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Preface

The flows of non-Newtonian fluids present some interesting and exciting challenges to
researchers in engineering, applied mathematics and computer science. Engineers can
design effective viscometers and other instruments to measure the non-Newtonian fluid
parameters. The constitutive equations of non-Newtonian fluids are very complex
involving a number of parameters. Such equations give rise to problems which are far
from trivial. Typically, these equations lead to problems in which the order of differential
equations exceeds the number of available boundary conditions. Therefore
mathematicians can derive the proofs for existence of unique or multiple solutions.
Computer Scientists can design efficient algorithms for computing the flows.

With the advent of computer and corresponding development of software for
numerical integration of differential equations, the task of computing the flows in fluid
dynamics became much simpler. The numerical solution of ordinary differential
equations (ODE) has reached a state of art where given almost any ODE with appropriate
boundary conditions, it is possible to obtain its accurate numerical solution. Nevertheless,
the problem arising in the study of flow of non-Newtonian fluids still pose a challenge to
applied mathematicians, numerical analysts and computer simulationists. These stem
from the fact that the viscoelasticity of the fluid introduces some extra terms in the
momentum equations which include in particular terms that have the higher order
derivative than the number of available boundary conditions. The investigators
accordingly have avoided the problem of getting the numerical solution and found it

convenient to obtain the perturbation solution.



In the present thesis, our concern is to investigate the HAM (homotopy analysis
method) and numerical solutions for some highly non-linear flow problems of the third
and fourth order fluids. Due to these facts in mind the layout of the thesis is as follows:
Chapter 1 is introductory in nature, and chapter 2 includes all basic definitions and
equations which are used in the subsequent chapters.

Chapter 3 is devoted for the flow of a micropolar fluid. Here two-dimensional
equations are first modelled and then solved for a geological problem. Lie group method
has been employed in obtaining the analytic solution. In order to see the variation of
velocity, various graphs are sketched and analyzed.

In chapter 4 the flow of third grade fluid in a porous space is considered. A
modified Darcy's law for a third grade fluid has been introduced. The well known Stokes'
first problem has been studied. Numerical simulations have been performed using
Newton’s method. The results show that for large values of time the behavior of non-
Newtonian fluids is similar to that of Newtonian fluid.

The steady flow of a third grade fluid over a jerked plate is discussed in chapter 5.
The third grade fluid fills the porous half space. Explicit analytic solutions are obtained
using homotopy analysis method (HAM). Recurrence formulas are obtained and
convergence of the results is discussed. Various graphs are plotted in order to see the
behavior of the involved parameters on the velocity profile. It is noted that here the
velocity decreases by increasing the porosity parameter.

The flow of the third grade fluid in a rotating frame of reference is carried out in

chapter 6. The Stokes’ first problem has been addressed. The effects of various emerging



parameters including the rheological constants are seen. It is found that with the increase
in third grade parameter the real part of velocity increases and imaginary part decreases.

Chapter 7 describes the analysis for the Stokes’ first problem for a fourth order
fluid in a porous space. Flow analysis is given using modified Darcy’s law. The problem
is solved using Newton’s method. Different graphs are sketched just to see the behavior
of the velocity. It is revealed that increase in the fourth order parameter depicts the
decrease in the velocity.

In chapter 8 numerical solution of an oscillatory flow over a porous plate is
considered. The constitutive equation for fourth order fluid is used. The governing non-
linear partial differential equation is first modelled and then solved using Newton's
method. The variation of various parameters of interest is shown on the velocity.
Numerical simulation indicates that the boundary layer thickness increases owing to an
increase in the suction parameter.

Chapter 9 describes the unidirectional steady flow of a Johnson-Segalman fluid
bounded by two plates. The flow is induced due to motion of the upper plate. The general
solution of the governing non-linear ordinary differential equation is developed.
Numerical solution for the Couette ﬂoW is further included. The effects of Weissenberg
number, Hartmann number and ratio of viscosities on the velocity are discussed. It is

noted that the velocity increases by increasing the Hartmann number.
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Chapter 1

Introduction

Mechanics of non-linear fluids present a special challenge to engineers, physicists
and mathematicians. The non linearity can manifest itself in a variety of ways. The for-
mulation of the shear stress for non-Newtonian fluids is a difficult problem which has not
progressed very far from a theoretical point of view. However, there is no single model
available in the literature which clearly exhibits all the properties of the non-Newtonian
fluids. For a more fundamental understanding several empirical descriptions have estab-
lished rheological models. One of the simplest ways in which the viscoelastic fluids have
been classified is the methodology given by Rivilin and Ericken [1] and Truesdell and Noll
[2], who present constitutive relations for the stress tensor as a function of the symmetric
part of the velocity gradient, and its higher (objective) derivatives. Another class of models
are the rate type fluid models, such as the Oldroyd model [3]. A discussion of the various
differential, rate-type and integral models can be found in the books by Schowalter [4] and

Huilgol [5], and the survey article by Rajagopal [6].



The theory of microfluids, a subclass of generalized fluids, was first time introduced

by Eringen (7] in 1964 and has become very popular in the recent years. These are the fluids

of the fluid elements. These fluids can support stress and body moments and are influenced
by the spin inertia. The stress tensor for such fluid is non-symmetric. Eringen’s theory
has provided a good model to study a number of complicated fluids, including the flow of
low concentration suspensions, liquid crystals, blood and turbulent shear flows. In 1966,
Eringen [8] introduced the subclass of microfluids named as the theory of micropolar fluids,
which exhibit micro-rotational inertia. This class of fluids possess a certain simplicity and
elegance in their mathematical formulation and are more easily amenable to solution, which
has a great attraction for mathematicians.

Recently the studies of micropolar fluids have acquired the special status due to
their industrial applications. Such applications include the extrusion of polymer fluids,
solidification of liquid crystals, cooling of metallic plate in a bath, animal bloods, exotic
lubricants and colloidal and suspension solutions. Undoubtedly, the classical Navier-Stokes
theory is inadequate for such fluids. Several workers in the field have made the useful
investigations that involve micropolar fluid. For example, Srinivasacharya and Rajyalakshmi
[9] studied the creeping flow of a micropolar fluid past a porous sphere. Iyengar and Vani
[10] examined the flow of micropolar fluid between two concentric spheres, induced by their
rotary oscillations. Kasiviswanathan and Gandhi [11] discussed the Hartman steady flow of
a micropolar fluid between two infinite, parallel non-coaxially rotating disks. Al-Bary [12]

developed the exponential solution of the problem of two dimensional motion of micropolar



fluid in a half-plane. Dubey et al. [13] analyzed the flow of a micropolar fluid between two
parallel plates rotating about two non-coincident axes under variable surfaces charges. Gorla
et al. [14] studied the heat transfer analysis on the boundary layer flow of a micropolar
fluid. Ibrahem et al. [15] presented the non-classical heat conduction effects in Stokes’
second problem for unsteady micropolar fluids flow. Seedek [16] studied the Hartman flow
of a micropolar fluid past a continuously moving plate. Kim and Lee [17] made an interesting
study for Hartman oscillatory flow problem of a micropolar fluid. Agarwal [18] presented
finite element solution of unsteady three dimensional micropolar fluid flow at a stagnation
point. Abo-Eldahab and Ghonaim [19] discussed the numerical solution in order to see the
radiation effect on heat transfer of a micropolar fluid.

The study of physics of the flows through porous media have many applications.
Such flows are important because of their applications in geothermal fields, soil pollution,
fibrous insulation, nuclear-waste disposal in agriculture engineering, seepage of water in river
beds, in petroleum technology for the study of the movement of natural gas, oil and water
through the oil reservoirs, in chemical engineering for filtration and purification process.
In the geophysical context, Raptis et al. [20 — 23] presented a series of investigations for
flow through a porous medium bounded by an infinite porous plate. Nield et al. [24] has
discussed the convection in porous media. Vafai [25] has explained the applications of porous
media. In recent studies, Fang et al. [26] has presented the solution for the incompressible
Couette flow with porous walls and Hooman [27] has discussed the forced convection in a
fluid saturated porous medium tube with isoflex walls.

Because of its practical applications, the Stokes’ problem for the flat plate has



been the subject of numerous theoretical studies. Such studies for Navier-Stokes fluid and

different types of non-Newtonian fluids include the work of Zierep [28], Soundalgekar [29],
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34] and
Fetecau and Fetecau [35,36]. More recently, Tan and Masuoka [37, 38] discussed the Stokes’
first problem for second grade and Oldroyd-B fluid models using modified Darcy’s law.
They obtained the solution analytically. The second grade and Oldroyd-B fluids for steady
unidirectional flow do not exhibit the rheological characteristics. The third grade fluid
model for steady flow exhibits such characteristics even in steady state situation. Moreover,
the viscoelastic flows in porous space are quite prevalent in many engineering fields such as
enhanced oil recovery, paper and textile coating and composite manufacturing processes.
Also the modeling of polymeric flow in porous space has essential focus on the numerical
simulation of viscoelastic flows in a specific pore geometry model, for example, capillary
tubes, indulating tubes, packs of spheres or cylinders.

Rotation plays a significant role in several important phenomenon in cosmical fluid
dynamics. Similarly, a great deal of meteorology depends upon the dynamics of a revolving
fluid. The large scale and the moderate motions of the atmosphere are greatly affected by
the vorticity of the earth’s rotation. In the case of infinite fluid rotating as a rigid body
about an axis, the amount of energy possessed by the fluid is infinite and it is of great
interest to know how small disturbances propagate in such a fluid. Recently, the study
of rotating flows has gained considerable importance due to their applications in cosmical
and geophysical fluid dynamics. Several workers have been engaged to the rotating viscous

flows in various directions. Extensive literature is available on the topic dealing with the



time-dependent and time-independent flows in the rotating frame. But there is yet another
area of such flows in which no considerable attention has been given. This is the area of
the rotating flows in non-Newtonian fluid dynamics. Little work seems to have been done
in this area. Recently Hayat et al. [39 — 43, 88| presented a series of investigations for the
non-Newtonian fluid in the rotating frame. Rajagopal et al. [44] has given the existence
theorem for the flow of a non-Newtonian fluid past an infinite porous plate.

Extensive research has been undertaken for unidirectional flows of a second grade
fluid (simplest subclass of a differential type fluids). This is perhaps due to the fact that in
second grade fluid, the governing equation for unidirectional flow is linear whereas it is non-
linear in third and fourth order fluids. But the steady unidirectional flows of a second grade
fluid over rigid boundaries do not include the rheological characteristics in the solution.
Because of this fact the third and fourth order models have gained much importance. Such
models include the rheological properties even for the steady unidirectional flows over rigid
boundaries. Important contributions regarding the unidirectional flows of third and fourth
grade fluids are given in the studies [45 —49]. Chen et al. [83 — 85] has discussed the
unsteady unidirectional flows with different given volume flow rate conditions. Siddiqui et
al. [87,89 — 91] has done series of investigations for the steady and unsteady flows of non-
Newtonian fluids. It is known that in general the governing equations for the non-Newtonian
fluids are of higher order than the Navier-Stokes equations and thus the adherence conditions
become insufficient. The critical review regarding the boundary conditions, the existence
and uniqueness of the solution has been given by Rajagopal [50,51], Rajagopal et al. [44]

and Rajagopal and Kaloni [45].



It is generally recognized that non-Newtonian fluids are more important and appro-
priate in technological applications than Newtonian fluids. Polymer solutions and polymer
melts provide the most common examples of non-Newtonian fluids. Using the Newtonian
fluid model to analyze, predict and simulate the behavior of the non-Newtonian fluid have
been widely adopted in industries. However, the flow characteristics of a non-Newtonian
fluids have been found to be quite different from those of a Newtonian fluids. Thus we
cannot replace non-Newtonian fluid by a Newtonian fluid for practical applications. Hence,
it is necessary to study the flow behavior of non-Newtonian fluids in order to obtain a thor-
ough cognition and to improve the utilization in various manufactures. Due to variety of
fluids, several non-Newtonian fluid models have been proposed. Amongst these there is a
Johnson-Segalman fluid model. This model is developed to allow for non-affine deformation
[52]. Some researchers [53,54] used this model to explain the phenomenon of “spurt”: in
which there is a large increase in the volume throughout at a critical pressure gradient
for a small increase in the driving pressure gradient. Experimentalists usually associate
“spurt” with slip at the wall and there have been a number of experiments [55 — 62] to
support this hypothesis. Rao and Rajagopal [63] and Rao [64] have made advances towards
explaining this phenomenon. However, no attempt has been made to discuss the flow of
the Johnson-Segalman fluid in the context of magnetohydrodynamics (MHD). Examples of
non-Newtonian fluids which might be conductors of electricity are given by Sarpkaya [65],
e.g., flow of nuclear slurries and of mercury amalgams, and lubrication with heavy oils and
greases.

Due to all the afore mentioned facts in mind, the present thesis is arranged in



the following form. Chapter 2 includes the basic definitions and equations which are quite
helpful for the succeeding chapters. In chapter 3 the analytic solution for the flow of a
micropolar fluid is developed using Lie group method. The translation type symmetry has
been taken into account. The various graphs are plotted to see the variation of velocity
profile for the various values of the involved parameters. The contents of this chapter are
published in Acta Mechanica, 188, 93 — 102 (2007).

In chapter 4 we have modeled the differential equation for the third grade fluid in
the porous half space using modified Darcy’s law. Stokes’ first problem has been discussed
using Newton'’s method. Variation of the various emerging parameters is seen on the velocity
profile. To the best of our knowledge the modified Darcy’s law has been introduced first time
in the literature. It is found that for 7 > 67 the non-Newtonian effects become weak and
the flow field behaves as if it is a Newtonian fluid. The contents of this chapter have been
accepted for publication in Communications in Non-Linear Science and Numerical
Simulations.

Chapter 5 has been prepared just to provide an analytic solution for the steady
flow of the third grade fluid in a porous medium. Expression for velocity has been obtained
using a newly developed method namely the homotopy analysis method (HAM). The non-
linear problem has been solved for the series solution. Recurrence formulas are obtained.
Convergence of the obtained solution is discussed. The influence of various parameters of
interest are first sketched and then discussed for the velocity profile. The contents of this
chapter are published in Applied Mathematical Modelling, 31 (11), 2424 —2432 (2007).

Chapter 6 provides the modelling for the rotating flow of a third grade fluid.



10

Numerical solution has been presented for Stokes’ first problem using Newton’s method.

Various graphs are plotted in order to see the behavior of the involved parameters on the

for publication in

velocity distribution. The contents of this chapter have been accepted
Nonlinear Analysis Real World Applications Series B.

In chapter 7 we have modeled the differential equation for the flow of a fourth
order fluid in the porous half space using modified Darcy’s law. The governing equation is
solved for the Stokes’ first problem using Newton’s method. Effects of material parameters
are shown on the velocity. It is worth mentioning that modified Darcy’s law for the fourth
order fluid has been introduced first time in the literature here. The contents of this chapter
are published in Acta Mechanica Sinica, 23, 17 — 21 (2007).

Chapter 8 contains the numerical solution for oscillatory flow of a fourth order
fluid. The effects of Newtonian and non-Newtonian fluid parameters are anlyzed on the
velocity distribution. The contents of this chapter have been submitted for publication in
Meccanica.

In chapter 9 the Couette flow of a Johnson-Segalman fluid is discussed in the
presence of the uniform magnetic field. One-dimensional, steady and incompressible flow of
a Johnson-Segalman fluid is studied. The flow is created due to motion of the upper plate.
The combined effects of viscoelascity and magnetic field are considered. The governing
equation of the problem is first reduced to a non-linear ordinary differential equation and
then solved for a general solution. The Couette flow has been also discussed numerically

using Newton’s method. The influence of the Weissenberg number, Hartmann number and

ratio of viscosities upon the velocity have been explained. The contents of this chapter have



11

been submitted for publication in Mathematical Methods in the Applied Sciences.
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Chapter 2

Preliminaries

This chapter contains some basic definitions and equations. Newton’s and homo-

topy analysis methods are also included in this chapter.

2.1 Non-Newtonian fluids

A non-Newtonian fluid is a fluid in which the viscosity changes with the applied
shear force. As a result, non-Newtonian fluids may not have a well defined viscosity. Al-
though the concept of viscosity is commonly used to characterize a material, it can be in-
adequate to describe the mechanical behavior of the substance, particularly non-Newtonian
fluids. They are best studied through several other rheological properties which relate
the relations between the stress and strain tensors under many different flow conditions,
such as oscillatory shear, or extensional flow which are measured using different devices or
rheometers. The rheological properties are better studied using tensor-valued constitutive

equations, which are common in the field of continuum mechanics.
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An inexpensive, non-toxic sample of a non-Newtonian fluid can be made easily.
Just add corn starch to a cup of water. Add the starch in small portions and stir in slowly.
When the suspension nears the critical concentration, then so called "shear thickening"
property of this non-Newtonian fluid becomes apparent. The application of force from the
spoon, your fingers etc causes the fluid to behave in a more solid like fashion. If left at
rest it will recover its liquid like behavior. Shear thickening fluids of this sort are being
researched for bullet resistant body armor, useful for their ability to absorb the energy of
a high velocity projectile impact but remain soft and flexible when struck at low velocities.

A familiar example of the opposite, a shear thinning fluid, is paint. One wants the
paint to flow readily off the brush when it is being applied to the surface being painted, but

not to drip excessively.

Bingham plastic a—— ¢l==tln.

piastio

Hewtonisn

Shear alrdes, ¥

Oifwlanl
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e

Rate of shear, Gudy

Fig. 2.1 The relation of shear rate with shear stress.
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2.2 Differential type fluids

Due to complexity of fluids, there are several models of non-Newtonian fluids. One
of these is a class of differential type fluids. The detail review on the topic is given by Dunn

and Rajagopal [66]. The most general subclass of differential type fluids is a fourth order

fluid.
The constitutive relation for the fourth order fluid is
T=—pI+/LA1+a1A2+C¥2A%+Sl+Sz, (2.1)
where
S1 = B1As+ By (AgA1 + ArAg) + B (trA3) Ay, (2.2)

Sa = 71As+72(AsAL + A1As) +73A% + v, (A2AT + ATAg) + 75 (trA2) Ay

+vg (tT‘Ag) A% + (’)’7t’l"A3 + Ygtr (AgAl)) A;. (23)

In the above equations T is the Cauchy stress tensor, p is the hydrostatic pressure, I is the
identity tensor, y is the coefficient of viscosity called dynamic viscosity and o; (i = 1,2), B;
(1 =1to0 3), v (k=1 to 8) are material constants. Note that for 7, =0 (k = 1 to 8) the
fourth order fluid model reduces to the third order model, while when B; =0 (4 =1 to 3)
and 7, = 0 (k=1 to 8) the model (2.1) reduces to a second order fluid and if oy = 0
(1=1,2),8;=0(j =1to 3)and v, = 0 (k =1 to 8) it becomes the classical Navier-Stokes

model. The kinematical tensors A; to A4 are defined through the following expressions

A =L+LT, (2.4)

dA,_
A, = —a’t‘—l +AL+LTA, ;. (n>1), (2.5)
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L=VV, (2.6)

in which V denotes the velocity field, V is the gradient operator and d/dt is the material
time derivative given by

d 0
=5 (V-V), (2.7)
in which the first and second term on the right hand side indicate the local and convective
parts of the derivative.

For third grade fluids, physical considerations were taken into account by Fos-

dick and Rajagopal [67]. They obtained that p, a1, ag and 3 must satisfy the following

hypothesis

p=>0, a1 >0, |ai+og|<+/24pB3, By =PB,=0, B3>0, (2.8)

and for second grade fluids, physical considerations were discussed by Dunn and Fosdick
[75]
>0, a1>20, o3+ag>0, (2.9)
and hence the constitutive equation for second and third grade fluids are
T = —pl + pA; + a1Ag + 0 A2, (2.10)
= —pL+ pA; + a1Ag + agA? + B3 (trA2) Ay, (2.11)

respectively.

2.3 Equation of continuity

At any point in the fluid, the continuity equation is defined as

%§ +V.(pV) =0. (2.12)
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This is also called the "consevation of mass equation".
For an incompressible fluid the density p is constant and Eq. (2.12) may be
simplified as

V.V =0. (2.13)

2.4 'The momentum equation
The fundamental equation describing the flow of an incompressible fluid is
7] .
P\ 5 + (V.V) ) V =div T+pb, (2.14)

where pb are the body forces per unit mass and matrix form of Cauchy stress tensor is

Tez Tzy Tzz

Tyz Tyy Tyz |°

Tew Tay Taz
where T4, Tyy and 7., are the normal stresses and Tgy, Tzz, Tyz) Tyzy T2e and T,y are the

shear stresses.

The scalar form of Eq. (2.14) may be written as

Ou  Ou Ou  Ou]l 0Tz , OTzy , OTq:
p["a_t‘l'ua—x-'!-’v-a— +w-6—z] = =+ By ez 5 + pba, (2.15)

; [@ v O Bv] _ Orye i OTyy X OTys Fir (2.16)

B o Ty U T B T By e
{Bw ow ow aw] e , Oy . O
p =2 Sy

e T = Ty T o

+ pbz, (2.17)

where u, v and w are the velocity components in the z, y and z directions. Here pb,, pb,

and pb, are the body forces per unit mass in the z, y and z directions, respectively.
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2.5 Porous medium

A porous medium is a continuous solid phase with intervening void or gas pock-
ets. Natural porous media include soil, sand, mineral salts, sponge, wood and others.
Synthetic porous media include paper, cloth filters, chemical reaction catalysts, and mem-
branes. Porous medium is also used in geology, building science and hydrogeology. Porous
medium is also defined as a medium that has numerous interstices, whether connected or

isolated. Further porous medium is that medium for which the permeability is non-zero.

2.6 Couette flow

The term Couette flow refers to the laminar flow of a viscous fluid in the space
between two surfaces, one of which is moving relative to the other. The flow is driven by
virtue of viscous drag forces acting on the fluid. This type of flow is named in honor of
Maurice Frédéric Alfred Couette, a Professor of Physics at the French University of Angers
in the late 19th century.

Most commonly, the term "Couette flow" refers to the flow between two planes
moving relative to one another (but with constant separation between the two planes).
Other examples include the flow between two concentric spheres with a common axis of
rotation, or the flow between two coaxial cylinders with one of the cylinders rotating at
some angular velocity relative to the other. This latter type of flow is usually referred to as
Taylor-Couette flow, which honors the work of G. I. Taylor on the theoretical hydrodynamic

stability of this flow.



2.7 Numerical technique and discritization process
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Non-linearity is a big problem for engineers, physicists and mathematicians for

a long time. It is not always possible to obtain the analytic solution for the non-linear

problems. Therefore, the solution by numerical techniques in such cases has got its impor-

tance. The process of obtaining the computational solution of certain problem requires the

following two steps.

2.7.1 Step 1

Convert the non-linear partial differential equation and the auxiliary conditions

into discrete system of algebraic equations by using the following formulas

af 1
ks (fig = Fong=1) s
2f 1
.8? — EE (fi,j+1 _— in'j + fi;j'—l ) )
af 1
il (firrs — fim1i5)
2f 1
Er o) (firrg —2fij + fi-13) 5
o f 1
? - ﬂi (fi+2,j - 2f1'+1,j + 2fi—1,j - f‘i—Q)j ) ’
o4 1
Fr =3 (fire,j — 4fiv1j +6fij — 4fim15 — fim2sj) s
#f 1
5 = o fit3g — 4fivag = Bfirrg = Sficry + dfing = 2fi5y),
Pf 1
ariar — hak it~ fitg = 2fii + 2fij + fiog = fieni),
gy 1 fivaj — fivaj-1 — 2firr,j + 2fir151
onPor — 2h3k ’

+2fi-15 — 2fi-1,j-1 — fiaj + fi-2:5~1

(2.18)
(2.19)
(2.20)
(2.21)
(2.22)
(2.23)
(2.24)

(2.25)

(2.26)
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o f 1 fiv1j — 3finrj—1+ firrj—2 — fizrj-3 —2fij +4fij-1 s

on2073 ~ h2k3 » (2:27)
~4f; i1 —4fij-24+2fij-1 + fi-15-2 — fi-1,j-3

Otf e fir1,j — 2fir1,5-1 — 2fij + fiv15-2 . 2.28)

+4fij-1—2fij-2 + fi-1,j — 2fi1,-1 +fica,j-2

etc.

This process is known as discritization.

2.7.2 Step 2

The solution process requires a numerical method for the solution of the system
of algebraic equations. For the solution of a linear system of algebraic equations we have
Gauss-Seidal, Gauss-Jordan and S.0.R methods. For the solution of a non-linear system of

algebraic equations, we can use Newton’s method.

2.8 Newton’s method

The discritization process gives us a system of algebraic equations which can be
written in the following form

AX =B, (2.29)

where X is a column matrix of unknown nodal values. A contains algebraic coefficients
arising from discritization and B is made up of known values.

The Eq. (2.29) can also be written as

R=AX-B=0. (2.30)
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Note that R is known as residual. This R —0 as the computational solution will tend to

the exact solution of Eq. (2.29). The Newton’s method can be written as
-1
Xk+1 = xk [Jk] R, (2.31)

where k is the iteration level and J* is the Jacobian. An element of J* is

ORk

k
amj

Jij = =%, (2.32)

Eq. (2.31) can also be written as
JPFAXF = —RK, (2.33)

in which
Axk — xk+1 _ X.k.
Newton’s method demonstrate quadratic convergence, if the current iteration X* is suffi-

ciently close to the converge solution X..

Quadratic convergence implies that

2

Hx’““ - x“ ~ ”xk =X, (2.34)
The criterion for the convergence of Newton’s method can be developed as follows:
1. JO has an inverse with its norm bounded by d, i.e.
@7 <, (2.35)

2. AX? has a norm bounded by 72, ie.

lax?)| = |- (@' r| <, (2.36)



3. R has continuous second order derivative satisfying

> |2

j=1

(92
O0x;0x;

-
=N

v

If ab¢ < 0.5, the Newton’s method will converge to the solution

lim X*=X,,
—r00
at which
R (X.) =0,
and

The vector norms are maximum norm i.e.
1 = mae fo]
The matrix norm are maximum natural norms, i.e.

N
131 = mae 3 1.
i=1

for all X in ||AXO|| < 25.
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(2.37)

The main difficulty with the Newton’s method is that the radius of convergence b decreases

so that X° must be close to X, to ensure convergence.

The main contribution to the execution time in using Newton’s method is the

factorization of J* in the solution of Eq. (2.33). It is possible to reduce the execution time

by freezing the value of J* for a number of steps Ak, i.e., J* need only be factorized once

every Ak steps. However, more iterations are required to reach the convergent solution.
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2.8.1 Advantages of Newton’s method

The Newton’s method has the following advantages:
i. Rapid convergence, i.e., few iterations are required.
2. Can be modified to overcome many explicit disadvantages.

3. Approximate solution can be exploited.

2.8.2 Disadvantages of Newton’s method

The Newton’s method has the following disadvantages:
1. Small radius of convergence if we have large number of unknowns.
2. Factorization of J at each iteration is computationally expensive.

3. Fails to converge if J becomes ill-conditioned.

2.9 Homotopy

The homotopy comes from topology. Two continuous functions or two mathemat-

ical objects are said to be homotopic if one can be continuously deformed into the other.

2.9.1 Definition of homotopy

A family of maps hy : X — Y, indexed by the real numbers, is called a homotopy

if the function H : X x [0,1] — Y, defined by
H(z,t) =he(z), (zeX,tel)

is continuous. Here hg and h; are called respectively the initial map and the terminal map

of the homotopy h.
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Two maps f: X —Y and g: X — Y are said to be homotopic (notation: f: 9),
if there exists a homotopy, k¢ : X — Y, (0 <t < 1), such that hy = fand hy = g. In this

case h; is called the homotopy connecting fand g, and is denoted by

ht:fﬁg.

Intuitively, f and g are homotopic if and only if each can be changed continuously into the
other. Some special cases of homotopies are of importance. Let us suppose that X is a
subspace of Y. Then the homotopy h¢ : X — Y is said to be a deformation of X in Y if hg
is the inclusion map 7 : X C Y. In this case we say that X is deformable into Y.

Further if fis homotopic to g, then there exist a parametric family
{Hp:5€[0,1]}
of continuous functions such that H, : R x [0,1] — R defined by
Hp(z) = (1—p) f(¢) +5G(z), forallzcRandpe0,1].

Such a homotopy is usually called as linear homotopy.

2.9.2 Homotopy analysis method (HAM)

The homotopy analysis method as proposed by Liao [68,76 — 82] is successfully
applied to obtain the analytic solution of the differential equations. The details of the
application algorithm of homotopy analysis method is given in chapter 5 and therefore

omitted here.
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Chapter 3

Analytic solution for flow of a

micropolar fluid

This chapter looks at the analytic solution for the flow of an incompressible mi-
cropolar fluid. The governing two-dimensional equations are first modeled and then solved
for a geological problem. Lie group method has been used in obtaining the solution. The

graphs are displayed and discussed.

3.1 Equations of motion

In tensorial notation, the basic equations which govern the flow of a micropolar
fluid are:
Conservation of mass
dp

i (pvi) . = 0, (3.1)

where "," denotes the partial derivative and repeated indices means the Einstien
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summation convention.

Balance of momentum
tiik +p (fi—v) =0. (3:2)
Balance of first stress moments
tmt — 8mt + At + P (lim — Gim) = 0, (3.3)

where p is the mass density, vy, is the velocity vector, ¢y, is the stress tensor, f; is the body
force per unit mass, s,,; is the micro-stress tensor, \gm, is the first stress moments, l,, is
the first body moments per unit mass and &y, is the inertial spin.

The stress tensor ¢ and the micro-stress tensor s are defined as (8]
t = [—m + Atrd + Aotr (b — d)] I + 2ud + 2p¢ (b — d) + 2p, (b7 — d), (3.4)

s = [=m + Atrd + notr (b — d)] T + 2pd + & (b — b7 —2d), (3.5)

in which I is the unit tensor, A, Ao, g, fg, i1, Mg and &, are the viscosity coefficients. Also
tr denotes the trace and a superscript T' indicates the transpose.

Furthermore, the rate of deformation tensor is
1
dit = 5 (Ve + Vi) (3.6)
and micro-deformation rate tensor of second order is
bk = Vit + O (3.7)

For micropolar fluids, we have

Metm = —Mklm, Okl = —O. (3.8)
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Using Egs. (3.4) — (3.8) in Egs. (3.1) — (3.3) the two dimensional equations for an incom-

pressible micropolar fluid become [70]

ou  _Ou o*w  o% gz 0Jp
P(ua—f-i-v%) = (p+ k1) (‘;;7'1"?) +k1_8_§—8_§:" (3.10)
_ 06 _0v 0%t 0% dc 0p
p(ua—%+v5—y) = (p+ k1) (ﬁ'i-'a?) _kl_:z;-_a__y' (3.11)
-(_85 _07 0% 0% _ ov ou
pJ <u—a-_; + ’U?y> =G, (ﬁ =+ 5‘@3) —2kT + Kk (3_5 . ?y) ) (3.12)

where T and U are the components of the velocity field in the Z and 7 direction, 7 (Z,7)
is the micro-rotation component and p = (%, ) is the pressure distribution. Here pu, ki,
Giand 7 are coefficient of viscosity, coupling constant, micro-rotation constant and local

micro inertia.

Defining
N T S |
p =2 o=2, j:%, (3.13)
the Egs. (3.9) — (3.12) reduce to
%+g§=0, (3.14)
ug—z+vg—z=(€1+62) (%-ng—;;) +éag—g—€4-(g—i, (3.15)
u% +Ug§ = (€1 + €3) <'gr%g+gi;;) —63%—642—5, (3.16)

_8_cr+vgc_r_ -61(1—1-62—0 —€g0 + € iy e (3.17)
- y—fs dz% = Oy? 6 "oz ay)’ '



where

p . )% I kl i kla‘ By s P
1 = pLU’ 2‘—pLU) 3 = pUQ-n 4—pU21
) G1J 2k LJ kyJ

5 = = = —

=, 6= —=" €7 e
pLU;j pUj poj

and €; and e are the reciprocal Reynolds numbers.

3.2 Symmetry analysis

In order to obtain the analytical solution, we use Lie group theory to Eqs

(3.17). For this we write

g = z+efi (Y49, +0 (),
y* = y+eby(z,y,uv,p)+0(2),
u' = u+en (2,9,4,9,p) +0 (),
vt = vten(z,y,u,v,p) +0 (£7),
p* = p+ens(z,y,u,v,p) +0 (%),
o* = o+eny(z,y,u0v,p)+ 0 ()
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(3.18)

. (3.14) -

(3.19)

as the infinitesimal Lie point transformations. We have assumed that the Eq. (3.14) to

(3.17) are invariant under the transformations given in Eq. (3.19). The corresponding

infinitesimal generator is

5} 0 0 0 0
X=&5- +52% TG, thg, T, gy

(3.20)

where &;, &5, 11, 79, 73 and 74 are the infinitesimals corresponding to z, y, u, v, p and o

respectively. Since our equations are atmost of order two, therefore, we need second order
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prolongation of the generator in Eq. (3.20) and then apply the invariance condition to get

the following infinitesimals [69 — 72].

El = b1 62 =,

m = 0, 7y=0, my=d, n=e (3.21)
Therefore, equations admits four parameter Lie group of transformations. Parameters b, c,
d and e correspond to translations in the z, y, p and o coordinates, respectively. By consid-

ering the translations in z, y directions and choosing d, e = 0 and solving the corresponding

characteristic equation the similarity variables and functions are given as

£ = y—mz, u=f(), v=g(), p=h(&),

o = N(¢) (3.22)

where m = ¢/b be an arbitrary parameter. In view of variables and functions in Eq. (3.22),

Egs. (3.14) — (3.17) become

-mf' +g¢ =0, (3.23)
(=mff' +gf") = (e1+ &) (L+m?) " + eaN' + eamlt, (3.24)
(-mfg +g9') = (a1 +e) (1+ 7112) " +eamN' —e4l/, (3.25)
(-mfN'+gN') = €5 (1 +m?) N" — N — &7 (mg’ + f') . (3.26)
Integration of Eq. (3.23) yields
g=mf+Ch. (3.27)

Eliminating A (§) from Egs. (3.24) and (3.25) and making use of Eq. (3.26) we get

(1+m2) Cof = (a1 +e) (L+m)’ ' + &3 (1+m?) N (3.28)
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From Eqgs. (3.26) and (3.27), one can write
C1N' = ¢5 (1 -+ m2) N" —egN — €7 (1 + 7712) (3.29)

Now Integrating Eq. (3.25) and then using Egs. (3.27) and (3.28), we obtain

he2 (3.30)
€4

in which C; and Cj are any arbitrary constants. Eliminating f (§) between Eqgs. (3.28) and
(3.29), we have

N® — AN" + BN" + CN' =0, (3.31)
where

Ci (e5 + €1 + €9)

A )
€5 (]. + mz) (61 St 62)
B - [C? — (1 +m?) {e6 (€1 + €2) + e3€7}]
es (1+m?)? (e1 +€3) ’
- 01626 . (3.32)
€5 (1 +m?)” (e + €2)
The solution of Eq. (3.31) is given by
N (€) = C3e™€ + Cye™ + Cse3¢ + Cs, (3.33)

where C3, Cy4, Cs and Cp are any arbitrary constants and ¢; (i = 1,2, 3) are the roots of
the following equation

& - Aa*+Ba+C=0. (3.34)
From Egs. (3.29) and (3.33), the expression for f (£) is

€6Cpé

£(€) = Brem® + Boe™ + Byeot — =2

+ Cr, (3.35)
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in which C7 is any arbitrary constant and Bi (i = 1,2,3) are given through the following

= Civo [65 (1 + mz) o2 — eg— Clozi]

i_

, = 3.36
181 67(1 +7712)a1; ( )
In the form of original variable we have
w(z;y) = Eleal(y"m) + Bzeaz(y—mz) =0 Bseaa(y—mz)
5606 (y = ma;)
N Wy 3.37
e7 (1 +m?) +C, (3.37)
Bleal(y—mw) 4 Ezeaz(y—M)
v(z,y) =m + Ci, (3.38)
+Bgecalv—ma) _ wleluone) 4 ¢,
o(z,y) = CaetWm=) | Cyet2lv—m2) 4 Cpeslv—ma) 4 Oy (3.39)
C
plz,y) = =2 (3.40)
€4

Egs. (3.37) — (3.40) give the solution of Egs. (3.14) — (3.17) that involve seven unknown
constants. For determining the values of these constants we consider a problem that occur
in geology. Consider a magmatic micropolar fluid and a plate over it. The plate occupies
the position y = 0. The positive y goes deep into the fluid beneath the plate. The relevant

boundary conditions are of the form:

wiz,0) = Uy w(z,00)=10, %(o,y):o, v (z,0) = -W,
a{z,0) = 0, o(z,00)=0, plr, c0)=py (3.41)

The expressions (3.37) to (3.40) subject to the conditions in the above equation become

u(z,y) = 72-_[‘](3)/1 (,Yle—ay _ 726—52/) . (3.42)
v(z,y) =m (72__ = (’Y1€_ay _ ,Yze—ﬁy)) - mUp — Vo, (3.43)
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Us » "
o(z,y) = e — e Py 3.44
@) = = ) (3.44)
p(z,y) = po, (3.45)
where

_65(1+m2)a2—66+C1a (3.46)

n= —e7(1+m?) o ' )
ST I S O (3.47)

R Y '

and —o and —f are the negative roots of Eq. (3.34).

3.3 Discussion

This section deals with the interpretation of the translational parameter m and
the magmatic fluid penetrating parameter Vj on the z and y components of the velocity and
on the angular velocity . Figs. 3.1, 3.2 and 3.4 — 3.7 have been prepared for the velocity
components where as Fig. 3.3 holds for the angular velocity. It is found from Figs. 3.1 and
3.2 that velocity components u and v are decreasing functions of m. It is also evident from
Fig. 3.3 that the behavior of m on the angular velocity is opposite to that of u and v.

From Egs. (3.42) — (3.44), we note that the magmatic fluid penetrating parameter
only enters into the y-component of the velocity. The z-component of the velocity u and of
o are independent of Vj. It is found from Fig. 3.4 and 3.5 that the z-component of velocity
increases by increasing the value of V; for either Vy > 0 or Vp < 0. It is clear from the Figs.
3.6 and 3.7 that the behavior of Vj on the y-component of the velocity is opposite to that

of the z-component of the velocity distribution.
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Fig. 3.1 Variation of dimensionless velocity distribution along z-axis

with the value of m (e — €4,€6,67 =0.5; €5 =2 ; Up = Vp = 2).
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Fig. 3.2 Variation of dimensionless velocity distribution along y-axis

with the value of m (e; — €4,€5,67 =0.5; 5 =2 ; Uy = Vp = 2).
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Fig. 3.3 Variation of dimensionless angular velocity with
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Fig. 3.4 Variation of dimensionless velocity distribution along z-axis

with the value of Vp (€; — €4,€6,67 = 0.5 ;€5 =2 ; Up = 2).
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Fig. 3.6 Variation of dimensionless velocity distribution along y-axis
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Fig. 3.7 Variation of dimensionless velocity distribution along y-axis

with the value of Vp (1 — €4,€5,67 = 0.5; €5 =2, Uy = 2.

3.4 Concluding remarks

In this chapter, we have presented the analytical solution for the steady two di-
mensional equations of a micropolar fluid. Lie group analysis has been employed and the
solutions corresponding to the translational symmetry are developed. The results are also
sketched graphically. These results show the similar behaviour as that of numerical solu-
tion [19]. The contents of this chapter are published in "Acta Mechanica" 188, 93 — 102

(2007).
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Chapter 4

Stokes’ first problem for a third

grade fluid in a porous half space

This chapter investigates the flow of a third grade fluid in a porous space. A
modified Darcy’s law for a third grade fluid has been introduged. Stokes’ first problem has
been studied. Numerical simulations have been performed using Newton’s method. The
numerical solution indicates that for a short time non-Newtonian effect is present in the

velocity field. However, for a long time the velocity field becomes a Newtonian one.

4.1 Governing equations

In a porous space, the equations describing the flow of an incompressible third

grade fluid are Egs. (2.1) — (2.8) and

p <% + (V.V)) V=-Vp+divT +r, (4.1)
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where r is the Darcy resistance for a third grade fluid in a porous space.

4.2 Problem formulation

Consider a Cartesian coordinate system OXY Z with y-axis in the upward direc-
tion. The incompressible third grade fluid flows through a porous space y > 0 and in contact
with an infinite flat plate at y = 0. Initially both fluid and plate are at rest. At ¢t =0T, the
plate is impulsively brought to the constant velocity Up. Under the stated assumptions, we

may write the velocity in the following form :
V =u(y,t) 7, (4.2)

where 7 and u are respectively the unit vector and velocity in the z-direction. The above

equation automatically satisfies the continuity equation. Further Egs. (2.4) — (2.6) and

(2.10) give
as = 02 (‘%‘)2 , (43)
oy = g+ al% 26, (%)3 , (4.4)
Tyy = 201 (2—5)2 + g (%)2 ) (4.5)
Toz =Taz =0, Toy=Tys, Tyz=Tay, Taz= Tz (4.6)

In an unbounded porous medium the Darcy’s law holds for viscous fluid flows, having low
speed. This law relates the pressure drop induced by the frictional drag and velocity and
ignores the boundary effects on the flow (i.e., invalid where there are boundaries of the
porous medium). According to this law the induced pressure drop is directly proportional

to the velocity. For the porous medium with boundaries, Brinkman proposed an equation
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describing the locally averaged flow. Although the equation proposed by Brinkman holds
only for steady viscous flows but there are several modified Darcy’s laws available in the
literature for viscous flows in a porous medium. Much attention has not been given to math-
ematical macroscopic filtration models concerning viscoelastic flows in a porous medium.
On the basis of Oldroyd constitutive equation, the following law for describing both relax-

ation and retardation phenomenon in an unbounded porous medium has been suggested
(38]:

9 _ ke g
(1 + ,\§> Vp==~t (1 x ’\’”at> v, (4.7)

where k is the permeability, A and A, are the constant relaxation and retardation times
respectively and ¢ is the porosity of the porous medium. Note that for A = A\, = 0,
Eq. (4.7) reduces to well-known Darcy’s law of viscous fluids. By analogy with Maxwell’s
constitutive relationship the following phenomenological model has been available in the

literature [73]:

4 __hke
<1 4 /\E> Vp= -5V (4.8)

For unidirectional flow of second grade fluid the constitutive equation can be obtained
from that of an Oldroyd-B fluid by taking A = 0 [36,74]. Thus, in a porous medium, the
relationship between Vp and V for unidirectional flow of a second grade fluid can be written

from Eq. (4.7) as follows:

- -

where

/J)\r = 0.
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Employing the same idea as in Eqs. (4.7) — (4.9), we propose the following constitutive

relationship between the pressure drop and velocity for unidirectional flow of a third grade
fluid:

Op _
8z

u+alg + 28, <6y> ] q:‘ (4.10)

The pressure gradient in the above equation can also be interpreted as a measure of the
resistance to flow in the bulk of the porous medium and r; (z-component of r) is a measure
of the flow resistance offered by the solid matrix. Thus r can be inferred from Eq. (4.10)

to satisfy the following equation:

re [u+a1§t+2ﬁ3 (aD }"% (4.11)

Substituting Eqs. (2.4) — (2.6), (4.2) and (4.11) in Eq. (2.10) and then neglecting dp/dz,

we obtain
ou 0%u 93y ou 262u ou ou
o ik ou 98 == | | L2 4.12
& “ay2+°‘16y2at+6ﬁ3<6y> a7 Pty T /33(334)} g Ay

The relevant boundary and initial conditions are
u(0,t) = Up, u(y,t) — 0 as y — oo ; u(y,0) = 0. (4.13)
Introducing the following non-dimensional variables
Uy Ug U

n=—y, T = —1t, f=— (4.14)
14 v

the problem becomes

of _ o & of\* 8*f _
(1+d)8'r _877_+ 628'r+6b 817) Er

c+2e (gf)) }f, (4.15)

f(OaT) = 17 f(TI,T) == as 1 — 09, f(7710) - O’ (416)



where

1, p Bl e, _ad
pVZ b pUS 3 kUg’ pk' b
_ Bs¢Ug
pkv

4.3 Numerical results and discussion
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(4.17)

We note that Eq.(4.15) is a third order partial differential equation. It is perhaps

not possible to obtain the exact analytic solution. Due to this, we seek the numerical

solution. For this purpose the Eq. (4.15) is transformed into system of algebraic equations

by substituting the approximations to the derivatives given in section 2.7 as

(#) g — fog-1) = % (fivr5 — 2fij + fi-14)

—h%k (firrj = Farrg—1 = 2fii + 2fi j=1 + fimr5 — fim1,5-1)
—4%34' [(fi+1,j + fic1) (figrj — 2fij + fi_l,j)]

+cfij + 12% (firrg — fim14)? fij

= 0.

The above system of algebraic equations also gives

Ri= Afij+ Bfis1j+Cfimrj+ Kify; + Kaffy jfij + Kaff j fi1g

+Kafl ) jfirrg + Kosfly jifig + Kefy;+ Kefirificrifig + Ffij—

+Gfiv1,j-1+ H fi-1,j-1,

(4.18)

(4.19)
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where

14+d 2 2a 1 a
4= [(T)Jrﬁi*m“]v B—‘[ﬁ*"m]’

M1 a 3b 3b e
g = ‘[EE“LW]’ Ki= gm0 Ke=ptom
K3 = —-Ki, Ky=-K;, Ks;= Ky,
6b e 1+d 2a
Ko = Ki, Kr=—35-72 F=‘(T>‘m’
a
= =57 =G. 4.20
G o H=G (4.20)

Now the initial and boundary conditions can be written in the following form
foj=1, fm;j=0, fio=0 i=0,1,2,.,.M j=0,1,23.. (4.21)

Here M denotes an integer large enough such that Mh approximates infinity. Since our Eq.
(4.15) is of third order while given boundary conditions are two, therefore, we introduce an

augmented boundary condition

Bf (o0, T)

= 4.22
o =0, (422

and consequently the problem becomes well-posed. This boundary condition is discretized

to give

furig = fag _ 0
h )

ie.,

fvij = fuge (4.23)
The problem consisting of Eq.(4.15) and conditions given in Eq.(4.16) has been solved
numerically by employing the Newton method. Solutions for the non-Newtonian fluid mod-
els are obtained for 7 = 27. From the numerical solution f is used to express the non-

dimensional velocity profile parallel to z-axis. Results for the flow are obtained for various
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values of the parameters a, b, ¢, d and e. The discussion of emerging parameters on the
velocity is as follows:

Fig. 4.1 presents the velocity profile f for various values of a and d. This figure
shows that increasing the parameter a or d decreases the velocity and the boundary layer
thickness. Fig. 4.2 elucidates the influence of b and e on the velocity profile f. It is evident
from the figure that an increase in these parameters results in a decrease of the velocity
profile. The effect of porosity parameter on f is displayed in Fig. 4.3. It is clear that
both velocity and boundary layer thickness decrease by increasing the porosity parameter.
Fig. 4.4 shows how the velocity changes with the value of the second grade parameter in a

non-porous space. It is found that here the velocity increases by increasing a.
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Fig. 4.1 Variation of second grade and porosity parameters on f
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forc=0,a=0.1,d=0.1at 7 = 27.
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Fig. 4.4 Variation of second grade parameter on f with

b=p=d=0e=08a67 =27,

4.4 Concluding remarks

In the present chapter, Stokes’ first problem is analyzed for the third grade fluid
in a porous space. The governing constitutive relationship for modified Darcy’s law in
a third grade fluid has been proposed. To the best of our knowledge such relationship
is not available in the literature. It is noted that modified Darcy’s law in unidirectional
flow of a third grade fluid yields non-linear expression in terms of velocity whereas it is
linear for Newtonian, Oldroyd-B, Maxwell and second grade fluids. The governing non-
linear problem that comprised the balance laws of mass and momentum has been solved
numerically. Results for velocity are presented. It is important to note that variation of
second grade parameter on the velocity in porous and non-porous space is quite different.
It is further found that for 7 > 67 the non-Newtonian effects become weak and the flow

field behaves like a Newtonian fluid.
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Chapter 5

Analytical solution for the steady
flow of a third grade fluid in a

porous half space

This chapter deals with the homotopy analysis method (HAM) solution for steady
flow of a third grade fluid over a jerked plate. The solution is developed when the fluid fills
the porous half space. Recurrence formulas are given. Convergence of the obtained results
is analyzed. The graphs for velocity are sketched and influence of various parameters of

interest is seen.

5.1 Problem formulation

Let us consider the steady flow of a third grade fluid in a porous half space. Taking

the positive y-axis of a Cartesian coordinate system in the upward direction, let the third
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grade fluid fills the porous half space y > 0 above and in contact with a plate occupying

the xzz-plane. The flow is induced due to suddenly moved plate. The fluid far away from

the plate is at rest. Under these conditions, no flow occurs in y and z-directions and steady

flow velocity at a given point in the porous half space depends only on its y coordinate.

From Eqs. (2.4) — (2.6), (2.10) and (4.11) the governing problem is

B (G T (R) | G-
pdf T o \ay) @ Pt Pe\y) |k

u(0) = U, u(y) — 0 as y — oo.

The Eq. (5.1) can also be written as

d’u du\? d®u du\\?
T Cpr (= bl - 3 i _ =0
P T l(dy> dy? 2<dy> u=du=0

where

p* o= - bE = _&
prad/k’ T p+aud/k’

¢ =

by = : ——
% p+aigp/k p+aip/k

(5.3)

(5.4)

Introducing the non-dimensional variables as defined in Eq. (4.14) the problem becomes

2 = 2
j—z’;m(d—’;) = bzf(%) & =,

f(0) =1, ftn) —0 as n— oo,
in which
U0 ol gt
[,L*I/z, /J'* ) #*Ug

(5.5)

(5.6)

(5.7)

The second order differential Eq. (5.5) subject to boundary conditions (5.6) can be solved

using homotopy analysis method (HAM).
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5.2 Analytic solution
In order to obtain the HAM solution, we choose
fo(z)=¢™, (5.8)
L) ="+, (59)
as initial approximation of f and auxiliary linear operator £ satisfying
L (C1+ Cae™) =0, (5.10)

in which C; and Cy are arbitrary constants. If § € [0,1] is an embedding parameter and &

is an auxiliary nonzero parameter then

(1 =p) L0 (n,5) — fo (m)] = BRN [0 (n,5)], (5.11)
6(0,5) =1, 6(co,p) =0, (5.12)
where
- N ~\ 2 02 ~ » ~\ N\ 2
N[0 (n,p)] = Qz%%p_) +b1 <89gz”p)> i %E,Z’p) — b0 (1,p) (%) — 20 (n,5) -
(5.13)

For p =0 and p = 1, we have

0 (n,0) = fo(n), 0(n,1) =f(n). (5.14)

As p increases from 0 to 1, (1, p) varies from fj () to f (n). By Taylor’s theorem and Eq.

(5.11) one obtains

6 (n,5)=fo(n)+ Y fm(n) 7™ (5.15)
m=1
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where

1 .0™8(n,p)

fm (n) = m!  9pm

(5.16)

p=0
and the convergence of the series (5.15) depends upon 4. Assume that A is selected such

that the series (5.16) is convergent at p = 1, then due to Eq. (5.13) we get

f=fom+ fm(m). (5.17)
=1

For the mth order deformation problem, we differentiate Eq. (5.11) m times with respect

to p, divide by m! and then set 7 = 0. The resulting deformation problem at the mth order

is

L (fm M) = XmFm-1 (0)] = ARm (), (5.18)
Jn () = fn {00) =0, (5.19)
where
Ron 1) = | HL2t g, ] 4 i Focteics (Lt (524 5r)] . 60
1=0
0, m <1,
Xm = (5.21)
1. m > 1.

The solution of the above problem up to first few order of approximations may be obtained
using the symbolic computation software MATHEMATICA. The solution of the problem

can be expressed as an infinite series of the form

2m+1 2m+1—2n

fom ()= Z Z af ™, m > 0. (5.22)

n=0 =0
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Invoking Eq. (5.18) into Eq. (5.22) we get the following recurrence formulas for the coeffi-

cient afyn of frn(n) whenm >1,0<n<2m+1

2m+12m+1-2n

0 _ 0 N q
Am,1 = XmXom—-1%m—1,1 — L Z FZ‘L,n/“n,O’
n=2 q=0
k k .
Um0 = XmXom+1-k%m—1,0) 0<k<2m+1,
E k q q s
a’m,l == XmXZm—l—Ica'm—l,l . Z Pm,llJ‘l,k: 1 < k < 2m — 1;
g=k-1
2m+1-2n

(5.23)

(5.24)

(5.25)

@ n = XenXom1—n—k0 10+ Z Tl 2<n<2m+1,0<k<2m+1-2n,

where

2m+12m+1-2n

m.n =h Z Z [X2m+1—2n—q (a‘zgn—l,n - m—1 nt b163 - b264$n,n)] )
n=0
q!
MLk = g 0<k<2+1,¢20,
q—k

: g 0<k<2qq>0,n>2

#n.k_zk!np+1(n_l)q_p+1a SRk 4q,920,N 2 4,
p=0

—~1 k r=min{n,2k+2} s=min{q,2k+2—2r}

53?,1,71: Z Z Hlk ra’lm 1-kn—r?

0 =0 r=max{0,n—2k+2m—1} s=max{0,g—2m+2n—2r+1}

g

=
Il

m—1 k r=min{n,2k+2} s=min{q,2k+2—2r}

64311.,71 = Z Z Z Z sz ra‘lm 1-kn—m

k=0 1=0 r=max{0,n—2k+2m—1} s=max{0,g—2m+2n—2r+1}
j=min{r,20+1} i=min{s,2l+1-2;}
g i s—1
Wi = A 3y a2y jaly "y s
j=max{0,r—2k+2{—1} i=max{0,s—2k+2l+2r—2;j—1}
j=min{r,2l+1} i=min{s,2l+1-25}
£ 7 5—1
szlr - z Z allijalk_lyr
j=max{0,r—2k+2l—1} i=max{0,s—2k+2l+2r—25—-1}

all . = (g+1) a?,;“ —nal

m,n’

-3
mmn

a2, = (¢+1)al¥f} —nald, .

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)
(5.34)

(5.35)
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Utilizing the above recurrence formulas, all coefficients a¥ m,n Can be computed using only

the first two

a‘g,O =0, G,g 1=1, (536)
given by the initial guess approximation in Eq. (5.8). The corresponding Mth order ap-
proximation of Egs. (5.5) and (5.6) is

M 2M+1 2m+1-2n
S falm=) ™ ( o Z af, ) (5.37)
n=1

m=0 m=n—1

and the explicit analytic solution of the problem is

(o] 2M+1 2m+1-2n
R WAURIS bRl (D Vi SRtV | B
m=0

m=n—1
5.3 Convergence of the analytic solution

Clearly Eq. (5.38) contains the auxiliary parameter A. As pointed out by Liao
[68], the convergence region and rate of approximation given by HAM are strongly depen-
dent upon /. For this purpose, the i curve is plotted for f up to the seventeenth order
approximation. It is obvious from Fig. 5.1 that the range for the admissible value for # is

—1 < A < —0.15. Our calculations indicate that the series of the velocity field in Eq. (5.38)
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converges in the whole region of z when A = —0.2.

————

/

g
war
%k
17""-order ap.
-8
=1.5 -1.25 -1 -0.75 0.5 -0.25 0

Fig. 5.1 A-curve for the seventeenth order of the approximation for the velocity field f

for by = 0.5, by = 0.1, 3= 0.8.

5.4 Results and discussion

In Fig. 5.2, the velocity field f is plotted for the different values of the parameter
by. It is apparent from this figure that by increasing by the velocity increases. Fig. 5.3
elucidates the effects of the parameter by. It is noted from Fig. 5.3 that the velocity

decreases by increasing bs. Fig. 5.4 shows the velocity distribution for various values of the
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parameter c. Here the velocity decreases by increasing €.

b"2=0.1, ¢=0.8

A
0.8
0.6 1
s — b1 =02
- e S - by =05
0.4 F ---- b7 = 0.9 4
=== by =15
0.2 B
0
0 1 2 3 q 5 6

Fig. 5.2 Variation of the velocity distribution for the various values of by.

b,=0.2, c'=0.8

1}t
0.8
0.6
— bz =02
S e b= 0.5
Pt 2
0.4 === b3z =209
=== bz=215
0.2
0
. L L ' L
0 2 3 q 5 6

Fig. 5.3 Variation of the velocity distribution for the various values of by.
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Fig. 5.4 Variation of the velocity distribution for the various values of ¢.

5.5 Concluding remarks

In this chapter, HAM solution for steady flow of a third grade fluid in porous space
is developed. The governing constitutive relationship for modified Darcy’s law in a third
grade fluid has been used. It is noted that modified Darcy’s law even for unidirectional
steady flow of a third grade fluid yields non-linear expression in terms of velocity whereas it
is linear for Newtonian, Oldroyd-B, Maxwell and second grade fluids. It is further noted that
unlike the Newtonian, Oldroyd-B, Maxwell and second grade fluids, the modified Darcy’s
law for third grade fluid exhibits the rheological characteristics even in steady state situation.
The contents of this chapter have been accepted for publication in Applied Mathematical

Modelling.
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Chapter 6

Stokes’ first problem for the

rotating flow of a third grade fluid

In this chapter the non-linear rheological effects of third grade fluid over a jerked
plate is addressed in a rotating frame. Numerical solution for the non-linear problem is
given. The non-linear effects on the velocity is shown and discussed. This reveal that
characteristics for shear thickening/shear thinning behavior of a fluid are dependent upon

the rheological properties.

6.1 Flow analysis

An infinite plate (located at z = 0) and the third grade fluid (which is in contact
with the jerked plate and occupies the whole of the region z > 0) are in uniform rotation.
For the sake of simplicity, the angular velocity €2 is taken parallel to z-axis. We examine

the flow of third grade fluid described by the constitutive equation (2.10) above the plate
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in the rotating system. The fluid is assumed to be incompressible. Referred to the rotating

frame of reference, the incompressibility condition is (2.13) and the momentum equation is

ov

plor T (V.V) V420 x V4 Qx (@ xry)| =div T,

in which r; is the radial coordinate with r% =z2 4+ 92

We assume the velocity field in the form

V =lu(z,1), v(z,1), w(zt)].

It follows from the the incompressibility condition (2.13) that w = 0.

Upon making use of Eq. (6.2) into Eq. (2.10), we obtain

ou\? ov\? ow\ 2
+ag B2 + 2 +4 =
gu\!, (o), (8wY?] (3w
0z 0z Oz 0z /)’
o 2 (2
=" 0z ) \0z)’
e = E 0z Sl 0z0t . 22

P)
8u\ (8
+2ar (5—2‘) (a—’:> + 28, [

+403

(6.1)

(6.2)

(6.5)

(6.6)

(6.7)



o7

o = (%) [5?; <a) ( >( )

+2&2 (6 ) + 263

and

Toy = Tyzy Tzz = Tzzy, Tyz = Tzy-

Using Eqgs. (6.3) — (6.7) into Eq. (6.1), we obtain

ou 10p ou 0%u ou
il pEEJ“p{“a e 86t+2ﬂ38 <5§{

Ov 10p 1| Ov 0%y ov
AR o W
gr T A= e i 166t+ﬁ38 (a{
18p
i o ke Wik
O pazi (6 )

where the modified pressure

p=p-L07 (= +4?) (6.12)

and p # p(z), which is obvious from Eq. (6.11)

The relevant boundary and initial conditions are:

v = U, v=0, at 2=0, >0,

u — 0, v—0 as z— o0 forallt,

#(2,0) = 0, uz0=0 2z>0 (6.13)

Combining Eqgs. (6.9) and (6.10) and then neglecting the pressure gradient we arrive at

oF a F a 8F 26,9 29F
— = — - .14
ot Lk Y922 * p 0220t T p 0z 62 9z [’ 16:14)




where

F=u+iv, F=u-—1v.

In terms of F, the conditions (6.13) reduce to the following

F(0,t)=1Up, F(z,t) — 0 as 2 — 00, F(z,0)=0.

The emerging non-dimensional parameters are defined as

_ U, U2 F R

Ui 7 7 7% =

By means of above non-dimensional parameters we can write

B o PF . OBF o [(af\*aF
'a;-l-Q’LCf—W—FG——anzBT'{*Qb'a—TI aﬂ) 87] )

f(0,7) =1, f(n,7) —0 as n-— oo, f(n,0) =0,

in which

__al . BU

C=Q.
pv2’ pv3’

6.2 Numerical results and discussion
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(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

Here we note that Eq. (6.18) is a third order non-linear partial differential equation

and it is difficult to obtain the exact analytic solution. The governing Eq. (6.18) is trans-

formed into an algebraic equation by substituting the approximations to the derivatives
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given in section 2.7 and get
1 _ 1
(E) (fij — fij—1) + 2iCfi; = 2 (fivr; — 2fi + fi-1,4)
a
+oar (forrg — firrg—1 —2fi3 + 241+ fica g — fi14-1)

b | (firrg + ficr5) (Firrs — 2fij + fie1,5) (f;,l,j + f:,:_l'j)

o 1 b i (6.21)
+3 (firrj + fi-1,) (fi+1,j -2/ + fi—l,j)
The following system of algebraic equations is obtained
R; = Afij+ Bfip1,j + Cfim1j + Kiffir i Fiyr; + Kaffn i i
+Ksffy i Fior+ Kaffy jFipy + KsffoyjFij + Keffy jTioa
+K7fip1jfivrifig + Kafip1jfirrifiorg + Kofiy1 jfigfi-1j
+K10fir1ifiiFiorj + Kufirrificrgfioa; + Kiafioa i fiifiov
+K13fir1, fijfim1j + Ffij-1+ Gfiz1j—1 + Hfic1j-1, (6.22)
foi=1, Ffmi;=0, fio=0, ©=0,1,2,..M §=0,1,23.., (6.23)
where
A= [%+%+:Tak+2m], B =~ [%4",;’—]6} ,
K3 = 2—241, Ky= K3, Ks= K,
K¢ = Ki, Kr= %—g, Kg = K3,
Ky = —-K7, Kuw=-Ki;, Ku=K,,
K2 = Kj, Kia=-K7 F=- (%) - %2%)
G = -, H=G (6.24)
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It is worth mentioning that Eq. (6.18) is third order and we have two boundary conditions.
Therefore, we need a third boundary condition. Due to this fact we resolve the difficulty

here through the augmentation procedure and write the augmented boundary condition as

Of (00, 7)

=0. 2
= 0 (6.25)

The problem now is well-posed. This boundary condition is discretized to give

Fvyij — fm
h

=0, (6.26)
i.e.

Fm1; = g

The non-linear differential system consisting of Eq.(6.18) and conditions (6.19) has
been solved numerically by means of the Newton method. Solutions for the non-Newtonian
fluid models are obtained for 7 = 1. From the numerical solution f is used to express the
non-dimensional velocity profile. Results for the flow are obtained for various values of the
parameters a, b, C' and 7.

Fig.6.1 (a & b) presents the velocity profile f for various values of b. These
figures indicate that increasing the parameter b increases real part of the velocity. However,
imaginary part of the velocity decreases for large values of b. Fig. 6.2 (a & b) shows the
influence of C' on the velocity profile f. It is evident from the figure that an increase in
C results in a decrease of the real and imaginary parts of the velocity. The effect of the
second grade parameter on f is illustrated in Fig. 6.3. (a & b). It is noted that the velocity
increases in the real part whereas in the imaginary part it first increases and then decreases

by increasing the second grade parameter. Fig. 6.4 (a & b) shows how the velocity varies
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for different values of 7. It is found that here the real part of the velocity increases and the
imaginary part of the velocity decreases by increasing 7. In Fig. 6.5 (a & b) the velocity
distribution is presented in the Newtonian case for the various values of C. It is observed

that the influence of C' in Newtonian and third grade fluid are similar.
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Fig. 6.1 (a)

Fig. 6.1. Influence of the velocity distribution for the various values of the third grade
parameter for 7 = 1.
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Fig. 6.2. Influence of {2 on the velocity distribution for 7 = 1.
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real of f

n il
Fig. 6.3 (a) Fig. 6.3 (b)
Fig. 6.3. Influence of the various values of the second grade parameter on the velocity

distribution for 7 = 1.
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Fig. 6.4. Influence of the velocity distribution for the various values of 7.
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Fig. 6.5. Influence of the velocity distribution for the various values of 2 for the Newtonian

case.

6.3 Concluding remarks

The Stokes’ first problem of a third grade fluid is discussed in a rotating frame of
reference. The problem that comprised the balance laws of mass and momentum has been
first non-dimensionalized and then solved numerically. Results for the real and imaginary
parts of the velocity are presented. It is found that at 7 = 1 and different values of C, the

flow characteristics in a third grade fluid are similar to that of Newtonian fluid.
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Chapter 7

Stokes’ first problem for the fourth

order fluid in a porous half space

Based on modified Darcy’s law, Stokes’ first problem for a fourth order fluid in a
porous half space is investigated here. To the best of our knowledge such modified Darcy’s
law has been introduced for the first time in this chapter. Numerical solution of the velocity
field is obtained and discussed. Several limiting cases are deduced as the special cases of

the present analysis.

7.1 Problem formulation

We consider the flow of a fourth order fluid in a porous half space, taking the
positive y-axis of a Cartesian coordinate system in the upward direction. A fourth order
fluid flows through a porous space y > 0 above and in contact with a flat plate occupying

the xz-plane. Initially both the fluid and the plate are at rest. For ¢t > 0, the plate suddenly
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starts to slide in its plane with a constant speed Uy. The velocity field is the same as the

one defined in Eq. (4.2). Using Eq. (4.2), Egs. (2.1) — (2.6) yield
% ou 0%u
e = () o (5m)
+272 <?ﬂﬂ> 73 (‘az—u)z
Ay 0t20y Otdy
+276 <@)4, (7.1)
dy

0%u +B 8y
aydt " oyot?

ou
Tey = ,ua + o

0 o4
2(:52‘*’163)( u) +71T8ut3

6vg + 273 + 27 2 2
- Aol LA At g (7.2)
Ay dyot

275 + 677 + 27

Tzz = 0: (73)

e (3 s ()
() (Z5)] 2 (2) (23]
() (22)] () (22

ou\ 2 ou ou
+47v3 (b;) +4vs (8y> + 2vg (6y) ) (7.4)
Tzz = 0, (75)
Tey = Tymy Tyz =Tays Tzz = Taz. (7.6)

Employing the same idea as in section 4.3, we propose the following constitutive relationship

between the pressure drop and velocity for unidirectional flow of a fourth order fluid:

op ptend+Bi 126,89 (2) +ndr | gu

k
o 2
+ (679 + 273 + 274 + 295 + 6v7 + 27s) (g—y) (gygt)
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The pressure gradient in above equation can also be interpreted as a measure of the resis-
tance to flow in the bulk of the porous medium and r is a measure of the flow resistance
offered by the solid matrix. Thus 7, can be inferred from Eq. (7.7) to satisfy the following

equation:

3
ptarg+Biim+2(8 +ﬂ) +ns
S ot 16t 2 3 <3y) 19¢ q’m. (7.8)

+ (672 + 273 + 27 + 275 + 677 + 270) (%) (8%)

Substituting Egs. (7.1) — (7.8) in Eq.(4.1) and then neglecting dp/dz, we obtain

@ _ 32u+ &3u ny o%u 6 (8, + Ba) 6u 2 9%, 5 A%
Por = Fop T 55 TPigaae TO\Va P\ 5y ) 52 T a%en

d ou o2
+ (679 + 293 + 274 + 275 + 677 + 2798) = By {(By) <8y_{*)£>}

2 )2 3
du &%u k- .
+ (672 + 273 + 274 + 275 + 677 + 27s) (a_) (m)
The relevant boundary and initial conditions are
u(0,t) =Up , u(y,t) — 0 as y — 00 ; u(y,0) = 0. (7.10)

The above problem in non-dimensional form is

of _ 8 & 0'f af\* &*f o°f
ar = o2 T “awpor T agiors T8 ) (a_> a2 " anpar

a| [ ER G+ () o)

+2¢5 + 6c7 + 2cg

. - (8 o f d & f
o1 o) B (8

0
— (6mg + 2mg3 + 2my + 2mg + 6my + 2mg) (—f> <

f(077-) =1, f(ﬂﬂ') — 0 as N — 09, f(77»0) =0, (712)
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in which
2 4 776
a = CYP1UU20, bi:ﬂlgo (i=1-3), Ci:’yl;glo (=1,2,8,4,5,7.8),
i = & ;o _ Bigl8 o _ 20U
kUE’ pk’ pkv ’ . pkv '
'B3¢Ug "71¢U61 ’Y.i¢U0
= ] = 1
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7.2 Numerical results and discussion

Using Egs. (2.18) — (2.28) and (7.13) we can write

1 1
(Z) (fig — fig-1) = 72 (fixr,5 = 2fi5 + fi-1,5)
+7LZ—,€ (firrg = firrg—1 — 2fig + 2fij1 + fi-rj — ficr5-1)

by | firri = 2finr -1+ firrg-2 — 2fij + 4fii-1

+h2k2
—2fij-2+ fi-1 — 2fi-15-1 + fi-1,-2
6 (by + b3
—% [(fi+1,j + fim15)? (firrj — 2fij + fi—l,j)]

e | firrg = 3firrg-1+ firrg-2 — firri-s — 2fij + 4fii

t oo
—A4fij-1—4fij—2+2fij-1+ fi-1j-2 — fi-1,j-3

) ]
(firrj — fi-1,4)

(fi+1,j — 2fij + fi-15)

(6cz + 203 + 2¢4 + 2c5 + 67 + 2cg) | (firri = firnj—1 = fimrj + fim1,i-1)

21k 3
+ (fi+1,5 — fi-1,5)

far1g — Fivrg-1—2fij

+2fi i1+ fic14 — fi-1,5-1

L. -

- e,~
—d fij— - (fig — fig-1) — % (fij — 2fij-1+ fij—2)

_%ﬁd (Jforig — fie14) — % (fij = 3fij—1 +3fij—a— fij-3)

6mg + 2mg + 2my
+2ms + 6my + 2mg fir1,5 — firr,5—1

4h2k fig (firrg = Fim15) (7.14)
—fi-15 + fi-1,51
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and thus the resulting system is

Ri= Afij+ Bfiv1j+ Cfic1j + Kifdy j+ Kaffyy jfig + Kaffia jfio1
+Eyfyjfivrs + Ksfioyjfij + Kefiyj + Knfigrjfio1fig + Ksfirrifin
Kof? i firtj—1 + Kiofivrifijfirrg—1 + Kufirrj-1fim1,fig + Kiafiy jfirrio
+EKisfi o+ Kuafh jfie1i-1+ Kisfirrj fiovj-1fig + Kiefij fio1,ifim1-1
+Kirf2 i fierio1 + Kisff jfij-1 + Ko ffoy jfirrg-1 + Kaoffy jfij1
+K21fi2_1,jfi—1,j—1 + Kaafiv1jfi-1,fiv1,5—1 + Koafivr, fiz1,5fij—

+Koy fit1,5fi-1,fi-15-1 + Kos fijfiv15 + Kos fij fi—15 + F fij—1

+G fiv1,j—1 + Hfic1j-1 + I fiy15-2 + I fij—2

+K fi—1,j—2+ Mfiy1,j-3+ N fi—1j-3 + Pfij-1, (7.15)

foj=1, fu;=0, fio=0, i=0,1,2,.,M j=0,1,2,3.., (7.16)
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where

- 1 2 2a 2b1 201 - e’ L g
= [k+h2+h2k+h2k2 rer i Ic+k-3+k2]’
R TR R, N 1 e b
il *[ﬁ“LW’*hZA? h2k3] C_—[h2+h2k+h2k2]’
3 (bg + b3) 1
K = - oA ~ 1k T 2hAR (6c + 2¢3 + 2c4 + 2¢5 + 6¢7 + 2¢g) ,
3(by+b 1
Ky, = —(%—3—)' h4l» (662+263+2C4+205+GC7+263)
1 1
4h4k (6mg + 2mg + 2my + 2ms + 6my + 2mg) + oY
3 (ba + b3) 1
B = =
3 I(l) K4 ha 4hik’
3(by+b 1
Ks = (2}1—43)+m‘(602‘|‘203+2C4+205+607+2CS)
o (B - By By - D - By + Fritg) + o
4h2k fiig + 2mg =+ Zmiy + 21t + by +2mg) + 5o grs
3(b2+b3) 1
Ke = — =
6 9h4 4hTE
6 (bg + b3) 2
K; = Y e h4k(662+2C3+2C4+265+667+2CB)
1 il
~512k (6mg + 2mg + 2my4 + 2ms + 6my + 2mg) — et
1 i
Kg = YT (6cg + 2c3 + 2¢4 + 2¢5 + 6c7 + 2¢cg), Ko = K8+4h4k
I
Ky = h4k(602'1‘203+204+205+607+208)
1
~ 12k (6mg + 2mg + 2my + 2ms + 6my + 2mg) ,
1
Ky, = prva (6ca + 2¢3 + 2¢4 + 2¢5 + 67 + 2c3)

+-4%E (6m2 + 2mg3 + 2m4 + 2ms + 6my + 2m3) ;
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Ky, = —Ks, Ki3z=-Kjg
1 —
Ky = —-Kg+ A Kis = K,
1
Kig = m (602 + 2c3 + 2¢4 + 2¢5 + 6¢7 + 268)
1
T (6mg + 2mg + 2my4 + 2ms + 6my + 2mg) ,
K7 = Kg, Kjg= = K .
17 e 8 18 = 2h4k) 19 4h4k)
1 1 ' 1
Ko = —gmp Kn=-7 Kn=-gop
1 1 _ (vg +v3)
K23 i h4k) K24 b 2h4ka K25 -y 2/12 )
_ . 1 2a 4b1 661 e‘ 3L 29
Foo = ~fos F=po R R F W R
@ 201 3c _a 2by
C=miERtEr mT e
b1 C1 2b1 4c; 3L g
I'=-peme "wetweted T
b c1 __3(ba +bs)
K= -pg mm Y= 2h4 '
Cc1 L
By the process of augmentation we can write
on
82 f (00, 7)
eSS L 7.19
52 0, (7.19)
83 f (00, 7)
b 8 i LT 7.20
3 0, (7.20)

and consequently the problem becomes well-posed. These boundary conditions are dis-
cretized to incorporate in the numerical scheme.
The non-linear differential system consisting of Eq. (7.11) and conditions (7.12)

has been solved numerically by employing the Newton method. Solutions for the non-
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Newtonian fluid models are obtained for 7 = 27. From the numerical solution f is used
to express the non-dimensional velocity profile parallel to z-axis. Results for the flow are
obtained for various values of the involved parameters.

Fig. 7.1 presents the velocity profile f for various values of ¢;. This figure shows
that increasing the fourth order parameter ¢; decreases both the velocity and the bound-
ary layer thickness. Fig. 7.2 indicates the influence of the fourth order parameters c;
(1=2,3,4,5,7,8) on the velocity profile f. It is evident from the figure that an increase
in these parameters yields a decrease in velocity profile. The effect of porosity and fourth
order parameters on f is displayed in Fig. 7.3. It is interesting to note that both velocity
and boundary layer thickness increase by increasing these parameters. Fig. 7.4 shows the
variation of the porosity parameter on the velocity. It is found that here the velocity de-
creases by increasing this parameter. Figs. 7.5 and 7.6 depict the velocity distribution for
various values of the third and second order fluid parameters. The behavior of the velocity
is quite similar for second and third order fluid parameters. The velocity increases for the

large values of the second and third order parameters.



a=0.1,b's=0.2,c's=0.1,
d*=0.1,e"=0.5,9=0.2,v's=0.1,
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c1=0.09
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Eta

Fig. 7.1 Variation of the fourth order parameter c; on f at 7 = 2.

a=0.1 ,b's=0.2,c1=0.1,

d"=0.1,e"=0.1,9=0.2,v's=0.1,
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Fig. 7.2 Variation of the fourth order parameters ¢; (1 = 2,3,4,5,7,8) on f at 7 = 2.
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a=0.1,b's=0.1,c's=0.1,
d*=e"=g=v's=L=m's=0.05

oo d=e=g=v's=L=m's=0.5
----- -d=e=g=v's=L=m's=2
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Fig. 7.3 Variation of the fourth order and porosity parameters on f at 7 = 2.

a=0.1,b's=0.1,c's=0.1,
e"=v's=g's=0.05,d"=0.05

0.0 0.5 1.0 1.5 2.0

Fig. 7.4 Variation of the porosity parameter on f at 7 = 27.
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Fig. 7.5 Variation of third order parameters on f at 7 = 2.
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Fig. 7.6 Variation of the second order parameter on f at 7 = 2.
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7.3 Concluding remarks

In the present chapter, Stokes’ first problem is generalized for the fourth order
fluid in a porous space. The governing constitutive relationship for modified Darcy’s law
in a fourth order fluid has been proposed. To the best of our knowledge such relationship
is not available in the literature. It is noted that modified Darcy’s law for unidirectional
flow of a fourth order fluid yields a non-linear expression in terms of the velocity while it
is linear for Newtonian, Oldroyd-B, Maxwell and second grade fluids. The governing non-
linear problem has been solved numerically. It is observed that for 7 > 57 the fourth order
fluid behaves like a Newtonian fluid. The contents of this chapter have been accepted for

publication in "Acta Mechanica Sinica".
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Chapter 8

Oscillatory flow of a fourth order

fluid over a porous plate

In this chapter, a numerical solution of an oscillatory flow over a porous plate
is considered. The fluid is considered as a fourth order. The governing non-linear partial
differential equation is first modelled and then solved using Newton’s method. The variation
of various parameters of interest is shown on the velocity. The differences among the velocity

fields corresponding to various fluid models are delineated.

8.1 Problem formulation

Let us consider the flow of an incompressible fourth order fluid with constant
properties. The fluid is over an oscillating plate at y = 0. The z-axis is chosen parallel
to the plate. Moreover, the plate is porous and oscillates in its own plane. The flow is

independent upon z [i.e u = u(y,t), u is the velocity in the z direction, v = Vj, w = 0].
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Under the assumptions given in the above section we have the following stress components

Tae = —PTa <@)2 +2 ﬂzau (ﬂ + Vo@)
Oy dy \ Oyot dy?
+27, (%) (a(z;t? + 2V 6‘?;; Ve 233>
s (% t %%Y + 27 <%) , (8.1)
+2(11 + 72) ( aaztg + 2% aaz‘;t + 12 %) g_';
. <§;at + %2gzz> +2(273 + 274 + 275 + 76) <g—;)4, (8.2)
= (8.3)

ou 0%u o%*u Pu ®u 9 0%u
g = “(@)*“1 (a at”"a_w)*ﬂl (6 o + oy 6y>

ou o*u d*u g O%u 5 0%
+2(B2+Bs) <—“> n <8y8t3 +3Vog a5 T3V 5 TV a_;,ﬁ)

ou d%u 8%u
+2 (372 + 73+ 74+ 75 + 377 +7s) <6y> <6y8t+V03_y2>’ (84)
Tzz = sz = O, (8-5)

where Tgy = Tyg, Toz = Taz, Tyz = Tay and Vp < 0 corresponds to the suction case and
Vb > 0 indicates blowing situation.

The scalar momentum equations are

ou Ou| 0Tz | OTay | OTzs
[at +V06y} =%z oy | oz’ (8.6)
0= 0Ty M OTyy B 0Ty, (8.7)

Oz dy 0z’



OTzz  OTsy  O0Tss
A 8.8
oz * dy * 0z (88)

0=

Inserting the stress components in above equations we obtain

@_{.V@ — &_{_a __63“' +V_8_:.3_7'.L.
ot Vay| T Hoy2 9y20t ' 0y3
o*u *u 5 0%u ou 9*
+61 [m-*-?‘/oa 301 + Vo 3 4] +6 (B2 + B3) (8—y) <6_y2_)
65 85 2 6 u 365
TH [a 258 T3V T30 5yt T V0 5 ]
I du 8%u 8%u
2(%) (5#) (3%)
3’)’2+’73 +yy +<@)2_3:;u_
+2 o s (8.9)
+75 + 377+ 78 +2Vo (5;;‘) (%f;‘é)
2
du FBu
|+ (%) (5) |

where modified pressure gradient term has been neglected.

The boundary and initial conditions for the flow are

u(0,t) = Upe ™", w>0,1t>0,
u(y,t) — 0 as y— o0, U(y,0)=0, y>0, (8.10)
where Uy is the reference velocity and w is the oscillating frequency.
Introducing the following non-dimensional variables
w T=wt, f: .__u_ (8.11)
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af ~ (Of - 182f a 63f 63_f>
[E+ﬁd <6_n)] = e T (anzav+davy3

f(oa T) = e_iT1

Ny 8 f 264f>
e <an2aT2 e T2 o

36 +8) (3) ()

> ¢ f
+£1_ on?or + 3\/§dan or

where v is the kinematic viscosity and

cy

(8.12)
5
+6d2—;L6§567 +V2d 3L
| af 5?2 92 f 1
2(%) (5#) (5%)
2
s ] an ) 33
+1 3C2 +C3 +C4 + 57'% (6'nQaT')
L AT T ar\ (& ,
+c5 +3c; +cg +d(8_n) (677 )
2
1) 3
| +vad(8) (5) |
fn,7) —0 as n— oo, f(n,0) =0, (8.13)
% b“ _ 51(“)2 b“ — ﬁ2ng b”" — ﬂ3('UUg
,01/’ il pU ) 2 pl/2 ) 3 ,01/2 )
Vo N 7w°
2 /vw’ Lo
2172
= =t = = = GBS ABTE (8.14)

pv?
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8.2 Numerical results and discussion

The governing equation (8.12) is transformed into an algebraic equation by sub-

stituting the approximations to the derivatives given in section 2.7. Thus we have

(%) (fij— fij—1)+ ig%— (firr,j — fi-15) = 2% (firrg = 2fi5 + Fier4)

o | 7 (Firrg = firng—1 — 2fig + 2fig—1 + fimrj — fim1,5-1)

2 x
2 (fivag — 2fir1j + 2fic1j — fi2j)
| firng = 2o+ fong2 — 2fig + 4fij
R2k
~2fij—s+ fia3—2fi-a 59+ fici 42
by’ 7 fivz,j — fire -1 — 2fit1,5 + 2fit1,5-1
T | T

+2fi14 — 2fi-15-1 — fi-25 + fi—2,4-1

fivaj—4fiv15+6fi;

—4fi-1; + fi-aj
3(by +b 3 1
+(2*2——) opa irrg + fir1,6) (firrg — 2fig + fimag)

fiv1 — 3fiv1 -1+ fir1,5-2 — fitr1,5-3

1

P3| —2fij+4fij1—4fij1—4fij—2+2fij-1
+fi—1-2— fi-14-3
fivaj — 2fivo -1 + firaj—2 — 2fit1,j

~n +-—3c£:—— 4f; o 2f ; 2f; - g
c vaeke | tafivri-1 — 2fivj-2 + 2fi-15 — 4fic15-1
+2fi-1,j-2 — fi-2, + 2fi—2,-1 — fi-2,j-2

o | fir2d = fivag1 = 4fivr + 4fivri-1 + 6fi
T hiE

—10f; -1 +4fi1j-1 +4fi25 — fi—2,j-1

o firsj — 4fivaj — 3fir1;

R

—5fi1,5 +4fi—2j — 2fi-3
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oz (firrj — fim1j)
(fixrj — 2fij + fic1,5)
(Fovrg — foptg—1 — fir g+ ficag-a)

2
+ 1z (firrg — fie14)

B (6cy” +2c5 +2c; +2c5 +6c; + 2cg ) fivrg = fivrj—1 = 2fi
- ;
+2fij-1+ fic15 — fi-15-1

+24 (firrj — fim1)
(fi+1,§ — 2fij + fi-15)

2

(fiv2j — 2fiv15 + 2fi-15 — fi—25)

L =

(8.15)



and the system of algebraic equations is

R; = Afij+ Bfiy1;+Cfic1j+ Dfiyoj+ Efi—aj + E1fiyaj
+Eyficsg + Kifdyj+ Koffy jfig + Kaff jfie1g + Kaffy jfivrg
+Ksf2 i fig+ Kefly;+ Kufiyrjfi-r;fij + Keffr jfiv1-1
+Ko i1 firt,i—1 + Kiofirr,j fij fivrjo1 + Kuafiyrj fim1,j—1fij
+Kiafivjfirrg-1fij + Kafic1,ifij ficrjo1 + Kiaff jfig—1
+ K15 £ fij-1 + Kuefivrjfim1fivrio1 + Kurfirr fim1, fig—1
+Kisfiy1,5fi-15fi-15-1 + Kle-Z}-l,j + + Koo fit1,5fij

+ Ko f; + Koafio1fig + Kosfiia i firag + Koaffya jfi-2
+Kosf g jfivag + KosfPn jfimaj + Korfirrj fi-1.ifivag

+Kog fir1,5fi-1,fi-2 + Ffij-1+ Gfiv1-1+ Hfiz11

+I fiyoj—2 + Jfi-2j-1+ Kfiv1j-2+ Lfij—2+ Mfi—1-2

+N fi-1j-3 + Pfit1,j-3 + Qfitaj—2+ Rfi—2,-2,

Joi =1, fumi =0, fio =0, 1=0,1,2, ... - 3=00;1,2;3:.;

84

(8.16)

(8.17)
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Ks
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1o b e e
h? ° h*k ~ h?k? h4 h2k3

d” 1 ! b
T Voh 2R T 2h7 + 4 2h3 — oz T 2kh
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+

2 3c1

C 3
—LA— 2—55—5_’_\/‘1921 + Wl

R S a“ ! by
Voh — 2hT T 2R%k 2h3 ~ 9n%k 2kh

4b;°d"?  3d’"c;” | 5c;’d3
T V2k2h3 + 2V/2h5

[ adT b dT b d? 3d e ﬁc;”d“3]

4 4’k RA 2V/2k2h3 h5
ad” - b'd” b d? 8de V2 d ®
4h3 4h3k 4 2V/2k2h3 RS ’
gt c;’d3

Ey= 21—
2\/_h5, 2 \/§h5 )
3(by +by) 1

T~ 5 (ec; +2c; +2¢;, +2c5 +6c, + zc;)

~ 1 (6c2 +2c5 +2¢4 +2c5 +6c; +2cq )

3(by +b3) L1
ahi Shik

3 (bz +b3) 1
3h * onig

(66; - 2c;;h + 20,; -+ 20; -+ 6c;a -+ 20;) "

(6c;‘ +2c; +2c; +2c; + 6y + 2c,;‘)

3d”
T
3(by +b3) 1
8hA Ahik
3d”
o (6e2" + 25" + 20, + 265" + 6, +2¢5 ),
3(by +b3)
ot
3(by +b3) i
TR T

(6c2 +2c5 +2¢4 +2c5 +6c; + 2cq )

(6c; + 20; + 2c:1~ + 2c; + 60; + 2c;>

+

(602 + 265" +20, +2¢5 +6c; + 2; )

d

~ 15 (602 +2¢5 +2¢; +2c5 +6c; +2cq >

3(by +by) 1
2ht 2htk

(6c; + 2c; -+ 26; -+ 2c; + 60;» -+ 2cé‘) ,
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m <6C2 +2C3 +2C4 +2C5 +667 +268 ),
Ks, Kjo=—-Ks, Ki1=Ks,

—Kg, Ki3=Ks, Ki4=—Kg,

—Ks, Kig= K15, Ki7=—-2Kjs,

d i s - - . -
Kis, K19=ﬁ(602 +2c3 +2¢c4 +2c5 +6c; + 2cqg ),

4K19, Ko = Kyg9, Koz = —Kp,

d an Ak 5 aa ~a s
—ﬁ (662 +2C3 +2C4 +2C5 +6C7 +2CS)’

d aa - s _ - e
—m (6C2 +2C3 +2C4 +2C5 +6C7 +2CB)’

1 a 26 8¢

~Kw F =y TR T W

a” 3 by b d 3¢ 3V2d ¢
oh2k ' h2k2 2kh® ' 2h%k3 k2R3

a” b bdT 3V2d e
ok T T ks T T e
by'd” Py 3d "¢, _ bd" 3d g’

4h3k  aRr3k2' T 4Rk \2R3K?’
b e sde)

2h2k2  2h2K%  \/oR3K2’

bih 20;
h2k2+h2k3’
= b, = By _3d“c;‘

2h2k2  2h2k3  \/2h3K2’

¢ -
o L=

3d "¢,
a—el B @ 8.18
EWGTEIE Q (8.18)

Since our equation (8.12) is of order five while given boundary conditions are two,

therefore we introduce the process of augmentation and consequently the problem becomes
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well—posed.v These boundary conditions are discretized and incorporated in the numerical
scheme.

Here, the non-linear differential equation (8.12) under the boundary and initial
conditions described in Eq. (8.13) is numerically solved using Newtons’ method. A nu-
merical solution is given for 7 = 27. The numerical solution f is used to express the
non-dimensional velocity profile parallel to z-axis. Results for the flow are obtained for
various values of the involving parameters.

The influence of suction and blowing on the velocity f is shown in Fig. 8.1. This
Fig. shows the variation of d ~ for the case of the Newtonian fluid. Here it is noted that
suction causes reduction in the boundary layer thickness whereas blowing increases the layer
thickness.

In order to illustrate the influence of suction and blowing on f in the case of a
fourth grade fluid, we made Fig. 8.2. This Fig. elucidates the similar characteristics as the
ones in Fig. 8.1. But it is found that boundary layer thickness in case of fourth order fluid
is larger than that of Newtonian fluid. Fig. 8.3. has been plotted just to see the variation of
7v; (i = 2 to 8) on f while other parameters in the fourth order fluid are fixed. It is revealed
that boundary layer thickness decreases by increasing -; (: = 2 to 8). Fig. 8.4 shows the
variation of the fourth order parameter ¢, on f. Here it is observed that f increases by
increasing c1 Fig. 8.5 and 8.6 indicate the variation of f in third and second order fluids,
respectively. These Figs. show that boundary layer thickness in a third order fluid is less
than that of the second order fluid. However, the boundary layer in both the fluids is less

when compared with fourth order fluid.
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8.3 Concluding remarks

The effects of suction and blowing on the flows of an incompressible Newtonian
and non-Newtonian fluids have been studied. The governing equation with the boundary
and initial conditions have been non-dimensionalized. Numerical solution of the non-linear

problem has been obtained. From the present analysis, it may be concluded that:

The boundary layer thickness decreases owing to an increase in the suction parameter.

The boundary layer thickness in blowing case is greater than the one obtained with

suction.

The boundary layer thickness in fourth order fluid is larger than that of Newtonian fluid.

The results for Newtonian, second grade and third grade fluid models can be recovered as
the limiting cases of the present solution by taking appropriate values of the material

constants.
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Chapter 9

Couette flow of a
Johnson-Segalman fluid in the

presence of a uniform magnetic

field

This chapter describes the one-dimensional, steady and incompressible flow of a
Johnson-Segalman fluid between two plates. The flow is induced due to motion of the upper
plate. The combined effects of viscoelascity and magnetic field are considered. The magnetic
field is applied transversely to the direction of the flow. The governing equation of the
problem is reduced to a non-linear ordinary differential equation and is solved analytically
in general. The Couette flow has been discussed numerically using Newton’s method. The

influence of the Weissenberg number, Hartmann number and ratio of viscosities upon the
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velocity has been discussed.

9.1 Mathematical analysis

Consider the steady, unidirectional and incompressible flow of an electrically con-
ducting Johnson-Segalman fluid past an infinite plate. A magnetic field with a constant
magnetic flux density By is applied perpendicular to the plate. We assume that the induced
magnetic field produced by the motion of an electrically conducting fluid is negligible. The
assumption is justified since the magnetic Reynolds number is small, which is generally the
case in normal aerodynamic applications. Since no external electric field is applied and the
effect of polarization of the ionized fluid is negligible, we can also assume that the electric

field E = 0. The flow under consideration is governed by Eq. (2.13) and

p%=div T +jx B, (9.1)

where T is the Cauchy stress tensor and the third term on the right hand side of Eq. (9.1)

is the Lorentz force which through the aforementioned assumptions is given by
jxB=01(VxB)xB. (9.2)

Here 01, j and B are the electric conductivity, current density, and total magnetic field
respectively. Note that B = Bg+ b (Bp and b are applied and induced magnetic fields).

The constitutive equation for T is [52]

T = —pI+8S, (9.3)

S+A (‘fi—f +8 (W - aD) + (W - aD)” 5) = 21D, )



94

D=%(L+LT), W =

Do |

(L-LT), L=gradV. (9.5)

In Egs. (9.3) and (9.4), n is the viscosity, A is the relaxation time and a is the slip parameter.
When a =1, A = o = 0 the model (9.3) reduces to the Newtonian model and when a = 1,
1= 0 it reduces to the Maxwell fluid.

We consider the following forms for the velocity and extra stress tensor:
V= (u(y), 0, 0), S=S5(). (9-6)

Using the assumed form of velocity, Eq. (2.13) is identically satisfied and from Egs. (9.1)

to (9.6) we have the following equations for the non-zero components of S:

L gt %2 - "lf% w=i2 (9.7

o= %g—f’ (9.9)

B — AL 44 %Ezy =0, (9.10)

Bt [(1—a) Sus — (1 +a) §yy] d_Z =n-;l—;‘, (9.11)
S+ Al =4a) 3—Z§zy =0, (9.12)

where Eq. (9.9) indicates that p is not a function of z. Thus p is at most a function of z

and y.
Defining the dimensionless quantities
Uo . Uo u vS P
x*z-—([;, = —1, ’U,*=-—‘7 S*z—————, p*= e 913
v v Uo (v +m)Ug UG 2516)

and modified pressure p* by

P =p" -5, (9.14)
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Egs. (9.7) to (9.12) becomes

d)dz* oy %Z—;ﬁ—; — Nu* = Zi:, (9.15)
-
0= 6—5*, (9.16)
St —We(l+a) S;yZ—Z; ~0, (9.17)
Say + % [(1-a)S;: —(1+a)S;,] % = %Z—;ﬂt, (9.18)
St +We (1 —a) S;yj—;‘: =10, (9.19)

We note from Eq. (9.16) that p* is not a function of y* and the Weissenberg number W,

Hartmann number N and the ratio of viscosities ¢ are given by

2 B2
wo=20 s ptnm N ””[}2 0 (9.20)
i J/ 0
From Eqgs. (9.17) — (9.19) we can write
2
du*
oL ) ot 9] ? '
[1+W3(1 - a?) (%) ]
du*
. 4 <dy') (9.22)
b (b 2 2\ [ du* o
1+ W2(1-a?) (%)
2
du*
g Sl o) (%) (9.23)

* 2 :
¢ [1 +W2(1-a) (4) }
Now eliminating the pressure p* from Egs. (9.15) and (9.16) and then using Eq. (9.22) in

the resulting equation we obtain

pdw  d (%)
L [1+W3(1—a2) (3;:)2]

where k = dp*/dx is the constant pressure gradient.

— Nu* = ky, (9.24)
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9.2 General solution

We can write Eq. (9.24) as follows:

2o d ()
fﬁd s 4 — ¢ — Nu" =k, (9.25)
K 5 [1 +a (Z';:) ]
where
o =W?2 (1 = a2) :
We let
- du*
L ff & (9.26)

Then Eq. (9.25) can be written as

dP*
dy*

— Nu* — k; = 0. (9.27)

Equation (9.26) can be solved for du*/dy* in terms of P*. This gives

du* n |3/ B B2 —4A3 /B BZ —4A3 N .
'y VBB 4B VB AR Mg (g
dy ol 2 2 2 2 3
where
PR o
9 3 82’
2 5.3 2 au? o?u
= — ———P* - ——P*, 9.29
B = go'P 45 P - (9.29)

We utilise Eq. (9.27) to obtain P* as function of y* with the insertion of Eq. (9.28) into

Eq. (9.27). We have

2Pl n §/B+\/B2—4A3+l</}_8_ VET=IF 1
ap

Pl =8, 9.30
dy** 2 2 ap \ 2 2 3u (9:40)
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The first integral of Eq. (9.30) gives

dP* - VBZ —4A3 VB? — 4A3
= 2N/ —77—3§+_B—4A_+13§_..B 44 +_77_p* dP* + C4,
dy* ap\ 2 2 ap\ 2 2 3
(9.31)

where C] is an arbitrary constant. The double integration of Eq. (9.30) results in

/’ dP* .
=y" + Cy,
:i:\/2Nj' {E?ﬁ‘a/% 4 332@ e Eﬂﬁf/% B 18?;4/&? + %P*] dP* + Oy
(9.32)

where Cy is another arbitrary constant. The substitution of Eq. (9.31) into Eq. (9.27)

yields

— P*| dP* + C1—k;.

] 1/ B2 — 3 3 _ 3
Nu* =+ 2N/ BYS. SO +13§_\/B 443
ap} 2 2 ap 2 2 3u

(9.33)
So the general solution of Eq. (9.25) is given in parametric form by Egs. (9.32) and (9.33)
up to the evaluation of an integral. Note that Eq. (9.25) is of second order and thus there
are two arbitrary constants C; and Cy. Also the constant pressure gradient £ occurs in Eq.

(9.33). Simplified version of the integral in Eq. (9.32) is given in the Appendix.

9.3 Numerical solution for boundary value problem

Let us now consider the flow of a Johnson-Segalman fluid between two parallel
plates of infinite length at y = 0 and y = d. The flow here is maintained by setting one
of the plates in motion. In this case, it is assumed that the bottom plate is moving with

velocity Up and the top plate is at rest. The governing dimensionless boundary conditions
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are of the following form:

' =0 for y*=d, (9.34)

where  d* = Upd/v.
Note that Eq.(9.25) is the second order non-linear differential equation and it is
solved numerically. The governing equation (9.25) is transformed into an algebraic equation

by substituting the approximations to the derivatives given in section 2.7 and get

a Ei—l + 4fi2 + fz?—l
()
+2fiv1fi-1 — 2fifiv1 — 2fific1
2h4 (fir1 = 2fi + fie1) (fA + fAy — 2fira fi1)

z+1,] 4f1,+1f1

c
+——5 (fi+1 — 2fi + fi-1)
16h 2 3 4
+6 i1 fi-1 —4firi Sl + fia

z+1,] 4fz+1f1

-Nfi— w2

+6f2 1 fio1 —4fin flq + fhy
e
_Wfi (firrj + ficr) =k
g z+1,] 4fz+1fZ h1

+6f +1fz 4fi+1fi—1 5o fi—l

(firrj + fie15)”



The system of algebraic equations can be expressed as

in which

Ri = Afi+ K1f} + Kaffiy + Ksfly + Kafy + Ks
+Kof2 + Krfiy + Ksfiy, + Kofiey + Kiofiv1 fima

+ K11 firr fi + Ko fifio1 + Kiafirr fiq + KiafP1 fict
+K1sfhn fi + Kiofif2y + Kinfi fio1 + Ko f2 24

+ Koo fir1 fig + Ko fifiy + Koo fifi 1 + Kos fir1 fio
+Koaf2 ) firr + Kosfifir1 fi1 + Kogfi for fimr + Korfi i o

+Kosfifir1fiy + Koo fif2s fie1s

4a a h1
A = _N) Kl—ﬁz, K2——ﬁ—§-h—2,
b
K3 = Ky Ki= ETEY Ks = Ky,
_ e 3 _ -9
I(ﬁ b 16h6, K7 = Kﬁ, Kg ———16h4,
a h 2a
K9 = Kj, K10=F+7z_;’ K11=—ﬁ,
b 6g
K12 g Kll) K13 i _KS, K14 —_ —W _— 16—hz’
b e
Kis = —m—5m Kis=G, K= Kis,
c c 3c
= —_—— —— = — = K
Wi o5t ene = gpe Ko =Har
" c c y c d
Ko = o~ me K= gm R
B _.g i
= g g P g B i
26 e c d 3c
Ku = @t BKs=g5+omn En=-g5
[ d 3d
Ko = g5t ga Ko=—ga
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(9.36)

(9.37)



100

The initial and boundary conditions are

fo=1, fum=0, fi=0 i=01,2,.,M 3j=0,1,23.. (9.38)

In order to obtain the numerical solution, the Newton’s method has been utilized. The
results of various interesting parameters including Weissenberg number, Hartmann number
and ratio of viscosities are presented in the following.

Fig. 9.1 shows the influence of Weissenberg number on the velocity profile u*. It
is evident from the figure that an increase in « results in the decrease of the velocity. Fig.
9.2 depicts the variation of Hartmann number on the velocity. It is found that the velocity
increases with an increase in N. The boundary layer thickness decreases. This means that
the magnetic force provides a mechanism to the control boundary layer thickness. In Fig.
9.3 the velocity distribution is presented for the various values of viscosities. It is observed

that the velocity decreases by increasing the influence of u/7.
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Fig. 9.1. Variation of the velocity distribution for the various values of the
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Fig. 9.3. Variation of the velocity distribution for the various values of
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9.4 Conclusion

The Couette flow between two parallel plates filled with a magnetohydrodynamic
Johnson-Segalman fluid is studied numerically. A non-linear constitutive model for the
fluid is used. The model is substituted into the governing equations and the resulting
one dimensional equation for MHD flow is derived. This equation is solved analytically in
general to study the sensitivity of the flow to the parameters that are used in the constitutive
model. The various dimensionless parameters seem to affect the velocity profile a lot. The
velocity profile is greatly influenced by the Weissenberg and Hartmann numbers. The
obtained solution is valid for all values of Weissenberg number. However, the specific

Eq. (9.25) that is to be solved can be rather daunting, as it leads to the evaluations of
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complicated expression in Eqgs. (9.32) and (9.33). Finally the boundary value problem

is solved numerically and the results are presented graphically for the various values of

the interesting involved parameters. It is found that the velocity of the fluid increases

by increasing the Hartmann number whereas it decreases by increasing the Weissenberg

number and viscosities ratio.

9.5 Appendix

We evaluate the integral appearing in Eq. (9.32) i.e.

dP*
T= . (A
i\/m & 4/5+ T 1 33— TR s o] ap 4
Taking
oL poo1
=P = — = E=C A
3 “» 3=k L=y (A2)
from Eq. (9.29) we have
9 9
A=q" - 2B, B = 2¢"~pq. (As)
8 4
Substituting
q = cosh 36 (Ay)
and using Eq. (As3) we have the value of the denominator as
: JEE = dAS ' VB?Z — 443
I 2N/ N3 E_I_Lﬂ_i__"_s E__B—_l__”_p* dP* + C}
J |loapl 2 2 ap \ 2 2 3
2V3N
= =+ g \/cosh 60 + 3 cosh 46 + 6 cosh 260 + Cs, (As)

(07
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in which
a2Cy
G = 5 (As)
From Egs. (A1), (A4) and (As) we can write
=t 3v3 sinh 30d6 ' (Ar)

~ T 9y/NJ /cosh60 + 3cosh40 + 6 cosh 20 + Cs
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Summary. The time-independent equations for the two dimensional incompressible micropolar fluid have
been considered. Using group method the equations have been reduced to ordinary differential equations
and then solved analytically. Finally the boundary value problem has been discussed, and the graphical
results are in good agreement with the numerical solution.

1 Introduction

Eringen [1], [2] developed the theory of microfluids which exhibit microscopic effects arising
from the local structure and micro-motions of the fluid elements. Such fluids support stress and
body moments and include the local rotary inertia. The equations based on the theory of
microfluids are much more complicated even for the case of a constitutively linear situation,
and the non-trivial solution in the field is not easy to obtain. There is a subclass of microfluids
namely the micropolar fluids for which one can reasonably hope to obtain a non-trivial analytic
solution. The micropolar fluids support couple stress, body couples, micro-rotational effects
and micro-rotational inertia. The mathematical theory of equations of micropolar fluids
and application of these fluids in the theory of lubrication and in the porous space is given
in [3].

Recently the studies of micropolar fluids have acquired a special status due to their industrial
applications. Such applications include the extrusion of polymer fluids, solidification of liquid
crystals, cooling of a metallic plate in a bath, animal bloods, exotic lubricants and colloidal and
suspension solutions. Undoubtedly, the classical Navier-Stokes theory is inadequate for such
fluids. Several workers in the field have made the useful investigations that involve a micropolar
fluid. For example, Sriniasacharya and Rajyalakshmi [4] studied the creeping flow of a mi-
cropolar fluid past a porous sphere. Iyengar and Vani [5] examined the flow of a micropolar
fluid between two concentric spheres, induced by their rotary oscillations. Kasiviswanathan and
Gandhi [6] discussed the Hartman steady flow of a micropolar fluid between two infinite,
parallel non-coaxially rotating disks. Al-Bary [7] developed the exponential solution of the
problem of two dimensional motion of a micropolar fluid in a half-plane. Dubey et al. [8]
analyzed the flow of a micropolar fluid between two parallel plates rotating about two
non-coincident axes under variable surfaces charges. Gorla et al. [9] studied the heat transfer
analysis on the boundary layer flow of a micropolar fluid. Ibrahem et al. [10] presented the
non-classical heat conduction effects in Stokes’ second problem for unsteady micropolar fluids
flow. Seddek [11] studied the Hartman flow of a micropolar fluid past a continuously moving
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plate. Kim and Lee [12] made an interesting study for the Hartman oscillatory flow problem of
a micropolar fluid. Agrawal [13] presented a finite element solution of unsteady three dimen-
sional micropolar fluid flow at a stagnation point. Abo-Eldahab and Ghonaim [14] discussed
the numerical solution in order to see the radiation effect on heat transfer of a micropolar fluid.

However, most of the previous investigations deal with the numerical solution. The aim here
is to provide an analytic solution for the flow problem of a micropolar fluid. The group analysis
method has been extensively used for unsteady axisymmetric incompressible viscous flow by
Nucci [15]. Recently, Yiiriisoy et al. [16] have obtained the solution for the creeping flow of
the second grade fluid using group method. They found the analytic solution for the two-
dimensional flow of a micropolar fluid. The analytic solution is given using group method
[17]{19]. The translation type symmetry has been taken into account. The graphs are also
plotted and discussed.

2 Equations of motion

The two dimensional equations for an incompressible micropolar fluid are (3]

%Jr%:o, (1)
p(ﬁ%+ﬁg—;>=(u+k1)(g+glijz>—kl(;—a;—%, 3)
p-.(a%+5§§) Gl(gi‘; g‘;) 2k16+k1(g§ ?) (4)

where % and 7 are the components of the velocity field in the Z and 7 direction, &(Z,7) is the
micro-rotation component, and p = p(Z,y) is the pressure distribution. Here p, u, ki, Ghand j
are mass density, coefficient of viscosity, coupling constant, micro-rotation constant and local
micro inertia.

Defining
wnl g T L F T

i Ul - U! - Li y —L,

3 G J

A 4 —— g 5
TR e (5)
Egs. (1)—~(4) reduce to
ou v

ou  Ou Pu  O%u dsc  Op
u5+v@—(61+62)(w+@2—>+€35y'—€4%, ()

v B v % do  Op
u’a}‘*‘vay (€1+62)(6x2 63/2) —Esa*ﬂbg, 8)
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u@+v%-—e 626-{—92—({ — €0+ € @——Oﬂ> (9)
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where
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pLUj’ pUj pa*j
and ¢, and ey are the reciprocal Reynolds numbers.

3 Symmetry analysis

In order to obtain the analytical solution, we use Lie group theory to Egs. (6)—(9). For this we
write

2" =z + &) (,y,u,v,p) + O(e?),

Y =y +e&(x,y,u,v,p) + O(),

u' =u+eny (2,9, u,0,p) + O(?), (11)
V" =0+ eny(w, ¥, %,0,p) + O(e?),

P’ =D +en3(2,y,u,v,p) + O (),

o' =0+ eng(x,y,u,v,p) + O(?)

as the infinitesimal Lie point transformations. We have assumed that Eqs. (6)—(9) are invariant
under the transformations given in Eq. (11). The corresponding infinitesimal generator is

a d 0 d a 0
X=51a+52£+'11%4"72%""73554"'14%7 (12)

where &, &, #, 1y, 73 and 5y are the infinitesimals corresponding to 2, ¥, u, v, p and o,
respectively. Since our equations are at most of order two, therefore, we need second order
prolongation of the generator in Eq. (12) and then apply the invariance condition to get the
following infinitesimals [17]-[19]:

él = b1 62 =,

m=0, n=0 mn=d, mn=e. (13)
Therefore, the equations admit a four parameter Lie group of transformations. Parameters b, ¢,
d and e correspond to translations in the &, ¥, p and ¢ coordinates, respectively. By considering

the translations in x, y directions and choosing d,e = 0 and solving the corresponding char-
acteristic equation the similarity variables and functions are given as

C=y-mz, u=f(¢&), v=g(&), p=~hr(),
o =N(¢), (14)

where m =c¢/b is an arbitrary parameter. In view of variables and functions in Eq. (14),
Eqgs. (6)-(9) become

-mf' +4' =0, (15)
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(—mif" + af') = (e1 + &) (1 +m?) f" + esN' + egmh, (16)
(-mfg’ +99') = (a1 +e2) (1 +m%) g" + egmN' — sl (17)
(—mfN' +gN') = es(1 +m?) N" — &N — e7(mg’ +f'). (18)

Integration of Eq. (15) yields

g=mf+Cy. (19)
Eliminating A (&) from Egs. (16) and (17) and making use of Eq. (18) we get

(L +m2)Cif = (e + &)1 +m2)%F" + (1 + m2)N', (20)
From Egs. (18) and (19) one can write

CIN' = e5(1+ m?)N" — &N — e (1 +m?) f'. (21)
Now integrating Eq. (17) and then using Eqgs. (19) and (20) we obtain

_Ce
€4

h (22)

in which Cy and Cs are any arbitrary constants. Eliminating f(¢) between Eqgs. (20) and (21) we
have

N® — AN" + BN" + CN' = 0, (23)
where

_ Ci(es + €1 +€2)
es(1 +m?)(e; + €2)
C% — (1 +m?){es(e1 + €2) + eger}]
es(1 +m2)%(e; + €3)
- 0165
Ces(l+m2)i(a te)

)

gl

, (24)

The solution of Eq. (23) is given by
N(&) = C3e™° + Cye™* + C5e™ + C, (25)

where C3, Cy4, Cs and Cg are any arbitrary constants and o; (2 = 1,2,3) are the roots of the
following equation:

o® —Ad® + Ba+C=0. (26)
From Egs. (21) and (25) the expression for f(&) is

(&) = Bie™ + oe™ + fye™t — - ¥ (27)
7
in which C7 is any arbitrary constant and f; (¢=1,2,3) are given through the following
expression:
o 1 22 — ex — Cros
g = isa[es(1+m?)a? — & — Crou] (28)

67(1 + mz)ai
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In the form of the original variable we have

€6C(y — mx)

w(z,y) = ﬂleul(y—mx) 3 ﬂge”(y_m) 4 B3eaa(y—mr) _ o+ 7) +Cy, (29)
pieaw-ma) 4 B guly—ma)
U = + fyerly-ma) _ e6Co (Y — W_) +C b (30)
v er(1 +m?) !
o(x,y) = C3en W) 4 0 enl-ma) | g gnlu-ma) 4 go (31)
G
px,y) ==2. (32)

€4
Equations (29)—(32) give the solution of Egs. (6)—(9) that involve seven unknown constants. For
determining the values of these constants we consider a problem that occurs in geology.
Consider a magmatic micropolar fluid and a plate over it. The plate occupies the position
y = 0. The positive y goes deep into the fluid beneath the plate. The relevant boundary con-
ditions are of the form:

2
Ox
0(,0) =0, o(®,00)=0, p(x,00)=npo,

u(x’ 0) = UO’ u(x’ OO) - O) O*y) = O) v\, O) = —'V01

(33)

where Uy is the velocity of the plate, Vp is the magmatic fluid penetrating into the plate and pq is
the pressure deep in the magmatic fluid. The expressions (29) to (32) after using conditions (33)
give

w@,y) = ——(ye™ — y,6), (34)
Yo — "
-U,
v(x,y) = m( g (yle'“y - yze'ﬂ”)> —mUy — Vo, (35)
Y2 =M
U
o(z,y) = —> (e —eM), (36)
Yo=Y
p(x,y) = po, (37)
where
1+m?)e? — ¢ +C
p =2t —atls (38)
—e7(1 +m?2)a
2\p2
Py = E5(]' +m )ﬂ € + CIB (39)

—er(1 +m2)B
and —« and —f are the negative roots of Eq. (26).

4 Discussion

This Section deals with the interpretation of the translational parameter 7 and the magmatic
fluid penetrating parameter Vy on the x and  components of the velocity and on the angular
velocity o. Figures 1, 2 and 4-7 have been prepared for the velocity components whereas Fig. 3
holds for the angular velocity. It is found from Figs. 1 and 2 that the velocity components % and
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Fig. 2. Variation of the dimensionless velocity distribution along the y-axis with the value of m
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v are decreasing functions of m. It is also evident from Fig. 3 that the behavior of m on the
angular velocity is opposite to that of % and v.

From Egs. (34) to (36) we note that the magmatic fluid penetrating parameter only enters
into the y-component of velocity. The z-component of velocity « and ¢ are independent of

F. Shahzad et al.
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Fig. 4. Variation of the dimensionless velocity distribution along the z-axis with the value of V)
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Vo. It is found from Figs. 4 and 5 that the x-component of velocity increases by increasing
the value of Vj either Vo > 0 or Vo < 0. It is clear from Figs. 6 and 7 that the behavior of
Vo on the y-component of the velocity is opposite to that of the x-component of the
velocity distribution.
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Fig. 5. Variation of the dimensionless velocity distribution along the z-axis with the value of Vy
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Fig. 6. Variation of the dimensionless velocity distribution along the y-axis with the value of Vj

(€1 — €4,€6,67 = 0.5; 5 = 2, Up = 2)

5 Concluding remarks

In this communication we presented the analytical solution for the steady two dimensional
equations of a micropolar fluid. Lie group analysis has been employed and the solutions
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v(y)

Fig. 7. Variation of the dimensionless velocity distribution along the y-axis with the value of Vg
(e1 — €4,€6,67 = 0.5; €5 = 2, Uy = 2)

corresponding to the translational symmetry are developed. The results are also sketched
graphically and show the similar behaviour of the numerical solution [14].
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n this study, we model the flow of a third grade fluid in a porousig(z%ace. Based on modified Darcy’s law, the flow
r a suddenly moved flat plate is discussed analytically by us@%otopy analysis method (HAM). The influence of
ous parameters of interest on the velocity profile is seen. .’
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t is well known that the governing equations for the non-Newtonian fluids are more non-linear and of
ner order [1,2] than the Navier-Stokes equations. Thus, to find the analytic solutions of such equations
ot an easy task. With this fact in ﬁﬁ%everal authors [3-22] are now engaged in finding the analytic solu-
1 under imposed restrictions. The 's?ﬁn',éﬁyfest subclass of non-Newtonian fluids for which one can reasonably

he>rheological characteristics. The third grade fluid models even for steady
, For this reason the model in the present study is the third grade fluid one.
reover, the viscoelastic:fl §'in porous space are quite prevalent in many engineering fields such as
anced oil recovery, ﬁ{}r %ﬁd textile coating and composite manufacturing processes. Also the modeling
rolymeric flow in por ,}i?‘ih&pace has essential focus on the numerical simulation of viscoelastic flows in a
sific pore geometryi: % el, for example, capillary tubes, undulating tubes, packs of spheres or cylinders.

: to these motivations; the layout of the paper is as follows:

v exhibits such characterisics.

n Section 2*the basic equations are presented. In Section 3 we give the problem formulation. The analytic
ition by H/{B‘gﬁ%ﬁ’ﬂeveloped in Section 4. The convergence of the obtained series solution is analyzed in

N

‘orresponding author. Tel.: +92 51 9219819,
“mail address: faisal_74_2000@yahoo.com (F. Shahzad).

-904X/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
0.1016/j.apm.2006.09.008



T. Hayat et al. | Applied Mathematical Modelling 31 (2007) 2424-2432 2425

on 5. The graphical results are presented and the effects of the parameters are discussed in Section 6 fol-
d by concluding remarks in Section 7.

asic equations

he equations which govern the flow of an incompressible fluid in a porous space are
divV =0,
p(V.Y)V = —Vp+divS +r.

(1)
(2)

stress tensor

bove equations, V is the velocity, p the fluid density, p the hydrostatic pressure, S th
r the Darcy resistance for a third grade fluid in a porous space.
he constitutive equation for S in a third grade fluid is [20]

S = pA| + 1Ay + AT + B A; + By (A2A| + A1Ag) + B3 (trAD)A,. (3)

> u is the dynamic viscosity, a; (i =1,2), and ; (i= 1 — 3) are the materi: “constants corresponding to
nd and third order approximations respectively. The kinematical tensors A, are defined as

A =VV4 (W), (4)
0

A, = (a + (V-V>>An-. + At (VV) + (VW) Ay, 1=2,3 5)
> that Eq. (3) is compatible with thermodynamics if [23]

B0 @ >0, o o] < V24P, ‘ ©)

Bi=8,=0, B3 =0,
hich case Eq. (3) becomes

= [+ B3(trAD)|A; + oAy + A, (7)

roblem formulation

onsider a Cartesian coordinate system OXYZ with y-axis in the upward direction. The incompressible
1 grade fluid flows through a poroussspace y > 0 and in contact with an infinite flat plate at y = 0. Initially
. fluid and plate are at rest. At 7, the plate is impulsively brought to the constant velocity Uj.
1 an unbounded porous medmm the'Darcy’s law holds for viscous fluid flows having low speed. This law
es the pressure drop induced by the frictional drag and velocity and ignores the boundary effects on the
(i.e. invalid where there are’ boundanes of the porous medium). According to this law the induced pres-
drop is directly proportional to the velocity. For the porous medium with boundaries, Brinkman pro-
d an equation describing;the locally averaged flow. Although the equation proposed by Brinkman
s only for steady v1scous flows but there are several modified Darcy’s laws available in the literature
iscous flows in a pomus medium. Much attention has not been given to mathematical macroscopic filtra-
models concerning ¥ .oelastlc flows in a porous medium. On the basis of Oldroyd constitutive equation,
ollowing law for degcrxbmg both relaxation and retardation phenomenon in an unbounded porous med-
has been °uggestedt X

KD 0
(1+Aa)Vp_-7<1+A,a)v, (8)

e k is the permeability, 4 and 4, are the constant relaxation and retardation times respectively and ¢ is the
sity of the porous medium. Note that for A = 1, = 0, Eq. (8) reduces to well-known Darcy’s law of viscous

o

5.

y analogy with Maxwell’s constitutive relationship the following phenomenological model has been avail-
in the literature [24]:
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<1+A%)Vp=—ﬁk?v. €)

unidirectional flow of second grade fluid the constitutive equation can be obtained from that of an Old-
1-B fluid by taking A= 0 [3]. Thus in a porous medium, the relationship between Vp and V for unidirec-
al flow of a second grade fluid can be written from Eq. (8) as follows [22]:

(= =L2 (14 2.5 )

e

(10)

P = ay.

ploying the same idea as in Egs. (8)—(10), we propose the following constltuhv ]
sure drop and velocity for unidirectional flow of a third grade fluid:

(Vp)x=—[u+alaa+2ﬁ3(y)m“ (11)

pressure gradient in above equation can also be interpreted as.a.measure of the resistance to flow in the

icé offered by the solid matrix. Thus r, can
0 ¢u
ptoy = +2ﬁ3(y>] L

stituting Eqgs. (4), (5), (7) and (12) in Eq. (2) and th ‘ ig‘lecting Vp in the x-direction we have the follow-
steady state problem 4 ’

_H d*u  6p, < ) d*u (du
+—== +2B5| —

b2t &) M P \w

- relevant boundary and initial conditions

u(0)="Vy, u(y)—0 asy— oo. (14)

(13) can also be written as

‘rx=_ (12)

(13)

(15)

(16)

(17)
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»roblem becomes

d*f d d
a2 b'(dj:) f bzf( f) —cf =0, (18)
f0)=1, f(z) >0 asz— oo, ' (19)
e
* 174 * 7172 2
bl=b'V°, b2=b2V0’ =¢1V2. (20)
#tv2 #c #: VO
1alytic solution
 order to obtain the HAM solution, we choose 4
Jo(z) = e, A - (21)
2()=r"+f, - (22)
itial approximation of /' and auxiliary linear operator .% satléfyg 3139 '
Z(Cy+ Cre™) =0, '%&, ' (23)

e Cy and G, are arbitrary constants. If p € [0, 1] is an embedd ng ‘parameter and 7 is an auxiliary nonzero
meter then %

(1=p)2[0(z,p) — fo(2)] = phiN[0(z,p)], (24)
0(0,])) = 1’ O(OO,P) = 0, (25)
(5
2 2 A2
#1060 = 5 b, (P22)) 22 (26)

p=0and p =1, we have
0(z,0) = fo(2), 0(z,1) = f(2). (27) .

increases from 0 to 1, 6(z,p) va
£

rom fo(z) to f{z). By Taylor’s theorem and Eq. (27) one obtains

0ep) = fold) + > Sule)p" (28)
Fitd) = l ot 0(z ik (29)

%y

ly the convergence o
srgent atp = 1 ‘th

e series (28) depends upon 7. Assume that 7 is selected such that the series (29) is
due to Eq. (26) we have

/@ =ﬁ>(2)‘"§%:{2fm (2)- (30)
m=1

he mth order deformation problem, we differentiate Eq. (24) m times with respect to p, divide by m! and
set p = 0. The resulting deformation problem at the mth order is

Llfm(2) = Anfu-1(2)] = §Rn(2), (31)
Jn(0) = fu(00) =0, (32)
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oIre

Ro(2) = {dz“‘—fm .]+de”"‘z[d{1"2’(b‘df’ bzﬁ)] | (33)
n={i RS0 8

> solution of the above problem upto first few order of approximations may be obtained using the symbolic
nputation software MATHEMATICA. The solution of the problem can be expressed asan mﬁmte series of
form

2m+1 2m+1-2n

@)= > al,e™ mz0. (35)

n=0 q=0

okmg Eq. (35) into Eq. (31) we get the following recurrence formulae for the :oeﬂiment af, , of fu(z) when
>1,0<n<2m+1

: 2m+1 2m+1-2n
i = Anlom1Gpy — D D Th g, ; (36)
n=2 =0 e
Do = Amdoms 1kt gy 0 Sk < 2m+1, (37)
2m
afn,l = XMXZM—I—ka;—I,I - Z Iy i (38)
q=k—1
2m+1-2n
man = XMX2m+l—2n—kafn—l,n + Z F?,,,,.uﬁ,k, (39)
q=k
ore
Im+1 2m+1-2n
Toa=hY " > lomtican-g(@2hy, - (40)
n=0 q=0
!
q-k q|
. _ !
:un,k S g() k!nP+' (n Sl l)q_p-H_, (42)
> coefficients 63:’”, 64;’"',,, are
m=1 k r=min(n,2__k. 2 s=min{g,2k+2—2r}
635, = Z Z -4 1 li,ralgn——sl—k,n—r’ (43)
k=0 =0 r—maxLO,n—Z&% 1} s=max{0,g—2m+2n-2r+1}
m-1 k A s=min{q,2k+2-2r}
847, = Z >k Y, T2 a1TS s - (44)
k=0 1=0 sremaxiii—2k+2m—1} s=max{0,g~2m42n—2r+1 }
e
i=min{s2/+1-2j} ) ;
I lz', = { a2, Jalz", e (45)
Jj=max {0,r—2k+21-1} i=max{0,s-2k+2/+2r—2j~1}
j=min{r2/+1} i=min{s,2/+1 -2/} ' .
m;, = > o alh el (46)
J=max{0,r—2k+2/~1} i=max{0,s—2k+2/+2r-2j—1}
al? = (q+ l)a"““l -l (47)

aZZ,‘” =(q+ l)al:’:l'”l - nalf"‘". (48)
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izing the above recurrence formulae, all coefficients aﬁ,‘" can be computed using only the first two

aty=0, &} =1, (49)

n by the initial guess approximation in Eq. (21).The corresponding Mth order approximation of Egs. (18)
(19) is

M 2M+1 M 2m+1-2n
D @ =3 e DD D 50)
m=0 n=1 m=n-1 k=0
the analytic solution of the problem is
o0 2M+1 M 2m+1-2n
@)=Y _f@=1m [ = > Y &2l " (51)
M- n S
m=0 n=1 m=n—1 k=0 “’?ﬁi\%
-"Lg %}"
. J
-2
g
w4
£
17%"-order app.
-8
—1:5 -1.125 -1. —0.;5 -0.5 ~0.25 0
h

Fig. 1. A-curve for the seventeenth\,orde;;”«gf the approximation for the velocity field f for b; = 0.5, b, =0.1, ¢ =0.8.

by=0.1,¢=0.8
1
0.8
3 =
~ — 1=U.
04 w-- b1=0.9|]
--- by=1.5
0.2
0
0 1 2 3 4 5 6
h

Fig. 2. Variation of the velocity distribution for the various values of b;.
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Convergence of the analytic solution

Clearly Eq. (51) contains the auxiliary parameter 7. As pointed out by Liao [4], the convergence region and
¢ of approximation given by HAM are strongly dependent upon this auxiliary parameter. For this purpose,
> heurve is plotted for fup to the seventeen order approximation. It is obvious from Fig. 1 that the range for
> admissible value for 7 is —1 < % < —0.15. Our calculations depict that the series of the velocity field in Eq.
) converges in the whole region of z when 7 = —0.2.

Results and discussion

In Fig. 2, the velocity field fis plotted for the different values of the parameter b;. It clear from this Fig
1t with the increase in b, the velocity increases. Fig. 3 elucidates the effects of the rameter b,. It is evident
m Fig. 3 that velocity decreases by increasing b,. Fig. 4 represents the veloeiatj? distribution for the various
lues of the parameter c. It is clear from Fig. 4 that the velocity also decreases w1th the increase in c¢. Figs. 5-7
resent the velocity distribution for the large values of by, b, and ¢ respectlvély ‘and similar effects has been
n as in case of Figs. 1-3.

b;=0.2, c=0.8

1
0.8
0.6 e
=50
=t —— b3=0.5
0.4 ---- by=0.9
--- Dp=1.5
0.2
0
0 1 2 3 4 5 6
B
Fig. 3.
b1=0.2, by=0.2
1
0.8
. 0.6
2
Y
0.4
0.2
0
0 1 2 3 4 5 6
B

Fig. 4. Variation of the velocity distribution for the various values of c.
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by=0.1, c=0.8

1

0.8
80.6- m— P §
T — by=2
0.4f - by=3
=== D324

0.2

0

0 i1 2 3 ‘4 5 .5

1 L
0.8} ]
_ 0.6} — P
o — by=2
ot - b33
--- by=4
0.2
0
0 1 2 3 r 5 6

£(0)

aona
oo
BN

Fig. 7. Variation of the velocity distribution for the various values of ¢.
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“oncluding remarks

n the present paper, the steady third grade fluid in a porous space is considered. The governing constitutive
tionship for modified Darcy’s law in a third grade fluid has been proposed. It is noted that modified
cy’s law for unidirectional flow of a third grade fluid yields non-linear expression in terms of velocity
reas it is linear for Newtonian, Oldroyd-B, Maxwell and second grade fluids. The governing non-linear
blem that comprised the balance laws of mass and momentum has been solved using homotopy analysis
hod (HAM). The significant contributions of the non-Newtonian parameters by, bz a?id ¢ on the velocity
pointed out.
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Abstract

In this study, we model the flow of a third grade fluid in qﬁorguS\ha?f space. Based on modified Darcy’s law, the flow
ver a suddenly moved flat plate is discussed numerically. The r%ﬂuence of various parameters of interest on the velocity
orofile is seen. -

O 2007 Elsevier B.V. All rights reserved.

Keywords: Third grade fluid; Porous space; Numerical sq}ution; _Modiﬁed Darcy’s law

|. Introduction

Because of its practical applications, the Stékes’ problem for the flat plate has been the subject of numerous
heoretical studies. Such studies for Navier—Stokes fluid and different types of non-Newtonian fluids include
he work of Zierep [1], Soundalgekar: [2}; Rajagopal and Na [3], Puri [4], Bandelli et al. [5], Tigoiu [6], Fetecau
ind Zierep [7] and Fetecau and Fetécau [8,9]. More recently, Tan and Masuoka [10,11] discussed the Stokes’
irst problem for second gra d Gldroyd-B fluid models using modified Darcy’s law. They obtained the
solution analytically. The s} ond grade and Oldroyd-B fluids for steady unidirectional flow do not exhibit
he rheological characteristics.Fhe third grade fluid model even for steady flow exhibits such characteristics.
For this reason the model in the present study is the third grade fluid one. Moreover, the governing equations
or non-Newtonian fluids. 13 }6] are highly non-linear and of higher order when compared with that of the
Newtonian fluid. The v1scoe1astlc flows in porous space are quite prevalent in many engineering fields such,
1s enhanced oil recqilery, paper and textile coating and composite manufacturing processes. Also the modeling
of polymeric flow in perous space has essential focus on the numerical simulation of viscoelastic flows in a
pecific pore geomctry model, for example, capillary tubes, indulating tubes, packs of spheres or cylinders.
Due to these motiyations, the layout of the paper is as follows:

* Corresponding author. Tel.: +92 51 9219819.
E-mail address: faisal_74_2000@yahoo.com (F. Shahzad).

1007-5704/8 - see front matter © 2007 Elsevier B.V. All rights reserved.
10i:10.1016/j.cnsns.2007.04.015
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In Section 2 we present the basic equations. In Section 3 we give the problem formulation. The numerical
results and discussion are presented in Section 4 followed by concluding remarks in Section 5.

2. Basic equations

In a porous space, the equations governing the flow of an incompressible third grade fluid are
0 ; o
<6t (V- V))V =-Vp+divS +r. 5, 2)

In above equations, V is the velocity, p the fluid density, ¢ the time, p the hydrostatxc pressure, S the extra
stress tensor and r the Darcy resistance for a third grade fluid in a porous space
The constitutive equation for S in a third grade fluid is

S = pA| + @Az + mA? + A3 + By(A2A| + AjA;) + B3 (AT A (3)

Here p is the dynamic viscosity, and a; (i = 1,2), and f; (i = 1-3) are the material constants corresponding
to second and third order approximations, respectively. The kmematlcal tensors A, are defined through the
following equations: :

A =VV + (W), (4)
5 ,
A= (B V) At + A (V) 4 (V) (5
Note that Eq. (3) is compatible with thermodynamics if and enly if [12]
200 a0, oy + o] < /24ubs; (6)
Bi=B,=0, B3>0
in which case Eq. (3) becomes
S = [/,t + B3(trAf)]A| -+ tX;Az -+ dzé - (7)

3. Problem formulation

Consider a Cartesian coordinate system OXYZ with y-axis in the upward direction. The incompressible
third grade fluid flows through a porous space y > 0 and in contact with an infinite flat plate at y = 0. Initially
both fluid and plate are at rest. At t = 0%, the plate is impulsively brought to the constant velocity Uy. Under
the stated assumptions, we may write the velocity in the following form:

= u(y,1)i, (8)

where 7 and u are, ; spectively, the unit vector and velocity in the x-direction. The above equation auto-
matically satlsﬁes fhe continuity equation. Further Eqs. (4)—(7) give

S | ©)
3
ol
a 2
8 a—;) ; (11)

Se=8:=0, Sy=Su Sp=8y == (12)
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In an unbounded porous medium the Darcy’s law holds for viscous fluid flows, having low speed. This law
elates the pressure drop induced by the frictional drag and velocity and ignores the boundary effects on the
low (i.e., invalid where there are boundaries of the porous medium). According to this law the induced pres-
ure drop is directly proportional to the velocity. For the porous medium with boundaries, Brinkman pro-
osed an equation describing the locally averaged flow. Although the equation proposed by Brinkman
olds only for steady viscous flows but there are several modified Darcy’s laws available in the literature
or viscous flows in a porous medium. Much attention has not been given to mathematical macroscopic filtra-
ion models concerning viscoelastic flows in a porous medium. On the basis of Oldroyd constitutive equation,
he following law for describing both relaxation and retardation phenomenon i in an unbounded porous med-
um has been suggested [11]:

0\y _  Ho
(l+lat)Vp— k(+'{’6t>

vhere k is the permeability, A and A, are the constant relaxation and tetardation’txmcs respectively, and ¢ is
he porosity of the porous medium. Note that for A =1, = 0, Eq. (13) rediices to well-known Darcy’s law of
iscous fluids.

By analogy with Maxwell’s constitutive relationship the followmg phenomenologlcal model has been avail-
ble in the literature [13];

0

(13)

(14)

“or unidirectional flow of second grade fluid the constitutive equatlon can be obtained from that of an. Old-
oyd-B fluid by taking 4 =0 [9,14]. Thus in a porous. medlum, the relationship between Vp and V for unidi-
ectional flow of a second grade fluid can be wntten from 'Eq. (13) as follows:

== “f( T ) (15)

vhere

(17)

Substituting Egs. (4 (5) (7), (8) and (17) in Eq. (2) give after neglectmg Op/ox as

u_ 9 ou\* %u 3 du
pat_”yzﬂ'ﬁyzater’(y) 5;2“[““' * ﬁ’(y” & ()
[he relevant boundary and initial conditions are
u(oit) = U, u(ya t) — 0 as y — oo; u(y,O) =0. (19)

ntroducing the following non-dimensional variables:
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U 2 u
n==ty, t=-8 f=i (20)

he problem becomes

of &f, &f or\* e’ of
(l+ca)aT—F+ 617261+6b(—6—r,—> el 1+2b( ’I) s Fy (21)
SO =1, fne)—0asn—oco, f(n,0)=0, o, (2)
vhere |
_ UG B l_v2¢
S Al KUy e

Note that a, b and ¢ are non-dimensional parameters defined in the
limensional second grade parameter, b is the non-dimensional thir
sional porosity parameter. g, &

/e eqﬁation. Obviously, « is the non-
e parameter and c is the non-dimen-

4. Numerical results and discussion

We note that Eq. (21) is a third order partial differ nti 1 equation. It is perhaps not possible to obtain the
>xact analytic solution. Due to this, we seek the gum cal 'solution. For obtaining the system of algebraic
quations we use the followmg approximations to ‘the derivatives:

6—{=E(fu _fi)j—l)i 2 (24)
of 1

'5,'1' = ﬂ(fm,j — fi=1yp)s (25)
*f 1

a{ hz (ﬁ‘HJ 2fu +ﬁ l’j (26)
f &5

a,,za.c hz (fl+l./ fH_-}.J "'2;[:1_,/ + 2fu-| +fi—lJ _fi—hj—l)- (27)

3q. (21) can be written as ;

4h4 [(ft+lr +f |J) (ft+lJ 5 zft./ +fl lJ)] +Cf'./ + 4h2 (f1+lJ f |J) fl./ =0. (28)

3 :
o (firy — 2f 1y +fiay) — T(fi+l,i = Sirrjt = 2f 15+ 2f 1y + fimry — fimrg-1)

(he above sys.t'em,_,q:ﬂ-élgebraic equations also gives

Ry =Afij+ Bfisrj+ Clicty + Kifjy + Kaff i + Kafiey fimri + Kaf 2y g + Ksf2y i
+ stf_,', + Kafurrgfi-1ifiy + Ffij-i + Gfiprg-1 + Hf 2141, (29)

vhere




1 +ca 2  2a L..a
A—[( T )+F+ﬁ+c]’ B——[h—z-i"ﬁ],

____[_l_+ a] 3 _3b+£
B ] R DY L AT Ek
K3 = —Kl, K4 = —Kl, K5 = Kz, (30)
6b be 1+ca 2a
Ke =K, K “F TR F——(T) 2%
G=—, H=G
Wk
Now the initial and boundary conditions can be written in the following form
foi=1 fu;=0, fio=0, i=0,1,2,...,M, j=0,1,2,3... (31)

{ere M denotes an integer large enough such that Mh approximates mﬁmty Smce our Eq. (21) is of third
yrder while given boundary conditions are two, therefore, we mtroduce an augmented boundary condition

9f (00, 7)
SSARY = 32
o i

ind consequently the problem becomes well-posed. This boundary condition is discretized to give

Juris =iy _ "

h )

ey ;

Juvry = Su. Ay ' (33)

[he system consisting of Egs. (29)—(33) has been solved numerically by employing the Newton’s method. Solu-
ions for the non-Newtoman ﬂUld models are ebramed for g = 2. From the numencal solutlon fis used to
nce of second grade third grade and Oro it parameters on the velocity profile. In order to observe these
ffects, Figs. 1-3 have been made. .

Fig. 1 is prepared just to see the.rgﬁzfegts'of a dimensionless second grade parameter on the dimensionless
relocity f. It is to be pointed out that fincreases by increasing the value of a. It is also seen that the boundary
ayer thickness increases. The varlatlon of the third grade parameter b on the dimensionless velocity fis given
n Fig. 2. This figure elucidates that variation of » on the velocity is quite opposite to that of a, i.e., the dimen-
ionless velocity f decreases when v_alue of b is increased. Fig. 3 shows that how the velocity varies w1th respect

-
L

Fig. |. Influence of second grade parameter on f'with b = ¢ = 0.2 at t = 2n.
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Fig. 3. Influence of porosity parameter on f with a=0.1 and b=0.2 at = 2m.

to the porosity parameter c. It can be seen here that the dimensionless velocity decreases for large values of c.
The boundary layer thickness is gls:offoﬁnd to decrease.

5. Concluding remarks

In the present work, Stoke’s first problem is generalized for the third grade fluid in a porous space. The
governing constitutive relationship for modified Darcy’s law in a third grade fluid has been proposed. To
the best of our knowledge such relationship is not available in the literature. It is noted that modified Darcy’s
law in unidirectional flow of a third grade fluid yields non-linear expression in terms of velocity where as it is
linear for Newtonian, Oldroyd-B, Maxwell and second grade fluids. The governing non-linear problem that
comprised the balance laws of mass and momentum has been solved numerically. Results for velocity are pre-
sented. It is important to note that variation of second grade parameter on the velocity in porous and non-
porous space is quite different. It is further found that for = > 6n the non-Newtonian effects become weak
and the flow field behaves as if it is a Newtonian fluid.
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act

s work is concerned with the unsteady rotating flow of the third grade fluid over a suddenly moving plate in its own plane.
on-linear problem governing the flow has been solved numerically. The influence of matma] parameter of third grade fluid
ytation upon the velocity has been discussed. 3
)7 Published by Elsevier Ltd.

rds: Third grade fluid; Stokes’ first problem; Rotating fluid; Numerical solution

troduction

e equations governing the flow of a viscous fluid namely the Navier-Stokes equations are non-linear. But there
veral complicated fluids which are not wellideseri c;f"by these equations. Due to this reason many constitutive
ions have been proposed for the non-Newtoni; s. The equations for non-Newtonian fluids are much com-
equations. Even the various investigators are presently engaged in

ed and higher order than the Navier-Stokes eq
1g the solutions for such flow probl ms. Some recent attempts relevant to the flows of non-Newtonain fluids in

cently, the study of rotating flows, has, gamed consnderable importance due to their applications in cosmical and
hysncal fluid dynarmcs Sevm'al v kers have been engaged to the rotatmg v1scous flows in vanous d1rect10ns

ade to some recent r ererices [7-11,1] in this area.

all the above»menm‘)‘ned studies, the rotating flows of non-Newtonian fluids have been studied as a boundary value
em. Therefore, all the mentioned studies lack the features of unsteadiness. This study fills the gap in this area.
, the main object of the present study is to discuss the unsteady flow of a non-Newtonian fluid in a rotating frame
‘erence. For that we select the model of third grade fluid. The flow in the fluid is induced by the suddenly moving
in its own plane. The governing equation for the rotating flow of a thermodynarmc third grade fluid has been
:led and then solved numerically using Newton’s method.

»responding author. Tel.:+92 51 2275341,
nail address: faisal_74_2000@yahoo.com (F. Shahzad).
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1 Section 2 we present the flow analysis. The numerical results and discussion are presented in Section 3 followed
oncluding remarks in Section 4.

‘low analysis

onsider an incompressible third grade fluid occupying the space z > 0. The plate at z = 0 is moved suddenly with
nstant velocity for ¢ > 0. Both the fluid and plate are in a solid body rotation. Initially the fluid and plate are at rest.
laws which govern the flow are

divV =0, 1

14
p[§—+(V.V)V+29xV+Qx(ﬂxr):]=—Vp+djvT, @)

ot

/hich V is the velocity, p the fluid density, ¢ the time, p the hydrostauc pressure, T the extra stress tensor, & the
stant angular velocity and r the radial coordinate with r = x2 + y2.
he extra stress tensor T in a third grade fluid is

T = pA1 + 1A + AT + B1A3 + fr(A2A1 + A1Ag) + By (tr ADA. (3)

A =VV +(VV)T,

An= (% + (v.V)> An1 +Anc1(VV) + (VV)TA, )
thermodynamics of the fluid requires that [6]
p20, o120, |a + aa|</24ups,
Bi=p,=0, B3>0 (©)
refore Eq. (3) can be written as
T [u + By (tr A})] Ay + g )
=[u(z, 0, v(z, f);w(z, x)] ‘ ®)

ch together with the mcompre551b111ty condition yields w=0 (#, vand w are the velocitiesin thex, y, zdirections,

€)

(10)

0=—=—, (11)
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RUN "
L —— b=0.001,a=0.1,C=1
8 F \\ wereme b=0.002
i I N b=0.003
).6
).4
).2
).0 |
0 1

e the modified pressure
P=p- gﬂz(xz +5)

Fq. (11) shows that ;5 # ;(z),
1€ relevant boundary and initial conditions

u="Uy, v=0 atz=0, >0,
u—>0, v—=>0 asz— oo forallt,
u(z,0)=0, v(z,00=0, z>0.

bining Eqgs. (9) and (10) and then negl

oF . 0’F o O°F

€

F(0,1) = U,

—— b=0.001,a=0.1,
......... b=0.002,C=1

------ b=0,003

are

%,

he pressure gradient, we have

convenient tbi'ggﬁié the problem in dimensionless variables. For that we introduce the following variables:

v ¥y F
==2Zs T=—1, =y
1 v y f Up

problem becomes

ot i on2or B

fO,71)=1,

fn,©) >0 asn— o0

2 3 247
g[+2in=aaT‘§+ &F o2 {(?_Ji) y_},

an /) on

v f(n,0)=0,

(12)

(13)

(14)

(15)

(16)

an

(18)

19)
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1 . | v Ll > Ll i g T 1

— C=0.1,a=0.1,b=0.001

0.2 - L ——C=0.1,a=0.1
............ W reeseens C=0.5,b=0.001
Gl e S
0
T | Biaean —T T
1.0 a=0.1,b=0,C=1
......... =°'5

------ a=1

20)

'he non-linear differential system consisting of Eq. (18) and conditions (19) has been solved numerically by em-
ying the Newton method. Solutions for the non-Newtonian fluid models are obtained for = 1. From the numerical
ition f'is used to express the non-dimensional velocity profile. Results for the flow are obtained for various values
he parameters a, b, C and .

ig. 1(a) and (b) presents the velocity profile f for various values of b. These figures indicate that increasing the
imeter b increases real part of the velocity. However, imaginary part of the velocity decreases for large values of b.
.2(a) and (b) shows the influence of C on the velocity profile f. It is evident from the figure that increase in C results
ecrease the real and imaginary parts of the velocity. The effect of the second grade parameter on f is illustrated in
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Fig. 4. Influence of various values of 7 on the velocity distribution.
1.0 ——C=0.1,a=0,6=0

...... C=1

0.8 |V

0.2 k — C=0.1,a=0,b=0

by increasing the second grade parameter. Fig. 4(a) and (b) shows how the velocity changes for
. It is found that here real part of velocity increases and imaginary part of velocity decreases by

 is observi .tfiat the influence of C in Newtonian and third grade fluid is similar.

“oncluding remarks

he Stoke’s first problem of a third grade fluid is discussed in a rotating frame of reference. The problem that
prised the balance laws of mass and momentum has been first non-dimensionalized and then solved numerically.
nlts for the real and imaginary parts of the velocity are presented. It is found that at r = 1 and different values of
e flow characteristics in a third grade fluid are similar to that of Newtonian fluid.
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both
he at Abstract  In this study, the flow of a fourth order fluid

ollow in a porous half space is modeled. By using the modified
& Darcy’s law, the flow over a suddenly moving flat plate
= U is studied numerically. The influence of various param-

here TS of interest on the velocity profile is revealed.

sloci
3ﬂn;tf Keywords Fourth order fluid - Porous space -

In a] Numerical solution - Modified Darcy’s law

)1ds fc
elatic 1 Introduction
ctiong
effec Because of its practical applications, the Stokes’ prob-
Indar lem for the flat plate has been the subject of numerous
 the | theoretical studies. Such studies for Navier-Stokes fluid
he v and different types of non-Newtonian fluids include the
S, Bri work of Zierep [1], Soundalgekar [2], Rajagopal and
lly ay Na [3), Puri [4], Bandelli et al. [5], Tigoiu [6], Fetecau
Tink: and Zierep [7] and Fetecau and Fetecau [8,9]. More
ever; recently, Tan and Masuoka [10,11] discussed the Stokes’
e fc first problem for the second grade and Oldroyd-B flu-
notp ids using the modified Darcy’s law. They obtained an
>filtr  analytical solution. The second grade and Oldroyd-B
us o fluids for steady unidirectional flow do not exhibit the
on, { rheological characteristics. The third and fourth order
1d re  fluids would exhibit such characteristics even for steady
2gest  flow. For this reason the model in the present study is of
P a fourth order fluid. The viscoelastic flows in a porous
5;) Space are quite prevalent in many engineering fields,

s t The English text was polished by Keren Wang,
n a
0ros

T. Hayat - F. Shahazad (&) - M. Ayub
Department of Mathematics,
Quaid-I-Azam University 45320,
Islamabad 44000, Pakistan

e-mail: faisal_74_2000@yahoo.com

such as, enhanced oil recovery, paper and textile coating
and composite manufacturing processes. Also the mod-
eling of polymeric flow in a porous space is essential for
the numerical simulation of viscoelastic flows in a spe-
cific pore geometry model, for example, capillary tubes,
undulating tubes, packs of spheres or cylinders. With
these motivations in mind, the layout of the paper is as
follows: ‘

In Sect. 2 we present the basic equations. In Sect. 3
we give the problem formulation. The numerical results
and discussion are presented in Sect. 4 followed by con-
cluding remarks in Sect. 5.

2 Basic equations

In a porous space, the equations governing the flow of
an incompressible fluid are

divV =0, 1)
p(%+(V-V))V=—Vp+divS+r. 2)

In the above equations, V is the velocity, p the fluid den-
sity, ¢ the time, p the hydrostatic pressure, § the extra
stress tensor and r the Darcy resistance for a third grade
fluid in a porous space.

The constitutive equations for a third grade fluid are

S =uA; + oAz + AL + 5+ 52, (3)
S1 = B14s + Ba(A241 + A147) + B3(rAD A, “4)
$2 = v1A4 + 12(A341 + A143) + 1343
+74(A242 + A2A7) + 5(trA2)Ag + y6(trA2)A]
+ (y7trAs + ystr(A241)) Ay, )

@ Springer
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_ 32u+a 33u g 94u
=Hae g Thgme

au\2 9%u Pu
6 ok e o I
+6(B2+ B3) (ay) 52 + v 3y208

+ (672 + 2y3 + 24 + 25 + 67 + 218)

L0 (au‘)2 0%u ra
SlfY FEURY .
ay [ \ay) \ayar T

92 du\? 33
e D) — —
+higg +2(B2+ B3) (6y) +t1n3a

+ (6y2 +2y3 + 2y4 + 25 + 67 + 2y8)

: (2_;) (%)] = (14)

relevant boundary and initial conditions are

N = Uy, u(y,t)—0,

(15)
— 00;  u(y,0)=0.
ducing the following non-dimensional variables
Uy U? u :
¥ yv T= Tt) - Uda (16)

(14) and (15) become

aZf 33f a4f
- — ] b
an? +a3n231’ 4 13772812

ofN* &, _OF
6(bs+b3) (L) ZL
G 3)(an) a? T VanZar3

+2(6cy + 2¢3 + 2c4 + 2¢5 + 6¢7 + 2¢g)

(1) ) Ge)
() )| --(3)

{28 -wnen (Y 1+ (39

— (6my + 2m3 + 2my + 2ms + 6m7 + 2mg)
CAYEER
) (Z)

=1, f(n,t)—>0
- 00; f(n,0)=0,

(18)

19

1.0F

— ¢,=0.05
o8y ¢,=0.09
geld @=@Zz0Z0z02Z@0 == ¢,=0.9

Y
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n

Fig. 1 Variation of the fourth order parameter ¢ on f at v = 2
(@=01b5=02,ds=01,d=01,e=05g=02,Vvs =01,
L=02,m's=0.1)

where
Uz Ug
am B0 3 PEY g0,
o pv ,
gm0 21954578, d=2X,
pv kU;
B ar g _ B1o U (19)

ok’ g pkv ’
P9l _ PG

V) = — b—

okv ' 2 pkyv ’
L= neUg n yie Uy
T opkv2t YT pkv?

4 Numerical results and discussion

The non-linear differential equation system consisting
of Eq. (17) and conditions (18) is solved numerically by
employing the Newton method. Solutions for the non-
Newtonian fluid models are obtained for r = 27. In
the numerical solution, f is used to express the non-
dimensional velocity profile parallel to x-axis. Results
for the flow are obtained for various values of the param-
eters involved.

Figure 1 presents the velocity profile f for various
values of ¢. The figure shows that increasing the fourth
order parameter ¢; decreases both velocity and bound-
ary layer thickness. Figure 2 elucidates the influence of
the fourth order parameters ¢; (i = 2,3,4,5,7,8) on
the velocity profile f. It is evident from Fig. 2 that an
increase of these parameters results in a decrease of the
velocity profile. We further note that both figures hold
for the fourth order parameters. The non-dimensional
parameter ¢; involves only one material parameter y;
and the parameter ¢; is the sum of y; (i = 2,...,8).
The effect of porosity and fourth order parameters on
f is displayed in Fig. 3. It is clear that both velocity and

@ Springer
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Variation of the fourth order parameters ¢; (i=2,3,
8 onfatrt =2r (a=01,00s =02,¢c1 =0.1,d = 0.1,

1.0}
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— ¢'s=0.05
06FF 000 e c's=1
~ 04y - T c's=
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02 : . . .
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Variation of the porosity parameter on f at t=2m (a = 0.1,

1,ds=0.1,e= Vs = g's = 0.05)

dary layer thickness increase by increasing these
neters. Figure 4 shows how the velocity changes
the various values of the porosity parameter, It
ind that the velocity decreases by increasing this

neter.

es 5 and 6 indicate the velocity distribution for vari-
alues of the third and second order fluid parameters.

nger
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Fig. 5 Variation of third order parameters on f at r=2n (a=0.1,
ds=d=e=g=v;=v3=L=m's=0)
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'Fig. 6 Variation of the second order parameter on f at t = 27

(Vs=ds=d=e=g=v=vi=L=m's=0)

5 Concluding remarks

In the present work, Stoke’s first problem is generalized
for the fourth order fluid in a porous space. The govern-
ing constitutive relationship for the modified Darcy’s
law in a fourth order fluid is proposed. It is noted that
the modified Darcy’s law for the unidirectional flow of
a fourth order fluid yields a non-linear expression with
respect to the velocity whereas it is linear for Newtonian,
Oldroyd-B, Maxwell and second grade fluids. The gov-
erning non-linear problem including the balance laws of
mass and momentum is solved numerically. It is observed
that for r > 5n the fourth order fluid behaves like a
Vewtonian fluid.
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