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Preface

During the last few years the computation of non-Newtonian fluids has been on the leading edge
of research in fluid mechanics. Such fluids are now acknowledged as more appropriate in
technological applications than Newtonian fluids. Ideally speaking they are used in flow
problems arising in the study of non-Newtonian fluids and pose a challenge to applied
mathematicians, numerical analysts and computer simulationists. These stem from the fact that
the rheological fluid parameter introduces some extra term in the momentum equation. Because
of fluids diversity many constitutive equations have been proposed. One of the important classes
of non-Newtonian fluids is viscoelastic fluids. The constitutive equation of even the simplest
subclass of viscoelastic fluids namely the second grade is such that the momentum equation give
rise to problems in which the order of the differential system is greater than the number of
available boundary conditions. In this situation the researchers found it convenient to obtain the
perturbation solution. Such solution always requires small or large parameter in the differential
system. It is not necessary to have such parameter in every differential system. Therefore, the
main theme of the present thesis is to develop HAM solutions for some non-linear flow problems.
Note that the HAM does not require any small or large parameter in the differential system.

The boundary layer flows on a moving surface are very important due their occurrence in
many engineering processes. Such flows encounter in several processes of thermal and moisture
treatment of materials, particularly, in processes involving continuous pulling of a sheet through a
reaction zone, as in metallurgy in textile and paper industries, in the manufacture of polymeric
sheets, sheet glass and crystalline materials. As example on stretched sheets, many metallurgical
processes involve the coding of continuous strip or filament by drawing them through a quiescent
fluid and that in the process of drawing, when these strips are stretched.

The work on unsteady stretching flow problems is very scarce in the literature. Much
attention has been given to the steady flow problems. Few attempts have been made regarding the
unsteady flows. Motivated by the aforementioned facts, the entire work in this thesis is divided
into nine chapters. Chapter 1 consists of some introductory remarks. The basic of differential type

fluids, governing laws and homotopy analysis method (HAM) are presented in chapter 2.



Unsteady axisymmetric flows of viscous and second grade fluids over a radially stretching sheet
are analyzed in chapters 3 and 4 respectively. It is concluded that an increase in time increases the
velocity and magnitude of skin friction. It is further found that the obtained solution is valid for
all values of the dimensionless time. The problem regarding the unsteady boundary layer flow of
second grade fluid due to planar stretching is studied in chapter 5. It is noted that velocity
increases by increasing the material parameter of second grade fluid.

Chapters 6-8 are devoted to the heat transfer analysis of the flow problems considered in
chapters 3-5, respectively. Expressions for temperature profiles are obtained for the two heating
processes namely the prescribed surface temperature (PST) case and prescribed surface heat flux
(PHF) case. The influence of sundry parameters in the heat transfer analysis is highlighted. The

conclusions are synthesized in chapter 9.
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Chapter 1

Introduction

It is now generally acknowledged that in industrial applications non-Newtonian fluids are more
suited than Newtonian fluids. According to Newton’s law of viscosity the shear stress is pro-
portional to the velocity gradient. The fluids obeying Newton’s law of viscosity are known as
Newtonian fluids. Such fluids include water, benzene,ethyl alcohol, hexane and most solutions
of low molecular weight. There are many fluids for which Newton’s law of viscosity does not
hold. These are termed as non-Newtonian fluids. Such fluids exhibit a non-linear relationship
between the stresses and the rate of strain. Many materials such as slurries, pastes, gels, drillin
mud, clay coating, polymer melts, elastomers etc. are examples of non-Newtonian fluids. They
exhibit various behaviors: time-independent behaviors (Bingham-plastic, pseudo-plastic and di-
latant fluids), time-dependent behaviors (thixotropic and rheopectic fluids), Visco-plastic fluids
(e.g, egg white).

Due to large variety of non-Newtonian fluids, it is not possible to have constitutive equation
by which all the non-Newtonian fluids can be described. In the literature many constitutive
equations are suggested. Some of them are the empirical or semi-empirical. The method of con-
tinuum mechanics is needed for more general three dimensional representation. Undoubtedly,
the equation of motion of non-Newtonian fluid, in general, is of higher order than the Navier-
Stokes equations. The adherence boundary condition is reasonable for a viscous fluid but it is
inadequate when flows of non-Newtonian fluids are taken into account. For unique solution in
such flows, one needs an extra condition. This issue of extra conditions has been discussed in

detail by Rajagopal [1,2], Rajagopal and Gupta [3], Rajagopal et al. [4] and Rajagopal and
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Kaloni [5].

Among the several models of non-Newtonian fluids, there is a subclass of viscoelastic fluids
namely the second grade for which one can reasonable hope to obtain an analytic solution.
With this fact in mind, we also consider the second grade fluid in the present thesis. Several
researcher have already discussed the flows of second grade fluid in various situations. Rajagopal
(6] discussed the unsteady unidirectional flows of a second grade fluid. The flows are induced
either due to the application of pressure gradient or through the motion of the boundary. In
another paper, Rajagopal [7] examined the creeping flow of a second grade fluid. In continuation,
Rajagopal [8] studied longitudinal and torsional oscillations of a rod in a non-Newtonian fluid.
Bandelli et al. [9] obtained some unsteady solutions in second grade fluids. Erdogan et al. [10]
discussed the comparison of two different solutions in the form of series of the governing equation
of an unsteady flow of a second grade fluid. Then Erdogan [11] considered the unsteady motions
of a second order fluid over a plane wall. Erdogan et al. [12] also studied the diffusion of line
vortex in a second grade fluid. In [13] Erdogan et al. investigated the effects of the side walls
on the unsteady flow of a second grade fluid in a duct of uniform cross-section. Fetecau et al.
[14] obtained the starting solution for the motion of second grade fluid due to longitudinal and
torsional oscillations of a circular cylinder. Fetecau et al. [15] discussed the starting solutions
for some simple oscillating motions of second grade fluids. Fetecau et al. [16] also analyzed
the starting solutions for some unsteady unidirectional flows of second grade fluids. In [17]
Fetecau et al. solved some axial Couette flows of non-Newtonian fluids. Also Fetecau et al. [18]
examined the decay of potential vortex and propagation of heat wave in second grade fluid. Tan
et al. [19] discussed the Stokes first problem for second grade fluid in a porous half space. Tan
et al. [20] also examined the impulsive motion of flat plate in generalized second grade fluid.
Tan et al. [21] solved the unsteady flows of a generalized second grade fluid with the fractional
derivative model between two parallel plates. Hayat et al. [22] discussed Hall effects on the
unsteady hydromagnetic oscillatory flow of a second grade fluid. Hayat et al. [23] studied the
unsteady hydromagnetic rotating flow of a conducting second grade fluid. Transient flows of
a second grade fluid has been examined by Hayat et al. in [24]. Flow induced by non-coaxial
rotation of a porous disk executing non-torsional oscillations and a second grade fluid rotating

at infinity is also investigated by Hayat et al. [25]. In [26] Hayat et al. discussed the unsteady



Couette flow of a second grade fluid. Chen et al. [27] examined the unsteady unidirectional
flow of second grade fluid between the parallel plates with different given volume flow rate
conditions.

Boundary layer behavior over a moving solid surface is an important type of flow occurring
in several engineering processes. The aerodynamic extrusion of plastic sheets, the cooling of an
infinite metallic plate in a cooling bath, the boundary layer along a liquid film in condensation
process and a polymer sheet or filament extruded continuously from a die are few examples
of practical applications of a continuous flat surface. Many metallurgical processes involve the
cooling of continuous strips or filaments by drawing them through a quiescent fluid. The heat
transfer analysis of such non-Newtonian fluids further have many applications in a number of
technological processes including production of polymer film or thin sheets. Especially heat
transfer analysis plays a vital role during the handling and processing of non-Newtonian fluids.
Such analysis in boundary layer flows of non-Newtonian fluids arises in the design of thrust
bearing and radial diffusers, transpiration cooling, drag reduction and thermal recovery of oil.
Extensive work in the literature have been performed for the boundary layer flow and heat
transfer in viscous and second grade fluids over the stretching surface. Sakiadis [28] was the
first who studied the boundary layer flow of an incompressible fluid on a moving solid surface,
which turns out to be different from the Blasius flow past a flat plate, McCormack and Crane
[29] studied the boundary layer flow of a Newtonian fluid caused by stretching of an elastic flat
sheet, which moves in its own plane with a velocity from a fixed point due to the application of
uniform force, and this work has been extended by many researchers for permeable plates such
as Gupta and Gupta [30], Erickson et al. [31], Chen and Char [32], Magyari and Keller [33] and
for impermeable plates by Crane [34], Banks [35], Ali [36], Hayat et al. [37 — 41] and Sajid at
el. [42 — 45].

The work on unsteady boundary layer flow due to stretching surface in a viscous fluid
[46 — 48] has received much less attention. Nazar et al. [49] solved the unsteady boundary layer
flow due to an impulsively stretching surface in a rotating fluid by means of transformations
found by William and Rhyne [50]. They obtained a first-order perturbation approximation.
Seshadri et al. [51] solved the unsteady mixed convection flow in a stagnation region of a heated

vertical plate due to impulsive motion. Liao [52] discussed homotopy analysis method (HAM)
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solution of unsteady boundary layer flow caused by a impulsively stretching plate. Takhar et
al. [53] discussed the unsteady MHD rotating flow over a stretching surface. Kumari et al.
[54] studied the unsteady free convection flow of a continuous moving vertical surface. Nazar
et al. [55] investigated the unsteady boundary layer flow in the region of the stagnation point
on a stretching sheet. Lok et al. [56] examined the boundary layer flow of a micropolar fluid
near the forward stagnation point of plane surface. Lakshmisha et al. [57] studied the three
dimensional unsteady flow with heat and mass transfer over a continuous stretching surface.
Perturbation techniques was applied by the researchers and the corresponding solutions are
valid for small time [58 — 60]. The stretching sheet problems with and without heat transfer
analysis was studied by many investigators [61 — 68]. All the work mentioned above regarding
the stretching surface includes the linear stretching. Little information is available regarding
the flow over a radially stretching sheets. Axisymmetric flow of second grade fluid past a
stretching sheet has been examined by Ariel [69]. Sajid et al. [70] obtained series solution for
the axisymmetric flow of a third grade fluid over a radially stretching sheet using HAM.

To the best of our knowledge, the unsteady flow over a stretching surface is not discussed in
Newtonian and non-Newtonian fluids for the case of radially stretching sheets. The main objec-
tive of this thesis is to consider such flow problems and develop solutions for them. Throughout
the thesis, problems are nonlinear and it is difficult to obtain exact solutions. In particular,
it is often more difficult to get an analytic approximation than a numerical one of a given
nonlinear problem. The numerical and analytic methods of nonlinear problems have their own
advantages and limitations. Generally, one delights in giving analytic solutions of a nonlinear
problem. For this purpose the useful technique for the nonlinear problems, the homotopy analy-
sis method (HAM) proposed by Liao 71, 72| is used. HAM itself provides us with a convenient
way to control the convergence of the approximation series and adjust the convergence region
when necessary. Thus, this technique is valid for nonlinear problems with strong nonlinearity.
Furthermore, the HAM logically contains some previous perturbation and non-perturbation

techniques. Thus, it can be regarded as a generalized theory of these previous techniques.
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Chapter 2

Preliminaries

This chapter includes some basic equations regarding Newtonian and second grade fluids, con-

servation laws of mass and momentum, the energy equation and homotopy analysis method

(HAM).

2.1 Constitutive equations of Newtonian and Second grade flu-
ids

Since the stress at any point in the fluid is an expression of the mutual reaction of adjacent
points of fluids near that point, it is natural to consider the connection between the stress and
the local properties of the fluid. For stationary fluid, the stress is wholly calculated due to
the static pressure. For fluid in motion, the connection between the stress and the local fluid
properties is complicated. However in such cases the stress depends upon the velocity in the
neighborhood of the element. Such distribution can be given in terms of the velocity gradient.
Therefore, the constitutive equation for the Cauchy stress tensor o in a Newtonian fluid is

expressed in terms of velocity gradient as

oc=-pl+pu [(grad V) + (grad V)T] , (2.1)

in which p is the pressure, p the dynamic viscosity, I the identity tensor and 7" in the superscript

is the matrix transpose.



For second grade fluid, the constitutive equation is [73]

[N
]
~

o= —pl+ pA + a1As + (rgAf. (2.

In the above expression o; (i = 1,2) are the material moduli and the first two Rivilin-Ericksen

tensors are

A, = (grad V) + (grad V)T, (2.3)
dA1 T
Ay = & + Aj (grad V)+(grad V)" Ay, (2.4)

in which d/dt signifies the material derivative. A comprehensive discussion regarding the sign
of @y and ag is made by Fosdick and Rajagopal [74]. In order to satisfy the Clausius-Duhem

inequality.
w>0, a1+ax=0 (2.5)
and if the free energy is minimum in equilibrium then

Note that for cry < 0 the fluid model shows the anomalous behavior.

2.2 Basic equations

Analysis of any problem in fluid mechanics necessarily includes statement of the basic laws
governing the fluid motion. The basic laws applicable to any fluid are:

1. Conservation of mass,

o

Newton second law of motion,

3 The principle of angular momentum,

4. The first law of thermodynamics,

5 The second law of thermodynamics.

Note that not all basic laws are required to solve any one problem. On the other hand, in

many problems it is necessary to bring into the analysis additional relations that describe the
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behavior of physical properties of fluids under given conditions.

2.2.1 Equation of continuity

Let us consider a three dimensional unsteady flow. A control volume Vin space is superimposed
on the flow and consider the system that instantaneously occupies the control volume. Assume
that it and its surface S remain fixed in space. The surface is permeable so that fluid can freely
enter in and leave. Equation of continuity or conservation of mass stems from the principle that
mass can neither be created nor destroyed within the control volume. Thus the mass conserved

in the control volume V is given by

d o

\%

Here p is the fluid density field at time ¢. By Reynold’s transport theorem we have

/ (% + div (pV)) dv = 0. (2.8)

%

Since the control volume V' is being arbitrary for conservation of mass a necessary and sufficient
condition is

dp ;
£ 4 div(pV) = 2.0
e +div(pV) =0 (2.9)

which for incompressible fluid reduces to
divV =0. (2.10)

2.2.2 Law of conservation of linear momentum

In differential form, the law of conservation of momentum is

A%

in which pB is the body [orce per unit mass, o is the Cauchy stress. The Navier Stokes

equations for an incompressible fluid are given in component form as

11
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where B, B, and B. are the components of the body force in the z,y and z—directions,

respectively.

2.3 Energy equation

By law of conservation of energy one can write

de

pg =0 L—V - qtpr, (2:15)

where e is the internal energy, q is the heat flux vector, 7 is the radiant heating and L = grad V.

In the absence of radiant heating the above equation takes the following form
T
pep—r =0 L+kVT, (2.16)
a

where e = ¢,T', q = —kVT, k is the thermal conductivity, ¢, is the specific heat and T' is the

temperature.

2.4 Boundary layer flow

Before this century and towards the end of 19th century the science of fluid mechanics began to
develop in two directions which had practically no points in common. On the one side there was
the science of theoretical hydrodynamics which was evolved from Euler’s equation of motion
for a frictionless, non-viscous fluid and which achieved a higher degree of completeness. The
results of this so-called classical science of hydrodynamics stood in glaring contradiction to

experimental results in particular as regards the very important problem of pressure losses in

12



pipes and channels, as well as with regard to the drag of a body which moves through a mass
of fluid. Due to the rapid development in the technology, engineers developed their own highly
empirical science of hydraulics. The science of hydraulics was based on a large number of data
and differed greatly in its methods and its objects from the science of hydrodynamics.

At the beginning of the 20th century L. Prandtl has given a new dimension to fluid mechanics
by introducing viscosity in the fluid and unifying the hydraulics and theoretical hydrodynamics.
He noted that in the thin region near the solid boundary, the viscous interactions have a sig-
nificant effects on fluid motion, however far away from the solid boundary, viscous interactions
were not that significant in order to determine the flow field. Before this the viscosity effects
were completely ignored in ideal flow solutions and the equations describing viscous interac-
tion were very complex. The Navier-Stokes equations behave well for small Reynold’s number
whereas for higher values of Reynold’s number the non-linear term gains insignificance and the
situation is quit different and there may be more than one possible solution. Laminar flows may
become unstable and turbulence may occur and steady symmetric may becomes unsteady and
asymietric. Also singular region may develop, especially near the solid boundaries.

It became known that the flow past a body can be divided into a thin region very near to
the body called the boundary layer where the viscosity is important and the remaining portion
(region) where one can ignore the viscosity. The most important application of a boundary layer
can be seen as friction drag of bodies in a flow. The boundary layer has its application in lift of an
airfoil and heat transfer between a body and fluid around it. Moreover, the complete equations
of motion for flows with friction (the Navier-Stokes equations) had been known for a long time.
The great mathematical difficulties connected with the solution of these equations with the
exception of a small number of particular cases. These equations are highly non-linear, second
order and elliptic in space. Solutions of full Navier-Stokes equation are expensive. Inviscid
solutions are very cheap as compared to the Navier-Stokes equations. By assuming that all of
the viscosity in the flow field resides in a thin boundary layer, viscous boundary layer, we are
free to solve the rest of the flow field using invisid solution. The solution of the flow inside the
boundary layer is cheap as well. By assuming a thin boundary layer, several terms negligible and
the elliptic equation become parabolic. The boundary layer concepts retains for several reasons.

The boundary layer solutions are less expensive, full Navier-Stokes equations are unnecessary

13



in these situations and these solutions are accurate enough for many purposes. Boundary layer
theory is extended to compressible turbulent boundary layer as well. Fundamental approach
on boundary layers can be seen from the book by Schlichting et al. [75]. Modern investigations
in the field of fluid dynamics in general, as well as in the field of boundary layer research,
are characterized by a very close relation between theory and experiment. The derivation of

boundary layer equations for a viscous fluid are given in [76].

2.5 Maxwell’s equations

In this section we describe the behavior of electric and magnetic fields, E and B through the

following differential equations

B 0
= =J+—(cE 2,17
V=345 (E), (217)

OB

__9B 2.18
V xE e (2.18)
VB =0, (2.19)
v.E=F (2.20)

(>

in which the constants u, and € are magnetic permeability and dielectric constant, respectively,
D = (¢E) is the dielectric displacement and p, is the charge density. The total magnetic field
B often referred to as the magnetic field is related to the magnetic field H as B =poH.
According to Ohm’s law
J=0,.(E+V xB), (2.21)

where o1 is the electrical conductivity of the fluid. The polarization effects here are negligible
(E = 0) and magnetic Reynolds number is taken very small, i.e., induced magnetic field is
negligible.

Under the aforesaid assumptions, the Lorentz force becomes
1
-(JxB)=-——"2V, (2.22)
p

in which By is the magnitude of constant applied magnetic field.

14



2.6 Porosity and porous media

Most important geometrical property of the porous medium is the porosity. Because of the
rheological properties of fluids often change with the geometry, it is important to measure
those properties in a geometry as similar to the applications as possible. Porosity is defined as
the percentage of a volume of medium that is empty space that contributes to the fluid flow.
Mathematically it is the ratio between the unit volume of void space 17U to the unit volume

of the medium V,,, i.e.

100V,

= &’ (2.23)
V’ITL

where 0 < ¢p < 1. If Vi, = Vi, we have the case of free fluid. Also porous medium is that medium

for which the permeability is non-zero. The permeability is the most important property of a

porous medium that measures quantitatively the ability of a porous medium to conduct fluid

flow.

2.7 Flow induced by a stretching sheet

The flow produced due to the stretching of elastic flat sheet which moves in its plan with
velocity varying with the distance from a fixed point due to the application of a stress are
known as stretching flow. The production of sheeting material arises in a number of industrial
manufacturing processes and includes both metal and polymer sheets. In the manufacturing
of the latter, the material is in a molten phase when thrust through an extrusion die and
then cools and solidifies some distance away from the die before arriving at the cooling stage.
The tangential velocity imported by the sheet induces motion in the surrounding fluid, which
alters the convection of the sheet. Similar situation prevails during the manufacture of plastic
and rubber sheets where it is often necessary to blow a gaseous medium through the not-
yet solidified material, and where the stretching force depends upon time. Another example
that belongs to this class of problems is the cooling of a large metallic plate in a bath, which
may be an electrolyte. In this class the fluid flow is induced due to shrinking of the plate.

Glass blowing, continuous casting and spinning of fibers also involve the flow due to stretching



surface. Due to the very high viscosity of the fluid near the sheet, one can assume that the
fluid is affected by the sheet but not vice versa. Thus the fluid problems can be idealized to the
case of a fluid disturbed by a tangential moving boundary. Experiments show that the velocity
of the boundary is approximately proportional to the distance to the orifice (Vleggaar [77]).
The quality of the resulting sheeting material, as well as the cost of production, is affected by
the speed of collection and the heat transfer rate, and knowledge of the flow properties of the

ambient fluid is clearly desirable.

Fig. 2.2 (a) Fig. 2.2 (b)

| " B

.,/// Ri\\\ » /S\.'."«' L '
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;
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e i 4 Pl s J
u=Bx

Fig. 2.2. (a) Physical model for planar stretching sheet, (b) Physical model for radial stretching

sheet.

2.8 Homotopy

Definition: Homotopy is a continuous transformation from one function to another. A homo-
topy H between two continuous functions @ and b from a topological space X to a topological

space Y is define by a continuous mapping
H: XxI=[0,1—-Y,

where

H (z,t) = by (2), (ze X,tel)
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is continuous then we call a family of maps h; : X — Y (0 <t <1), indexed by the real
numbers ¢ € I is called a homotopy with hg and hy are initial and terminal map of h;.

Two maps f: X — Y and g : X — Y are said to be homotopic if there exist a homotopy
hiy + X — Y such that hg = f and h; = g. So h; is the homotopy connecting [ and g,
as hy : f — g. Thus, f and g are homotopic if and only if each can be changed continuously
into other.

Further if [ is homotopic to g then there exist a
[HP ‘P E (07 1)]
of continuous functions such that , : R x [0,1] — R defined by

H,(z)=(1—-p)f(z)+pg(z) foralzeRandpel01].

2.9 Homotopy analysis method (HAM)

Non-linearity plays a crucial role in applied mathematics. Most of the problems arising are
non-linear it is important to develop efficient tools to solve them. Since the advent of modern
computers numerical techniques for nonlinear partial differential equation (PDEs) have been
developing rapidly. However, it is still difficult to obtain analytic approximations of nonlinear
partial differential equation, even though there exist high performance super computers and
high quality computation software such as Mathematica, Maple etc. In the past, perturbation
technique were applied to solve such problems but such technique requires large or small pa-
rameter. It is not possible that every problem has such parameter. Unlike the perturbation
technique the homotopy analysis method is valid even for nonlinear problems whose governing
equation and /or boundary conditions don’t contain small or large parameter at all. Thus, it
can be applied to more nonlinear problems in science and engineering.

The homotopy analysis method is rather general and valid for many different types of non-
linear ordinary differential equations and partial differential equations. It has been successfully
applied to many nou-linear problems such as boundary layer flows, heat transfer, MHD flows of

non-Newtonian fluids and many others. It is an analytic method to approximate the solution of

17



non-linear with strong nonlinearity, solution expressions of a non-linear problem are determined
by the type of nonlinear equation and the employed analytic technique, and the convergence re-
gions of series solution are strong dependent on physical parameters. Due to existence of strong
non-linearities in the governing flow equations numerical techniques or perturbation techniques
are widely used. Throughout this thesis, the HAM is used to solve the two dimensional flow of
a Newtonian and non-Newtonian fluids over a stretching surface and complete form of analytic
solutions are obtained. Recently, HAM is successfully applied to many non-linear flow prob-
lems [78 — 91]. The developed HAM solutions in this thesis are quite new and have been never

reported in the literature.
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Chapter 3

Unsteady axisymmetric flow of a
viscous fluid over a radially

stretching sheet

The problem of unsteady axisymmetric flow of a viscous fluid over a radially stretch-
ing sheet is considered in this chapter. The axisymmetric flow equations are given.
By means of similarity transformations, the modeled non-linear partial differential
equations in three independent variables are reduced to a single partial differential
equation in two independent variables. The HAM solution governing the flow is
developed. The convergence theorem for the present problem is established and the
reliability of the convergence on the auxiliary parameter is explained. Finally, the

influence of various emerging flow parameters are plotted and discussed..

3.1 Mathematical formulation

Consider the unsteady laminar flow of a viscous fluid over a stretching sheet which is placed
in the plan z = 0; the flow being confined to z > 0 and is stretched in the radial direction.
The sheet is stretched with the speed proportional to the radial distance from the origin. Here
for mathematical modelling, we take the cylindrical polar coordinates (r,#, z). All the physical

quantities are independent of 6 because of rotational symmetry of the flow i.e. 9/90 = 0.
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Also the azimuthal component of velocity v vanishes identically. Under these assumptions
the governing equations (2.10) and (2.11) in the absence of body forces together with Eqs.

(2.2) = (2.7) with @; =0

du u  Ow
e 3.1
o T r 62 0, (3:-1)
8u+ 8u+ ou] 8ﬁ+ FPu  Pu  10u  u (3.2)
Plac T "ar Y| T Tor TH o2 T 92 Trar 2| '
ow " uaw +w8w 8ﬁ+ 0%w 4 Pw 10w (3.3)
—— —— — | =4t =+ ——F ;
Pl e or 0z 8z "M 92 "oz T ar |
where u and w are the velocities in 7 and 2 directions, respectively.
The appropriate boundary conditions for the problem under consideration are
w = ar, w=0 at z2=0
u — 0 as z— oo. (3.4)
Introducing the similarity transformations
w = arf (1,6), w=-2/avé/,
E = 1—¢e 7 n= E—?, T = at (3.5)
v€ ’
The continuity equation (3.1) is satisfied automatically and Egs. (3.2) and (3.3) become
8ﬁ_ 2 [l =£) 4 of ' ) w1 >
a,,,—par[ -9 - e 1), (36)
op of
P p [20- €L~ (1= s+ (1-€) ] 4€rs ~ 21" (3.7
where prime denotes differentiation with respect to n and a is the stretching constant.
Eliminating pressure from Eqs.(3.6) and (3.7), we obtain
, (1 — 1-— af"
fl'l/_,_?l( 5 f)fl/l+2§fflll+( 2£)f”—£(1—£) 8-2 :O (38)
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The boundary conditions (3.4) now read as

£(0,6)=0, f(0,6)=1, f'(00,§)=0. (3.9)
In the next section, we will find the analytic solution of Eq. (3.8) subject to boundary conditions
(3.9).
3.2 Analytic solution

In order to obtain the solution of a problem consisting of Eqs.(3.8) and (3.9) we use HAM. For

that the initial guess

fo(m,§) =1—exp(-n), (3.10)
and auxiliary linear operator
Bf  of
sV i 3.11
£1 [f (”}) €7p)] 8773 877, ( )

are chosen and the operator £; satisfies

L£1[C1 + Coexp (—n) + Csexp (1)) =0, (3.12)

in which Cy C9 and C3 are arbitrary constants.
Zero-order deformation problem

Following the HAM procedure we can write the zeroth order deformation problem as

(L =p) L1 [Fn&p) — o (1,8)] = pruds [F(n, & p)] (3.13)
= oF " oF .
f (ng)p) = 0: % |77:0: 1'—f(g—;f’£) |1]:+oo: 0, (314)

where the non-linear differential operator N is

- AT (n € — 83 F(n & a B (n, &
N {f (77,§;p)] = fé';]?,f,p) - ﬂ§(12 418 fé:’;f’p) +26f (n,&p) fgz); p)
_ 27 . BE (m. £
M Gl i AU ST NPT AP A U572 (3.15)

2 an? aEon?

21



where p € [0,1] is the embedding parameter, i is non-zero auxiliary parameter. Obviously

for p =0 and p = 1, we have, respectively

—~ —~

f(77,f;0) = fo (77,5)7 f(77a§; 1) =f (naf)' (316)

As p increases from zero to unity, f (7, &;p) varies from the initial guess fp (7,§) to the exact

solution f (n, &) of the considered problem. Then by Taylor’s theorem and Eq. (3.16) we have

~

+o0
Fm,&p)=fom, &+ D fm (0,6)p™, (3.17)
m=1

where

1975 (1,&p)

ol e (3.18)

Im (7775) =

p=0
The convergence of the series (3.17) depends upon /. Assume that /i; is chosen in such a way

that the series (3.17) is convergent at p = 1 then due to Eq. (3.16) we have

[o.e]

F@,8)=Ffom&+ D fm(,8), (3.19)

m=1

mth-order deformation problem
Differentiating the zeroth-order deformation Eq. (3.13) mth-time with respect to p and the

dividing by m! and finally setting p = 0 we have

Ly [fm (777 6) - mem—l (771 6)] = Rm1 (7’75) ) (320)

Ofm (m,&;p)

Ofm (0, &
M |77=0= 0, 6—77 |7}=-|-oo: 0, (3_21)

fm(O,E;P)ZO, 67]

a4fm—1 + né (1 . 5) 83fm—1 + (1 - E) azfm—l

Rum1 on? 2 on? 2 on?
asfm_.l i "
=& (1= +2 m—1—kJk 3.22
1 -8 G égf 1Sy (3:22)
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where

/\171 = - ° ('323)
1, m>1

To obtain the solution of above system of non-homogeneous equations upto first few order of

approximations, the symbolic computation software MATHEMATICA is used and the following
series solution is found
m—+1 2(711+1 TL) m
fn & =D > > all&nexp[—nn). (3.24)

n=0 q=0 r=0

Detailed procedure of obtaining the recurrence formulas for the coefficients involved in Eq.

(3.24) is presented in next section.

3.2.1 Derivation of Coefficient appearing in Equation (3.24)

m+1 m | 2(m+1-n) 2(m+1-—n)
Jn (1:€) = Z Z Z gt —n Z alr n?| & exp [-ny],
n=0 r=0 q=1 q=0
m+1 m | 2(m+1-n) 2(m+1-n)
TS ey n S | eeloml,
n=0 r=0 q=0 q=0

m+12(m+1-n) m

= Z Z Z (g+1 agj—i 4 na’;]nrn] nl€" exp [—77,7]] i

m+12(m+1-n) m

=2, 2. ZalmnnqéreXD[—nn], (3.25)

n=0 q=0

where
a’lgnrn = (q I 1) G‘Z;.'_%. " —naly (326)

m,n’

Through a similar procedure, the other derivatives are

m412(m+1-n) m

fm (n,6) = Z Z Z a2y 1€ exp [—nm], (3.27)
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m+12(m+1-n) m

/// E : } : 2 : q,r
771 ) a3771 n

n=0 q=0 r=0

m+12(m+1-n) m

71» S Z Z Z a4gr’1 nn

a=0 q=0 r=0

The coefficients a2% ., a3, and ad®’, are

a2, = (¢+1) algfy

m,n

a31, = (q+1) a28Hhr

m,n

addr, = (g+1)a35n"

m,n

and
7 m+12(m+1—n) m
200 SN e, |35 ool
==l
m+12(m+1-n) m
=Y > D a2t (r+ 1) n% exp -],
n=0 q=0 r=0
m+12(m+1-n) m
I e T ,‘,,‘ q -
= La, m,nTl § e‘{p[ n?]],
n=0 q=0 =0
where

q,T
na]”ITL n?

q
—na2b’ "

3T
—nadl .,

ab?" = a2%™H (r 4 1),

m,n m,n

Now, for the product term f,,,—1— f;, we have

m—k 2(m—k—1t1) m—1—k

I Jih
f'm—l—kfk = Z Z Z a’m—l—k;zl"’]l

11=0 J1=0 11=0
k+12(k+1-1)

x> >~ nalié exp[—in],

i=0 ;=0
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"exp [—nn)] .

(3.30)

(3.31)

(3.32)

—
(98]
(I3
9

N

(3.34)



N

m—Fk k+1 (m—k—11) 2(k+1—1)

f??l—l—kfﬂ’c/ = Z Ee‘(p Zl I 7’) n Z Z

which further simplifies to

m—

whence

abr

m,n

i1=0 =0 J1=0
m—1—k k
2 : J1,h (La+1), (]1+])
Z (am—l—k,n k, )€ K (335)
L=0 (=0
m+12(m+1—n) m—1
Z fm—l kfk Z E Z
m—1 i=min{n,k+1} j=min{q,2k—2i42} T
k=0 i=max{0,n—m+k} j=max{0,g—2m+2k+2n—21} qer
ex —Mn1
l=min{rk} i g p[ ]]’
q—j,r—l Jil
Z am—i—k,n—iak,i
l=max{0,r—m-+1+k} |
m+12(m+1-n) m
n=0 : r=0
m—1 i=min{n,k+1} j=min{q,2k—2i+2} T
k=0 i=max{0,n—m+k} j=max{0,q—2m+2k+2n—27 qer
eEXp |—nn|,
l=min{rk} 77 é . l ” 4
q—7,r—1 7l
Z me7+1am-171.,n—1ak i
l=max{0,r—m+1+k} |
m—1 m+12(m+1-n) m
" r
§:fm ke = § ; Zoz; W11E" exp [—n (3.36)
k n=0
m—1 i=min{n,k+1}
k=0 i=max{0,n—m+k}
j=min{q,2k—2i42} l=min{rk}
E : § : q—g,r—l Jl
Xm—r+10my i—k,n— za’k i (337)

j=max{0,q—2m+2k+2n—2i} I=max{0,r—m+1+k}
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Making use of Eqgs. (3.27) — (3.29), (3.33) and (3.37) into Eq. (3.22) one may write

i q,r ’ aq—1,r—1 )
(L4m 1,n + Xr+l>xl]+1a3m—l n

m 2(m—n)m—1

iy o x-63T 1{ .41 ga2ly .
hMRm1 (n,€) = Z Z Zfz s LR TR ieT exp [—nn)] ,

q,r— 9.7
n=0 q= =0 =0 Xr+1a2)n 171 X7‘+1a5771 171

ab?" 2 sq,7—1
L X @Oy, 1,n + 2Om—l,n

m 2(m—n)m—1

= Z Z Z AL 1€ exp [-nn),

n=0 ¢=0 r=0
i , g—Lyr—=1 ]
X2m—2n—q+2(a’4m 1,n + Xr+1Xq+1a‘3m 1 n
1 q—1,r-2 q,r
+§Xq+1Xr 3m 1,n + 7 a'27n-1 n

(¢ 51 S—
A17117. Iy g1

>\T+la‘2m ln Xr+1a5m 1

-2 )
+Xra‘5?nr 1 n) + 20311»1 n

Using Eq. (3.38), Eq. (3.20) takes the following form

m 2(m—n)m—1

L1 [fm (1:8) — XmSFm—1 (1, € Z z Z AR 1€ exp [-nn] .

n=0 ¢=0 r=0

In order to obtaining the solution of Eq. (3.40) we must have
Y" —Y' =nlexp[-nn].
Integration of Eq. (3.41) involves two cases
Case (1) when n = 1, we have
q+1g+1—k
'. —'I]

Z Z kl2q+2 gt 2—k—p'l €
k=0 p=0

q+1

— qa k_ —
=Yl e,
k=0
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where
q+1—k q'

we=3 Ty 0Sk<q+1g20 (3.43)

Case (2) when n > 2 we have

q q—kq—k—r

_q! k_—nn
Y= ZZ Z k|nr+1 )q+1 T=p— k( +1)p+1n & ?

k=0r=0 p=0
q
Y= Z p:’l’knke_m’, (3.44)
k=0
in which
q—k q—k— _g!
- .. 0<k<qg>0n>2  (345)
; ZO k'nr+1 ) q+1—-r—p—k (TL + 1)p+1
The general solution of Eq. (3.40) is
m
y 0,r
fm (77-, §) - Xm,fm-—l (775 '5) - (Z Anl’()f?-) n 44
r=0
m 2m 2m+1 2m
Z{"_n Z m IILL‘{,O + Z Tl'}C v A?r:u“(lj k
q=0 k=1 q= l—l
m+1 2(m+1—n) 2(m+1—n)
DI DD Z ARt | |V
n=2 k=0
O3 CPe T L O, (3.46)

where C7*, C3* and C§" are the integral constants. In order to determine these constants we

use the boundary conditions (3.21) and get

2m
Cin = ZA?‘nTO& +Z{ Z ml#’cll,1+
r=0 r=0 q=0
m+1 | 2(m+1-n) 2(m+1-n)
2| 2 (Clem) AL, - Z Al | Y65 (347)

n=2 q=0
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m

an B Z Am 05

m 2m 2m
* Z{“ Z Apiiig + Z ALt +

r=0 q=0 q=0
m+1 2(m+1—n) 2(m~+1—n)
don D ARl - Z A1 | YT (3.48)
n=2 q=0

or = (3.49)

From Egs. (3.46), (3.24) and (3.47) — (3.49) one can write

m+12(m+1-n) m

Z Z z a‘m. 'Ilé- 7, € e

m+12(m+1—n)

m

- 0,7
§ : 2 : E : r q,—nn _ E :
XmX2m—2n— q+2am 117. ne Am 05 1

n=0 q=0 r=0 n=0 q=0 r=0 r=0
i 2m+1 2m i
. e W{Z 77 Z mliu‘(ll,k }
q=1 T
+Z m+1 2(m+1) 2(m+1—n) €
=0 .
T e X | X Akl ))
i n=2 k=0 q=k i
i 2m ]
'_'7{ Am ,0 Z Am llu‘l 1
m 2(m+1— n)
+ Z m+1 L Z Am "H'n 0 ér
r=0 q=0
+ Z 2(m+1—n) }
=2
" - Z A?n TL/J‘n 1
L 9=1 ]
i 2m ]
0, q,
An170 Z A1In 1#1 1t
=0
m m+1 2(m+1-n)
+y | DA Z (n—1) Afinpng | € (3.50)
r=0 n=2
2(m+1 n)
- Z Agﬁr,n#?l,ﬁ

Now, comparing the coefficients of like powers in the above equation, the following recurrence

formulas for the coefficients afy, of fr, (17,€) for 0 <n <m+1, 0 < q < 2(m+1—n) and
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0 <7 < m are obtained

2m
0,r o 0,r
a’m‘,O = XmX2m+ Za‘m—l 0 s Am ,0 Z Am 1/11 if
q=0
m+1 | 2(m+1-n) 2(m+1—n)
P
+ Z Z (71 - 1) Am 71/-’“11 0 Z Am n/"’n 1]> (301)
n=32 q=0
Lr
a’m 0 XmX2m+1a’m 1,0 Am 0’ (3'52)
2m
O)T o 3 O,T 0 7‘
n1 = XmXem@m—11 — A Z Am 1#‘1 1
m+1 2(m+1—n) 2(m+1-—n)
+> |n D ATLulo— D AL, (3.53)
n=2 q=0 q=1
2m
ml = XmX2m-— q m 1 1 + Z Am 1:“'1 K (354)
q=1
2(m+1-n)
T e q,r
agn,n i X171X2m—2n—q+2am—1,n + Z Am n/- n,k* (355)

Now it is pointed out that fo (1, &) the initial guess has the same structure and in this subsection
we proved that, if the first (m — 1) solutions f;(n,€),{i = 0,1,2,...,m — 1} have the same
structure as fy (1, £), then mth order solution f,, (7, ) have the same structure. Utilizing the
above recurrence formulas, all coefficients afy, can be computed using only the following two

coefficients

agp =1, add = -1 (3.56)

)

and the mth-order approximation is

M M+1 M 2(m+1-n) m
> fn (0,6) = Zamo+ Ze‘"" Yoo DD Doalate|. (3.57)
m=0 m=n—1 q=0 r=0
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In fact we obtain the following analytic solution of the flow

M4+1 M 2(m+1-n) m

(n,€) = Z fm(n, &)= A}li];})o Z ,“0 Z o= Z v Z all nIe"

m=0 m=0 n=1 m=n—1 g= 0 r=0

3.3 Skin Friction

The shear stress 7 on the surface of the stretching sheet is
T=0

T2z|2=01

and the local skin friction coefficient or frictional drag coefficient is

"
€= p(ar)®
We have
Cy = Re; /" (m.6)],
where
Re, = g7'2.

v

3.4 Convergence of the analytic solution

In this section we discuss the convergence of the series solution in Eq. (3.58). For this we first

show that if the series (3.58) converges it will converge to the solution of the problem given in

Eq. (3.8) and conditions (3.9). Suppose that the auxiliary parameter f; is chosen in such a

way that the series in Eq. (3.58) converges, then

A}Enoo I (n,€) =0.
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From Eqs.(3.20) and (3.21)

M—o0

M
lim |:h1 Z le Un 5):! = 1\}133)0 Z Ly [fm (”)Kf) - mem-l (’l)ﬁ)] y

m=1

M
— 0|3 0= 3 ot 06

m=1 m=1

= lim Lify (n,6),

m=1

= Ly lim fp(n,§) =0, n€(0,00). (3.60)
M —o0
The above equation implies that the infinite sequence ry 79 73, ... converges to zero where
M
™ = Z Ran1 (0, €) -
m=1

Now

9" fi €(1 —&)&fi1 | (1-8) 8 fia
Z{ ant 2 an? * 2 on?

M
> Ralmg) =
=1

—£(1- 5+ foL 1=k b (3.61)

M e B gz - " ;
lim {Z R (77’64 Z{B fi-1 75(1 €) E)a]:;a_l N (1 . €) 02 fi,
1

I 2
M—oo rem 2 on

L=

- ¥ fol i~d% bs (3.62)

) oo
4Zf1 2 87]3 Zfz l+ 2 6772 Zfz
oo i—1

0 i
B 1 8§8 2Zf1 1+2£ZZ](‘1 1-k 57731’ (363)

i=1 k=0
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a nE(1=¢) (1-¢ & &
B 6774 Zf B Zf 2 aT;?kgfk
; ol
e(1-6-2_Nf 40 1S 3.64
£(1-¢) 6&87;2 kgofﬁ— 3 Lz:(:)fk} [ana kz:%f;,} (3.64)

and, therefore, the above equation after using Eq. (3.60) reduces to

oo (oo} oo
%{ka 4 7]5(12—5)%33 ka 5 (155)827;2_ka
(-8 g5m Y fe+2% ka] [597; fk}
k=0 k=0 k=0
From Eq. (3.21), we have
oo oo
> fe(0,6) =0, ka 0,)=0, > fi(o0,6)=0. (3.66)

From Eq. (3.64) and (3.65), if the series given in (3.58) converges, it must be a solution of the
problem given in Eq. (3.8) subject to the boundary conditions (3.9).

The convergence region and the rate of convergence of the series (3.58) strongly depends
upon the value of the auxiliary parameter fi;. To investigate the range of admissible values of
auxiliary parameter /i for which the series (3.58) is convergent, we first consider the convergence

" n

of the related series such as f (0), f" (0), f (0) and so on. If we plot these series against the
parameter h; the curve obtained in this way is called the h-curve. We draw the curve for the
series of f" (0). If it gives a straight line parallel to hi-curve and it will not give any information
about the valid values of ;. Then it is necessary to plot the series f " (0) and so on unless we
get a curve other than a straight line. The portion of the fi-curve which is parallel to the /i-axis
will give the region for the admissible values of /i;. The fi-curves are sketched in Fig. 3.1 for two
different orders of approximations. Fig. 3.1 clearly indicates that the range for the admissible

values of fi; is 0.1 < /iy < 0.5. Thus, by means of choosing fi; = 0.1, our result shows that the

series (3.58) converges and we obtain an accurate analytic solution valid for all time 0 < 7 < oo
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in whole region 0 < 7 < co.

!

4 ——— 158th-order app. :'

!
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" SR W 16th—order app. /

’
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-4 ;'
b

~-0.2 0 02 0.4 06

Fig. 3.1. h-curves for different orders of approximations when & = 0.5.

3.5 Results and discussion

In this section, the influence of time is discussed on the velocity components and the skin
friction coefficient. Such effects have been discussed through Figs. 3.2, 3.3 and Table 3.1. Fig.
3.1 shows that the r-component of velocity and the thermal boundary layer thickness increase
when dimensionless time 7 is increased. However with the increase in dimensionless time 7,
the z-component of velocity decreases and the thermal boundary layer thickness increases as
shown in Fig. 3.3. It also depicts that one can obtain a velocity profile for all the times and
the desired solution is valid for all times. The values of skin friction coefficient are tabulated in

Table 3.1. It is found that magnitude of skin friction increases by increasing time 7 and figure

3.4 are given for the skin friction in the case of viscous fluid.
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T
T Ct Re?

0.01 | —0.558759

0.10 | —0.671632

0.25 | —0.734321
0.50 | —0.840094
1.00 | —0.926639
10.0 | —0.958742

1
Table 3.1. Skin friction coefficient Cf Re? for different values of time when i = 0.1.

7=0.01
=010
1=025

718

=100

Fig. 3.2. The velocity profile f' (n, &) at different dimensionless time

T = at when iy = 0.1.
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Fig. 3.3. The velocity profile f (n,£) at different dimensionless time
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7 = at when h; = 0.1.
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Fig. 3.4. The variations Rei/ . Cy for the viscous case .
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Chapter 4

Unsteady axisymmetric flow of a
second grade fluid over a radially

stretching sheet

The aim of this chapter is to analyze the flow problem of the previous chapter for
a second grade fluid. An analytic solution by HAM is presented for computing the
axisymmetric flow induced by a radially stretching sheet. The obtained analysis is
valid for all values of rhelogical parameters and time. Also the convergence of the

solution is discussed and the effects of material moduli is highlighted.

4.1 Mathematical description of the problem

The geometry of the problem is same as in the previous chapter. The difference lies in the
consideration of the constitutive equation of a second grade fluid. The equations which govern
the flow are the incompressibility condition in Eq. (3.1). The constitutive equations for a second

grade fluid is defined in Eq.(2.2) . The incompressibility condition is automatically satisfied and
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from Eqs.(2.2) and (2.11) we have:
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(4.1)

Note that the above equation reduces to Eqs. (3.2) and (3.3) of Newtonian fluid when a; = 0.

Furthermore, the boundary conditions of the problem are given in Eq.(3.4).

Upon making use of transformations (3.5) and then eliminating pressure from the resulting

equations we arrive at

1-%

fiv s

(F' +gf"y—E(1-€)

afll
23

+26ff" = 2af f* = 0.
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The boundary conditions in terms of f are given in (3.9) and

acyy

==
4.2 Solution by HAM

4.2.1 Zeroth-order deformation problems

The velocity distribution f (7, &) can be expressed by the set of base functions of the form
{n"¢ exp (~mm)| k2 0,5 2 0,n 2 0} (4.4)

in the form of the following series

&)= fm(n,€)

m=0

where
o0 oo o0

Fm (,€) =bgo+ Y DY bdun* exp (—nn), (4.5)

n=0 k=0 j=0

in which bf‘;gn are coefficients. Invoking the so-called Rule of solution expressions for f (1, &) and
Egs. (4.3) and (3.9). We have chosen the same initial guess as given in Eq. (3.10) and auxiliary
linear operator £; given in Eq. (3.11). Equations (4.3) show that the nonlinear operators here

is:

64— - (93_
Na [f(n,&p)] = févap) 4 ’75(12 £) fé?],af,p)
7 83_— V{ 1 — 62“
+2€f (7),5;1’) f(,(_):;:f,p) + ( 5 6) fé:];f)P)

=
d J;ég;fz,?) — 2T (1, €,p) f(7 é p)

—§ (1 =)
If 7 is the auxiliary nonzero parameter then the zero order deformation problem satisfies

(L—=p) L1 [f (n,&p) — fo(n)] = phaNz [F (n,€,p)] , (4.7)
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For p =0 and p = 1, we have

The initial guesses fq () approaches f(n,&) as p varies from 0 to 1. Through Taylor’s series

expansion we can write

Tm&p)=fo)+ > fm (6 ™ (4.9)
m=1
where
19T (,&,p)
fm (TI, &) = = —apm - (410)

and the convergence of the series (4.9) depends upon fy. The values of fiy are chosen in such a

way that the series (4.9) are convergent at p = 1. Then by using Eq. (4.8) one obtains

Fm&=fom+ D fm®8), (4.11)

m=1
4.2.2 mth-order deformation problems

Here we first differentiate Eq. (4.7) m times with respect to p then divide by m! and setting

p =0 we get

['2 [frn (7), E) - mem—l (777 5)] = hQRﬂl? (777 g) ) (412)

subject to conditions (3.21) and

a4fm—l 77& (1 o g) anm—l (]- - f) a2fm—l a3fm——1
R'm. F - 11— P =
B W T B | SR =7
m—1 m—1
+26 Y fno1kfr =20 fm1-kfr- (4.13)
k=0 k=0
The general solutions of Eqgs. (4.12) subject to (3.21) are
fm (77,6) = f;'l. (77) g) + Cl exp (_77) + 02 exp (77) + 03, (414)
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where f} (n,€) are the particular solutions and the constants are determined by the boundary

conditions (3.21) which are given by

_ Ofn (1,6)

Co=0, Cy an 5
7=0

Cy = —C1 — f5(0,6). (4.15)

The linear non-homogeneous Eqs. (4.9) —(4.13) are solved using MATHEMATICA in the order

m=1,2,3,... given by the initial guess.

4.3 Skin Friction

The shear stress 7 on the surface of the stretching sheet is

T = UTZI;:07 (4.16)
and the local skin friction coefficient or frictional drag coeflicient is
T
Cr = 4.17
T olary? e
Equation (4.17) can be written as
—l " ’ " "
Cy=Re;? [f" (,6) +2a (£ 1,0 £ (0,0 = F (0,0 1" (,0))] (4.18)
where
Re, = gv‘Q.
v

4.4 Convergence of the analytic solution

As long as a solution series given by the homotopy method converges, it must be one of the
solution. So, it is important to ensure the convergence of the solution series. In this section,
we discuss the convergence of the series which contains the auxiliary parameter hp. The values
of hy determines the convergence region and rate of approximation for the homotopy analysis

method. The auxiliary parameter /iy provides us with a simple way to ensure the convergence
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of the series solution. For this purpose fi-curves are sketched in Fig. 4.1 for two different orders
of approximations. Fig. 4.1 clearly indicates that the range for the admissible values of hy is
0 < hy < 0.6. Thus, by means of choosing his = 0.2, we obtain an accurate analytic solution

valid for all time 0 < 7 < oo in whole region 0 < 77 < <.

0.8

—  12th order app.
-------- 11th order app.

02 04 06

5
o

Fig. 4.1. h—curve for different order of approximations when & = 0.5.

4.5 Results and discussion

In this section, the influence of dimensionless time 7 and non-Newtonian parameter « is seen
on the velocity components. For this purpose, we plotted the graphs 4.2 — 4.5. It is observed
that when dimensionless time 7 increases, the r-component of velocity and the boundary layer
thickness increases. However the z-component of velocity decreases and the boundary layer
thickness increases with an increase in 7. The behavior of velocity profile for different values
of second grade parameter « is displayed in Figs.4.4 and 4.5. Figure 4.4 indicates that the
r-component of velocity increases and the boundary layer thickness increases with an increase

n a.
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However the z-component of velocity decreases and layer thickness increases by increasing

the values of the second grade parameter o. Fig. 4.6 display the effects of skin frictions for

different order of second grade parameter a.

Non-Newtonian Fluid (a = 0.5

— 7=001
- 1=010
---- 1=025
--- 1=050
-—- 1=1.00
- - 1=100
Y
N
R
e e e ]
0 1 2 3 4 5
I)fJZ

Fig. 4.2. Variations of velocity field f* with increasing non-dimensional

time 7.

42



Non-Newtonian Fluid(a = 0.5)

— 7 =001

—— =010

- 1=025
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- - 1=100
2 3 4 5
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Fig. 4.3. Variations of velocity field f with increasing non-dimensional

time 7.
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TTE e
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Fig. 4.4. Variations of velocity field f* with increasing non-dimensional

Q.
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Fig. 4.5. Variations of velocity field f with increasing non-dimensional

a.
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Fig. 4.6. The variations Reglg/ o Cy for different values of .
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Chapter 5

Boundary layer flow of an unsteady
second grade fluid due to a

stretching sheet

The unsteady laminar flow of a second grade fluid due to a stretching sheet has been
investigated in this chapter. The flow is governed by a third order boundary value
problem whose analytic solution is obtained in terms of non-dimensional second
grade parameter. Analytic solution valid for all time has been derived by employing
HAM. Finally, the convergence is developed and influence of various parameters of

interest is examined.

5.1 Flow analysis

Consider the two-dimensional unsteady boundary layer flow of a second grade fluid over a
stretching sheet placed in the XOZ- plane and moving with a velocity az in the xz-direction,

a being a constant. The continuity equation (2.10) and the momentum equations after using
Egs. (2.2) and (2.11) yields
du  Ov

— >~ l"
32+ 9y 0, (5.1)
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Oud’u | Pu  , u
55255 + 595 + UG
dzx Oz dx*ot dx

2 2 9u &u du _%u

du 5 “au " Uau W 0 u 4 0*u a1 | TVagagy; T Ugez T oy va0y (5.2)
ot Oz By Ox? 03/2 P _*_@ 2y + u 4 va%
9z 9y2 9y2ot ay®

Ou 8%v v 9%v
+ovort T 2o o

_B_u62u+Qy_62u_+_ 33v
9y oy? " 9z 9y " 9220t

a3 .93 v 9?2
3_U+u8_v+v@ = @_*_ 8_21) _|_ﬂ —|—’u,3713)-+ Ua-‘ﬂisll + 'a—;)glavy (53)
ot Oz dy oz?  Oy? p »Bv_ o oo [’

gy ey
+u8y28:c + Ay B2 + 99y ay?

93v 93
-1-1)%3 = _Q_By ot

where v is a kinematic viscosity. It is clear that the above equations are different from those
obtained for a radially stretching sheet in the previous chapter. Under the usual boundary layer
arguments that u, ¢, %, %, be O (1) and y, v be O (§) yields the flow governed through
Egs. (5.1) — (5.3) as

du ou ou u oy &u Oud*u  Ou O*u d3u &u

Il P L S R | R U O L M TR ey
3 Yoz T8y Ve T 5 |20 T moE T By oaoy T Vo T ager| Y

The relevant boundary conditions of the flow are:

w = az, v=0 at y=0,

(7
3y
~—

u — 0 as y — oo. (

Note that v and «ay/p being O (62) and the terms of order O (9) are neglected (where § being
the boundary layer thickness).

Introducing

u=azg (§,n), v=-—avég(&n), n= V%y, E=1-e%, (5.6)

equations. (5.4) — (5.5) takes the following form

-a(-9)g"+ AT 20 - % +a(1-8) {¢% - I}

_I_EZ (_9/2 + gg”) + a{ (qu 4 QQIQIN . ggiv)
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with the boundary conditions

g = 0, ¢gd=1 at n=0,

g — 0 as n— oo (5.8)

5.2 Exact analytic solution

The velocity distribution g (1, £) can be expressed by the set of base functions of the form
{1 exp (=) k 2 0,5 > 0,m > 0} (5.9)

in the form of the following series

=Y g (56}

m=0

where
o0 o0 o0

gm (€)= o+ Y Y > chint e exp(—nn), (5.10)

n=0 k=0 j=0

in which cﬁ{fn are coefficients. Invoking the so-called Rule of solution expressions for g (n,¢) and
Egs. (5.7) and (3.9) we have used the same initial guess and linear operator as in the previous

chapter. Eq. (5.7) suggests that

Gm.&p) = ! P9 _ 2000
Ns[g(n,&p)] = [{€—a(l-¢ )}‘ §Q1=¢) an? &1 =f) BnoE
5 nag 2 (99", -0
+a(1—§){EW— 5877‘1}+€ 1= (5_77) +Qa—n§}+
82A 8A83A ,\84A
a§{< ) +28_7gy_877g_g_6773}]' (5.11)

Let h3 is an auxiliary nonzero parameter the zero-order deformation equation

(L=p)L1[g(m,&p) — g0 (0,€)] = phaN3 [ (n,&;p)] s (5.12)
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is subject to the following boundary conditions

99 (n,&p g (n,&p .
]((;ifl) |”:0: I M_I_). |,):+DG: 0. (oA13)

g(0,&p) =0, on

As p increases from 0 to 1, g(n,&;p) varies from the initial guess gg (1,£) to the solution

g(n,€). For p=0 and p = 1, one can write

g(m,60)=g0(n,8), g(n&1)=g91n¢). (5.14)

According to Taylor’s series

+o00
G&P) =9 &0+ > gm (0, &)™, (5.15)
m=1
where
1 9™g(n,§p)
- = 2 Z 200 , 5.16
converges at p = 1. Then, we have
+0oo
gmE=gm&+Y_ an(n8). (5.17)
n=1
mth-order deformation equations
Ly [gm (na 6) — Xm9m—1 (77» 6)] = h3Rm3 (77) E) ) (518)
subject to the boundary conditions
Ogm (1, &;p O0gm (0, &; 0
Im (0,§;P) = 0, M |1]:0: 0’ '—‘(_7‘_‘—) |1)=+oo: 0> (519)

an on
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where

639771— 7] 829771—1 : a2gm—l
Rus(,€) = [{€-a(-0)5t + Jeq-ofnt 20— o Sl
a4‘]771—1 77849711—1 2 = L - — "
1= — =& - 1-k9r t 771~—C'~+
+afl =£){€ POE 2 ont ¥+ &4 ;gm 1-kIk ,;,g 1- kG }
m_l m—l " T’l'—'l nn
3 Z Ima1-k0k +2 > Gm1-kGk — D Gm-1-kGp }]- (5.20)
k=0 k=0 k=0

The general solutions of Egs. (5.18) subjected to (5.19 ) are

Im (1,€) = g, (0, €) + Crexp (—n) + Caexp () + Cs, (5.21)

where g7, (n, &) are the particular solutions and the constants are determined by the boundary

conditions (3.21) which are given by

agr. (n, *
Cr=0, ¢=2mBI\ oo 6 g0 (5.22)
"7 7',:0

The linear non-homogeneous Egs. (5.18) — (5.20) are solved using MATHEMATICA in the

order m = 1,2, 3, ... given by the initial guess
5.3 Skin Friction
The shear stress 7,, on the surface of stretching sheet is

Tw = Ogy ]y:O, (523)

and the local skin friction coefficient or frictional drag is

Og=—". (5.24)
p(az)
or
1 " 1 = § 1 ag” o 1"
2‘ = . o 11 . —J . i .2
RelCg=g9 —of 5 (g ng )+(1 £) o€ +399 —99 } n=o, (5.25)
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where

5.4 Convergence

In this section, we discuss the convergence of the series which contains the auxiliary parameter
hs.The values of hg determine the convergence region and rate of approximation for the homo-
topy analysis method. The h-curves are sketched in Fig. 5.1 for 10th-order of approximation.
Fig. 5.1 clearly indicates that the range for the admissible values of fiig is —2 < hsz < —0.5.
By means of choosing /i3 = —1.0, we obtain an accurate analytic solution valid for all time

0 € 7 < o in whole region 0 < 7 < co.

0

-02 ——  10th order app.
-04

G-081 \_

:iv -0.8 T
~11

=T 2
~14¢ \

25 -2 _15 -1 -05 0 05
13

Fig. 5.1. h-curve for 10th order of approximation when £ = 0.5.

5.5 Results and discussion

This section explains the variations of dimensionless time 7 and the second grade fluid parameter
a on the velocity components and skin friction coefficient. Such variations have been discussed

through Figs. 5.2 — 5.8. The purpose of Figs. 5.2 — 5.5 is to see the variations of 7 on the
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velocity components f and f’ in the Newtonian and second grade cases. From these figures it
is noted that when 7 increases the z-component of velocity and the boundary layer thickness
increases for Newtonian and second grade fluids but the variation is large in magnitude in
the case of second grade fluid case. This shows that the parameter a enhances the effects
of the dimensionless time. However the y-component of velocity decreases and boundary layer
thickness increases with an increase in 7 for Newtonian and second grade fluids as shown in Figs.
5.3 — 5.5. In order to see the effects of second grade parameter o on the velocity components f
and f/, Figs. 5.6 and 5.7 are prepared. From these Figs. it is obvious that when we increase the
values of second grade parameter «, the z component of velocity and boundary layer thickness
increases. However the y component of velocity increases and the boundary layer thickness
decreases. Fig. 5.8 is plotted just to see the variation of skin friction coefficient under the
influence of second grade parameter and the dimensionless time. This Fig. elucidates that the

magnitude of skin friction coefficient decreases with an increase in the second grade parameter.

Newtonian Fluid(a = 0.0

sese o e Q00T
T=0.10
sm=e = 0,20
--- 7=050
= = A0
- - 1=100
NN
\\ \\\
\.\\:: —. sk
o e —_—
0 1 2 3 4 5

=
e
Nk

Fig. 5.2. The velocity profile [’ (n,£) at different dimensionless time 7.
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Newtonian Fluid (a = 0.0)
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~=ee ¢ =025
---1=0.50
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5.3. The velocity profile f (7, ) at different dimensionless time 7.

Non-Newtonian Fluid (v = 0.5)

l\ 7 =001

N\ N

A\ e 7 =025

‘\‘“\\\ ~-- 7=050
Vi - p=1.00
'\‘ \ \\ — - 1=10.0
Ly N

Fig. 5.4. The velocity profile f’ (7, &) at different dimensionless time 7.
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Non-Newtonian Fluid(a = 0.5)
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- - 1=100
0 1 2 i 4 5]
uf‘%

Fig. 5.5. The velocity profile f(7,&) at different dimensionless time 7.

1=05

Fig. 5.6. The velocity profiles f’ (5, &) at different values of second

grade parameter a.
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Fig. 5.7. The velocity profiles f (n,&) at different values of second

grade parameter .
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Fig. 5.8. The variationt Reglv/ “© + for different values a at different

dimensionless time 7.

54



Chapter 6

Unsteady MHD axisymmetric flow
and heat transfer of a viscous fluid
over a radially stretching sheet in a

porous medium

This chapter describe the fully developed unsteady flow and heat transfer charac-
teristics of a viscous fluid over a radially stretching sheet. The fluid is electrically
conducting and occupies the porous space. The heat transfer analysis has been car-
ried out for the two heating processes, (i) prescribed surface temperature (PST-case)
and (ii) prescribed surface heat flux (PHF-case). The analytic convergent solution
of the governing non-linear partial differential equations is computed through HAM.
Analytical expressions for velocity and temperature are first constructed and then
shown graphically. The numerical values for the skin friction coefficient is presented
in tabular form. Attention has been given to see the variations of the emerging

parameters on the velocity and temperature distributions.
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6.1 Flow equations

Consider an axially stretching boundary for which the lateral surface velocity is proportional
to the distance 7 i.e. ar, a being the constant of proportionality. The fluid fills the porous
space z > (. The fluid is electrically conducting in the presence of uniform applied magnetic
field (0,Bg,0). The induced magnetic field is assumed negligible under the assumption of small
magnetic Reynolds number. Besides this no electric field is applied and the effect of polarization

of the ionized fluid is neglected. The governing equations under these assumptions are

ou, Ouou _ 1op [ Pu 10w u
a Yo Ve T pOr 1o T2 Trar 12
2
—G—Bou—y—d)u, (6.1)
p k
ou, Dw ow 105 [0 S Lou
ot or 0z p Oz "I9:2 T a2 T ror
2
——fj—Biw—zq—sw, (6.2)
p k

and the energy equation

c <a—T+ua—T +waT> = A—O (c‘?z_T + BZ_T + lgg)
P\ ot ar 0z p \Or?2 922  ror
24 + (32)°
IRt 9
rogete 2 ("

In above equations, u and w are the velocities in the r- and 2- directions respectively, T is
the temperature, o is the electrical conductivity of fluid, p is the density, v is the kinematic
viscosity, ¢ is the porosity, k is the permeability, kg is the thermal conductivity, ¢, is the specific
heat and a is the stretching rate. The appropriate boundary conditions for flow analysis are

given in Eq.(3.4). For temperature we have the following two sets of boundary conditions.
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For PST case

2

T:Tw:Too+A(%> at 2=0, T—Te as z— oco. (6.4)
For PHF case
2
—kg—fzqw:D(§> at z2=0, T—oTsw as z— oo. (6.5)
in which A and D are constants. Introducing
u = arf'(n,8), w=-2av{f(n,§),

F o= T 2 . T=at, (6.6)

Ve

T—Tes
9 (na E) - (g) 77) Tw Too,

and

7\ 2
T = T+ (7> 6 (&,m) for PST case,

A
D /r\2
°°+E(l) \/79\5,,7) for PHI" case,

T = T, (6.7)
equations (6.1) — (6.7) become
fw ( g)f/// +2€ff” + ( E) f// o f( f) aaf£ . (I( s j\/[‘Z) 'ff” —0. (6.8)
PST case:
" : o Ny _ ¢00 ﬁ .2 /g
e0" +Pre(L—¢) {30 - €82} + £+ 2Prg (o -ro | _, -
+PrE (ff”z ip %—1”2)
PHF case:
" 4+ Pr — g — &’ Pr
&' 1 Pre-0 (30— et} + For2ml U - ) | -
+PrE <§f”2 %f&)



f(Oag) = 0> f,(oag):9(07€):lz_gl(off):

f'(00,€) = 6(00,8) =g (00,6) =0, (6.11)
where
j = B o g ¥ e g5
v k ka pa
E = %:i; (PST-case), E = k%szﬂ \/g (PHF-case). (6.12)

In the next section, we are going to find the analytic solution. The non-linear partial
differential equation (6.1) governing the flow has to be solved subject to the boundary conditions

(3.4) by the homotopy analysis method (HAM).

6.2 HAM solutions

The velocity and temperature distributions f (1, ), 8 (n,¢) and g (1, ) can be expressed by the

set of base functions of the form

(op
=
w
N

{ 77k£fj exp (—nn)

£>0,5>0,n>0} (6.
in the form of the following series

Fm,8 =Y fm(n,8)

m=0

0(m,€) = Om(n,)

m=0

9(77,5) = Z 9Im (7716)

m=0
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where
.fm. (7], f)
Om (1, €)

Im (0, €)

k
in which dmn, em’n

expressions for f(n,€), 0 (n,€) and g (n,§) and Egs. (6.8) —

and hm 'n are the coefficients.

oo o0 oo

0,0
d ot Z Z Z dm n'l g] exp —7?7])
n=0 k=0 j=0
oo o0 o0

= 2.0,

n=0 k=0 j=0

(ool e el o}

= DD M

n=0 k=0 5=0

I

,"l
7n]17. Ui 5] exXp —7“])

1n*¢ exp (—nn) (6.14)

Invoking the so-called Rule of solution

(6.10) for the velocity we have

the same initial guess and linear operator as in chapter 3. Whereas 6 (1), go (1) and linear

operators Lo are

where

o (n) =exp(=n), go(n) =exp(-n), (6.15)
Lo (6) =0 — 6, (6.16)
L3 [Cyexp (—n) + Csexp (n)] =0, (6.17)

and Cy and Cj are the constants. Equations (6.8) —

are:

Ne[f(n,6p)] =

(6.10) show that the nonlinear operators

M"f (n,&;p) L EA-9F
on? 2 on3
= o%F . 1— &) 0%F (n, &
26T (. £:p) fgz;af,p) ( 26) fé,]]f p)
327(77,6;1?)_5(1_ &*F (n,&p)
on? ocon?

f(n,ép) N

—(K+M?)¢ £) (6.18)
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Ns {7(7'},5;1)) ’5(7,,5;1))] .

Ne [F(n,6p),5(n,&5p)] =

=7 462 -
&9 (n,&p) + %9(71,5;17)
+Pre(1-¢) {5’5 (s Bl = — o

+2Pr¢? (7(77,6;1))5/ (n,&p) — T(n,é;p)ﬁ(n,&;p))

2
+PrE <£7”2 (.69) + T (77,£;p)> , (6.19)

. 4€2 _
£9" (n,&p) + i.g(n,&;p)

0
ag (n,&;

+pre-0 {17 (g - €2 BEE

+2Pr& (F(n,&p) 9 (0,&p) — F (0,6:0) T (0,6 D))

2
+PrE <€7"2 (n,&p) + %?2 (m, é;p)> : (6.20)

Letting hy4, fis as the non-zero auxiliary parameters, the zeroth order deformation problems are

(L—=p) Ly [f (0,&,0) — fo ()] = phaNa [f (n,€,D)], (6.21)

(1 - p) ['2 [5 ("/: éyp) - 60 (q)il = pthV’S [}; (77) tap) ) 5(77, évp)} ) (()22)

(1=p) L2[g (n,&,p) — g0 ()] = phsNe [f (n,€,p), G (n,&,p)] (6.23)
7(0) §7p) - 07

=

f (m) §7p) = O’

7 (0,6,p)=0(0,6,p) =1 =7 (0,€,p)
0 (c0,€&,p) =G (00,€,p) =0, (6.24)

where p (€ [0, 1]) is an embedding parameter. When for p = 0 and p = 1, we have

f(n,€0)
6 (n,€,0)
g(n,&,0)

fO (77)a ?(”)éal):f(nag)’
90 (77) ) 5(77151 1) =0 (77,5) )

go(m, gm&1)=9®). (6.25)
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The initial guesses fo (1), 6o (1) and go (1) approach f(n,£), 6 (n,£&) and g (n,£), respectively,

as p varies from 0 to 1. By Taylor’s series expansion:

?(777 §7p) - fO (')) + Z fm. (777 6) pma

m=1

0(m&p) = Oo(m)+ Y Om(n&) p™
m=1

Jm&p) = g+ D gm(n,é) p™, (6.26)
m=1

where

1 81717 €,
gy = 4770
1 0m9 g
em (7775) = ﬁ% )
! D ot
1 9mg(n,&p
m(ng) = S pnEB (6.27)

and the convergence of the series (6.26) depends upon the values of the parameters /iy and hs.
The values of fiy and hs are chosen in such a way that the series (6.26) are convergent at p = 1.

Then by using Eq. (6.25) one obtains

Fm8& = fom+Y fm™m8),

m=1

g (77, 5) = bo (77) T Z Om (77’ 6) )

m=1

9(m&) = g+ D gm(n8). (6.28)

m=1
6.2.1 mth-order deformation problems

Here we first differentiating Eqs. (6.21) — (6.23) m times with respect to p then dividing by m!

and setting p = 0 we get

‘Cl [f'm (77) 6) - X‘mfnl—l (77) g)] = h47—\)/m4 ("7: g) ) (629)
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L [0m (1, €) = XmOm—1(1,€)] = hsRms (1, €) , (6.30)

L2 [gm (1,€) — XmIm—1 (1, €)] = hsRimg (1, €) , (6.31)

fm (0,8) = f1,(0,8) = f1,(00,&) = 01 (0,€) = O (00, €) = g, (0,€) = gm (00,€) =0, (6.32)
whence

04f7n—1 + 776 (1 - é) 63f7n—1 + (]- - &) 62fm—l
ont 2 on3 2 on?

Rond (”a 5) =

a f 83f m—1
~ (B + M%) 67 S E(1-€) = + 2k me 1-kfi» (6.33)
o0&
829711—1 4 2
Roms (’7>£) = € 6772 +S§ Om—1
) . Qagm—l - aam—l
+Pré(l —§) [2 o £ o€ }
00k "~ Ofm-1-k
2P i — 0
+2Pr Zf kg, T /;) an Ok
m—1 m—1
| P 1ok P 1267 "N Of 1 afk] ‘
+H [Z on? on? S Z on E ’ (6.34)
L k=0 k J
Roo(n,g) = ¢2Imct 4o
m6 \7], = 87)2 5 Im—1
nagm 1 agm—l
Pré(l— =
+Pre(1-g) |J2mt _ (nct ]
m—1 m—1
g Ofini—k
+2B2 | ) | fmetebrg = D =l
k=0 07’) k=0 877
+Pr mi:l BQfm—l-—k a2fk - 1262 7112—:1 afm—l—k._a_flg (6 35)
= on?  On? § &~ om0 ' '
0, m<I1,
Xm = (6.36)
1, m>1
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The general solutions of Eqs. (6.29) — (6.36) can be written as

fm (77a E) - f:;l (77: 5) + Cy exp (_77) + Co exp (77) +8%,
Om (1,€) = 05, (n,€) + Caexp(—n) + Csexp (),
Im (77, 6) = 951 (77) f) wo 04 exp ('—77) i C5 exp (TI) ) (637)

in which f (n,€), 05, (n,&) and g}, (n,&) are the particular solutions and the constants are

determined by the boundary conditions (6.32) which are given by

Gy = CG=0, ¢ =2mmOl o o 06,
an =0
Cy = —05(0,6) (PST-case), Cy= a,ﬁg(:_g) (PHF-case).  (6.38)
7n=0

In the next section, the linear non-homogeneous Egs. (6.29) — (6.36) are solved using MATH-
EMATICA in the order m = 1,2,3, ...

6.3 Convergence of the HAM solution

The explicit, analytic expressions of axisymmetric flow and heat transfer analysis contains
two auxiliary parameters hy and hs respectively. The convergence region and the rate of ap-
proximation given by HAM are strongly dependent upon these auxiliary parameters. In Figs.
6.1(a) — 6.1 (c), it is clear that the range for admissible values for hy and hs are 0 < hy < 0.6
and —1 < hs < 0. The series converges in the whole region of  when hy = 0.1 and hs = —0.75
for both the prescribed surface heat flux (PHF case) and the prescribed surface temperature
(PST case). It is also observed that the series f (1, £) converges faster than that of 6 (7, ) and
g (n,&) because of the fact that the non-linearity in the later case is stronger than the former.

Thus, by means of choosing auxiliary parameters hy and hs, we obtain an accurate analytic
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solution valid for all time 0 < 7 < co in the whole region 0 < 7 < co.

Flow analysis

Fig. 6.1 (a).
ki ]
P /
———  15th-order app. !
!
-------- 16th-order app. /
2 /
'I
o /
S o
-2
i
-4 !
Jl .
0 02 04 0.6
7:,‘4

-0.2

Fig. 6.1 (a) h-curve for the non-dimensional velocity when £ = 0.5
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Fig. 6.1(b). PST case

4.
2 L
- 0 // e ™
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4
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g——— 11th order \
15 1 05 0 0.5

hi5

Fig. 6.1 (b) h-curve for the non-dimensional temperature 6.

Fig. 6.1(c). PHF case
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4| ///
G 2 | 7
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4} =V 1E ONCIEE

_61

15 1 0.5 0 0.5
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Fig. 6.1 (¢) h-curve for the non-dimensional temperature g.
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6.4 Results and discussion

In this section, attention has been focused on the variations of emerging parameters such as
velocity profile for different values of time 7, Prandtl number Pr , Eckert number E and effects of
porosity parameter k& and the Hartmann number M. The behavior of velocity profile for different
values of time 7 is displayed in Figs. 6.2 and 6.3. Fig. 6.2 indicates that the r-component of
velocity increases and also the boundary layer thickness increases with an increase in time 7.
However the z-component of velocity decreases and layer thickness increases with an increase
in 7 as shown in Fig. 6.3. It also depicts that the solution is valid for all times. The values of
skin friction coefficient are tabulated in Table 6.1. It is found that magnitude of skin friction :
increases with an increase in time 7. The influences of porosity parameter k& and Hartmann

number M are similar to 7 on f and opposite to 7 on f’ (see Figs. 6.5 —6.7).

T Cy Rer%

0.01 | —0.558759
0.10 | —0.671632
0.25 | —0.734321

0.50 | —0.840094
1.00 | —0.926639

10.0 | —0.958742

1
Table 6.1. Skin friction coefficient Cy Re? for different values of time.
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Fig. 6.3. The velocity profile f (n,£) at various non-dimensional time 7.
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Fig. 6.4. Influence of porosity parameter on the velocity field f’.
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Fig. 6.5. Influence of porosity parameter on the velocity field f.

68



1=05K=1.0

1 —
— M=00 |
ost N T M=10 |
== M. 2,0
»TJO6 _——M=3.0
04
02
0
0 1 2 ] 3 4 5
néz

1
nE:

Figs. 6.7. Influence of Hartmann number on the velocity field f.

The graphs for different values of Pr, E, k, M and 7 on the temperature are displayed in
Figures 6.8 — 6.17. In these Figures, the temperature g (1,£) and 0 (n, ) corresponds to the

prescribed surface heat flux (PHF-case) and prescribed surface temperature (PST-case)
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respectively.

The variations of Prandtl number Pr on temperature profiles are displayed in Figs. 6.8
and 6.9. These Figs. indicate that an increase in Pr in the both cases the temperature decreases
but the thermal boundary layer thickness increases. The influence of the Eckert number £ on
the temperature distribution are shown in Figs. 6.10 and 6.11. From these Figs. it is clear
that the temperature and the thermal boundary layer thickness increases in both cases. The
variations of porosity parameter k& and Hartmann number M are displayed in Figs. 6.12 —6.15.
From these Figs. it is noted that in both cases the temperature and the boundary layer thickness
increases with an increase in k and M respectively. It is also observed that the effects of Pr are
quite opposite to that of dimensionless time 7 whereas the effects of Eckert number E| porosity
parameter £ and Hartmann number M are similar to 7 and opposite to Pr. The temperature
profile for both PST and PHF cases are plotted in Figs. 6.16 and 6.17 in order to see the
variations of dimensionless time 7. It can be easily seen from these Figs. that if we increase

dimensionless time 7 the temperature and the thermal boundary layer thickness increases.

Fig. 6.8 (PST-case)

K=1M=1E=021=05
~~~~~ Pr=1.0
e Ppr= 15
mim s [P 2.0
< -==Pr=25
é‘,
0 1 2 3 4 5

Fig. 6.8. The temperature profile 6 (n, &) for various values of Pr.
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Fig. 6.9 (PHF-case)

K=l M=1E=021=09%

/2 S Pr: 70
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Fig. 6.9. The temperature profile g (n, &) for various values of Pr.

Fig. 6.10 (PST-case)
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1
—E=00
ogF % e E=102
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02}
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Fig. 6.10. The temperature profile 6 (n, &) for various values of E.
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Fig. 6.11 (PHF-case)

K=1,M=1,Pr=101=05

— E=00
—- Y.
-~ E=04
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Fig. 6.11. The temperature profile g (7, ) for various values of E.

Fig. 6.12 (PST-case)
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— K= 00
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VS ---K=60
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Fig. 6.12. The temperature profile 8 (7, &) for various values of k.
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Fig. 6.13 (PHF-case)

E=0ZM=1FPr=10r=058

7
ne?

Fig. 6.13. The temperature profile g (7, ¢) for various values of k.

Fig. 6.14 (PST-case)

E=02 K=1Pr=101=05

—— M=00
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Fig. 6.14. The temperature profile 6 (n, &) for various values of M.
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Fig. 6.15 (PHF-case)

E=x02K=1Fr=10v=200

— M=00
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Fig. 6.15. The temperature profile g (n, §) for various values of M.

Fig. 6.16 (PST-case)
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Fig. 6.16. The temperature profile 8 (7, &) for various values of 7.
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Fig. 6.17 (PHF-case)

K=10M=10Pr=10E=02

Fig. 6.17. The temperature profile g (7, ) for various values of 7.
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Chapter 7

Heat transfer analysis of unsteady
axisymmetric flow of a second grade

fluid over a radially stretching sheet

This chapter investigates the heat transfer analysis for the flow problem considered
in chapter 4. In section 7.1 the equation for the heat transfer analysis of an unsteady
axisymmetric flow of a second grade fluid is given. The heat transfer analysis has
been analyzed for the two heating processes, namely (i) with prescribed surface
temperature (PST-case) and (ii) prescribed surface heat flux (PHF-case). The
convergent series solutions are constructed in both cases and discussed for the sundry

parameters in the temperature distribution.
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7.1 Heat transfer analysis

The energy equation, corresponding to the unsteady axisymmetric flow of a second grade fluid

is given by

2 2
or or  or\ _ (0T O°T (82) +2(3) + 3
pep\ oy tugs+tv— | = ks +t535 ] te
ot Ox y Ox dy +2(%)2+2%%
T y Ox

du 9%u v 9% v 9%v v 9%u
y oyt T 25y agor T 2Vy oy7 T 8z Dy
v H%u du 9%u du 8%v 1
Ty ooyt +20: ozot T By Beot ' (7.1)
v 9%v du 9%u Au 9%u
tozoz0t T Yoy 90y + Voy 02

For the appropriate boundary conditions we consider two heating processes.

7.1.1 The prescribed surface temperature (PST case)

From Eqs. (7.1) and (6.4) — (6.7), we get

60 +Pre(1-6) {30 — €8 + 40+ 2P0g’ (16 - 1'0)

+PrE (ff”Q + 126_£2f/2) +PrEa ff'fll2 = 2£ff//f”/ 4_ %%—Eff'/f// =0. (7_2)
L . / “(1_6){0—?[f’f”+%f”z‘*‘%f//f”/}

7.1.2 The prescribed surface heat flux (PHF case)

In this case the governing equation for temperature through Eqgs. (7.1) and (6.4) — (6.7) is

written as

9" +Pre(l—¢§) {%g’ —ég—g} +489 4 2Pr 2 (fg - f'g)
fflfll2 -y 2£ff//flll . %fflfl/ — 0 (73)

+PrE (572 + 2£52) 4 Py Ea
( 0 ) —(1—5){%-71flf”+%f”2+%f”f”/}

The non-linear equations (4.3), (7.2) and (7.3) has to be solved subject to the conditions
(3.9) and (6.11) by HAM in the next section.
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7.2 HAM solution

The velocity field has already been computed in chapter 4. The temperature distributions

0(n,€), g(n,&) can be expressed in terms of set of base functions of the form
{7 exp (=nm)| £ 2 0,5 = 0,n 2 0},

can be expressed through the following series

6 (n, £) = Z Om (1, €

g(n,€) Z gm (n,€)

m=0

whence

0o o0 00

Om (n,€) = Z Z Z ,’7]1’,177’%] exp (—nn),
n=0 k=0 :

9m (771 €) - Z Z ";;7]1 n?]kfj exXp (—717]) i
n=0 k=0 j=0

(7.5)

in which alm n and a2m » are the coefficients. Invoking the so-called Rule of solution expressions

for f(n,€), 6(n,&) and g (n,&) and Egs. (4.3), (7.2) and (7.3) we have the same initial guesses

and linear operators as in previous chapter and

N7[5(77,€;p),7(77,§;p)]= +P1E<§f +J—f"2>+PrEa{£ff —2%TT'T

(1 § 11—

Ns [G(n,&p), T (n,p)] = +P1E(Ef +12f2f”2)+P1E (€7 T? — 26T7'T

11111

78

I

1-&m%EFF + 177 + 177"y

&' +Pré(1- (37 — ¢Ft+ g+ 20 (79

11—

- BEFF + 17+ 277"

€0 +Pre(1— ) {18 — 22} + %65+ 2Prg? (f9 _f”é)
24652—f_f,T”

(7.6)

- 7%)
2%52 ﬁlf”

(7.7)
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If 7 is the auxiliary nonzero parameter then the zero order deformation problem satisfies

(1 - P) Lo |:’§ (777 pr) - 60 (’7)] = ]7;7'7./\[7 [? (7]>Sc)p) ) 5(771 gllj)} ) (78)

(1 - p) Ly [§ (77>§yp) — 90 (77)] = pﬁ‘7N8 [T (7)7§ap) ’ E("’) éap)] ) (79)
g(o)gvp) = 1= —gl (Oagap) )

f(c0,6,p) = G(00,6,p) =0, (7.10)

where p (€ [0, 1]) is an embedding parameter. For p = 0 and p = 1, we have

0(n,6,0) = 6o(n), 6(n&1)=0(n¢).

§(ﬂ,f,0) = 90(77)) 5(77»5»1):9(77»5) (711)

The initial guesses 6g (1) and go (1) approach 6 (n,&) and g (n, ) respectively, as p varies from

0 to 1. By Taylor’s series expansion

0(n,&p) = o)+ Y Om(n,€) p™
m=1

Tm6n) = M+ gm0, P, (7.12)
m=1

1 0™ (n,¢,
9711 (77) E) = %%}2 )
! D 0
1 anl’v 7 b
9Im (ﬂy 6) ﬁ ga(;jm{ p) ) (713)
! p=0

and the convergence of the series (7.12) depends upon fiz and %7. The values of hi; and hy are

chosen in such a way that the series (7.12) are convergent at p = 1. Then by using Eq. (7.11)
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one obtains

- 00 (77) I Z '9m (771 SC) )

9 (7]: ‘g) o
m=1
(777 6) = 77) + Z 9m (777 5) . (7'14)
m=1
7.2.1 mth-order deformation problems
Here we have
Lo [em ("7 6) XmOm—1 (7),5)] = Wt Rmr ("7:'5), (7'15)
Lo [gm (77: é) — Xm8m—1 (”7) 6)] = h7Rms (777 f) ) (716)
B (0,€) = Om (00,€) = g, (0,€) = gm (00,) =0, (7.17)
R +P1§( €) {30 522}+459+2P1£ (77 -79) ]
Rt (1,6) = | +PrE ( . BE ) +PrE{eF T — 2 TF'F" - 2E77F |, (7.18)
i ( 5) [ Gf f/f// +1 f112 ,7 f”f”,]\ ]

69"+ Pré(1- ) {37 — €31+ 5+ 2P: & (77 - 7'5)
Rs (.6) = | +PrB (67" + BT 4 PrEaleF 72 - 26F7'F" - 2EFFF | (119)
112 It

i L-OWFFF +3F"+3F 7T J

The general solutions of Eqs. (7.15) and (7.16) are

Om (1,6) = 05, (0,8 + Cyexp (—n) + Csexp (),

gm (M, &) = g5 (m,€) + Caexp(—n) + Csexp(n), (7.20)

where 0 (n,€) and g}, (1,€) are the particular solutions and the constants are determined by

the boundary conditions (7.17) which are given by

Cy=—-0,(0,¢) (PST-case), Cy = 89;718(772,—5—) (PHF-case), C5 = 0. (7.21)
n=0
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In the next section, the linear non-homogeneous Eqs. (7.15) — (7.16) are solved using MATH-

EMATICA in the order m = 1,2,3, ...

7.3 Convergence of the analytic solution

Here we discuss the convergence of the series that contains the auxiliary parameters fis and fi7.
The values of auxiliary parameters /iy and fi; helps as in the convergence region and rate of
approximation for the homotopy analysis method. The explicit, analytic expressions of axisym-
metric flow and heat transfer analysis contains two auxiliary parameters his and /iy respectively.
In Figs. 4.1, 7.1 and 7.2 it is clear that the range for admissible values for /iy and fi; are
0 < hy <0.6. and —1 < Iy < 0. And the series converges in the whole region of 7, when
hy = 0.2 and h; = —0.2 for both the prescribed surface heat flux (PHF case) and the prescribed
surface temperature (PST case). It is also observed that the series f (7, &) converges faster than
that of 6 (n,&) and g (n,&) due to the fact that the non-linearity in the later case is stronger
than the former. Thus, by means of choosing auxiliary parameters iy and h7, we obtain an

accurate analytic solution valid for all time 0 < 7 < co in whole region 0 < 7 < oo.

Fig. 7.1 PST case

7.5 — 12th orcler

g 0.&
)

-15 < -05 0 05
fiz

Fig. 7.1. h—curve for the non-dimensional temperature 6.
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Fig. 7.2 PHF case
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~1.95 -1 -075 -5 -025 B 025 05
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Fig. 7.2. h—curve for the non-dimensional temperature g.

7.4 Results and discussion

In this section, we discuss some results through graphs and attention has been focused on
the emerging parameters Pr, E,7 and « on the temperature distributions. For this purpose
Figs. 7.3 — 7.10 have been displayed.

In these Figs. 0(n,¢) is the temperature variations corresponding to the PST-case and
g (n,€) is temperature for the PHF-case.

The variations of various values of time on temperature for both PHF-case and PST-case
are depicted in Figs. 7.3 and 7.4. It is obvious that by increasing time, the temperature and
the thermal boundary layer increases in both cases. The effects of Prandtl number Pr on the
temperature profiles are shown in Figs. 7.5 and 7.6. These Figs. show that the temperature
decreases when the value of Prandtl number is increased. However, the boundary layer thickness
increases in both cases. Influence of Eckert number F on the temperature field is observed from
Figs. 7.7 —7.8. It is noted that for large Eckert number F, the thermal boundary layer increases

and also the temperature profile in both PHF and PST cases increases.
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Figs. 7.9 and 7.10 are sketched to see the effect of second grade parameter «. These Figs.

elucidate that both the temperature distribution and the thermal boundary layer increases
when « increase.

Fig. 7.3 (PST-case)

e=d1, Fr=10E=02

— =001l
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---1=050

N

N
b \\
1 2 3 4 5
))gf"5

Fig. 7.3. Variation of temperature profile ¢ (7, ) with increasing time 7.
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Fig. 7.4 (PHF-case)
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e 1= 0.10
12025
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5 4 5
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Fig. 7.4. Variation of temperature profile g (7, ) with increasing time 7.

Fig. 7.5 (PST-case)

=05 a=10E=02
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Fig. 7.5. Variation of temperature profile (7, £) with increasing Pr.
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Fig. 7.6 (PHF-case)
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Fig. 7.6. Variation of temperature profile g (1, ) with increasing Pr.

Fig. 7.7 (PST-case)
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Fig. 7.7. Variation of temperature profile 8 (7, £) with increasing E.
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Fig. 7.8 (PHF-case)
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Fig. 7.8. Variation of temperature profile g (5, ¢) with increasing E.

Fig. 7.9 (PST-case)
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Fig. 7.9. Variation of temperature profile 0 (7, ) with increasing «.
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Fig. 7.10 (PHF-case)
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Fig. 7.10. Variation of temperature profile g (1, &) with increasing a.
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Chapter 8

Heat transfer analysis of unsteady
boundary layer flow of second grade

fluid over a planar stretching sheet

This chapter investigates the heat transfer analysis of the flow problem considered
in chapter 5. The modeled non-linear problem is solved analytically using homotopy
analysis method (HAM) subject to two heating processes (i) with prescribed surface
temperature (PST-case) and (ii) with prescribed surface heat flux (PHF-case). The
series solutions are obtained and the convergence of these solutions is explicitly

discussed. Finally, results obtained are discussed through graphs.

8.1 Heat transfer analysis

Here, the physical model of the problem is same as in chapter in 5. Additionally heat transfer
analysis is included. The energy equation corresponding to the unsteady boundary layer flow

of a second grade fluid here is

(8.1)

C. 8_T+1L.6_T+v3_z: ﬂ.aﬁ-‘._'_ a_u ’ a’“‘ aQU + 8“ 82u + @8_23
P\ 5t "8z " Vay 32 "H\By) T |Byoyer T By 9z0y T By 0y2|’

with the prescribed boundary conditions in Eqgs.(6.4) and (6.5).
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8.1.1 The prescribed surface temperature (PST case)

Through Eqs. (8.1) and (6.4) — (6.7) we obtain

€0 +Pré(1-¢) {36 - €32} ++2Pre? (10 - 0 )+P1E<£+ 229 pr2

—0. (8.2)
+ Pr Ea (gf/f/l2 . §ff//f/// + (1 . g) {gfll 6£ o %fl/f/l/})
8.1.2 The prescribed surface heat flux (PHF case)
From Egs. (8.1) and (6.4) — (6.7), we have
&g +Pre(1-6) {40 — €3} +2Pre? (fg' — f'g) + PrE (¢ + 2052 p2
¢ =0. (8.3)

+PrEa (fflf”2 - fff”f”/ & (1 _ 5) {gf//%g” N ‘zlf”fm})
8.2 HAM solution

The temperature distributions 6 (n,£) and ¢ (n, &) in terms of set of base functions of the form
{n"&j exp (—7“1)‘ k>0,j>0,n2> 0} (8.4)
can be expressed through the following series

0 (n,€) = ZH (n,€)

m=0

'7§ ngnﬁ

m=0
where
oo oo oo . )
On (,6) = D> > agd n*& exp(—nn),
n=0 k=0 j=0
oo oo oo )
g'f'l‘l. (77’ é-) = Z Z Z a’4'n7, 7177 51 exl) (_77'77) ) (8'5)

n=0 k=0 j=0

3 s ARd k,j ; ; : : . i
in which A, and gy BTE the coeflicients. Invoking the so-called Rule of solution expressions

for 6(n, &) and g (n,&) and Egs. (5.7),(8.2) and (8.3) the initial guesses 6y (1) and go (1) and
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linear operator are same as in the previous chapter and

60+ Pre(1— ) {30 - 22
+4-5+2Pre? (F5 - 79)

Ny [7(77,6;79) ,5(77,6;13)] =| +PrE (gf"? e #f”?) , (8.6)
+PrEaféf 7 —¢fF' T

vyl

| - EF Y -3 |

[ &7 +Pre(1-6) (37 - €20
+4%-g+2Pré? (77 - J5)
Mo [f(0:6:9),5m&p)] = | +PrB (2 + 2052 + | (8.7)

Pr B¢ " — &7 T

| -9 F L 3T

If h is the auxiliary nonzero parameter then the zero order deformation problems are

(1=9) L2 [B(1.6.) — 00 ()] = phso [T (n,€.2), Tm,€.)] (8.8)

(l - p) £2 [5 (777577)) ] (7])} . ]358/\/10 ’_7('%5,]7) ) g(’} Srap)} ) (89)

0(0,6,p) = 1=—7(0,6p),
0(c0,€,p) = G(00,&,p) =0, (8.10)

where p (€ [0,1]) is an embedding parameter and p =0 and p =1 we have

0(n,6,0) = 6(n), B(n€1)=0(n,¢).

g(m,&0) = g, Gn&1) =g(nf). (8.11)
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The initial guesses 0y (n) and go (n) approach to 8 (n,€) and g (n,&), respectively, as p varies

from 0 to 1. By Taylor’s series expansion one can write

5(7’u£7p) = b (77) + Z Om (77>§) pm,

m=1

gm&p) = g+ Y, gm(mE) p™, (8.12)
m=1

1 0™ (n,€,
em (77a€) Ei—a(nn—fp—) )
! D "
1 9™g(n,&,p
Im (7775) %% i ) (813)

and the convergence of the series (8.13) depends upon iz and hg. The values of fig and fig are
chosen in such a way that the series (8.13) are convergent at p = 1. Then by using Eq. (8.12)

one obtains

0 (naf) = b (77) + Z Om (Uaf) )

m=1

9,8 = g+, gm(n8). (8.14)

m=1
8.2.1 mth-order deformation problems

Here we first differentiate Eqs. (8.8) — (8.9) m times with respect to p then divide by m! and

setting p = 0 we get

£2 [om (777 5) - Xmam—l (77: é)] = h’SRmQ (775 6) ) (815)
L2 [gm (1, €) — XmIm-1 (1,€)] = hisRm10 (1, ) , (8.16)
Om (Ov §) =0m (OO, E) == g:n (0: 5) = 09m (OO: E) =0, (817)

91



where

020, 00— 00—
€+ Pre(1-0) [3%5 - €% ¢

m— m—1 0fm
2Pr 52 [Z ) fm 1—k 077 Z 1 ! 6711 "91]
L PrE 62"1 lafmlkasz_i_a(l &) xm— 1afmlk62fk]

R (1, &) = . e . (818)
PlEa{fEm 121 ofm 1= kfk lfl
+PrEa -3 Zz Ofm_1 Icf;_ ,fl

7 af 1—1 "
L [fzn 1 m 1—k ag Zﬂ fm 1— I\f ]

7 = G —
e84l + Pre(1-¢) 3=t — epnt] 4

L2 A9 m—1 Ofm—1—k
2Pr¢ [Ek —0 fm-1- kan — 2ik=0 ~ oy gk]

R B = R T I B
PrEa{ 3715 121 ofm 1- kflc lfl
+PrEa PNy ofm 1- kflc tft
_ ST s B — 350 fecsd
The general solutions of Egs. (8.15) — (8.19) are
Om (1,€) = 65, (n,€) + Caexp (—n) + Csexp (1),
gm (1,6) = gn (n,€) + Caexp (—n) + Csexp (1), (8.20)

where 67 (n,€) and g}, (1,€) are the particular solutions and the constants are determined by

the boundary conditions (8.17) which are given by

* ¢
Ch = —H;l (0,5) (PST-C&SG), i = —é%’:’s) (PHF—CHSG) Cs = 0. (821)
n=0

In the next section, the linear non-homogeneous Egs. (8.15) — (8.19) are solved using MATH-
EMATICA in the order m =1,2,3, ...
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8.3 Convergence

The convergence region and rate of approximation of the series solutions depends upon /i3
and fig. In order to find the admissible values of these parameters, the fi-curves of velocity and
temperature for both PST and PHF cases are displayed in Figs. 5.1,8.1 and 8.2. It is clear from
these Figs. that the range for hg is —2 < hg < —0.5 and for fig the range is —1.25 < iig < —0.50
for both PST and PHF cases.

Fig. 8.1 PST case

Pr=1,E=02¢=0%K=18=<075

-0.6
-0.7
10th-order app.
S 08
-
-09

-1.5 -1 -0.5 0
g

Fig. 8.1. h -curve for the non-dimensional temperature 6.
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Fig. 8.2 PHF case
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Fig. 8.2. h -curve for the non-dimensional temperature g.

8.4 Results and discussion

Here, the main purpose is just to see the variation of o, Pr, F and 7 on the temperature in
both cases. For that we plotted Figs. 8.3 — 8.10. In these Figs. g (7,§) is the temperature
variation that corresponds to the PHF case and 6 (7, ) is the temperature for PST case. The
temperature and thermal boundary layer thickness increase by increasing time 7 (see Figs. 8.3
and 8.4) for both PST and PHF cases. The effects of second grade parameter o and Eckert
number E are similar to those of time 7 but the effects of Prandtl number Pr are opposite
to that of time 7 and are shown in Figs. 8.5 — 8.10. Further, these Figs. indicate that for
different values of second grade parameter  and Eckert number E the temperature profiles in-
crease in both cases whereas the temperature decreases as we increase the values of Prand-

tle number Pr.
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Fig. 8.3 PST-case
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Fig. 8.3 The temperature profile 8 (7, ) at different time 7.

Fig. 8.4 PHF-case
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Fig. 8.4 The temperature profile g (n,¢) at different time 7.
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Fig. 8.5 PST-case
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Fig. 8.5 The temperature profile 6 (7, ) at different .

Fig. 8.6 PHF-case
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Fig. 8.6 The temperature profile g (n, ) at different av.
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Fig. 8.7 PST-case
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Fig. 8.7 The temperature profile 6 (n,&) at different values of Pr.

Fig. 8.8 PHF-case
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Fig. 8.8 The temperature profile g (7, ) at different values of Pr.
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Fig. 8.9 PST-case
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Fig. 8.9 The temperature profile 6 (7, &) at different values of E.

Fig. 8.10 PHF-case
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Fig. 8.10 The temperature profile g (n,¢) at different values of E.
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Chapter 9

Conclusions

The work presented in this thesis deals with some non-linear problems for unsteady flow and
heat transfer analysis in Newtonian and non-Newtonian fluids. Six chapters namely 3 — 8
comprises such problems. The problem of axisymmetric flow of a viscous fluid over a stretching
sheet is discussed in chapter 3. Chapter 4 presents the axisymmetric flow of a second grade fluid
over a radially stretching sheet. In chapter 5 the series solution for the boundary layer flow
of a second grade fluid caused by an impulsively stretching sheet is given. The heat transfer
analysis of axisymmetric MHD flow of a Newtonian fluid in a porous medium is formulated and
solved in chapter 6. The heat transfer analysis of axisymmetric and planar stretching in second
grade are studied in chapters 7 and 8 respectively.

The main findings can be summarized as:

1 Unlike the perturbation technique, the used HAM does not require small or large
parameter.

2 The convergence region of the obtained series can be well controlled by means of the
auxiliary parameter.

3 HAM provide solutions in the form of infinite series and also a mechanism for finding
the recurrence formulae for the coefficients of the series. The determined solution is regarded
as an exact analytic solution if the convergence of the obtained series is explicitly discussed.

4 In the case of unsteady axisymmetric viscous fluid flow the r-component of velocity
increases and the boundary layer thickness increases with an increase in time 7. However the

z-component of velocity decreases.
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5 The obtained solutions are valid for all time.

6 The magnitude of skin friction increases by increasing time.

7 The r-component of velocity increases and the z-component of velocity decreases when
the second grade parameter is increased.

8 For large time, the r-component of velocity is much in second grade fluid when com-
pared with that of Newtonian fluid..

9 The magnitude of skin friction coefficient decreases under the influence of second grade
parameter and dimensionless time.

10 The heat transfer analysis for unsteady axisymmetric flow of viscous and second
grade fluid is conducted first time in the literature.

11 In the case of viscous fluid the variations of time on the temperature profiles depicts
that the temperature and thermal boundary layer thickness increases with an increase in time
for both PST and PHF cases.

12 The effects of Prandtl number Pr are quite opposite to that of time.

13 The effect of Eckert number E, porosity parameter & and Hartmann number M are
similar to time and opposite to Prandtl number.

14 By increasing Prandtl number Pr, the temperature profile decreases and the thermal

boundary layer thickness increases for both PST and PHF cases.

100



Bibliography

[1] K. R. Rajagopal, On the boundary conditions for fluids of differential type, in: A. Sequira
(Ed.), Navier-Stokes equation and related non-linear problems, Plenum Press, New York

273 — 278 (1995).

[2] K. R. Rajagopal, Boundedness and uniquness of fluids of the differential type, Acta Cienca
Indica 18, 1 — 11 (1982).

(3] K. R. Rajagopal and A. S. Gupta, An exact solution for the flow of non-Newtonian fluid
past an infinite plate, Meccanica 19, 158 — 160 (1984).

[4] K. R. Rajagopal, A. Z. Szeri and W. Troy, An existence theorem for the flow of
non-Newtonian fluid past an infinite porous plate, Int. J. Non-Linear Mech. 21, 279 —

289 (1986) .

[5] K. R. Rajagopal and P. N. Kaloni, Some remarks on boundary conditions for fluids of
differential type, in: G. A. C. Graham, S. K. Malik (Eds.) Continuum mechanics and
applications, Hemisphere, New York 935 — 942 (1989).

(6] K. R. Rajagopal, A note on unsteady unidirectional flow of a non-Newtonian fluid, Int. J.

Non-Linear Mech. 17, 369 — 373 (1982).

[7] K. R. Rajagopal, On creeping flow of second order fluid, J. Non-Newtonian Fluid Mech.
48, 239 — 246 (1984).

[8] K. R. Rajagopal, Longitudinal and torsional oscillations of a rod in a non-Newtonian fluid,

Acta Mech 49, 281 — 285 (1983).

101



[9]

[10]

[11]

[12]

(13]

[14]

[17]

(18]

[19]

R. Bandelli, K. R. Rajagopal and G. P. Galdi, On some unsteady solutions of fluids of
second grade, 47, 661 — 676 (1995).

M. E. Erdogan and C. E. Imark, On the comparison of two different solutions in the form
of series of the governing equation of an unsteady flow of a second grade fluid, Int. J.

Non-Linear Mech. 40, 545 — 550 (2005).

M. E. Erdogan, On unsteady motions of a second grade fluid over a plane wall, Int. J.

Non-Linear Mech. 38, 1045 — 1051 (2003).

M. E. Erdogan, Diffusion of a line vortex in a second order fluid, Int. J. Non-Linear Mech.

39, 1013 — 1026 (2004) .

M. E. Erdogan and C. E. Imark, Effects of side walls on the unsteady flow of a second
grade fluid in a duct of uniform cross-section, Int. J. Non-Linear Mech. 39, 1379 — 1384
(2004) .

C. Fetecau and C. Fetecau, Starting solutions for the motion of second grade fluid due
to longitudinal and torsional oscillations of a circular cylinder, Int. J. Eng. Sci. 44, 788 —

796 (2005).

C. Fetecau and C. Fetecau, Starting solutions for some simple osscillating motions of second

grade fluids. Math. Prob. Eng. 23587, 1 — 9 (2006).

C. Fetecau and C. Fetecau, Starting solutions for some unsteady unidirectional flows of a

second grade fluid, Int. J. Eng. Sci. 43, 781 — 789 (2005).

C. Fetecau and C. Fetecau, On some axial couette flows of non-Newtonian fluids, Z. Angew

Math. phys. (ZAMP) 56, 1098 — 1106 (2005) .

C. Fetecau, C. Fetecau and J. Zierep, Decay of potential vortex and propagation of heat

and wave in a second grade fluid, Int. J. Non-Linear Mech. 37, 1051 — 1056 (2002).

W. C. Tan, T. Masuoka, Stokes first problem for second grade fluid in a porous half space,
Int. J. Non-Linear Mech. 40, 515 — 522 (2005).

102



[20]

(21]

[22]

23]

24]

[25]

126)

[27]

28]

[29]

[30]

[31]

W. C. Tan and M. Y. Xu, The impulsive motion of flate plate in generalized second grade

fluid, Mech. Res. Comm. 29, 3 — 9 (2002).

W. C. Tan and M. Y. Xu, Unsteady flows of a generalized second grade fluid with the frac-

tional derivative model between two parallel plates, Acta. Mech. Sin. 20, 471 —476 (2005) .

T. Hayat, Y. Wang and K. Hutter, Hall effects on the unsteady hydromagnetic oscillatory
flow of a second grade fluid, Int. J. Non-Linear Mech. 39, 1027 — 1037 (2004) .

T. Hayat, K. Hutter, S. Nadeem and S. Asghar, Unsteady hydromagnetic rotating flow of
a conducting second grade fluid, Z. Angew Math. phys. 55 626 — 641 (2004).

T. Hayat, Msood Khan, A. M. Siddiqui and S. Asghar, Transient flows of a second grade
fluid, Int. J. Non-Linear Mech. 39, 1621 — 1633 (2004) .

T. Hayat, Msood Khan, M. Ayub and A. M. Siddiqui, The unsteady couette flow of a
second grade fluid in a layer of porous medium, Arch. Mech. 57, 405 — 416 (2005) .

T. Hayat, R. Ellahi, S. Asghar and A. M. Siddiqui, Flow induced by non-coaxial rotation
of a porous disk executing non-torsional osscillations and a second grade fluid at infinity,

Appl. Math. Mod. 28, 591 — 605 (2004) .

C. I. Chen, C. K. Chen and Y. T. Yang, Unsteady unidirectional flow of second grade fluid
between the parallel plates with different given volume flow rate conditions, Appl. Math.

Comput. 137, 437 — 450 (2003) .

B. C. Sakiadis, Boundary layer behaviour on continuous solid surfaces: I Boundary layer

equations for two dimensional and axisymmetric flow, AIChE J. 7, 26 — 28 (1961).

P. D McCormack and L. Crane, Physical Fluid Dynamics, Academic Press New York
(1973).

P. 5. Gupta and A. S. Gupta, Heat and mass transfer on a stretching sheet with suction

and blowing, Canad. J. Chem. Eng. 55, 744 — 746 (1977).

L. E. Erickson, L. T. Fan and V. G. Fox, Heat and Mass transfer on a moving continuous

flat plate with suction or injection, Indust. Eng. Chem. 5, 19 — 25 (1996).

103



[32]

[33]

[34]

[35]

(36]

[39]

[40]

[41]

[42]

[43]

[44]

C. K. Chen and M. I. Char, Heat and Mass transfer on a continuous stretching surface

with suction or blowing, J. Math. Anal. Appl. 135, 568 — 80 (1988).

E. Magyari and B. Keller, Exact solutions for self-similar boundary-layer flows induced by

permeable stretching walls. Eur. J. Mech. B-Fluids. 19, 109 — 122 (2000) .

L. J. Crane, Flow past a stretching plate, Z. Angew Math. Mech. (ZAMM) 21, 645 —
647 (1970).

W. H. H. Banks, Similarity solutions of the boundary layer equations for a stretching wall.

J. Mec Theor Appl 2, 375 — 392 (1983).

M. E. Ali, Heat transfer characteristics of a continuous stretching surface, Warme Stoffu-

bertag 29, 227 — 34 (1944).

T. Hayat and M. Sajid, Analytic solution for axisymmetric flow and heat transfer of a

second grade fluid past a stretching sheet, Int. J. Heat Mass Transf. 50, 75 — 84 (2007).

T. Hayat, Z. Abbas and M. Sajid, Series solution for the upper-convected Maxwell fluid
over a porous stretching plate, Phys Letters A 358, 396 — 403 (2006).

T. Hayat and M. Sajid, Analytic solution for axisymmetric flow and heat transfer of a

second grade fluid past a stretching sheet, Int. J. Heat Mass Transf 50, 75 — 84 (2007).

T. Hayat, T. Javed and M. Sajid, Analytical solution for rotating flow and heat transfer
analysis of a third grade fluid, Acta Mechanica 191, 219 — 229 (2007).

T. Hayat and S. Asghar, Non-Similar analytic solution for MHD flow and heat transfer in
a third-order fluid over a stretching sheet, Int. J. Heat Mass Transf. 50, 1723 —173 (2007).

M. Sajid, T. Hayat and S. Asghar. On the analytic solution of the steady flow of a fourth
grade fluid, Phys. Lett. A. 355, 18 — 24 (2006).

M. Sajid and T. Hayat, Non-similar series solution for boundary layer flow of third order

fluid over a stretching sheet, Appl. Math. Comput. 189, 1576 — 1585 (2007).

M. Sajid and T. Hayat,.The application of homotopy analysis method to thin film flows of

a third order fluid, Chaos, Solitons and Fractals (in press)

104



(45]

[46]

(47]

(48]

[49]

[50]

[52]

[53]

[54]

[55]

M. Sajid and T. Hayat, Influence of thermal radiation on the boundary layer flow and
heat transfer analysis due to an exponentially stretching sheet, Int. Comm. Heat Mass

Transf.(in press)

C. Y. Wang, Q. Du M. Miklavcic and C. C. Chang, Impulsive stretching of a surface in a
viscous fluid, STAM J. Appl. Math. 1, 1 — 14 (1997)

H. Xu and S. J. Liao, Series solutions of unsteady magnetohydrodynamic flows of non-
Newtonian fluids caused by an impulsively stretching plate, J. Non-Newtonian Fluid Mech.

129, 46 — 55 (2005).

E. M. A. Elbashbeshy and M. A. A. Bazid, Heat transfer over an unsteady stretching
surface with internal heat generation, Appl. Math. Comput. 138, 239 — 245 (2003).

R. Nazar, N. Amin and I. Pop, Unsteady boundary layer flow due to stretching surface in

a rotating fluid, Mech.Res.Commun. 31, 121 — 128 (2004).

J. C. Williams and T. H. Rhyne, Boundary layer development on a wedge impulsively set

into motion, STAM J. Appl. Math. 38, 215 — 224 (1980).

R. Seshadri, N. Sreeshylan and G. Nath, Unsteady mixed convection flow in a stagnation
region of a heated vertical plate due to impulsive motion, Int. J. heat Mass Transfer.

45, 1345 — 1352 (2002).

S. J. Liao, An analytic solution of unsteady boundary-layer flows caused by an impulsively

stretching plate, Comm. Non-linear Sci. Numer. Simm. 11, 326 — 339 (2006) .

H. S. Takhar and G. Nath, Unsteady flow over a stretching with magnetic field in a rotating
fluid, Z. Angew. Math. Phys. 49, 989 — 1001 (1998).

M. Kumari, A. Slaouti, H. S. Takhar, S. Nakamura and G. Nath, Unsteady free convection

flow over a continuous moving vertical surface, Acta Mech. 11, 75 — 82 (1996) .

R. Nazar, N. Amin, D. Filip and I. Pop, Unsteady boundary layer flow in the region of the
stagnation point on a stretching sheet, Int. J. Eng. Sci. 42, 1241 — 1253 (2004) .



[56]

[57]

(58]

[59]

[60]

(61]

=
R

[63]

(64]

(65]

(6]

Y. Y. Lok, P. Phang, N. Amin and I. Pop, Unsteady boundary layer flow of a micropolar
fluid near the forward stagnation point of a plane surface, Int. J. Eng. Sci. 41, 173 — 180

(2003) .

K. N. Lakshmisha, S. Venkateswaran and G. Nath, Three dimensional unsteady flow with
heat and mass transfer over a continuous stretching surface, J. Heat Transfer. 110, 590—595

(1988).

A.M. Lyapunov, General problem on stability of motion, Taylor & Francis, London, (1992)
(English translation).

A. V. Karmishin, A. I. Zhukov and V. G. Kolosov, Methods of dynamics calculation and

testing for thin-walled structures. Moscow: Mashinostroyenie; (1990) .

G. Adomian, Nonlinear stochastic differential equations, J. Math. Anal. Appl. 55, 441 —452
(1976).

P. G. Siddheshwar and U. S. Mahabaleswar, Effects of radiation and heat source on MHD
flow of a viscoelastic liquid and heat transfer over a stretching sheet, Int. J. Non-linear

Mech. 40, 807 — 820 (2005).

K. M. C. Pillai, K. S. Sai, N. S. Swamy, H. R. Nataraja, S. B. Tiwari and B. N. Rao, Heat
transfer in a viscoelastic boundary layer flow through a porous medium, Comp. Mech. 34,

27 — 37 (2004).

H. R. Nataraja, M. S. Sarma and B. N. Rao, Non-similar solutions for flow and heat transfer

in a viscoelastic fluid over a stretching sheet, Int. J. Non-Linear Mech. 33, 357—361 (1998).

I. C. Liu, Flow and heat transfer of an electrically conducting fluid of second grade in
a porous medium over a stretching sheet subject to a transverse magnetic field, Int. J.

Non-Linear Mech. 40, 465 — 474 (2005).

T. R. Mahapatra and A. S. Gupta, Stagnation-point flow of a viscoelastic fluid towards a
stretching surface, Int. J. Non-Linear Mech. 39, 811 — 820 (2004).

P. S. Datti, K. V. Prasad, M. S. Abel and A. Joshi, MHD viscoelastic fluid flow over a
non-isothermal stretching sheet, Int. J. Eng. Sci. 42, 935 — 946 (2004).

106



(67]

[68]

(69]

[70]

71

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

K. Sadeghy and M. Sharifi, Local similarity solution for the flow of a second grade vis-

coelastic fluid above a moving plate, Int. J. Non-Linear Mech. 39, 1265 — 127 (2004) .

S. J. Liao, On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluid

over a stretching sheet, J. Fluid Mech. 488, 189 — 212 (2003).

P. D. Ariel, Axisymmetric flow of a second grade fluid past a stretching sheet, Int. J. Eng.

Sci. 39, 529 — 553 (2001).

M. Sajid, T. Hayat and S. Asghar, Non-similar solution for the axisymmetric flow of a

third grade fluid over a radially stretching sheet, Acta Mechanica 189, 193 — 205 (2007).

S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear prob-

lems, Ph.D. dissertation (in English), Shanghai Jiao Tong University, Shanghai, (1992).

S. J. Liao, Beyond perturbation: Introduction to homotopy analysis method, Boca Raton:
Chapman & Hall/CRC Press, (2003).

J. E. Dunn and K. R. Rajagopal, Fluids of differential type: Critical review and thermo-
dynamic analysis, Int. J. Eng. Sci. 33, 689 — 729 (1995) .

R. L. Fosdick and K. R. Rajagopal, Anomalous features in the model of second order fluids,

Arch. Rat. Mech. Anal. 70, 145 — 152 (1979).

H. Schlichting, Boundary-Layer Theory, McGraw-Hill Series in Mehanical Engineering
(1979) .

M. Sajid, Similiar and non-similiar analytic solutions for steady flows of differential type

fluids, Ph.D Thesis. (2006) .

J. Vleggaar, Laminar boundary layer behavior on continuous, accelerating surfaces, Chem.

Eng. Sci. 32, 1517 — 1525 (1977).

S. J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput.
147, 499 — 513 (2004).

S. J. Liao, A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat

plate, J. Fluid Mech. 385, 101 — 128 (1999).

107



(80]

[81]

[82]

(83]

[84]

[85]

(86]

[87]

[83]

[89]

[90]

91]

S. J. Liao and A. Campo, Analytic solutions of the temperature distribution in Blasius

viscous flow problems, J. Fluid Mech. 453, 411 — 425 (2002).

M. Ayub, A. Rasheed and T. Hayat, Exact flow of a third grade fluid past a porous plate
using homotopy analysis method, Int. J. Engg. Sci. 41, 2091 — 2103 (2003) .

T. Hayat, M. Khan and M. Ayub, On the explicit analytic solutions of an Oldroyd 6-
constant fluid, Int. J. Engg. Sci. 42, 123 — 135 (2004).

T. Hayat, M. Khan and M. Ayub, Couette and Poiseuille flows of an Oldroyd 6-constant
fluid with magnetic field, J. Math. Anal. & Appl. 298, 225 — 244 (2004).

C. Yang and S. J. Liao, On the explicit purely analytic solution of Von Karman swirling

viscous flow, Comm. Non-linear Sci. Numer. Simm. 11, 83 — 93 (2006) .

J. Cheng, S. J. Liao and I. Pop, Analytic series solution for unsteady mixed convection
boundary layer flow near the stagnation point on a vertical surface in a porous medium,

Transport in Porous Media. 61, 365 — 379 (2005) .

T. Hayat and M. Khan, Homotopy solution for a generalized second grade fluid past a

porous plate, Non-Linear Dynamics. 42, 395 — 405 (2005) .

Z. Abbas, M. Sajid and T. Hayat. MHD boundary layer flow of an upper -convected

Maxwell fluid in a channel, Theor. Comput. Fluid. Dyn. 20, 229 — 238 (2006).

S. Abbasbandy, The application of homotopy analysis method to non-linear equations

arising in heat transfer, Phys. Lett. A. 360, 109 — 113 (2006) .

S. Abbasbandy, Homotopy analysis method for heat radiation method, Int. Comm.. Heat

Mass Transf. 34, 380 — 387 (2007).

S. Abbasbandy, Solitary wave solutions to the Kuramoto-Sivashinsky equation by means

of the homotopy analysis method, Non-Linear Dynamics (in press).

S. J. Liao, A new branch of solutions of boundary-layer flows over an impermeable stretched

plate, Int. J. Heat and Mass Transf. 48, 2529 — 2539 (2005) .

108



