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Preface 

There are many models which are used to investigate different types of fluid 

mechanics problems. It is difficult to characterize in general way all necessary 

requirements since each problem is unique. However, we can broadly classify 

many of the problems on the basis of the general nature of the flow and the fluid 

and subsequently develop some general characteristics of model designs in each 

of these classifications. Amongst these models, the model of Newtonian fluid is 

the simplest one for which the Navier-Stokes equations can describe the flow 

problem. However, there are many fluids with complex microstructure such as 

biological fluids, as well as polymeric liquids, suspensions, liquid crystals which 

are used in current industrial processes and show non-linear viscoelastic 

behaviour that CaImot be characterized by Navier-Stokes equations. Because of 

the fluids complexity, many constitutive equations have been proposed. The non

Newtonian models that have been developed to describe the other rheological 

characteristics can be classified under the following three categories: fluids of 

differential type, rate type and integral type. Amongst these types, the differential 

fluids have received the special attention from the recent researchers in order to 

describe the several non-standard features such as normal stress effects, rod 

climbing, shear thinning and shear thickening. The governing equations for such 

fluids are more non-linear and higher order than the Navier-Stokes equations. 

In the literature much attention has been focused on the flows of second grade 

fluid which is simplest subclass of differential type fluids. The second grade fluid 

model is able to predict the normal stress differences but it does not take into 

account the shear thinning or shear thickening phenomena that many fluids show. 

The third grade fluid model represents a further, although inconclusive attempt 

tOWaI'd a more comprehensive dcscription of the behaviour of non-Newtonian 

fluids. Due to this fact in mind, the model in the present thesis is a third grade. 



Another aspect in the study of non-Newtonian fluids is the slip boundary 

condition. Although there are rigorous mathematical researches on flows of 

Newtonian fluids with slip condition but due attention has not been given to 

flows of non-Newtonian fluids with slip condition. The non-Newtonian fluids 

such as polymer melts often exhibit macroscopic wall slip governed by a non

linear and non-monotone relation between the slip velocity and the traction. The 

fluids that exhibit boundary slip are important from teclmological point of view 

for example, the polishing of atiificial heart valves. 

Keeping the above facts in view, the present thesis is organized as follows: . 
Chapter zero provides the introduction of the thesis. Basic preliminaries relevant 

to non-Newtonian fluids, governing laws and techniques are given in Chapter 

one. Equation which governs the rotating flow of a third grade fluid over a porous 

surface is also modeled here. Chapter two describes the steady flow of a third 

grade fluid in a rotating frame by using no-slip condition. The same problem has 

been solved employing another set of dimensionless variables for the influence of 

dynamic viscosity. Later, this problem is solved using partial slip boundary 

condition. Chapter three describes the oscillatory rotating flow of a third grade 

fluid passed a porous plate. An asymptotic solution has been obtained. Two cases 

of no-slip and patiial slip have been considered. Homotopy analysis method is 

used to obtain the analytic solutions for the problems in chapters two and three. 

Convergence of the obtained solutions developed in these chapters is also 

ensured. Chapter four has been prepared for the numerical solutions of the two 

patiial slip boundaty value problems. A reasonable agreement between the HAM 

and numerical solutions is presented through graphs. The concluding remarks are 

made at the end of each Chapter. However, a brief summaty of the important 

results from the thesis has been included in Chapter five. 
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Nomenclature 

T 

PI 

I 

t 

V 

Uo 

d/dt 

du/dt 

T - u du 
yx - r'dy 

div T 

pb 

/31' /32, /33 
Wo > 0 

Wo < 0 

!1 

u, v, w 

p 

lJ 

r 

Cauchy stress tensor 

Pressure ( scalar function) 

Unit matrix 

Time variable 

Velocity 

Uniform / Free stream velocity 

Rivlin-Ericksen tensors 

Material time derivative 

Rate of deformation 

Shear stress 

Surface forces 

Body forces per unit mass 

Absolute or dynamic viscosity 

Material moduli 

Material constants for third grade fluid 

Suction velocity 

Blowing velocity 

Constant angular velocity 

Velocity components in the x, y and z- directions 

Fluid density 

Kinematic viscosity 

Unit vector 

Radial coordinate 

p (2!1 x V) and p [!1 x (!1 x r)] Coriolis and centripetal accelerations 
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A) AI) A2 Slip parameters 

Uw) Vw Wall velocities 

s Strained coordinate 

6 Oscillating frequency 

h) l Constant grid spacing 

A Non-linear operator 

£) £1) £2) £3) £4 Auxiliary linear operators 

p Embedding parameter 

no ) nl) n2) n3) n4) n5 Non-zero auxiliary parameters 

ao) an) Co - C6) al - a3) bl - b3) [1 - (3) ko) k l ) m1 - m4 ) M1 - MIS) G i ) 

fh Ji ) K i ) Li ) Xo - X 2 Constants in calculation 
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Chapter 0 

Introduction 

One of the most fascinating and beautiful subjects of science is fluid me

chanics. The broad range of interesting phenomena and our daily interaction 

with fluids such as water and air in the environment, make this as one of 

the most exciting topics for the researchers. Fluids play a very vital role 

in many aspects of our life. We drink them, breath them, it nms through 

our bodies and it controls the weather. The study of motion of fluids is 

a complex phenomena. Fortunately we can analyze many important situa

tions using simple idealized models and familiar principles such as Newton's 

laws and conservation of energy. The most famous form of equations of mo

tion which is widely studied and applied in fluid mechanics is probably the 

N avier-Stokes equations. These are non-linear partial differential equations. 

For this reason, there exist only a limited munber of exact solutions in which 

the non-linear terms do not disappear automatically. Analytic solutions of 

N avier-Stokes equations are very important not only because these are so

lutions of some fundamental flows but also because they serve as accuracy 
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checks for experimental, numerical and asymptotic methods. 

The important and essential branch of fluid mechanics is concerned with 

liquids that are often referred as complex, in recognition of the fact that these 

materials exhibit much more complicated behaviour. Examples of complex 

fluids can be found in any kitchen, bathroom, playroom or garage. These 

include egg white, cake batter, silly putty, proprietary oil additives, blood, 

mucous and many others. Most of these fluids either consist entirely of large 

molecules or have large molecules floating in them as well as particles or 

droplets. Most plastics in their liquid state fall in this category. This branch 

of fluid mechanics is often called non-Newtonian to distinguish it from the 

classical work on small-molecules or Newtonian fluids. Although this class of 

fluids is common in nature, in a variety of technologies and as the liquid-state 

precursors of many important types of advanced materials. The status of our 

understanding of their behaviour and our ability to predict their motion is 

at a very early stage of development. In general terms, the difference be

tween complex fluids and the single component Newtonian fluids is that, in 

the latter case the mathematical formulation is known but the macroscopic 

physical processes are complex and often not well understood, especially for 

turbulent flow conditions and for complex fluids even the appropriate govern

ing equations and conditions at the boundaries are still not well understood. 

To compound the difficulty, the model equations that have been proposed 

are extremely difficult to be solved and even standard methods of computa

tional fluid dynamics generally do not work for this class of problems. These 

fluids are quite difficult from mathematical point of view for non-linear dif

ferential equations particularly for unsteady flows. Due to complexity of 
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fluids, there are many models describing the properties, but not all, of non

Newtonian fluids. These models however, cannot predict all the behaviour of 

non-Newtonian fluids, for example normal stress differences, shear thinning 

or shear thickening, shear relaxation, elastic and memory effects etc. Thus, 

where the study of these fluids is difficult, it is important from a practical 

point of view and understanding the non-Newtonian fluids itself. The litera

ture is not rich enough with the solutions of non-Newtonian fluid problems. 

Even we find dearth of studies on viscous problems whereas the solutions 

to non-Newtonian problems is a rare commodity. Among these models, the 

fluids of differential type, for example fluids of second and third grades have 

acquired special status due to their elegance [1] . For some contributions, we 

refer the reader to the studies [1 - 19] and several references therein. 

It has always been interesting to carry out the study of fluids which are 

rotating. Examples of such flows are weather patterns, atmospheric fronts, 

and ocean currents. The geophysical flows are strongly influenced by the 

diurnal rotation of the earth, which is manifested in the equations of motion 

as the Coriolis force. The geophysical fluid dynamics may be considered to be 

the study of rotating and stratified fluids. The first of the two distinguishing 

attributes of geophysical fluid dynamics is the effect of the earth's rotation. 

Because geophysical flows are relatively slow and spread over long distances, 

the time taken by a fluid particle (be it a parcel of air in the atmosphere 

or water in the ocean) to traverse the region occupied by a certain flow 

structure is comparable to, and often longer than a day. Thus, the earth 

rotates significantly during the travel time of the fluid and rotational effects 

enter the dynamics. Fluid flows viewed in a rotating framework of reference 
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are subject to two additional types of forces, namely the centrifugal force 

and the Coriolis force. Since earth is rotating, so any flow we observe on 

earth is actually in a rotating frame. As it turns out, sometimes the effect 

of earth's rotation is negligible, but for large scale motions like the flows in 

oceans and atmosphere this is never true. Indeed rotation dominates most 

of these flows. The effects of the Coriolis force due to earth's rotation is 

found to be significant as compared to the inertial and viscous forces in the 

equation of motion. It is not only the earth which rotates, in fact all the 

planets of the solar system are in rotation, most notably the Jovian planets 

because they rotate quickly and they are mostly fluids. The rotating flows 

are very useful in the solar physics. The sun rotates and more massive stars 

rotate even faster, they are all fluids. The great spiral galaxies are defined 

by their rotations. The study of rotation of fluids has also attracted t he 

mathematicians. Few studies dealing with the rotating flows are given in t he 

investigations [20 - 26]. 

In all the above mentioned studies, the partial slip effects have not been 

discussed. The need for the development of boundary conditions has not 

received the attention that it deserves. The pioneers of the field such as 

Coulomb, Navier, Girad, Poisson, Stokes, St. Venant and others recognized 

that boundary conditions are constitutive equations that are determined by 

the material on either side of the boundary. The usual prescription of Dirich

let and Neumann conditions are often times not suitable for a realistic physi

cal problem, for example the flow of polymers that stick-slip on the bOlmdary. 

Recently non-standard boundary conditions have been considered from a rig

orous mathematical perspective by Rao and Rajagopal [27]. The study is also 
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motivated by recent experiments which suggest t hat gas nano-bubbles may 

form on solid walls and may be responsible for the appearance of partial slip 

boundary conditions for liquid flows . The partial slip boundary conditions 

cause a reduction in the velocity at the boundary. The solution to the prob

lems with partial slip boundary has been studied by a number of authors 

[27 - 37]. 

There are vanous analytical techniques to solve non-linear differential 

equations arising in Newtonian and non-Newtonian fluid mechanics. How

ever, all these techniques have their limitations in application. Recently a 

newly developed homotopy analysis method by Liao [38] could answer some 

questions to very complex and intriguing non-Newtonian fluid mechanics 

problems. This method has been successfully applied by many researchers 

[26, 38 - 62]. This method is very useful for the solutions of the problems 

with strong non-linearity and has the following advantages: 

• It is independent of the choice of any large/ small parameters in the 

non-linear problems. 

• It is helpful to control the convergence of approximation series in a con

venient way and also for the adjustment of convergence regions where 

necessary. 

• It can be employed to efficiently approximate a non-linear problem by 

choosing different sets of base functions. 

In tradition, perturbation techniques are widely applied to give analytic 

approximations of non-linear problems. Homotopy analysis method is rather 

a general and useful method for finding the solutions of non-linear ordinary 
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and partial differential equations for many different types. It provides great 

freedom and flexibility to select linear approximations. 

Rotation plays a significant role in several important phenomena in cos

mical fluid dynamics. Similarly a great deal of meteorology depends upon the 

dynamics of a revolving fluid. The large and moderate scale motions of the 

atmosphere are greatly affected by the vorticity of the earth's rotation. In 

the case of an infinitely extended space occupied by a fluid, rotating as a rigid 

body about an axis, the amount of energy possessed by the liquid is infinitely 

large and it is of great interest to know how small disturbances propagate 

in such a liquid. With these facts in view the present thesis has been or

ganized in this direction. In the first chapter some definitions, derivation of 

the governing differential equations and the techniques/methods applied to 

the problems in the succeeding chapters have been presented. The second 

chapter deals with steady flow of an incompressible third grade fluid past a 

porous plate. Both fluid and plate are in a state of rigid body rotation with 

a constant angular velocity. This chapter has been further divided into two 

sections. In first section, flow problem with no-slip botmdary conditions and 

in the second with partial slip boundary conditions has been addressed. The 

former problem is redimensionalised for viscous parameter as well and its 

solution has been included in this chapter. In the later part of the chap

ter, a secular term which appears in the first order solution of the partial 

slip bOlmdary value problem has been removed using Lighthill technique for 

strained coordinates. These investigations of the problem with no-slip bound

ary conditions and partial slip boundary conditions have been published in 

Applied Mathematics and Computation 165, 213-221 (2005) and 
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Acta Mech Sinica 22, 195-198 (2006) respectively. 

Chapter three is concerned with the rotating flow of a third grade fluid 

past the oscillating porous plate. Both no-slip and partial slip boundary 

conditions have been taken into account. Homotopy analysis method is em

ployed in obtaining the analytic solutions. The contents of this chapter have 

been submitted for publication in Acta Mech Sinica. 

In chapter four) we develop numerical scheme to obtain the solution of 

the partial slip boundary value problems discussed in chapters two and three. 

Finite difference method and Cran} Nicholson scheme is employed for this 

purpose. The solutions are not only important in their own right but also 

provide support to the accuracy of analytical solutions and vice versa. 

Chapter five provides a brief summary of the chief results and suggests 

extension of further research work from the thesis. 
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Chapter 1 

Preliminaries 

This chapter includes some basic concepts and definitions, the continuity 

equation and information about the methods/techniques that have been em

ployed to obtain analytical and numerical solutions of the arising non-linear 

flow problems in the subsequent chapters. Flow modelling for rotating flow 

of a third grade fluid for a porous boundary is also included. 

1.1 Non-Newtonian fluids 

Navier-Stokes equations are the governing non-linear partial differential equa

tions which describe the flow of Newtonian fluids. The Navier-Stokes theory 

is valid for the fluids of low molecular weight only. In many fields, such as 

food industry, drilling operations and bio-engineering, the fluids either syn

thetic or natural , are mixtmes of different constituents such as water, par

ticle, oils, red cells and other long chain molecules; this combination imparts 

strong non-Newtonian characteristics to the resulting liquids; the viscosity 
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function varies non-linearly with the shear rate; elasticity is felt through elon

gational effects and time-dependent effects. In these cases, the fluids have 

been treated as non-Newtonian fluids. These complex fluids cannot be de

scribed by the Navier-Stokes equations. This inadequacy of Navier-Stokes 

theory to describe fluids such as polymer solutions, blood, certain oils and 

greases has led to the development of theories of non-Newtonian fluids. Flu

ids in which shear stress is not linearly proportional to deformation rate are 

known as non-Newtonian fluids [64]. There are many fluids which manifest 

such behaviour, one of the example is of the Lucite paint which is very thick 

when it is inside the can, it becomes thin when it is sheared by brushing. 

Toothpaste is another example, it behaves as a fluid when it is squeezed out 

from the tube. It does not run out by itself when the cap is removed. Non

Newtonian fluids are commonly classified as having time-independent and 

time-dependent behaviour. Many empirical equations have been proposed to 

model t he observed relations between the shear stress T yx and rate of shear

ing strain du/ dy for time-independent fluids. They are represented by the 

power law model as 

T y x = ko (~~) n (1.1 ) 

where exponent n is called the flow behaviour index, the coefficient ko is the 

flow consistency index and d'n/ dy is the shear rate. This equation reduces 

to Newton's law of viscosity for n = 1 with ko = /-t. To ensure that T yx has 

same sign as du/dy, equation (1.1) is rewritten in the form 

I
dUln du 

T yx = ko dy = rJ dy' (1.1a) 
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where the term 'rl = ko Id-u / dyln- l is referred as to the apparent viscosity 

or affected viscosity. 

A non-Newtonian fluid is a fluid in which viscosity changes with the 

applied shear force. Therefore, non-Newtonian fluids may not have a well

defined viscosity. The role of non-Newtonian fluid dynamics is important 

as it relates to plastic manufacture, performance of lubricants, clay suspen

sions, drilling muds, paints, processing of food and moment of biological 

fluids which contain higher molecular weight components. The study of non

Newtonian fluids is further complicated by the fact that the apparent viscos

ity may be time-dependent. Thixotropic fluids show a decrease in apparent 

viscosity with time under a constant applied shear stress. Many paints are 

thixotropic. Rheopectic fluids show an increase in apparent viscosity with 

time. After deformation some fluids partially return to their original shape 

when the applied stress is released, such fluids are called viscoelastic. Be

cause of the difficulty to suggest a single model which exhibits all properties 

of viscoelastic fluids , they cannot be described as simply as Newtonian fluids . 

For this reason, many models or constitutive equations have been proposed 

and most of them are empirical or semi-empirical. For more general three

dimensional representation, the method of continuum mechanics is needed. 

1.2 Equation of continuity 

The continuity equation in fluid flow is based on conservation of mass. The 

law of conservation of mass states that the mass is neither created nor de

stroyed inside a control volume region. If we consider a differential control 
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volume system enclosed by a surface fixed in the space, then the mass inside 

the fixed control volume system will remain conserved. For such a system, 

equation of continuity can be expressed as 

ap at + V'. (pV) = o. (1.2) 

If density p is temporally constant and spatially uniform, then equation of 

continuity becomes 

V'·V=O (1.3) 

which is applicable for incompressible fluids. 

1.3 The momentum equation 

The differential of equation of motion describing the flow of a fluid is 

dV 
p dt = ph+divT (1.4) 

where dV / dt is the material time derivative, ph are body forces per unit 

mass and d'ivT are the surface forces, T is the Cauchy stress tensor which in 

matrix form can be written as 

(Jxx T xy T xz 

T= Tyx (Jyy Tyz (1.4a) 

T zx T zy (J zz 

T zy denote the shear stresses. The scalar forms of the momentum equation 
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in terms of its velocity components u, v and w in x, y and z direction are 

given by 

( 
fJu au au au) _ b au xx aT xy aT xz 

P at + u ax + v ay + W a z - P x + ax + ay + a z ' (1.5) 

( 
av av av av) _ b aT yx a(J yy aT yz 

P at + u ax + Vay + Waz - P y + ax + ay + az ' (1.6) 

( 
ow ow ow , OW) _ b aT zx aT z y au zz 

P at + u ax + v ay + W a z - P z + ax + ay + oz' (1.7) 

1.4 Constitutive equation for third grade fluid 

A constitutive equation is a relation between stress and local properties of 

the fluid. For a fluid at rest the stress is determined wholly by the static 

pressure. Although in the case of a fluid in relative motion, the relation 

between the stress and the local properties of the fluid is more complicated, 

some modifications may be made such as the stress being dependent only 

on the instantaneous distribution of fluid velocity in the neighborhood of 

the element. This distribution may be expressed only in terms of velocity 

gradient components such as for a Newtonian fluid. However, non-Newtonian 

fluids cannot be described as simple as Newtonian fluids. One of the popular 

subclass of differential type non-Newtonian fluids is the model that is called 

the third grade fluid. The Cauchy stress tensor T in an incompressible third 

grade fluid is 

T =-PII+/lAI +aIA2+a2Ai+.BIA3+.B2 (AIA2 + A2A1)+.B3 (trAi) AI, 

(1.8) 
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in which -PII is the spherical part of the stress due to constraint of in

compressibility, PI is the pressure, I is the identity tensor, fJ, is the dynamic 

viscosity, al and a2 are normal stresses and f3 I , f3 2 and f3 3 are material con

stants. The Rivlin-Ericksen tensors AI) A2 , ... , are defined as 

Al = (gradV) + (gradV)T , 

a 
An+l = (at + v . V)An + (gradV)T An + An(gradV) , n > 1 (1.9) 

where V is the velocity and t is the time. 

Dunn and Fosdick [1 5] have considered second grade fluid to be an exact 

model. The constitutive equation for a second grade fluid can easily be 

obtained by setting the values of material constants f3 I , f3 2 and f3 3 equal 

to zero in equation (1.8). They studied the thermodynamics and stability 

of such a fluid in general and concluded that for the consistency of second 

grade fluid with thermodynamics, it is necessary t hat 

(1.10) 

Dunn and Rajagopal [1] have given their judgement on the status of the fluids 

of differential type. They state that if the material parameter al is negative, 

the fluid exhibits undesirable stability properties. Fosdick and Rajagopal [ILl] 

showed that for a third grade fluid (1.8) to be consistent for thermodynamical 

consideration, the following constraints on material constants must satisfy 

f3 3 2:: O. (1.11) 

Much work has been carried out to discuss thermodynamics and stability of 

non-Newtonian fluids by Joseph [16], Renardy [1 7] and Dundwoody [18]. An 
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interesting consequence of Dunwoody's analysis is that the criterion which 

Renardy [17] has set to acquire instability for fluids of grade n can never be 

attained in any thermodynamically fluid of differential type. However, fluids 

of grade n which Renardy showed have an unstable rest state are incom

patible with thermodynamics. This study establishes that thermodynamic 

incompatibility implies stability. Thus the mathematical content of their 

linear stability analysis and the thermodynamic results justify the frequent 

and intimate connection between thermodynamics and stability. We consider 

thermodynamic third grade model throughout this thesis. 

1.5 The governing equation for a third grade 

fluid in a rotating system 

In a rot ating fr ame, equation (1 .4) is 

p [d; + 20 x V + Ox (0 x r )] = pb+divT , (1.1 2) 

where p is the density, 0 = Ok, k is a unit vector parallel to z-axis i. e. 

the axis of rotation, 0 is the angular velocity, ph are the body forces, dV / dt 

denotes the substantial (material) derivative, p (20 x V) and p [Ox (0 x r)] 

are the Coriolis and centripetal accelerations and r the radial coordinate given 

by 

(1.12a) 

Coleman and Noll [63] defined the incompressible fluid of differential type of 

grade n as the simple fluid obeying the constitutive equation 

(1.13) 
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For n = 3, we have 

~LAI ' 

a I A 2 + a2A~, 

(1.14) 

(1.15) 

The Cauchy stress tensor T is given by equation (l.8) for a third grade 

fluid with thermodynamic constraints given in equation (l.11) . We seek the 

velocity field in the following form 

v (z , t) = [1L (z , t) ,v (z, t) ,w (z , t)] . 

In view of equation (1.8), we have 

o 
o 

0 0 

0 0 

8tL 8v 
8z 8z 

( ~~ ) 2 
ouov 
oz OZ A~= 

2°UOW 
OZ OZ 

(trA2) Al = 

8u 
8z 

8v 
8z 

2
8w 
8z 

OUOV 2°UOW 
OZ oz oz oz 

( ~~ ) 2 20V oW 
oz oz 

2
8vow 
oz oz 4 ( ~~ ) 2 

0 

0 

al a2 a3 

- -
bl b2 b3 

CI C2 C3 

20 

(1.17) 

(1.18) 

(1.19) 

(1.21) 



whence 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

c~ = 2 8w 8z8t + w 8z2 + 8z 

[ 

2 82w 2 8
2
w 4 (8w ) 2 1 

~ 8z +2 [( ~~ ) 2 + (~~)2] J . 
(1.26) 

Substituting above equations into scalar forms of equation (1.12) and ne-

glecting the body forces we have 

(1.27) 
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(1.28) 

(1.29) 

equations (1.27) to (1.29) reduce to 

" '.' 
" jj 

; . 
\~ ,." 

";:0 •• '. 

(1.30) 
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(1.31) 

ap* 
az = 0, (1.32) 

where Wo < 0 is the blowing velocity, the modified pressure 

[( ) 2 ( ) 2] * 1 2 2 a au av 
P = Pl - -pr n - (2al + Q2) - - + -

2 az az az (1.33) 

and equation (1.32) indicates that p* does not depend on z . In deriving 

equations (1.30) to (l.32), equation (1.11) has been used. 

1.6 Partial slip boundary conditions 

The pioneers of the fluid mechanics such as Coulomb, N avier, Girad, Poisson, 

Stokes, St. Venant and others recognized that boundary conditions are con

stitutive equations that are determined by the material on either side of the 

boundary. The usual prescription of Dirichlet and Neumann conditions are 

not suitable for a realistic physical problem, for example the flow of polymers 

that stick-slip on the boundary. Recently non-standard boundary conditions 

have been considered from a rigorous mathematical perspective by Rao and 

Rajagopal [27]. The solution to the Stokes problem under vibrating wall con

dition that satisfies non-slip conditions at the wall has been studied in depth 
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by number of authors. The unsteady Couette flow problem has been con

sidered by several workers containing various effects with no-slip condit ion. 

However , the literature lacks studies that t ake into account t he possibility of 

fluid slippage at the walls under vibrating conditions. This problem appears 

in some applications such as in micro-channels and in applications where a 

thin film of light oil is attached to t he moving plates or when the smface is 

coated with special coatings such as a thick monolayer of hydrophobic oc

tadecytrichlorosilane. The wall slip can occm if the working fluid contains 

concentrated suspensions. 

In this thesis, the partial slip conditions have been defined in terms of 

the shear stresses. T he general formulas for T xz and T yz are 

o ( OU ow ) 0 (O'LL ow) OU OU 
+v oy OZ + ox + w OZ oz + ox + 3 ox OZ 

ov ou ov ov ow ou ow ow ou ow ov ow] 
+ oz oy + 2 OZ ox + oz oz + 3 ox OZ + ox ox + ox oy 

+a2 - -+ - + -+- -+-[20U (OU ow ) ( OU ow ) (OU Ov ) 
ox OZ ox oz oy oy ox 

2 ow ( OU ow ) ] f3 [ (Ou ) 2 (OU ow ) + OZ OZ + ox + 3 4 ox OZ + ox 

4 (
Ov) 2 (OU ow) (ow) 2 (OU ow) + - - + - +4 - -+-oy OZ ox oz oz ox 

( ou Ov ) 2 (OU ow) (OU ow) 3 + - +- - +- +2 - +-oy ox 0 Z ox 0 z ox 
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+2 (~~ + ~:) (~~ + ~;) ], (1.34) 

Tyz= ( - PII + P,AI + a IA2 + a2Ai + +/33 (trAn AI)yz 

(ov OW) [0 (ov OW) 0 (ov OW) = P, - + - + a l - - + - + u- - + -OZ oy ot OZ oy OX OZ oy 

+v- -+- +W- -+- +3--o (ov OW ) 0 (ov OW ) ou ou 
oy 0 Z oy 0 Z 0 Z oy oy 0 Z 

+ ou ov + 3 ov ov + ow ov + 3 ow ow + ow ou + ov OW ] 
o Z ox oy 0 Z 0 Z 0 Z oy 0 Z ox oy oy oy 

+a2 -+- -+- +2- -+-[( OU ov ) (OU OW ) ov ( OV OW ) 
oy ox oz ox oy oz oy 

+ 20w (OV + OW )] + /3 [4 (OU )2 ( OV + OW ) o Z 0 Z oy 3 OX 0 Z oy 

+4 (Ov) 2 (OV + OW) + 4 (OW \) 2 (OV + OW) 
oy 0 Z oy 0 Z 0 Z oy 

( )2 ( ) ( )2 ( ) OU OV OV OW OU OW OV ow 
+2 -+- -+- +2 - + - - + -oy ox 0 Z oy 0 Z ox 0 Z oy 

+2 (OU + OW) 3] OZ OX (1. 35) 

which for the velocity field under consideration yield 

(1.36) 

(1.37) 

25 



1.7 Mathematical techniques 

1. 7.1 Homotopy analysis method (HAM) 

HAM is an approximate analytical technique for solving non-linear problems 

which is introduced by Liao [38]. This technique overcomes the limitations 

and restrictions of perturbation techniques. This method is based on the 

fundamental concept of 'homotopy of topology' [66] . It does not depend on 

small parameter assumptions of perturbation technique and can be applied 

to even those problems whose governing equations and boundary conditions 

do not contain any small parameters. In fact, this method provides great 

flexibility to select auxiliary linear operators and initial approximations. 

Homotopy analysis method is a kind of linear property of homotopy, which 

transforms a non-linear problem into infinite number of linear sub-problems. 

This transformation is independent of small parameters. This is an effective 

and simple method. For more clarity, we consider the following differential 

equation 

A [x(t)] = 0, (1.38) 

where A is a non-linear operator, t is time and x (t) is an unknown variable 

and I:- denotes an auxiliary linear operator with the property 

£F=O when F = 0, (1.39) 

in which F is the solution of the linear part of the non-linear differential 

equation. 

Introducing a non-zero auxiliary parameter n to construct the homotopy 
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as 

1-{ [x(t; p); p, 11,] = (1- p) 12x (t;p) - XO(t) + p11,A [x(t; p)]. (1.40) 

Here xo(t) is an initial approximation of x(t), p E [0,1] is an embedding 

parameter and x(t;p) is a function of t and p. For p = 0 and p = 1, we have 

the following results 

1-{ [x(t;p);p, 11,]lp=o = £ [x(t;p) - xo(t) ] (l.40a) 

and 

1-{ [x(t; p); p, 11,]lp=l = nA [x(t;p )]. (1.40b) 

Employing equation (1.39) 

x(t; 0) = xo(t) (l.40c) 

is a solution of the equation 

1-{ [x(t;p);p, n]lp=o = 0, (l.40d) 

and 

x(t ; 1) = x(t) (l.40e) 

is a solution of the equation 

1-{ [x(t;p);p, nllp=l = o. (1.40f) 

When p increases from 0 to 1, the solution x(t;p) of the equation 

1-{ [x(t;p);p, 11,] = 0 (l.40g) 

depends upon the embedding parameter p and varies from the initial approx

imation xo(t) to the solution x(t) of equation (1.38). In topology, such a kind 

of continuous variation is called deformation. 
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In order to illustrate HAM, we consider the following example 

d
2
F 2F = F2 

dt2 + , t ~ 0, (1.41) 

subject to following boundary conditions 

F(O)=l, F(oo) =0. (1.42) 

We select the following auxiliary linear operator 

(1.43) 

The initial guess approximation of the problem is obtained by applying the 

auxiliary operator (lA3) on unknown function Fo(t) along with boundary 

conditions (1.42). This gives 

(1.44) 

where 

Fo(t) is an initial guess approximation of F(t; p). Now introducing a non-zero 

auxiliary parameter no to construct the so-called zeroth-order deformation 

problem as 

(1- p)£ [F(t;p) - Fo(t)] = pno [~t~ + F - F2] , 

F(O;p) = 1 and F(oo;p) = 0, 

where no is an auxiliary parameter. For p = 0 and p = 1, we have 

F(t; 0) = Fo(t) and F(t; 1) = F(t). 
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Assume that the deformation F(t;p) is smooth enough. If the auxiliary pa

rameter no is properly selected such that the zero-order deformation problem 

(1.45) and (1.46) has solution for all p E [0 ,1] and that there exists the 

mth-order derivative as 

(m 2: 1) (l.4S) 

then by Taylor's theorem 

+00 
F(t;p) = Fo(t) + L Fm(t)pm. 

m=l 

Furthermore, assuming that no is properly chosen that the power series is 

convergent at p = 1, then 

+00 

F(t) = Fo(t) + L Fm(t) (1.49) 
m=l 

Differentiating the zero-order deformation problem (1.45) and (1.46) m-times 

with respect to p, dividing it by m! and setting p = 0, we have the mth-order 

deformation problem as 

[ 

m-l 1 .c [Fm(t) - XmFm-l(t)] = no F:O_l + 2Fm- 1 - ~ Fm-1Fi , (1.50) 

Fm(O) = 0, 

and 

(1.51) 

in which dot denotes the derivatives with respect to t. 

Solving the problem consisting of equations (1.50) and (1.51) up to second

order of approximation, the three terms solution is 

F(t) = Fo(t) + Fl(t) + F2(t). 
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For no = -1, the pertmbation solution can be recovered from the above 

equation. 

1. 7. 2 Numerical technique 

The mathematical formulation of most of the physical problems in science 

that involve rate of change with respect to two or more independent vari

ables representing time, length or angle leads either to partial differential 

equations or to a set of such equations. For these problems approximation 

methods whether analytical or numerical are the only means of solution. An

alytical approximation methods often provide extremely useful information 

concerning the character of the solution for critical values of the dependent 

variables but tend to be more difficult to apply than the numerical meth

ods. Amongst the numerical approximation methods available for solving 

differential equations, finite difference and finite element methods are more 

frequently used and more universally applicable than any other [67J . 

Finite difference method is an approximate method in the sense that 

derivatives at a point are approximated by difference quotients over a small 

interval. Finite difference method generally give solutions that are as ac

curate as the data warrants or as is necessary for the technical purpose for 

which the solutions are required. 

Assume that a function F and its derivatives are single-valued, finite and 

continuous funct ions of z, then by Taylor's theorem: 

F(z + h) = F(z) + hF'(z ) + h
2 

F"(z) + h
3 

F"'(z) + O(h4) 
2 6 

(1.52) 
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and 

F(z - h) = F(z ) - hF'(z ) + ~2 F"(z) _ ~3 F"'( z ) + O(h4), (1.53) 

where O(h4) denotes terms containing fourth and higher powers of h. These 
. . 

expanSIOns glVe 

(
dF) rv F(z + h) - F(z ) 
dz Z=Z h 

(1.54) 

and 

(
dF) rv F(z) - F(z - h) 
dz Z = Z h 

(1.55) 

with an error of order h. We assume that the second and higher powers of 

h are negligible. Equations (1.54) and (1.55) are called forward difference 

formula and backward difference formula respectively. 

Subtraction of the equation (1.53) from (1.52) gives 

(
dF\) rv F(z + h) - F(z - h) 
dz z=z 2h 

(1.56) 

with a leading error on the right-hand side of order h2 . This approximation 

is called a central difference formula. 

The addition of equations (1.52) and (1.53) leads to approximation of 

second-order derivatives 

(
d2 F) rv F(z + h) - 2F(z ) + F(z - h) 
dz2 h2 

Z=Z 

(1.57) 

with an error of order h20n the right-hand. 

Similarly to approximate the third-order derivative and higher order deriv

atives, we make use of the previous terms. Adopting this procedure, we get 

the approximation for the third derivative as 

(
d

3 F) rv F(z + 2h) - 2F(z + h) + 2F(z - h) - F(z - 2h) (1.58) 
dz3 2h3 

z=z 
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Now to approximate partial derivatives of a function F of two independent 

continuous variables z and t, such as 8Fj8t, 8Fj8z , 82 Fj8z2 and so on by 

finite difference method, the continuous variables z and tare discretized. For 

that F(z, t) is evaluated only at the intersections i.e. the mesh points of the 

grid lines parallel to z and t- axes. The coordinates (z, t) of the mesh point 

are defined as 

z = ih, t = jl, (1.58a) 

where i, j are the integers, and h, l are the constant grid spacings in the z 

and t direction respectively. The value of F at the mesh point is defined as 

FI = F(ih , jl). (1.58b) 

Using the same concept introduced for ordinary derivatives, we get the fol

lowing centre-difference approximations for partial derivatives 

1 
2h {F((i+ l)h,jl) - F((i -l)h,jl)} 

1 . . 
2h {Fi~1 - FLI} , (1.59) 

· 1· " 
(Fzz )I ~ h2 {Fi+! - 2Fi + FLd ' (1.60) 

(1.61) 

The forward-difference approximation for Ft and (F) zzz at the same mesh 

point will be 
FHI - Fi 

F',rv t t 
t - l (1.62) 

and 

(1.63) 
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The Crank-Nicolson method provides an alternative implicit scheme for the 

approximations of partial derivatives. For this purpose, the approximations 

of partial derivatives are developed at the mid-point of time increment region, 

the function F is also approximated at the mid-point of time increment as 

(1.64) 

The first partial derivative with respect to time can be approximated at j + ~ 
time level 

(Ft )!+! ::= t {F!+I - F!} (1.65) 

and the spatial derivative can be approximated at the mid-point by averaging 

the difference approximations at the jth and (j + l)th time levels 

(1.66) 

Similarly, the second and third spatial derivatives can be approximated at 

the mid-point by means of averaging as 

_1_ [{Fj+1 _ 2Fj+1 + Fj+l} 
2h2 ~+1 ~ ~-I 

+ {F!+I - 2F! + FLd] (1.67) 

and 

rv _1_ {pHI _ 2pHI + 2Pj+1 _ pHI 
4h3 ~+2 ~+1 ~-I ~-2 

+F!+2 - 2F!+1 + 2FLI - FL2} . (1.68) 

The partial derivative of the form 83 F / 8tOz2 is approximated at the mid-
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point as 

(F ) J+1 
zzt i 

rv t { (Fzz )l+l - (Fzz )l} 
1 [{Fj+1 2FJ+I FJ+I} {Fj 2Fj F j }] lh2 HI - i + i-I - HI - i + i-I . (1.69) 

1. 7.3 Lighthill technique 

The method of strained coordinates is a technique for dealing with certain 

types of non-uniformities which occur in asymptotic expansions. Various 

methods have been devised to overcome this difficulty and to determine a 

uniformly valid expansion. To deal with such problems) two related methods 

are known as Lindstedt-Poincare technique and Lighthill technique [65] . The 

former applies to systems which are periodic) where the period of motion 

is changed by a perturbation. It can be applied to various oscillators such 

as mechanical spring and mass systems) electrical systems and planetary 

motion. 

Lighthilrs method is a generalization of the Lindstedt-Poincare method 

which enables strained coordinates to be applied to a far wider class of prob

lems. The method has been found to be of particular value in the solution of 

the partial differential equations which occurs in fluid dynamics. This method 

has been applied to many branches of continuum mechanics including flow 

past aero-foils and wave propagation in solids and fluids. It is applied to par

tial differential equations where one or more of the independent variables are 

strained. The straining may be applied to space and/or time variables or to 

the combination known as characteristic variables in the theory of hyperbolic 
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partial differential equations. 

Consider the application of Lighthill's technique to the study of flow past 

thin aero-foils. We denote the original independent variable by z and the 

strained coordinate by s. 

Lighthill uses the straining transformation 

(1. 70) 

where the coeffiCients of En are functions of the strained coordinates. The 

Lindstedt-Poincare transformation is of the form 

thus 

S 2 
- rv 1 + EW I + E W2 + ... 
z 

Z rv S = s(l - EWI - E2W2 - ... + E2Wl + ... ). 
1 + EWI + E2W2 + ... 

(1.71) 

(1.72) 

This shows that the Lindstedt-Poincare transformation is a special case of 

Lighthill's with h = -WlS, 12 = (WI -W2)S and in general 1n(s) = ans where 

the an are constants. 

The standard procedure with Lighthill's technique is to introduce the new 

variable into the governing equation and botmdary or initial conditions using 

the relation 

d 

dz 
ds d ( dZ ) -1 d 1 d 
dz ds = ds ds rv 1 + E dh + E2 dh + ... ds 

ds ds 

rv {I _ E dh _ E2 [d12 _ (dh ) 2] + ... } ~ . 
ds ds ds ds 

(1. 73) 

The procedure is analogous to the Lindstedt-Poincare technique in that an 

expansion of the form 

u(s, E) rv uo(s) + EUl (S) + ... (1.74) 
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is assumed for the dependent variable. This is substituted into the trans

formed governing equation and order equations generated for 'l.LO, Ul etc. 

with associated boundary jinitial conditions. 
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Chapter 2 

Steady flow of a third grade 

fluid in a rotating frame 

This chapter deals with the steady flow of an incompressible third grade fluid 

past a porous plate. The whole system is in a rotating frame of reference 

with and without slip. Analytic solutions of the non-linear problems are 

based on the homotopy analysis method. Recurrence formulas for the coeffi

cients arising in the series solutions are presented. Convergence of the series 

solutions is explicitly analyzed. Finally, attention is focused on the effects of 

suction/blowing, rotation, second grade, third grade and slip parameters. 

2.1 Mathematical problem for no-slip case 

We consider a Cartesian coordinate system rotating uniformly with an an

gular velocity n about the z-axis, taken positive in the vertically upward 

direction and the plate coinciding with the plane z = O. The fluid flowing 
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past a porous plate is third grade and incompressible. All material para

meters of the fluid are assumed to be constants. For a rotating frame, the 

momentum equation (1.12) is considered in which T is the Cauchy stress ten

sor for third grade fluid as given in equation (1.8) . From thermodynamical 

considerations, the material constants in equation (1.8) must be satisfied by 

(1.11). Under thermodynamical considerations, the Cauchy stress tensor of 

a third grade fluid is 

For a uniform porous bOlUldary, the continuity equation is satisfied if 

v = [u (z), v(z), -Wol, (2.2) 

where U and v are x- and y-components of velocity and Wo > «) 0 corre

sponds to suction (blowing) velocity respectively. 

In view of equations (1.3), (1.11), (1.12), (2.1) and (2.2)' we have from 

equation (1.8) as 

P - Wo- - 2v[2 = fJ,--Cll Wo-+2{3 - - - + -[ du 1 d2u d3u d [dU{(dU) 2 (dV) 2}] dz dz2 dz3 3 dz dz dz dz 
(2.3) 

where Uo denotes the uniform velocity outside the layer which is caused by 

the pressure gradient. 
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The appropriate boundary conditions are 

u = v = 0 at z = 0, U --7 Uo, V --7 0 as z --7 00. (2.5) 

Defining 

F = u + iv _ 1 F * = u - w - 1 
Uo ' Uo 

(2.6) 

equations (2.3) to (2.5) can be combined as 

dF 1 [d
2 
F d

3 
F d {( dF) 2 dF* }] 2iflF - Wo- = - - - avVo- + 2(33- -- --

dz P dz2 dz3 dz dz dz 
(2.7) 

subject to following bOlmdary conditions 

F(z ) = - 1 at z = 0, F(z ) --7 0 as z --7 00 (2.8) 

where F * is conjugate of F. 

It is convenient to introduce the following dimensionless quantities 

~ pUoz ~ F -- Wo z F= Uo' Wo = Uo' 
P, 

~ flp, ~ (33P2U~ ~ alPUJ (2.9) fl - [12 ' (3= p,3 , a= p,2 p 0 

After dropping hats, the resulting problem consists of conditions (2.8) and 

the following differential equation 

d
2
F -2iflF+Wo [elF _a

d3F
] +2(3'!!:'" [(dF) 2

dF
*] =0. 

dz2 dz dz3 dz dz dz 
(2 .10) 

Since equation (2.10) is a third-order differential equation which is higher 

than the governing equation of the Newtonian fluid . Therefore, we need one 

more condition. The flow under consideration is in an unbounded domain, 

so by augmentation of the boundary conditions (2.8), we have 

dF 
- --7 0 as z --7 00 . 
dz 
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2.1.1 Solution of the problem for no-slip case 

Here, we give an analytic and uniformly valid solution by homotopy analysis 

method. For that we use the initial guess approximation 

Fo( z) = _e-z (2. 12) 

and the auxiliary linear operator 

(2.13) 

satisfying the property 

(2.14) 

where Cl and C2 are arbitrary constants. 

The deformation problem at the zeroth-order satisfies 

(1- p)Ll [F( z;p) - Fo(z )] 

[ 

82F(ZiP) - 2iD,F(z, p) + W; (8F(ZiP) - a 8
3
F(ZiP) ) 1 

= pnl 8z

2 

{' ( _ 0) 2~: } 8z

3 

, 
+2(3l2.. 8F(ZiP) 8F (ZiP) 

8z 8z 8z 

(2.15) 

where nl is an auxiliary parameter and p E [0,1] is an embedding parameter. 

The boundary conditions take the form 

F(O;p) = -1 as z ~ 0, F(z;p) -t 0 as z -t 00, 

EJF(z ;p) 0 
EJz -t as z -t 00. (2.16) 

For p = 0 and p = I , we have from equation (2 .15) 

F(z; 0) = Fo(z ), F(z; 1) = F(z). (2.17) 
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We note from the above equations that the variation of p from 0 to 1 contin

uously varies F(z;p) from the initial guess Fo(z) to the exact solution F(z ). 

Due to Taylor's theorem and equation (2.17) one obtains 

00 

F(z;p) = Fo(z) + 2:: Fm(z)pm (2.18) 
m=l 

in which 

17' ( ) = ~ am F( z;p) I ( ) 
rm Z I a m m 2: 1 . 

m. p p=o 
(2.19) 

Assuming that til is properly chosen such that the series (2. 18) is convergent 

at p = I , we have from equation (2 .17) that 

+00 

F(z) = Fo( z) + L Fm(z ). (2.20) 
m=l 

Differentiating m-times the zero-order deformation equations (2.15) and (2.16) 

with respect to p and then dividing them by m! and finally setting p = 0, 

one obtains the following problem at mth-order 

dmF . 
Fm (0) = 0, Fm(z) ---7 0 as z ---7 00, -d- ---7 0 as z ---7 00, zm 

F~_l (z) - 2inFm _ l (z ) + Wo {F~_ l (z ) - aF~~_l (z )} 

(2.21) 

(2.22) 

+2jJ f~ F~_l_n(Z) ita { F~_i (z) F;'*(z ) + 2F~_i(Z)F;*(z) } , 

(2.23) 

Xm= 
0, m:::; I, 

I, m 2: 2 

in which prime denotes the derivatives with respect to z. 
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Now solving equations (2.21) subject to boundary conditions (2 .22) up to 

first few order of approximations, the mth-order solution can be expressed 

by 
2m+12m+l-n 

Fm (z ) = L L A:;',nzqe- nz, m ~ O. (2.25) 
n=O q=O 

Substituting equation (2.25) into equation (2.21), we obtain the following 

recurrence formulae for the coefficients A:;' n of F m (z) for m ~ 1, 0 :s; n :s; , 

2m + 1 and 0 :s; q :s; 2m + 1 - n : 

2m+12m+l-n 

A~l,l = XmX2mA~-1,1 - L L eq ,+.q 
1n,n 'f'n,O' (2.26) 

n=2 q=O 

2m+l 

Ak - Ak ~ eq ,+.q 
m,l - XmX2m-k m-l,l + L-t m,l 'f'l,k' 1 :s; k :s; 2m + 1, (2.27) 

q=k-l 

2m+l-n 

Ak Ak + ~ en ,+.CJ m,n XmX2m+l-n-k ~l- l ,n L ~,n'f'n ,k' 
q=k 

2 < n:S; 2m + I, O:S; k :s; 2m + 1 - n, (2.28) 

q _ q!2q+2- k 
¢l,k - k! ' 0 :s; k :s; 2q + 2, q ~ 0, (2.29) 

q+l-k , 
~ q. 
~ k!(n -l)p+l(n + l)q+l- k-p' 

o < k :s; 2q + 2 - n, q ~ 0, n ~ 2, (2.30) 

[ 
X2m+l-n-q (C~-l,n + 2inA~_1,n) 1 

+Wo (B~-l,n - aD~_l,n) + 2(3 (2K::;',n + ~~l,n) 
(2.31) 

The coefficients Bin"n, Cil,n, Din"n, K::;',n and ~:;',n where m ~ I, 0 :s; n :s; 

2m + 1, 0 :s; q :s; 2m + 1 - n are defined by 

(2.32) 
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(2.33) 

D~,n = (k + 1) c~:~ -nC~,n' (2.34) 

m-l k rnin{n,2k+2} rnin{q,2k+2-j} rnin{p,2I+l} 

~;"n - LL L L L 
k=O 1=0 p=rnax{0,n-2m+2k+l} t=rnax{0,q-2m+2k+l+n-j} j=rnax{0,p-2k+21-1} 

rnin{t,2I+l-j} 

x L Bi C t - i B *q-t 
I,j k-I,p-j m-l-k,n-p' (2.35) 

i=rnax{0,t-2k+21-1+p-j} 

m- l k rnin{n,2k+2} rn in{q,2k+2-j} rnin{p,21+1} 

LL L L L 
k=O 1=0 p=rnax{0,n-2m+2k+l} t= max{ 0,q- 2m+2k+l+n- j} j = max{0,p-2k+21 - 1} 

rnin{t,21+1 - j} 

x L Bi .Bt- i .C*q-t 
I,J k-I,p-J m-l-k,n-p' (2.36) 

i=rnax{0,t-2k+21-1+p-j} 

For detailed procedure of the derivation of above relations, the reader is 

referred to [40]. All coefficients A~,n can be obtained using above recurrence 

formulas and 

A~,o = 0, A~,l = -1, (2.37) 

given by the initial guess approximation as equation (2.12). The correspond

ing Mth-order approximation of equations (2.15) and (2.16) is 

(2.38) 

and the final solution series is 

(2.39) 
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2.1.2 Convergence of the solution 

The explicit , analytic expressions (2 .39) contains the auxiliary parameter 

nl' As pointed out by Liao [39], the convergence region and the rate of 

approximations of the series given by the homotopy analysis method strongly 

depends upon 'til ' 

a = f3 = 0.1, Wo = 0.2, 0 = 1 

o 

- 50 

-100 

§: - 150 

1-- 10
th

-order app. 

-200 

-250 

-300 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 

"1 

Figure 2.1(a) 
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400 
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Figure 2.1(b) 
Figures 2.1 : nI-curves for the 10th-order of approximations. 
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In Figures 2.1, the 'h -curves are plotted to see the range of admissible 

values for the parameter Ih . It is clear from these figures that 11,1 is - 0.8 ::; 

IiI < 0 and our calculations show that the series given in equation (2.39) 

converges in the whole region of z for 11,1 = -0.4. For different values of IiI, 

we have a family of solutions as given in equation (2 .39). Now to address 

the question of convergence of the series for the appropriate choice of 11,1, we 

concentrate on the values of physical quantities on the plate. Since the series 

(2.39) must converge to a unique value, we will be looking at all values of 

11,1 for which the family of solutions remain the same. This can be obtained 

by drawing the graph of the physical quantity versus 11,1 and the region of 11,1 

for which this quantity remains constant will be the appropriate range of the 

value of 11,1' 

2.1.3 Graphs and discussion 

In this section the graphs for velocity components 'l.L and v are sketched to see 

the influence of suction/blowing parameter, rotation, second and third grade 

fluid parameters. For these cases, figures a and b corresponds to velocity 

components'l.L and v respectively. 

Figures 2.2 are prepared to see the influence of suction. It is noted that 

real and imaginary parts of velocity increases by increasing T;Va. In Figures 

2.3, we have shown the variation of blowing parameter. The efi'ects of rotation 

are illustrated in Figures 2.4. The graphs reveal that an increase in rotation 

increases the velocity and decreases the boundary layer thickness. Figures 

2.5 show the variation of second grade fluid parameter a on the velocity. Here 

'l.L increases for large a. Figures 2.6 show the effects of material parameter of 

45 



third grade fluid on the velocity. It is interesting to note that as f3 increases 

from 0 to 1, the velocity increases. 

To see the convergence of the series for all values of z, we draw our atten

tion to the fact that the most important physical quantity to be determined 

is the skin friction coefficient. This implies that the series must converge for 

z = 0, this convergence has been established by finding appropriate choice 

of til. The same connotation is applicable for the graphs presented in the 

succeeding chapters. 

It is important to comment that the values of various parameters for 

which calculations are made have been adopted from the literature which 

has been extensively used. vVe are relying on these values, while not being 

very sure that these values have been supported by experimental evidence. 
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Figures 2.2 : Influence of suction velocity Wo > 0 on the velocity compo
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Figures 2.3 : Influence of suction velocity Wo < 0 on the velocity compo

nents u and v . 
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Figures 2.5 : Influence of second grade parameter a on the velocity com
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2.1.4 Redimensionalization of the problem for viscous 

parameter 

In this section we reconsider the problem for the viscous parameter f-L by 

introducing new dimensionless quantities in equation (2.7) . Introduction of 

present dimensionless parameters for viscous parameter leads to a differential 

equation in which the viscous term is more significant. The behaviour of such 

a fluid is investigated by an analytical solution and graphical solution for 

suction, blowing, viscosity and third grade fluid parameters have been shown. 

For this purpose the following dimensionless parameters are introduced: 

~ zO Of-L ~ /3303 ~ a 10 2 

z = Uo' f-L = pUr /3 = pUJ' a = pUJ (2.40) 

and other parameters are the same as given in equation (2 .9). After dropping 

the hats, the governing momentum equation (2.7) can be rewritten in the 

following form 

d
2
F [dF d

3
F] d [(dF) 2 dF* ] f-L dz2 - 2iF + Wo dz - a dz3 + 2/3 dz dz dz = O. (2.41) 

This equation is solved subject to boundary conditions (2.8) and (2 .11) . 

2.1.5 Solution of the problem 

The analytical solution of this problem is obtained using the same procedure 

as discussed in section 2.1. Here we use the initial guess as 

(2.42) 

and take the auxiliary linear operator 

(2.43) 
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satisfying the property 

(2.44) 

where C3 and C4 are arbitrary constants and 

(2.44a) 

where the hats have been suppressed in fl . 

We construct similar homotopy equation and use the same homotopy 

relations as used in section 2.1. For zeroth-order and mth-order deformation 

problems, equation (2.41) give 

(1 - P )[,2 [F(z ; p) - Fo(z)] 

with the boundary conditions (2.22) . 

Now solving equations (2.46) subject to boundary conditions (2 .22) up to 

second-order approximations, we obtain three terms solution of the problem 

(2.41) and (2.16) as follows: 

(2.47) 
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where 

F () 2n2(3m~mi (2ml + mi) ( - m1Z - (2ml +m* )z) 
1 Z = e -e 1 

(2m1 + m!)2 - 2i ' 
(2.48) 

F2(Z) = [NIl +M2] (e- mlz_ e- (2ml+mi)z)+}\13(e-mlz_ e-(3ml+milz), (2.49) 

in which 

1\1 _ 2n2(3m~mi (2m1 + mi) 

0- (2m1 + m~Y - 2i ' 

NIl = 2N10 [1 + 11,2 { 1 + Wo[(3 + i)a - 110 (3 - i)P]} 1 ' 
M = _ 811,2(3 (1\11* + 2M ) ( 2 - i ) 

2 0 0 3 4 ' , P - ~ 

811,2(3 *' , 
Nfs= { (2' )}[1\Ilo(1-2~)+2Nlo(4-7~)], 

P p+ ~-5 

where m i and N10 are the conjugates of ml and _Mo respectively. 
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2.1.6 Graphs and discussion 

The following graphs have been drawn to see the behaviour of velocity com

ponents u and v. We make use of equation (2.6) for displaying the graphs. 

Figures 2.7 and 2.8 describe the effects on the velocity profile for different 

values of suction and blowing parameters keeping n2, el, (3, j.L fixed and vary

ing Woo It has been observed that the velocity decreases with an increase 

of suction parameter and it increases with the increase of blowing parame

ter. This behaviour of the velocity profile is quite satisfactory as it is in 

accordance with the real physical situation. Figures 2.9 show the effects of 

material parameter of third grade fluid (3 on the velocity parts when n2, el, j.L 

and Wo are fixed. For both the components of velocity u and v, the bound

ary layer thickness decreases with the increase of third grade fluid parameter. 

However, in Figure 2.9(b), we notice initially increase in the velocity near the 

plate and then decrease in the velocity away from the plate. In Figures 2.10, 

we have shown the variation of viscosity parameters keeping n2, el, (3 and Wo 

fixed. It is found that increase in viscosity parameter is responsible to de

crease the velocity and the fluid flow seems to be more smooth and uniform 

for higher values of viscosity parameter. Figures 2.11 is drawn to choose the 

best suitable value for the homotopy parameter n2. 
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2.2 Mathemat ical problem for the partial slip 

case 

Let an infinite porous plate at z = 0 bOlmd a semi-infinite expanse (z > 0) 

of a third grade fluid which is assumed to be incompressible. Both the plate 

and the fluid does not rotate as a solid body with constant angular velocity 

n about an axis normal to the plate. We take Cartesian axes (x, y, z) such 

that the z-axis is parallel to the common axes of rotation of the fluid . Since 

the plate is infinite in extent, all the physical quantities, except the pressure, 

depend on z only for steady flow. Furthermore, the fluid adheres to the plate 

partially and thus motion of the fluid exhibits the slip condition. 

Making a reference to our work of section 2.1, the dimensionless governing 

problem is 

d
2 
F (z ) _ 12F () w; [dF (z) _ d

3 
F (z) 1 

dz2 2?, Z + 0 dz a dz3 

= -2(3~ [(dF (Z)) 2 dF* (Z)] , 
dz dz dz 

(2.50) 

F(O) 1 = A [dF(Z) _ w; d
2
F(z ) 2(3 (dF( z ))2 dF*(Z)] 

+ 1 dz a 0 dz2 + dz dz ' (2.51) 

F(z) = 0 as z --7 00. (2.52) 

In equation (2.51) 

(2.52a) 

~ 

is non-dimensional partial slip coefficient, A = A{t is slip length. In writing 

conditions (2.51), we have used the following partial slip condition 

(2.52b) 
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where Uw, Vw (the wall velocities) are zero in this case and F and F* are 

defined in equation (2.6). 

2.2.1 Solution of the problem for the partial slip case 

We note that equations (2.50) and (2.51) are highly non-linear and are not 

amenable to exact solutions. To solve this problem, we use homotopy analysis 

method in the same fashion as discussed in section 2.1. For HAM solution 

we take the initial guess of F(z) as 

(2.53) 

and the auxiliary linear operator 

(2.53a) 

satisfying the property (2.44) and 

(2.53b) 

Employing the same procedure as in the no-slip case, the zeroth-order defor

mation problem is 

(1 - P)£3 [F( z;p) - Fo(z )] 

r 

d2F(z ;p) - 2inF(z , p) + W; {dF(Z;P) - a d3F(z ;p) } ] 

= pn3 dz

2 

{' ( _ 0)2::: } elz

3 

+2f-1~ dF(ZiP) elF (ZiP) 
fJ elz dz dz 

(2.54) 

subject to following boundary conditions 
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F(z;p) ----+ 0 as z ----+ 00, (2.56) 

where n3 is an auxiliary parameter and p E [0,1] is an embedding parameter. 

Differentiating equations (2.54) to (2.56) m-times with respect to p and 

letting p = 0, we obtain for m 2: 1, the following mth-order deformation 

problem 

[,3 [Fm (z ) - XmFm- 1 (z )] 

n3 m-I, n " , l F~_I (z ) - 2iDFm_1(z) + Wo (F~._ I (z) - aF~~_1 (z )) 1 
+2{3 n~o Fm_I_n (z ) i~ (F~_i (z ) F:'*(z ) + 2Fn_J z)F:*(z )) J 

(2.57) 

and 

Fm(z) ----+ 0 as z ----+ 00. (2.59) 

The three term solution of the problem consisting of equations (2.50) to 

(2.52) is 

F(z ) = Fo(z) + FI (z ) + H(z). (2.60) 

63 



In above expression 

(2.62) 

where 
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[
(2m2 + m2) {l+~~Al (Mi - m2M3) + l+~Al (Ml - m2M3 )} 1 ' 

+2(1 + i)n~ ( 1+71~2Al Nli + l+~2Al NIl) 

[(2m2 + m;) (1 + i)n~ { 1 A NI{ + 2 * A Ml}] , 
1 + m2 1 1 + m 2 1 

[
(2m2 + m;) {2(1 + 3i)n~ NI; + 8(1 + 2*i)n Nh}] 

1 + m2Al 1 + m2Al 

and m2, }I.!I;:, NI; and NI6 are complex conj ugates of m 2, M4 , NI5 and Ms 

respectively. 

2.2.2 Graphs and discussion 

The effects of partial slip on the velocity profiles are given using homotopy 

analysis method. The velocity components 'U and v using equation (2.6) are 

sketched in Figures 2.1 2 to 2.15 in order to see the influence of partial slip. 

Figures 2.12 illustrate the partial slip on the flow of viscous fluid when 

11,3 = -0.1, a = fJ = 0 and n = vVo = 0.5. It is seen that 'U increases with the 

increase of partial slip parameter and v first increases and then decreases. 

The variation of partial slip parameter on the flow of third grade fluid 

has been depicted in Figures 2.13 for fixed 11,3 = - 0.1, a = fJ = 1 and 

n = Wo = 0.5. The observations for 'U and v are found of similar type. 

However, 'U in case of third grade fluid parameter shows some change in the 

velocity profile as compared to that of viscous fluid . There is no significant 
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change in v for both viscous and third grade fluid . In Figures 2.14, the effect 

of partial slip parameter for different values of rotation has been shown and 

it is observed that the increase in rotation parameter increases the velocity. 

Figures 2.15 is drawn to determine the best suitable value for the homotopy 

parameter '!i3 to choose better convergence for the solution. 
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Figures 2.12 : The variation of velocity components for various values of 
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partial slip parameter Al for viscous fluid with fixed n3, a, /3, nand Woo 
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Figures 2.14 : The variation of velocity components for various values of 

rotation S1 with fixed n3 , a, (3, Al and vVo. 
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Figures 2.15 : The variation of velocity components for various values of 

n3 with fixed AI" a, (3, nand Wo o 
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2.2.3 Removal of secular term by Lighthill technique 

We observe that the term M4ze-m2z contains a secular or strained coordi

nate z in equation (2.61) in the sense that the series will converge slowly to 

the function F(z). This secular term may add up in the next higher order 

terms to further reduce the rate of convergence. Therefore, it is desirable 

to eliminate this term. In order to do so, we use Lighthill technique. For 

this expanding the function F(z) as a perturbation series in terms of c as 

equation (1.70). This requires an appropriate transformation of the variable 

z to s as 

z=S + c!I (s), (2.63) 

where f(s) is an arbitrary function of s. Using this transformation in equation 

(2.61), we arrive at 

F(s) = - a~ e-m2s+c [ ( - :0 ffi2!I + NI4s + M6) e-m2s - M5e-(2m2+m2 )s] +O(c2) 

(2.64) 

where 
1 

ao = . 
1 + ffi2Al 

To eliminate the secular term, we take 

(2.65) 

glvmg 

(2.66) 

Thus from equation (2.63), we have 

s = z [1 - c~:ao ]. (2.67) 
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Using equation (2.67) in equation (2.64), we obtain 

F( ) - [ 1 + M] _m2(1_"M4
a
p)z ~ Jr -(Zm2+m 2)(1-"M4

a
O)z 

Z - - C 6 e m2 - C1V.l5 e m2 . 

1 + mZ Al 
(2.68) 

It is evident that, no secular term appears in equation (2.68) . In order to see 

the validity and improvement in the result, we will compare the contributions 

of Fls(Z) i.e. the secular term and FIR(Z) i.e. the non secular term as given 

in equations (2.69) and (2.70) respectively, where 

(2.69) 

and 

(2.70) 

at c = 1. 

The two results are graphed separately and the convergence is checked. 
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Figure 2.16: Profile of partial slip effects for Fls(Z) with fixed values of 

n3 = -0.1 , a = f3 = 1 and n = Wo = 0.5. 
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Figure 2.17: Profile of partial slip effects for FIR(Z) with fixed values of 

n3 = -0.1, a = f3 = 1 and n = Wo = 0.5. 

Comparisons of figures (2.16) and (2.17) reveals that the convergence is 

improved by removing the so-called secular term. 
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2.2.4 Conci uding remarks 

In this chapter) the third grade fluid flow past a porous plate has been an

alyzed. The whole system is in a rotating frame. Two illustrative cases of 

no-slip and partial slip have been considered. Secular behaviour in the par

tial slip case has been removed. The most distinctive feature here is that; 

unlike the inertial fr'ame) the steady asymptotic blowing solution exists. The 

physical implication of this conclusion is that rotation causes a reduction in 

the boundary layer thickness. Thus) if blowing is not too large) the thinning 

effect of rotation may just counterbalance the thickening effect of blowing so 

that the vorticity generated at the plate instead of being convected away from 

the plate by blowing remains confined near the plate and a steady solution 

is possible. 
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Chapter 3 

Oscillating flows of a third 

grade fluid in a rotating frame 

In this chapter, analytic solution of an oscillating flow is constructed in a 

rotating fluid. The fluid is considered as third grade. The flow is generated 

in the uniformly rotating fluid past a porous oscillating plate. Analytic solu

tion for no-slip and partial slip situations are obtained employing homotopy 

analysis method. Convergence of the obtained explicit solutions in no-slip 

and partial slip conditions has been analyzed carefully. Attention is focused 

upon the physical nature of the solution by displaying graphs. 

3.1 Problem formulation for the no-slip case 

An infinite porous plate (located at z = 0) and the third grade fluid (which 

is in contact with the plate and occupies the whole of the region z 2: 0) 

. are in uniform rotation. For the sake of simplicity the angular velocity n 
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is taken parallel to z-axis. The fluid is assumed to be homogeneous and 

incompressible. Referred to the rotating frame of reference, the momentum 

scalar equations are equations (1.30) and (1.31) . The appropriat e boundary 

conditions are 

u(z , t) = Uo(1 + cos 5t) --t 0 as z --t 0, u(z , t) = Uo as z --t 00, (3.1) 

v(z , t) = Uo sin 8t --t 0 as z --t 0, v(z , t) = 0 as z --t 00 . (3.2) 

From equations (1.30), (1.31), (3 .1) and (3.2), we have 

[
au alL 1 p - - vVo- - 2vSl = at az 

(3 .3) 

P If av - Vlo av + 2un
J
1 

at az 

where Uo indicates the free stream velocity and 8 is an oscillating frequency. 

Introducing 
~ pUl;t 
t =- , 

f.t 
(3.5) 

along with the other parameters already defined in equations (2.6) and (2.9), 

the boundary value problem in non-dimensional variables after dropping hats 

becomes 
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F(O, t) = eiot at z = 0, F(z, t) = 0 as z ~ 00. (3.7) 

By augmentation processes 

of(z, t) __ 0 
as z ~ 00. 

oz 

3.1.1 Analytic solution for the no-slip case 

(3.8) 

We see that equation (3.6) is highly non-linear and its analytic solution is 

not very simple. We use homotopy analysis method to solve this equation. 

For that we take the initial guess approximation as 

Fo(z, t) = e-z+iot (3 .9) 

and we use same auxiliary linear operator given in equation (2.13) . The 

zeroth-order deformation problem is 

(1 - P)£l [F( z, t;p) - Fo( z, t)] 

8t 8z2 a 8tEJz 2 '/,~ ~ z,' p 

[ 

8F(z ,t;p) _ 8
2
F(z,t;p) _ 8

3
F(z,t;p) + 2 ·"F( t· ) ] 

= pn4 -w; {8F(Z,t;P) _ a 8 3F(z,t;p) } _ 2f3.E... {(8F(Z,t;p) )2 8F*(Z,t;P)} , 
o 8z 8z3 8z 8z 8z 

F(oo, t;p) = 0, BF(oo, t;p) = 0 
oz 

(3.10) 

(3.11) 

in which n4 is an auxiliary non-zero parameter. For p = 0 and p = 1, we 

have 

F(z, t; 0) = Fo(z, t), F(z, t; 1) = F(z , t). (3.12) 

As p increases from 0 to I, F(z, t) varies from Fo( z , t) to F(z, t) . By Taylor's 

theorem and equation (3.12) 
00 

F(z, t) = Fo( z, t) + L Fm( z, t)pm (3 .13) 
m=l 
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where 
1 f)m_ I 

Fm(z, t) = - , !=) m F(z, t) (m ?: 1) . 
m. up p=o 

(3.14) 

The convergence of the series (3.13) depends on n4. Suppose that n4 is 

selected in such a way that the series (3.13) is convergent at p = 1. Then 

00 

F( z , t) = Fo( z , t) + L Fm( z , t). 
rn= l 

The mth-order deformation problem is given by 

Ll [Fm (z , t) - XmFm-l (z , t)] = n4R;'(z , t), (3.15) 

( ( 
f)Fm( 00, t) 

~n 0, -t) = 0, Fm 00, -t) = 0, f) z = 0, (3 .16) 

" aFm - 1 F" aFTn _ 1 2 'n D - a-t - - m-l - O'.--m- + '/,Hrm- l 

I III m - l I n {I /I 1/ I} 
- WO{Fm_l - aFm_l } - 2(3 n~o Fm- l - n i~ Fn-iFi * + 2Fn_iF/ . 

(3.17) 

Examining the solution of first few order of approximations, the solution for 

Fm(z , t) can be expressed as 

2m+12m+l-n 2m 

F: (Z t) = ~ ~ ~ bq,r tr zqe-nz 
m, L...; L...; L...; m,n , m ?: 0, (3.18) 

n=O q=O r=O 

in which the involved coefficients bi:,n can be obtained using the relations 

2m+l- n 
bO,r - bO,r ~ <I>q,r wq 

m ,l - XmX2m m-l,l - L...; m,n n,D' (3.19) 
q=O 

2m+l - n 
bq,r - bq,r ~ (l'.q,r \T,q 

m,l - XmX2m- q m-l,l - L...; :l:'m,1 *'l ,k' (3 .20) 
q=k-l 

2m+l- n 
bq,r - X bq,r + ~ ffiq r \T,q 
m,n - mX2m- 2n- q+2 m- l,n L...; ':I:'~,n *' n,k' (3.21) 

q=k 
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-ql \liq - . 
l,k - k!2q+2- k' 

1 ::;; k ::;; q + I , (3 .22) 

q-k 

"'" ql ~ k!(n - 1)q+l-~-p (n + l)p+l ' 

1 < k ::;; q, q 2:: 0, n 2:: 2, (3.23) 

7'+2 m,n - m ,n - / 1'+2 m,n 

if..q l' to; 

'±' r:o,n = , &4 X2m-1' 
X2m+3-n-q ( 

X b' q,1' b2q,1' ax b'2 q,1' ) 

+2iDbi:,n - Wo (bl~7:n - ab3~~~n) 

-2{3 (rl~:n + r2i:,n) 
(3.24) 

m-l k min{n3,m-k} min{q3,2(m- k-n d min{7'3,2(m- k- l} 

rl q,1' 
m,n LL L L L 

k=O 1=0 n1=max{0,n3-(k- l+l} ql=max{0,q3-2(m-l+l - n3} 1'1 =max{0,1'3-2(k - l} 

min{ n,I+I} min{ q,2(l+I-n4)} min{1',21} 

X L ~ L 
n4=max{0,n-(m- l+l)} q4=max {0 ,q-2(m-l+l-n3) } 1'4=max{0,1'-2(m-l+l)} 

m-l k min{n3,m-k} min{q3,2(m-k-n1)} min{7'3,2(m-k - l)} 

r2q,1' 
TIl.,TI LL L L L 

k=O 1=0 n1=max{0,n3-(k-l+l)} Ql =max{0 ,q3-2(m - l+l -n3 )} 1'1 =max{0 ,1'3-2(k- l)} 

min{n,l+ l} min{1',21} 

x L L 
n 4=max{0,n- (m-l+l} Q4=max{0 ,q-2(m-l+l - n3} q=max{0,1'-2(m-l+l)} 

x bq1 ,1'1 bl Q3-Q1,1'3-1'1 b*2Q- Q3 ,1'-7'3 
m - l -k,n1 k-l,n3-n1 l,n-n3 ' 

(3.26) 

b' Q,1' = bQ,1'+l(r + 1) 
m,n 7TI,n , (3.27) 

b3Q,1' = b2Q+1,1'(q + 1) - nb2Q,1' m,n m,n rn,n' (3 .28) 

b2Q,1' = bl Q+l,1'(q + 1) _ nbl Q,1' . 
71~,n m,n m,n (3.29) 
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The series solution of the equations (3.10) and (3.11) is 

3.1.2 Convergence of the solution 

The explicit, analytic expressions (3.30) contains auxiliary parameter n4 that 

determines the convergence region and rate of approximations of HAM as 

pointed out by Liao [39]. 

In Figures 3.1 the n4-curves are plotted to see the range of admissible 

values for the parameter n4 . It is clear from this figure that the range for the 

admissible values for n4 is -1.7 :S n4 < 0 and the series given by equation 

(3 .30) converges in this region of z for n4 = -0.5. For different values of n4, 
we have a family of soluLions as given in equation (3 .30). The convergence 

of the series is established on the similar arguments as discussed in section 

2. 1.2. 
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Figure 3.1(a) 
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1'4 

Figure 3.1(b) 
Figures 3.1 : n4-curves for the 9th-order of approximations. 

3.1.3 Results and discussion 

We draw several graphs of the velocity field for velocity components u and v 

for an oscillating flow past a porous plate. The values of It and v have been 

sketched using equation (2.6). The controlling parameters are suction and 
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blowing, rotation and third grade material parameter. 

Figures 3.2 show a decrease in velocity for 1L component of velocity with 

the increase of suction parameter with fixed values of n4, a, (3, t , ° and 

O. The increase in the suction parameter also increases the boundary layer 

thiclmess. Whereas, the behaviour of velocity profile in v is almost opposite 

to the first case. Figures 3.3 are drawn to observe the effects of blowing 

parameter on the velocity profile with fixed values of n4, a, (3, 0, t and O. 

The increase in velocity with the increase of blowing parameter is signifi

cant in the real part 'U of velocity. The variation in the velocity profile for 

different values of rotation is depicted in Figures 3.4 with fixed values of 

n4, a, (3, Wo, t and O. In the velocity component 1L, a decrease in the veloc

ity and increase in the boundary layer thickness with an increase in rotation 

parameter is observed. In the velocity component v, some changes in the 

velocity profile away from the plate are visible due to an increase in rotation 

parameter. Figures 3.5 are drawn for various values of third grade fluid pa

rameter with fixed n4, a, 0, lIVo, t and O. A decrease in the velocity near 

the plate is seen for the increasing values of (3. Figures 3.6 show the variation 

in the velocity profile for different values of time when n4, a, (3, 0, vVo and 

o are fixed. The increase in time decreases the velocity near the plate for 

velocity component 1L. In the case of velocity component v, the fluid flow 

becomes uniform and smooth for large times. 
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Figures 3.2 : The variation of velocity components for various values of 

suction parameter W00 
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Figures 3.3 : The variation of velocity components for various values of 

blowing parameter Wo. 
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Figures 3.4 : The variation of velocity components for various values of 

rotation n. 
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Figures 3.5 : The variation of velocity components for various values of 

third grade fluid parameter f3. 

85 



2 

I.B 

1.6 

:::J 1.4 

1.2 

O,B 

n4 = - 0.5, a = f3 = n = Wo = 0.5, c5 = 1 

- t =O. O 
-- t =O. 2 
---- t=O . 4 
- .. t =O. 6 

:\ 

'\ 
',~ 
',\ 

'.,~ 
'.\ 

~. 

--<. <~ 

--6--;' 
' ... 

o 2 4 
Z 

Figure 3.6(a) 

n4 = -0.5, a = f3 = n = Wo = 0.5, c5 = 1 

o 3 4 z 
Figure 3.6(b) 

86 

5 6 

B 

7 



1.6 

1.4 

n4 = -0.5, a = f3 = n = Wo = 0.5, 0 = 1 

. \ 
".\ '(: 

- t=O.8 
-- t=1.0 
.... t=1. 2 
. . . t=l. 4 

0.61-1----' ....... -."-------------- -1 

O.B 

0.6 

0.4 

0.2 

o 2 4 6 

Z 

Figure 3.6(c) 

n4 = -0.5, a = f3 = n = vVo = 0.5, c5 = 1 

o 2 3 

z 
Figure 3.6(d) 

-t=O.8 
--t=l.O 
._.- t= 1. 2 
... t= 1. 4 

6 

8 
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3.2 Problem formulation for the part ial slip 

case 

In this section, the physical model is the same as in section 3.1 except the 

partial slip condition replaces the no-slip condition. Thus the partial slip 

condition at the porous plate is defined as 

A2 
V = -Tyz , 

p, 

where A2 is the partial slip coefficient and the expressions for T xz and T y z are 

defined through equations (1.36) and (1.37) as 

Txz = 8u + al {~_ TiVo 8
2
u} + 2i33 8u {(8U)2 + (8V)2} , (3.31) 

P, 8z p, 8t8z 8z2 p, 8z 8z 8z 

Tyz = 8v + al {8
2
v _ vVo 8

2
v} +2i338v {' (811'):.l + (8V)2'} . (3.32) 

P, 8z p, 8taz 8z2 p, 8z 8z 8z 

The other boundary conditions are 

u(z, t) = Uo, v(z , t) = 0 as z ----t 00, 

8v 
- ----t 0 as z ----t 00. 
8z 

(3.33) 

By equations (2.6), (2.9) and (3.5), the dimensionless boundary conditions 

after dropping the hats are 

[ 

of(z,t) + a { 02 
F(z,t) - Wo [J2 F(Z,t)} 1 

F(O t) = ifrt + A OZ otaz oz2 
, e 2 ()2 * ' + 2{3 of(z,t) of (z,t) 

oz oz 

F(z, t) = 0 as z ----t 00, 
8F(z, t) __ 0 

as z ----t 00. 
8z 
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3.2.1 Analytic solution for the partial slip case 

To solve this problem, we use homotopy analysis method in the same fashion 

as discussed in section 3.1. Here we use initial guess approximation as 

(3.36) 

and the auxiliary linear operator 

8 82 83 

L4 = 8t - 8z2 - a 8t8z2 + 2i[2 (3.37) 

satisfying the property 

where C5 and C6 are arbitrary constants and 
1 

[
.; a2c52c6 + 4c6 + ac5Co] 

2 

7n3 = 
2 ' 

(3.38) 

(3.39) 

in which 
c5 + 2[2 

c =----=-° 2(1 + a2c52
)· 

We construct the similar homotopy for equation (3.6) as already have been 

carried out in section 3.1 and also use the same homotopy relations. However, 

for zeroth-order deformation problem, the partial slip boundary condition 

and the other boundary conditions at infinity take the form 

(1 - p) [F(O, tiP) - eiilt
] 

ph,; [F(Z, t;p) - e'" - '>'2 { 
aF(z ,t;p) _ a [a

2
F(Z,t;P) _ VII, a

2
F(Z,t;P) ] }] 

az ataz ° az 2 

( - )2 -. , -2fJ dF(zt,;p) dF (z ,t;p) 
dz dz 

(3 .40) 
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- iot - 8F 
F(O, tiP) = e , F(oo, tiP) = 0, 8z (00, tiP) = O. (3.41) 

Differentiating m-times the zero-order deformation equations (3.40) and (3.41) 

with respect to P and letting P = 0, we obtain for m 2: 1, the following equa-

tion 

8m F 
Fm(z, t) --+ 0 as z --+ 00, -;::}- (z, t) --+ 0 as z --+ 00. (3.43) 

uzm 

Now solving equation (3.10) subject to boundary conditions (3.42) and (3 .43) 

up to second-order approximations, we obtain the three terms solution of the 

problem (3 .6), (3.34) and (3.35) as follows 

F(z, t) = Fo(z, t) + Fl (z, t) + F2(Z, t), (3.44) 

where 

(3.45) 
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in which 

1 

2(1 + ia6) 

(1 + 2n5){1\1114 -1\I115} - 2n5A2[(1 - ia6){1\Ih3 

-1\I114 (m3 + im4) + M15(3m3 + im4)} 

+Wo{2M13 (m3 + im4) - 1\II14(m3 + im4)2 

+M15(3m3 + im4)2} - 2,B{(m3 + im4) 2(Mt3 

-l'vft4(m3 - im4) + Mt5(3m3 - im4)) 

+2(m~ + m~)(M13 - 1\I114 (m3 + im4) 

+1\I115(3m3 + im4)}] 

+ 2(rn3 ~irn4) { M16Z + M17 (z; + 2(rn3:irn4)) } 
"" -(3m3+im4)Z + . mIg ze 

4(2rn~+irn3rn4) 

1 ( M _ 3rn3+irn4 M) ( -(m3+im4)z _ -(3m3+im4)z ) 
+ 4(2rn~+im3rn4) 18 2(2m~+irn3rn4) 19 e e 

+ M20 (e -(m3+im4)z _ e -(5m3+im4)z ) 
8(3rn~+im3rn4) 

n5 [ i(20 + 6) - (1 + ia6)(m3 + im4)2 1 
M

13 
= 2(1 + ia6)(m3 + im4) +WO(m3 + im4) {I - a(m3 + im4)2} ) 

M - ~ [ 2(l+iQ8)(~§+irn3rn4) [(m3 - im4) (3m3 + im4)(m3 + im4)2] 1 
14 - 1L5 ) 

+A2 (m3 + im4)[(1 + ia6) + aWo(m3 + im4) + 2,B (m~ + m~)] 

1\1115 = 2(1 . 6)(2n5~ . ) [(m3 - im4) (3m3 + im4)(m3 + im4)2] ) 
+ ~a m3 + ~m3m4 

i(6 + 20)M14 + (m3 + im4){21\1h3 - 1\Ih4(m3 + im4)} 

1\1116 = 2(1 +n5) +ia6(m3 + im4) {21\1113 - 1\I114(m3 + im4)} - Wo{ 1\1113 - M14 (m3 + im4)} 

+aWO(m3 + im4)2 {3M13 - 1\I114 (m3 + im4)} 

( 
[ 

i(6 + 20)1\1113 - ]\I[13(m3 + im4)2{1 + ia6} 1 
1\1117 = 2 1+n5) 1 

+VVo1\l11(m3 + im4){1 - a(m3 + im4)2} 
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2(1 + n5) 
[ 

M14[-i(5 + 20) + (3m3 + im4)2{1 + ia5(3m3 + im4)} 1 
-WO(3m3 + im4){1 + a(3m3 + im4)2}] 

.M{3(m3 + im4)2 + 2lVh4(m~ + mD 
(3m3 + im4) -M{4(m3 - im4)(m3 + im4)2 

-2M14(m~ + m~)(m3 + im4) 

+ {lVI{3(m3 - im4) (m3 + im4)2 + 21\([13(m~ + m~)(m3 + im4)} 

MIg = 4n5,6(m3+im4)(3m3+im4)(m~+m~) [lVI;3 + 2lVIIS] , 

lVI20 = 4n5,6(5m3+im4) [lVI;5(m3 + im4)2(3m3 - im4) + 2lVh5(m~ + m~)(3m3 + im4)] 

in which lVI{3' lVI{4 and lVI{5are complex conjugates of lVI13 , 1\([14 and 1\([15 

respectively. 

3.2.2 Discussion of results 

In order to study the partial slip effects for various values of A2, ,6, 0 and t for 

the oscillating flow, graphs are sketched using equation (2.6) and explained 

as follows 

Figmes 3.7 give the effects of partial slip parameter A2 on the velocity 

components u and v. For the viscous fluid, with the increase in A2, the 

velocity decreases near the boundary however, it starts increasing earlier in 

the case of v away from the plate. Figmes 3.8 show that in the presence of 

third grade parameter ,6, the variation in the velocity profile is much more 

significant for various values of A2 in both the real and the imaginary parts 

of the velocity as compared to the viscous fluid. Figmes 3.9 show that the 

velocity increases both in u and v with increase in time t and the velocities 

attain stability earlier for larger times. Figmes 3.10 are sketched to determine 
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best suitable value for the homotopy parameter 17,5 for the better convergence 

of the solution. 

17,5 = - 0.2, CY = /3 = 0, Wo = D = t = 0.5, 5 = 1 
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Figure 3.7(a) 
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17,5 = - 0.2, CY = /3 = 0, Wo = D = t = 0.5, 5 = 1 
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Figure 3.7(b) 

Figures 3.7 : The variation of velocity components for various values of 

partial slip parameter .\2 for viscous fluid with fixed 17,5, CY, /3, Wo, D, t and 

5. 
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1t5 = -0.2, a = fJ = Wo = n = t = 0.5, b = 1 
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Figure 3.8(a) 

1t5 = -0.2, a = fJ = Wo = n = t = 0.5, b = 1 
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Figure 3.8(b) 

Figures 3.8 : The variation of velocity components for various values of 

partial slip parameter '>'2 for third grade fluid with fixed 1t5, a, fJ, \iVo, n, t and 6. 

94 



n5 = -0.2, a = (3 = vVO = n = A2 = 0.5, 8 = 1 
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n5 = - 0.2, a = (3 = Wo = n = A2 = 0.5, 8 = 1 
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Figure 3.9(b) 

Figures 3.9 : The variation of velocity components for various values of 

time t with fixed n5, A2, a, (3, n, and 8. 

95 



a = fJ = 0.1, Wo = n = A2 = 0.2, t = 0 = 1 
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Figure 3.10(a) 
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Figure 3.10(b) 
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Figures 3.10 : The variation of velocity components for various values of 

115 with fixed 1.2 , a, fJ , n, Wo, t and o. 
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3.2.3 Removal of secular t erm by Light hill t echnique 

We observe that there appears a secular term M13ze - (m 3+im4)Zeikt in equation 

(3.45) in the sense that the series will converge slowly to the function F(z, t). 

This secular term may also add up in the next higher order terms to further 

reduce the rate of convergence. Therefore, it is desirable to eliminate this 

term. In order to do so, we use Lighthill technique. For this we expand the 

function F(z , t) as a perturbation series in terms of E: similarly as in equation 

(1.70). This requires an appropriate transformation of the variable z to s as 

z = s + E:12 (s) (3.46) 

where 12(s) is an arbitrary function of s. Using this transformation in equa

tion (3.45), we arrive at 

To eliminate the secular term s, consider that 

(3.48) 

gIVmg 

(3.49) 

Thus equation (3.46) gives 

(3 .50) 
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Using equation (3 .50) in equation (3.47) , we have 

F(z , t) = [(1 + EM 14 )e-((m3+im4 )+e1\''h3)Z - ENI15 e -(3m3 +i17I4)(1+ m~~t!J Zl eikt . 

(3.51) 

We note that no secular term appears in equation (3.51). In order to see the 

validity and improvement in the result, we will compare the contributions of 

Fls(Z, t) i.e. the secular term and FIR(Z, t) i.e. non secular term as given in 

equations (3.52) and (3.53) respectively, where 

F ( ) 
- [( n1' M) - (m3+im4)Z M -(3m3 +im4 )z ] ikt 

I s Z, t - JVj 13Z + 14 e - 15e e (3.52) 

and 

FIR(Z, t) = [(1 + Nh4)e[(m3+im4 )+M13]Z - M 15 e -(3m3+im
4 ) (1+ m~i:;.JZ 1 e ikt 

(3.53) 

at E = 1. 

The two results are graphed separately and the convergence is checked. 

o~-------------------=~~==========~ 

- 0.1 

-0.2 

-0.3 . 

o 234 
Z 

Figure 3.11 

5 6 

Figure 3.11 : Profile of partial slip effects for F1s (z) with fixed values of 

n5 = - 0.2 and t = a = (3 = {) = 1, n = Wo = 0.5 
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0.4 

0.2 

O~~r-----------------~~~---===--~ 

- 0.2 

o 234 5 6 

Z 
Figure 3.12 

Figure 3.12 :Profile of partial slip effects for F1R(Z) with fixed values of 

1t5 = -0.2 and t = a = f3 = 8 = 1, n = Wo = 0.5 

Comparisons of figures (3.11) and (3.12) reveals that the convergence is 

improved by removing the so-called secular term 

3.2.4 Concluding remarks 

Two oscillating flow problems of a third grade fluid have been solved by ho

motopy analysis method. Convergence of the developed solutions has been 

checked explicitly. Specifically, non-linear equations with non-linear bound

ary conditions have been solved. To the best of our knowledge, such kind of 

analytic solution have never been reported in the past. Graphs are plotted 

for the influence of various pertinent parameters on the velocity components 

and discussed. 
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Chapter 4 

Numerical solutions for 

rotating flows of a third grade 

fluid with partial slip 

The purpose of this chapter is to provide the numerical solutions for the 

steady and oscillating flow problems with partial slip conditions. These two 

flow problems have been already solved by homotopy analysis method (HAM) 

in the previous two chapters. The present study is made to check the accuracy 

of the HAM solutions. Finite difference method is used for the numerical 

solution. A reasonable agreement is achieved between the graphical results 

of HAM and numerical solutions. 
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4.1 Steady flow past a porous plate 

In this section the governing problem consists of equations (2 .10), (2 .51) and 

(2 .52). 

4.1.1 Numerical solution 

By virtue of equations (1.59) to (1.61), we can discretize equation (2 .10) in 

the following form 

~ (F+l - 2P + P 1) - 2iD,P h2 t t t- t 

+ Wo [2
1
h (Fi+1 - Fi- 1) - 2~3 (Fi+2 - 2Fi+1 + 2Fi- 1 - Fi- 2) 1 

f3 r 2 (Fi+1 - Fi- 1) (Fi+2 - 2Fi+1 + Fi ) (Fi~1 - Ft- l) + 1 +-- =0 
2h4 L (Fi+1 - Fi_ 1 )2 (Fi~2 - 2F;;~1 + Ft) J' 

( 4.1) 

where h = Zi - Zi-l is preferred to be 0.01 for the present calculations. 

The iterative procedure applied to the non-linear part of the above equa-

tion is 

G· p(n+l) + H. F(n+l) + J. p(n+l) + J. F (n+1) + K F(n+1) = £. (4.2) 
t t-2 t t-l t t t t+l t t+2 t 

and the initial guess approximation is taken to be 

p(o) = 0 
t , o ~ i ~ Q, ( 4.3) 
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where 

Gi avVo, (4.4) 

H· , 2h - h2Wo - 2aWo, (4.5) 

J. , -4h - 4h3in , (4.6) 

Ji 2h + h2vVO + 2aWo, (4.7) 

Ki -aWo, (4.8) 

[ 

2 (p(n) - F(n» ) (F(n) - 2P(n) + F(n») (p*(n) - p*(n») + 1 f3 ,+1 ,-1 ,+2 ,+1 , ,+1 ,- 1 
-- 2 

h (F(n) _ F(n») (p*(n) _ 2F*(n) + F*(n) ) . 
,+1 ,-1 ,+2 ,+1 , 

(4.9) 

For i = 1, equation (4.2) is 

The value of P at the fictitious point Z- l is approximated by means of the 

Langrange polynomial of third degree 

P (n+l) _ X F.(n+l) + v F(n+l) + X F.(n+l) + X p,(n+1) 
- 1 - 0 0 .I\.} 1 2 2 3 3 . (4.11) 

In above equation 

Xo = ( Z-l - Zl) (Z-l - Z2 ) ( Z- l - Z3 ) , (4.12) 
Zo - Zl Zo - Z2 Zo - Z3 
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and 

Substitution of equation (4.11) into equation (4.10) yields 

(G1Xa + HI) FJn+l) + (G1Xl + II) Fin +1
) 

+ (G 1X2 + J1 ) FJn+I) + (G 1X 3 + ](1) FJn+l) = L1 . (4.16) 

Now FJn+1) = Fa is known and fixed, so the equation (4.16) can be written 

as 

in which 

For i = 2 : 

](' 
1 

I' F(n+1) + J' p,(n+1) + ](' p,(n+1) - L' 
1 1 1 2 1 3 - I' 

Since FJn+l) = Fo is known thus from the above equation, we have 

H F(n+1) + I p,(n+l) + J p,(n+1) +}( F(n+l) - L' 
2 1 2 2 2 3 2 4 - 2, 

where 

For 3 :S i :S Q - 3, the equations are 

G· p(n+l) + H. p(n+l) + J. p(n+1) + J. p(n+1) + }v. F(n+1) = L. 
~ 2-2 ~ ~- 1 ~ ~ ~ ~+1 . \. ~ ~+2 ~. 
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( 4.19) 

(4.19a) 



For i = Q - 2, we have 

G F (n+l) + H F(n+l) + I F(n+l) 
Q-2 Q-4 Q-2 Q-3 Q-2 Q-2 

+ JQ- 2 F~n_~I) + K Q- 2 F~n+l) = LQ- 2 . (4.20) 

Since F~n+l) = FQ is known, so the equation (4.20) is 

G F (n+l) LT F(n+l) I F(n+l) 1 F(n+l) L' 
Q-2 Q-4 + 11Q-2 Q- 3 + Q-2 Q- 2 + Q-2 Q- l = Q-2' ( 4.20a) 

whence 

L 'o_2 = L Q- 2 - K Q- 2 F Q . (4.21) 

For i = Q - I, we can write 

G P (n+l) + H p(n+l) + I p(n+l) 
Q - l Q-3 Q- l Q- 2 Q-l Q-l 

+ 1 P (n+l) }V p(n+l) L 
Q-l Q +I.Q-l Q+l = Q-l· (4.22) 

To find the value of LQ- 1 , we must have the value of FQ+l' Now augmentation 

of the boundary condition 

of = 0 
oz as z --t 00 (4.23) 

yields a well-posed problem. The boundary condition is discretized to give 

F.
Q

+
1 

= F.
Q 

l' e p(n+1) - p(n+1) 
.. Q+l - Q (4.24) 

Thus for i = Q - I, equation (4.22) becomes 

G P (n+1) LT p(n+l) I p(n+l) L' 
Q-l Q-3 + 11 Q-l Q- 2 + Q-l Q-l = Q-l' ( 4.24a) 

where 

(4.25) 
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It is noted that there are Q - 1 equations in Q - 1 unknowns and in matrix 

form) we have 

l' 1 J' 1 
J{' 

1 0 0 0 0 0 0 

H2 h J2 J{2 0 0 0 0 0 

G3 H 3 h J3 J{3 0 0 0 0 

o o o 

0 0 0 0 GQ- 3 H Q- 3 I Q- 3 JQ- 3 J{Q - 3 

0 0 0 0 0 GQ- 2 H Q- 2 I Q- 2 JQ- 2 

0 0 0 0 0 0 GQ - 1 H Q- 1 I Q- 1 

I F!n+1) 1 
I 

L' 

1 
1 

p,(n+l) L' 2 2 

dn+ l) T 
r 3- .03 

X p(n+l ) 
~ 

£. ~ (4.26) 

F(n+l) 
Q- 3 LQ- 3 

p(n+l) 
Q-2 LQ_2 

p(n+l) 
Q-l LQ_1 

We notice that matrix involved in above equation is pentadiagonal. 

We observe that the partial slip boundary condition (2.51) is also highly 

non-linear. Thus following the same procedure as adopted for discretization 

of equation (2 .10)) equation (2.51) may be discretized as 

(4.27) 
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whence 

TO h2 + A(h + a Wo) , (4.28) 

T1 A(h + 2 aWo)ITo, ( 4.29) 

T2 - aWoAITo , (4.30) 

T3 h2 
ITo, (4.31) 

E
1
T(n) 2(3 A [ (F(n) _ p,(n)) 2 (F*(n) - p,*(n)) 1 h3 1 0 1 0 . ( 4.32) 

To evaluate FJn+1) , first we take E1T(n+1) = E1T(n) in the system of algebraic 

equations and the solution of the system is sought for the unknown values 

of Fi(n+l); i = 1, 2, 3, ... , Q - 1. Then we update Fo(n+l) by using iterative 

method as follows 

(n+1) 
F O,(k+l) F

(n+l) + p,(n+l) 
T1 1 T2 2 

+ 
f 2(3Af r1(n+n ~(n+n\ 2 f~* (n+n ,..,,*(n+n \ "1 

T3 l h:3 V'l . , - 1'0,(1.) ') ~ 1'1' '- 1' 0,(k) ') - IJ 
(4.33) 

where 

p(n+l) _ p,(n+l) 
0,(1) - 0 

Th'" d' . d '1 p(n+1) p(n+l) 
IS IteratIve proce UTe IS contmue untI O,(k+l) ~ O,(k) . 

For i = I, i = 2, 3 :::; i :::; Q - 3, i = Q - 2 and i = Q - I, we have 

]' F (n+1) + J' F. (11,+1) + J(' p(n+l) - £ ' 
1 1 1 2 1 3 - I, 

H~ F 1(n+ 1) + ]~ Fin+1) + h F}n+l) + J(2 F~n+1) = £;, 
G· F(n+1) + H. F(n+l) + J. p(n+l) + 1· F(n+1) + IC p(n+l) = £ . 

t t- 2 t t - 1 t t t t+1 t t+2 t 

G F(n+1) + H p(n+l) + ] p (n+1) + 1 p(n+l) - £ ' 
Q-2 Q- 4 Q-2 Q- 3 Q- 2 Q- 2 Q-2 Q-1 - Q- 2' 
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G (n+l) LT F(nH) I F(n+l) L I 
Q- l FQ_ 3 + I1Q - l Q- 2 + Q- l Q-l = Q-l' ( 4.33e) 

in which Gi , Hi, h Ji , Ki and Li are given through equations (4.4) to (4.9). 

In the above equations 

II 
1 GIXI + h + rl (HI + XOG1), 

JI 
1 G1X2 + J1 + r2 (Ih + XOG1) , 

KI 
1 - GIX3 + K 1, 

LI 
1 Ll - (G1Xo + HI) [r3 (E1T(n) - 1)] , 

HI 
2 H2 + r1G2, 

l' 2 12 + r2G2, 

LI 
2 L2 - G2 [r3(E1T(n) - 1)] , 

(4.34) 

(4.35) 

( 4.36) 

( 4.37) 

(4.38) 

( 4.39) 

( 4.40) 

( 4.41) 

( 4.42) 

The matrix form of the above set of Q - 1 equations in Q - 1 unknowns is 

a pentadiagonal. 

4 .1.2 Graphs and discussion 

Figures 4.1 and 4.2 are sketched to see the influence of partial slip parameter 

for the viscous and third grade fluids. It is evident from Figures 4.1 that the 

velocity components It and v increase with an increase in slip parameter. The 

efi'ect of slip parameter on the third grade fluid is similar to that of viscous 

fluid as shown in Figures 4.1. Figures 4.3 is prepared to see the effects of 
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rotation parameter in the presence of slip parameter. Here u increases for 

large values of rotation parameter which is quite similar to that of suction 

parameter. 
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1.1,-----------------------, 

0.' 

.... ;.~;;.;:;.::::::,;"'~-
..... ," /" 
.' / 

0.6 ,.,., ,/,/ ~// 

0.7 
,/ ,/ 

/ / 

. /;' 
0.6 .... ;' / 

u .: ,/ /1 

0.5 / / 

0.4 /' /' 
• I 

I 

0.3 " I 
I 

0.2 I 

0.1 

0.5 1.5 z 25 

Figure 4.1(a) 
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Figures 4.1 : The variation of velocity components for various values of 

partial slip parameter Al for viscous fluid with fixed a, (3, nand Woo 
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Figure 4.2(b) 

Figures 4.2 : The variation of velocity components for various values of 

partial slip parameter /\1 for third grade fluid with fixed (x, (3, nand Wo o 
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Figures 4.3 : The variation of velocity components for various values of 

rotation n with fixed a, {3 , Al and Woo 
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4.2 Oscillat ing flow past a porous plate 

In this section the problem governing the flow is described by equations (3.6), 

(3 .34) and (3.35). 

4.2.1 Numerical solution 

We note that partial differential equation (3.6) and boundary conditions 

(3.34) are highly non-linear. Also equation (3.6) is time dependent and has 

mixed derivatives with respect to time and space coordinates. Thus we make 

use of the implicit scheme. There are a number of methods available to 

discretize the partial differential equations into a system of algebraic equa

tions. To transform the partial differential equations (3 .6) and (3 .34) into 

a system of algebraic equations, we use finite difference approximations to 

derivatives which are centred midway in time between the known and the 

unknown levels and we take central differences to approximate the deriva

tives for unknown level and for known level, we also use central differences to 

approximate the derivatives except for the second-order derivative. Further

more, we approximate the non-linear term only at the known level by using 

central difference for the first-order derivative and forward difference for the 

second-order derivative. 

The equation (3.6) is transformed into algebraic equations by substituting 

the approximations to derivatives using equations (1.62) to (1.65), (1.67) and 
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(1.69) as follows 

l~2 [(Fi~i l - 2F/ +
1 + Fi~il ) - (F!+2 - 2F!+! + Fn ] 

1 [( FHl 2F H l F H l) (Fj 2F j + Fj )] + 2h2 H I - i + ';- 1 + i+2 - H I i 

Wo [(FHl FHI) (Fj F j )] + 4h H I - i- I + i+I - i-I 

- ~ [pH I _ Fj ] - in [p H l + Fj ] l t t t t 

~ [2 (F!+! - FI- l) (F!+2 - 2F!+1 + Fn (Fi:~ - FL O +] = o. 
+ 2h4 (Fj Fj ) 2 (F* j 2F* j F* j ) 

HI - i- I i+2 - i+1 + i 

( 4.43) 

The problem consisting of above equation along with initial and boundary 

condit ions of section 3.2 becomes 

where 

H · t 

I-t 

. 0 
F~ = 0, Fi = 0, i = 0, 1, 2, .. . , Q, 

laWo 
4h3 ' 

laWo a l lWo 
- 2h 3 + h 2 + 2h 2 - 4h ' 

2a l 
-- - - - l - im 

h2 h2 ' 

la liVo a l lWo 
2h3 + h2 + 2h2 + 4h ' 
laliVo - - -
4h3 ' 
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( 4.43a) 

( 4.44) 

( 4.45) 

( 4.46) 

(4.47) 

(4.48) 

( 4.49) 



a [ ) ) ) ] l a Wo [) F) F) F) ] 
h2 Fi+2 - 2Fi+1 + Fi + 4h3 Fi+2 - 2 i+l + 2 i- I - i-2 

l · . . 
- 2h2 [Fl+2 - 2Fl+1 + Fl] 

lWo [) ) ] ) '(llF) - 4h Fi+ I - Fi _ l - Fi + ~~ G i 

l fJ [2 (Fj F)) (F) 2Fj F j ) (F* ) F* j) - 2h4 i+1 - i- I i+2 - i+1 + i i+1 - i-I 

(Fj F j ) 2 (F* ) 2F* j F* j)] + i+l - i- I i+2 - i+1 + i . ( 4.50) 

For i = 1 we have from equation (4.44) as 

The value of F at the fictitious point Z- I is approximated by means of the 

Langrange polynomial of third degree 

where Xo, Xl, X 2 and X3 are determined as equations (4.12) to (4.15). Using 

equation (4.52) in equation (4.51), we have 

( GIX o + HI) FJ+I + (GIX I + h) F/+
I 

+ (GIX2 + X) Fd+
1 + (GI X3 + KI) F1+1 

Now FJ+I is known, so the equation (4. 53) must be written as 

l' FJ+l + ]' p,j+1 + K' p,J+I - L' I I 1 2 1 3 - I, 

in which 

l' I GIXI + h, J{ = GIX2 + X, 
GIX3 + KI , L~ = LI - (GIXo + HI) FJ+I. 
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(4.53) 

(4.53a) 

( 4.54) 



For i = 2 : 

(4.55) 

Since Fg+l is known thus from above equation, we have 

( 4.55a) 

where 

(4.56) 

For 3 SiS Q - 3, the equations are 

(4.56a) 

For i = Q - 2, one may write 

( 4.57) 

Since F~+l is known, so above equation reduces to 

(4.57a) 

in which 

( 4.58) 

For i = Q - 1, we have 

+ ( 4.59) 
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To find the value of LQ- 1 at the time level j, we must have the value of FS+1 · 

The augmentation of the boundary condition 

of (oo,t) 
--'-----"- = 0 as z --+ 00 az (4.60) 

defines a well posed problem. The boundary condition is discretized to give 

F j - F j 
Q+l - Q' (4.61) 

For i = Q - I, equation (4.59) becomes 

( 4.61a) 

where 

-, _ - ( - - ) j+1 L Q _ 1 - L Q- 1 - JQ -1 + K Q- 1 FQ . (4.62) 

It is noted that there are Q - 1 equations in Q - 1 unknowns and these in 
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rrratrix forrrr give 

I' I ~ K' I 0 0 

H2 12 J2 K2 0 

G3 H3 h J3 K3 

-
0 0 Gi H· • 

0 0 0 

0 0 0 0 

0 0 0 0 0 

FI L' I 

F2 L' 2 

F3 L3 

x 

-
FQ- 3 L Q- 3 

FQ - 2 LQ_2 

FQ- 1 LQ_I 

0 0 0 

0 0 0 

0 0 0 

- -
J. • Ji Ki 

-
0 GQ- 3 HQ- 3 

-
0 GQ- 2 

0 

0 

- -
I Q- 3 JQ- 3 
- -
HQ- 2 I Q- 2 

GQ- I HQ- I 

o 
o 
o 

o 

K Q- 3 
-
JQ- 2 

I Q- 1 

( 4.63) 

We notice that rrratrix involved in the above equations is pentadiagonal. 

We also note that the partial slip boundary condition (3 .34) is highly 

non-linear.This problerrr is an extension of the problerrr already presented in 

section 4.2. Thus following the sarrre procedure, the discretized forrrr for the 

equation (3.34) has been presented. The discretized forrrr for the partial slip 

boundary condition has been obtained by using forward and backward cliffer-
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ences for the derivatives involved with respect to space and time coordinates 

respectively. It results in the form 

(4.64) 

where 

ro h2l + A(hl + ah + aWol), ( 4.65) 

rl A(hl + ah + 2aWol)/ro, ( 4.66) 

r2 -avVoAl/ro , ( 4.67) 

r3 -aAh/ro, (4.68) 

r4 h2l/ro, ( 4.69) 

E2Tj 2f3 A [(Fj - F,j)2 (F* j - F,* j)] h3 1 0 I 0 . (4 .70) 

To evaluate Fg+l, first we take E2Tj+l = E2Tj in the system of algebraic 

eqllations H,nel the solution of the system is sought for tIle lenown values of 

F!+I; i = 1,2,3, ... , Q -1. Then we update Fg+l by using iterative method 

as follows 

- F j+l - F. j+l - [Fj F,j] 
rl 1 + r2 2 + r3 1 - 0 

+- f3 A [(FHI _ F,j+l'k) 2 (FHl _ FHl'k )] r4 h3 1 0 I 0 

+r eiJ(j+l)1 4 , (4.71) 

in which 

F,j+I,O - F,j 
o - o' 

This iterative procedure is continued until Fg+l,k+l ;::::; Fg+l,k. Furthermore, 

F3 is evaluated by letting FO-
1 = F1-

I = 0 and by using iterative method as 

described above with Fg'o = 0 as an initial guess. 
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For i = 1, i = 2, 3 ::; i ::; Q - 3, i = Q - 2 and i = Q - 1, we have 

l' FJ+l + J' p,j+! + K' pj+l - L' 
1 1 1 2 1 3 - 1, (4.71a) 

(4.71b) 

(4.71c) 

(4.71d) 

(4.71e) 

where Ch it, l, 1" Ki and Li are given through equations (4.45) to (4.49) 

and 

l' 1 

J' 1 

K' 1 

l' 1 

H~ 

r 2 

L' 2 

G1X 1 + 'h -I- rl (HI -I- X OG1) , 

G1X 2 -I- h + r2 (HI + X OG1) , 

- -

(4.72) 

(4.73) 

G1X 3 + K 1 , (4.74) 
-...... 1.-...; __ \ . . 

Ll - (Gl-/Yo + HI) [r3 (F{ - Fg) + r4 (E2Tj + ei8(j+l)I)] , 

(4.75) 

- -
H2+rlG2, (4.76) 

- -
12 -I- r2G2 , (4.77) 

L2 - G2 [r3 (F{ - FJ) + r4 (E2TJ+l + ei8(J+l)I)] , (4.78) 

(4.79) 

(4.80) 

The matrix form of the above set of Q - 1 equations is a pentadiagonal and 

can be expressed as (4.63). 
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4.2.2 Graphs and discussion 

In this subsection, we present the graphs of velocity components by varying 

partial slip parameter and time. 

a = 13 = 0, Wo = n = t = 0.5, 0 = 1 
I.sa r---------------==-=A2=;==0.0= 

-- -A2; 0.2 
-·_ ·A2; 0.6 
..... A2; 1.0 

1.18 

1.08 

0.5 1.5 2.5 35 •. 5 

z 

Figure 4.4( a) 

a = 13 = 0, Wo = n = t = 0.5, 0 = 1 

0 .-47 

0.37 
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0.27 \ 
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V \ 
\ 
\ 
\ 
\ 

0.17 \ 

\ \ , , , \ 

0.07 ...... ::\, '\ 

-A2- 0.0 
---A2-0.2 
-·- ·A2-0.6 
..... A2 - 1.0 

... .':<~>, 
".OJ C==0~5~::::5 .. ~··~~,~~·~':!'-::"'~--::·::..-:"~:1:==~2.5==j 

z 

Figure 4.4(b) 

Figilles 4.4 : The variation of velocity components for various values of 

partial slip parameter A2 for viscous fluid with fixed a, 13, vVo, 0, t and 0, 
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Figures 405 : The variation of velocity components for various values of 

partial slip parameter '\2 for third grade fluid with fixed a, (3, vVo, n, t and 50 
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Figure 4.6(b) 

Figures 4.6 : The variation of velocity components for various values of 

time t with fixed A2, a, (3 , 0, and o. 
Figures 4.4 show the effects of slip parameter in the case of viscous fluid 

where as Figures 4.5 present the analysis for third grade fluid parameter. 

Figures 4.6 describe the behaviour of velocity components under the variation 
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of time. It is observed that the velocity decreases by increasing slip parameter 

for viscous and non-Newtonian flows. The velocity increases by increasing 

time for the partial slip flow of a non-Newtonian fluid. 

4.2.3 Concluding remarks 

Here numerical solutions for the two flow problems with partial slip concli

tions have been developed. It should be pointed out that the partial slip 

condition for the corresponding problems in viscous and second grade fluids 

are linear where as in the third grade fluid it is highly non-linear. Thus it 

seems worthwhile to solve non-linear differential equations with non-linear 

boundary conditions. Moreover I the similarity in the behaviour of the veloc

ity profile for both semi-analytic and numerical solutions show the accuracy 

and validity of the results. The comparison of graphs give good agreement 

between HAM antI numerical solutions. 
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Chapter 5 

Conclusion 

The work presented in the thesis deals with some non-linear problems for 

steady and oscillating flows. The steady and oscillatory rotating flows of a 

third grade fluid using no-slip and partial slip conditions have been consid

ered. The problems addressed are presented in chapters 2 to 4. Chapter 2 

deals with the steady flow of an incompressible third grade fluid . The whole 

system is in a rotating frame of reference with and without slip. The third 

grade fluid flow past a porous plate has been analyzed. Two illustrative cases 

of no-slip and partial slip have been considered. The most characteristic fea

tme of the results obtained is that; unlike the inertial frame, the steady 

asymptotic blowing solution exists. 

In chapter 3, analytic solution of an oscillating flow is constructed in a 

rotating fluid. The fluid is considered as third grade. The flow is generated 

in the uniformly rotating fluid past a porous oscillating plate. Analytic solu

tion for no-slip and partial slip situations are obtained employing homotopy 

analysis method. Two oscillating flow problems of a third grade fluid have 
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been solved. Convergence of the developed solutions has been checked explic

itly. Specifically, non-linear equations with non-linear boundary conditions 

have been solved. 

Chapter 4 presents the numerical solutions for the steady and oscillating 

flow problems with partial slip conditions. The study is made to check the 

accuracy of the HAM solutions. Finite difference method is used for the 

numerical solution. A sound agreement is achieved between the graphical 

results of HAM and numerical solutions. 

The work presented in the thesis on flows of third grade fluid in a rotating 

frame can further be extended in many interesting fields of fluid dynamics. 

It can be used to investigate the heat and mass transfer flows in which the 

infinite porous plate may be assumed to be at a higher temperature than the 

fluid or the plate may be assumed to be insulated. The combined heat and 

mass transfer problems in a rotating frame are of great importance because 

of its practical applications such as migration of moisture through the air 

contained in fibrous insulations, grain storage insulations and dispersion of 

chemical containments through water-saturated soil. 

The study of flows of t hird grade fluid in the presence of magnetic field 

will also have considerable contributions in the literature due to its applica

tions in cosmical and geophysical fluid dynamics. The order of the magni

tude analysis shows that the Coriolis force is very significant as compared to 

inertial and viscous forces. Ruther, it reveals that the Coriolis and Magne

tohydrodynamics (MHD) forces are of comparable magnitude. It is generally 

admitted that the Coriolis force due to earth's rotation has a strong effect 

on the hydromagnetic flow in the earth's liquid core. Thus the extension of 
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research work in this direction will be noteworthy. 

Transport flow phenomena in porous media continues to be a field which 

attracts intensive research activity. This is primarily due to the fact that 

it plays an important and practical role in large variety of diverse scientific 

applications. It covers wide range of the engineering and technological appli

cations including both stable and unstable flows. Furthermore, the research 

into thermal convection in porous medium has also increased subsequently 

during the recent years. It is therefore, appropriate to explore and undertake 

a new critical evaluation of this major field of research with a different ap

proach and technique like homotopy analysis method for the non-Newtonian 

fluids in the rotating systems. 
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Abstract This paper is an analytical study of the rotating 
flow of a third grade fluid past a porous plate with partial slip 
effects. It serves as a flow model for the study of polymers. 
The analytic solution has been determined using homotopy 
analysis method (HAM). 

Keywords Partial-slip· Non-Newtonian fluid · Analytic 
solution · Homotopy analys is method 

1 Introduction 

Matetials sllch as polymer solutions or melts, drilling mud, 
elastomers, certain oils and greases and many other emul
sions are classified as non-Newtonian fluids. Due to complex
ity of fluids, there are many models describing the properties, 
but not all of non-Newtonian fluids. These models, however, 
cannot predict all the behaviours of non-Newtonian tluids, 
for example, normal stress differences, shear thinning or 
shear thickening, shear relaxation, elastic and memory ef
fects etc. Among these models , the fluid s of differential type, 
for example, fluids of second and third grades have acquired 
special attentions due to their elegance [1]. Important con
tributions to the topic include the works of Rajagopal [2,3], 
Rajagopal and Gupta [4,5], Bandelli and Rajagopal [6,7] and 
Hayat et a1. [8-11]. Also, there are a few studies which de
scribe the flow of non-Newtonian fluids in a rotating frame of 
Refs. [12- 16]. 
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In all the above mentioned studies, the partial slip ef
fects have been ignored. The need for the development of 
boundary conditions has not received the attention that it de
serves. The pioneers of the field such as Coulomo, Navier, 
Girad, Poisson, Stokes, St. Venant and others recognised that 
boundary conditions are constitutive equations that should 
be determined by the mateJial on ei ther side of the bound
ary. The usual prescription of Dirichlet and Neumann condi
tions are often unsuitable for a realist ic physical problem, for 
example the flow of polymers that stick-slip on the bound
ary. Recently non-standard boundary conditions have been 
considered from a rigorous mathematical perspective by Rao 
and Rajagopal [17]. 

The main purpose of the present paper is to examine the 
effects of partiai siip on the rotating flow past a uniformiy 
porous plate. The fluid is incompressible and third grade. In 
view of the scarcity of the methods for the study of non-lin
ear boundary conditions, thi s paper might be a reasonable 
addition to the literature. The analytical solution of the flow 
has been obtained using HAM which is already successfully 
applied to many problems [16,1 8-25J . 

2 Mathematical analysis 

Let us consider the steady flow generated in a semi-infinite 
expanse of an incompressible, thermodynamic compatible 
third grade fluid past an infinite porous plate at z = 0 sub
jected to uniform suction or blowing. The iluid and plate 
are in a state of rigid body rotation having constant angular 
velocity S'2. 

This paper is in fact a sequel of ollr earlier work [16] and 
hence it may be fair to avoid rewriting the constitutive equa
tions. Thus making reference to our work [16] , the govern
ing problem in non-dimensional variab les is of the following 
type: 

d2 F(z) . [dF (Z) d3 p (z) 
-- - 21S'2P(Z) + Wo -- - Q'--

dz2 dz dz) 
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+2.8 - -- --- = 0, d [(dF(Z»)2 dF*(Z) ] 
dz dz dz 

(1) 

F(O) + 1 = AI -- - Q'WO--
[

dF (Z) d2 F(z) 

dz dz2 

(
dF(Z») 2 dF*(Z) ] I +2f3 -- -- , 

dz dz 
z=o 

(2) 

F(z) = 0 as z -+ 00 . (3) 

(1 d pU - . d' . I . I In Eqs. ) an (2), AI = -A IS non- IlnenSlOna partta 
iJ., 

slip coefficient, X = A/.1, is slip length . A satisfies the partial 
slip boundary conditions (u, v) - (UI/)' Vw ) = A(rxz , ryz ) 
and 

u + iv 
F=---I 

U 
u - iv 

F* = -- -1 
U ' (4) 

where U denotes the reference velocity and Uw, Vw (the waH 
velocities) are zero in our case. 

Now, it is clearly seen that 

Fez; 0) = Fo(z), 

F(z; 1) = F(z), 

when p = 0 and p = 1, respectively. _ 

S. Asghar el al. 

(10) 

( I I ) 

With the help of Taylor 's theorem F(z; p) can be ex
panded in power series of p as follows 

+00 
- ~ k F(z; p) = Fo( z) + L....J Fk(Z)p , (12) 

k=1 

where 

1 (Jk F(z; p) I 
Fk(Z) = , k 2: 1, 

k! 8pk p=o 
(13) 

we assume that the deformation F(z ; p) is smooth enough. 
If n is properly selected that Eq. (7) is convergent at 

P = 1, we have from Eqs. (11) and (1 2) 

+00 
F(z) = Fo(z) + L Fk(Z). (14) 

k= 1 

Differentiating Eqs. (7)- (9) k-times with respect to p and 
letting p = 0, we obtain, for k 2: 1, the following problem 

We see that Eqs . (1) and (2) are highly non-linear and 
not amenable to exact solutions. Thus, we use the homotopy 
analysis method to solve non-linear governing equations of 
third gradeftuid . For that, we take 

.c[h(z) - XkFk - 1 (z)] = n[Ft.'--1 (z) - 2irlFk_ I(Z) 
(5) 

d2 

.c = - -2irl 
dz2 

as linear auxi liary operator. Using Eq. (6), we construct the 
so-called zeroth order deformation problem as 

+ Wo(Fk_l(z) -Q'Ft.'~ I (z » 
k- I 1/ 

+ 2f:l L Ft._ I_,,(z) L(F,; _;(z)F,I/*(z) _ r d2 fi'(z; p) 
(I - p).c[F(z; p) - Fo( z)] = pn t dz2 

-2irlF(z; p) + Wo [d h z; p) _ Q' d
3 
F(z; P)] 

dz dz3 

2 ~ [(d F(Z; p»)2 dF* (~; P) ]} 
+ f:l d d d ' z z z 

(6) 

1/ = 0 i=O 

+2F,;'-i (z )F/* (z)) l 
[FdO) + 1 - A 1Ft. (0)] = It { - A I [ Fk- I (0) 

+ ( I - xd F£._I (0) - Q' WoFt.'-- 1 (0) 

k-\ 11 ]} 

+2f:l L F£' _I_I/(O) L 1',;_i(O)F/*(O) , 
1/ = 0 i=O 

at z = 0 ancl 

Fk(Z) -+ 0 as z -+ 00, 

(7) where 

{ 
0, 

Xk = 
(8) 1, 

k ~ 1, 
k 2: 2, 

and prime denotes the derivatives with respect to z. 

( 15) 

(16) 

(17) 

where Ii is an auxi liary parameter and p E [0 , I] is an embed
ding parameter. 

Let us take 
e-mz 

Following the same method of so lution as in Ref. [16], 
the three terms solution is given by 

Fo(z) = - , 
1 + 1I1AI 

m =J2irl 

as the initial guess approximation of Fez; p). 

F(z) = Fi)(z) + FI (z) + F2(Z), 

(9) where 

F\(z) = [MiZ + M3]e-m Z - M2e- (2111+III *lz, 

(18) 

( 19) 
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F ig. 1 The variation of velocity parts for variolls values of partial slip p~rnllneters A I for vi scous fluid with fixed n = -0.1, a = fi = 0, rl = 0 .5 
and Wo = 0.5 

F2 (z) = ~ { 1 [2Ci!li WO)'l (m2 M3 - 2m MI 
2 1 +mA[ 

- (2m + 111 ) M2) - -- - --* 2 M4 A[ MSA[] 
4m 4m 2 

1 
+ 4(2 + i)(1 + 1I1 A[)S1 [ i\lh(l + mAl) 

+ M7(l + (2m + m* )A[) + MgA[ 

- 2i\11g (2m + In *) 1 + -----(
2m + m*)AI)] 
4(2 + i)S1 

M9(1+(3m+2m* )AI) 4liAlfJ + _ __ -c--,. 

8(3 + i)(l + InAI)S1 (1 + mAI)2 

x [ m
2 

(M* - m* M*) 
1 + mAl I 3 

4S1 + (Mi - mM3) 
1 + m*A [ 

*2(l+3i)S1 ~ 8(1+2i)S12
] + M2 + M2----

1 + mA l 1 + m "A I 

1[ ( z Z2 )]} /li Z - - M4 Z + Ms - + - e-
2m 2m 2 

1M M 
- 8(2 + i)S1 [ 6 + 7 

_ M (7 (2m + 117*»)] e-(211J+m *)z 
g ~ + 2(2+i)S1 

_ [ M9 ] e - (311l+211l *)z (20) 
8(3 + i)S1 ' 

1 ? 
M[ = ( fiWo(am- - 1), 

2 1+mA[) 
M _ 2fifJ(1 +2i)S1 

2 - (2 + i)( l + m*A1)(1 + InAI)2' 

M3=11 [MIAI +M2(1 +(2m+m*»)'l) 
+mAI 

( 
J )~ IiAI 2 4fJ(1 + i)S1 2 

- . am Wo+ . , 
1 + mAl (1 + mA[)(l + m* A1) 

M4 = - 4(1 + tt)mM[ + 21i [117 Woi\lh(am 2 - 1) 

- WoM,(3m 2 - l)] , 

Ms = 2li1l1WoM,(am2 - I) , 

M6 = M2 [ 8(1 +1i)(2+i)S1 

+2ttWo(2m +m* )(a(2m +m*)2 - 1)], 
4itfJ { . [ 2i S1 * *. M7 = (2m + m"' ) (MI - II! . Moj' ) 

1 +mA[ 1 +mA I 

4S1 )] ( .) J + (MI - 1I7M3 +21+1 S1 2 
1 + m* A[ 

( 1 * 2 )} x M[ + MI, 
l+mAI l+m"A[ 

Ms= . (2m + m )(1+i)S12 8nfJ [ * J 

1 +mA[ 

( 1 .~ 2 )l x Mi+ M ], 
, 1 +/,I'lA1 1 + m"A! ._ 

M9 = (2m+m*) M., 4lifJ ! [ 2(1 + 3i)S1t * 
l+mA[ 1 + 111 A 1 -

+ M?, 8(1 + 2i)S1 ]} 
1 + II1 * A[ -

where m*, Mj , Mi and M3' are complex conjugates of m, 
M[, M2 and M3, respectively. 

3 Graphical results and discussion 

The effecls of partial slip on the velocity profiles are given 
using homotopy analysis method. The velocily components 
are sketched in Figs. I and 2 in order to see the influence of 
partial slip . 

Figures 1 illustrate the effec t of partial slip on the flow 
of viscolls fluid when Ii = - 0.1 , S1 = 0.5 and Wo = O. It 
is seen that the real part of F increases with the increase of 
partial slip parameter. The imaginary part of F first increases 
and then decreases. 

The influence of partial slip parameter on the flow of 
third grade fluid has been depicted in Fig.2 for Ii = -0.1, 
a = {j = 1, Q = Wo = 0 .5. The observations for real and 
imaginary parts of Fare fOllnd of similar type . However, 
the real part of F in case of third grade changes much more 
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Fig. 2 The variat ion of velocity parts for variolls values of partial slip parameters Al for third grade fluid with fixed h = - 0.1, IX = f3 = 1 and 
Q = Wo = 0.5 

when compared to that of viscous fluid. There is no signifi
cant change in imaginary part of F for both viscous and third 
grade fluid. 
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Abstract 

The steady flow of a rotating third grade fluid past a porous plate has been analyzed. 
The resulting nonlinear boundary value problem has been solved using homotopy anal
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1. Introduction 

The analysis of the effects of rotation in fluid flows has been an interesting 
area because of its geophysical and technological importance. The involved 
equations are nonlinear and thus to understand specific aspects of the fluid flow 
simplified models have been taken into account. In this work, the steady-state 
flow of an incompressible fluid past a porous plate is considered. The fluid is 
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third grade and the whole system is in a rotating frame. Both (analytical and 
graphical) so lu tions of the governing nonlinear differential equation is given. 
Analytic solution of the problem is given by a newly developed method known 
as homotopy analysis method by Liao [I]. This method has already been suc
cessfully applied by various workers [2- 8]. Briefly, the homotopy analysis 
method has the following advantages: 

• It is independent of the choice of any large/small parameters in the nonlinear 
problem. 

• It is helpful to control the convergence of approximation series in a conven
ient way and also for the adjustment of convergence regions where 
necessary. 

• It can be employed to efficiently approximate a nonlinear problem by choos
ing different sets of base functions. 

The layout of the paper is : 
In Section 2, the problem is formulated. The solution of the problem is given 

in Section 3. Section 4 deals with the discussion of several graphs and in 
Section 5, concluding remarks are presented. 

2. Mathematical formulation 

We consider a Cartesian coordinate system rotating uniformly with an 
angular velocity Q about the z-axis, taken positive in the vertically upward 
direction, with the plate coinciding with the plane z = O. The fluid past a porous 
plate is third grade and incompressible. All material parameters of the fluid are 
assumed constant. In rotating frame, the momentum equation is 

p [~~ + (V· V)V + 2Q x V + Q x (Q x r)] = divT . (1) 

In above equation p is the density of the fluid, r is the radial coordinate and 
V is the velocity. The Cauchy stress tensor T for third grade fluid is [9] 

T = - PI ! + ~LA I + <X IA2 + <X2A~ + IJI A) + P2(AIA2 + A2A I) + P)( trA7)A2 

(2) 
in which PI is the pressure, I is the identity tensor, p is the dynamic viscosity, <Xi 
(i = 1, 2), Pi (i = 1,2,3) are the material constants and the Rivlin-Erickson 
tensors are defined by 

A I = (gradV) + (gradV) T I (3) 
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For thermodynamical considerations, the material constants must satisfy 
[10] 

It ~ 0, 0:1 ~ 0, f31 = f32 = 0, f33 ~ 0, 10: 1 + 0:2 1 :::;; J24/1f33 (5) 

and hence Eq. (2) gives 

T = -PII + pAl + 0: IA2 + 0:2Ai + f33(trAi)A2. 

The equation of continuity is 

divV = O. 

(6) 

(7) 

For steady flow and uniformly porous plate, it follows from Eq. (7) that 

V = [u(z), v(z), -WoJ, (8) 

where u and v are x- and y-components of velocity and Wo > «) 0 corresponds 
to suction (blowing) velocity, respectively. 

In view of Eqs . (2)--(4) and (6)- (8) we have from Eq. (1) as 

P [ - Wo ~ - 2VQ] = p ~~ - 0: I Wo ~~ + 2f3 ! [~ { (~ r + (: r } l 
(9) 

p [-Wo~ +2ttQ] 

d
2
v d}v d rldV {f ('dU') 2 ('dV)' 2 'J1J =2QUp+p--O:IWo-+2f3- - - + - , 

dz2 dz3 dz dz dz dz 
(10) 

where U denotes the uniform velocity outside the layer which is caused by the 
pressure gradient. 

Defining 

F=u~iv_l, (11) 

Eqs. (9) and (10) can be combined into the following equation 

dF . 1 [d2 F d3 F d { (dF) 2 dF*}] -Wo- +21QF =- -- Woo:-+2f3- - -- (12) 
dz P dz2 dz3 dz dz dz ' 

where F* is the conjugate of F. 
Using the following dimensionless parameters 

h pUz 
z=-

II ' 

~ r:J.IpU2 

0:=--
112 

~ F 
F=

U' 

~ Qp 
Q=-?l 

pU-
~f3 = f33P

2u4 

3 ' P 

(13 ) 
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and dropping hats, Eq. (1 2) can be written as 

--21QF+Wo --CJ.- +2[3- - -- =0. d
2
F. [dF d

3
F] d [(dF) 2dF*] 

clz2 dz clz3 dz dz dz 
( 14) 

Eq. (14) must be solved subject to the fo llowing boundary conditions: 

u =v = Oat z= O, u-->Uas z-->oo, v --> Oasz -->oo (15) 

which on using Eqs. (11) and (1 3) can be written as 

F(z) = - 1 at z = 0, F(z) --> ° as z --> 00. ( 16) 

Since Eq . (1 4) is third order and is higher than the governing equation of the 
Newtonian fluid and thus we need one more condition. The flow under consid
eration is in an unbounded domain, so by augmentation of boundary condi
tions [11] we have 

dF --> ° 
cIz 

as z --> 00. 

3. Solution of the problem 

(17) 

Here, we give the analytic and unifo rmly valid solution by homotopy anal
ysis method . For that we use 

d2 

2? = -- 2iQ 
clz2 

(18) 

as linear auxiliary operator. Using Eq. (18), the deformation problem at the 
zeroth order satisfies 

_ [a2F(Z; 7) _ 
(1 - p)2?[F(z;p) - Fo(z)] = pJi az21 - 2iQF(z;p) 

+Wo ( aF(z;p) _ CI. a
3
F(z;p) ) + 2[3~ {(aF(Z;p) ) 2 aF* (Z;P) }] , 

az az3 az az az 
(19) 

where h is an auxiliary parameter and p E [0,1] is an embedding parameter. The 
boundary conditions take the form as 

F (O ;p) = - 1 as z --> 0, F(z; p) --> ° as z --> 00, 

aF(z;p) 
az --> ° as z --> 00 . (20) 
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For p = 0 and p = 1, we have from Eq. (19) as 

F(z; 0) = Fo(z), 

F(z; 1) = F(z). 
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(21 ) 

(22) 

We note from the above equations that the variation of p from 0 to 1 is con
tinuous variation ofF(z; p) from Fo(z) to F(z). The initial approximation Fo(z) 
is taken as 

F ( ) -k: o Z = -e , (23) 
where 

A = V2iQ. 

We assume that the deformation F(z;p) is smooth enough, so that 

F1kl(z) = akF(z;p) I (Ie ~ 1) (24) 
apk p=o 

exists. Thus with the help of Eq. (21), the expansion F(z;p) can be written as 

+00 

F(z;p) = Fo(z) + ~Fk(Z)l 
k= l 

in which 

r. 1_ \ _ 1 akF(z ;p)1 I f. '- t\ 

l ' k \L')-kf a k I V' :::::' 1). 
'P 1'=0 

(25) 

1'1 C.\ 
",.V) 

Differentiating Ie-times the zero-order deformation Eqs. (19) and (20) with 
respect to p and then dividing them by k! and finally setting p = 0, we have, 
due to definition (22), the kth-order deformation problem 

£? [Fk(Z) - El'kFk- l (z)] = 11 [F~_ l (z) - 2iQFk_1(Z) + WO{F~_ 1 (z) - (XF~~1 (z)} 

k-l 1/ 1 
+2f3 ~F~_l (z) ~ {F:'_i(Z)F;'* (z) + 2F::_;(z)F;* (z)} 

with the boundary conditions 

where 

f!lk= { 
0, 

1, 

Ie ~ 1, 

lc ~ 2 

and prime denotes the derivative with respect to z. 

(27) 

(28) 
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Applying homotopy analysis method, the four term solution of above prob
lem is given as: 

(29) 

where 

F I (z) = ~ [lifJ( 4 + 3i)Ql (e-J.z - e-(2)'+)")z ), (30) 

[

M I {I + Ii + ?~ Ji1 fjWu[(Y.(8 + 6i)Q - ll} 1 '-F2(Z) = - (e -J.z - e- (2)'+)' )- ) 

- ~li fJ(2MI + M;)(4 + 3i)Q 

+ lifJ [( 5 + i)QMI + 110 (11 + 23i)QM; ] (e-).z - e- (J).+2,(·)=) , 

(31 ) 

1 [M2 {1 +1i+~(7- i);/iW()[(y' (8 +6i)Q -ll}l . 
F3(Z) =? +'lJi(3( 2 _ i)Q{(4 + 6i)MJM* (e-I.z - e-(2)'+)' )Z) 

_ 5 J 

+(1 + 2i)(2MT - 2M2 - 2M3 - M; - M;)} 

r M3~ 1 + Ii + ~ (1 -i);/iWo[ct(24 + 10i)Q -1l1l 
1 l l JV""' • . ') j 

+ '2 - It n(3(3 - i)Q{ (32 + 40i)MJM~ (e -J.: - e-(3!.+U')=) 

+(3 - 2i)[(2 + 4i)(2MT - M3) + (1 - 2i)M;]} 

+ ~ 1i(3( 4 - i)Q [ 50MT + (30 + 18i)M3 1 (e-).z _ e- (4)'+3).')Z) 
51 +(60 + 70i)MJM~ + (5 + 12i)M; , 

(32) 

in which 

[ 
7 - i 4 ] M2=2MJ l +Ji+ /nliWo[ct(8+6i)Q - 1j- -li(3(2M 1 +Mn(4 +3i)Q, 
20vQ 5 

and A.*, M; , M; and Mi are the conjugates of A. , M 1, M2 and Nh respectively. 
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F ig. 3. The varia tion of velocity parts for various values of rotation Q with fixed Ii = - 0.5, 
a = [J = 0.5 and Wo = 1. 

Fig. 4 show the effects of material parameter of third grade fluid on the 
velocity parts when n, ex, Q and Wo are fixed. It is interesting to note that as 
f3 increases from 0 to 2, the velocity parts near the plate indease. 

The influence of n on the velocity profiles are given in Fig. 5. Here, it is 
noted that the convergence of the obtained solution is strongly dependent 
on the choice of 1i and the convergence region enlarges as n tends to zero from 
below. 
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Fig. 4. The variation of velocity parts for various values of non-Newtonian materia l parameter {J 
wi th fixed Ii = -0.2, a = Wo = 0.5 and Q = 1. 
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Fig. 5. The varia tion of velocity parts fo r various values of non-Newtonian material parameter {J 
with fixed Ii = - 0.01 , a = Wo = 0.5 and Q = I. 
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5. Concluding remarks 

In this work, the non-Newtonian flow past a porous plate has been ana
lyzed. The whole system is in a rotating frame. The most distinctive feature 
here is that unlike the inertial frame, the steady asymptotic blowing solution 
exists. The physical implication of this conclusion is that rotation causes a 
reduction in the layer thickness. Thus, if blowing is not too large, the thinning 
effect of rotation may just counterbalance the thickening effect of blowing so 
that the vorticity generated at the plate instead of being converted away from 
the plate by blowing remains confined near the plate and a steady solution is 
possible. 
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