

Recently the studies of micropolar fluids have acquired a special status due to their industrial 

applications . Such applications include the extrusion of polymer fluids, solidification of liquid 

crystals, cooling of a metallic plate in a bath, animal bloods, exotic lubricants and colloidal and 

suspension solutions. Undoubtedly, the classical Navier-Stokes theory is inadequate for such 

fluids. Several workers in the field have made the useful investigations that involve a micropolar 

fluid. For example, Sriniasacharya and Rajyalakshmi [4] studied the creeping flow of a mi­

cropolar fluid past a porous sphere. Iyengar and Vani [5] examined the flow of a micropolar 

fluid between two concentric spheres, induced by their rotary oscillations. Kasiviswanathan and 

Gandhi [6] discussed the Hartman steady flow of a micropolar fluid between two infinite, 

parallel non-coaxially rotating disks. Al-Bary [7] developed the exponential solution of the 
problem of two dimensional motion of a micropolar fluid in a half-plane. Dubey et al. [8] 

analyzed the flow of a micropolar fluid between two parallel plates rotating about two 

non-coincident axes under variable surfaces charges. Gorla et al. [9] studied the heat transfer 

analysis on the boundary layer flow of a micro polar fluid. Ibrahem et al. [10] presented the 

non-classical heat conduction effects in Stokes' second problem for unsteady micropolar fluids 

flow. Seddek [II] studied the Hartman flow of a micropolar fluid past a continuously moving 
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plate. Kim and Lee [12] made an interesting study for the Hartman oscillatory flow problem of 

a micropolar fluid . Agrawal [13] presented a finite element solution of unsteady three dimen­

sional micropolar fluid flow at a stagnation point. Abo-Eldahab and Ghonaim [14] discussed 

the numerical solution in order to see the radiation effect on heat transfer of a micropolar flu id. 

However, most of the previous investigations deal with the numerical solution. The aim here 

is to provide an analytic solution for the flow problem of a micropolar fluid. The group analysis 

method has been extensively used for unsteady axisymmetric incompressible viscous flow by 

Nucci [1 5]. Recently, Yiirusoy et a l. [1 6] have obtained the solution for the creeping flow of 

the second grade flu id using group method. They found the analyt ic solution for the two­

dimensional flow of a micropolar fluid . The analytic solution is given using group method 

[1 7]- [19] . T he translation type symmetry has been taken into accoun t. The graphs are also 

plotted and discussed . 

2 Equations of motion 

The two dimensional equations for an incompressible micro polar fluid are [3] 

au EfV 
ax + EfJj = 0, 

-: (_ au _ 00) (ff2u ff2u) (EfV au) P.>? u-+v- =Gj -+- -2k j u+k j ---;} ox EfJj [)XZ fJY2 ax af} , 

(1 ) 

(2) 

(3) 

(4) 

where u and v are the components of the velocity field in the x and f} direction, u(x, f}) is the 

micro-rotation component, and 15 = 15(x, Y) is the pressure distribution. Here p, ~l, k j , Gjand 3 
are mass density, coefficient of viscosity, coupling constant, micro-rotation constant and local 

micro inertia. 

Defining 

u 
u=­u ' 

v 
v=­u' 

U 
II=­. ' 

II 

Eqs. (1 )-(4) reduce to 

au av 
ax + By = 0, 

8v 8v ( ff2v ff2v ) alI ap u-+v- = (€j +f2 ) -+- - €3-- €4-, ax By ox2 oy2 ox oy 

(5) 

(6) 

(7) 

(8) 
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OU ou ([J2u a2u) (fJv Du) 
U ax + v ay = E5 ax2 + ay2 - E6 U + E7 ax - ay , 

where 

iJ. 
€j = pLU' 

GjJ 
E5 = pLUy' 

k j 

E2 = pLU' 

2k j LJ 
EG =----, 

pUj 

kjU' 

E3 = pU2 ' 

kjJ 
E7 =--­

pu'j 

and EI and E2 are the reciprocal Reynolds numbers. 

3 Symmetry analysis 
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(9) 

( 10) 

In order to obtain the analytical solution, we use Lie group theory to Eqs . (6)- (9). For this we 
write 

x ' = x + e~1 (x,y, U , v,p) + 0(e2), 

y' = y + e~2(X,y,u,v,p) + 0(e2
), 

u' = U + el'/j(X,y,u ,v,p) + 0(e2), 

v· = v + eI12(X, y, U , v ,p) + 0(e2), 

p' =p+eI'/3(X,y,u,v,p)+ 0(e2), 

u' = u + eI'/4(x,y,u,v,p) + 0(e2) 

(11) 

as the infinitesimal Lie point transformations . We have assumed that Egs. (6)-(9) are invariant 

under the transformations given in Eq. (11). The corresponding infinitesimal generator is 

a a a a a a x = ~I-+ ~2- + 1'/1- + '12- + '13- + '14-' ax ay au fJv 8p OU 
(12) 

where ~l' ~2, 1'/1 ' '12, 1'/3 and '14 are the infinitesimals corresponding to x, y, u, v, p and u, 
respectively. Since our equations are at most of order two, therefore, we need second order 
prolongation of the generator in Eg. (12) and then apply the invariance condition to get the 

following infinitesimals [17]-[19]: 

~ l = b, ~2 = c, 

'11 = 0, '12 = 0, 1'/3 = d, '14 = e . (13) 

Therefore, the equations admit a four parameter Lie group of transformations. Parameters b, c, 

d a nd e correspond to translations in the x, y, p and u coo rdinates , respectively. By considering 

the translations in x , y directions and choosing d, e = 0 and solving the corresponding char­

acteristic equation the similarity variables and functions are given as 

~ = y - rnx, u =f(~), v = g(~) , p = h(~), 
(J =N(~), (14) 

where m = c/b is an arbitrary parameter. In view of variables and functions in Eg. (14), 
Eqs . (6)- (9) become 

-mj' +g' = 0, (15) 
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Integration of Eq. (15) yields 

Eliminating h(~ ) from Eqs. (16) and (17) and making use of Eq . (18) we get 

From Eqs. (18) and (19) one can write 

CIN' = E5 (1 +m2 )N" - €eJ1- €7(1 +m2)J' . 

Now integrating Eq. (17) and then using Eqs. (19) and (20) we obtain 
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(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

in which CI and C2 are any arbitrary constants. Eliminating f(~ ) between Eqs. (20) and (21) we 

have 

tviv 
- ANIII + EN" + CN' = 0, 

where 

A - CI(E5+ EI + E2) 
- E5 (1 + m2 )(EI + (2)' 

E = [cr - (1 + m2){ E6 (EI + €2 ) + E3 Ed] 
E5 (1 + m 2h EI + (2) , 

C = CI€6 
2 . 

E5(1 + m2) h + (2) 

The solution of Eq. (23) is given by 

N(~) = C3eal < + C4ea2< + C5ea3< + C6, 

(23) 

(24) 

(25) 

where C3 , C4 , C5 and C6 are any arbitrary constants and Cl.i (i = 1,2,3) are the roots of the 

following equation: 

(26) 

From Eqs. (21) and (25) the expression forf(~) is 

f(~) = f3 eal< + f3 eaz< + f3 ea3< - E6C6~ + C7 
I 2 3 E7(1+m2) , (27) 

in which C7 is any arbitrary constant and f3i (i = 1, 2,3) are given through the followin g 

expression: 

f3 = Ci +2 [€5(1 +m2)Cl.f - E6 - C1Cl.d 
t E7 (1 + m 2)Cl.i 

(28) 
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<T(X, y) = C3ea\(y-mx) + C 4e a2 (Y-mx) + C 5e a3(y-mx) + C6, 

C2 
p(x, Y) =-. 

€4 
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(29) 

(30) 

(31 ) 

(32) 

Equations (29)- (3 2) give the solution of Eqs . (6)- (9) that involve seven unknown constants . For 

determining the values of these constants we consider a problem that occurs in geology. 

Consider a magmatic micropolar fluid and a plate over it. The plate occupies the position 

y = 0. The positive y goes deep into the fluid beneath the plate. The relevant boundary con­

ditions are of the form: 

u(X,O) = Uo, 

O'(x, O) = 0, 

au 
u(X, (0) = 0, ax(O,y) = 0, v(X, 0) = - Va, 

<T(X, (0) = 0, p(X, (0) =Po, (33) 

where Uo is the velocity of the plate, Va is the magmatic fluid penetrating into the plate and Po is 

the p ressure deep in the magmatic fluid. The expressions (29) to (32) after using conditions (33) 
give 

U O'(x, y) = __ 0 _ (e-ay _ e-PY), 
)'2 - )'1 

p(X,y) = Po, 

where 

€5(l + m2)C(2 - 06 + C1C( )'1 = ---' __ 7-_--::-'-__ 
-07 (1 + m2)C( , 

05 (1 + m2)p2 - 06 + Cd3 
Y2 = --'----;':-'------;;-;c-::----=.:.... 

-07(1 + m 2)p 

and -C( and - f3 are the negative roots of Eq. (26). 

4 Discussion 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

This Section deals with the interpretation of the translational parameter m and the magmatic 

fluid penetrating parameter Va on the x and y components of the velocity and on the angular 

velocity <T. Figures 1,2 and 4-7 have been prepared for the velocity components whereas Fig. 3 

holds for the angular velocity . It is found from Figs. 1 and 2 that the velocity components u and 
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Fig. 1. Variation of the dimensionless velocity distribution a long the x-axis with the value of m 
(El -+ E4, E6, E7 = 0.5; E5 = 2; Ua = Va = 2) 

-2r.-~~~~~~~~~~~~~~======~ 

-3 

-5 

~, 
\' , 
l\ 
\ \ 

\ " \ \ 

\ 
\ 

o 

\ , 

\ 
\ 

, , , , 

\ 

" 

' ..... .... 

5 

........ .... -

..... 

-- m=1 

-------. m = 1.5 

---- 111 =2 

- .... _----- ... _- ------------------

------------
10 15 20 
y 

Fig. 2. Variation of the dimensionless velocity di st ribution along the y-axis with the value of m 
( El -+ E4, €6 , €7 = 0.5; E5 = 2; Ua = Va = 2) 

v are decreasing funct ions of m. It is also evident from Fig. 3 that the behavior of m on the 
angular velocity is opposite to that of u and v . 

From Eqs. (34) to (36) we note that the magmatic fluid penetrating parameter only enters 
into the y-component of velocity. The x-component of velocity u and (J are independent of 
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Fig. 3. Variation of the dimensionless angular velocity with the value of m (El -+ E4, E6, E7 = 0.5; 
€5 = 2; Ua = Va = 2) 
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Fig. 4. Variation of the dimensionless velocity distribution along the x-axis with the value of Va 
(El -+ E4,E6,E7 = 0.5; E5 = 2; Uo = 2) 

Va. It is found from Figs. 4 and 5 that the x-component of velocity increases by increasing 

the value of Va either Va > 0 or Va < O. It is clear from Figs. 6 and 7 that the behavior of 

Va on the y -component of the velocity is opposite to that of the x-component of the 

velocity distribution. 
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Fig. 5. Varia tion of the dimensionless velocity distribution along the x -axis with the value of Vo 
(El --> E4, EB, E7 = 0.5; E5 = 2; Uo = 2) 
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Fig. 6. Variation of the dimensionless velocity distribution along the y-axis with the value of VO 
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5 Concluding remarks 

In this communication we presented the analytical solution for the steady two dimensional 
equations of a micropolar fluid . Lie group analysis has been employed and the solutions 
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Fig. 7. Variation of the dimensionless velocity distribution along the y.axis with the value of Va 
(fJ -> f4,f6,f7 = 0.5; f5 = 2, Ua = 2) 

corresponding to the translational symmetry are developed. The results are also sketched 

graphically and show the similar behaviour of the numerical solution [14] . 
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itract 

[n this study, we model the fiow of a third grade fiuid in a porou 
r a suddenly moved fiat plate is discussed analytically by usin 
ious parameters of interest on the velocity profile is seen. 
:006 Elsevier Inc. All rights reserved. 

words: Third grade fluid; Porous space; Analytical solution; . 

ntroduction 

pace. Based on modified Darcy's law, the fiow 
topy analysis method (HAM). The infiuence of 

:t is well known that the governing equations for the non-Newtonian fluids are more non-linear and of 
ner order [1,2] than the Navier-St es equations. Thus, to find the analytic solutions of such equations 
ot an easy task. With this fact in veral authors [3-22] are now engaged in finding the analytic solu-
1 under imposed restrictions. '"f. e est subclass of non-Newtonian fluids for which one can reasonably 
Ie to obtain an analytic solu io is the second grade. The second grade and Oldroyd-B fluids for steady 
:lirectional flow do not exh' rheological characteristics. The third grade fluid models even for steady 
{ exhibits such characte . . : or this reason the model in the present study is the third grade fluid one. 
reover, the viscoel ti , jl in porous space are quite prevalent in many engineering fields such as 
anced oil recovery ~r a d textile coating and composite manufacturing processes. Also the modeling 
lolymeric flow in p u \ pace has essential focus on the numerical simulation of viscoelastic flows in a 
;ific pore geomet . >el, for example, capillary tubes, undulating tubes, packs of spheres or cylinders. 
~ to these motiva:'o ,the layout of the paper is as follows: 

the ba ic equations are presented. In Section 3 we give the problem formulation. The analytic 
. eveloped in Section 4. The convergence of the obtained series solution is analyzed in 
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tion 5. The graphical results are presented and the effects of the parameters are discussed in Section 6 fol­
ed by concluding remarks in Section 7. 

lasic equations 

~he equations which govern the flow of an incompressible fluid in a porous space are 

divV = 0, (1) 

p(V,v)V = -Vp + divS + r . 
. bove equations, V is the velocity, p the fluid density, p the hydrostatic pressure, 
r the Darcy resistance for a third grade fluid in a porous space. "~"'\ 

'he constitutive equation for S in a third grade fluid is [20] - ' ~~!~ 
tp "':l'il!-" 

S = J.lA, + cx ,A2 + cx2A~ +/3,A3 + /32 (A2A, + A,A2) + p3(trA~)A,. i, tJ (3) 

e J.l is the dynamic viscosity, CXi (i = 1,2), and /3i (i = 1 - 3) are the materi'aconstants corresponding to 
Ind and third order approximations respectively. The kinematical tensors An are defined as 

A, = VV + (VV)T, 

An = (:t + (V.V)) An_' +An_,(VV) + (VV)TAn_,, 

e that Eq. (3) is compatible with thermodynamics if [23] 

J.l ~ OJ cx, ~ 0, Icx, + cx21 :::;; V24J.l/33' 

13, =/32 = 0, 133 ~ 0, 

'hich case Eq. (3) becomes 

S = [J.l + p3(trA~)lA, + cx,A2 + cx2A~. 

roblem formulation 

(4) 

(5) 

(6) 

(7) 

~onsider a Cartesian coordinate system OXYZ with y-axis in the upward direction. The incompressible 
1 grade fluid flows through a porous-s ace y > 0 and in contact with an infinite flat plate at y = O. Initially 
I fluid and plate are at rest. A t -1 . '" ·the plate is impulsively brought to the constant velocity UQ• 

1 an unbounded porous medi ' th Barcy's law holds for viscous fluid flows having low speed. This law 
es the pressure drop induced b the frictional drag and velocity and ignores the boundary effects on the 
(i.e. invalid where there are oiihClaries of the porous medium). According to this law the induced pres­
drop is directly proporti6~al~to the velocity. For the porous medium with boundaries, Brinkman pro­
d an equation describ(ng~.( e locally averaged flow. Although the equation proposed by Brinkman 
s only for steady viscous Wows but there are several modified Darcy's laws available in the literature 
'is co us flows in a poro1:ls; edium. Much attention has not been given to mathematical macroscopic filtra­
models concerning 'sc~elastic flows in a porous medium. On the basis of Oldroyd constitutive equation, 
'allowing law for describing both relaxation and retardation phenomenon in an unbounded porous med­
has been suggeste ,[3 ]: 

1 + A- Vn,;= -- I +A - V ( Cl) '\ W/J ( 0) 
fu ~ k 'fu' (8) 

'e k is the permeability, A and A, are the constant relaxation and retardation times respectively and ¢ is the 
sity of the porous medium. Note that for A = A, = 0, Eq. (8) reduces to well-known Darcy's law of viscous 
5. 

f analogy with Maxwell's constitutive relationship the following phenomenological model has been avail­
in the literature [24]: 
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(9) 

r unidirectional flow of second grade fluid the constitutive equation can be obtained from that of an Old­
'd-B fluid by taking A = 0 [3]. Thus in a porous medium, the relationship between Vp and V for unidirec­
lal flow of a second grade fluid can be written from Eq. (8) as follows [22]: 

f.J.¢ ( 0) (Vp)x = - k 1 + Ar at u, (10) 

ere 

f.J.Ar = IXI· 

ploying the same idea as in Eqs. (8)- (10), we propose the following constitutive relationship between the 
ssure drop and velocity for unidirectional flow of a third grade fluid: . 

(11 ) 

: pressure gradient in above equation can also be interpreted as a sure of the resistance to flow in the 
k of the porous medium and r x is a measure of the flow resistanc .' ered by the solid matrix. Thus r x can 
,nferred from Eq. (11) to satisfy the following equation: ~;;; 

[ 
a (OU)2] ¢u 

. rx = - f.J. + IX I at + 2[33 oy k ' (12) 

'stituting Eqs. (4), (5), (7) and (12) in Eq. (2) and th~liI,.,neglecting Vp in the x-direction we have the follow­
steady state problem 

o = ~ ~ + 6[33 du ~ _ + 2[3 du f ,1 ,1). d2 ()2 2 [ ( ~ . 
P dy2 P dy dy f.J. 3 d . pk 

: relevant boundary and initial conditions are: 

u(O) = Vo, u(y) -+ 0 as y -+ 00. 

(13) can also be written as 

re 

f.J.* = f.J. 
p+IXI¢ / k 

b* - 6[33 
I - P + IXI /k 

b' _ 2/3}cP / ~'foa 
2-

p+IXI<P:/ k' 
~. 

cPl = f.J.¢ / k 
p+IXI¢/k 

oducing the following non-dimensional variables: 

Vo u 
z=-;-y, /= V

o
' 

(13) 

(14) 

(15) 

(16) 

( 17) 
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problem becomes 

re 

b _ b~V6 
1 - jJ.*v2 ' 

nalytic solution 

1 order to obtain the HAM solution, we choose 

lo(z) = e-Z, 

.P(f) = I" + 1', 
dtial approximation of I and auxiliary linear operator .P satisf . 

.P(C1 + C2e-Z
) = 0, 

:e C, and C2 are arbitrary constants. If p E [0, 1] is an emb 
meter then 

(1 - p).p[e(z,p) - 10 (z)] = pli%[e(z,p)], 
e(O,p) = 1, e(oo,p) = 0, 

% [e(z )] = o2e(z,p) b (oe(z, p))
2 
o2e(z)'p 

,p OZ2 + I oz OZ2 ~ 

D = 0 and p = 1, we have 

e(z, 0) = lo(z), e(z, 1) = I(z). 

(
oe(z, p))

2 

2e(Z, P) oz - ce(z,p). 

;. 

2427 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) , 

om/o(z) to j(z). By Taylor's theorem and Eg. (27) one obtains 

(28) 

e 

f, (z) = ~ ome(z,p)~ t:,·, ·;J- , (29) 
m I~,.,m ",1'l2-m. Vi' ' )7=o '~ 

,~~ 

·ly the convergepce ~f).t :'l'e series (28) depends upon n. Assume that Ii is selected such that the series (29) is 
~rgent at p = 1, tfre;i.ldue to Eg. (26) we have 

(30) 

he mth order deformation problem, we differentiate Eg. (24) m times with respect to p, divide by m! and 
set p = 0. The resulting deformation problem at the mth order is 

.Plfm(z) - Xmlm - l (z)] = n~m(z), 

Im(O) = 1m (00) = 0, 

(31 ) 

(32) 
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lere 

~ ( ) = [d2
!m_ 1 _ ,r ] ~ d!m- I-k ~ [d!k-I (b d

2
fi _ b- r)] 

m Z dz2 CJm-1 + ~ dz ~ dz 1 dz2 'lJ 1 , 
k=O 1=0 

_ {O m ~ 1, 
Xm - 1 m> 1. 

(33) 

(34) 

e solution of the above problem upto first few order of approximations may be obtained using the symbolic 
nputation software MATHEMATICA. The solution of the problem can be expressed as an infinite series of 
: form 

2m+ 1 2",+ 1 -2n 

fm(z) = L L a~,nzqe-n" m ~ O. (35) 
n=O q=O 

loking Eg. (35) into Eg. (31) we get the following recurrence formulae for t, e coefficient a~n of!mCz) when 
~ 1, 0 ~ n ~ 2m + 1 i ' 

2m+ 1 2m+I-2n 

a~,1 = XmX2m-la~_ I,1 - L L r~,nJl.~,o, 
n=2 q=O 

a~,o = XmX2m+ l -ka~_ 1 ,0' 0:::;; k :::;; 2m + 1, 
2m 

a~ , 1 = XmX2m- l -ka~_ I , 1 - L r;.., IJl.i ,k ' 
q=k-I 

2m+ I-2n 

a~ ,n = XmX2m+ I -2n-ka~_ I ,n + L r~,nJl.~ ,k' 
q=k 

ere 

1, 0 ~ k ~ 2m + 1 - 2n, 

2m+ I 2m+ 1-2n r. • ,f 

r~,n ~ 1i L L [X2m+I-2n-q(a2~_I,n - ca~_:,n:,! bl<53~ ,n - b2<54~,n)], 
n=O q=O 

q q! 
Jl. 1,k=k!' 0~k:::;;2q+l, q~O, 

q-k t 
q L q. 

Jl.n k = I ' .Oif""'~ k ~ 2q, q ~ 0, n ~ 2. , k' p+1 ( - l)q -p+ ~ p=o.n n 
,~ , 

~ coefficients <53
q 

, <54
q 

, are 
mIn mIn 

. A~ 
m- I k r=min{n ,2k+2}~.. s=min{q,2k+2-2r) 

<53~,n = L L:E L lIl~,ra1~~I_k,n_r' 
k=O 1=0 r=maxlQ,.n-'2k+2iii- I} s=max(0,q-2m+2n-2r+I} 

m-I k r= ~~{n ; +2) s=min{q,2k+2-2r} 

<54~ ,n = L L 't;;~' .~ L lI2~,ral~~I _k,n_r ' 
k=O 1=0 r=ma"tQ;n-2k+2m- I} s=max(0,q-2m+2n-2r+ I} 

~. 
~re ~ . 

." 

J=~fn:{)';21+I} i=min{s ,2/+1-2j} 

lI1~,r = "L L a2:Jal~=-i"r_j' 
j=max{0,r-2k+21- I} i=max{0,s-2k+2/+2r-2j-I} 

J=min{r,2/+ I} i=min{s,2/+1-2j} 

lI2s - ~ ~ Ii I s- i 
k,r - ~ ~ a 1Ja k- I,r- j' 

j =max{0,r-2k+2/- 1} i=max{0,s-2k+21+2r-2j- l} 

a1
q = (q + l)aq+1 - naq 
m~ mIn mIn' 

a2q = (q + 1)aF+1 
- naF . mIn m,n m~ 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 
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!izing the above recurrence formulae, all coefficients ak can be computed using only the first two m,n 

o - 0 ao,o - , a~,1 = 1, (49) 

:n by the initial guess approximation in Eq. (21).The corresponding Mth order approximation of Eqs. (18) 
(19) is 

(50) 

the analytic solution of the problem is 

(51) 

o~----------,-=================-~~ 

-2 

----17 t h-order app. 

-8 

-1.5 - 1.25 -1 - 0.75 -0.5 - 0.25 o 
h 

Fig.!. Ii-curve for the seventeenth .. orde~,$f the approximation for the velocity field f for b l = 0.5, b2 = 0.1, c = 0.8. 
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Fig. 2. Variation of the velocity distribution for the various values of bl ' 
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Convergence of the analytic solution 

Clearly Eq. (51) contains the auxiliary parameter Ti. As pointed out by Liao [4], the convergence region and 
:e of approximation given by HAM are strongly dependent upon this auxiliary parameter. For this purpose, 
~ hcurve is plotted for/up to the seventeen order approximation. It is obvious from Fig. 1 that the range for 
~ admissible value for Ti is -1 ~ Ti ~ - 0.15. Our calculations depict that the series of the velocity field in Eq. 
l) converges in the whole region of z when Ti = - 0.2. 

Results and discussion 
1, 

~ 
In Fig. 2, the velocity field/is plotted for the different values of the parameter b . I tS clear from this Fig 
it with the increase in b l the velocity increases. Fig. 3 elucidates the effects of the pa,rarifeter b2 . It is evident 
)m Fig. 3 that velocity decreases by increasing b2• Fig. 4 represents the velo~~ty ills ribution for the various 
lues of the parameter c. It is clear from Fig. 4 that the velocity also decreases wit the increase in c. Figs. 5-7 
)resent the velocity distribution for the large values of bi> b2 and c respectivelY'" and similar effects has been 
m as in case of Figs. 1-3. 
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0 . 8 

;; 0.6 
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0 1 2 
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---- b2=0.9 
--- b 2 =1. 5 

5 6 

Fig. 3. Variatig,nAof ,t/le velocity distribution for the various values of h2. 
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Fig. 4. Variation of the velocity distribution for the various values of c. 
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Fig. 5. Variation of the velocity distribution for the various values of bl ' 
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20ncluding remarks 

[n the present paper, the steady third grade fluid in a porous space is considered. The governing constitutive 
ttionship for modified Darcy's law in a third grade fluid has been proposed. It is noted that modified 
rcy's law for unidirectional flow of a third grade fluid yields non-linear expression in terms of velocity 
ereas it is linear for Newtonian, Oldroyd-B, Maxwell and second grade fluids. The governing non-linear 
,blem that comprised the balance laws of mass and momentum has been solved using homotopy analysis 
thod (HAM). The significant contributions of the non-Newtonian parameters bI. b c on the velocity 
pointed out. 
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In this study, we model the flow of a third grade fluid in a,$ . "s11!liff space. Based on modified Darcy's law, the flow 

)ver a suddenly moved flat plate is discussed numerically , £lie ii fiul;J:lCe of various parameters of interest on the velocity 
)rofile is seen. ., .... :? ::F 
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l. Introduction 

Because of its practical applications, the Stokes' problem for the flat plate has been the subject of numerous 
:heoretical studies, Such studies for Navier-Stokes fluid and different types of non-Newtonian fluids include 
:he work of Zierep [1], Soundalg~kar{t2kRajagopal and Na [3], Puri [4], Bandelli et al. [5J, Tigoiu [6], Fetecau 
md Zierep [7] and Fetecau an~ F'et~<::au [8,9]. More recently, Tan and Masuoka [10,11] discussed the Stokes' 
'irst problem for second grl;!;'e"itrr~ '(jldroyd-B fluid models using modified Darcy's law. They obtained the 
!olution analytically. The s~~ond g,1:ade and Oldroyd-B fluids for steady unidirectional flow do not exhibit 
:he rheological characteristic'S:,~:;Ehf third grade fluid model even for steady flow exhibits such characteristics. 
For this reason the mo€it l in tn'e present study is the third grade fluid one, Moreover, the governing equations 
ror non-Newtonian fh,li·os:JJS.J·6] are highly non-linear and of higher order when compared with that of the 
Newtonian fluid . The~is,c;oerastic flows in porous space are quite prevalent in many engineering fields such, 
lS enhanced oil redQ.yery; p~per and textile coating and composite manufacturing processes. Also the modeling 
)f polymeric flOWWP0f OUS space has essential focus on the numerical simulation of viscoelastic flows in a 
!pecific pore g~?metfy model, for example, capillary tubes, indulating tubes, packs of spheres or cylinders. 
Due to these mbti,Y4!<tlons, the layout of the paper is as follows: 
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In Section 2 we present the basic equations . In Section 3 we give the problem formulation . The numerical 
results and discussion are presented in Section 4 followed by concluding remarks in Section 5. 

2. Basic equations 

In a porous space, the equations governing the flow of an incompressible third gI:'ade fluid are 

divV = 0, 

P (:t + (V . V)) V = - V P + div S + r. : .. ' 

(I) 

(2) 

In above equations, V is the velocity, p the fluid density, t the time, p thff hyi:lrostatic pressure, S the extra 
stress tensor and r the Darcy resistance for a third grade fluid in a porous spate: 

The constitutive equation for S in a third grade fluid is 4;'"L'~",.;. ; •. >:) 

S = /lA I + IX ,A2 + 1X2A~ + p,A3 + P2(A2A, + A,A2) + P3(trA~)A.f ;:t:j'~;,-", (3) 
~" .. ~ ~ .. (. 

Here 11 is the dynamic viscosity, and lXi (i = 1,2), and Pi (i = 1-::3)"ilre"the material constants corresponding 
to second and third order approximations, respectively. The kirieIllatical tensors An are defined through the 
following equations: ''::,,:, 

A I = VV + (VV)T, ';C ,. 

A. ~ (:, + (V . V)) A._, + A._, (VV) + (VV) T Ai;.: "Ii 'c i 3 .. . 

Note that Eq. (3) is compatible with thermOdyna0tt~'lt~ni;onlY if [12] 

J.1. ~ OJ IX , ~ 0, IIX, + 1X21 ~ V24I1P3j ,'i',. 

p, = P2 = 0, P3 ~ 0 

in which case Eq. (3) becomes 
, .. ,-

S = [11 + P3(trA~)]AI + IX ,A2 + 1X21r ';,~c" 
.. 

3. Problem formulation 

(4) 

(5) 

(6) 

(7) 

. .,:i( ~(r<n--:;:.t> 
Consider a Cartesian coordiIiat~' system OXYZ with y-axis in the upward direction. The incompressible 

third grade fluid flows throu,gff 'lj:'P9?'6us space y > 0 and in contact with an infinite flat plate at y = O. Initially 
both fluid and plate are at rest. Ati = 0+, the plate is impulsively brought to the constant velocity Uo. Under 
the stated assumptions, we, maY,write the velocity in the following form : 

V = u(y, t)'7, (8) 

where '7 and u are, resp~ctively, the unit vector and velocity in the x-direction. The above equation auto­
matically satisfies ~th(continuity equation. Further Eqs. (4H7) give 

::;::j~:. 

(9) 

(10) 

(11) 

( 12) 

Please cjte this article in press as= Hayat T et at.,. Stokes' firSt problem for a third grade fluid. '" Conunun Nonlinear Sci~ 
Numer Sirnul (2007}, doi:lO. 016/j:cnsns..2007.04.015 ~ 
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In an unbounded porous medium the Darcy's law holds for viscous fluid flows, having low speed. This law 
elates the pressure drop induced by the frictional drag and velocity and ignores the boundary effects on the 
low (i.e., invalid where there are boundaries of the porous medium). According to this law the induced pres­
ure drop is directly proportional to the velocity. For the porous medium with boundaries, Brinkman pro­
)Qsed an equation describing the locally averaged flow. Although the equation proposed by Brinkman 
lolds only for steady viscous flows but there are several modified Darcy's laws available in the litera ture 
'or viscous flows in a porous medium. Much attention has not been given to mathem~tical macroscopic filtra­
ion models concerning viscoelastic flows in a porous medium. On the basis of Oldroyd t onstitutive equation, 
he following law for describing both relaxation and retardation phenomenon in ,ap..utibounded porous med-
urn has been suggested [11]: ,i; ' -"~i. "J 

~~, :'.:. 

(I +l:,)vp ~ -~: (I H:,) V, t,,,~",J (13) . 

vhere k is the permeability, A and Ar are the constant relaxation and r_e,ta;aation:'times, respectively, and ¢ is 
he porosity of the porous medium. Note that for A = Ar = 0, Eq. (!J1 red:uQljls to well-known Darcy's law of 
riscous fluids. , .. ",( "''''~,. 

By analogy with Maxwell's constitutive relationship the folloV{,iri'g'p heiibmenological model has been avail-
lble in the literature [13]: '\'~~S-:". 

( 1 +A~)VP= _J1.<PV. #~~.. ' ?i' (14) 
at k . ~ '\ 

:;Oor unidirectional flow of second grade fluid the constifut~~-~qiiation can be obtained from that of an, Old­
'oyd-B fluid by taking A = 0[9,14]. Thus in a porouS:!lPepluIIl<, the relationship between Vp and V for unidi­
'ectional flow of a second grade fluid can be written (;omEq. (13) as follows: 

( 15) 

",here 

J1. )'r = a,. "w,'- J • 

Employing the same idea as in Eq~ ~';(~)Jl;5fwe propose the following constitutive relationship between 
he x-component of pressure drop afi~tyelo'C'ity for unidirectional flow of a third grade fluid: 

.;'::7-01... '·';'~~~:tl~ 

op _ [ a 2f3 (~'.?2J ;'JtiiiJ~;'·--a - - J1.+a'i)+ 3 a ', 1Jff'k' 
x t ~i'; '~"}i;,: \it' 

(16) 

[he pressure gradient in ab~.ve eqtiation can also be interpreted as a measure of the resistance to flow in the 
mlk of the porous medh~,;fitt:~ijs a measure of the flow resistance offered by the solid matrix in the x -direc­
ion. Thus r, can be inf~rred ''From Eq. (16) to satisfy the following equation: '. ~ + + ·,!)~"d;)'] :" 
;ubstituting ~qs. ~(4k.l5), (7), (8) and (17) in Eq. (2) give after neglecting op/ox as 

, ~ ~ , 

p ~; ~ ~ ~:~:~', a~~, HP, G;)' ~; -~ + a, :, + 2P, (~;)'] :" 

fhe relevant boundary and initial conditions are 

u(O, t) = Uo, u(y, t) --+ ° as y --+ 00; u(y,O) = O. 

[ntroducing the following non-dimensional variables: 

( 17) 

(18) 

(19) 



4 T. Hayat et al. / Communications in Nonlinear Science and Numerical Simulation xxx (2007) xxx-xxx 

Vo 
17 =-y, 

V 

the problem becomes 

af a
2
f a

3
f ( af ) 2a2f [ ( af ) 2] 

(1 + ca ) a, = a172 + ~ a172a, + 6b a17 a172 - c 1 + 2b a17 f, 

f(O,,) = I , f(rp) -> ° as 17 -> 00, f(17, 0) = 0, 

where 

(XI V~ 
a =--2 ' pv 

. :.: :~ . 

(20) 

(21 ) 

(22) 

(23) 

Note that a, b and c are non-dimensional parameters defined in the ab:9ye equation . Obviously, a is the noo­
dimensional second grade parameter, b is the non-dimensional thttdgrade 'parameter and c is the non-dimen-
sional porosity parameter. ,[t.!: :1;~?' 

4. Numerical results and discussion 
:; 

We note thatEq. (21) is a third order partial differenti<.tf eq.uation. It is perhaps not possible to obtain the 
exact analytic solution. Due to this, we seek the n,umeti~~1.~solution. For obtaining the system of algebraic 
equations we use the following approximations to:fi:he deriV'atives: 

• .\. • ~~R 
'-;'~<;, 

(24) 

aj 1 
a'1 = 2h Ui+IJ - /i-I 'i)' (25) 

a2f 1 /ii 
a172 = h2 Ui+IJ - 2fjJ + /i-I 'i)' (26) 

(27) 

~q . (21) can be written ~,s :;' 

rhe above sys'tem ?falgebraic equations also gives 

R; = A/iJ + B/i+lj + e/i-Ij + KI;;~IJ + K2/;~,i;J + K3;;~IJ/i-IJ + K4;;~lj/i+IJ + K5;;~ I J/iJ 

+ K6;;~IJ + K7/i+IJ/i-IJ/iJ + F/iJ- 1 + G/i+IJ-1 + Hfi-IJ-I , (29) 

vhere 

Please cite this article in press as: Hayat T et al., Stokes' first problem for a tJiird grade fluid ... ? Conunun Nonlinear Sci ., 
Numer Simul (2007), doi: 1O.1016/j cnSn~ ?007 04 O! 5 . 



T. Hayat et al. I Communications in Nonlinear Science and Numerical Simulation xxx (2007) xxx-xxx 

a 

K4 = -K1, Ks = K2 ) 

6b be 
K7 = ----h4 h2 ) 

G=- H = G. 
h2/c ) 

..-t'· .::.: .. 

-.row the initial and boundary conditions can be written in the following fQrm: 

fo,i = 1, fM ,; = O, fi,~ = O) i = O,I,2, . . . ,M, j = O,I ,2,3 .. . 

5 

(30) 

(31 ) 

:-Iere M denotes an integer large enough such that Mh approximates · irifini~Y.Since our Eq. (21) is of third 
)rder while given boundary conditions are two, therefore, we introduce ' an augmented boundary condition 

'Of(oo, .) = 0 
'011 

md consequently the problem'becomes well-posed. This boundary condition is discretized to give 
-F .•. ~: 

fM+IJ - fMJ = 0 ."" " 
h ' 

.e. , 

.'.~.' . 

(32) 

(33) 

[ he system consisting of Eqs. (29)-(33) has been solv~,d numerically by employing the Newton's method. Solu-
:ions for the non-Newtonian fluid models areTQbtait).ed for 't = 2n. From the numerical solutionfis used to 
~xpress the non-dimensional velocity profile'panlllel to x-axis. The main emphasis has been given to the in flu­
mce of second grade, third ,grade and p6rqs~ty ,pArameters on the velocity profile. In order to observe these 
~ffects, Figs, 1-3 have been made. .Ii' :l+ .. ~! "'j,;' 

Fig. 1 is prepared just to see the"d fects ' of a dimensionless second grade parameter on the dimensionless 
lelocityf It is to be pointed out that /Increases by increasing the value of a, It is also seen that the boundary 
ayer thickness increases. The variation of the third grade parameter b on the dimensionless veiocity f is given 
n Fig. 2. This figure elucidates that~;ariation of b on the velocity is quite opposite to that of a, i. e., the dimen­
;ionless velocity f decreases when value of b is increased. Fig. 3 shows that how the velocity varies with respect 

1,0 

0.8 

0.6 

..., 
0.4 

0.2 

0.0 

o 2 3 
T) 

[om::' [ 
- -- - - ·8=5 
-"~-~.~--

--. 
'" 

~~ 

" 5 6 

Fig. I. Infl uence of second grade parameter on [with b = c = 0.2 at r = 21l. 
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............. b=2, 
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Fig. 2. Influence of third grade parameter on f with c = 0.2 apd a = 0.1> at t = 2n. 

1.0 
---- CoO.l 
..... . -..... CoO.S 

0.8 ••.••••. CCl 1 

0.6 

-0.4 

0.2 

0.0 

0 3 4 

Fig. 3. Influence of porosity parameter on f with a = 0.1 and b = 0.2 at t = 2n . 

. .£ft;~:;'~:;;:~~'4,,}' . 

to the porosity parameter c. It can be:.,~e~k-~e'fe that the dimensionless velocity decreases for large values of c. 
The boundary layer thickness is also .f6Un.d to decrease. 

r'" .: 

5. Concluding remarks 

In the present work, Stok~'s firSt problem is generalized for the third grade fluid in a porous space. The 
governing constitutive relationship for modified Darcy's law in a third grade fluid has been proposed. To 
the best of our knowledge such relationship is not available in the literature. It is noted that modified Darcy's 
law in unidirectionaL~.ow of a third grade fluid yields non-linear expression in terms of velocity where as it is 
linear for Newtonian, Oldroyd-B, Maxwell and second grade fluids . The governing non-linear problem that 
comprised the balaiit.~'llws' of mass and momentum has been solved numerically, Results for velocity are pre­
sented, It is importaiif·to note that variation of second grade parameter on the velocity in porous and non­
porous space is quite ,different. It is further found that for 't' ~ 67t the non-Newtonian effects become weak 
and the flow field behaves as if it is a Newtonian fluid. 
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:act 

is work is concerned with the unsteady rotating flow of the third grade fluid over a suddenly lIlovL; g plate in its own plane. 
lon-linear problem governing the flow has been solved numerically. The influence of -material parameter of third grade fluid 
)tation upon the velocity has been discussed. ';jf 

)7 Published by Elsevier Ltd. ,\!,;i"- ~~:" 
'J.~iY " 
"it 

'rds: Third grade fluid; Stokes' first problem; Rotating fluid; Numerical so lution ",~ 

Itroduction 

,e equations governing the flow of a viscous fhl:~jf~~el~fue Navier-Stokes equations are non-linear. But there 
~veral complicated fluids which are not weU:-:de\ Cribed'by these equations. Due to this reason many constitutive ' 
i ons have been proposed for the non-Newtp!ltan lltili s. The equ'ations for non-Newtonian fluids are much com­
ted and higher order than the Navier7S.to}<:e~q~a"tions. Even the various investigators are presently engaged in 

.j.. ~., • ,,~~;~/ 

19 the solutions for such flow probleiit~{ S.~~l€ recent attempts relevant to the flows of non-Newtonain fluids in 
'otating frame are given in references' [2::"'SJ 2, 13]. 
cently, the study of rotating flows has',gained considerable importance due to their applications in cosmical and 
hysical fluid dynamics. Several, .'(,c;.>~k6rs have been engaged to the rotating viscous flows in various directions. 
lsive literature is available on the "{opic dealing the time-dependent and time-independent flows in the rotating 
~. But there is yet an!1ther area of such flows in which no considerable attention has been given. This is the area 

~ , 

~ rotating flows in n~n-N~~tonian fluid dynamics. Little work seems to have been done in this area. Mention may 
ade to some recent r~{~~¢rtces [7-11,1] in this area. 
all the above-Jtienti0lled studies, the rotating flows of non-Newtonian fluids have been studied as a boundary value 
em. Thera ore)i(all the mentioned studies lack the features of unsteadiness. This study fills the gap in this area. 
, the main obj~,ct'()f the present study is to discuss the unsteady flow of a non-Newtonian fluid in a rotating frame 
'erence. For thllt we select the model of third grade fluid. The flow in the fluid is induced by the suddenly moving 
in its own plane. The governing equation for the rotating flow of a thermodynamic third grade fluid has been 

:led and then solved numerically using Newton's method. 

mesponding author. Tel.:+92512275341. 
7tail address: faisaL74_2000@yahoo .com (F. Shahzad). 
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n Section 2 we present the flow analysis. The numerical results and discussion are presented in Section 3 followed 
:onc1uding remarks in Section 4. 

Flow analysis 

~onsider an incompressible third grade fluid occupying the space z > O. The plate at z = 0 is moved suddenly with 
mstant velocity for t > O. Both the fluid and plate are in a solid body rotation. Initially the fluid and plate are at rest. 
: laws which govern the flow are 

div V = 0, (1) 

p [~~ + (V.V)V + 2Q x V + Q x (Q x r)] = -Vp + divT, (2) 
~~i~J~~~&~) 

vhich V is the velocity, p the fluid density, t the time, p the hydrostatic pressure, T the extra strMs-)ensor, Q the 
stant angular velocity and r the radial coordinate with r = x 2 + l. ~ ." 

J 

'he extra stress tensor T in a third grade fluid is ' 

(3) 

e fl. is the dynamic viscosity, ai (i = 1,2), and Pi (i = 1-3) are the material ciris~~t1i? The kinematical tensors All 
1-... -' ~:. ~ 

:.. .-''S-' 
~ .. 

(4) 

(5) 

thermodynamics of the fluid requires that [6] 

/1~O, al ~O, lal + a21 ~ J24/1P3' 

PI = {32 = 0, {33 ~O. (6) 

refore Eq. (3) can be written as 

T = [/1 + (33(tr AT) ] Al + CX(A~}~g2~~' 
1~~l' ~:.?~r 

;e the plate is infinite so the velo~~tiy, field V for the present flow is 

(7) 

V = [u(z, t), v(z ,:t),:,'; (z, t ] .' (8) 

ch together with the'incoIl.lt ressibility condition yields w= O (u, v and w are the velocities in the x , y, z directions, 
'ectively). . -;~ ,.- - , 

ubstituting J;:qs:l (7) hhd (8) into Eq. (2) one obtains 
_~_. . \ "F-' 

~~ -2Q"L~ ~: + H"~:~ +"1 a~~t +2P,:z (~: ( (~:)' + (~~)')) l (9) 

ov lop 1 [ o2v a3v 0 (ov I (OU)2 (av)2))] -+2Qu=---+- IL-+al --+2{33- - - + - , at p oy p OZ2 oz2at oz oz oz oz (10) 

lop 
0=---, 

P oz (11) 

Ql 
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Fig. J. Influence of the third grade parameter on the velocily dislribution for 't' = 1. 

re the modified pressure 

Eq. (11) shows that p =1= P(z). 
le relevant boundary and initial conditions are 

u = Vo , v = 0 at z = 0, t> 0, 

u ~ 0, v ~ 0 as z ~ 00 for all t , 

u(z,O) = 0, v(z, 0) = 0, z > O. 

.~~.--"'.. . 
:",2i\::~1?~t~~ ~~J~ 

- ~ ~ 
F = u + i v and .:;;f,i <~u;';z~v. 

fi' .. A~~1~ 

boundary and initial cond!1ions now are 

~e 

.,. 
._ "'!1:r 

F(O, t) ~ Uo;;{Sj;;~Flz, t) ~ 0 as z ~ 00, F(z, 0) = O. 
~'I!:. 

-- b=O.001 ,a=0.1, 
......... b=O.002,C=1 

------ b=O.Q03 

4 

~. 

convenient to 'Yrtte the problem in dimensionless variables . For that we introduce the following variables: 

Vo V 2 F V2 
I]=-z, ,=...Q.t, /=-, C=...Q.,{l 

v v Vo v 

problem becomes 

01 . 02 
I 03 

I 0 I (a I) 2 07] a; + 2ICI = 01]2 + a 01J20, + 2b 01'] a;j 01'] , 

1(0, !) = 1, /(1'], ,) ~ 0 as 11 ~ 00, 1(1'],0) = 0, 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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Fig. 2. Influence of Q on the velocity distribution for t = 1. 
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Fig. 3. Influence of the various 'Values of the second grade parameter on the velocity distribution for T = 1. 

vhich 

U 2 ,. f3 U4 
(X ! 0 L 1 0 

a= --2- r b=-­
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'lumerical resbli~' and discussion 
f 

~-; 

4 

(20) 

'he non-linear differential system consisting of Eq. (18) and conditions (19) has been solved numerically by em­
ying the Newton method. Solutions for the non-Newtonian fluid models are obtained for 't' = 1. From the numerical 
Itionj'is used to express the non-dimensional velocity profile. Results for the flow are obtained for various values 
he parameters a, b, C and 't'. 
'ig. l(a) and (b) presents the velocity profile/for various values of b. These figures indicate that increasing the 
lmeter b increases real part of the velocity. However, imaginary part of the velocity decreases for large values of b . 
. 2(a) and (b) shows the influence of C on the velocity profile! It is evident from the figure that increase in C results 
lecrease the real and imaginary parts of the velocity. The effect of the second grade parameter on / is illustrated in 
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Fig: S. l ii~uEni:e of Q on the velocity distribution for the Newtonian case. 

3(a) and (b). It is noted that the velocity increases in the real part whereas in the imaginary part it first increases 
then decreases by iR~reasing the second grade parameter. Fig. 4(a) and (b) shows how the velocity changes for 
ous valges of \,.It)sfound that here real part of velocity increases and imaginary part of velocity decreases by 
easing f·i?JQ Fig; S'(a) and (b) the velocity distribution is presented in the Newtonian case for the various values of 
t is obser~~\ir;t'R~t the influence of C in Newtonian and third grade fluid is similar. 

:oncluding remarks 

he Stoke's first problem of a third grade fluid is discussed in a rotating frame of reference. The problem that 
lprised the balance laws of mass and momentum has been first non-dimensionalized and then solved numerically. 
LIltS for the real and imaginary part') of the velocity are presented. It is found that at 1: = 1 and different values of 
~e flow characteristics in a third grade fluid are similar to that of Newtonian fluid. 

ase cite this arucle as: F. Sbahzad; et 81:, Stokes' first problem for the rotating flow Of a: ~d grane fluid. Nonlinear Anal.: Real World ApPl. 
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:sUnp 
he ab Abstract In this study, the flow of a fourth order fluid 
allow in a porous half space is modeled. By using the modified 
. Darcy's law, the fiow over a suddenly moving fiat plate 
I' == U is studied numerically. The influence of various param-
'h . eters of interest on the velocity profile is revealed. 

ere 
~Iocit1 
~fin ci Keywords Fourth order fluid· Porous space· 
In ~ Numerical solution · Modified Darcy's law 

lIds f( 

'elatic 1 Introduction 
ctiona 

I eifec Because of its practical applications, the Stokes' prob­
undar lem for the flat plate has been the subject of numerous 
" the : theoretical studies. Such studies for Navier-Stokes fluid 
the V( and' different types of non-Newtonian fluids include the 
!s, Bri work of Zierep [1], Soundalgekar [2], Rajagopal and 
illyav Na [3], Puri [4], Bandelli et al. [5], Tigoiu [6], Fetecau 
3rinla and Zierep [7] and Fetecau and Fetecau [8,9]. More 
seven recently, Tan and Masuoka [10,11] discussed the Stokes' 
ure fc first problem for the second grade and Oldroyd-B flu­
! not F ids using the modified Darcy's law. They obtained an 
ic fiItr analytical solution. The second grade and Oldroyd-B 
rous n fiuids for steady unidirectional flow do not .exhibit the 
tion, I rheological characteristics. The third and fourth order 
and re fluids would exhibit such characteristics even for steady 
uggesJ flow. For this reason the model in the present study is of 

A!..) 
[)t 

! k is t 

tion a 
paras 

ger 

a fourth order fluid. The viscoelastic flows in a porous 
space are quite prevalent in many engineering fields, 
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such as, enhanced oil recovery, paper and textile coating 
and composite manufacturing processes. Also the mod­
eling of polymeric flow in a porous space is essential for 
the numerical simulation of viscoelastic flows in a spe­
cific pore geometry model, for example, capillary tubes, 
undulating tubes, packs of spheres or cylinders. With 
these motivations in mind, the layout of the paper is as 
follows: . 

In Sect. 2 we present the basic equations. In Sect. 3 
we give the problem formulation. The numerical results 
and discussion are presented in Sect. 4 followed by con­
cluding remarks in Sect. 5. 

2 Basic equations 

In a porous space, the equations governing the flow of 
an incompressible fluid are 

divV = 0, 

P (:t + (V· V)) V = -Vp + divS + r. 

(1) 

(2) 

In the above equations, V is the velocity, p the fluid den­
sity, t the time, p the hydrostatic pressure, S the extra 
stress tensor and r the Darcy resistance for a third grade 
fluid in a porous space. 

The constitutive equations for a third grade fluid are 

S = pAl + cqA2 + a2Ar + Sl + S2, (3) 

Sl = IhA3 + ,8z(A2Al +AIA 2) + .B3(trAr)AJ, (4) 

S2 = YIA4 + n(A3A l +AIA 3) + Y.3A~ 
+ Y4(A2Ar + ArA2) + YS(trA2)A2 + Y6(trA2)At 

+ (ntrA3 + YBtr(A2Al» A I, (5) 
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au a2u a3u a4u 
at = IJ- ayZ + a l ay2at + Ih ay2iJt2 

(
au)2 a2u aSu 

+ 6(,82 + .83) ay ay2 + Yl ay2at3 

+ (6 Y2, + 2)13 + 2Y4 + 2ys + 6)17 + 2)18) 

a [(au)2 ( a
2u) ] [ a x - - - - - IJ-+al-ay ay ayat at 

a2 (OU) 2 a3 
+ Ih at2 + 2(132 + .83) ay + l'1 at3 

+ (6)"2 + 2)13 + 2Y4 + 2ys + 6)17 + 2)18 ) 

x (au) (~)] </iu. ay ayat Ie 

: relevant boundary and initial conditions are 

,t) = uo, u(y, t) ~ 0, 

I ~ 00; u(y,O) = 0. 

(14) 

(15) 

oducing the following non-dimensional variables 

Uo 
- y, 
v 

U5 u 
r = - t, f = - , 

v Uo 

(14) and (15) become 

x [( ~f) (02f) ( a~f ) a17 aT]2 a tjor 

+ (~f)2 (~)] _ df _ e ( ~f) aT] aT]2ar ar 

_ g (a21) _ 2(Vl + V2) ( ~1) 2 1 _ L (a
3f

) 
Clr2 . a'/7 ar3 

- (6m2 + 2m3 + 2m4 + 2ms + 6m7 + 2ms) 
tar ' a21 ' 

x (a17) (aT]ar )/, 

= 1, 1(17, r) ~ ° 
~ 00; f('7, 0) = 0, 

(16) 

(17) 

(18) 
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0.6 ...., 
0.4 

0.2 

0.0 

0.0 0.5 1.0 

77 

-- c1=0.05 

.. .. .. ... c1=O.09 

-----. c1 =0.9 

1.5 

19 

2.0 

Fig. 1 Variation of the fourth order parameter Cl on f at r = 21T 
(a = 0.1, b's = 0.2, c's = 0.1, d = 0.1, e = 0.5, g = 0.2, v's = 0.1, 
L = 0.2, mil' = 0.1) 

where 

al U5 
a = - -2 ' 

pv 
(i = I,2,3), 

YiV8 
Ci = - -4 

pv 

¢v2 
(i = I ,2,3,4,5,7,8) , d = - 2' 

kUo 
al¢ .81¢U5 

e = -, g=--, 
pk pkv 
f32¢U5 .83¢U'5 

V2=-- , v3= - - , 
pkv pkv 

L 
_ Yl¢Uri Yi¢Uri 
- pkv2' mi = pkv2 ' 

4 Numerical results and discussion 

(19) 

The non-linear differential equation system consisting 
of Eq. (17) and conditions (18) is solved numerically by 
employing the Newton method. Solutions for the non­
Newtonian fluid models are obtained for r = 2n . In 
the numerical solution, 1 is used to express the non­
dimensional velocity profile parallel to x-axis. Results 
for the flow are obtained for various values of the param­
eters involved. 

Figure 1 presents the velocity profile 1 for various 
values of Cl . The figure shows that increasing the fourth 
order parameter Cl decreases both velocity and bound­
ary layer thickness. Figure 2 elucidates the influence of 
the fourth order parameters Ci (i = 2,3,4,5,7,8) on 
the velocity profile f. It is evident from Fig. 2 that an 
increase of these parameters results in a decrease of the 
velocity profi le. We further note that both figures hold 
for the fourth order parameters. The non-dimensional 
parameter ct involves only one material parameter Yl 
and the parameter Ci is the sum of Yi (i = 2, . .. , 8) . 
The effect of porosity and fourth order parameters on 
1 is displayed in Fig. 3. It is clear that both velocity and 
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dary layer thickness increase by increasing these 
neters. Figure 4 shows how the velocity changes 
the various values of the porosity parameter. It 
md that the velocity decreases by increasing this 
neter. 
es 5 and 6 indicate the velocity distribution for vari­
liues of the third and second order fluid parameters. 
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Fig. 5 Variation of third order parameters on! at r=2rr (a=O.l, 
C5 = d = e = g = V2 = v) = L = m' 5 = 0) 
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Fig. 6 Variation of the second order parameter on ! at r = 2rr 
(b's = cs = d = e = g = V2 = V3 = L = m's = 0) 

5 Concluding remarks 

In the present work, Stoke's first problem is generalized 
for the fourth order fluid in a porous space. The govern­
ing constitutive relationship for the modified Darcy's 
law in a fourth order fluid is proposed. It is noted that 
the modified Darcy's law for the unidirectional flow of 
a fourth order fluid yields a non-linear expression with 
respect to the velocity whereas it is linear for Newto,nian, 
Oldroyd-B, Maxwell and second grade fluids. The gov­
erning non-linear problem including the balance laws of 
mass and momentum is solved numerically. It is observed 
that for r 2: 5Jt' the fourth order fluid behaves like a 
Newtonian fluid. 
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