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Preface 

During the last few years the computation of non-Newtonian fl uids has been on the leading edge 

of research in fluid mechanics. Such fluid s are now acknowledged as more appropriate in 

technological applications than Newtonian fluids. Ideally speaking they are used in flow 

problems aris ing in the study of non-Newtonian fluids and pose a challenge to applied 

mathematicians, numerical analysts and computer simulationists. These stem from the fact that 

the rheological fluid parameter introduces some extra term in the momentum equation. Because 

of fluids diversity many constitutive equations have been proposed. One of the impOltant classes 

of non-Newtonian fluids is v iscoelast ic fluids . The constitutive equation of even the simplest 

subclass of viscoelastic fluid s namely the second grade is such that the momentum equation give 

rise to problems in which the order of the differential system is greater than the number of 

availab le boundary cond itions. In this situation the researchers found it convenient to obtain the 

pelturbation solution . Such solution always requires small or large parameter in the differential 

system. It is not necessary to have such parameter in every differential system. Therefore, the 

main theme of the present thesis is to develop HAM solutions for some non-linear flow problems. 

Note that the HAM does not require any small or large parameter in the differential system. 

The boundary layer flows on a moving surface are very important due their occurrence in 

many engineering processes. Such flows encounter in several processes of thermal and moisture 

treatment of materials, particularly, in processes invo lving continuous pulling of a sheet through a 

reaction zone, as in metallurgy in texti le and paper industries, in the manufacture of po lymeric 

sheets, sheet glass and crystalline materials. As example on stretched sheets, many metallurgical 

processes involve the codi ng of continuous strip or filament by drawing them through a quiescent 

fluid and that in the process of drawing, when these strips are stretched. 

The work on unsteady stretching flow problems is very scarce in the literature. Much 

attention has been given to the steady flow problems. Few attempts have been made regarding the 

unsteady flows. Motivated by the aforementioned facts , the entire work in this thesis is divided 

into nine chapters. Chapter 1 consists of some introductory remarks . The bas ic of differential type 

fluid s, governing laws and homotopy analys is method (HAM) are presented in chapter 2. 
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Unsteady axisymmetric fl ows of viscous and second grade fluid s over a radially stretchi ng sheet 

are analyzed in chapters 3 and 4 respectively. It is concluded that an increase in time increases the 

velocity and magnitude of skin fri ction . It is fUliher found that the obtained so lution is va lid for 

all values of the dimension less t ime. The problem regarding the unsteady boundary layer fl ow of 

second grade fluid due to planar stretching is studied in chapter 5. It is noted that velocity 

increases by increasing the material parameter of second grade fl uid . 

Chapters 6-8 are devoted to the heat transfer analysis of the flow problems considered in 

chapters 3-5, respectively. Expressions for temperature profi les are obtained for the two heating 

processes namely the prescribed surface temperature (PST) case and prescribed surface heat flux 

(PHF) case. The influence of sundry parameters in the heat transfer analysis is highlighted. The 

conclusions are synthes ized in chapter 9. 
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Chapt er 1 

Introduction 

It is now generally acknowledged that in industrial applications non-Newtonian fluids are more 

suited than Newtonian fluids. According to Newton's law of viscosity the shear stress is pro­

portional to the velocity gradient. The fluids obeying Newton 's law of viscosity are known as 

Newtonian fluids. Such fluids include water , benzene,ethyl alcohol, hexane and most solutions 

of low molecular weight. There are many fluids for which Newton 's law of viscosity does not 

hold. These are termed as non-Newtonian fluids. Such fluids exhibit a non-linear relationship 

between the stresses and the rate of strain . Many materials such as sll1rri es , pastes, gels, drilling 

mud , clay coating, polymer melts , elastomers etc. are examples of non-Newtonian fluids . T hey 

exhibit various behaviors : time-independent behaviors (Bingham-plastic, pseudo-plastic and di­

latant fluids), t ime-dependent behaviors (thixotropic and rheopectic fluids), Visco-plastic fluids 

(e .g, egg white). 

Due to large variety of non-Newtonian fluids, it is not possible to have constitutive equation 

by which all the non-Newtonian fluids can be described. In the literature many constitutive 

equations are suggested. Some of them are t he empirical or semi-empirical. The method of con­

tinuum mechanics is needed for more general three dimensional representation. Undoubtedly, 

the equation of motion of non-Newtonian fluid , in general, is of higher order than the Navier­

Stokes equations. The adherence boundary condition is reasonable for a viscous fluid bu t it is 

inadequate when flows of non-Newtonian fluids are taken into account. For uniqll p. solution in 

such flows , one needs an extra condi tion. This issue of extra condi t ions has been discussed in 

detail by Rajagopal [1,2]' Rajagopal and Gupta [3], Rajagopal et al. [4] and Rajagopal and 

4 
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Kaloni [5]. 

Among the several models of non-Newtonian fluids , there is a subclass of viscoelastic fluids 

namely the second grade for which one can reasonable hope to obtain an analytic solution. 

With this fact in mind, we also consider the second grade fluid in the present thesis. Several 

researcher have already discussed the flows of second grade fluid in various situations. Rajagopal 

[6] discussed the unsteady unidirectional flows of a second grade fluid . The flows are induced 

either clue to the application of pressure gradient or through the motion of the boundary. In 

another paper , Rajagopal [7] examined the creeping flow of a second grade fluid. In continuation, 

Rajagopal [8] studied longitudinal and torsional oscillations of a rod in a non-Newtonian fluid . 

Bandelli et al. [9] obtained some unsteady solutions in second grade fluids. Erdogan et al. [10] 

discussed the comparison of two different solu tions in the form of series of the governing equation 

of an unsteady flow of a second grade fluid. Then Erdogan [11] considered the unsteady motions 

of a second order fluid over a plane wall. Erdogan et al. [12] also studied the diffusion of line 

vortex in a second grade fluid. In [13] Erdogan et al. investigated the effects of the side walls 

on the unsteady flow of a second grade fluid in a duct of uniform cross-section. Fetecau et al. 

[14] obtained the starting solution for the motion of second grade fluid due to longitudinal and 

torsional oscillations of a circular cylinder. Fetecau et al. [15] discussed the starting solutions 

for some simple oscillating motions of second grade fluids. Fetecau et al. [16] also analyzed 

the starting solutions for some unsteady unidirectional flows of second grade fluids. In [17] 

Fetecau et al. solved some axial Couette flows of non-Newtonian fluids. Also Fetecau et al. [18] 

examined the decay of potential vortex and propagation of heat wave in second grade fluid. Tan 

et al. [19] discussed the Stokes first problem for second grade fluid in a porous half space. Tan 

et al. [20] also examined the impulsive motion of flat plate in generalized second grade fluid. 

Tan et al. [21] solved the unsteady flows of a generalized second grade fluid with the fractional 

derivative model between two parallel plates. Hayat et al. [22] discussed Hall effects on the 

unsteady hydromagnetic oscillatory flow of a second grade fluid. Hayat et al. [23] studied the 

unsteady hydromagne tic rotating flow of a conducting second grade fluid . Transient flows of 

a second grade fluid has been examined by Hayat et al. in [24]. Flow induced by non-coaxial 

rotation of a porous disk executing non-torsional oscillations and a second grade fluid rotating 

at infinity is also investigated by Hayat et al. [25]. In [26] Hayat et al. discussed the unsteady 

5 
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Couette flow of a second grade fluid. Chen et al. [27] examined the unsteady unidirectional 

flow of second grade fluid between the parallel plates with different given volume flow rate 

conditions. 

Boundary layer behavior over a moving solid surface is an important type of flow occurring 

in several engineering processes . The aerodynamic extrusion of plastic sheets, the cooling of an 

infinite metallic plate in a cooling bath , the boundary layer along a liquid film in condensation 

process and a polymer sheet or filament extruded continuously from a die are few examples 

of practical applications of a continuous flat surface . Many metallurgical processes involve the 

cooling of continuous strips or filaments by drawing them t hrough a quiescent fluid . The heat 

transfer analysis of such non-Newtonian fluids further have many applications in a number of 

technological processes including production of polymer film or thin sheets . Especially heat 

transfer analysis plays a vital role during the handling and processing of non-Newtonian fluids. 

Such analysis in boundary layer flows of non-Newtonian fluids arises in the design of thrust 

bearing and radial diffusers, transpiration cooling, drag reduction and thermal recovery of oil. 

Extensive work in the literature have been performed for the boundary layer flow and heat 

transfer in viscous and second grade fluids over t he stretching surface. Sakiadis [28] \-vas the 

first who studied the boundary layer flow of an incompressible fluid on a moving solid surface, 

which turns out to be different from the Blasius flow past a flat p la te , McCormack and Crane 

[29] studied the botmdary layer flow of a Newtonian fluid caused by stretching of an elastic flat 

sheet, which moves in its own plane with a velocity from a fixed point due to the application of 

uniform force, and this work h as been extended by many researchers for permeable plates such 

as Gupta and Gupta [30], Erickson et al. [3 1], Chen and Char [32], Magyari and Keller [33] and 

fo r impermeable plates by Crane [34], Banks [35], Ali [36] , Hayat et al. [37 - 41] and Sajid at 

el. [42 - 45] . 

The work on uns teady boundary layer flow due to stretching surface in a viscous fluid 

[46 - 48] has received much less attention. Nazar et al. [49] solved the unsteady boundary layer 

flow due to an impulsively stretching surface in a rotating fluid by means of transformations 

found by William and Rhyne [50] . They obtained a first-order perturbation approximation. 

Seshadri et al. [5 1] solved the unsteady mixed convection flow in a st agna tion region of a heated 

vertical plate due to impulsive motion. Liao [52] discussed homotopy analysis method (HAM) 

6 
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solution of unsteady boundary layer flow caused by a impulsively stretching plate. Takhar et 

al. [53] discussed the unsteady MHD rotating flow over a stretching surface . Kumari et al. 

[54] studied the unsteady free convection flow of a continuous moving vertical surface. Nazar 

et al. [55] investigated the unsteady boundary layer flow in the region of the stagnation point 

on a stretching sheet. Lok et a l. [56] examined the boundary layer flow of a micropolar fluid 

near the forward stagnation point of plane surface. Lakshmisha et al. [57] studied the three 

dimensional unsteady flow with heat and mass transfer over a continuous stretching surface. 

Perturbation techniques was applied by the researchers and the corresponding solu tions are 

valid for small time [58 - 60]. The stretching sheet problems with and without heat transfer 

analysis was studied by many investigators [61 - 68]. All the work mentioned above regarding 

the stretching surface includes the linear stretching. Little information is available regarding 

the flow over a radially stretching sheets. Axisymmetric flow of second grade fluid past a 

stretching sheet has been examined by Ariel [69]. Saj id et al. [70] obtained series solution for 

the axisymmetric flow of a third grade fluid over a radially stretching sheet using HANI. 

To the best of our knowledge, the unsteady flow over a stretching surface is not discussed in 

Jewtonian and non-Newtonian fluids for the case of radially stretching sheets. The main objec­

tive of this thesis is to consider such flow problems and develop solu tions for them. Throughout 

the thesis, problems are nonlinear and it is difficult to obtain exact solutions . In particular , 

it is often more difficult to get an analytic approximation than a numerical one of a given 

nonlinear problem. The numerical and analytic methods of nonlinear problems have their own 

advantages and limitations. Generally, one delights in giving analytic solutions of a nonlinear 

problem. For this purpose the useful technique for the nonlinear problems, the homotopy analy­

sis method (HAM) proposed by Liao [71 , 72] is used. HAM itself provides us with a convenient 

way to control the convergence of the approximation series and adjust the convergence region 

when necessary. Thus, this technique is valid for nonlinear problems with strong nonlinearity. 

Furthermore , the HANI logically contains some previous perturbation and non-perturbation 

techniques. Thus, it can be regarded as a generalized theory of these previous techniques. 

7 
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The contents of chapter three and eight have been accepted and now are available online in 

"Communications in Non-Linear Science and Numerical Simulations." The research 

material of chapter four has been accepted for publication in "Computers and Mathemat­

ics with Applications." The work done in chapter 6 has been accepted for publication in 

"J. Porous Media. " The research work in chapters 5 and 7 is submitted for publication in 

"Physics Letter A " and" Applied Mathematics and Computation" respectively . 
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Chapter 2 

Preliminaries 

This chapter includes some basic equations regarding Newtonian and second grade fluids , con­

servation laws of mass and momentum, the energy equation and homotopy analysis method 

(HAM). 

2.1 Constitutive equations of Newtonian and Second grade flu­

ids 

Since the stress at any point in the fluid is an expression of the mutual reaction of adjacent 

points of fluids near that point , it is natural to consider the connection between the stress and 

the local properties of the fluid. For stationary fluid, the stress is wholly calculated due to 

the static pressure. For fluid in motion, the connection between the stress and the local fluid 

properties is complicated. However in such cases the stress depends upon the velocity in the 

neighborhood of the element. Such distribution can b e given in terms of the velocity gradient. 

Therefore, the constitutive equation for the Cauchy stress tensor a in a Newtonian fluid is 

expressed in terms of velocity gradient as 

a = -pI + fJ. [(grad V) + (grad vf] , (2.1) 

in which p is the pressure , fJ. the dynamic viscosity, I the identity tensor and T in the superscript 

is the matrix transpose. 

9 
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For second grade fluid , the constitutive equation is [73] 

(j = -pI + P,AI + a l A2 + a2Ai. (2.2) 

In the above expression ai (i = 1,2) are the material moduli and the first two Rivilin-Ericksen 

tensors are 

Al = (grad V) + (grad vf, (2 .3) 

dAI T 
A 2 = ill + Al (grad V) + (grad V) AI , (2.4) 

in which d/ dt signifies the material derivative. A comprehensive discussion regarding the sign 

of ctl and a2 is made by Fosdick and Rajagopal [74] . In order to satisfy the Clausius-Duhem 

inequali ty. 

~i :2 0, al + a2 = 0 (2.5) 

and if the free energy is minimum in equilibrium then 

al :2 O. (2.6) 

Note that for ctl < 0 the fluid model shows the anomalous behavior. 

2.2 Basic equations 

Analysis of any problem in fluid mechanics necessarily includes statement of the basic laws 

governing the fluid motion. The basic laws applicable to any fluid are: 

1. Conservation of mass, 

2. Newton second law of motion, 

3. The principle of angular momentum, 

4. The first law of thermodynamics, 

5. The second law of thermodynamics. 

Note that not all basic laws are required to solve anyone problem . On the other hand, in 

many problems it is necessary to bring into the analysis additional relations that describe the 

10 
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behavior of physical properties of fluids under given conditions. 

2.2.1 Equation of continuity 

Let us consider a three dimensional unsteady flow. A control volume V in space is superimposed 

on the flow and consider the system that instantaneously occupies the control volume. Assume 

that it and its surface S remain fixed in space . The surface is permeable so that fluid can freely 

enter in and leave. Equation of continuity or conservation of mass stems from the principle that 

mass can neither be created nor destroyed within the control volume. Thus the mass conserved 

in the control volume V is given by 

:tf pdV = O. (2.7) 

if 

Here p is the fluid density field at time t. By Reynold's transport theorem we have 

f ( ~~ +diV(PV) ) dV = O. (2.8) 

if 

Since the control volume V is being arbitrary for conservation of mass a necessary and sufficient 

condition is 
8p 
8t + div (p V) = 0 (2.9) 

which for incompressible fluid reduces to 

divV = O. (2.10) 

2.2.2 Law of conservation of linear momentum 

In differential form, the law of conservation of momentum is 

dV 
Pili=pB+diva, (2.11) 

in which pB is the body force per unit mass, a is the Cauchy stress. The Navier Stokes 

equations for an incompressible fluid are given in component form as 

11 
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[
aU au au au] op (o2u 02u 02u) 

p at + u ax + v oy + w oz = - ax + J.L ox2 + oy2 + oz2 + pBx, (2. 12) 

[
ov ov ov ov ] op (o2v o2v 02v) 

p at + u ax + v oy + w oz = - oy + J.L ox2 + oy2 + oz2 + pBy , (2 .13) 

[
OW ow ow ow ] op (o2w 02w o2w ) 

P at + u ax + v oy + w oz = - oz + J.L ox2 + oy2 + oz2 + pBz , (2 .14) 

where Bx , By and B z are the components of the body force in the x, y and z-directions, 

respectively. 

2.3 Energy equation 

By law of conservation of energy one can write 

de ~ 
p dt = (J" . L - \7 . q + pr , (2 .15) 

where e is the internal energy, q is the heat flux vector, T is the radiant heating and L = grad V . 

In the absence of radiant heating the above equation takes the following form 

dT 
pCp- = (J" . L + k\7 2T 

dt ' 
(2.16) 

where e = cpT , q = - k\7T, f..; is the thermal conductivity, Cp is the specific heat and T is the 

temperature. 

2.4 Boundary layer flow 

Before this century and towards the end of 19th century the science of fluid mechanics began to 

develop in two directions which had practically no points in common. On the one side there was 

the science of theoretical hydrodynamics which was evolved from Euler 's equation of motion 

for a fr ictionless, non-viscous fluid and which achieved a higher degree of completeness. The 

results of this so-called classical science of hydrodynamics stood in glaring contradiction to 

experimental results in particular as regards the very important problem of pressure losses in 

12 
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pipes and channels, as well as with regard to the drag of a body which moves through a mass 

of fluid. Due to the rapid development in the technology, engineers developed their own highly 

empirical science of hydraulics. The science of hydral11ic.s was based on a large number of dat.a 

and differed greatly in its methods and its objects from the science of hydrodynamics. 

At the beginning of the 20th century 1. Prandtl has given a new dimension to fluid mechanics 

by introducing viscosity in the fluid and unifying the hydraulics and theoretical hydrodynamics. 

He noted that in the thin region near t he ::;olid boundary, the viscous interactions h ave a sig­

nificant effects on fluid motion, however far away from the solid boundary, viscous interactions 

were not that significant in order to determine the flow field. Before this the viscosity effects 

were completely ignored in ideal flow solutions and the equations describing viscous interac­

tion were very complex. The Navier-Stokes equations b ehave well for small Reynold 's number 

whereas for higher values of Reynold's number the non-linear term gains insignificance and the 

situation is quit different and there may be more than one possible solution. Laminar flows may 

become unstable and turbulence may occur and steady symmetric may b ecomes unsteady and 

asymmetric. Also singular region may develop , especially near the solid boundaries. 

It became known that the flow past a body can be divided into a thin region very near to 

the body called the boundary layer where the viscosity is important and the remaining portion 

(region) where one can ignore the viscosity. The most important application of a boundary layer 

can be seen as friction drag of bodies in a flow . The boundary layer has its application in lift of an 

airfoil and heat transfer between a body and fluid around it. Moreover, the complete equations 

of motion for flows with friction (the Navier-Stokes equations) had been known for a long t ime. 

The great mathematical difficulties connected with the solution of these equations with the 

exception of a small number of particular cases. These equations are highly non-linear, second 

order and ellip tic in space. Solutions of full Navier-Stokes equation are expensive . Inviscid 

solutions are very cheap as compared to the Navier-Stokes equations . By assuming that all of 

the viscosity in the flow field resides in a thin boundary layer , viscous boundary layer , we are 

free to solve the rest of the flow field using invisid solution. The solution of the flow inside the 

boundary layer is cheap as well. By assuming a thin boundary layer, several terms negligible and 

the ellip tic equation become parabolic. The boundary layer concepts retains for several reasons. 

The boundary layer solutions are less expensive, full Navier-Stokes equations are unnecessary 

13 
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in these situations and these solutions are accurate enough for many purposes , Boundary layer 

theory is extended to compressible turbulent boundary layer as well. Fundamental approach 

on boundary layers can be seen from the book by Schlichting et al. [75]. l\IIodern investigations 

in the field of fluid dynamics in general, as well as in the field of boundary layer research, 

are characterized by a very close relation between theory and experiment. The derivation of 

boundary layer equations for a viscous fluid are given in [76] . 

2.5 Maxwell's equations 

In this section we describe the behavior of electric and magnetic fields, E and B through the 

following differential equations 
B 8 

Vx- = J +-
8 

(cE) , 
f.L2 t 

v x E = _ 8B 
8t ' 

V·B=O, 

V . E = Pc 
c' 

(2. 17) 

(2. 18) 

(2.19) 

(2 .20) 

in ''.vhich the constants f-L2 and E arc magnetic permeability and dielectric constant, respectively, 

D = (cE) is the dielectric displacement and Pc is the charge density. The total magnetic field 

B often referred to as the magnetic field is related to the magnetic field H as B =f.L2H. 

According to Ohm's law 

J =CTI (E + V x B) , (2.21 ) 

where CTI is the electrical conductivity of the fluid. The polarization effects here are negligible 

(E = 0) and magnetic Reynolds number is taken very sm all , i.e., induced magnetic field is 

negligible. 

Under the aforesaid assumptions , the Lorentz force becomes 

1 CTE 2 
- (J x B ) = __ 0 V , 
P P 

(2 .22) 

in which Eo is the magnitude of constant applied magnetic field. 
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2 .6 P orosity and porous media 

Most important geometrical property of the porous medium is the porosity. Because of the 

rheological properties of fluids often change with the geometry, it is important to measure 

those proper ties in a geometry as similar to the applications as possible. Porosity is defined as 

the percentage of a volume of medium that is empty space that contributes to the fluid flow. 

Mathematically it is the ratio between the unit volume of void space Vv t o the unit volume 

of the medium Vm i.e. 

¢ = 100Vv 

v,n ' (2 .23) 

where 0 < ¢ < 1. If Vv = Vm we have the case of free fluid . Also porous m edium is that medium 

for which the permeability is non-zero . The permeability is the most important proper ty of a 

porous medium that measures quantitatively the ability of a porous medium to conduct fluid 

flow. 

2.7 Flow induced by a stretching sheet 

T he flow produced due to the stretching of elastic flat sheet which moves in its plan with 

velocity varying with the distance from a fixed point due to the application of a stress are 

known as stretching flow. The production of sheeting material arises in a number of industrial 

manufacturing processes and includes both metal and p olymer sheets. In t he manufacturing 

of the latter , the material is in a molten phase when thrust through an extrusion die and 

then cools and solidifies some distance away from the die before arriving at the cooling stage. 

T he tangential velocity imported by the sheet induces motion in the surrounding fluid , which 

alters the convection of the sheet. Similar situation prevails during the manufacture of plastic 

and rubber sheets where it is often necessary to blow a gaseous medium through the not­

yet solidified material, and where the stretching force depends upon t ime. Another example 

that b elongs to this class of problems is the cooling of a large metallic pla te in a bath , which 

may be an electrolyte . In t his class the fluid flow is induced due to shrinking of the pla te. 

Glass blowing, continuous casting and spinning of fibers also involve the flow due to stretching 

15 
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surface. Due to the very high viscosity of the fluid near the sheet, one can assume that the 

fluid is affected by the sheet but not vice versa. Thus the fluid problems can be idealized to the 

case of a fluid disturbed by a t.angentiA.! moving boundary. Experiments show that the velocity 

of the boundary is approximately proportional to the distance to the orifice (V!eggaar [77]). 

The quali ty of the resulting sheeting material , as well as the cost of production, is affected by 

the speed of collection and the heat transfer rate, and knowledge of the flow proper ties of the 

ambient fluid is clearly desirable. 

F ig. 2.2 (a) Fig. 2.2 (b) 

",y 

f \ . 
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(
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.-.~,,--.'>-"."'« I ) 

I
~. r" -~--«./ "'~'-" --.. 

~ • s 
------ a ----.. 

IF"Bx 

P i!!. 2.2. (8) PhysiCA.l model for planar stretching sheet, (b) Physical model for radial stretching 

sheet. 

2.8 Homotopy 

Definition: Homotopy is a continuous transformation from one function to another. A homo­

topy H between two continuous functions a and b from a topological space X to a topological 

space Y is define by a continuous mapping 

H : X x 1 = [0 , 1] ---7 Y, 

where 

H (x, t) = ht (x), (x E X, t E I) 
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is continuous then we call a family of maps ht : X ----; Y (0 ::; t ::; 1), indexed by t he real 

numbers t E l is called a homotopy with ho and hI are initial and terminal map of ht · 

Two maps f : X ----; Y and 9 : X ----; Yare said to be homotopic if there exist a homotopy 

ht : X ----; Y such that ho = f and 101 = g . So ht is t he homotopy connecting f and g , 

as ht : f = g. T hus , f and 9 are homotopic if and only if each can be changed continuously 

into other. 

Further if f is hom otopic to 9 t hen there exist a 

[tip : p E (0, 1)] 

of continuous functions such tha t tip : R x [0, 1] ----; R defined by 

tip (x) = (1 - p) f (x) + pg (x) for all x E R and p E [0, 1] . 

2 .9 Homotopy analysis method (HAM) 

Non-linearity plays a crucial role in applied mathematics. Most of the problems an smg are 

non-linear it is important to develop efficient tools to solve them . Since the advent of modern 

compu ters numerical techniques for nonlinear partial differential equation (PDEs) have been 

developing rapidly. However , it is sti ll difficult to obtain analytic approximations of nonlinear 

partial differential equation, even though there exist high performance super computers and 

high quality computation software such as Mathematica, Maple etc. In the p ast, perturbation 

technique were applied to solve such problems but such technique r equires large or sm all pa­

rameter. It is not possible that every problem has such param eter. Unlike the perturbation 

technique the homotopy analysis method is valid even for nonlinear p roblems whose governing 

equation and lor boundary condi tions don 't contain small or large p arameter a t all. Thus, it 

can be applied to more nonlinear problems in science and engineering. 

The homotopy analysis method is rather general and valid for m any different typ es of non­

linear ordinary differential equations and partial differential equations. It h as b een successfully 

applied Lo m any IlOIl-linear problem::; such as boundary layer flows, heat transfer , MHD flows of 

non-Newtonian fluids and many others . It is an analytic method to approximate the solution of 

17 
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non-linear with strong nonlinearity, solution expressions of a non-linear problem are determined 

by the type of nonlinear equation and the employed analytic technique, and the convergence re­

gions of series solution are strong dependent on physical parameters. Due to existence of strong 

non-linearities in the governing flow equations numerical techniques or perturbation techniques 

are widely used. Throughout this thesis , the HAM is used to solve the two dimensional flow of 

a Newtonian and non-Newtonian fluids over a stretching surface and complete form of analytic 

solutions are obtained. Recently, HAM is successfully applied to many non-linear flow prob­

lems [78 - 91] . The developed HAM solutions in this thesis are quite new and have been never 

repor ted in the li terature. 
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Chapter 3 

Unsteady axisymmetric flow of a 

viscous fluid over a radially 

stretching sheet 

The problem of unsteady axisymmetric flow of a viscous fluid over a radially stretch­

ing sheet is considered in this chapter. The axisymmetric flow equations are given. 

By means of similarity transformations, the modeled non-linear partial differential 

equations in three independent variables are reduced to a single partial differential 

equation in two independent variables. The HAM solution governing the flow is 

developed. The convergence theorem for the present problem is established and the 

reliability of the convergence on the auxiliary parameter is explained. Finally, the 

influence of various emerging flow parameters are plotted and discussed .. 

3.1 Mathematical formulation 

Consider the unsteady laminar flow of a viscous fluid over a stretching sheet which is placed 

in the plan z = 0; the flow being confined to z > 0 and is stretched in the radial direction. 

The sheet is stretched with the speed proportional to the radial distance from the origin. Here 

for mathematical modelling, we take the cylindrical polar coordinates (1' , e, z). All the physical 

quantities are independent of e because of rotational symmetry of the flow i.e. a / ae = O. 
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Also the azimuthal component of velocity v vanishes identically. Under these assumptions 

the governing equations (2. 10) and (2.11) in the absence of body forces together with Eqs. 

(2.2) - (2.7) with ai = 0 
OU U ow 
-+-+-= 0 01' l' OZ ' 

[
OU ou Ou ] oj] [02u 02u lou u] 

P -+U-+W- --- +~i -+-+----ot or OZ - 01' 01'2 Oz2 l' 01' 1'2 ' 

[
OW ow ow] oj] [02w 02W lOW ] 

P at + u""[); + W OZ = - oz + fi oz2 + 01'2 + ~ or ' 

where U and ware the velocities in l' and Z directions, respectively. 

The appropriate boundary conditions for the problem under consideration are 

U aT, W = 0 at Z = 0, 

U -) 0 as Z ---) 00 . 

Introducing the similarity transformations 

U ar,!, (77 , ~) , W = -2 J avU, 

~ 
-T ~ 

1 - e , 1] = V v~z , T = at . 

The continuity equation (3 .1 ) is satisfied automatically and Eqs. (3.2) and (3 .3) become 

~~ = pa2
T [77 (12~ ~) 1" - (1 -~) o;~' - f'2 + 2f 1" + Z fill ] , 

oj] [ ( ) of ( )' () '"] - = pav 2 1 - ~ ~- - 1 - ~ 7]f + 1 - ~ f - 4U f - 2f , 
077 o~ 

where prime denotes differentiation with respect to 7] and a is the stretching constant . 

E liminating pressure from Eqs.(3.6) and (3.7) , we obtain 

f iv + TJ (1 - 0 1'" + 2U 1'" + (1 - 0 1" - ~ (1 _ 0 of" = O. 
2 2 o~ 
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The boundary conditions (3.4) now read as 

f (0 , 0 = 0, l' (0, 0 = 1, f l (00, 0 = O. (3.9) 

In the next section, we will find the analytic solution of Eq. (3.8) subj ec t to boundary conditions 

(3.9) . 

3.2 Analytic solution 

In order to obtain the solution of a problem consisting of Eqs.(3 .8) and (3.9) we use HAM. For 

that the initial guess 

fO(TJ,O = 1- exp( - 17) , (3.10) 

and auxiliary linear operator 
83 f 8f 

£1 [J (17,~; p)] = 8173 - 8TJ ' (3.11) 

are chosen and the operator £1 satisfies 

£ 1 [C1 + C2 exp (- 17) + C3 exp (17) ] = 0, (3.12) 

in which Cl. C2 and C3 are arbitrary constants. 

Zero-order deformation problem 

Following the HAM procedure we can write the zeroth order deformation problem as 

(l - P)£1 [1(TJ , ~;p) - fo(TJ , O] = pli1N1 [1(TJ)~;p)] ) (3 .13) 

f~ (O c. ) = 0 81(TJ ) ~ ; p) I _ = 1 81(TJ)~;p) I _ = 0 
) ':, ) P , 8TJ ,)-0 8TJ ')-+00 ) (3.14) 

where the non-linear differential operator Nl is 

N [f~ ( c· )] 841(17 ) ~;P) + TJ~(1-0831(rJ ) ~;p) +2~f~( c. ) 831(TJ ) ~ ; p) 
1 TJ , ':"P 84 2 83 ':, TJ )':"P 8 3 TJ TJ TJ 

+ (1- 0 8
2
1(17, ~ ; p) _ ~ (1 - 0 8

3
1(17) ~ ; p) (3.15) 

2 8TJ2 8~ 8TJ2 
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where p E [0, 1] is the embedding parameter , fiI is non-zero auxiliary parameter. Obviously 

for p = 0 and p = 1, we h ave, respectively 

l(ry,~;O) = fa (ry,~), 1(17,~; 1) = f (ry ,O· (3.16) 

As p increases from zero to unity, f (17, ~;p) varies from t he ini tial guess fa (ry,~) to the exact 

solution f (17 ,0 of the considered problem. T hen by Taylor's t heorem and Eq. (3. 16) we have 

+00 
l(ry , ~;p) = fa (ry,~) + L fm (17 ,Opm , (3 .17) 

m=1 

where 

j 
1 omf ( 

m(ry ,O=- ry,~;p) 1 
171,! opm . p=o 

(3. 18) 

The convergence of the series (3 .17) depends upon hI . Assume that hI is chosen in such a way 

that the series (3 .17) is convergent at p = 1 then due to Eq. (3 .16) we have 

00 

f(ry,O=fo(ry,O+ Lfm(ry, ~), (3. 19) 
m=1 

m t h-order deformation problem 

Differentiating the zeroth-order deformation Eq. (3.13) mth-time with respect to p and the 

dividing by m ! and finally setting p = 0 we have 

L- l [fm (T} ,~) - Xmfm-l (17,0] = hlRml (ry,O, (3.20) 

fm (O,Cp) = 0, ofm (17 , ~ ; P) I _ 0 ofm (ry,~;p) I - 0 
ory ,)=0-, ory ']=+00-, (3 .21) 

R ml 
04.fm_l 17~ (1 - 0 03 fm-l (1 - 0 02 fm-l --::---;-- + + -,--- ---::,------;;--

0174. 2 ory3 2 ory2 
!:l3 j m-l 

( u m- l '"' II I -~ 1 -~) OCo 2 + 2~ L fm-l-k f k , 
<" ry k=O 

(3.22) 
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where 

= { 0, Tn :::; 1 } Xm . 
1, Tn> 1 

(3.23) 

To obtain the solution of above system of non-homogeneous equations upto first few order of 

approximations , the symbolic computation software MATHEMATICA is used and the following 

series solution is found 

m+12(m+l-n) m 

1m (T/ , 0 = L L L a~(n~rT/q exp [-nT/]. (3.24) 
n=O q=O r=O 

Detailed procedure of obtaining t he recurrence formulas for the coefficients involved in Eq. 

(3.24) is presented in next section. 

3.2.1 Derivation of Coefficient appearing in Equation (3 .24) 

I _ q,r q-l q,r 'I r 
m+l m [2(m+l-n) 2(m+l-n) 1 

1m (17,0 - ~ ~ ~ am,nqT/ - 17, ~ am,n17 ~ exp [-n77], 

m+l m [2{m+l-n) 2{m+l-n) 1 
L L L a~;,~,r (q + 1) T/q - n L a;;::n17

q 

n=O r=O q=O q=O 

~r exp [-17,T/] , 

m+12(m+l-n) m 

= L L L [(q + 1) a~~,r - na~(nl T/q~r exp [-nT/], 
n=O q=O r=O 

m+12{m+l-n) m 

= L L La1~nT/q~rexp[-17,T/], (3.25 ) 
n=O '1=0 r=O 

where 

a1 q,r = (q + 1) aq+1,r - naq,r 
711.,71 m,n Tn' ln· (3.26) 

Through a similar procedure, the other derivatives are 

m+12(m+l-n) m 

1~1(T/,O = L L La2~(n17q~rexp[-n77], (3 .27) 
n=O q=O r=O 
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m+12(m+1-n) m 

f:;~ (17,0 = L L L a3~(n17q(" exp [-m7], 
n=O q=O r=O 

m+12(m+1- n) m 

f~~ (17,0 = L L La4~(n17q(" exp [-n17J· 
n=O q= O r=O 

The coeffi cients a2~(n, a3~(n and a4~i:n are 

a2q
,T - (G + 1) a1q+1,r - n 1q,r m,n - '1 7n,n a 7n,71,) 

a3q,r = (q + 1) a2q+1,r - na2Q,r 
m,n m,n 1n,n' 

4Q,r - (q + 1) 3q+1,r n 3q,r a rn,7t - a 7n,n - a 711- ,n' 

and 

8f~, (17, ~) _ "" "" a2Q,r "" 1'("-1 17q exp [- n17J , 
m+12(m+1-n) [ m 1 

- ~ L-t 771,n L-t 
8~ n=O q= O r = 1 

=+1 2(m+1-n) m 

= L L L a2~(7~ 1 (r + 1) 17 Q
(" exp [-n17]' 

n=O q=O r=O 

m+12(=+1-n) m 

2: 2: 2:a5~(n17qC exp [-n17]' 
n=O q=o r=O 

where 

a5q,r = a2q,r+1 (r + 1) . 
7l1,n 1'n" n 

Now, for the product t erm f=- 1 -k f~ we have 

=-k 2(m-k-ill m-1-k 

f=-1- kf£ L L L a;7~:\ -k .iI 17
j1e1 exp [-i117J 

il=O jl = O ll=O 

k+12(k+ 1-i) 

X L L 17a{',ll exp [- i17J , 
i= O j =O 
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m-k 1,+1 2(m-k-id 2(k+l-i) 

fm- l -k f~ L L exp - (il + i) T} L L 
i l = O i=O jl=O j=O 

m- l -k k 
~ ~ (aj1h . aj,l) t(ll+l )",(jl+j ) 
~ L.-t 711.-1-k, t1 k ,t <::, '/ ) 

/t=0 l= O 

which further simplifies to 

nt - 1 m+ l 2(m+l-n) m-l 

L fm-l-kff: L L L 
k=O 

whence 

r5q,r 
rn.,n 

n=O q= O 1'=0 

m-l i=min{n,k+l} j=min{q,2k-2i+2} 

L L L 
1)q ~r exp [- n1)] , k=O i=max{O,n-m+k} j=max{0 ,q-2m+2k+2n-2i} 

l= min{1',k} 

L q-j ,r-l j,l 
a7n-i-k ,n-ia/r;;,i 

l=max{O ,r-m+l+k} 

m+12(m+l-n) m 

L L L 
n=O q=O r=O 

r I: ,om''f:k+<l ;"mm{~-2'+2) 

l 
k=O t=fUUX{O,It.-ffl,+k} J= n1ax {O,q-2Tn+21v+2n-21,} 

l=min{r,k} 

L q-j,r-l j,l 
Xm -r+l a m - i - k n-iak i , , 

l=max {O ,r-m+l +k} 

1 j ry',' exp i-nryj, 

m-l m+12(m+ l -n) m 

~ f f " - ~ ~ ~ s:q,r q l' [-] L m-l-k k - L L L U m ,n1) ~ exp n1) , 

k=O n=O 

m-l i=min{n,k+ l} 

L L 
k=O i=max{O,n-m+k} 

j=min{q,2k-2i+2} 

L 

q=O r=O 

l=min{r,k} 

L 
j=max{0,q-2m+2k+2n-2i} l=max{O ,r-m+l+k} 
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Making use of Eqs. (3 .27) - (3 .29), (3.33) and (3.37) into Eq. (3 .22) one may write 

4 q l' 3q-1r-1 
a ,;'-I ,n + Xr+lXq+l a m-l,n 

m 2(m-n)m- l 

IilRml (1],0 = I: I: I: Ii 
1 3 q- 1,r-2 1 2 q,r 

+2Xq+lXra m- 1,n + 2 a m- l ,n 

1 2 q,r-l 5 q,r- l 
r,qc exp [-m7] , 

n=O q=O 1'=0 -2X,,+la m- l ,n - X,,+l a m-l ,n 

6. q,r = iiI 
7Tt ,n 

"q,r-2 2"q,,,-1 
+XraOm-l ,n + v'nt-l ,n 

m 2(m-n)m-l 

= I: I: I: 6..;;:'n1]q~" exp [-11,1]] , 
n=O q=O 1'=0 

( 
qr 3q-1r-1 

X2m-2n-q+2 a4"~_I,n + Xr+lXq+ l Ct m-l,n 

1 3q - 1,,,-2 1 2q ,,, 
+ 2Xq+ 1XrCt m- l,n + 2 Ct m-l,n 

1 2 q,r-l "q,,,-1 
-2Xr+lCt m-1,n - Xr+ l a Om- l ,n 

q ,,-2) 2 -q 1'- 1 
+X"a5"~_ I ,n + O"~_I ,n 

Using Eq. (3.38), Eq. (3.20) takes the following form 

m 2(m-n)m- l 

£1 [Jrn (1] , ~) - X"Jrn- l (17,0] = I: I: I: 6.;'i,n 1]q~" exp [- 11,1] ] . 
n=O q=O 1'=0 

In order to obtaining the solution of Eq. (3.40) we must have 

yll' - y' = 1]q exp [-11,1]]. 

Integration of Eq. (3.41) involves two cases 

Case (1) when 11, = 1, we have 

q+1q+ l-k I 

Y - ""'" ""'" q. I. e -'7 
- ~ ~ k !2q+2-k-p 1] , 

1.=0 p=O 

q+l 

= ""'" /iq 'Tl
k e-'7 

~1""1,k' l , 

1.=0 
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where 
q+1 -k 

q '" I J.L1 ,k= Lt ~ o ~ k ~ q + 1, q :::=: 0 (3.43) 
p=O 

Case (2) when n :::=: 2 we have 

q q- k q-k-1' -q! 'T}ke -
n77 

Y = LL L k !n1'+1(n-1)q+1 l' p k(n+1)p+1 ' 
k=01'=O p=O 

q 

Y = '" II
q 17ke-n77 

~'-n,k ) (3.44) 

k=O 

in which 

q-kq-k-1' _ ql 
J.L

q 
= '" '" . 0 < k < q, q > 0, n :::=: 2. n,k Lt Lt k!n1'+1 (n _ 1)q+1-1'-p k (n + 1)p+1 - - -

1'=0 p=o 
(3.45 ) 

The general solution of Eq. (3 .40) is 

im(17,O - Xmj~n-1 ('T},~) 
(

m ) - ?; l:.~~:oC· 17 + 

m [ 2m 2m+ 
1 ( 2m, \ 1 - '7 q,1' q -l- k q,1' q I 

L {e L .6.m,1J.L1 ,O ' L T) \ L l:.m,l /I'l,lC) 
1'=0 q=O k=l \q=k- 1 

m+1 [2(m+1-n) ( 2(m+1-n) ) 1 
_ "'e- n77 '" 17k '" l:.q ,1' {t

q }t:1' 
~ ~ ~ 1'11"n n,k ":, 

n=2 10=0 q=k 

+Crn + C2ne-'7 + C'3'e '7, (3.46) 

where Cl'\ C:p and C3 are the integral constants, In order to determine these constants we 

use the boundary conditions (3.21) and get 

cm 
1 

71'"1. 11'1. 211'1. 

L l:.~~:O~1' + L {- L l:.~~:1J.Li, 1 + 
,.=0 1'=0 q=O 

m+ 1 [ 2(m+1-11) 2(m+1-n) 1 Z; ?; (-1 + n) l:.~:'nJ.L~ , O - ~ l:.~';:n J.L~ , l }~1', 
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C2" 
m 

_ ~ !:J.0 ,r ~r 
L m,O 
r=O 
m 2m 2711 

+ L {- L !:J.~;'11-{0 + L !:J.~lJ-ih + 
r=O q=O q=O 

m+ 1 

L [ 

2(m+ 1-n) 2(711+ 1-n) 1 
q,r q q,r q r 

17, L !:J.m,nJ-in,O - L !:J.m,n J-in , 1 }~, 
q=O q=l n=2 

crt = o. 

(3 .48) 

(3 .49) 

From Eqs. (3.46), (3.24) and (3.47) - (3.49) one can write 

m+ 1 2(m+ 1-n) m 

L L L a'!,~?"n~r17qe-7l!7 
n=O q=O r=O 

m+12(m+ 1-n) m m 

~ ~ ~ q,r t:r q -?1?7 ~ !:J.0 ,r t:r 
L L L XmX2m-2n-q+2 a m-1,n'> TI e - L m, O'> 7) 

n=O q=O ,·=0 r=O 

Tn 

+L 
r=O l 

r 
711 

+L 
r=O 

771 

+L 

e-7J { ~ 1l ~!:J. q,r J-iq • } 
2171.+1 ( 2711 ) 

L L m,l 1,k 
k=l q=l 

m+1 2(m+1) ( 2(m+1 -n) ) 

- L e-n7J { L 1)k L !:J.it,nJ-i~ ,k } 

n=2 k=O q=k 

2711 
-'7 { A O,T ~ !:J. q,T q 

e - L.l.m,O - L m ,1J-i1 ,1 

m+1 

+L 
n=2 

q=O 
2(m+1-n) 
~ Aq ,r q 

17, L L.l.m,nJ-in,O 

q=O 
2(m+1-n) 

L 
q=l 

2711 

A q,r IIq 
Dm,nrn,l 

AO,r ~ !:J.q ,r q + 
L.l.m,O - L m,l J-i1,l 

q=O 
171.+1 2(m+1 -n) 

L { L (17, - 1) !:J.'!,~"n J-i~,o 

~r 

} 

~r. 

r=O 1 n=2 q=O 
2(m+1- n) 
~ Aq,T q } 
L L.l.,",nJ-in ,l 
q=l 

~r 

(3.50) 

Now, comparing the coefficients of like powers in the above equation, the following recurrence 

formulas for the coefficients a'!,~"n of f 771 ( 1) ,~) for 0 ::; 17, ::; m + 1, 0 ::; q ::; 2 (m + 1 - 17,) and 
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o :::; T :::; Tn are obtail1ed 

0,1' 
am,o 

2m 
0,1' + 6.° ,1' ~ 6.'1 ,1' 'I 

XTnX2,"+2 a m- l ,0 m,O - L m,1/-L1,1 
'1=0 

[

2(m+1-n ) 2(m+1-n) 1 
q~ 'I q~ 'I L (n - 1) 6.m ,n/-Ln,o - L 6.m ,nJ-tn ,l 

n=2 '1 = 0 '1 = 1 

,"+1 

+L 

l IT 1,r !:1 O,r 
am,o = XTnX2m+ 1a ,"-1,0 - m,O' 

2m 
0 ,1' 0 ,1' 6. 0,1' ~ 6. q,r 'I 

a m ,l XmX2m a ,"-1,1 m, l L m, 1J-t1,1 
'1= 0 

," +1 

+L 
n=2 

[ 

2(m+ 1-n) 2(m+ 1-n) 1 
q ~ q q~ q 

n L 6.m ,n J-tn ,o - L 6.m ,n /-Ln, l 

q=O q= l 

2m 
'1 ,1' '1 ,1' + ~ 6.'1 ,1' 'I 

a m ,l XmX2m- q a m - 1,1 L ,", 1J-t1,k' 

a q," - X X aq,r + m,n - m 2m-2n-q+2 m- l ,n 

'1= 1 

2(m+ 1-n) 

L 
q=k 

Aq l' q 
u";",n /-Ln,k' 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3 .55) 

Now it is pointed out that fo ( 7] ,~) t he initial guess has the same structure and in this subsection 

we proved that, if the first (Tn - 1) solutions fi (7],0, {i = 0,1,2, .. . , Tn - 1} have the same 

structure as fo (7] ,0, t hen Tnth order solution fm (7],~) have the same structure. Utilizing the 

above recurrence formulas, all coefficients a~:;n can be computed using only the following two 

coefficients 

0,0 1 
a o,o = , 

and the mth-order approximation is 

!VI !VI !VI + 1 

L f m (7] ,0 = L a~~~o + L e-
n7

) 

11t=0 ," = 0 n= l 
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(

!VI 2(m+ 1-n) m ) 

L L L a%(n 7]qe' 
m=n- 1 '1 = 0 1'=0 

(3.56) 
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In fact we obtain the following analytic solution of the flow 

00 

1 (17,0 = L 1m (17,0 = N~~noo 
m = O 

[ 

M M + I (M 2{m+ l -n) m ) 1 
,~ a~',~o + ~ e-

n7

) m~-l ~ ?; a~:"n17q~,. . 

3.3 Skin Friction 

T he shear stress r on the smface of the stretching sheet is 

r = (J,.z iz=o' 

and the local skin fr iction coefficient or frictional drag coefficient is 

We have 

where 

r 
Cf = p(ar)2 · 

Cf = Re;:-~ [l' (TI, ~)] , 

Re,. = a~r2 
v 

3.4 Convergence of the analytic solution 

(3.58) 

In this section we discuss the convergence of the series solution in Eq. (3 .58) . For this we first 

show that if the series (3.58) converges it will converge to the solution of the problem given in 

Eq. (3.8) and conditions (3.9). Suppose that the auxiliary parameter iiI is chosen in such a 

way that the series in Eq. (3 .58) converges, then 

lim 1M(17,~)= 0 . 
M-> oo 

(3.59) 
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From Eqs.(3 .20) and (3 .21) 

lim [11,1 t. Rml ('T], 0] 
Id ..... 00 

111=1 

M 

lim L Ll [1m ('T],O - Xmfm-l (1),0], 
111 ..... 00 

m=1 

[ 
M M 1 lim Ll L fm ('T/,O - L Xmfm-l ('T/,O , 

111 ..... 00 
711=1 711=1 

lim LdM (1) ,~) , 
M ..... oo 

L 1 lim f!lf (1) , 0 = 0, 1) E (0, (0) . 
M ..... oo 

(3.60) 

The above equa tion implies that the infini te sequence Tl, r2, T3, ... converges to zero where 

M 

rM = L Rml (1),0· 
1'11=1 

Now 

M 

LRil ('T/,O 
i=1 

L
M {84 f i- l 1)~ (1 - 0 83 ii-I (1 - ~) 82 f i- l --+ +----
. (1)4 2 (1)3 2 (1)2 
.=1 

3 i- I 
8 fi-l '\"' III 

-~ (1 - 0 8 c8 2 + 2~ D f i- l -kh }, 
<" 'T/ k=O 

(3. 61 ) 

[

M 

J~= t;n" ('",ll L

oo 
{84 fi-l 7)~ (1 - 0 83 fi - l (1 - 0 82 ii-I -- + + -'---:,---::.:-

. 8'T/4 2 8 'T/3 2 8'T/2 
.=1 

!:l3 i- I 
u ii-I '\"' III 

-~ (1 -~) 8~8'T/2 + 2~ D ii-l-kfk }, 
k=O 

(3.62) 

84 
00 'T/~ (1 _~) 83 00 (1 _~) 82 00 

84Lfi-l+ 2 Ef3Lii-l+ 2 8 2 Lfi- l 
'T] i= 1 'T/ i=1 'T/ i=1 

83 00 00 i-I 83 ii- I 
-~ (1 -~) 8~a'T/2 ~ ii - I + 2~ ~ E f i- l -k [i;)3 ' (3 .63) 
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~ ~ j' 17~ (1 - 0 ~ ~ j ' (1 - ~) ~ ~ f 
81 4 L.t k + 2 8 3 L.t k + 2 8 2 L.t k 

7 k=O 1] k=O 1] k=O 

83 
CXJ [ CXJ ] [83 

CXJ ] -~ (1 - 0 8~8172 {; ik + 2~ {; fk 81]3 (; fk , (3,64) 

and, therefore, the above equation after using Eq, (3,60) reduces to 

= CXJ CXJ 

a4 
"" f + '1~(1-~) a3 

"" f + (l-~) a2 
"" f 

ai)4 L.t k 2 ai)J L.t k 2 a:rr L.t k 
k=O k=O k=O 

- , (H) ata'" ~ t. + 2, [~J.] [i,i. ~ h] 
= 0, (3,65) 

From Eq, (3 ,21) , we have 

CXJ = = L ik (0,0 = 0, L f~ (0,0 = 0, Lf~ (00,0 = 0, (3,66) 
k=O k=O k=O 

From Eq, (3 ,64) and (3,65), if the series given in (3 ,58) converges, it must be a solution of the 

problem given in Eq, (3,8) subject to the boundary conditions (3,9), 

The convergence region and the rate of convergence of the series (3,58) strongly depends 

upon the value of the auxiliary parameter /'iI, To investigate the range of admissible values of 

auxiliary parameter /'i1 for which the series (3 ,58) is convergent"we first consider the convergence 

of the related series such as / (0), /' (0), (' (0) and so on, If we plot these series against the 

parameter /'il the curve obtained in this way is called the /'i-curve, We draw the curve for the 

series of /' (0) , If it gives a straight line parallel to /'i-curve and it will not give any information 

about the valid values of /'iI, Then it is necessary to plot the series /" (0) and so on unless we 

get a curve other than a straight line, The portion of the /'i-curve which is parallel to the It-axis 

will give the region for the admissible values of /'iI' The /'i-curves are sketched in Fig, 3,1 for two 

different orders of approximations, Fig, 3,1 clearly indicates that the range for the admissible 

values of /'i1 is 0,1 ::; /'i1 ::; 0, 5, Thus, by means of choosing /'i1 = 0,1 , our result shows that the 

series (3 ,58) converges and we obtain an accurate analytic solution valid for all t ime ° ::; T < 00 
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in whole region 0 ~ T} < 00. 
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F ig. 3.1. /i-curves for different orders of approximations when ~ = 0.5. 

3.5 Results and discussion 

In this section, the influence of time is discussed on the velocity components and the skin 

friction coefficient. Such effects have been discussed through Figs. 3.2,3.3 and Table 3.1. Fig. 

3.1 shows that the r-component of velocity and the thermal boundary layer thickness increase 

when dimensionless time T is increased. However with the increase in dimensionless time T, 

the z-component of velocity decreases and t he thermal boundary layer thickness increases as 

shown in Fig. 3.3. It also depicts that one can obtain a velocity profile for all the times and 

the desired solution is valid for all times. T he values of skin fr iction coefficient are tabulated in 

Table 3.1. It is found that magnitude of skin friction increases by increasing time T and figure 

3.4. are given for the skin fr iction in the case of viscous fluid . 
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L) 

T Cf Re; 

0.01 - 0.558759 

0.10 - 0.671632 

0.25 - 0.734321 

0.50 - 0.840094 

1.00 -0 .926639 

10.0 -0.958742 

1 

Table 3. 1. Skin friction coefficient Cf Re; for different values of time when n = 0.1. 
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Fig. 3.2. The velocity profile j' ('T], 0 at different dimensionless time 

T = at when nI = 0.1. 
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Fig. 3.3. The velocity profile f (fJ, 0 at different dimensionless t ime 

T = at when hI = 0.1. 
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F ig. 3.4. The variations Re;/2 Cf for the viscous case. 
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Chapter 4 

Unsteady axisymmetric flow of a 

second grade fluid over a radially 

stretching sheet 

The aim of this chapter is to analyze the flow problem of the previous chapter for 

a second grade fluid. An analyt ic solution by HAM is presented for computing the 

axisymmetric flow indur.ed by a radially stretching sheet . The obtained an alysis is 

valid for all values of rhelogical parameters and time. Also the convergence of the 

solut ion is discussed and the effects of material moduli is highlighted. 

4.1 Mathematical description of the problem 

The geometry of the problem is same as in the previous chapter. The difference lies in the 

considerat ion of the constitutive equation of a second grade fluid. The equations which govern 

the flow are the incompressibility condition in Eq. (3. 1). The constitutive equations for a second 

grade fluid is defined in Eq.(2.2) . The incompressibili ty condition is automatically satisfied and 
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from Eqs.(2.2) and (2.11) we have: 

(
aU au au) p -+u-+w-
at or oz 

(
OW ow Ow) 

P -+u-+w-at or oz 

oj) (02u 02u 1 au u ) --+J.L -+-+----or 01'2 oz2 r 0·/· 1'2 

2 EPu 2 au + 2u2 

:;: arat - ;:2 at -:;::r-
2w au 1 (aU) 2 au a2w 

- -:;:T az -:;: az - az 7fZT 

+wa3u 2u au + au a2u 
~ - ;:2" ar ar a;x 

+al 
+aw a2 w.! (OW)2 + 2w a2u ar 7fZT r ar r araz 

+awa2u + 2aw a2w au a2w ar araz az araz - 8r aTOZ 
a3u a3w 2u a2u 

+u araz2 + w araz2 + r 7fTI 

+2au a2u + au a2w + 2 aw a2w ar 7fTI a z a:;:r aT a:;:r 
2 a3u a3w 2 a3u + w aT2aZ + u aT2aZ + Ua.;:'S 

_ oj) + J.L (02w + 02w + ~ ow) 
oz 01'2 oz2 l' or 

+al 

.! a2u + .! a2w _ .! au aw 
r azat r a,·at ,. oz az 

+ w a2u + 2 au a2u + 2 aw a2w r azr az a;x az 7fZT 
+2wa3w + .! au au + .! aw aw a;:r ,. az ar r f} z ar 
+ aw a2u 1 au aw + u a2u a,· a;x - :;: ar ar :; araz 
awa2u + 2au a2u + wa2w - az araz ar araz r araz 
au a2w a3u 2 a3w + az araz + w araz2 + u araz2 
+au a2u awa2u + u a2w az 7fTI - ar aTI :; a:;:r 

awa2w a3u 
+ az a:;:r + u ar2az 

a3w a3w +w ar2az + ua:;r 

( 4.1) 

(4 .2) 

Note that the above equation reduces to Eqs. (3.2) and (3 .3) of Newtonian fluid when al = O. 

Furthermore, the boundary conditions of the problem are given in Eq.(3.4). 

Upon making use of transformations (3.5) and then eliminating pressure from the resulting 

equations we arrive at 

fiv + 1 - ~ (I" + 17flll) - ~ (1 -~) of" + 2U f'" - 2af r = O. 
2 o~ 

(4.3) 
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The boundary conditions in terms of f are given in (3.9) and 

4.2 

4.2.1 

Solution by HAM 

aa1 
a= J.i 

Zeroth-order deformation problems 

The velocity distribution f (7), 0 can be expressed by the set of base functions of the form 

{Tl~j exp (-nTJ) I k :::: 0, j :::: 0, 11. :::: 0 } ( 4.4) 

in the form of the following series 

00 

f(7) , ~) = L fm(TJ ,O 
m=O 

where 
00 00 00 

fm (TJ,~) = b~:~ + L L L b~~~n17k~j exp (-m7) , (4.5) 
n=Ok=Oj=O 

in wh ir.h b~~~n are coeffi cients. Invoking the tiu-called Rule of solution expressions for f (TJ, 0 and 

Eqs. (4 .3) and (3.9). We h ave chosen the same initial guess as given in Eq. (3 .10) and auxiliary 

linear operator L-1 given in Eq. (3. 11). Equations (4 .3) show that the nonlinear operators here 

IS: 

N2 [1(TJ ,(; p)] 
rfJ (TJ , Cp) + 7)~ (1 - 0 831 (TJ, ~,p) 

8TJ4 2 8TJ3 

+2'-f ( , ) 831 (7) , Cp) + (1 - 0 821 (TJ, ~,p) 
., 7) , ., , P 8773 2 8TJ2 (4.6) 

_, (1 _ ') 831 (7), ~,p) _ 2 -f ( , ) 851 (7), Cp) 
., ., 8~ 87)2 a TJ, ., , P 87)5 . 

If Ii is the auxiliary nonzero parameter then the zero order deformation problem satisfies 

(1 - p) L-1 [1 (TJ , ~ , p) - fo (7)) ] = pli2N 2 [1 (TJ , ~,p) ] , (4.7) 
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For p = 0 and p = 1, we have 

1(17,(,0) = 10(1]), 1(1], (, 1) = 1(1],0· (4.8) 

The initial guesses 10 (1]) approaches 1 (1] ,0 as p varies from 0 to 1. Through Taylor 's series 

expansion we can write 
00 

1 (1],~ , p) = 10 (17) + LIm (17 , 0 pm , (4.9) 
m=1 

where 

f ( C)= ~8m1(1])~ , p)1 
m 1], <, m! 8prn 

p=O 
( 4.10) 

and the convergence of the series (4 .9) depends upon fi2' The values of fi2 are chosen in such a 

way that the series (4 .9) are convergent at p = 1. T hen by using Eq. (4.8) one obtains 

00 

1(1],0=10(1])+ Llm(17 , ~), (4.11) 
m=1 

4.2.2 mth-order deformation problems 

Here we first different iate Eq. (4.7) m times with respect to p then divide by m! and setting 

p = 0 we get 

£2 [1m (1],0 - X"Jm-l (17,0] = fi2Rm2 (17 ,~), ( 4.12) 

subj ect to conditions (3.21) and 

Rm.2 
84 Im- l 1]~ (1 - 0 831m_l (1 - 0 821m_l C ( C) 831m_l 
--=~~ + +-- -<,1-<, --

81]4 2 81]3 2 81]2 8~ 8r,2 
Tn-I 171- 1 

+2~ L Im-l-kl~' - 2a L Im-l-kl~. (4.13) 
k=O k=O 

The general solutions of Eqs. (4.12) subject to (3.21) are 

1m (17 , 0 = 1,~, (1],~) + C1 exp (-1]) + C2 exp (17) + C3 , (4.14) 
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where f,~, (T), 0 are the particular solutions and the constants are determined by the boundary 

conditions (3 .21) which are given by 

C2 = 0, _ af~~, (77,0 I ' 
C} - aT) 1)=0 

C3 = -C} - f,~, (O,~) . (4.15 ) 

The linear non-homogeneous Eqs. (4.9) - (4.13) are solved using MATHEMATICA in the order 

m = 1,2, 3, ... given by the in it ial guess. 

4 .3 Skin Friction 

The shear stress T on the surface of the stretching sheet is 

T = O'"zlz=o' 

and the local skin friction coefficient or frictional drag coefficient is 

T 

Cf = p(ar)2' 

Equation (4.17) can be written as 

Cf = Re;:-~ [if (T),~) + 2a (i (77,~) /' (7] ,~ ) - f (T), 0 if (77,0)] , 

where 

Re,. = a~r2 
l/ 

4.4 Convergence of t he analytic solution 

(4.16) 

( 4.17) 

(4.18) 

As long as a solution series given by the homotopy method converges, it must be one of the 

solution . So, it is important to ensure the convergence of the solut ion series . In this section , 

we discuss the convergence of the series which contains the auxiliary parameter n2. The values 

of n2 determines the convergence region and rate of approximation for the homotopy analysis 

method. T he auxiliary parameter n2 provides us with a simple way to ensure the convergence 
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of the series solution . For this purpose n-curves are sketched in F ig. 4. 1 for two differen t orders 

of approximations. Fig. 4. 1 clearly indicates that the r ange for the admissible values of 1t2 is 

o :::: 1t2 :::: 0.6. Thus, by means of choosing n2 = 0.2, we obtain an accurate analy tic solution 

valid for all time 0 :::: T < 00 in whole region 0 S; TJ < 00 . 

0 

- 1 

- 2 
'-JJ\ 

~ 
-"-. 

- 3 

-4 

-0..2 0. 

_-------------rc-:~-' --,..,.."" 

0.2 
1i 2 

12th order app 

11th order app. 

0.4 0.6 

/ 
,'. 

/ , 

F ig. 4.1. It- curve for different order of approximations when ~ = 0.5 . 

4.5 Results and discussion 

In this section, the influence of dimensionless t ime T and non-Newtonian parameter O! is seen 

on the velocity components. For this purpose, we plotted t he gr aphs 4.2 - 4.5. It is observed 

that when dimensionless time T increases, the r-component of velocity and the boundary layer 

thickness increases. However the z-component of velocity decreases and the boundary layer 

thickness increases with an increase in T . T he behavior of velocity profile for different values 

of second grade parameter O! is displayed in Figs .4.4 and 4.5 . F igure 4.4 indicates that the 

r-component of velocity increases and the boundary layer thickness increases with an increase 

in O! . 
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However the z-component of velocity decreases and layer thickness increases by increasing 

the values of the second grade parameter n. Fig. 4.6 display the effects of skin frictions for 

different order of second grade parameter n. 
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F ig. 4.2. Variations of velocity field / with increasing non-dimensional 

time T . 
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Chapter 5 

Boundary layer flow of an unsteady 

second grade fluid due to a 

stretching sheet 

The unsteady laminar flow of a second grade fluid due to a stretching sheet has been 

investigated in this chapter . The flow is governed by a third order boundary value 

problem whose analytic solution is obtained in terms of non-dimensional second 

grade parameter. Analytic solution valid for all time has been derived by employing 

HAM. Finally, the convergence is developed and influence of various parameters of 

interest is examined. 

5.1 Flow analysis 

Consider the two-dimensional unsteady boundary layer flow of a second grade fluid over a 

stretching sheet placed in the XOZ- plane and moving with a velocity ax in the x-direction, 

a being a constant. The continuity equation (2 .10) and the momentum equations after using 

Eqs. (2 .2) and (2 .11) yields 

au + ov _ 0 
ax Dy - , 

45 

(5. 1) 



au au au _ (a2u a2u) al ):) + u ):) + v):) -'U ):)2+):)2 + ut ux uy ux uy p 

av av av ( a2v a2v) al 
at + u ox + v ay = 'U ax2 + ay2 + p 

5 au a2u + a3u + u a3u ax axr ax2at a;::r 
a3u a3u au a2u +v ax2ay + u ay2ax + ay axay 
au a2u a3u a3u 

+ ax ayx + ay2at + va:? 
(5.2) 

+ au a2v + 2 av a2v ayaxr ax axr 

2 au a2u av a2u a3v 
ayayr + ax ayx + ax2at 
a3v a3v av a2v +ua;::r + v ax2ay + ax axay 

+u a3v + av a2v + 5 av a2v ay2ax aya;;;r ay ayx 
(5 .3) 

a3 v a3v 
+va:? + ay2at 

where 'U is a kinematic viscosity. It is clear that the above equations are different from those 

obtained for a radially stretching sheet in the previous chapter. Under the usual boundary layer 

arguments that u, t, x ~~, ~, be 0 (1) and y, v be 0 (5) yields the flow governed through 

Eqs. (5. 1) - (5.3) as 

au au au a2u a l [ a3u au a2u au a2u a3u a3u ] 
at + u ox + v ay = v ay2 + p u axay2 + ox ay2 + ay axay + v ay3 + ay2at . (5 .4) 

The relevant boundary conditions of the flow are: 

u ax, v = 0 a t y = 0, 

U ----t 0 as y ----t 00 . (5 .5) 

Note that v and ad p being 0 (52) and the terms of order 0 (5) are neglected (where 5 being 

the boundary layer t hickness). 

Introducing 

u = axg' (~, '17) , v = -~g (C '17) , '17 = .f!iy, ~ = 1 - e-at
, (5 .6) 

equations . (5.4) - (5.5) takes the following form 

[ 

{~- a (1 -~)} gill + 17W;t;)gll - e (1 -~) a:; + a (1 - E) { ~ag;' - ~giV} 1 = 0, (5 .7) 

+e ( - g'2 + ggll) + a~ (g1l2 + 2g' gill _ ggW) 
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with the boundary conditions 

9 0, g' = 1 at T} = 0, 

g' ----t ° as T} ----t 00 . (5.8) 

5.2 Exact analytic solution 

The velocity distribution 9 (T} , ~) can be expressed by the set of base functions of the fmm 

{ T}k~j exp (- m7) I k ~ 0, j ~ 0, n ~ ° } (5 .9) 

in the form of the following series 

00 

9 ( T} , 0 = L gm ( T}, 0 
m=O 

where 
00 00 00 

( t) 00 '" '" '" k j k tJ ( ) gm 77 , <" = CO:O + L L L C,';',nT} <" exp -nT} , (5.10) 
n=Ok=Oj=n 

in which c!~~n are coefficients. Invoking the so-called Rule of solution expTessions fm 9 (T}, 0 and 

Eqs. (5.7) and (3.9) we have used the same initial guess and linear operator as in the previous 

chapter. Eq. (5.7) suggests that 

N3 [9 (77 ,~; p) ] 
839 T} 82g 829 

[ {~ - 0:( 1 - O}- + -~ (1 - 0 - - e (1 - ~)-
8773 2 8772 8T}8~ 

849 r j 8g 2 (89) 2 ~829 
+0:(1-~){~-----}+~ {- - + g-} + 

8773 8~ 2 8T}4 8T} 8772 

( 
82~) 2 8~ 83~ 84~ 9 9 9 ~ 9 

o:~ { 8 2 + 2 -8 8 3 - 9 8 4}]' 77 77 77 77 
(5.11) 

Let 1t3 is an auxiliary nonzero parameter the zero-mder deformation equation 

(1 - p) £1 [9(T} , ~;p) - go (T} , 0] = plt3N 3 [g(T} ,~; p)] , (5. 12) 
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is subject to the following boundary conditions 

~( fT( 9 O ,~; p) = 0, 9 T},~;p) 
[h i 1,)=0= 1, og(T},~;p) 1')=+00= O. 

OT} 
(5.13) 

As p increases from 0 to 1, g(T},~;p) varies from the initial guess go (17,0 to the solution 

g(T},O. For P = 0 and p = 1, one can write 

g(17,~;0) =go (T},~), g(17 ,~; 1 ) =9(77 ,0 · 

According to Taylor 's ser ies 

+00 
g( 77 ,~; P)=g(T} , ~ ; 0)+ Lgm(T} ,O pm , 

m=l 

where 

1 Omg(17,~;p)1 
gm (17, ° = m ! opm p=o' 

converges at p = l. Then, we have 

+00 
g(T},~) =9(77,0+ l::.Qn(T} ,C). 

n=l 

mth-order deformation equations 

L1 [9m (T},~) - Xm9m-1 (T},Ol = n3R m3 (T},O , 

subject to the boundary conditions 

gm (O , ~;p) = 0, 09m (T}, ~;p) 1,)=0= 0, 
017 
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09m(17,~;P) 1'1=+00= 0, 
017 

(5. 14) 

(5.15 ) 

(5.16) 

(5. 17) 

(5. 18) 

(5 .19) 



where 

R rn3 (1] ,0 [ {~ _ a (1 - O} 8
3
grn_1 + ?l ~ (1 - ~) 82g11~_ 1 _ e (1 _~) 8 2

gm_1 

8'1/3 2 8'T}2 8778f, 
4 4 m-I rn-I 

8 gm-I 'T} 8 gm-I 2 '" /I /I '" /I } +a (1 - 0 {~ 81]38~ - 2: 81]4 } + ~ {- 0 gm- I - kgk + 0 gm-I - kgk + 
k=O k=O 

m-I m- I m-I 

a~ {L g~t-I-kg~ + 2 L g:n- I-kg;;' L gm-I-k9~/I }]. (5.20) 
k=O k=O k=O 

The general solu tions of Eqs. (5. 18) subj ected to (5. 19 ) are 

gm (1] ,~ ) = g:n, (1] ,0 + CI exp (-1]) + C2 exp (1]) + C3, (5 .21) 

where g;t (1],0 are the particular solutions and the constants are determined by the boundary 

conditions (3.21) which are given by 

C2 = 0, 
8 * ( C

I 
= gm'T},OI 

877 ' 1)=0 
C3 = - CI - g~t (0,0 · (5 .22) 

The linear non-homogeneous Eqs. (5.18) - (5.20) are solved using MATHEMATICA in the 

order m = 1, 2, 3, ". given by the ini tial guess 

5.3 Skin Friction 

The shear stress T w on the surface of stretching sheet is 

Tw=rJxyly= o , 

and the local skin fr iction coefficient or frict ional drag is 

or 

Cg=~ 
p (ax)2' 

! /I 1 - ~ ( I III) 8g" I /I /II 

Rei Cg = 9 - a{ ~ 9 - 779 + (1 - 0 8f, + 3g 9 - gg } 11)=0, 
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where 

Rex = a~X2 
L/ . 

5.4 Convergence 

In this section, we discuss the convergence of the series which contains the auxiliary parameter 

1t3.The values of 1t3 determine the convergence region and rate of approximation for the homo­

topy analysis method. The It-curves are sketched in Fig. 5.1 for 10th-order of approximation. 

Fig. 5. 1 clearly indicates that the r ange for the admissible values of 113 is -2 S; 1t3 S; - 0. 5. 

By means of choosing 113 - l.0 , we obtain an accurate analytic solution valid for aU time 

o S; T < 00 in whole region 0 S; 'T) < 00. 

0, , 

- 0.2 10th order app] 

-0.4 

,-. -0.6 
'J,J , 

,~ - 0.8 
''*- ---- ~ 

-1 

-1.2 

-1.4~ 

-2.5 -2 -1 .5 -1 -0.5 o 0.5 
h 3 

Fig. 5. l. It-curve for 10th order of approximation when ~ = 0. 5. 

5.5 Results and discussion 

This section explains the variations of dimensionless time T and the second grade fluid parameter 

ex on the velocity components and skin friction coefficient . Such variations have been discussed 

through Figs. 5.2 - 5.8. The purpose of Figs. 5.2 - 5.5 is to see the variations of T on the 
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velocity components f and .f' in the Newtonian and second grade cases. From these figures it 

is noted that when T increases the x-component of velocity and the boundary layer thickness 

increases for Newtonian and second grade fluids but the variation is large in magnitude in 

the case of second grade fluid case. This shows that the parameter a enhances the effects 

of the dimensionless time . However the y-component of velocity decreases and boundary layer 

thickness increases with an increase in T for Newtonian and second grade fluids as shown in F igs. 

5.3 - 5.5. In order to see the effects of second grade parameter a on the velocity components f 

and .f' , Figs . 5.6 and 5.7 are prepared . From these Figs . it is obvious that when we increase the 

values of second grade parameter a, the x component of velocity and boundary layer thickness 

increases. However t he y component of velocity increases and the boundary layer thickness 

decreases. Fig. 5.8 is p lotted just to see t he variation of skin fri ction coefficient under the 

influence of second grade parameter and the dimensionless time. This Fig. elu cidates that the 

magnitude of skin friction coeffi cient decreases with an increase in the second grade parameter. 

NeVl10nian FIUid(a = 0.0) 

1 

0.8 \~ 
11\' 

F~ I ....... T = ~ ~~ I 
---- T = 0.25 

~ 0..6 
"J. 
;::. 
~ 

"- 0..4 

0..2 

\\~\ 
" \ \~ 
'I\\~ 
~ \ " 
~ \ \ \.'\. 
'. \ " " \ ... ' ''' \ ," 

'- , ' " ......... '... "" ........ ""'" -- -..... ,... '" --- --- . ===~ G~! ______ ~ ____ ~ ________ _ 
o 1 2 3 

1 
Jlf2 

T = 0.50. 
T = 1.0.0. 
T=10.G 

===-

4 5 

F ig. 5.2. The velocity profile .f' (7] , 0 at different dimensionless time T . 
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Newtonian Fluid (a: = 0.0) 

.. -'*- ".,. - - • ~. ~ --..=..-- - - - -
1 ~ I /,/,.",;""" - - -- - - ~ ~-, / ".. ----I" / /' -

" I /,/ -0.8 ~ I .' I I /' 

~ t I it'll / / 'J~, 0. 6 , I / a 0.1 - ,/ - T = 
,2 0..4 l~:~ ----- :: g:;g 

02 f ,"11 
T = 0.50. 
T = 1.0.0. 

aL T = 10.0. 

a 1 2 3 4 5 
. 1 

Il~7 

Fig. 5.3. The velocity profile f (7] , 0 at different dimensionless t ime T. 

Non-NewtonianFluici((y. = 05) 

1 [~ \\ 
0.8 l\\\' 

l\ \\\ 

I
' \ _~0 6 ',\\\ \ 

':t \ \ \ \ - \ \ 

\ \ \ ,,"-
'- \" '" 
, '" ......... " " -.....'- ----',,, "' ........ - --""" " " - - :::- --=- "=' .:=:::- --............. _----

0.2 

o 
o 1 2 3 

11~t 

7 = 0.01 11 
7 = 010 
7 = 025 
7 = 050 
7 = 1.00 
T = 10.0 

4 5 

Fig. 5.4 . The velocity profile f' (17 , 0 at different dimensionless time T. 
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Non- Newtonian Fluicl ( t" = 0.5) 
-d __ ~ __ " ... _ :~;.. ~ :_ 

, " """'.,,, ..-- ---" ." ..; "",. .",-" // /',/' /' 
o.. 8~ " / / / /' 

/ I // 

C' 06 t(J~ / .J..! . I / / 
T = 0.0.1 '"'- I 

~ 0. 4 jl/I T = 0. 10. . "I! T = 0.25 I, 'I 
I' T = 0.50. 02 fr T = 1.0.0. 

o. ~ 
T = 10..0. 

0. 1 2 3 4 5 
Itt 

Fig. 5.5. The velocity profile f ('T) , 0 at different dimensionless time T. 

T = 0..5 

-(t = 0..0. 
-------- 0 : = 0..2 

---- Q' = 0..4 

~ 0..6 - - - Q' = 0..6 
'J..! . 
:::-

"- 0.4 ~ 

0.2 

0. 

~" 
"1.,~ 

""'-
. "~,~ ";::.:::- -

'--'.'~-': .... 
........ 
0. 1 2 3 4 5 

If.~ 

Fig. 5.6. The velocity profiles l' ('T), 0 at different values of second 

grade parameter D! . 
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T = 0.5 
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11f'Z 

3 

- 0·= 0.0 
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Fig. 5.7. The velocity profiles f ('T}, 0 at different values of second 

-061 
-0.8 

U-
N 
:;.:.:; -1 
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ct -1.2 

grade parameter C\:. 

----I ~-

- - - - - - - - - - -l --------------- 1 
J / /' 
/ ~~~-~------------/ ,t' - - - - --

, 
f 

I 
I 

f • 

I =--
-Q::-v. O 

-----.-. (I: = 0.2 
-1.4 ---- 0:=0.4 

--- Q, =0.6 

o 1 2 3 4 5 
T 

Fig. 5.S. The variationt Re~/2 Cf for different values C\: at different 

dimensionless time T. 
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Chapter 6 

Unsteady MHD axisymmetric flow 

and heat transfer of a viscous fluid 

over a radially stretching sheet in a 

porous medium 

This chapter describe the fu lly developed unsteady flow and heat t ransfer charac­

teristics of a viscous fluid over a radially stretching sheet. The fluid is electrically 

conducting and occupies the porous space. The heat transfer analysis has been car­

ried out for the two heating processes, (i) prescribed surface temperature (PST-case) 

and (ii) prescribed surface heat flux (PHF-case). The analytic convergent solution 

of the governing non-linear partial differential equations is computed through HAM. 

Analytical expressions for velocity and temperature are first constructed and then 

shown graphically. The numerical values for the skin fri ction coefficient is presented 

in tabular form. Attention has been given to see the variations of the emerging 

parameters on the velocity and temperature distributions. 
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6.1 Flow equations 

Consider an axially stretching boundary for which the lateral surface velocity is proportional 

to the distance l' i.e. ar, a being the constant of proportionality. The fluid fills the porous 

space z > O. The fluid is electrically conducting in the presence of uniform applied magnetic 

field (O,Bo, 0). The induced magnetic field is assumed negligible under the assumption of small 

magnetic Reynolds number. Besides this no electric field is applied and the effect of polarization 

of the ionized fluid is neglec ted. T he governing equations under these assumptions are 

OU ou ou 
- + u- +w­
ot or OZ 

ow ow ow 
-+u-+w­
ot or OZ 

and the energy equation 

_ ~ oj] + 1.1 [o2u + 02u + ~ ou _ ~] 
p or or2 oz2 r or 1'2 

O"Bg 1.IcP 
- --u - -u 

p k 

1 oj] [02w o2w 1 0U ] 
- P oz + 1.1 oz2 + 01'2 + ~ OT 

O"Bg 1.I cP 
---w- -w 

p k ' 

(
OT oT OT) 

cp at + U or + w OZ 
ko (o2T o2T 10T) - -+-+--P or2 oz2 r OT 

( 

2u2 (au )2 ) ? + az 
+1.1 +2 (~~) 2 + 2 (~~ ) 2 . 

+2 BuBw + 2 (Bw ) 2 
Bz Br Br 

(6 .1) 

(6.2) 

(6.3) 

In above equations, U and ware the velocities in the 1'- and z- directions respectively, T is 

the temperature, 0" is the electrical conductivity of fluid , p is the density, II is the kinematic 

viscosity, cP is the porosity, k is the permeability, ko is the thermal conductivity, cp is the specific 

heat and a is the stretching rate. The appropriate boundary conditions for flow analysis are 

given in Eq.(3.4) . For temperature we h ave the following two sets of boundary conditions. 
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For PST case 

T = Tw = TCXJ + A (y) 2 at z = 0, T -t TCXJ as z -t 00 . (6.4) 

For PHF case 

aT (1') 2 - k az = qw = D I at z = 0, T -t TCXJ as z -t 00 . (6.5) 

in which A and D are constants. Introducing 

u = a1'f'(1] ,O , w=-2JalJU(1] , ~), 

~ I!z - z, 1 - e-
r 

1] = lJ~ T = at , (6 .6) 

0(17 ,0 
T - TCXJ 

9 (~ , 17) = 'T'w - TCXJ' 

and 

(1')2 T TCXJ+ A I 0(~ , 17) for PST case, 

T TCXJ + ~ (T) 2{fg (~, 77) for PEF case, It:! ,..,.\ 
\y.l) 

equations (6. 1) - (6.7) become 

fiV + 1] (1 - 0 f'" + 2U f" + (1 - ~) f" - ~ (1 -~) of" - (K + 1VJ2) U" = O. (6.8) 
2 2 ~ 

PST case: 

2 aE.. 8 2 = O. (6.9) 
[ 

~O" + Pr ~ (1-~) {'l01 - ~ao } + 4e 0 + 2Pre (fO' - f'0) 1 
+ Pr E ( U"2 + ~ f' 2 ) 

PHF case: 

2 aE.. 8 - 0 (6 10) 
[ 

~g" -I Pr~ (1 - 0 { 'lgl - ~£2. } + 4E,,2 9 + 2Pr e (fg' - f'g) 1 
+ Pr E ( ~ f"2 + If f12) - , . 
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where 

6 

E 

1 (0,0 

1' (00,0 

ar2 

v 

a212 

cpA 

0, l' (0 ,0 = 8 (O ,~) = 1 = - g' (0,0, 

8(00,0 = g(oo , ~) = 0, 

Pr = /-l Cp J( _ ¢ /J 2 a B6 
k ' - k ' NI = --"a pa ' 

(PST-case), E = koa
2
1
2 
~ 

D cp V-;; (PHF -case). 

(6.11) 

(6 .12) 

In the next section, we are going to find the analytic solution. The non-linear partial 

differential equation (6.1) governing the flow has to be solved subj ect to the boundary condi t ions 

(3.4) by the homotopy analysis method (HAM). 

6.2 HAM solutions 

The velocity and temperature distributions 1 (77 , 0 , 8 (77 , 0 and g (77,0 can be expressed by the 

set of base funct ions of the form 

{ rlf,j exp (-77.77)1 k ::::: O, j ::::: 0, n ::::: O} (6 .13) 

in the form of t he following series 

00 

1 (7] , 0 = L 1m (77 ,~ ) 
111=0 

00 

8(7] , 0 = L8m (77 , ~) 
m = O 

00 

g(7] , ~)= Lgm(7] ,O 
m = O 
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where 

00 00 00 

fm("7 ,O d O'O + '" '" '" dk,j k d ( ) 0,0 L...t L...t L...t m,n"7 <, exp - n17 , 
n=Ok=Oj=O 

00 00 00 

em ("7 , 0 "''''''' Ie ,j kd ( ) L...t L...t L...t em ,n"7 <, exp - nrl , 
n=Ok=Oj=O 

00 00 00 

gm("7,() L L L h':;.~n1l(j exp (-n"7), (6.14) 
n=O /,=0 j = O 

. h· 1 lk j k j d I k j h £Ii . In w IC 1 G ~,n, el1~,n an 111~ ,n are t e coe clents. Invoking t he so-called Rule of solution 

expressions for f(1) ,(), e(17 ,O and g("7 ,() and Eqs. (6.8) - (6. 10) for the velocity we have 

the same in it ial guess and linear operator as in chapter 3. Whereas eo (-'7), go (17) and linear 

operators £2 are 

eo (17) = exp (-17) , go (1)) = exp (-77), (6.15) 

£ 2 (e) = e" - e , (6. 16) 

where 

£2 [C4 exp (-17) + C5 exp ("7)] = 0, (6.17) 

and C4 and C5 are the constants . Equations (6 .8) - (6.10) show that the nonlinear operators 

are: 

N4 [1 (1) , (;p) ] 
84](1),(;p) + 17((1-0831(17,(;P) 

8"74 2 8"73 + 
20 (17,(;P) 8

3
1 ("7,(;p) + (1 - 0 8

2
] ("7,(;]]) 

8773 2 8172 

_ (K + M2) (8
21 ("7 ,(;]]) _ ((1 - 0 831 (1) ,(; p) 

8172 8(81P , 
(6. 18) 
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N5 [1 (17,~; p) ,e (1) ,~; p)] 

N6 [1(17 , ~;P) , :9(17,~;P) ] 

- II 4e-
~8 (1] , ~;p) + T 8 (r, ,(; p) 

+ Pr~ (1 -~) { ~e' (1], ~;p) _ ~oe (~~~;p) } 

+2Pre (1(1] ,~ ; p)e' (17 , ~;P) - 1(17,~ ;p)e(1],~;p)) 

( 
-112 12e -12 ) 

+PrE U (1] ,(; P)+-8-1 (1] ,~; p) , 

- II ( C ) 4e -( ) ~g 17 , .,,;p + T g 1) , ~;p 

+ P r ~ (1 - ~) { ~:9' (1] , ~; p) _ ~ 0:9 ( ~/ ; p) } 

+2 Pr e (1 (1] , ~ ; p):9' (17 , ~ ; p) -1 (1] , ~; p):9 (1] , ~; p)) 

( 
-112 12e -12 ) 

+ PrE U (1] ,(; p) + -8-1 (1] ,(; p) . 

(6.19) 

(6.20) 

Letting n4, n5 as the non-zero auxiliary parameters , the zeroth order deformation problems are 

(l-P)£l [1(1] ,C p) - 10(1))] =pn4N 4 [1(17 , ~,P) ] , (6.21) 

(1 \ f" rfi' ( ,. ) fl ('] - ', r r -;; , . , -8 ( C ). ] 
\1. -P) J....,2ll7~1) ,<;;, '}J -00 ''7) =pn5jV 5 lJ~1],~,P) , 1] ,.",P , (6 .22) 

(1 - p) £2 [:9 (1], ~ , p) - go (1)) 1 = pn5N6 [1 (1], ~, p) , :9 ( 1], ~, p)] , (6 .23) 

1(0,~,p) 

T(co,~, p) 

- ( - - I 
0, 1 (0 , ~,p) = 8 (0, ~, p) = 1 = -g (0 , ~,p) 

0, 8( oo ,~,p) = :9( oo, ~ , p) = 0, 

where p (E [0, 1]) is an embedding parameter. When for ]J = 0 and p = 1, we h ave 

1(17,C O) = 10(1]), 1(1] ,~, 1)=1(1],~) , 

e(17,C O) 80 (1]), e(1],~ , 1) = 8(17,~), 

:9(1),C O) go (1)) , :9 ( 1], ~ , 1) = g (1), 0 . 
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The initial guesses fo (T) ), eo (T/) and go (7/) approach f ('17 ,0 , e (77,0 and 9 (T), 0, respectively, 

as p varies from 0 to 1. By Taylor 's series expansion: 

00 

7(77,~,P) fo (77) + L fm (77,0 pm, 
m=1 

00 

(j(T/ ,~,p) eo (T)) + L em ('17 ,0 pm, 
m=1 

00 

g ('17, ~,p) go (77) + L gm (77,~) pm, (6.26) 
m=l 

where 

fm (T) , 0 = 
~ 8m7(T/ ,~,p) 1 
m ! 8pm ' p=o 

, 

em (77 , 0 
~ 8me(T/,C p) 

= 
m! 8pm 

Ip=O 

gm ('17 ,0 1 8
mg ( ~ ) I _ T/, , p 

m ! 8pm ' 
(6 .27) 

p=O 

and the convergence of the series (6.26) depends upon the values of the parameters li4 and li5 · 

T he values of /14 and li5 are chosen in such a way that the series (6.26) are convergent at p = 1. 

Then by using Eq. (6.25) one obtains 

00 

f(T),O fo ('17) + L fm (77 ,0, 
m=l 

00 

e(T} ,O eo (T)) + L em (T),~) , 
m=1 

00 

9 (T) , 0 go (T) ) + L gm (T),~) . (6.28) 
m= 1 

6.2.1 mth-order deformation problems 

Here we first differentiating Eqs. (6.21) - (6 .23) m times with respect to p then dividing by m ! 

and setting p = 0 we ge t 

£1 [1m ('17,0 - Xmfm-1 ('17 ,0] = li4R m4 ('17 ,0, (6.29) 
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£ 2 [em (TJ , O - Xm em- l (TJ , ~)l = n5R m5 (TJ , O , (6.30) 

£2 [gm (77,0 - Xmgm-l (TJ,~)l = n5R m6 (TJ,O, (6 .31) 

fm (0,0 = f:n (O,~) = f:'" (00,0 = em (O,~) = em (oo,~) = g'm ( O ,~) = g7n (00,0 = 0, (6.32) 

whence 

R m4 (77,~) 

Rm5 (77,0 

Rm6 (77 ,~) 

0 4 fm - l TJ~ (1 - ~) 0 3 f~'- l (1 - 0 0 2 fm - l 
-----=-----;-- + + -----=-~ 

8r,4 2 or,3 2 0772 

!O:l2 !O:l3 j' 7,,-1 

( 
2) u fm-l u m-1 ~ f "' 

- K + M ~ .;::) 2 - ~ (1 - 0 8 Co 2 + 2K: 6 fm - l -k k , 
TJ " TJ k=O 

C82em-l ~c2e 
" 8772 + 6" m-l 

+ Pr ~(1-0 ['2 oem_ 1 _~8em-l] 
2 877 8~ 

2P ' [~f Oek - 7~ 8fm-l-k e 1 + I 6 m- l-k 8 6 8 k 
k=O TJ k=O TJ 

r
m - 1 .;::)2 !O:l2 2 m-l !O:l .;::) 1 + Pr L U fm-l-k U fk _ 1 2~ L Ufm- l -k Ufk 

On2 on2 6 (7) on' 
L k=O . . k=U . J 

c82gm-l 4c2 
" 8TJ2 + b" gm- l 

+ Pr~ (1 - 0 ['2 8gm- 1 _ ~8gm-l ] 
2 (7) 8~ 

2P ' [~f ogk - ~ 8fm-1-k 1 + I 6 m-l - k 8 6 0 gk 
k=O TJ k=O TJ 

[

m-l .;::)2 !O:l2 2 7n-l !O:l 1 + PI' L U fm - l - k U fk _ 1 2~ L Ofm-l -k uik 
(7)2 0772 6 8TJ 077 ' 

k=O k=O 

_ {o, m :::; I , 
Xm -

1, m > 1. 
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":1 

Ii 

The general solu tions of Eqs. (6.29) - (6 .36) can be written as 

fm(T/ ,O 

em(T/ ,~) 

gm (T/ ,~) 

f:, (T/ ,O + C1 exp (-T/) + C2 exP (T/) + C3, 

e~, (T/,~) + C4 exp (-17) + C5 exp (17) , 

g~, (17,0 + C4 exp (-T/) + C5 exp (T/), (6.37) 

in which r:" (-,/, 0, e~, (T/ , 0 and g~, (17 , 0 are the particular solutions and the constants are 

determined by the boundary conditions (6 .32) which are given by 

C2 C5 = 0, C
1 

= or:" (T/, 0 I 
017 ' 7)=0 

C3 = -C1 - f,*" (0 ,0 , 

C4 - e~, (0,0 (PST-case), _ og~, (17,0 I (PHF-case). 
C

4 
- 01'/ '7=0 

(6.38) 

In the next section, the linear non-homogeneous Eqs. (6.29) - (6.36) are solved using MATH­

EMATICA in the order m = 1, 2, 3, ... 

6.3 Convergence of the HAM solution 

The explicit , Clualytic expressions of axisymmetric flow and heat transfer analysis contains 

two auxiliary parameters h4 and h5 respectively. The convergence region and the rate of ap­

proximation given by HAM are strongly dependent upon these auxiliary parameters. In Figs. 

6 .1 (a) - 6.1 (c) , it is clear that the range for admissible values for h4 and h5 are 0 < h4 < 0.6 

and - 1 < h 5 < O. The series converges in the whole region of T/ when h4 = 0.1 and h 5 = - 0.75 

for both the prescribed smface heat flux (PHF case) and the prescribed surface temperature 

(PST case). It is also observed that the series f (T/ , ~) converges faster than that of e (T/ , 0 and 

9 (T/, 0 because of the fact that the non-linearity in the later case is stronger than the former. 

Thus, by means of choosing auxiliary parameters h4 and h5, we obtain an accmate analytic 
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solution valid for all time 0 -:::; T < in the whole region 0 -:::; 7/ < CXJ. 
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2 

0 . 
c:i 0. 
" 'h. 

-2 

-4 
L 

-0..2 

Fig. 6.1 (a). Flow analysis 
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I 
I 
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0.6 

Fig. 6 .1 (a) h-curve for the non-dimensional velocity when ~ = 0. 5. 
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Fig. 6.1 (b). PST case 
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Fig. 6 .1 (b) h-curve for the non-dimensional temperature B. 
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F ig. 6.1 (c). PHF case 
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Fig. 6.1 (c) h-curve for the non-dimensional temperature g . 
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6.4 Results and discussion 

In this section, attention has been focused on the variations of emerging parameters such as 

velocity profile for different values of time T, Prandtl number PI' , Eckert number E and effects of 

porosity parameter k and the Hartmann number M. The behavior of velocity profile for different 

values of time T is displayed in Figs. 6.2 and 6.3. Fig. 6.2 indicates that the T-component of 

velocity increases and also the boundary layer thickness increases with an increase in t ime T . 

However the z-component of velocity decreases and layer thickness increases wit h an increase 

in T as shown in Fig. 6.3. It also depicts that the solution is valid for all times. The values of 

skin fri ction coefficient are tabulated in Table 6.1. It is found that magnitude of skin fri ction 

increases with an increase in time T. The influences of porosity parameter k and Hartmann 

number JvI are similar to T on 1 and opposite to T on I' (see Figs. 6.5 - 6.7) . 

.! 
T GfRei 

0.01 - 0.558759 

0.10 -0.671632 

0.25 -0.734321 

0.50 -0.840094 

1.00 -0.926639 

10.0 - 0.958742 

1 

Table 6.1. Skin friction coefficient G f Re; for different values of time. 
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F ig . 6. 2. T he velocity profile j' ( 7] , ~ ) a t various non-dimensional time T . 
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Fig. 6.3. T he velocity profile f (77, 0 at various non-dim ensional time T. 
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F ig. 6.4. Influence of porosity parameter on the velocity field f'. 
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F ig. 6.5. Influence of porosity parameter on the velocity fi eld f. 
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Figs . 6,6, Influence of Hartmann number on the velocity field f'. 
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Figs. 6.7. Influence of Hartmann number on the velocity field f. 

The graphs for different values of Pr, E , k , N1 and T on the temperature are displayed in 

Figures 6.8 - 6,17. In these Figures, the temperature g('r/,O and e('r/ ,O corresponds to the 

prescribed surface heat flux (PHF-case) and prescribed surface temperature (PST-case) 
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respectively. 

The variations of Prandtl number PI' on temperature profiles are displayed in Figs. 6.8 

and 6.9. These Figs. indicate that an increase in PI' in the both cases the temperature decreases 

but the thermal boundary layer thickness increases . The influence of t he Eckert number E on 

the temperature distribution are shown in Figs . 6.10 and 6.11. From these Figs . it is clear 

that the temperature and the thermal boundary layer t hickness increases in both cases . The 

varia tions of porosity parameter k and Har tmann number J..if are displayed in Figs. 6.12 - 6.15. 

From these Figs. it is noted that in both cases the temperature and the boundary layer thickness 

increases with an increase in k and !VI respectively. It is also observed that the effec ts of Pr are 

quite opposite to that of dimensionless time T whereas the effects of Eckert number E, porosity 

parameter k and Hartmann number M are similar to T and opposite to Pl'. The temperature 

profile for both PST and PHF cases are plotted in Figs. 6.16 and 6.17 in order to see the 

variations of dimensionless time T. It can be easily seen from these Figs. that if we increase 

dimensionless time T the temperature and the thermal boundary layer thickness increases. 

0.8 

0.6 -
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Fig. 6.8 (PST-case) 
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Fig. 6.8. The temperature profile e (17 , 0 for various values of Pl'. 
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Fig. 6.9 (PI-IF-case) 
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F ig. 6.9. The temperature profile 9 (T),~) for various values of P I'. 

Fig. 6.10 (PST-case) 
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Fig. 6. 10. The temperature profile 8(T) ,O for various values of E, 

71 



1.5 

1.25 

Gj. 
1 

-::. 

'§; 0..75 

0..5 

0..25 

0. 
0. 

Fig. 6.11 (PHF-case) 
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Fig. 6.11 . The temperature profile g ("I, 0 for various values of E. 

Fig. 6.12 (PST-case) 
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Fig. 6.1 2. The temperature profile e ("1,(;) for various v~lues of k. 
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Fig. 6.13. The temperature profile g('T) ,O for various values of k. 

1 

0.8 

~. 0.6 
)"JJ ~ 

;:::. 

<:r; 0.4 

0.2 

0 
L...o.. 

0 1 

F ig. 6. 14 (PST-case) 

E ;;;; 0. 2, K = 1. Pr = 1 0, 7 = 0. 5 

2 
, d }::. 

3 

- M=OO 

....... M = 1.0 

--- - M = 2.0 

- - - M = 3.0 

4 5 

Fig. 6.14. T he temperature profile 8 ('T) ,O for various values of M. 
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Fig. 6.15. The temperature profile 9(17,O for various values of M. 
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Fig. 6.16 . The temperature profile 8 (1] , 0 for various values of T. 
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F ig. 6.17. The temperature profile 9 (77 , 0 for various values of T . 
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Chapter 7 

Heat transfer analysis of unsteady 

axisymmetric flow of a second grade 

fluid over a radially stretching sheet 

This chapter investigates the heat transfer analysis for the flow problem considered 

in chap ter 4. In section 7.1 t he equation for the heat transfer analysis of an unsteady 

axisymmetric flow of a second grade fluid is given. The heat transfer analysis has 

been analyzed for the two heating processes, namely (i) with prescribed surface 

temperature (PST -case) and (ii) prescribed surface heat flux (PHF -case). T he 

convergent series solut ions are constructed in both cases and discussed for the sundry 

parameters in the temperature distribution. 
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7.1 Heat transfer analysis 

The energy equation, corresponding to the unsteady axisymmetric flow of a second grade fluid 

is given by 

(

cPT a2T ) {( 8U ) 2 + 2 ( 8V ) 2 + ( 8v)2 } k _+_ + /-i 8y 8y 8x 

ax
2 

ay2 +2 ( 8u ) 2 + 28u 8v 
8x 8y 8x 

(
aT aT aT ) 

PCp - +u- +v-
at ax ay 

8y 8y8t + 8y ay8t 8y a:;r 8x 8y8t 

+O! +v 8v a2 u + 28u a2u + 8u 82 v 

r 

8u a2 u 2 8v 82 v + 2v 8v 82 v + 8v 82 u 

1 8x a:;r 8x 8x8t 8y 8x8t 

+8v 82 v + u8u 82 u + v8u82u 
8x 8x8t ay 8x8y 8y a:;r 

For t he appropriate boundary conditions we consider two heat ing processes . 

7.1.1 The prescribed surface temperature (PST case) 

From Eqs. (7.1) and (6.4) - (6 .7) , we get 

~e" + Pr~(l-~) { ~e' - ~g~ } + 4fe + 2Pre (fe' - 1'e) 

+ Pr E ,U"2 + 12t 1'2) + PI' EO! ':, ; , ':, _- ! j j , I ( 
( 

I:j'j"2 2l:jjlj"' 24~2 j ., II \ 

- (1 - 0 t ¥ l' f" + ~ f"4 + ~ f" f'" J ) 

7.1.2 The prescribed surface heat flux (PHF case) 

(7.1) 

= O. (7.2) 

In this case the governing equation for temperature through Eqs. (7.1 ) and (6.4) - (6.7) is 

writ ten as 

r 

~ gil + Pr E (1 - 0 { ~ g' - ~ ~~ } + 4f 9 + 2 PI' e (j g' - l' g) 

+ PI' E U"2 + 1 2~ 1'2 + Pr EO! 8 2 ( U' f"2 - 2U f" f'" - 24e j l' f" ) 
( 8 ) _ (1 - 0 { ~ j' f" + V"2 + ~ f" f'" } 

1 ~ O. (7.3) 

The non-linear equations (4.3) , (7.2) and (7.3) has to be solved subj ect to the conditions 

(3 .9) and (6. 11) by HAM in the next section. 
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7.2 HAM solution 

The velocity field has already been computed in chapter 4. The temperature distributions 

e (17,0, g (1] , 0 can be expressed in terms of set of base functions of the form 

{ 1]k~j exp (-17.1])1 k 2: O, j 2: 0,17. 2: O} , (7.4) 

can be expressed through the following series 

(Xl 

e(17 ,O = L em (17,O 
m=O 

(Xl 

g (1),~) = L gm (1],~) 
m=O 

whence 

(Xl (Xl (Xl 

em (17,0 L L L a~;t. ,n17k~j exp (-17.1]) , 
n=Ok=Oj=O 

(Xl (Xl (Xl 

gm (17,0 L L L a;;t.,n 17k ~j exp ( - n17) , (7.5) 
n=Ok=Oj=O 

in which a~;~,n and a;;t.,n are the coefficients. Invoking the so-called Rule of solution expTessions 

for f (1),0, e (1),0 and g (1),0 and Eqs. (4.3), (7.2) and (7.3) we have the same ini tial guesses 

and linear operators as in previous chapter and 

N7 [e (1) ,~; p) ,1 (1],~; p)] = 

Ns [g(1), ~; p),1(1],Cp)] = 

~el/ + Pr ~ (1 - 0 He' - ~g~} +:!fe + 2 Pre (te' - 1'e) 
+ PI' E (~]"2 + 12l2 ]"2) + PI' Eet{ ~ 17//2 - 2~ f /7111 

- 2~e f /]" 

(1 - 0 [1] ¥17// + ~]"2 + ~]"1111]) 
(7.6) 

r 

(f/' + Pr~ (1 - 0 Hg' - ~~} + :!fg + 2 Pr e (1g' - 1'g) 
+PrE (01/2 + 12,t-2]"2) +PrEet{~1']"2 - 2u/7111 - 2~f,2 f/1// 

(1 - ~) h 6l1']" + ~]"2 + ~],,1'//]} 
(7.7) 
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If h is the auxiliary nonzero parameter then the zero order deforma tion problem satisfies 

(l - p)£2 [e(7],~,p) - 80(77)] = pn7N 7 [7(7] ,Cp) , e(77'Cp)] , 

(1 - p) £ 2 [g (7], ~,p) - go (7]) 1 = pn7N S [7 (77, ~,p) , g (77, C p) J, 

e (0, ~,p) 

e (00, ~,p) 

1 = -g' (O,~,p), 

g(OO, ~,p) = 0, 

where p (E [0, 1]) is an embedding parameter. For p = 0 and p = 1, we have 

8(7] , ~,0) 

g(rJ ,CO) 

80 (7]) , e(7] ,C l) = 8(7] , O· 

go (7]) , g(7],~, I ) = g(7] ,O· 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

The initial guesses 80 (7]) and go (7]) approach 8 (7],0 and g (7],0 respectively, as p varies from 

o to 1. By Taylor 's series expansion 

e (7), Cp) 

g (7], ~ , p) 

8m (7] ,0 

00 

80 (7]) + L 8m (7],0 pm , 
m=1 

00 

go (7]) + L gm (7], 0 pm, 
m=1 

1 8m e(7],Cp) 
m! 

p=o 

gm(7] ,O .2.-8mg(7],~,p)1 
m ! 8pm ' p=o 

(7.12) 

(7. 13) 

and the convergence of the series (7.12) depends upon h2 and h7 . The values of h2 and n7 are 

chosen in such a way that the series (7.12) are convergent at p = 1. Then by using Eq. (7. 11 ) 
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one obtains 

CXl 

8 (T), 0 80 (T)) + L 8m (T),O, 
m=l 

CXl 

9(T),O 90 (T)) + L 9m (T) , 0 . (7. 14) 
7n=1 

7.2 .1 mth-order deformation problems 

Here we have 

£ 2 [8m (T) ,~) - Xm8m-1 (T) , ~)] = n 7R m 7 (17 ,~), (7.15) 

£ 2 [9m (T) ,O - Xm9m-1 (17 , ~)] = n 7R mB (T) ,~ ) , (7.16) 

8m (o ,~) = 8m ( oo,~ ) = 9'", (0,0 = 9m ( OO,~) = 0, (7.17) 

(f/' + P I' ~ (1 - 0 {l~ e' - ~ ~~} + 4f e + 2 PI' e (t 8' - J'e) 
Rm7 (T),~) = +PrE (~]"2 + 12",e]"2) + PI' Ea.{0'J"2 _ 2U/'J1II 

- 2~e f/]" , (7.18) 

(1 - f:l r Qg.f' f " .! -f"2 !lfll f ll']} 
'>/lT)(jJJ +2 +2J J 

r 

(gil + Pr~ (1- 0 {~g' - ~~} + ~g + 2Pre (1gl - J'g) 1 
RmB (17,0 = + PI' E (0"2 + 12f]"2) + Pr Ea.{O']"2 - 2U /'1 111 

- 24f f /]" . 

(1 -~) [17¥J']" + ~]"2 + ~]"J'"]} 

The general solut ions of Eqs. (7. 15) and (7. 16) are 

8m ( 17 ,~) 

9m (T) , 0 

8;n (17 ,~) + C4 exp (-17) + C5 exp (17) , 

9~t (T),~) + C4 exp (-T)) + C5 exp (17) , 

(7.19) 

(7.20) 

where 8~t (T) , 0 and 9;" (T) , 0 are the particular solutions and the constants are determined by 

the boundary condit ions (7.17) which are given by 

C4 = -8~t (0,0 (P ST-case) , C4 = 89;8(17, ~) I (PHF-case), C5 = 0. (7.21) 
T) 7)=0 
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In the next section, the linear non-homogeneous Eqs . (7. 15) - (7. 16) are solved using MATH­

EMATICA in the order m = 1,2,3, ... 

7.3 Convergence of the analytic solution 

Here we discuss the convergence of the series that contains the auxiliary parameters fi2 and fi7 . 

The values of auxiliary parameters fi2 and 'v, helps as in the convergence region and rate of 

approximation for the homotopy analysis method. The explicit , analytic expressions ofaxisym­

metric flow and heat transfer analysis contains two auxiliary parameters fi2 and fi7 respectively. 

In F igs. 4.1, 7. 1 and 7.2 it is clear that the range for admissible values for fi2 and fi7 are 

o :::; fi2 :::; 0.6 . and - 1 < fi7 < O. And the series converges in the whole region of 7J, when 

1'i2 = 0. 2 and 1'i7 = - 0.2 for both the prescribed surface heat flux (PHF case) and the prescribed 

surface temperature (PST case). It is also observed that the series f (77, E) converges faster than 

that of 8(7],0 and g(7J,E) due to the fact that the non-linearity in t he later case is stronger 

than the former. Thus , by means of choosing auxiliary parameters fi2 and fi7 , we obtain an 

accurate analytic solution valid for all time 0 :::; T < 00 in whole region 0 :::; 7J < 00. 
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F ig. 7.1. h-curve for the non-dimensional temperature 8. 
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Fig. 7.2 PHF case 
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Fig. 7.2. h -curve for the non-dimensional temperature g. 

7.4 Results and discussion 

0. 5 

In this sect joIl , we (lisc.uss some results through graphs and attention has been focused on 

the emerging parameters PI' , E, T and a on the temperature distributions. For this purpose 

Figs. 7.3 - 7.10 have been displayed. 

In these Figs . e ('T) , 0 is the temperature variations corresponding to the PST-case and 

9 (TI ,~) is temperature for the PHF-case. 

The varia tions of various values of t ime on temperature for both PHF-case and PST-case 

are depicted in Figs . 7.3 and 7.4. It is obvious that by increasing time, the temperature and 

the thermal boundary layer increases in both cases. The effects of Prandt l number PI' on the 

temperature profiles are shown in Figs. 7.5 and 7.6. These Figs. show that the temperature 

decreases when the value of Prandtl number is increased . However , the boundary layer thickness 

increases in both cases . Influence of Ecker t number E on the temperature field is observed from 

Figs . 7.7 - 7.8. It is noted that for large Eckert number E , the therm;;tl boundary layer increases 

and also the temperature profile in both PHF and P ST cases increases. 
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Figs. 7.9 and 7.10 are sketched to see the effect of second grade parameter a. These Figs. 

elucidate that both the temperature distribution and the thermal boundary layer increases 

when a increase . 

F ig. 7.3 (PST-case) 

(l~ = 0 1, PI' = 1.0, E = 0.2 
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Fig. 7.3. Variation of temperature profile e (17, 0 with increasing time T. 
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Fig. 7.4 (PHF-case) 
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Fig. 7.4. Variation of temperature profile g (7] ,0 with increasing time T . 

Fig. 7.5 (PST-case) 
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Fig. 7.5. Variation of temperature profile e ("7 , 0 with increasing Pr. 
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Fig. 7.7 (PST-case) 
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Fig. 7.9 (P ST-case) 
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Chapter 8 

Heat transfer analysis of unsteady 

boundary layer flow of second grade 

fluid over a planar stretching sheet 

This chapter investigates the heat transfer analysis of the flow problem considered 

in chapter 5. The modeled non-linear problem is solved analytically using homotopy 

analysis method (HAM) subject to two heating processes (i) with prescribed surface 

temperature (P ST-case) and (ii) with prescribed sm-face heat fllL,{ (PHF-case). The 

series solutions are obtained and the convergence of these solutions is explicit ly 

discussed. Finally, results obtained are discussed through graphs. 

8.1 Heat transfer analysis 

Here, the physical model of the problem is same as in chapter in 5. Additionally heat transfer 

analysis is included. The energy equation corresponding to the unsteady boundary layer flow 

of a second grade fluid here is 

(aT aT aT) a2T (au) 2 [au a2u au a2u au a2u] PCp -a +u-a +v-a = k-a 2 +p. -a +al -a a a +U-a -a a +V-a a 2 ' (8.1) t x y y Y yyt yxy yy 

with the prescribed boundary conditions in Eqs.(6 .4) and (6.5). 
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8.1.1 The prescribed surface temperature (PST case) 

Through Eqs. (8.1) and (6 .4) - (6 .7) we obtain 

2 Bf. 2 = O. (8 .2) 
[ 

~O" + Pr~ (1 - 0 {!lO' - ~B(J} + +2 Pr e (JO' - 1'0) + PrE (~+ a(I -
0 ) J1I2

] 

+PrEa (U'1"2 - U1"1'" + (1- 0 {U"~ - ¥1"JIII
}) 

8 .1. 2 The prescribed surface heat flux (PHF case) 

From Eqs. (8. 1) and (6.4) - (6.7) , we have 

2 BE,. 2 = o. (8 .3) 
[ 

~g" + PI' ~ (1 - 0 { !l g' - ~B9 } + 2 PI' e (fg' - l' g) + Pr E (~ + a (1 -f.) ) J1I2
] 

+ PI' Ea (U' 1"2 - U 1" 1'" + (1 - 0 { U" Bj;' - ¥ 1" 1"'} ) 

8.2 HAM solution 

The temperature distributions 0 (17 ,0 and 9 (17,~) in terms of set of base functions of the form 

{'f)k~j eXP (-n77)1 k ~ O, j ~ O,n ~ O} (8.4) 

can be expressed through the following series 

00 

o ('f) ,0 = L Om ('f),0 
m=O 

00 

9 ('f), 0 = L gm ('f), 0 
m=O 

where 

00 00 00 

Om(17 ,~) """""" k,j kd ,( ) ~ ~ ~a3m,n 17 <, exp -n'f) , 
n=Ok=Oj=O 

00 00 00 

gm (17 ,0 L L L a~~,n17k~j exp (- n77) , (8.5) 
n=Ok=Oj=O 

in which a;;~,n and a~;:" n are the coefficients. Invoking the so-called Rule oj solution expressions 

for 0(17,0 and g('f),O and Eqs . (5.7), (8.2) and (8.3) t he init ial guesses 00 (17) and go (17) and 
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linear operator are same as in the previous chapter and 

(e" + Pr~ (1 - 0 fife' - ~~~} 
+ 4f8 + 2Pre (fB' - 1'8) 

N g [y(7) ,~;p) ,e(7),~;p)] = I + PrE (~F2 + a(12-0 1'2) 
+ PI' EO!{~j' 1'2 - ~J1' 1" 

+ (1 - 0 [~1' el' - ~ j''j''']) 

(fi" + Pr~ (1 - 0 Hg' - ~~} 

+ 4f 9 + 2 PI' e (Jg' - 1'g) 
NlO[7(7),~;p),g(7),~;p) ] = I +PrE (~1'2+a(12-~)1'2)+ 

PI' EO!{~j' 1'2 - fJ1' j''' 
+ (1 - 0 [~1' el' - ~ l' j''']) 

If fi is the auxiliary nonzero parameter then the zero order deformation problems are 

(1 - p) £2 [8 (7), ~, p) - 80 (77)] = pfisNg [y (7), ~,p) , 8 (77, ~, p)] , 

(1-p)£2[g(7),~ , p) -gO(7])] =pfi8NlO [Y(77 ,CP) , :9(77 ,(,P)] , 

8(O ,Cp) 

8 (00, ~,p) 

1 = -g' (O,~,p), 

g(oo,~,p) = 0, 

where p (E [0, 1]) is an embedding parameter and p = 0 and p = 1 we have 

8(7),~,O) 

g(7),~,O) 

80 (77), 8(7),~,l)=8(7) ,O· 

go (7)) , 9 (77, ~ , 1) = g (77, 0 . 
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(8.11) 



The initial guesses eo (T)) and go (T)) approach to e (77 ,~) and 9 (T), 0 , respectively, as p varies 

from ° to 1. By Taylor's series expansion one can write 

00 

e (T), ~,p) eo (77) + :L em (T), 0 pm, 
m=l 

00 

g (T) , ~,p) go (T)) + :L gm (T) , 0 pm , (8.12) 
m=l 

em (T), 0 1 arne (T), ~,p) 
m ! apm 

Ip=O 

gm (77,0 ~ amg(T),~ ,p) 1 ' 
m ! apm p=o 

(8.13) 

and the convergence of the series (8 .13) depends upon 1i3 and lis . The values of 1i3 and lis are 

chosen in such a way that the series (8. 13) are convergent at p = 1. Then by using Eq. (8. 12) 

one obtains 

00 

e (T) , 0 eo (77) + :L em (T) , ~) , 
m=l 

00 

9 (r/,O go (77) + :L gm (77,0· (8.14) 
m=l 

8.2.1 mth-order deformation problems 

Here we first differentiate Eqs. (8.8) - (8.9) m times with respect to p then divide by m! and 

setting p = ° we get 

£2 [em (T),~) - Xmem-l (T) , ~)] = IisRm9 (T),~) , (8 .15) 

£2 [gm (77 ,~) - Xmgm-l (77 ,0] = IisRmlO (77,0, (8.16) 

em (o ,~ ) = em ( oo, ~) = g'rr, (0, 0 = gm (00, 0 = 0, (8. 17) 
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where 

E,8
2

0rn - 1 + Pr C (1 _ C) [2 80rn - 1 _ c80rn-l] + 
~ ., ., 281) ., aE, 

2 PI' c2 [~m-l f aOk _ ~m-l 8 Jrn- l -k e ] 
., 6k=0 m-l-k 81) 610= 0 81) " 

R m9 (ry,~) = 

+ Pr E [C ~m- l 8
2 

frn-l -k 82!k + 0(1-E,) ~m- l 8
2 

fm- l-k 82!k] 
., 6k=0 81)2 W 2 6k=0 81)2 W 

Pr Ea{~ ~~~l ~~=O f;"' - l-kK-l£ 

+ PrEa 1 k "'" 
-~ ~~~O ~1~0 fm-l-kfk-dl + 

(1 - C) [C ~m-l f " 8f~' - 2 ~m- l f" f"' ] 
., ., 610=0 m-l-k 8E, 26k=0 m-l-k 

~829rn_ l +Pr C (l - C) [2 89m-1 _ c89rn- l] + 
~ ., ., 281) ., 8E, 

2 P . c2 [~m- l f i!..JJ.k ~m-l 8fm-l-k ] 
1., 610=0 m - l -k 81) - 610=0 81) gk 

R m10 (17 , ~) = 
+ PI' E [c ~m-l 8

2
fm_l_k 8 2 h + 0 (1-E,) ~m- l 8

2 
Jrn-l-k 8 2!k] 

., 610= 0 81)2 W 2 6k= 0 81)2 W 

r 

m-l 10 I "" 1 PI' Ea{~ ~k=O ~1=0 f m - 1- dk - dl 

1 k 1/ '" + PI' E a -~ ~;;~ ~1~0 fm-l-kfk-dl + 
(1 - C) [C ~m- l f" 8f~' - 2 ~m-l f" f"'] 

c" ., 6k=0 m-l-k 8E, 2 6k=0 m - l-k 

The general solutions of Eqs . (8.15) - (8.19) are 

Bm Cl),O 

gm (17,0 

e;", (TI, 0 + C4 exp (-ry) + C'5 exp (ry) , 

g~l (ry, 0 + C4 exp (-ry) + C5 exp (17), 

(8.18) 

(8. 19) 

(8.20) 

where e~l (ry,~) and g~l (ry,~) are the particular solutions and the constants are determined by 

the boundary conditions (8.17) which are given by 

C4 = -e~l (0,0 (PST-case) , C4 = og~ (ry, 0 I (PHF-case) C5 = O. 
ory 1)=0 

(8.21) 

In the next section, the linear non-homogeneous Eqs. (8.15) - (8 .19) are solved using MATH­

EMATICA in the order m = 1,2, 3, ... 
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8.3 Convergence 

The convergence region and rate of approximation of the series solutions depends upon 1i3 

and 1i8. In order to find the admissible values of these parameters, the Ii-curves of velocity and 

temperature for both PST and PHF cases are displayed in Figs. 5.1,8 .1 and 8.2 . It is clear from 

these Figs. that the range for 1i3 is -2 < 1i3 < - 0.5 and for 1i8 the range is - 1.25 < 1i8 < - 0.50 

for both PST and PHF cases. 

Fig. 8. 1 PST case 

-0.6 
Pr = 1, E = 02. a: = 0.1. K = 1. h = -0. 75 

\ 
10th-order app.1 -0. 7 

I \. ;;;, I 

c:i -0. 8 
~ 

-0.9 

~ 
-1.5 -1 -0..5 0. 

hg 

Fig. 8. 1. Ii -curve for the non-dimensional temperature e. 
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Fig. 8.2 PHF case 

PI" = 1. E = 0.2. <1 = O. I. K = I. i: = - 0. 75 

10th- older app. 

0.25 .... 1 _~ ___ ~ ___ ~ _____ ........ 

-1 .5 -1 -0.5 o 
11 8 

Fig. 8.2 . It -curve for the non-dimensional temperature g. 

8.4 Results and discussion 

Herf~ , t.he main purpose is just to see the varia tion of a, Pr , E and T on the temperaLure ill 

both cases. For t hat we plotted Figs. 8.3 - 8.10. In these Figs. 9 ( 77 , ~) is the temperature 

variation that corresponds to t he PHF case and e (7],0 is the temperature for P ST case. The 

temperature and thermal boundary layer thickness increase by increasing time T (see Figs. 8.3 

and 8.4) for both PST and PHF cases. The effects of second grade parameter a and Eckert 

number E are similar to those of time T but the effects of Prandtl number Pr are opposite 

to that of time T and are shown in Figs. 8.5 - 8.10 . Further , these Figs. indicate that for 

different values of second grade parameter a and Eckert number E the temperature profiles in-

crease in both cases whereas the temperature decreases as we increase the values of Prand-

tie number Pr. 
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Fig. 8.3 PST-case 
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Fig. 8.3 The temperature profile e (77 , 0 at different time T. 

Fig. 8.4 PHF-case 

a: = 0. 1. K = 1.0, Pr = 1.0, E = 0. 2 

1.2 f\ 
-- T = 0.01 '\ '\ 

1 ~ 1\1\ ------- r = 0. 10 

O.B 
\ \ \ 
\\ ---- T = 0.25 

0. " \ \ -:.. 
" \ \ - - - T = 0.50 5; 0.6 '. \ 

\ \ \ 
0.4 ~ \ 

~ \ 

'- " \ \ 

\ " "-, , \. ....... 
, " 

0 ... , .... _-"-":""-

0 1 2 3 4 5 
It~ 

Fig. 8.4 The temperature profile 9 (77,0 at different time T . 
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Fig. 8.5 The temperature profile e (ry , 0 at different a. 
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Fig. 8.6 The temperature profile g (ry,~) at different a. 
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Fig. 8,7 The temperature profile e (77,0 at different values of Pr. 

Fig. 8.8 PHF-case 
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Fig. 8.8 The temperature profile g (77 ,0 at different values of PI. 

97 



1 

0..8 

,..... 0..6 
'-J..r . 
:::-
~ 0.4 

0.2 

0. 
0. 

Fig. 8.9 PST-case 

K = 1.0, T = 0. 5, C¥ = o. 1, Pr = 1.0 

- E= 0.0. 

----- .. . E= 0. 4 
'\ '\' 
\~ ----E= o.a 
\\ ,,\ - - - E = 1.2 

\~ 
\\\ 
\\ 
\~ 
'~"-. 

'-"\ ~ , 

1 2 
. 1 

llf2 

3 4 5 

Fig. 8.9 The temperature profile e (7] ,~ ) at different values of E. 

G:;. 
"' 

1.5 

1.25 

1 

~0..75 

0..5 

0..25 

o 

Fig. 8.10 PHF-case 

K == 1. 0, T == 0. 5, a: == 0. 1, Pr = 1. 0 

\ 
'\ 

- E = 0.0. 
, \ 
\ \\ ------ .. E= 0..4 
\'\ 
\' ---- E=o.a 
'- \\ , \ 

\\ ~ 
\'\ 

--- E=1.2 

\')., 
" "' 

' ,~ 
, ,~~ 

'~ ... ~~ 

0. 1 2 3 4 5 
It;~ 
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Chapter 9 

Conclusions 

The work presented in this thesis deals with some non-linear problems for unsteady flow and 

heat transfer analysis in Newtonian and non-Newtonian fluids. Six chapters namely 3 - 8 

comprises such problems. The problem of axisymmetric flow of a viscous fluid over a stretching 

sheet is discussed in chapter 3. Chapter 4 presents the axisymmetric flow of a second grade fluid 

over a radially stretching sheet . In chapter 5 the series solution for the boundary layer flow 

of a second grade fluid caused by an impulsively stretching sheet is given. The heat transfer 

analysis of axisymmetric MHD flow of a Newtonian fluid in a porous medium is formulated and 

solved in chapter 6. The heat transfer analysis of axisymmetric and planar stretching in second 

grade are studied in chapters 7 and 8 respectively. 

The main findings can be summarized as: 

1 Unlike the perturbation technique, the used HAM does not require small or large 

parameter. 

2 The convergence region of the obtained series can be well controlled by means of the 

auxiliary parameter. 

3 HAN! provide solutions in the form of infinite series and also a mechanism for finding 

the recurrence formulae for the coeffi cients of the series. The determined solution is regarded 

as an exact analytic solution if the convergence of the obtained series is explicitly discussed. 

4 In the case of unsteady axisymmetric viscous fluid flow the T-component of velocity 

increases and the boundary layer thickness increases with an increase in t ime T . Ho\vever the 

z-component of velocity decreases. 
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5 Th e obtained solut ions are valid for all t ime. 

6 The magnitude of skin friction increases by increasing time. 

7 The r-component of velocity increases and the z-component of velocity decreases when 

the second grade parameter is increased. 

8 For large time, the r-component of velocity is much in second grade fluid when com-

pared with that of Newtonian fluid .. 

9 The magnit.ude of skin friction coefficient decreases under the influence of second grade 

parameter and dimensionless time. 

10 The heat transfer analysis for unsteady axisymmetric flow of viscous and second 

grade fluid is conducted first time in the li terature. 

11 In the case of viscous fluid the variations of time on the temperature profiles depicts 

that the temperature and thermal boundary layer thickness increases with an increase in time 

for both PST and PHF cases . 

12 The effects of P randtl number PI' are quite opposite to that of time. 

13 The effect of Eckert number E , porosity parameter k and HartmarID number 1\11 are 

similar to t ime and opposite to Prandtl number. 

14 By increasing P randtl number PI' , the temperature profile decreases and the thermal 

boundary layer thickness increases for both P ST and P HF cases. 
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