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Preface 
In recent years, considerable interest in t he flows of non-Newtonian fluids has been stimu­

lated due to their numerous industrial applications . Such applications include the processing of 

polymers, foams, pharmaceut icals, personal care products, clay suspensions and fo od products. 

Because of the difficulties posed by the complex rheology of such fluids, many constit utive equa­

tions expressing the behavior of non-Newtonian fluids have been proposed. These constitutive 

equations are usually classified under the categories of differential type, rate type and integral 

type models. The simplest subclass of differential type fluids is called second grade which can 

describe the normal stress effects and cannot predict the stress relaxation features. The Maxwell 

fluid which is a simplest subclass of rate type fluids can describe the stress relaxation phenom­

enon but it does not exhibit the retardation phenomenon which many concentrated polymers 

show. An Oldroyd-B fluid model can predict stress relaxation and retardation phenomena. The 

other subclasses of rate type fluids that contain more than one relaxation time and have been 

accorded proper attention by the researchers recently are the Burgers' and generalized Burgers' 

models. The constitutive equations of these fluids further add complexities in the momentum 

equation and the involved equations of non-Newtonian fluids are higher order than the Navier­

Stokes equations. 

On the other hand the flow through a porous medium is one of the most considerable and 

contemporary subjects, because it has great importance in geothermy, geophysics and technol­

ogy. The study of flow in a porous medium has attracted the interest of many inves tigators in 

view of its applications in many engineering problems such as geothermal energy utilization, 

petroleum reservoirs, chemical catalytic convectors, storage of grain, fruits and vegetables, 

pollutant dispersions in aquifers, agricultural water distribution and combustion in situ in un­

derground reservoirs for the enhancement of oil recovery. The flow of non-Newtonian fluids 

through a porous medium is also significant in biomechanics. To date majority of existing 

studies in a porous medium have been concerned with the Newtonian fluids. Despite the obvi­

ous relevance to industrial applications, little has been reported on the flow of non-Newtonian 

fluids in a porous medium. Only the key findings pertaining to the boundary value problems 

are mostly re-capitulated. Such at tempts further narrowed down when modified Darcy's law 
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is taken into account. These even become rare when transient flows with modified Darcy's law 

are considered. 

The magnetohydrodynamic (MHD) flow problems of non-Newtonian fluids in porous media 

denote an idealization of many engineering applications. The Hall effect is important when 

the ratio between the electron-cyclotron frequency and the electron-atom collision frequency 

is high. In most MHD problems within small and moderate values of the magnetic field the 

Hall effect is neglected. However, the recent trend of MHD problems with strong magnetic 

field has widely appreciated the effects of Hall current in MHD generators, plasma studies and 

nuclear reactors. Such MHD flow problems in a porous medium pose challenges to cope with 

non-linearity of the governing equations and field coupling. 

In view of the aforesaid observations, taking care of the non-Newtonian fluids with modified 

Darcy's law in a porous medium, Hall effect and transient phenomenon, an attempt is made 

in this thesis to develop the mathematical models that are competent to analyze analytical 

solutions. The analytical solutions still have their importance and even such solutions for 

Navier-Stokes equations are few because of the analytic difficulties associated with non-linear 

problems. Exact solutions are important not only in its own right as solutions of particular 

flows, but also serve as accuracy checks for the numerical solutions. Therefore , the outline of 

the thesis is as follows. 

1. The aim of chapter one is to provide the review of the relevant existing literature. Basic 

equations and electromagnetic concepts are also presented. 

2. An investigation of three unsteady flow problems of second grade fluid is presented in 

chapter two. The oscillatory flows with modified Darcy's law and Hall current are an­

alyzed. Second grade fluids are used to describe the normal stress effects. Analytical 

results are derived by Fourier sine transform treatment. It is shown that the role of Hall 

and permeability parameters on the velocity is similar. It is also found that in a second 

grade fluid the magnetic parameter tends to decrease the velocity. These conclusions have 

been accepted for publication in Int. J. Non-Linear Mech. 

3. Chapter three explores the Hall effects on the flow of an Oldroyd-B fluid in a porous 

medium for cylindrical geometry. Four unsteady problems are analyzed. Closed form 
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solutions have been derived for small and large times. Effects of Hall current, porosity 

and permeability of the porous medium for the Newtonian and Oldroyd-B fluids have been 

investigated in detail and shown graphically. It is noted that the steady state is achieved 

much earlier when there is no Hall effect . However in a non-porous medium, the steady 

state is achieved much later when compared with porous medium. These observations are 

published in Computers and Mathematics with Applications 52 (2006) 269. 

4. Chapter four presents an analytic study of the accelerated flow of an Oldroyd-B fluid 

in a porous medium. Constant and variable accelerated flow problems are examined. 

Expressions of the velocity and adequate tangential stress are developed in each case. 

The obtained mathematical results are consistent with physical intuitions. As might be 

expected from physical consideration that velocity in variable accelerated flow is large in 

comparison to a constant accelerated flow. The contents of this chapter are in press in 

Nonlinear Analysis: Real World Applications. 

5. It is emphasized quite recently that Burgers ' fluid can characterize materials such as 

cheese, soil, asphalt and is important in the modeling of high temperature viscoelasticity 

of fine-grained polycrystalline olivine . In view of this, the object of chapter four is to 

extend the flow analysis of chapter three for a Burgers' fluid. Modified Darcy's law in a 

Burgers' fluid has been developed first time in the literature here . The influence of Hall 

current is noticed. Comparison between the results of an Oldroyd-B and Burgers' fluid 

is approached. It is observed that the velocity in Burgers' fluid is less than that of an 

Oldroyd-B fluid. The results of this chapter are published in Transport Porous Media 

68 (2007) 249. 

6. The magnetohydrodynamic flow of a generalized Burgers ' fluid in a porous medium are 

investigated in chapter six. The corresponding modified Darcy's law has been first derived 

and then employed in the mathematical formulation. Three flow problems are investigated 

for the analytical solutions. Comparison of the velocity profiles in Newtonian, second 

grade, Maxwell, Oldroyd-B and generalized Burgers' fluid is established. The graphical 

results of the derived steady state solutions indicate that the velocity in an Oldroyd-B fluid 

is greatest and smallest in Newtonian fluid . It is also seen that there is a rapid increase 
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in the oscillations for the velocity in an Oldroyd-B and generalized Burgers' fluids when 

the magnetic parameter is increased. These points are in press in Chaos, Solitons and 

Fractals. 
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Chapter 1 

Literature survey and involved 

equations 

The material included here provides the review of the literature regarding second grade and the 

subclasses of rate type fluids. The involved electromagnetic concepts, equations and integral 

transforms in the subsequent chapters are also given. 

1.1 Differential and rate type fluids 

It is well known that the equations which can govern the flows of Newtonian fluids are called 

the Navier-Stokes equations. Such equations are inadequate in describing the flows of non­

Newtonian fluids. The non-Newtonian fluids do undergo an increased or decreased viscosity 

change with increased flow . Undoubtedly the non-Newtonian fluids are well suited in industry 

and engineering when compared with that of the Newtonian fluids. Many industrial applications 

involve paints, glues, inks , soaps as well as suspensions such as coal-water slurries. These fluids 

display a behavior definitely different from that of Newtonian fluids. Unlike the Newtonian 

fluids, there is no constitutive equation that can predict the behavior of all the non-Newtonian 

fluids. Due to complex rheological characteristic of non-Newtonian fluids there are various 

models that have been proposed in the existing literature. Usually the classification of non­

Newtonian fluids is given under the three categories namely the differential type, the rate type 

and the integral type. For incompressible fluids of differential type, apart from a constitutively 
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indeterminate pressure, the stress only depends upon the velocity gradient and some of its higher 

time derivatives. During creeping phenomenon, the differential type fluids do not exhibit the 

stress relaxation. In general, for fluids of differential type of grade n, the equations of motion 

are of order n + 1. For n > 1 the adherence boundary condition is sufficient to determine a 

unique solution. In view of mathematical simplicity, the differential type fluids have received 

much attention by the workers in the field. The simplest subclass of the differential type fluids 

is known as the second grade fluid . Much attention is concentrated in the literature on the flows 

dealing with second grade fluids . This is particularly so because of the fact that for this subclass 

one may hope to obtain an analytical solution. The constitutive equation of second grade fluid 

contains three material constants. Dunn and Fosdick [IJ and Dunn and Rajagopal [2J have 

discussed in details the restrictions regarding these three material constants. In general the 

governing equations of non-Newtonian fluids are much complicated and of higher order than 

the Navier-Stokes equations. Therefore the no slip boundary condition is not sufficient to obtain 

the solution. In this situation one needs an extra condition(s) for a unique solution. This issue 

has been attented by Rajagopal [3J , Rajagopal and Kaloni [4J and Rajagopal and Gupta [5]. 

Ting [6J initiated the study of unidirectional transient flows of a hydrodynamic second grade 

fluid. Rajagopal [7J examined the four cases for unidirectional flows of a second grade fluid. 

At present, the literature dealing with the flows of second grade fluids in various situations is 

extensive. Some attempts in this direction have been made by Rajagopal [8], Benharbit and 

Siddiqui [9], Erdogan [10], Siddiqui and Kalani [11], Ariel [12-14J Fetecau and Fetecau [15], 

Bandellei et. al. [16], Bandelli and Rajagopal [17], Tan et al. [18], Junqi et al [19], Mingyu 

et al. [20], Fosdick and Bertstein [21], and Hayat et al. [22,23J. In all these studies the flows 

have been considered in a non-porous medium. Moreover, Pop studied many flow problems in 

non-Newtonian fluid [24-26J. Quite recently, Tan and Masuoka [27J and Jordon and Puri [28J 

discussed the Stokes' first problem in a second grade fluid filling the porous half space. 

On the other hand the simplest subclass of rate type fluids is called the Maxwell fluid. 

Although the Maxwell fluid model [29J can describe the stress relaxation, it cannot predict the 

shear thinning / shear thickening and normal stress effects. Due to simplicity, the Maxwell 

model is widely used by the researchers in the past. The Maxwell model is useful in the study 

of dilute polymeric fluids where the dimensionless relaxation time is much less than one [30J. 
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Some recent investigations that explore the features of Maxwell fluid have been made by Hayat 

et al. [31-38], Fetecau and Fetecau [39-41], Fetecau and Zierep [42], Vieru et al. [43] and Tan et 

al. [44,45]. It should be further noted that Maxwell did not develop model for polymeric liquids. 

He recognized that such a fluid has a means of storing energy and a means for dissipating 

energy. The storing of energy is due to the fluid elasticity and dissipation of energy is because 

of the fluid viscosity. Recently, Rajagopal and Srinivasa [46] argued that Oldroyd-B fluid is one 

which stores energy like a linearized solid. The Oldroyd-B fluid model involves three material 

constants namely a viscosity, a relaxation time and a retardation time. This fluid model can 

describe the stress relaxation, creep and the normal stress differences but cannot predict the 

shear thinning / thickening effects. This fluid model is quite popular among the researchers. 

Some studies made regarding the flows of Oldroyd-B fluids include Fetecau [47,48]' Fetecau and 

Fetecau [49,50]' Rajagopal and Bhatnagar [51], Fetecau et al. [52], Hayat et al. [53,54]' Chen 

et al. [55], Lozinski et al. [56], Phillips et al. [57], Huang et al. [58], Alves et al [59] and Khan 

et al. [60] Tan and Masuoka [61] also analyzed the Stokes first problem for an Oldroyd-B fluid 

filling the semi infinite porous space. Very recently Ravindran et al. [62] examined the steady 

flow of a Burgers' fluid in an orthgonal rheometer. In continuation Hayat et al [63] reported 

some simple flows of a Burgers' fluid . 

1. 2 Electromagnetic concepts 

It is well known that the field of magneto hydrodynamics (MHD) is complex because it involves 

the solution of momentum equation characterizing fluid flow and Maxwell 's equations for the 

magnetic field. In magnetofluid mechanics, Maxwell 's equations are presented as follows: 

V .B=O, 

V.D=O, 

v x H = J, 

aB 
V x E=-­at ' 

11 
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where J designates the current density and by Ohm's law it is given by 

J =o-[E+ V x BJ (1.5) 

in which 0- is electric conductivity and magnetic flux density B is 

(1.6) 

D =EE (1.7) 

where ~e the magnetic permeability and E is the electric field intensity. 

Through combination of above equations we write 

BB 2 at = V x (V x B) + I/m \7 B. (1.8) 

Here H is replaced by B/ ~e and 1/", = l/o-~€. In the momentum equation , we have to include 

the electromagnetic force , F m, which is 

F m = J x B =o-[V x B ] x B . (1.9) 

1.3 G overning equations 

Our interest in this thesis lies for an incompressible MHD fluid in a porous medium. The 

relevant fundamental equations are as follows. 

1.3.1 Continuity equation 

V.V=O. 

1.3.2 Momentum equation 

peN =-Vp+divS+JxB+R. 
dt 

12 
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In above equation V is the velocity field, p is the fluid density, p is pressure, S is an extra stress 

tensor, R is the Darcy resistance and the material derivative d/ dt is 

d a 
dt = at + (V. "'V) . (1.12) 

1.3.3 Generalized Ohms' law 

If the Hall effects are present, Eq. (1.5) modifies to the following expression 

WeTe 1 
J + -B (J x B) = alE + V x B + -"'VPe] 

o . ene 
(1.13) 

in which We is the cyclotron frequency of electrons, Te is the electron collision time, e is the 

electron charge, Pe is the electron pressure and ne is the number density of electrons. It should 

be pointed out that WeTe '" 0 (1) , WiTi « 1 (Wi and Ti are respective cyclotron frequency and 

collision time for ions) and ion-slip and thermoelectric effects are not included. 

1.4 Integral transforms 

An integral transform T is defined by 

(Tf)(u) = ;-t2 K(t ,u) f(t)dt. 
itl 

(1.14) 

Note that the input of this transform is a function f, the output is another function T f and K 

is called the kernel or nucleus of the transform. Through different choice of K, we have different 

transforms. Some kernels have an associated inverse kernel K-l (u, t) which yields an inverse 

transform 

l
ti2 

f(t)= K-1(u,t)(Tf) (u)du. 
til 

(1.15) 

1.4.1 Laplace transform 

The Laplace transform of a function f (x) is 

(1.16) 
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which is obtained from f (x) by multiplying by e-P:1: and integrating with respect to x from 0 

to 00 . The function f (p) defined in this way is obviously a function of the variable p. It is 

called the Laplace transform of the function f (x). The function e-PX is called the kernel of 

transform. The inverse Laplace transform is given by 

1 j l'+iOO 
f (x) = -2 . f (p) ePxdp. 

7r2 I'-ioo (1.17) 

1.4.2 Fourier sine transform 

For any function f (t) we define the Fourier sine transform F (w) as 

1 J oo F (w) = F (I) (w) = tn= f (t) e-iwtdt. 
v 27r -00 (1. 18) 

Utilizing Euler's formula one obtains 

F (w) = !:: ; '00 f (t) coswtdt _ ~ ; '00 f (t) sinwtdt. 
v 27r . - 00 V 27r . - 00 

(1.19) 

For odd f (t), the first integral must vanish to zero and the second may be simplified to give 

F (w) = -i fi Joo f (t) sin wtdt, V -; -00 (1.20) 

which is the Fourier sine transform. It is clear that transformed function F (w) is also an odd 

function and a similar analysis of the general inverse transform yields a second sine transform, 

namely 

~j
'OO 

f (t) = i - F (w) sin wtdw 
7r -00 (1.21) 

Note that the numerical factors in the transforms are defined uniquely only by their product , 

as for general continuous Fourier transforms. For this reason the imaginary units i and -i can 

be omitted, with the more commonly seen forms of the Fourier sine transforms being 

{2 (00 
F (w) = V -; Jo f (t) sinwtdt (1.22) 
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and inverse transform is 

f (t) = If; laoo 

F (w) sinwtdw. (1.23) 
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Chapter 2 

Oscillatory flows of second grade 

fluid in a porous space 

This chapter is an analytical study with an aim to show the influence of Hall current on the 

three flow problems in a second grade fluid. These flows are induced by an oscillating pressure 

gradient and cosine and sine oscillations of a plate. The second grade fluid exhibits the normal 

stresses and fills the porous space. The flow modelling is based upon modified Darcy's law. 

The flow problems are solved analytically by the Fourier sine transform method. The results 

of velocity are calculated and discussed for the emerging flow parameters . 

2.1 Governing equations 

We consider an incompressible unidirectional flow of a second grade fluid in a porous medium. The 

flow considered is parallel to the x-axis. The fluid is electrically conducting in the presence of a 

tmiform magnetic field applied transversely to the flow. The Hall effects are taken into account. 

The magnetic Reynolds number is taken small so that the induced magnetic field is neglected. 

The unsteady flow in a porous medium is governed by the equation of motion (1.11) , con­

tinuity equation (1.10) and the Maxwell equations (1.1)-(1.4). If the Hall term is retained, the 

current density J is given by equation (1.5). 
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For second grade fluid an extra stress tensor S is given in [7] 

(2.1) 

where J.L is the dynamic viscosity and (Xi (i = 1,2) are material constants satisfying (Xl ~ 0, (Xl + 

(X2 = ° [1, 2]. Note that (Xl ~ ° indicates that the free energy is minimum in equilibrium. 

Furthermore, (Xl + (X2 = ° is required to satisfy the Clausius-Duhem inequality. The first two 

Rivlin-Ericksen tensors Al and A2 are defined as 

(grad V) + (grad V) T , 

dAI T dt + Al (grad V) + (grad V) AI' 

The velocity field is of the form 

V =(u(y, t) ,0 , 0). 

It is well known that in an unbounded porous medium Darcy's law holds for such viscous 

flows which have low speed. This law provides a relationship between the pressure drop induced 

by the frictional drag and velocity. The literature on the topic is quite extensive for viscous flows . 

Very litt le efforts have been devoted to mathematical macroscopic filtration models concerning 

viscoelastic flows in a porous medium. On the basis of Oldroyd constitutive equation, the 

following law describing both relaxation and retardation phenomenon in an unbounded porous 

medium has been suggested [27] 

(1 + )..~) Vp = -!!:. (1 + e~) V D . at k at (2.2) 

In above equation ).. and e are the relaxation and retardation times respectively, k is the 

permeability, V D (= ¢V) is the Darcian velocity and ¢ is the porosity. From equation (2.1), we 

have Sxx = Syy = (X2 (au/ ay)2 

(2.3) 

and Szz = Sxz = Syz = 0. 
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Since the constitutive equation for unidirectional flows of a second grade fluid is quite similar 

to that of an Oldroyd-B fluid. Note that equation (2.3) can be obtained from the constitutive 

equation of an Oldroyd-B fluid by taking A = O. Due to this analogy, equation (2.2) for a second 

grade fluid thus becomes 

(2 .4) 

It should be pointed out here that Eqs. (2.2) and (2.4) respectively reduce into classical Darcy 's 

law for A = 0 and e = O. Since the pressure gradient in equation (2.4) can also be interpreted 

as a measure of t he resistance to flow in the bulk of the porous medium and R is a measure 

of the flow resistance offered by the solid matrix. Therefore R can be inferred from equation 

(2.4) to satisfy the following equation: 

{UP ( 0) R = -I:: 1 + e ot V. (2.5) 

Upon making use of the stated assumptions, the incompressibility condition (1.10) is automat­

ically satisfied and equation (1.11) gives 

ou op o2u o3u (J B5 ;.up ( al 0) p-=--+j.L-+al------u-- 1+-- u, ot ox oy2 oy2ot 1 - im k j.L ot . (2.6) 

where m = WeTe is the Hall parameter , al = {le and p is the modified pressure given by 

p = p - (2al + (2) ( ~) 2 Here, we note that the viscoelasticity of fluid increases the order of 

the differential equation. In order to solve a well-posed problem, we usually require an additional 

boundary (initial) condition. This, however , may not be necessary in a specific problem. The 

comprehensive discussion regarding this issue of the boundary conditions has been given by 

Rajagopal [3] and Rajagopal and Gupta [5] . 

In the next three sections, we are now going to solve equation (2.6) for three problems. 

2.2 Stokes' second problem 

Here, the fluid is over an infinite non-conducting flat plate a t y = O. The fluid (y > 0) is 

electrically cond'..lcting and magnetic field Bo is applied in the y-direction. No pressure gradient 

is applied and flow in the fluid is because of the plate oscillations for t > O. The problem thus 

18 



is of the following form 

u (0, t) 
au 

u, ay --t 

Uo cos wt or u (0, t) = Uo sinwt; t > 0, 

o as y --t 00, t ~ 0, 

u (y, 0) = 0, y > 0, 

in which w is the imposed frequency. 

(2.7) 

(2.8) 

(2.9) 

Note that the solution obtained by Laplace transform method holds for small times. In 

second grade fluid such solution in Stokes first problem does not satisfy the initial condition. 

This is not a trivial matter. Literature survey witnesses that such difficulty arises because of 

the incompatibility in the prescribed data. 

We will find the solution using Fourier sine transform pair defined by equations (1.22) 

and(1.23). 

2.2.1 When u (0, t) = Uo cos wt 

The transformed problem is 

au ~ ~Uo . -d + PU = - ( ) (lJ cos wt - aw sm wt) , 
t 7l' 1 + ¥ + ae (2.10) 

u(~,O) = 0; ~ > 0, (2.11) 

where lJ is the kinematic viscosity, a = allp and 

p _ (C2 O'B5 (1 + im) ¢lJ ) ( a¢ C2)-1 
- lJ<., + P (1 + rn2) + k 1 + k + a<., (2.12) 

19 



The solution of equations (2.10) and (2 .11) is 

u(~ , t) 

- ' 

(2.13) 

Inverting Eq.(2.13) by means of Fourier sine transform we have 

u (y, t) 
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The above equation can also be written as [15,64] 

U (y, t) = Uo coswt 

(2.15 ) 

xexp - ( ) sin((y)d( 
1 + 0: +ae 

Note that starting solution u (y , t) in Eq.(2.15) is a sum of three terms. The first four terms 

represent the steady state solution Us (valid for large times) and fourth term gives the transient 

solution Ut . Clearly solution (2 .15) satisfies Eqs .(2.10)-(2.12). The steady state solution is 

2 
Uo coswt - -Uo coswt IT 

p(l+m2) k <., p(l+m2) k 

( 

(
aBij(l+im) + 1!!:..) (I/Jt2 + aBij(1+im) + r/>v) ) 

00 +w2 (1 + ¥) (1 + 0: + ae) 
x r 2 2 sin ((y) d( (2.16) 

.fo Jt ((I/Jt2 + aB8 (1 +im) + 1!!:..) + w2 (1 + oq, + aJt2) ) 
<., <., p(1+m2) k k <., 

Jt ( oaBS(1+im) ) 
2 . 100 

<., 1/ - p(1+m2) . 
+-Uow sm wt 2 2 sm ((y) d(. 

IT 0 (I/ Jt2 + aB5(l+im) + </lV) + w2 (1 + or/> + aJt2) 
<., p(l+m2) k k <., 

In order to simplify equation (2.16) we use [64] 

00 

I x sin( ax) IT 
2 dx = -2 exp (-aA) sin (aB) , 

. (x 2 + Eb2 ) + c2 c 
o 

(2.17) 
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00 

I' x (X2 + Eb2 ) sin(ax) 7r 
--"------'-"'2 --dx = -2 exp (-aA) cos (aB) , 

. (X2 +Eb2) +c2 C 
o 

(2.18) 

where 

(2.19) 

and 

E = ±l. 

After simplifying equation (2.16) can be written as 

Us (y ,t) 

or 

Us (y,t) 

or 

Us (y, t) = Uoe - Ay cos (wt - By) , (2.20) 

whence 

(
aB5(l+im)1I + 1!. ( 2 + 2 2) + 2) 2 

p(1+m2) k 1/ a w aw 

+ 2( _QaB3(1+im) ) 2 
W 1/ p(1+m2) 

(2.21) 

+ ( aB3(l+im)1I + 1!. ( 2 + 2 2) + 2) 
p(1+m2) k 1/ a w aw 
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(
aB5 Cl+im)V + 12 ( 2 + 2 2) + 2) 2 

pCl+m2) k 1/ a w aw 

+ 2 ( _ e>aB5Cl+im))2 
w 1/ pCl+m2) 

(2.22) 

_ aB5Cl+im)v + 12 ( 2 + 2 2) + 2 
p(1+m2) k 1/ a w aw 

-' Introducing the following dimensionless quantities 

{iy, U 
Y U= Uo ' t =wt 

aw M2 = (lBg, 1 ¢I/ 
a = -

1/ pw K kw 

equation (2.20) takes the following form 

Us (y, t) = e-AiJ cos (t - By) , 

where 
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2.2.2 For u(O,t) = Uosinwt 

Employing the similar procedure as for Uo cos wt, the starting solution and steady state solution 

in this case are respectively given by 

u(y,t) 

(2 .23) 

, c ( _ o:aB5(1+im)) 

j oo <, v (1+ 2) 
X P2 m 2 sin (~y) d~. 

o ( vC2 + aB5(1+im) + t/Jv ) + w2 (1 + o:t/J + ae) 
<, p(1+m2) k k 

(2 .24) 

Equat ion (2 .24) can also be simplified as 

Us (y, t) = Uoe- Ay sin (wt - By) . (2.25) 
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The dimensionless form of above solution is 

U s (y , t) = e-Ay sin (t - By) . 

2.3 Modified Stokes' second problem 

In this section we consider an electrically conducting fluid between two infinite insulating plates 

at y = 0 and y = d. The lower plate is oscillating for t > 0 and the upper plate is at rest. The 

governing problem consists of equations (2 .7), (2 .8) and 

u (d, t) = 0; t > 0, (2.26) 

u (y, 0) = 0, 0 < y < d. (2 .27) 

We will find the solution of the problem here by using finite Fourier sine transform pair defined 

by 

Un (~, t) = fad u(y , t) sin (nd7r y) dy, (2 .28) 

2 ~ . (n7r ) u(y , t ) = d L..un (~ , t) sin d Y . (2.29) 
n=l 

2.3.1 For u(O )t) = Uo coswt 

The governing problem in transformed domain is 

(2.30) 

Un (~ , 0) = 0; n = 1, 2, ... (2 .31 ) 

in which 

Q _ (\2 crB5 (1 + im) ¢;// ) ( a¢; ;\2)-1 
- //I\n+ p(1+m2) + k 1 + k +a n (2.32) 
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The solution of equation (2.30) subject to the condition (2.31) after using equation (2.29) is 

u(y , t) 

or 

-' 
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u; (1 - J£) cos wt 

o d [ ( aBt(l+im) + 1Jf ) (vA; + a~\~~~») + ¢:) 1 sin (AnY) p(1+m2) 2) 
2 (1 + Q</J) (1 + Qk¢ + aAn 

00 +W k '] -~UocoswtL [( 2 aB;(1+im)+p'!!")2 +w2 (1+¥+aA;) d n=l An VAn + p(1+m2) k 

\ [ - QaB~(1+im) ] sin (AnY) (235) 
00 An V p(1+m2) 2) . 

+~Uowsinwt L [( 2 aB~(1+im) + p'!!")2 + w 2 (1 + Q/' + aA;') ] d n=l VAn + p(l+m2 ) k 

where An = nd
1r

• 

3 2 For 1~(O, t) = Uo sinw. t 2 .. 

u(y,t) 

(2.36) 

27 



Us (y,t) = Uo (1-~) sinwt 

( 

(
aB;(l+im) + </>1.1 ) (v,\ 2 + aBW+im) + 1!3!.. ) ) 

p(l+m2) k n p(l+m2 ) k . ( \ ) sm AnY 2 00 +W
2 (1 + Ct.k</» (1 + Ct.: + et'\;' ) 

- 'd Uo sin wt 2:: __ --;--__ -->... __ --L---'---_----, __ --'-_____ ~):---

n=l ,\ ((V,\ 2 + aB~(l+im) + </>1.1)2 + w2 (1 + Ct.</> + Q,\2 ) 2 
n n p(1+m2) k k n 

00 \ ( Ct.aB;(1+im)). (\ ) 2 An 1/ - p(1+m2) sm AnY 
-'dUow coswt 2:: 2 2 . (2.37) 

n=l ((1/,\2 + aB~(l+im) + <1)// ) + w2 (1 + ~ + Q,\2 ) ) 
n p(1+m2) k k n 

2.4 Plane Poiseuille flow 

This section deals with the MHD flow of a fluid between two stationary insula ting plates. For 

t > 0 the flow between the plates is due to a pressure gradient of the form [15] 

ap a~ 
ax = -p [Po + Qo coswt] or a~ = -p [Po + Qo sinwt]. (2.38) 

The governing problem here consists of equations (2.6), (2.26),(2.27) and 

u (0, t) = O. (2 .39 ) 
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By means of Fourier sine transform the corresponding exact solutions to two cases given in 

equation (2.38) are respectively given by 

u(y,t) = 
4Po ~ sin (A2n-lY) 

d L.J \ (\2 aB~(1+im) r/W) 
n=l 1\2n- l /.I1\2n _l + p(1+m2) + T 

(2.40) 

u(y,t) 4Po ~ sin (A2n-lY) 
d L.J \ (A2 aB~(1+im) r/w) 

n=l 1\2n-l /.I 2n-l + p(1+m2) + T 

( 

( 
\ 2 aB;(1+im) 1!!:.). ) /.I1\2n_l + p(1+m2) + k smwt . 

sm (A2n-lY) 
4Qo 00 -w ( 1 + ¥- + aA~n_l) cos wt 

+-d L ( 2 2) _ 2!E1!. 2 2 aB~{1+im) ",v 
n-l ),2n-l W (1 + k + a),2n-l) + (/.IA2n-l + p(1+m2) + T ) 

(2.41) 
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2.5 Results and discussion 

In this section, we present the graphical illustration of velocity profile for flow due to the 

oscillations of plate at t > O. Emphasis has been focused to examine the difference between the 

velocity profiles for two kinds of fluids : a Newtonian fluid and second grade fluid. The emerging 

parameters here are the Hall parameter 171" magnetic field parameter M and permeability of 

the porous medium K. 

Figure 2.1 is prepared to show the effects of M on the velocity profiles in the two fluid cases. 

This figure depicts that with an increase of M the velocity profile decreases for both Newtonian 

and second grade fluids. However the effect of M in Newtonian fluid is more prominent in 

comparison to second grade fluid. 

In order to illustrate the influence of K on the velocity profile, we made figure 2.2. It is 

evident from this figure that velocity profiles in both fluids increase by increasing K . This figure 

further indicates that the increase in velocity for Newtonian fluid is much when compared with 

that of second grade fluid. 

The variations of m and M are given in figures 2.3-2.5. Figure 2.3 shows that velocity profiles 

in both fluids increase by increasing m. Moreover, boundary layer thickness also increases for 

large values of 11"1,. However the velocity in Newtonian fluid is found to be greater than that 

of a second grade fluid. The influence of M on the velocity profiles when 171, = 0 are shown in 

figures 2.4 and 2.5, respectively. It is found that here velocity profiles behave similar to that of 

171, f. O. But the velocity profiles for 171, = 0 is smaller than that of 171, f. O. 
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Figure 2.1: Profiles of the normalized steady state velocity u (y) for various values of M . 
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Figure 2.2: Profiles of the normalized steady state velocity u (y) for various values of K. 

(a) Newtonian fluid 

K = 1.0, M = 3, 0:= 0, f = 21r 

(b) second grade fluid 

K = 1.0, M = 3, ae = 1.0, f = 21r 

0.8 

~ m=1 
-.. --- m= 2 
---- m=3 
--- m= 4 

~ 0.4 

0.2 

o 
o 0.5 1.5 

Y 

0.6 

S 
:;, 0.4 

0.2 

0 

2 2.5 3 

~\ 
\ 

I~ 

\~ 
\'\ 
\\~ 

0 0.5 

, 

1.5 
Y 

2 2.5 

Figure 2.3: Profiles of the normalized steady state velocity u (y) for various values of m. 
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absence of Hall parameter m . 
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Figure 2.5: Profiles of the normalized steady state velocity u (y) for various values of K m 

absence of M and m. 

2.6 Concluding remarks 

An analytical study is made of the three unsteady oscillatory flows of an electrically conducting 

second grade fluid through a porous medium. The system is stressed by strong transverse 

magnetic field. The analysis comprises the flow cases of a plate or between two plates. Based 

on modified Darcy's law, the governing equation is modeled. The exact solutions for velocity 

profiles are obtained and discussed. It is observed that, when the Hall parameter increases the 

velocity profiles increase, whereas when the porosity parameter increases the velocity decreases. 

The presented study is more general than the existing studies. For example, the results of [5] 

can be recovered from equations (2 .20) and (2.35) by taking m = !VI = ¢ = O. Also , the results 

for starting and steady solutions in [15] can be easily obtained by choosing m = !VI = ¢ = O. 

The steady solutions for Navier- Stokes fluid [65] are deduced when m = !VI = ¢ = a = O. 
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The transient solutions in Stokes' second problem are 

Ut (y, t) 

(2.43) 

The results of transient solutions for Navier-Stokes fluid can be written by taking m = !VI = 

¢ = a = 0 in Eqs. (2.42) and (2.43) and are given by 

2 i 'DO e Ut (y , t) = --v2 UO 2 4 2 exp (-vet) sin (~y) d~, 
1f . 0 v~+w 

(2 .44) 

( ) 
2 lDO~exp (-v~2t)sin(~Y)d~ 

Ut y,t =-Uowv 24 2 . 
1f 0 v~+w 

(2.45) 

Note that the transient solutions given in above equations are different but are in simpler from 

than those given in [8] by the Laplace transform treatment. 

34 



Chapter 3 

Effect of Hall current on flows of an 

Oldroyd-B fluid through a porous 

medium for cylindrical geometries 

In this chapter, the equations are developed for magnetohydrodynamic (MHD) flows of an 

Oldroyd-B fluid through a porous medium. These equations give rise to a mathematical de­

scription in which a modified Darcy's law for an Oldroyd-B fluid is taken into account with Hall 

effects. This particularly happens when magnetic field is high . Four characteristic examples for 

flows in pipe and cylinder are considered. These are 

(i) starting flow in a circular cylinder moving parallel to its length, 

(ii) starting flow in a circular pipe, 

(iii) generalized flow in a circular pipe, 

(iv) starting flow in a rotating cylinder. 

The problems valid for a small magnetic Reynolds number are solved analytically by ap­

plying the Laplace transform method. Graphical results for the velocity are displayed and are 

discussed for the various parametric conditions. 
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3.1 Description of the basic equations 

In our calculations we shall assume that an Oldroyd-B fluid is incompressible whose constitutive 

equation is 

T = - pI + S, (3.1) 

(3.2) 

where T is Cauchy stress, p the isotropic pressure, I the identity tensor, S the extra stress 

tensor, d/ dt the material derivative, L the velocity gradient, L T the transpose of L, f.L the 

dynamic viscosity, t the time, A the relaxation time and e the retardation time. The expressions 

for first Rivlin-Ericksen tensor At and velocity gradient L are 

At = L+LT, L = VV, (3.3) 

in which V is the gradient operator, V the velocity of a fluid and A 2: e 2: O. The equations which 

govern the unsteady MHD flow with Hall effect are Maxwell (1.1)-(1.4), Generalized Ohm's law 

(1.13), conservation of mass for incompressible fluid (1.10), and equation of momentum (1.11). 

In the low magnetic Reynolds number consideration in which the induced magnetic field can be 

ignored and the imposed and induced electric fields are assumed negligible, the equation (1.13) 

simplifies to 

JxB=- aB~ V, 
1- im 

where m (= 'WeTe) denotes the Hall parameter. 

(3.4) 

In porous medium, the constitutive relationship between the pressure drop and velocity for 

an Oldroyd-B fluid [66 ,67J is 

I+A- Vp=-- v+e-( a) WP ( av) 
at k at' 

(3 .5) 

where ¢ is the porosity of the porous medium and k the permeability. For A = e = 0, Eq. (3.5) 

describes the Darcy's law. Since the pressure gradient given in equation (3.5) is a measure of 

the flow resistance in the bulk of porous medium and R in Eq.(1.11) is interpreted as the flow 
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resistance offered by the solid matrix. Therefore, R through equation (3 .5) satisfies 

(1 + )..~) R = - WP (1 + e~) v. 
at k at 

(3.6) 

From equations (3.4),(1.11) and (3.6) one can write 

p (1 + )..~) dV = (1 + )..~) divT- O"B5 (1 + im) (1 + )..~) V _WP (1 + e~) V. (3.7) 
at dt at 1 + m 2 at k at 

N ow we will discuss the four examples for flows mentioned above. 

3.2 Starting flow in a circular cylinder 

Here, an Oldroyd-B fluid is taken in a circular cylinder. The fluid is initially at rest and then 

starts suddenly because of the motion of the cylinder parallel to its length. Choosing z-axis 

as the axis of cylinder the velocity may be writ ten as 

V=(O ,O,w(r ,t)), (3.8) 

in which w is the velocity component along the z-axis . Using above expression, the equation 

of mass is identically satisfi ed and equation (3.7) gives 

(
1 )..~) ow = 
+ at at ( eo) (02w lOW) O"B5(1+im) ( \ a) v 1 + - -- + -- - 1 + 1\- W 

at or2 r or p(l +m2) at 

-- l +e- w v¢ ( 0) 
k at' 

(3 .9) 

where v is the kinematic viscosity. To complete the formulation of the problem, we give the 

following boundary and initial conditions: 

w (a, t) 
ow (0, t) 

or 
ow (r , 0) 

at 

W, t > 0, 

0, for all t, (3.10) 

w (r, 0) = 0, 0 :::; r < a, 
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in which a is the radius of the cylinder and W the constant velocity at T = a. 

We introduce the following dimensionless variables 

vt VA 
T=2' A=2' a a 

M = If;, Boa, {3 = I"t a (3.11) 

The following problem is obtained by substituting the above dimensionless quantities into equa-

tions (3.9) and (3.10) 

(l+e~) ( a2w +~aw ) _ M
2

(1+im) (l+A~)W 
aT ae ~ a~ (1 + m 2 ) aT 

_{32 (1 + e :T ) w, (3.12) 

w (1, T) 1, T > 0, 
aw (0, T) 

0, for all T, 
a~ 

(3.13) 

aw (~, 0) 
= w(~,O)=O, o ~ ~ < 1, 

aT 

where asterisks have been suppressed. 

Recently, it has been shown by Erdogan [68,69J that velocity expression in series form for 

large times can also be used for small times or vice versa. Therefore, following the same idea, we 

present the solutions for large and small times. The solution for small time has been obtained 

using Laplace transform method. 

3.2.1 Large time solution 

For steady state, the velocity distribution is given by 

where 

(t:) = 10 (P~) 
w c, 10 (P) , 

P = [M2 (1 + im) + {32] 1/2 
1 +m2 

and 10 is the modified Bessel function of first kind of order zero. 
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Let 
fa (P~) 

w (~, T) = fa (P) - f (~ , T) , 

where f (~, T) satisfies the following initial-boundary value problem 

(1 + A~) af = 
aT aT 

f(l ,T) 
af(O,T) 

a~ 

f(~ , O) 

af (~, 0) 
aT 

0, T > 0, 

0, for all T, 

fa (P~) 
f a (P) , 

= o. 

Now solving equations (3 .16) and (3. 17) we arrive at 

00 

f (C T) = L BnJo (An~) Tn (T) , 
n=l 

where Jo is the Bessel function of first kind of order zero and An are the zeros of Jo and 

1 

01 = [(~l - ~l- ~3) + J(~l-2~l- ~3)' + (2~1~' - ~4)' l ' , 

[ ( 2 2) M2 ] 1 
"11 = 1 + (3 + An e + 1 + m2 A' 

mJ'vf2 

"12 = A (1 + m 2 ) , 
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4mM2 
T)4 = A (1 + m 2 ) . 

The values of Bn can be obtained by the initial condition for f (~, r). Hence, the velocity 

distribution takes the form 

where h is the Bessel function of first kind of order one. 

3.2.2 Small time solution 

The Laplace transform w of w is defined as 

00 

w (C s) = .I w (~, r) e-sr dr. 

a 

Therefore, the equations (3 .12) and(3.13) reduces to 

1 
'iij" + -Wi - q2'iij = 0, 

~ 

w(1,s) 
1 

= , 
s 

dW(O,s) 
= 0, 

d~ 

where 

[ 
1 { M2( 1 +im) }] ~ 

q = (1 +8s) (l +As) 1 +m2 +(1+ 8s) {32+s( 1 + As) 

and primes denote the differentiation with respect to ~. 

The solution of equations (3.20) and (3.21) is 

_ fa (q~) 
W=--. 

sfo (q) 
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(3.19) 

(3.20) 

(3.21) 

(3.22) 



Laplace inversion of equation (3.22) yields 

'Y+ioo 

__ 1 j' 10 (q~) STd 
w - 2 . T ( ) e s. 

11''1. S10 q 
(3 .23) 

l'-ioo 

In equation (3 .23), s = 0 is a simple pole. Therefore, residue at S = 0 is 

R (0) = 10 (P~) 
es 10 (P) . (3.24) 

The other singular points of equation (3.23) are the zeros of 

Io (q) = 0. 

Setting q = i )." we find that 

Jo()., ) =0. (3.25 ) 

If An, n = 1,2" . ',00 are the zeros of equation (3 .25) , then SIn and S2n are the poles. These 

are simple poles and the residue at these poles are 

where 

_ [1 + (A2 + (32) e + M
2
(l+im)] + [1 + ().,2 + (32) e + M2(l+im)] 2 _ 4A (P2 + ).,2) 

n (1+m2) n (l+m2) n 
Sln=--~--------------------~~--2A~----------------------------

- [1 + (A~ + (32) e + N~~~~;)] - [1 + (A; + (32) e + lV~~~!~) r -4A (P2 + A;) 
S2n=--~--------------------~~--2A~----------------------------

[ 
2 2 M 2(1+im)A] 

ll= 1+2AsIn + (An +(3 )e+ (1 +m2) , 

[ (
2 2) Nf

2
(1 +im)A ] 

l2 = 1 + 2As2n + An + !3 e + (1 + m 2) . 
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Addition of Res(O) , Res( SIn) and Res( S2n) gives 

3.3 Starting flow in a circular pipe 

Here, the unsteady flow is considered when the fluid is in a circular cylinder . Initially, the fluid 

is at rest . An application of constant pressure gradient suddenly starts the motion. With the 

help of equations (3.7) and (3.8), the equation for such a flow is of the following form: 

---+1/ 1+8- -+--1 dp ( 8) (82
w 1 8W) 

P dz 8t 8r2 r 8r 

O'B6 (1 + im) ( A 8) I/¢ ( 8 8) 
- p (1 + m 2) 1 + 8t w-k 1 + at w. 

The appropriate boundary and initial conditions are 

w(a,t) 

8w (r , 0) 
8t 

ow (0 , t) = 0 for all t, 
8r ' 

w(r,O)=O , O::; r < a. 

Using the dimensionless variables defined in equation (3.11 ) along with 

* z * p z = - p = 
a ' (f-LW/ a) 

(3.27) 

(3.28) 

in equations (3.27) and (3.28) and then solving the resulting problem by employing a similar 

procedure as in previous sections we have: 

3.3.1 Large time solution 

w(~T)=_~dP[l_fa(P~)] 2dp~ Ja(An~)Tn(T). (3 .29) 
, p2 dz fa (P) + dz ,~ An (P2 + A~) h (An) 
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3.3.2 Small time solution 

where 

_ [3 ( _ 2 M2 (1 + im)) 2 2 ] 
l3 - AS1n + 1 + 0 f3 + (1 + m 2) Sln + P 81n , 

_ [1 + 0 f32 + M2(l+im)] + [1 + 0 B2 + M2(l+im)] 2 _ 4Ap2 
(l+m2) ' (l+m2) 

Sl =--------------------~~-------------------
2A 

2 (l+m2) 2 

[

AS2 + (1 + 0f32 + M2(l+im)A) S + P2jl/2 

3.4 Generalized flow in a circular pipe 

Here the flow geometry is same as in section 3.3 except that the fluid motion now is due to a 

constant pressure gradient and by the motion of the cylinder. Using the same dimensionless 

variables as defined in section 3.2, the governing problem takes the following form 

l + A-- - = ( 0) ow 
aT aT 

dp ( a ) (02W lOW) 
- dz + 1 + 0 aT oe + ~ O~ 

M2 (1 + im) ( a ) 2 ( a ) 
- (1 + m2) 1 + A aT w-f3 1 + 0 aT W, (3.31) 
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w (1, r) 1, r > 0, 

8w (0, r) 
0, for all r , (3.32) 

8~ 
8w (~, 0) 

= w(~, O)= o , o:s~<l. 8r 

For the above problem the large and small times solutions are : 

3.4.1 Large time solution 

w (~, r) 

(3.33) 

3.4.2 Small time solution 

w (~, r) 

3.5 Starting flow in a rotating cylinder 

Here we consider the fluid in a circular cylinder. The fluid is initially at rest and suddenly sets 

in motion due to rotation of the cylinder. For such flow the velocity field is 

V=(O ,V(T, t) ,O). (3.35) 
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Substitution of above equation into equation (3.7) yields 

( 8) 8v 
1 + A 8t 8t = 1/ 1 + g- - + -- --( 8) (8

2
v 1 8v v ) 

8t 8r2 r 8r r2 

- 1 + A- V - - 1 + - v. CTB5(I+im) ( ,8) 1/¢ ( g8) 
p (1 + m 2) 8t k 8t 

(3.36) 

The boundary and initial conditions for the problem can be written as 

v(a,t) = na, t> 0, 

8v (0 , t) 
= 0, for all t , (3.37) 

8r 
8v (r , 0) 

v(r, O)=O , o :s r < a, 
8t 

in which n is the angular velocity. Making use of dimensionless variables given in equation 

(3 .11) together with 

* v v =-na 
one produces the following problem after dropping ast erisks 

v(l,r) = 1, r> 0, 

8v (0, r) 
= 0, for all r, 

8~ 
8v (~, 0) 

v(~, O) = O, O:S ~ < 1. 
Eh 

The large and small times solutions of the above problem may be written as: 

3.5.1 Large time solution 

v (~ r) = h (P~) 2 ~ AnJdAnO 7;, (r) 
) h (P) + ~ (P2 + A~) Jo (An)' 
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(3.38) 

(3.39) 

(3 .40) 

(3 .41 ) 



"" .' 

where h is modified Bessel function of first kind of order one and An are the zeros of Jr . 

3 .5.2 Small time solution 

'U (~ , r ) = IdP~) _ 4 f { (1 + Gs1n) eS!n
T + (1 + GS2n) e

S2n T 
} AnJ l ( An~) . (3.42) 

h (P) n=l Slnll s2nl2 [Jo (An) - J2 (An)] 

3.6 Discussion of results 

In this section, we present the graphical illustration of velocity profile for different flows namely, 

starting flow in a circular cylinder moving parallel to its length, starting flow in a circular pipe 

due to pressure gradient and starting flow in a rotating cylinder. Special attention has been 

given to examine the velocity profiles for two kinds of fluids : a Newtonian fluid and an Oldroyd­

B fluid for different values of Hall parameter m and the constant of porous medium (3 when r 

and M are fixed. 

~ 

(a) Newtonian fluid (A = G = 0) 
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(b) Oldroyd fluid (A = 0.8, e = 0.1) 
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Figure 3.1 : Profiles of the normalized velocity w (~ , r) for various values of (3 when r = M = 1 

and m = 0 are fixed . 
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(a) Newtonian fluid (A = e = 0) (b) Oldroyd fluid (A = 0.8, e = 0.1) 
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Figure 3.2 : Profiles of the normalized velocity w (~, T) for various values of f3 when T = M = 1 

and m = 2 are fixed. 

(a) Newtonian fluid (A = e = 0) 
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(b) Oldroyd fluid (A = 0.8, e = 0.1) 
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Figure 3.3 : Profiles of the normalized velocity w (~, T) for various values of f3 when T = M = 1, 

dp/dz = -2 and m = 0 are fixed. 

Figures 3.1 and 3.2 are prepared to show the effects of Hall parameter m and the constant of 

porous medium f3 on the velocity profiles of the flow due to the motion of the cylinder parallel 

to its length. From these figures it is noted that with an increase of f3 the velocity profile 

decreases for both a Newtonian fluid arid an Oldroyd-B fluid. The effect of f3 on the velocity 

profiles of a Newtonian fluid is prominent as compared to an Oldroyd-B fluid , Moreover, from 

these figures, it is found that with an increase of Hall parameter, the velocity profiles increase 

for both the fluids. The permeability of the medium plays a similar role on the velocity as 
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that of Hall parameter. Furthermore, it is observed that the steady state for an Oldroyd­

B fluid in porous medium is achieved earlier when compared with the non-porous medium 

situation. The time to achieve the steady state for porous medium is about T = 2.1 (when 

A = 0.8, e = 0.1 , m = M = 2 and f3 = 2) while for non-porous medium it is about T = 3 

(when A = 0.8 , e = 0.1 , m = M = 2 and f3 = 0). 

(a) Newtonian fluid (A = e = 0) 
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(b) Oldroyd fluid (A = 0.8, e = 0.1) 
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Figure 3.4 : P rofiles of the normalized velocity w (~ , T) for various values of f3 when T = M = I , 

dp /dz = -2 and m = 2 are fixed . 

(a) Newtonian fluid (A = e = 0) 
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(b) Oldroyd fluid (A = 0.8, e = 0.1) 

1 [JTIJ= --/3=1 
---- # = 2 

0.8 .. . = 5 

0.2 0.4 0.6 

.p'1 ~: 
1 " /'" 1 : 

'/ 1 

./ // 
/ 

1 • 

,,-
" 

0.8 

Figure 3.5 : Profiles of the normalized velocity v (~ , T) for various values of f3 when T = M = 1 

and m = 0 are fixed. 

Figures 3.3 and 3.4 show t he flow due to a constant pressure gradient in a porous medium 

and figures 3.5 and 3.6 are sketched for starting flow in a rotating cylinder. In all these figures, 
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it is observed that the effects of (3 and Hall parameter m are similar to that in figures 3.1 and 

3.2. For the case when the motion is generated due to constant pressure gradient, it is noted 

that the steady state time for an Oldroyd-B fluid in porous medium is about T = 2.2 (when 

A = 0.8, e = 0.1 , m = M = 2, dp/dz = -2 and (3 = 2) whereas for non-porous medium it 

is about T = 3 (when A = 0.8 , e = 0.1, m = M = 2, dp/dz = -2 and (3 = 0). The time 

to reach the steady state for the flow due to the rotation of cylinder is about T = 1.3 (when 

A = 0.8, e = 0.1, m = M = 2 and (3 = 2) in porous medium and for non-porous medium it is 

about T = 2.1 (when A = 0.8, e = 0.1, m = M = 2 and (3 = 0). It is further noted that steady 

state in case of Hall parameter is obtained much latter than that when no Hall parameter is 

present . For Hall parameter case, the steady state achieved is T = 1.3 when (3 = 2 whereas it 

is T = 0.8 when m = a and (3 = 2. 

(a) Newtonian fluid (A = e = 0) (b) Oldroyd fluid (A = 0.8, e = 0.1) 
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Figure 3.6 : Profiles of the normalized velocity v (~, T) for various values of (3 when T = M = 1 

and m = 2 are fixed. 

3.7 Concluding remarks 

In this study, a porous media model for an Oldroyd-B fluid is derived using modified Darcy's law. 

The modeled equation can be applied to problems with Hall effect. Four illustrative examples 

have been chosen to discuss the flow analysis from the modeled equation. In each case, the 

analytical solutions have been obtained in closed form. The presented analysis explores the 

influences of Hall current, porosity and permeability of the porous medium for the Newtonian 
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and an Oldroyd-B fluids. The obtained results illustrate the novel facets of the model and 

emphasize their importance. The results categorically indicate the following findings: 

• Increasing Hall parameter leads to an increase in the velocity for both a Newtonian and 

an Oldroyd-B fluids. 

• On the velocity, the influence of permeability of the porous medium is similar to that of 

the Hall parameter. However, the effect of porosity of the medium is quite opposite. 

• In presence of Hall parameter, the steady state is achieved much later when compared 

with the flows which hold in absence of Hall parameter. 

• In porous medium, the velocity profiles attain steady state much quickly than those for a 

non-porous medium. 

• For m = f3 = 0, the obtained results correspond to the results of reference [70]. This 

provides a useful check. 

• The large time solutions (3.19), (3.29), (3.33) and (3.41) have been compared with the 

existing solutions in the literature. It is noted that for M = f3 = 0, the solutions (3.19) 

and (3.29) reduce to equations (3.21) and (4.8) in reference [47], respectively. Moreover, 

the solution (3.41) reduces to equation (31) in reference [48] when M = f3 = O. It is further 

noted that the solution (3.33) is the sum of the solutions (3.19) and (3.29). 

• The small time solutions (3 .26), (3.30), (3.34) and (3.42) do not satisfy the initial con­

dition. This is not surprising since the problems for which the boundary data are in­

compatible do not admit smooth solutions that satisfy both the initial and boundary 

conditions [16, 17,71,72]. 
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Chapter 4 

Accelerated flows of an Oldroyd-B 

fluid in a porous space 

In this chapter, the two problems dealing with the unsteady unidirectional accelerated flows of 

an Oldroyd-B fluid in a porous medium are investigated. By using modified Darcy's law of an 

Oldroyd-B fluid, the problems governing the accelerated flows are modelled. Employing Fourier 

sine transform, the analytic solutions of the modelled equations are developed for the following 

two problems: (i) constant accelerated flow (ii) variable accelerated flow. Explicit expressions 

of the velocity field and adequate tangent ial stress are obtained in each case. The solut ions for 

Newtonian , second grade and Maxwell fluids in a porous medium appear as the limiting cases 

of the present analysis. 

4.1 Governing equations 

The balance of linear momentum in a porous medium and continuity equation are given as 

in equations (1.11) and (1.10) . The constitutive relationship for an incompressible Oldroyd-B 

fluid are given as in equations (3.1) and (3.2) We select the velocity of the following form 

v = (u (y 1 t) , 0, 0) . (4 .1) 
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With this choice of velocity the constraint of incompressibility is automatically satisfied. We 

also assume that extra stress tensor is function of y and t only i.e. S=S(y,t). Substituting 

equation (4.1) into equation (3 .2) and keeping in mind that at t = 0 the fluid is at rest, we get 

Sxz = Syy = Syz = Szz = 0 and 

( 
0) ou ( OU )2 

1 + ). ot Sxx = 2)'Sxy oy - 2/LB oy , (4.2) 

(4.3) 

By analogy with an Oldroyd-B constitutive relationship , the phenomenological model (which 

relates pressure drop and velocity) given in equation (3.5) for an Oldroyd-B fluid is suggested 

[61,73J. The Darcy's resistance R satisfies equation (3.6). 

The balance of linear momentum gives 

OU __ op oSxy R 
P ot - ox + oy + x, (4 .4) 

in which Rx is the x-component of R. 

In absence of body force, the equations (4.3)-(4.4) and (3.5) and (3.6) give 

( 
0) ou ( 0) op ( 0) 02u /L¢ ( a) p 1 +).- - = - 1 +).- - + /L 1 + B- - - - 1 + B- u. 
ot ot ot ox ot oy2 k at 

(4.5) 

4.2 Flow due to constant accelerated plate 

4.2.1 Calculation of velocity field 

Consider an incompressible Oldroyd-B fluid over an infinite plate at y = O. Init ially the fluid 

as well as the plate is at rest. At t = 0+ the plate starts to move with constant acceleration 

'A' in the x-direction. In the absence of a pressure gradient in the flow direction, the governing 

equation and the appropriate boundary and initial conditions are 

(4.6) 
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u (0, t) = At, t > 0, 

Bu(y,t) 
u (y, t) , By ~ 0 as y ~ 00, t > 0, 

u (y, t) = 0, Bu(y,t) = O. when t = 0 
Bt ' , y> 0, 

where (v = {-L/ p) is the kinematic viscosity of the fluid. 

(4.7) 

(4.8) 

(4.9) 

In the following we shall use Fourier sine transform pair defined by equations (1.22)-(1.23). 

Taking the Fourier sine transform of equation (4.6) and using conditions (4.7)-(4.9), we find 

that ft, (~, t) satisfies the following problem 

d
2

ft, [ ( ¢)] du ( ¢) f2 A dt2 + 1 + Q e + k dt + v e + k U = V ;~A (vt + Q) , ~, t > 0, (4 .10) 

u(~,O)=dU~~,O)=O , ~> O , (4.11) 

where Q = vB . 

The solution of equation (4.10) satisfying the initial conditions (4.11) has one of the following 

forms 

(4.12) 

(4.13) 

or 

[l+(o:-2Av)(~2H/k)lt+2A [_ l+O(~~H/k )tl _ 1 

2VA(eH/k) exp + t v(eH/k) 

(4.14) 

for ~t{a,b}, 
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if A > e. In the above relations 

a= 

- [1 + a (e + ¢/k)] ± )[1 + a (.;-2 + ¢/k)]2 - 4AlI (e + ¢/k) 
T 2-

1, - 2A ' 

_ [1 - a (e + ¢/k)] ± )[1 + a (e + ¢/k)]2 - 4AlI (e + ¢/k) 
T3,4 - 2>' ' 

1 ¢ and b = 
k 

1 ¢ 

[ fo ( vrx - J A - >'r) ] 2 - k' 

Taking the inverse Fourier sine transform of equations (4.12)-(4 .14) , we find the following ex­

pressions of velocity field 

u (y, t) A ( ~) 2A Joo .;- sin (y';-) de texp -y - - - <, 

k lI7I' 0 (e + ¢/ k ) 2 
(4.15 ) 

2A (t ) lex:: [a (e + ¢/k) ] +- exp - - exp - t 
lI7I' 2A. 2A 

o 

[
Ch (f3t) + 1 + (a - 2>'lI) (e + ¢/k) sh ( f3 t )] ';-sin(y';-) d';-, 

2>' f3 2>' (e + ¢/k)2 

U(y,t)=Atexp(-y fl.) _2A joo{1_ e-l/(eHlk)t } ';-sin(y';-) d';-, 
V k lI7I' '0 (e + ¢ / k) 2 

( 4.16) 

and 

u (y, t) A ( ~) 2A;ex::.; sin (y';) de 
t exp -y - - - <, + 

k lI7I' 0 (e + ¢/ k ) 2 
( 4.17) 
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if A < Ar, A = Ar and A > Ar , respectively, and 

~ E (O,a) U (b ,oc) 

(
a (e + ¢/k) ) 

B(~ , t)=exp - 2/\ t 

h ( :JJ..) 1+(Ct-2>.v) (eH/k) h (:JJ..) 
c 2>' + 'Y s 2>' ~ E (a, b) , 

4.2.2 Calculation of the tangential stress 

The solution of the differential equation (4.3) with the initial condition 

Sxy (y , 0) = 0, y > 0 (4.18) 

is 

(4.19) 

where T (y, t) = Sxy (y, t) . 

Substituting equations (4.15)-(4.17) into equation (4.19) , we get the shear stress under the 

form 

T (y , t) -~4f exp ( -ylf) [t+ (!. - e) (e-'I' -1) I (4.20) 

2PAJOO e cos (yO d 2pA (t ) Joo [a (e + ¢/k) ] - - ~ + - exp -- exp - t 
7f 0 (e + ¢ / k) 2 7f 2A 0 2A 

x [Ch (f3t ) + 1 - a (~2 + ¢/k) sh ( f3 t )] e cos (y~) df., 
2A f3 2A (e + ¢/k)2 

T (y, t) = -pAt ff.. exp (_y fl.) _ 2PAj~{1 _ e-v(E,2 H /k )t} e cos (y~) d~ (4.21) 
Y'k Y'k IT 0 (e+¢/k)2 

55 



and 

(4.22) 

00 

_ 2pA J e cos (y~) d~ 
IT 0 (e +¢/k)2 

2pA (t ) fa [cy. (e + ¢ / k) ] +-exp -- exp - t 
IT 2,,\ . 2,,\ 

a 

[ (
"It ) 1 - cy. (e + ¢ / k ) . ( "It )] e cos (y~) de cos - + Sill - <, + 
2), "I 2), (e + ¢/k)2 

b 

+ 2~A exp ( - 2\) J exp [ -" (<' 2: ¢/k) t] 
a 

[
Ch ( f3t ) + 1- cy. (e + ¢/k) sh ( f3 t )] ecos(y~) dE, + 

2 ), f3 2), (e+¢/k)2 

2pA ( t ) j<X? [ cy. (e + ¢j k) ] +- exp -- exp t 
IT 2), 2), 

b 

[
Ch(f3t )+l-CY.(e+¢/k)Sh(f3t )] ecos(y~) df" 

2), f3 2), (e + ¢/k)2 

-' corresponding to ), < B, ,,\ = Band ,,\ > B. 

4.3 Limiting cases 

1. Making ,,\ -+ 0, into equations (4.15) and (4.20) we find that 

v t -Atex ( _ ~) - 2A j<X? { 1_e [ -/J(e+¢ik) t] } ~sin(y~)df, (4.23) 
(y,)- p YVk V7r.

o 
xp l+CY.(e+¢jk) (e+¢jk)2 ' 

56 



_'i 

_\ 

and 

T(y , t) 

which are the similar solutions for a second grade fluid. 

2. The velocity field 

u (y, t) A ( It) 2A [00 ~ sin (y~) d 
texp -y - - - ~ 

k 1l7r.
o 

(e + ¢/k)2 
(4.25) 

+ 2A e. (_-.!...) f C' [Ch (~) + 1 - 2>.v (e + ¢!k) sh (~)] ~sin (yO d~ 
1/71" xp 2>' 0 2>' 0 2>' (e + ¢/k)2 

+ 2A e ( __ t) fex: [cos (xt) + 1 - 2>'1/ (e + ¢/k) sin (xt)] ~sin(yO d~ 
1/71" xp 2>' 2>' X 2>' (e + ¢!k)2' 

C 

as well as, the shear stress 

T(y ,t) 

corresponding to a Maxwell fluid can be also obtained as the limiting cases of equations (4.17) 

and (4.22) for e ~ O. In the last relations 

3. By letting now e ~ 0 into equations (4 .23) and (4.24) or >. ~ 0 into equations (4.25) 

and (4.26) we attain to the solutions (4.16) and (4.21) corresponding to a Newtonian fluid. 
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It is clear that for ¢ = 0, all solutions reduce to those obtained in [52] corresponding to the 

flow induced by constantly accelerating plate in an Oldroyd-B fluid . 

4.4 Flow induced by variable accelerated plate 

Let us now consider a flow problem for which the plate at t=O+ begins to move with a vari­

able acceleration. The governing equation, the initial conditions and a part of the boundary 

conditions are same. Instead of the condition (4.7) we take the boundary condition 

u (0, t) = At2, t > 0, (4.27) 

so that the corresponding ordinary differential equation becomes 

( 4.28) 

The general solution of above equation is 

21+(Q-AV)(e+ifJ/k ) Tl exptr2t)-T2 expht) 
v2 (e+rf>/k )2 T2 -Tl 

+ 2 exp(T2t)-exp(Tlt) + t2-
v(e+</J/k) T2-Tl . 

2t + 21+(Q-AV)(eH/k) for ~ 1- {a,b} 
v(eH/k) v2(f,2H/k)2 

_ j2/1f~A 
u (~, t) = (e + ¢/k) 

2 

for ~E{a)b} , 

(4.29) 
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we can write the velocity field under the next forms 

u(y,t) = 

+8>.A ex ( __ t ) jOO ex [_ a(e+¢!k)t] Sh( f3t ) ~sin(y~)d~ if >'<B (4 .30) 
1rIJ P 2>"0 P 2>' 2>' f3 (e + ¢!k)2 ' 

U ( t) = At2 e ( _ fl) _ 4At lex: ~ sin (yO d~ 
y , xP YV k 7rV 0 (e + ¢!k)2 

+ 4A Joo {l _ exp [-v (e + 1:.) t]} ~sin(y~) d~ if >. = B, (4.3 1) 
7rv\ k (e+¢/k)3 

u(y,t) ( 4.32) 

_ 4A exp (_~) 
1J'V2 2>' 

if>. > B 
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where 

D (, t) ~ exp [_ a «' ;;. ¢/k) t] { 
(/}i.) l+n( eHlk) ((3t) ch 2A + (3 sh 2A for ~ E (O ,a) U (b ,oo) 

o for ~E{a ,b} 

t l+n(e+<t>lk) t 
cos (?X) + 'Y sin (?X) for ~E (a , b) 

and 

[ 

0 (e + ¢/k) ] 
E (~, t) = exp - 2,,\ t 

2(3Ash un for ~ E (0, a) U (b ,oo) 

[
1- l+(n-Av)(eHlk) l+n(eH1k) ] t 

v(eHlk) 2A 

l+(n-Av) e+<p/k for ~E {a, b} 
v €2Hlk) 

:; sin (?i) for~E(a,b) 

In the following , in order to determine the adequate stresses, we again introduce equations 

(4.30),(4.31) and (4.32) into equation (4.19). In order to determine the shear stress correspond­

ing to the flow induced by a variable accelerating plate we write the velocity field (4.30) under 

the form 

where 

v (y, t) ~ At' exp ( -ylf) + v, (y,t) + v, (y, t) + V3 (y , t) + v, (y, t) 

VI (y,t) 

V2 (y, t) 

00 

= _ 4At j' ~ sin (y~) d~ 
1rv 0 (e + ¢/k)2 ' 

00 

4A j'l + (0 - ,,\v) (e + ¢/k) ~sin (yO d~ , 
7rV2 0 (e + ¢/k)3 
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( 4.34) 

(4.35) 



:;, 

\. - , 

and 

TlT2 = 
V (~2 + ¢/k) v (e + ¢ / k) (A - Ar) 

( 4.36) 
A 

, T3T4 = 2 
A 

TIT3 = - v (e + ¢/k) (1 + ArTl) 
, T2T4 = - v (e + ¢/k) (1 + ArT2) 

A A 

TlT4 = 
Tl+V(.;2+¢/k) _ v(~2+¢/k)(A-Ar)-AT4 

A A2 

T2T3 = 
T2 + v (e + ¢/k) _ v (.;2 + ¢/k ) (A - Ar) - AT3 

A A2 

Tl + T4 = T2 + T3 = - 0 (e + ¢ / k) / A. 

Introducing equations (4.33)-(4.35) into equation (4.19) we get for the last four terms 

t 

Tl (y , t) = ~ exp (-*) .I exp (~) (1 + Ar8r ) 8y V l (y , T) dT 
o 

00 2 

= _ 4pA [t + (Ar _ A) (1 _ e-t / A)] j' ~ cos (y~) d~, (4 .37) 
7f 0 (e +¢/k)2 

T2 (y,t) = 4pA (1 - e-t/ A) fool + (0 - AV) (e ~ ¢/k) .;2cos(yOd~, (4.38) 
7fV 0 (.;2 + ¢/k) 
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T3(y,t) = _ 4pA ~jO<?l + (a - AV) (e + ¢/k) rl exp (r2t) - r2 exp (rlt) e cos (y~) d~ 
7rV A-ArO (e+¢/k)3 r2-rl 

_ 4pA _l_ jO<? 1 + (a - AV) (e ; ¢/k) exp (r2t) - exp (rlt) e cos (y~) d~ 
7r V A - Ar C (e + ¢ / k ) r2 - rl 

4pA ~jOOl + (a - AV) (e + ¢/k) r3 exp (r2t) - r4 exp (rlt) e cos (y~) d~ 
+7rVA- Ar

O 
(e+¢/k)3 r2- rl 

= 4pA Ar jCX\ + (a - AV) (e + ¢/k) exp (r2t) - exp (rlt) e cos (y~) d~ 
7rV A (A - Ar) (e + ¢/k)3 r2 - rl 

o 

_ 4PA_l_ jOOl + (a - AV) (e; ¢/k) exp (r2t) - exp (rlt) e cos (y~) d~ 
7fV A - Ar . (e + ¢/ k) r2 - rl 

o 

= _ 4pA jO<? 1 + (a - AV) (e + ¢/ k) exp (r2t) - exp (rlt) e cos (y~) d~ (4.39) 
7rVA 0 (e + ¢!k) 3 r2 - rl 

and 

T4 (y, t) = 4pA_A_ j<X? e cos (y~) r3 exp (r2t) - r4 exp (rlt) d~ 
7rV A - Arc (e + ¢/k)3 r2 - rl 

+ 4pA ~jOO e cos (y~) r2 exp (r2t) - rl exp (rlt) d~ 
7rV A-Aro (e+¢/k)3 r2-rl 

+ 4pA ~jOO e cos (y~) exp (r2t) - exp (rlt) d~ 
7r A - Ar 0 (e + ¢ / k) 2 r2 - rl 

00 2 
+ 4pA e-t/>. j ~ cos (y~) d~ 

7rV C (e+¢/k)3 

= _ 4PA j<X? e cos (y~) r2 exp (r2t) - rl exp (rlt) d~ 
7r/) 0 (e + ¢/k)3 r2 - rl 

00 2 ) 
+ 4pA e-t/>. j ~ cos (y~ d( 

7rV 0 (e + ¢/k) 3 
(4.40) 
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Now 

2 ¢ ¢ 4pA' e cos (yO 
T (y, t) = -fLAt flk exp -y flk - -t / 2 dE, 

( ) 

00 

V k V k . 7f 0 (e + ¢/k) 

4pA JOO{ [( ¢)]} e cos (y~) +-exp l -exp -1/ e+-
k 

t 3d~, 
7W 0 (e + ¢/k) 

(4.42) 
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and 

T(Y, t) -I'Ajf exp ( -YIf) {t' -2 (A - 0) [t - H A exp ( -±) l} 
00 2 00 2 

_ 4pA (t + e) j' ~ cos (y~) d~ + 4pA j' 1 + a (~ + ¢/k) e cos (y~) d~ 
7r 0 (e + ¢/k)2 7rV,o (e + ¢!k)3 

00 

_ 4pA exp (_~) j 'D (~, t) e cos (y~) d~ 
7rV 2>' 0 (e + ¢/k) 3 

_ 8pA exp (_~) Ja e 1 + (a - AV) (e + ¢!k) 

7rV 2A 0 (3 (e + ¢/k)3 

[
a (e + ¢/k) 1 ((3t) exp - 2A t sh 2A cos (yO d~ 

b 

_ 8pA exp (_~) Je 1 + (a - AV) (e + ¢/k) 

7rV 2A a 'Y (e + ¢/k)3 

[
a (e + ¢ / k) 1 ( 'Yt ) exp - 2A t sin 2A cos (y~) d~ 

00 

_ 8pA exp (_~) Ie 1 + (a - /\V) (e + ¢/k ) 

7W 2A 'b (3 (e + ¢/k)3 

. [ a (e + ¢/ k) 1 ( (3t ) exp - 2A t sh 2A cos (yO ~ (4.43) 

if A < e, A = e, A > e respectively. 

Finally, it is clearly seen that making A = e into anyone of equations (4.15) , (4. 17), (4 .20) , 

(4.22), (4.30) , (4.32) ,(4.41) and (4.43) , the solutions corresponding to a Newtonian fluid 

(4.16), (4.21),(4.31) and (4.42) are obtained. 
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4.5 Special cases 

1. By letting >. ~ 0 into equations (4.30) and (4.41), the velocity field 

v(y,t) A 2 (If) 4At JOO ~ sin (yO riC t exp -y - - - 1M, + 
k 7rV 0 (e + ¢/k)2 

(4.44) 

+ 4A [00 [1 - exp ( -v (e + ¢/k) t)] [1 + a (e + ¢/k)] ~sin (y~) d~ 
V

2
7r 0 1 + a (e + ¢/k) (e + ¢/k)3 

as well as the shear stress 

T (y, t) = -/LA fikexp (_ y fi.k ) (t2+2>'rt ) + 4pA(t+>'r) [00 ecos(Y~)2d~+ 
V k V k 7r 0 (e + ¢/k) 

4PA jOC;>[ ( -V (e +¢/k)t ) ] ecos(y~) +- 1 - exp d~ 
V7r '0 1 + a (e + ¢ / k ) (e + ¢ / k ) 3 ' 

(4.45) 

corresponding to a second grade fluid are obtained. 

2. Making now e = 0 into equations (4.32) and (4.43) we attain the similar solutions 

>, 
v (y, t) 

c 

_ 8>'A exp (_~) j' ~Sh (~) ~ sin (yO d~-
7rV 2>' '0 Ii 2>' (e + ¢/k)2 

(4 .46) 

00 
_ 8>'A exp (_~) J2. sin (xt) ~ sin (y~) d~ 

7rV 2>' c X 2>' (e + ¢/k)2 
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and 

T (y , t) 

00 00 

4pA J' e cos (yO d 4pA /. e cos (yO d - - t ~+- ~ 
7r 0 (e + ¢!k )2 7rV 0 (e + ¢/k) 3 

_ 4pA exp (_~) 
7rV 2>-

8pA (t ) +-->- exp --
7rV 2>-

(4.47) 

for a Maxwell fluid . 

3. Finally, the velocity field (4.31) and the shear stress (4.42) , corresponding to Newtonian 

fluid , appear as limiting case of equations (4.44) and (4.45) (for a -+ 0) or equations (4.46) and 

(4.47) (for >- -+ 0) . 

For ¢ = 0, the porous effects disappear and solutions corresponding to the flow induced by 

a plate of variable acceleration in an Oldroyd-B, Maxwell, second grade and Newtonian fluids 
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are obtained. 
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Figure 4.1: Velocity profiles u corresponding to a S=second grade, O=Oldroyd, V=viscous 

and M=Maxwell fluids corresponding to A = 1.0 , LI = 0.11746, Ar = 15, A = 10 (constant 

acceleration) 

(a) (b) 

25 
1< = "/0, ¢ = 0.11. t =25 k = 10. ¢ = O. t = 25 

25 

22.5 22.5 

20 20 

17.5 17.5 
;; .:: 
)\ 15 
~ 

)\ 15 
~ 

'12.5 12.5 

10 10 

7.5 7.5 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 
y y 

Figure 4.2: Velocity profiles u corresponding to a S=second grade, O=Oldroyd, V=viscous 

and M=Maxwell fluids corresponding to A = 1.0 , LI = 0.11746, Ar = 15,A = 10 (constant 
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acceleration) 
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Figure 4.3: Velocity profiles u corresponding to a S=second grade, O=Oldroyd, V=viscous 

and M=Ma..'(well fluids corresponding to A = 1.0, // = 0.11746, Ar = 15 , A = 10 (constant 

acceleration) 
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Figure 4.4: Velocity profiles u corresponding to a S=second grade, O=Oldroyd , V =viscous and 

68 



M=Maxwell fluids corresponding to A = 1.0, /J = 0.11746, Ar = 2, A = 1 (variable acceleration) 
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Figure 4.5: Velocity profiles u corresponding to a S=second grade, O=Oldroyd, V=viscous and 

M=Maxwell fluids corresponding to A = 1.0 , /J = 0.11746, Ar = 2, A = 1 (variable acceleration) 
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Figure 4.6: Velocity profiles u corresponding to a S=second grade, O=Oldroyd, V=viscous and 

M=Maxwell fluids corresponding to A = 1.0 , /J = 0.11746 , Ar = 2, A = 1 (variable acceleration) 
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4.6 Results and discussion 

This section includes the discussion relevant to the velocity profiles for (i) constant accelerated 

flow (ii) variable accelerated flow. Attention has been focussed to the variation of velocity fields 

in various fluids . Figures 4.1-4.3 have been sketched just to present the comparison among the 

velocity profiles of various fluid models with respect to "t" . These Figures indicate that the 

velocity profile in second grade fluid is largest and smallest for Maxwell fluid. The velocity 

profile in an Oldroyd-B fluid is higher than that of Maxwell fluid. Also in absence of ¢ velocity 

profiles for all these fluid increase. 

Figures 4.4-4.6 provide the comparison of the velocity profiles for the second grade, Maxwell , 

Oldroyd-B fluid and Newtonian fluids in variable accelerated flow. Qualitatively, the observa­

tions for variable accelerated flow are similar to that of constant accelerated flow. However , 

the velocity profiles in constant and variable accelerated flows are not similar quantitatively. 

Comparison shows that velocity profiles in variable accelerated flow are larger when compared 

to that of constant accelerated flow. It is also evident from these figures that for small values 

of ¢ the velocity profiles for all these fluids increase. However the velocity profiles in Maxwell 

fluid decreases drastically. 
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Chapter 5 

Effects of Hall current on flows of a 

Burgers' fluid through a porous 

medium 

The main goal of this chapter is to extend the flow analysis of chapter three to a Burgers 's 

fluid model. We have obtained the analytical expressions of velocity distribution for large and 

small time. Earlier solutions of the considered problems are recovered . Comparison has been 

provided between Oldroyd-B and Burgers' fluids by plotting graphs. The physical interpretation 

is included. The observations seem to be consistent with physical intuitions. 

5.1 The involved equations 

For an incompressible flow of electrically conducting fluid, the relevant equations are (1.1)­

(1.4) and (1.10). The Hall effect is taken into consideration and the current density J satisfies 

equation (1.13). 

The constitutive equations for a Burgers' fluid may be put as [74] 

(5.1) 

where p is the reaction stress due to constraint of incompressibility, S IS the constitutively 

71 



determined extra stress, Al is the first Rivlin-Ericksen tensor, A and (3 are the relaxation times , 

J.L is the dynamic viscosity, B « A) is the retardation time and 

c5S = dS _ LS _ SL T 
c5t dt 

(5.2) 

is the upper convected time derivative and L is the velocity gradient. Also note that the 

model (5.1) includes as special cases of an Oldroyd-B model (for (3 = 0), a Maxwell model 

(for (3 = B = 0), a Newtonian fluid model (for (3 = B = A = 0) and a second grade fluid (if 

(3=A=O). 

For Maxwell fluid, the following phenomenological model is available in the literature [66,75] 

( a) {uP l+A- Vp=--V at k ' 
(5.3) 

which can be recovered from equation (3 .5) for B = O. 

Employing equations (3.5) and (5.3) we propose the following constitutive relationship be­

tween pressure drop and velocity for a Burgers ' fluid as [74] 

( a a2
) WP ( a) 1 + A- + (3- Vp = -- 1 + e- v. at at2 k at (5.4) 

By considering the balance of forces acting on a volume element of fluid, the local volume average 

balance of linear momentum is given through equation (1.11) and the expression in [61,73,76,77]. 

p(~~ + (v.V)v) =-Vp+divS+JxB+R. (5.5) 

Due to the volume averaging process, some information is lost, thus requiring supplemen­

tary empirical relation for the Darcy resistance. Recalling that the press me gradient given in 

equation (5.4) is a measure of the resistance to the flow in the bulk of porous medium and R 

in equation (1.11) is measure of the flow resistance offered by the solid matrix, therefore, R 

through equation (1.11) satisfies [73] 

1 + A- + (3- R = -- 1 + e- v . ( a a2
) WP ( a) at at2 k at (5 .6) 
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The extra stress and velocity are defined as 

( 

Srr 

S(1',t) = Ser 

Szr 

See ) V(r,t) = ( : ) (5 .7) 

Using equation (5.7), the continuity equation (1.10) is satisfied identically and equations 

(1.13) , (5 .1)- (5.2) and (5.4) after using S (1',0) = 0 (i.e. the fluid being at rest up to the 

moment t = 0) give 

8w 8p 1 8 o-B5 WP 
p-=-- +--(rS )- w--w 

8t 8 Z l' 87' rz 1 - im k ' 
(5.8) 

( 
8 8

2 
) (8 ) 8w 1 + A 8t + {3 8t2 Srz = ,,£ 1 + e 8t 8r' (5.9) 

S A (8Szz _ 2S 8W) f3 [~ (8Szz _ 23 8w) _ 28Srz 8W] = -2 e (8w ) 2 
zz + 8t rz 8r + 8t 8t rz 8r at 8r f.L 8r ' (5.10) 

where m = WeTe is the Hall parameter, Srr = Sre = See = Sez = 0 and r- and e-components of 

momentum equation indicate that p is independent of rand e and is at most a function of z 

and t . 

Eliminating Srz between equations (5.8) and (5.9), we get 

(
1 A~ f3~) 8w -

p + 8t + 8t2 8t - _ (1 + A~ + (3~) 8p + f.L (1 + e~ ) [8
2
w + ~ 8W] 

8t 8t2 8z 8t 8r2 r 8r 

- o-B5 (1 + A~ + f3~ ) w - f.L¢ (1 + e~) 'W. (5. 11 ) 
1 - im 8t 8t2 k 8t 

5.2 Starting flow in a moving cylinder 

Consider the MHD flow of an incompressible Burgers' fluid in a circular cylinder. Initially, the 

fluid is at rest and then cylinder motion is suddenly started. The z-axis is considered as the 

a,us of the cylinder. The flow problem in absence of pressure gradient is 
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='1 

w (a, t) 
8w (0, t) 

8r 
82w (r , 0) 

8t2 

W, t> 0, 

0, for all t, 

= 8w (r, 0) _ ( 0) - 0 8t - w r, -, o :S r < a, 

where a is the cylinder radius and W the constant velocity at r = a. 

On setting 

(5.12) 

(5.13) 

(5.14) 

the non-dimensional governing problem after dropping the asterisks can be written as follows 

w(l,t) = 1, t > 0, 

0, for all t, 
8w (0, t) 

8r 
82w (r, 0) 

8t2 
8w (r, 0) _ ( 0) - 0 

8t - w r , -, 

5.2.1 Large time solution 

For steady state, the velocity distribution is 

( ) 
_ fo (qr) 

w r - fo (q) , 
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(5. 15) 

(5.16) 

O:Sr<l. 

(5.17) 



~\ 

where 
_ [M2 ~] 1/2 

q- 1 . +K -zm 

and 10 is the modified Bessel function of first kind of order zero. 

Let 
10 (q1') 

W (1', t) = 10 (q) - 1 (1', t) . 

In equation (5.18), 1 (1', t) satisfies the following initial boundary value problem 

(
1 A 8 f3 8

2 
) 81 M2 ( A 8 f3 8

2 
) 1 1 (1 e 8 ) 1 + 8t + 8t2 7ft + 1 - im 1 + 8t + 8t2 + K + at 

l(l,t) 

1 (1',0) 

81(1',0) 
8t 

81 (0 , t) = 0 
81' ' 

10 (q1') 
10 (q) , 

82 /(1',0) 
8t2 = O. 

Now solving equation (5.19) subject to the boundary conditions (5.20) we arrive at 

00 

1 (1', t) = I: BnJo (an1') Tn (t) , 
n=l 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

where Jo is the Bessel function of first kind of order zero and an are the zeros of Jo and for 
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a 21/ 3 (_a 2 + 3bn(3) Dn 
-3/3 - 3/3Dn + 3(21/ 3 )/3' 

a (1 + V3i) (_a2 + 3bn(3) (1 - V3i) Dn 
- 3/3 + 3 (22/3) /3Dn - 6 (21/3) /3 ' 

a (1 - V3i) (_a2 + 3bn(3) (1 + V3i) Dn 
- 3/3 + 3 (22/3) /3Dn - 6 (21/3) /3 ' 

/3M2 
a= >-+ ., 

1- ~m (
1 2) >-M2 

bn = 1 + K + an e + . , 1- ~m 

2 2 
en = q + an' 

The values of Bn can be obtained by the initial condition for f (r, t). Hence, the velocity takes 

the following form 

(5.22) 

In above equation (5.22) J1 is the Bessel function of first kind of order one. 

5.2.2 Small time solution 

In this section we find the solution by Laplace transform method. If the Laplace transform of 

w is w then 
00 

w (r, s) = J w (r, t) e-stdt. 

o 

Equation (5.15) and the boundary conditions (5.16) are transformed to the following problem 

where 

-1/ + 1-/ r2- 0 w -w - w = , 
r 

w(1,s) 

dW (0, s) 
dT' 
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s' 

o 

(5.23) 

(5.24) 



and prime denotes the differentiation with respect to r. 

The solution of equation (5.23) satisfying the boundary conditions (5.24) is 

_ 10 (fr) 
tv = sIo (f). 

Laplace inversion of equation (5.25) yields 

r+ioo 

__ 1_ I 10 (fr) std 
w- 27ri . sIo(f)e s. 

r-ioo 

In equation (5.25), s = 0 is a simple pole. Therefore residue at s = 0 is 

10 (qr) 
Res(O) = Io(q). 

The other singular points of equation (5.26) are the zeros of 

fo (f) = O. 

Setting f = ia, we find that 

Jo (a) = O. 

(5.25) 

(5.26) 

(5.27) 

If an, n = 1,2,3, ..... 00 are the zeros of the equation (5.27), then DIn , D2"n and D3n , defined in 

section (2.1) are the poles. These are the simple poles and the residue at these poles can be 

obtained as 

= 
2nn (1 + BDIn ) JO (anT) eD1nt 

DIn [3/JDin + 2 (A + f~\I[~) DIn + (1 + ;~:n + ~) + Ba~] Jdan)' 

2nn (1 + BD2n) Jo (anr) eD2nt 

D2n [3/JD~n + 2 (A + C~~) D2n + (1 + I>.~:n + *) + Ba~] Jdan)' 

2nn (1 + BD3n ) Jo (anr) eD3nt 

Adding Res(O) J Re s (DIn) J Re s (D2n) and Re s (D3n) , a complete solution is of the form 
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where 

[ ( 13M2 ) ()"M
2 e ) ] 313Dfn + 2 ).. + 1 _ im D 1n + 1 + 1 _ im + K + ea~ , 

[ (
13 M2 ) ()"M

2 e) . ] 313D~n + 2 ).. + 1 _ im D2n + 1 + 1 _ im + K + ea~ , 

[ 
2 ( 13 M2 ) ( )"M

2 e ) 2 ] 13n = 313 D3n + 2 ).. + . D3n + 1 + . + K + ean . 
1- ~m 1- ~m 

5.3 Starting flow in a circular pipe 

Let us consider Burgers' fluid in a circular cylinder initially at rest . The fluid motion is caused 

by a constant pressure gradient. The statement of the flow problem is 

+ dp = f.L (1 + e~) [82
w + ~ 8W] 

dz 8t 8r2 r 8r ' 

8w (0, t) 
8r 

82w (r, 0) 
8t2 

w (a , t) = 0, for all t , 

8w (r, 0) _ ( 0) - 0 
8t - w r, - , 0:::; r < a . 

With the help of the dimensionless variables defined in equation (5 .14) and 

* z * p z =- p =-:---:-=-:--::-::-: 
a' (f.L/a) W 

the solutions of equations (5.29) and (5.30) are: 
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5.3.1 Large time solution 

w(r,t) =_~ [1- 10 (qr)] +2~ 10 (anr)Tn(t) . 
dp/dz q2 10 (q) L.t An (q2 + a~) 11 (an) n=1 

5.3.2 Small time solution 

w (r, t) 
dp/dz 

where 

[ 3 ( (3M2 ) 2 ( )"'M2 e ) 2] 14n = (3 Dln + )... + 1 _ im Dln + 1 + 1 _ im + K D1n + q , 

[ 3 ( (3M2 ) 2 ( )"'M
2 e ) 2] 15n = (3D2n + A + 1 _ im D2n + 1 + 1 _ im + K D2n + q , 

[ 3 ( (3M2 ) 2 ( )"'M2 e ) 2] IBn = (3 D3n + A + 1 _ im D3n + 1 + 1 _ im + K D3n + q , 

a 21/ 3 ( _a2 + 3b(3) D 
81 = - 3(3 - 3(3D + 3 (21/3) (3' 

a (1 + V3i) (_a2 + 3b(3) (1 - V3i) D 
82 = - 3(3 + 3 (22/ 3) (3D - 6 (21 /3) (3 , 

a (1 - V3i) (_a2 + 3b(3) (1 + V3i) D 
83 = - 3(3 + 3 (22/3) (3 D - 6 (21 /3) (3 

e )"'M2 

b = 1 + K + 1 _ im ' 
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l-tm l-tm K { /3 S3 + (A + (3M2) S2 + (1 + )"M2 + &) s + q2 } 1/ 2 

~ = 1 + Os 

5.4 Generalized flow in a circular pipe 

Here, the flow geometry is same as in section 5.3 but the fluid starts suddenly due to a constant 

pressure gradient and by the motion of the cylinder parallel to its length. The mathematical 

analysis corresponding to the flow situation is 

w (1, t) 
aw (0, t) 

ar 
a2 w (r, 0) 

at2 

5.4.1 Large time solution 

1, t > 0, 

0, for all t, 

aw (r, 0) _ ( 0) - 0 -w r, -, at O~r < l. 

w (r, t) = Io (qr) _ ~ dp [1 - Io (qr)] 
Io (q) q2 dz Io (q) 

~ (a~ + dpjdz) 10 (anr) Tn (t) 
-2 ~ (2 2) () . an q + an h an 

n=l 
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5.4.2 Small time solution 

w(r,t) 

5.5 Starting flow in a rotating cylinder 

Here we consider the fluid in a circular cylinder. Initially, the fluid is at rest and suddenly sets 

in motion due to rotation of the cylinder. The velocity field is 

v = (0, v (r , t) , 0) 

and thus the governing problem is 

( a) [a2v 1 av v ] = p, 1 + B- - + -- - - , at ar2 r or r2 

v(a,t) 

av (0, t) 
or 

a2v (r, 0) 
at2 

Da, t > 0, 

0, for all t, 

av (r, 0) _ ( 0) - 0 at - v r, -, 

in which 0 is the angular velocity. Using equation (5 .14) and 

v* 
v 

Da 
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O:::;r<a 

(5.37) 

(5.38) 

(5.39) 

(5.40) 
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we obtain 

= (1 + e~) [8
2
v + ~ 8v _ ~] , 

8t 8r2 r 8r r2 
(5.41) 

v (1, t) = 1, t> 0, 

8v (0, t) 
= 0, for all t, 

or 
(5.42) 

82v (r, 0) 8v (r, 0) = v (r, 0) = 0, O~r<l. 
8t2 8t 

The large and small times solutions of the above problem are: 

(5.43) 

where h is modified Bessel function of first kind of order one and an are the zeros of J1 . 

5.5.2 Small time solution 

v (r,t ) 

5.6 Graphical results 

This section includes several results obtained from the flows analyzed in this chapter. We 

interpret these results and verify that they are consistent physically. Special emphasis has 

been given to examine the velocity profiles for two kind of fluids: an Oldroyd-B fluid for which 

A =1= 0, e =1= 0, f3 ~ 0.0000001 and a Burgers' fluid . The effects of various parameters on the 

velocity profiles especially, magnetic parameter lvI , Hall parameter m and rheological parameter 

!3 of the Burgers ' fluid have been studied through several graphs. 
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Figures 5.1 and 5.2 are prepared for starting flow in a circular cylinder moving parallel to its 

length, 5.3 and 5.4 for starting flow in circular pipe and 5.5 and 5.6 for starting flow in a rotating 

cylinder . The effect of increasing magnetic parameter M is shown in figures 5.1 - 5.6 for both 

Oldroyd-B and Burgers' fluids with m = 0 and Tn = 2 and keeping the other parameters fixed . 

From all these figures, it is noted that an increase in magnetic parameter M reduces the velocity 

profiles monotonically due to the effect of the magnetic force against the direction of the flow for 

both Oldroyd-B and Burgers' fluids. This is according to the fact that magnetic field is respon­

sible to reduce the velocity. Moreover, a comparison of these reveals that the effect of magnetic 

parameter M becomes more prominent on Burgers' fluid than Oldroyd-B fluid. From these 

figures, it is clearly seen that the velocity profiles for an Oldroyd-B fluid (>. = 2, e = 1,.B = 0) 

are obviously larger than those for a Burgers' fluid (>. = 2, e = 1, ,6 = 0.8) . However, this re­

sult cannot be generalized with other chosen values of parameters because the behaviour of the 

rheological parameter ,6 of the Burgers' fluid is non-monotonous. 

(a) Oldroyd-B fluid (>. = 2, e = 1, ,6 = 0) (b) Burgers' fluid (A = 2, e = 1, ,6 = 0.8) 
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Figure 5.1 : Profiles of the normalized velocity w (r, t) for various values of magnetic 

parameter M when t = K = 1 and m = 0 are fixed 
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(a) Oldroyd-B fluid (A = 2, e = 1, (3 = 0) 
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(b) Burgers' fluid (A = 2, e = I , (3 = 0.8) 
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Figure 5.2 : Profiles of the normalized velocity w (r, t) for various values of magnetic 

parameter M when t = K = 1 and m = 2 are fixed 

The effect of the Hall parameter m on the velocity profiles with fixed values of other para­

meters for both fluids is also illustrated from these figures. As expected, the velocity increases 

by increasing m for both fluids as the effective conductivity decreases with increasing m, which 

reduces the magnetic damping force on velocity. Again from these figures, it is obvious that 

in the presence of Hall current the velocity profiles for an Oldroyd-B fluid are greater than 

those for a Burgers' fluid. Moreover, it can be easily seen from the governing equation (5 .ll) 

that increasing the permeability of the porous medium yields a similar effect as decreasing the 

magnetic field. 

(a) Oldroyd-B fluid (A = 2, e = I, (3 = 0) 
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(b) Burgers' fluid (A = 2, e = I, (3 = 0.8) 
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Figure 5.3 : Profiles of the normalized velocity W (7', t) for various values of magnetic 

parameter M when t = K = 1 and m = 0 are fixed 

(a) Oldroyd-B fluid (A = 2, () = 1, (3 = 0) (b) Burgers' fluid (), = 2, e = 1, (3 = 0.8) 

0.2 

0.15 

~ 0.1 

0.05 

0 
-1 

I 
~ 

I 
I 

I 

" I 
I 

--M=I.0 
,.- -- ... .... 

" 
---- M= 2.0 

M=5.0 
'" 

1 ••..•..• •••••••• .•.•.•..•. 
•••• •• .. Il 

-0.5 o 
r 

0.5 

0. 15 

~ 0.1 
I 

I 

0.05 

I 
I 

.' 

I 

'" " I 

" '" 

- M= 0.5 
- - M= 1.0 
---- M= 2.0 

M= 5.0 

................ ..... ....... ... 
" 

O~ ______ ~ ____ ~ ______ ~ ____ ~ 

-1 -0.5 o 
r 

0.5 

Figure 5.4 : Profiles of the normalized velocity w (r, t) for various values of magnetic 

parameter M when t = K = 1 and m = 2 are fixed 

(a) Oldroyd-B fluid (), = 2, () = I , (3 = 0) 
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(b) Burgers' fluid (), = 2, e = 1, (3 = 0.8) 
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Figure 5.5 : Profiles of the normalized velocity 'U (r , t) for various values of magnetic 

parameter M when t = K = 1 and m = 0 are fixed 
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(a) Oldroyd-B fluid (A = 2, e = 1, f3 = 0) (b) Burgers' fluid (A = 2, e = 1, f3 = 0.8) 
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Figure 5.6 : Profiles of the normalized velocity v (r, t) for various values of magnetic 

parameter M when t = K = 1 and m = 2 are fixed 

5.7 Final remarks 

, 

0.8 

In the present study, the four flow problems of an incompressible Burgers' fluid through a porous 

medium have been considered in the presence of a Hall current. It is found that th presence of 

a strong magnetic field considerably decreases the flow velocity_ The study has been done using 

modified Darcy's law_ It is important to appreciate that velocity profiles in case of Burgers' 

fluid are less than that of an Oldroyd-B fluid_ Moreover, the presented analysis is more general 

and the results for several other fluid models (Oldroyd-B, Maxwell and Second grade) which 

are yet not available in the literature can be taken as the limiting cases . 
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Chapter 6 

MHD oscillatory flows of a 

generalized Burgers' fluid in a 

porous medium 

This chapter looks at the exact solutions for three unsteady MHD flow problems in a general­

ized Burgers' fluid occupying a porous medium. Modified Darcy's law for a generalized Burgers' 

fluid is introduced here first time in the literature. The fluid is electrically conducting under 

the influence of a uniform transverse magnetic field. The equations governing the magnetohy­

drodynamic (MHD) flows of a generalized Burgers ' fluid in a porous medium are modeled. The 

MHD flows are induced by small amplitude plate oscillations and the imposed periodic pressure 

gradients. Closed form solutions are obtained for the velocity by using Fourier sine transform. 

Attention is focused upon the physical nature of the obtained solutions through graphs. Several 

existing results have been deduced in the limiting cases. 

6.1 Governing equations 

The Cauchy stress T in a generalized Burgers' fluid is [63] 

T = - pI + S, (6.1) 
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(6.2) 

where -pI indicates the indeterminate spherical stress, A = L + LT is first Rivlin-Ericksen 

tensor, f..L is the dynamic viscosity, L is the velocity gradient, A 1 and .A3 « A d are the relaxation 

and retardation times, S is the extra stress tensor, .A2, A4 are material constants and %t is the 

upper convected time derivative defined by 

oS = dS _ LS _ SLT 
6t dt ' 

where d/ dt is the material derivative and 

The flows under consideration have the following velocity field 

V=u(y,t)i, 

(6 .3) 

(6.4) 

(6.5) 

where i and u are the unit vector and velocity parallel to the x-axis, respectively. The velocity 

field (6.5) automatically satisfies the incompressibility condition. Since u is a function of y and 

t, the stress field will also depend upon y and t . Now equation (6 .2) together with the initial 

condition (the fluid being at rest up to the moment t = 0) 

S (y , 0) = 0 (6.6) 

yields Sxz = Syz = Syy = Szz = 0 and 

S .A (8Sxx _ 2S 8U) .A (8
2
Sxx _ 4 8Sxy 8u _ 2S 8

2
u) 

xx + 1 8t xy 8y + 2 at2 at ay xYatay 

(
8u) 2 (au) ~u 

= -2f..L.A3 8y - 6f..L.A4 8y atOy' (6.7) 

(6.8) 
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The balance of linear momentum for MHD fluid in a porous medium is given by Eq. (1.11). 

Neglecting the displacement current, the Maxwell equations and Ohms' law are given in Eqs. 

(1.1)-(1.4) and (1.13) . 

On the basis of Oldroyd constitutive equation, the law for describing both relaxation and 

retardation phenomena in an unbounded porous medium is given in equation (3.6) . By the 

analogy with constitutive equation (6.2), the following law for unidirectional flow of a generalized 

Burgers ' fluid has been suggested: 

(6.9) 

and the flow resistance offered by the solid matrix R is 

(6.10) 

Upon making use of the stated assumptions, equation (1.11) yields 

(6.11) 

where the pressure gradient in the x- direction has been ignored and 1/ is the kinematic viscosity. 

6.2 Stokes' second problem 

This section deals with the MHD flow of a generalized Burgers ' fluid in a porous space y > O. 

The fluid is bounded by a rigid boundary at y = O. Initially, both fluid and boundary are at rest. 

For t > 0, the boundary starts to oscillate in its own plane. In absence of pressure gradient, 

the equation which governs the flow is (6.11) . The appropriate boundary and initial conditions 

are 

1L (0, t) = Uo cos wt or 1L (0, t) = Uo sinwt. t > 0, 

01L 
1L (y , t) --+ 0, oy --+ 0 as y --+ 00 , t ;::: 0, 
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u( 0) = 8u(y,O) = 8
2
u(y,O) = 0 > 0 

y, 8t 8t2 ' Y - (6.14) 

in which w is the imposed frequency. 

In order to find the solution we use the Fourier sine transform pair defined in equations 

(1.22) and (1.23). 

6.2.1 When u(O,t) = Uocoswt and A2 i= 0 

Taking Fourier sine transform of equations (6.11) and (6.13)and then solving the resulting 

problem in the ~ - plane, we have the following expression for the starting solution 

(6.15) 

where Ut (~, t) and Us (~, t) indicate the transformed transient and steady state solutions, re­

specti vely and are given by 

Ut (~, t) = 

in which 

Fo 

-IfrUo~/) ((rn2171.3 - w2) (Fa - w2 Fd - w2 (rn2 + rn3) F2) emit 

(rnl - rn2) (rnl - rn3) F3 

IfrUo~/) ((w2 - rnl7n3) (Fa - w2 Fd + w2 (rnl + 7n3) F2) em2t 

+2-__________ ~------~----~---------------
. (rn2 - rnd (rn2 - rn3) F3 

IfrUo~/) ((rnlm2 - w2
) (Fa - w2 F1) - w2 (ml + m2) F2 ) em3t 

(m3 - md (m3 - m2) F3 

90 

(6.16) 

(6.17) 



El = 

E3 = 

E5 = 

E7 = 
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Fourier inversion of equations (6.16) and (6.17) yield 

00 

= -!..Uav /~ ((m2m 3 - w2) (Fa - w2 F1 ) - w2 (m2 + m3) F2) eTnlt sin (~y) d~ 
7r . (ml - m2)(ml - m3) F3 

a 
00 

2 /. ~ ((w2 - mlm3) (Fa - w2 F1 ) + w2 (ml + m3) F2) eTn2t sin (~y) d~ 
+-Uav 

7r . (m2-md(m2-m3)F3 
a 

_!"UavJoo ~ (( mlm2 - w2) (Fa - w2 F1 ) - w2 (ml + m2) F2) eTn3t sin (~y) d~ 18) 
7r (m3 - ml) (m3 - m2) F3 ' 

a 

Us (y,t) 

00 

2 TT • l eF2 sin (ey) de -uavwsmwt 
7r . F3 

a 
00 

2 j' ~(Fa-w2FI)sin(~y)~ 
+-Uavcoswt F . 

7r 3 
a 

(6.19) 

Note that for large times Ut (y, t) --> 0 and Us (y, t) can be written as 

'Us (y, t) 

or 

or 
2 . 7r 2 7r 

Us (y, t) = -Uacsmwt- exp (-Ay) sin (yB) + -Ua coswt- exp (-Ay) cos (yB) , 
7r 2c 7r 2c 

or 

Us (y, t) = Uo exp (-Ay) cos (wt - By) , (6.20) 
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where 

..) 

w 2 (A3 - Ad + W4 (A1A4 - A2A3) + *// ((1 - A4W2)2 + w2 A~) 
+ a:3 (1 - (A2 + A4) w 2 + (A1A3 + A2A4W2) w2) 

+------~~------------~----~--------------
// (1 - A4W2)2 + //w2 A~ 

w2 (A3 - AI) + w4 (A1A4 - A2A3) + ~// ( (1 - A4W2 ) 2 + W2 A~) 

+ a:3 (1 - (A2 + A4) w2 + (A1A3 + A2A4W2) w 2) 
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In terms of Ei (i = 1 - 5) the above expressions become 

(6 .21) 

(6.22) 

2 1:. aB2 
w E2 + kvEl + TE5 

VEl 

In order to obtain the equality (6.20) from (6 .19) we have used the following two integrals [72]: 

where 

and 

Introducing 

y 

),3 

00 

J x sin (ax) d = 
(x2 + €b2)2 + c2 X 

7r . 
- exp (-aA) sm (aB) , 
2c 

o 

7r '2 exp (-aA) cos (aB) 

E = ±l. 

~Y' U 

U = Uo ' t = wt, ),1 = ),IW , 
- 2 
),2 = A2W 

),3W , 
- 2 M2 _ crB5 1 v¢ 
A4 = A4W , -- , 

K kw pw 
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equation (6 .20) takes the following form 

Us (y, t) = exp ( - Ay) cos (t - By) . 

where 

A= ( 
B= ( 

E1 (( 1 - >:4f + >:~) , E2 = (>:3 - >:1) + (>:1>:4 - >:2>:3) , 

E5 (1 - (>:2 + >:4) + (>:1>:3 + >:2>:4)) . 

6.2.2 For u (0, t) = Uo cos wt and >'2 = 0 

Following the procedure of previous subsection one obtains 
.) 

Ut (y, t) 
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Us (y, t) 

(6.24) 

where 
- FlO + J Fro - 4FsFg 

1'1 = 2Fg , (6.25) 

(6.26) 

Adopting the same methodology of solution as for equation (6 .19) , equation (6.24) gives 

(6.27) 

where 

A1 = ( 
B1 = ( 

1 

C'd * ~, + M' F7 )' + ( F7 -{F4)' _ (Fd * ~, + M' F7 ) ) , 

F4 = (>:3 - >:1) + (>:1>:4) , F7 = (1 - >:4 + >:1>:3) . 

It is worthmentioning to note that for -"4 = M = ¢ = 0 the equation (6.27) reduces to the solu­

tions of an Oldroyd-B fluid . Moreover , equation (6.27) recovers the results of second grade fluid 

[15] when).,1 = -"4 = M = if; = 0 and l/-"3 = ad p (al is the material parameter of second grade fluid) . 
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6.2.3 For u(O,t) = Uosinwt and A2 i= 0 

Employing the similar procedure as for the case of Uo cos wt, the transient and steady state 

solutions are 

utCy, t) 

(6.29) 

The expression (6.29) in dimensionless variables now gives 

Us (y, t) = exp (-Ail) sin (t -fFii) . (6 .30) 

6.2.4 For u(O,t) = Uosinwt and A2 = 0 

Here we have 

Ut (y, t) 
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(6.32) 

After evaluating the above integrals, the solution in dimensionless variables is obtained as 

follows 

(6.33) 

The above equation also reduces to the result of second grade fluid [12] for Ai = A4 = M = ¢ = 0 

and 1/ A3 = ad p. 

6.3 Modified Stokes' second problem 

Here, we consider the MHD fluid between two infinite parallel plates distant d apart. The lower 

plate at y = 0 oscillates in its own plane for t > 0 while the upper plate at y = d is stationary. 

The problem which governs the flow consists of equations (6.11), (6.12) and 

u(d,t) = 0; t E R, (6.34) 

u( 0) = au(y,O) = a2
u(y,0)0 0 < y < d. 

y, at at2 ' 
(6 .35) 

Following the same method of solution as in the previous section we have 

6.3.1 For u (0, t) = Uo coswt and A2 =1= 0 
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( ) 
_ 2 rT . ~ AnF2 sin (AnY) 2 TT ~ An (Fll - w

2 F1 ) sin (AnY) (637) 
US Y, t - 'duovwsmwt 6 F +'duQvcoswt 6 F ' . 

n=l 12 n=l 12 

where 

2 () 0 v«J 2 () Eo vcf; 2 2 2 E
2 '" (( 2 )2) Fll = VAnE1 + -p- + k' F12 = VAn + -p- + k - w Eg + w ElO ' 
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6.3.2 For u (0, t) = Uo cos wt and A2 = 0 

we have 

Ut (y, t) 

where 

2 00 An (F7 - aB5 F4) sin (AnY) 
dUo LlW sin wt L """7""-'----p--'-----,-­

n=l ((F13 - w2 F14) 2 + w2 Ffs) 
2 00 An (Fll - w2 ( - F4 + a ~5 Fs + II! F6) ) sin (AnY) 

+dUoLl coswt L . (6.39) 
n=l ((F13 - w2 F14)2 + w2 Ffs) 

-F1S + JFfs - 4F13 F14 -F1S - JFts - 4F13 F14 
T3 = 2F14 ' T4 = 2F14 ' 

2 0' B8 LI¢ 2 ¢ 2 0' B8 ¢ 
F13 = LlAn + p + k ' F1 4 = A1 + f3 An + k f3, F1S = 1 + a An + - p- A1 + k a . 

Note that the results of second grade fluid can be obtained by choosing A1 = A4 = M = ¢ = 0 

and LlA3 = ad p in equation (6.39) . 

6.3.3 For u (0, t) = Uo sin wt and A2 =1= 0 

we obtain 
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Ut (y, t) 

(6.41) 

6.3.4 For u (0, t) = Uo sinwt and A2 = 0 

we get 

An (r 4 (F7 - a ~5 F4) + Fil - w 2 ( - F4 + a ~5 F5 + ut F6) ) 

Ut(y,t) 
2 00 xeT3t sin (AnY) 

- dYovW L ----------:------------,,------
n=l (r3 - r4) ((F13 - w2 F14)2 + w 2 Ft5) 

2 00 xeT4t sin (AnY) 
+dYovW L --------;---------;:-----~(6T42) 

n=l (r3 - r4) ((F13 - w2 F14)2 + w 2 Ft5) 

U s (y , t) 

(6.43) 

" 101 



• I 

The above equation gives the solution of second grade fluid [15] for Al = A4 = M = cP = 0 and 

VA3 = ad p. 

6.4 Time-periodic plane Poiseuille flow 

In this section the flow between the two stationary plates is induced by an oscillating pressure 

gradient in the x-direction. Initially the fluid and plates are at rest. The pressure gradient is 

op - = -pQcoswt ox 
8p Q . 

or 8x = -p Slllwt. 

The flow is governed by equation (6.35) and 

U (0, t) = u (d , t) = 0; t E R. 

The solutions here are given by 

6.4.1 When ~ = -pQcoswt and ),2 =1= 0 

then 

Ut (y, t) 
_iQ f ((q2q3 - w2) F16 - w2 (q2 + q3) Fl7 ) eq1t sin (A2n-lY) 

d n=1 (ql - q2) (ql - q3) F18 A2n-l 

+iQ f ((w2 - qIq3) FI6 + w2 (ql + q3) Fl7 ) eq2t sin (A2n-lY) 

d n=1 (q2 - qd (q2 - q3) F18A2n-1 

_ i Q f (( ql q2 - w2) F16 - w2 (ql + q2) Fl7 ) eq3 
t sin (A2n-l y) 

d n=1 (q3 - qd q3 - q2 F18 A2n-l ' 
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(6.44) 

(6.45) 

(6.46) 

(6.47) 



( ) 
_ 4Q ~ FI6 sin (A2n-IY) 4wQ. ~ Fl7 sin (A2n-IY) 

Us y , t - d cos wt 6 A F + d sm wt 6 A F ' 
n=1 2n-l 18 n=1 2n-l 18 

(6.48) 

where 

(6.49) 
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Ell 

(6.50) 

2 UB& ¢ 
l/A2n-l + -- + -kl/· p ~ 

(6.51) 

6.4.2 When ~ = - pQ cos wt and ),2 = 0 

then 

(6.52) 

(6.53) 

where 
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The solution of second grade fluid [15] can be deduced from equation (6.53) by taking Al = 

A4 = M = ¢ = a and l/ A3 = a.d p. 

6.4.3 For ~ = - pQ sin wt and A2 =1= 0 

we have 

(6.54) 

( )
_4Q. ~F16sin(A2n-ly)_4wQ ~F17sin(A2n-lY) 

Us y, t - d sm wt L.t A F d cos wt L.t A F . 
n=l 2n-l 18 n=1 2n-l 18 

(6 .55) 

6.4.4 For ~~ = -pQsinwt and A2 = 0 

we get 
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Ut (y, t) 

4Q. 00 (/JA~n_1 F7 + CT~5 FIg + vt F7) sin (A2n-1Y) 
d smwt L ->------;-------.:------;)--

n=1 A2n-1 ((F20 - w2 F21)2 + w2 F12 

4wQ 00 (/JA~n_1F4 + FIg + ~F4) sin (A2n-IY) 
---coswt L . 

d n=1 A2n-1 ((F20 - w2 F2d
2 + w2 F12) 

(6.57) 

The above solutions yield the results of second grade fluid [15] when A1 = A4 = M = if; = 0 and 

/JA3 = a.d p. 

6.5 Results and discussion 

In this section we discuss the graphical results of velocity profiles due to the oscillations of 

the plate at t > O. The difference between velocity profiles of Oldroyd-B fluid and generalized 

Burgers' fluid is shown for different values of M and K . 

Figure 6.1 is constructed to describe the effects of M on the velocity profiles in two fluid 

cases. It is evident from this figure that the oscillations rapidly increase for the velocity profiles 

in Oldroyd-B fluid and generalized Burgers' fluids by increasing M . The influence of magnetic 

field are more prominent on the velocity profiles in generalized Burgers' fluid when compared 

with an Oldroyd -B fluid. 

Figure 6.2 elucidates to show the influence of K on the velocity profile in the presence of 

magnetic field parameter M . By increasing K the velocity profiles for both fluids increase. 

However the effects of K on the velocity are more prominent in an Oldroyd-B fluid when 
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compared with generalized Burgers' fluid . 

Figure 6.3 is displayed for the variation of K in the absence of M . It can be seen from 

this figure that the velocity also increases for both cases . This effect is more prominent in 

generalized Burgers' fluid than that of Oldroyd-B fluid. 

The comparison of steady state solution Us in various fluid models is shown in table l. 

Clearly the value of Us in Oldroyd-B fluid is greatest and smallest in viscous fluid when M =I 0 

and K =I O. Also the value of U s in Maxwell fluid is greater than that of second grade and 

generalized Burgers ' fluids. However, Us is maximum for hydrodynamic second grade fluid and 

minimum in hydrodynamic generalized Burgers fluid when permeability of the porous medium 

is very very large. In this case, Us for Maxwell fluid is large when compared with Newtonian 

and Oldroyd-B fluids . For M = 0 and K =I 0 the behavior of Us is similar to the case of M =I 0 

and K =I O. However, it is found that Us for M = 0, K i 0 is large for all fluids except an 

Oldroyd-B fluid when compared with M i 0, K =I O. For M = 1 and K ~ 00, the behavior of 

Us is similar to that of M = 0 and K ~ 00 . But U s for Oldroyd-B fluid is greatest than that of 

Newtonian and Maxwell fluids. 

(a ) Oldroyd-B Fluid 

AI = 9, A2 = 0, A3 = 5, A4 = 0, K = 0.7, t = 1 

. '.\ - M= 1.0 t,1 
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(b) Generalized Burgers' Fluid 
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Figure 6.1: Profiles of normalized steady state velocity u (y) for various values of M. 
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(b) Generalized Burgers' F luid 
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Figure 6.2: Profiles of normalized steady state velocity u (y) for various values of K. 
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Figure 6. 3: P rofiles of normalized st eady state velocity u (y) for values of K and M = O. 
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lis for lis for lis for lis for 

Type of Fluid material constants M=l, M=O, M=O, M=l, 

K=0.4 K-> 00 K=O.4 K--+ 00 

Newtonian Ai=O,i= l ,2,3,4 0.131357 0.32771 0.158758 0.227262 

Second Grade A1 =A2=A4=0)3=1.5 0.156116 0.542339 0.184418 0.726136 

Maxwell A2 = A3=A4=0)1 =1 0.195815 0.488669 0.198766 0.322845 

Oldroyd-B A2=A4= O,A1 =1)3=l.5 0.333288 0.338183 0.209639 0.444708 

G.Burgers/ Al =l,A2=2)3=1.5)4=3 0.136538 0.301306 0.186846 0.203335 

Table 1: Comparison of velocity in different fluids when t = 1.5 and y = 0.5 

6.6 Final remarks 

Mathematical modelling for MHD flow of generalized Burgers' fluid is given in a porous medium. 

The exact solutions for three flow problems are developed. The results for various fluids in a 

porous space can be obtained as the special cases of the present analysis by choosing appropriate 

values to the involved parameters. The comparison of the steady state velocity has been shown 

for five fluids. The existing results of second grade fluid [15] can be deduced by selecting 

A1 = A2 = A4 = M = ¢ = 0 and lIA3 = o:d p. 
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