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Preface 

Peristalsis is a well known process of a fluid transport that is used by many systems in 
the living body to propel or to mix the content of a tube. Such applications include urine 
transport from kidney to bladder, swallowing food through the esophagus, chyme motion 
in the gastrointestinal tract movement ovum in the female fallopian tube, vasomotion of 
small blood vessels and movement of spermatozoa in the human reproductive tract. There 
are many engineering process as well in which peristaltic pumps are used to handle a 
wide range of fluids particularly in chemical and pharmaceutical industries. This 
mechanism is also used in the transport of slurries corrosive fluids sanitary fluids and 
noxious fluids in the nuclear industry [1]. 

Mathematical and computer modeling of the peristaltic motion has attracted the 
attention of many researchers starting with the work of Shapiro [2]. Later on, Pozrikidis 
[3] used boundary integral method to study the peristaltic flow in a channel for Stokes 
flow and studied the relationship of molecular convective-transport to the mean pressure 
gradient. After the pioneering work of Shapiro and Pozrikidis, studies of Peristaltic flows 
in different flow geometry have been reported analytically, numerically and 
experimentally by number of researchers [6-14]. Recently, Mekheimer and Abd­
elmaboud [11] shldied the peristaltic flow with heat transfer analysis may be used to 
obtain information about the properties of tissues. Bio heat transfer phenomena is 
common in many biological processes as well as in some biomedical applications, such 
as in hypothermia treatment and RF ablation (radiofrequency ablation) [5]. Since most of 
the biochemical reactions in human body take place in a very narrow temperature range 
and the reaction rate is largely dependent on the local temperature, the heat transfer plays 
a major role in many processes in living systems. 

The study of heat transfer analysis in connection with peristaltic motion has industrial 
and biological applications like sanitary fluid transport, blood pumps in heart lung 
machine and transport of corrosive fluids where the contact of the fluid with the 
machinery parts is prohibited. The interaction of peristalsis and heat transfer has been 
recognized and has received some attention [11, 12] as it is thought to be relevant in 
some important processes such as hemodialysis and oxygenation. Vajravelu et al [12] 
have investigated flow through vertical porous tube with peristalsis and heat transfer. 
They reported that the heat transfer at the wall is affected significantly by the amplitude 
of the peristaltic wave. 

In most of the above mentioned studies, the fluid viscosity is assumed to be constant. 
This assumption is not valid every where. In general the coefficient of viscosity for real 
fluids are function of temperature and pressure. For many liquids, such as water oils and 
blood the variation in viscosity due to temperature change is more dominant than other 
effects. The pressure dependence viscosity is usually very small and thus can be 
neglected [8, 9]. All of the above mentioned studies adopt the assumption of constant 
viscosity in order to simplify the calculations. In fact, in many thermal transport 
processes the temperature distribution with in the flow field is never uniform, i.e., the 
fluid viscosity may change noticeably if a large temperature difference exists in the 
system. Therefore, it is highly desirable to include the effect of temperature dependent 
viscosity in momentum and thermal transport processes. 



Considering the importance of heat transfer in peristalsis and keeping in mind the 
sensitivity of liquid viscosity to temperature. This dissertation has arranged in the 
following manner. 
In chapter one, some basic definition of fluid and the governing equations of motion and 
energy have been derived. 

Chapter two is devoted to the study of hydromagnetic flow of fluid with variable 
(space dependent) viscosity in a uniform tube with peristalsis. An analytical solution 
using regular perturbation has been discussed. 

In chapter three, we discussed the analytical and numerical solutions for the peristaltic 
transport and heat transfer of a MHD Newtonian fluid with temperature dependent 
variable viscosity. Some interesting physical quantities have also been calculated and 
shown their graphical behavior. 
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Chapter 1 

Basics definitions and equations 

1.1 Introduction 

This chapter deals with the basic definitions and equations which are relevant to the 

subsequent chapters. The momentum equations which governs the hydromagnetic flow 

of Newtonian fluid and energy equation for Newtonian fluid are derived in cylindrical 

coordinate system. 

1.2 Basics definitions 

1.2 .1 Fluid mechanics 

The branch of engineering science that is concerned with forces and energies generated 

by fluids at rest or in motion. The study of fluid mechanics involves applying the funda­

mental principles of mechanics and thermodynamics to develop physical understanding 

and analytic tools that engineers can use to design and evaluate equipment and processes 

involving fluids. The most common engineering fluids are air (gas), water (liquid) and 

steam (vapor). Generally in the fluid mechanics we study the behavior of liquids and 

gases. 

5 



1.2.2 Fluid 

A fluid is defined as an isotropic substance that the individual particles of which deforms 

(flows) under the applications of a shear stress (stress along the tangent), no matter how 

small it is. It is a class of idealized materials includes liquids, gases, plasmas and to some 

extent, plastic solids. 

1.2.3 Rheology 

It is the study of non-Newtonian fluids under the influence of an applied stress. 

1.2.4 Inviscid fluid 

An inviscid fluid is defined as a fluid which has not only constant density but also zero 

viscosity under different temperature and stress conditions. 

1.2.5 Viscous fluid 

Viscous fluid is defined as a fluid which is assumed to have a constant density, but 

is allowed to have viscosity changes under different working conditions of temperature. 

These fluids are further categorized in Newtonian and non-Newtonian fluids. 

1.2.6 Newtonian fluid 

Newtonian fluids are non-viscous do not resist deformation and flow freely. It can also 

be defined as a fluid in which applied shear stress is directly proportional to deformation 

rate. 

Mathematically it can be written as 

(1.1) 
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where f-l is the constant of proportionality and also known as the absolute viscosity. 

Water, air, gasoline, mineral spirits and light oils are examples of Newtonian fluids. 

1.2.7 Non-Newtonian fluid 

Non-Newtonian fluid is a fluid in which the viscosity changes with the applied strain rate. 

As a result, non-Newtonian fluids may not have a well defined viscosity. In such a fluid, 

the shear stress is directly proportional to the non-linear deformation rate . 

Mathematically it can be written as 

(i1.L 
Txy = 77(-d ), 

Y 
(1.2) 

where 7]= ( ~~)n known as kinematic viscosity. Paints, duffing flour are examples of non­

Newtonian fluids. 

1.3 Types of flow model 

1.3.1 Steady flow 

If at a given point in space, the velocity of fluid particles passing through that point 

remains the same for all times the flow is termed as steady flow. For examples, flow 

through a conical pipe at a constant rate of discharge is a case of steady flow. 

1.3.2 Unsteady flow 

If the velocity of fluid particles passing through a point does not remains same for all 

times the flow is termed as unsteady flow. For example, flow through a long straight pipe 

at a changing rate of discharge is a case of unsteady flow. 
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1.3.3 Laminar flow 

Laminar flow is characterized by smooth motion of one lamina of fluid past another. The 

velocity, pressure and other flow properties at each point in the fluid remain constant. 

1.3.4 Turbulent flow 

Turbulent flow characterized by irregular and nearly random motion super imposed on 

the main motion of the fluid. For example the trail of smoke leaving the burning cigarette. 

1.3.5 Rotational flow 

If in a given flow field, the velocity gradients exists and are continuous at each point and 

the curl of the velocity vector is not zero and has finite values at each point, then the 

flow in the field under consideration is known as rotational flow. 

1.3.6 Irrotational flow 

If in a given flow field , the velocity gradients exists and are continuous at each point and 

the curl of the velocity vector is zero then the flow in the field under consideration is 

known as irrotational flow. 

1.3.7 Uniform flow 

If all the particles in a fluid stream have the same velocity, both in magnitude and 

direction, the flow is lmown as uniform flow. The flow in a long straight pipe of constant 

diameter is an example of uniform flow. 

1.3.8 Non-uniform flow 

If at a given time the velocity profiles are not exactly same or if the average velocity 

changes from one cross-section to other, the flow is known non-uniform flow. The flow 
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in a conical pipe is an example of non-uniform flow. 

1.3.9 Compressible flow 

Flow in which density of the fluid varies with space coordinates or time or both. It can 

also be defined as a flow in which variations in density are not negligible are termed as 

compressible flow i.e. 

p = p(x, y, z , t) i- constant. 

1.3.10 Incompressible flow 

A flow is considered incompressible if density of the fluid particles does not change during 

the flow i.e. 

p = p(x, y, z, t) = constant. 

1.4 Physical properties of fluid 

1.4.1 Pressure 

Pressure is a fluid property and is defined as the normal compressive force per unit area 

acting on a real or imaginary surface in the fluid. 

Mathematically it can be written as 

where P is the pressure, F is the normal force and A is the area. 

Pressure is a scaler quantity and has 81 units of pascals, IPa= ~ . 
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1.4.2 Density 

The density of a fluid for differential and finite-size system is defined as the mass per 

unit volume at a given temperature and pressure or stress conditions. 

1.4.3 Stress 

Stress is a measure of force per unit area with in a body. 

1.4.4 Strain 

Strain is the geometrical expression of the deformation caused by the action of stress on 

a physical body. 

1.4.5 Viscosity 

Viscosity is a physical property of fluid by virtue of which it offer resistance to flow or it 

can also be defined as a physical property of fluids associated with shearing deformation 

of fluid particles subjected to the action of applied forces. 

1.4.6 Variable viscosity 

Variable viscosity is the viscosity which does not remain constant. It varies with time as 

well as it may depend upon space coordinates, temperature and pressure etc. 

1.4.7 Kinematic viscosity 

Kinematic viscosity is defined as the ratio of the dynamic viscosity fL to the density p. 

Mathematically it can be expressed as 

1/ = !!.. 
p 
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1.4.8 Viscosity of liquids 

Viscosity of liquids in general, decreases with increasing temperature. In liquids the 

additional forces between molecules become important. T his leads to an additional con­

tribution to the shear stress. Thus in liquids, viscosity is independent of pressure. 

The viscosities (fl) of liquids generally vary approximately with absolute temperature 

T according to 

lnfl = a - blnT. (1.5) 

1.4.9 Viscosity of gases 

Viscosity in gases arises principally from the molecular diffusion that transports momen­

tum between layers of flow. The kinetic theory of gases allows accurate prediction of the 

behavior of gaseous viscosity. The viscosity (fl) of many gases is approximated by the 

formula 

(1.6) 

1.5 Thermody namic properties 

1.5.1 Heat 

Heat is a form of energy which is transfered from one body to the other due to the 

difference of temperature between them. 

1.5.2 Transmission of heat 

If the objects are at different temperature. Heat can be transmitted from one object to 

the other by the following three processes. 
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Conduction 

Conduction is the process in which heat is transmitted from one body to another by the 

interaction of atoms and electrons. 

Convection 

Transfer of heat by the actual movement of molecules from one place to other is called 

convection 

Radiation 

Radiation is the process of heat transfer in which heat energy reaches in the form of 

waves from one place to another without effecting the medium on its way. 

1.5.3 Temperature 

Temperature can be defined as degree of hotness and coldness of a body. It is usually 

denoted by T and its unit in 81 system is Kelvin. 

1.5.4 Flux 

Consider a flow of a certain physical quantity (such as mass, energy, heat etc.). The flux 

is defined as a vector in the direction of the flow whose magnitude is given by the amount 

of quantity crossing a unit area normal to the flow in unit time. 

1.5.5 Heat flux 

Heat flux is defined as rate of heat transfer per unit cross-sectional area, and is denoted 

byQ. 
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1.5.6 Thermal conductivity 

Thermal conductivity is the intensive property of a material that indicates its ability 

to conduct heat. It is denoted by k, its units in 81 system are (Jm- 1 K- 1 S-l) where 

J = joule, m = meter, K = kelvin, and s = second. 

1.5.7 Coefficient of thermal conductivity 

When a meter cube of a substance is maintained at a difference of temperature of lK, 

then the quantity of heat that reaches from one end to the other in one second is called 

the coefficient of thermal conductivity of that substance. 

1.5.8 Fourier law of heat conduction 

The law that rate of heat flow through a substances is proportional to the area normal 

to the direction of flow and to the negative of the rate of change of temperature with 

distance along the direction of flow. Mathematically, it can be written as 

Q = -k!::J.T, (1 .7) 

where k is thermal conductivity and T is the temperature. The minus sign indicates that 

heat flows in the direction of decreasing temperature. 

1.5.9 Specific heat 

The quantity of heat that causes lK change in temperature in a substance of mass lK g 

is called specific heat. Its units in 81 system are (Jkg- 1 K- 1) . 

1.5.10 Thermal diffusivity 

Thermal diffusivity is the ratio of thermal conductivity to volumetric heat capacity. 

Mathematically, it can be expressed as 
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k 
a=-, 

pCp 
(1.8) 

where cp is the specific heat, k is the thermal conductivity, p is the density. Its 81 units 

are ( ~2 ) . 

1.5.11 Heat radiation 

Heat radiation is electromagnetic radiation emitted from the surface of an object which 

is due to the object temperature. 

1.5.12 Free convection 

When heat is carried by the circulation of fluids due to buoyancy from density changes 

induced by heating itself this process is known as free convection. 

1.5.13 Prandtl number 

It is the ratio of kinematic viscosity and thermal diffusivity. 

Mathematically, it can be written as 

v 
Pr =-. 

a 
(1.9) 

In heat transfer problems its advantage is that it control the relative thiclmess of the 

momentum and thermal boundary layer. 

1.5.14 Internal energy 

Internal energy of a system is the energy content of the system due to its thermodynamic 

properties such as pressure and temperature. 
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1.5.15 Eckert number 

The Eckert number is a number used in flow calculations. It expresses the relationship 

between a flows kinetic energy and enthalpy and is used to characterized dissipation. 

1.5.16 Specific internal energy 

Specific internal energy is defined as the internal energy of the system per unit mass of 

the system and has same dimension as enthalpy. 

1.6 Peristalsis 

Peristalsis is a mechanism to pump the fluid by means of moving contractions on the 

tube wall. There are various instances in physiology, where this phenomenon is used 

by the body to propel or mix the contents of a tube as in ureter, gastrointestinal tract, 

bile in the bile duct and other glandular ducts. Some worms use peristalsis as a means 

of locomotion. In engineering devices, like finger pump and roller pump work on this 

principle. Peristaltic transport of toxic liquid is used in the nuclear industries. The 

mechanism of peristaltic has been exploited for industrial applications like sanitary fluid 

transport, blood pumps in heart lung machine and transport of corrosive fluids where 

the contact of the fluid with the machinery parts is prohibited. 

1.6.1 Volume flow rate 

Volume flow rate is defined as the volume of flow which passes through a given surface 

per unit time. 

1.6.2 Reynolds number 

In the fluid mechanics, the Reynold number is the ratio of inertial forces to viscous forces. 

It is used to identify different flow regimes, such as turbulent flow or laminar flow. 
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1.7 Hydromagnetic fluids 

The interaction of electrically conducting fluids with magnetic fields are known as hydro­

magnetic fluids. For example, the fluid can be ionized gases (commonly called plasmas), 

liquid metals, saltwater and sunspots that are caused by sun magnetic field. 

1. 7.1 Magnetic field 

It is the region in which a magnetic force can be observed. 

1. 7.2 Electric field 

A region in which a force would be exerted an electric charge. It is completely defined in 

magnitude and direction at any point by the force upon a unit positive charge situated 

at that point. It can be produced by electric charges or by changing magnetic fields. 

1. 7.3 Hartmann number 

It is the measUTe of the ratio of magnetic body force to the viscous force . 

1. 7.4 Magnetic permeability 

In electromagnetism, permeability is the degree of magnetization of a material that re­

sponds linearly to an applied magnetic field. 

1. 7.5 Electrical conductivity 

Electrical conductivity is a measUTe of a material ability to conduct an electric CUTrent. 
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1.8 Continuity equation 

In fluid dynamics, a continuity equation is an equation of conservation of mass. Its 

differential form is 

op 
at + V. (pV) = 0, (1.10) 

where V is the velocity and t is the time. For incompressible fluid, the density of any 

particle is constant, thus Eq. (1.10) takes the form 

V.V = O. (1.11) 

1.9 Navier-Stokes equations 

The Navier-Stokes equations was introduced by Claude-Louis Navier and George Gabriel 

Stokes. These equations establish that changes in momentum in infinitesimal volumes 

of fluid are simply the sum of dissipative viscous forces (similar to friction) , changes in 

pressure, gravity and other forces acting inside the fluid. 

These are one of the most useful set of equations because they describe the physics 

of large number of phenomena of academic and economic interest. They may be used 

to model weather, ocean currents, water flow in pipe, flow around an airfoil (wings) and 

motion stars inside a galaxy. These equations in both full and simplified forms are used 

in design aircraft and cars, the study of blood flow, the design of power stations, the 

analysis of the effects of pollution etc. 

The most general form of the Navier-Stokes equations in an arbitrary control volume 

is 

p(~~ + (V.V) V ) =-Vp+VS+f. (1.12) 

This is a statement of the conservation of momentum in a fluid, it is an application 

of Newton's second law of motion. Using the definition of the material or substantial 
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derivative 
D a 
Dt = at + V.V, 

Eq. (1.12) can be written as 

DV 
P Dt = - V p + V S + f. (1.13) 

The right side of the Eq. (1.13) is in effect a summation of body forces, Vp and \JS are 

gradients of surface forces and represent stresses inside the fluid, analogous to stresses in 

a solid. 

1.10 Maxwell,s equations 

Maxwell,s equations are a set of equations first presented by James Clerk Maxwell in the 

nineteenth century. He express (i) how electric charges produced electric fields, (ii) the 

experimental absence of magnetic monopoles, (iii) how electric currents and changing 

electric field produced magnetic fields (Ampere's circuital law) and (iv) how changing 

magnetic fields produced electric fields (Farady's law of induction) . These equations are 

as follows 

Gauss's law 

Gauss's law for magnetism 

Farady's law of induction 

P \J.E =-. 
EO 

\J.B = o. 

18 
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Ampere's circuital law 

(1.17) 

In the above equations B is the magnetic field, E is the electric field, J is the current 

density, p is the electric charge density, f..lm is the magnetic permeability of the free space 

and EO is the permittivity of the free space. 

1.11 Equation of motion for hydromagnetic fluid 

The continuity equation and the balance of linear momentum for hydromagnetic fluid in 

cylindrical coordinates system are 

divV = 0, (1.18) 

dV . 
p dt = - \I p + dlV S + J x B, (1.19) 

where 

V= (u(r, z),O,w(r, z)), ( 1.20) 

is the velocity field, p is the density, p is the pressure, S is the extra stress tensor, J is the 

current density, B = Ho + Hi is the total magnetic field and Hi is the induced magnetic 

field assumed to be negligible. 

For the viscous fluid the extra stress tensor S is defined as 

(1.21) 

where I is the identity tensor, Ai =L + LT is the first Rivlin-Ericksen tensor L is the 

velocity gradient, f..l is the dynamic viscosity. 
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The Ohm's law and the Maxwell,s equations. with no displacement current are 

J = (J (E + V x B), div B = 0, 

oB 
OurlE =-­

at' 

(1.22) 

( 1.23) 

where (J is the electrical conductivity, /-Le is the magnetic permeability and E is the electric 

field. 

For the model derivation, we consider: 

o The quantities P,/-Le and (J are constants. 

o There is no electric field E. 

Based on these consideration, the magnetohydrodynamic force becomes 

The first Rivlin Ericksen tensor is given as 

2au 0 au aiD 
aT a-z + aT 

A1 = 0 2~ 0 ,. 
au + aiD 
a-z aT 0 2 aiD 

a-z 

Using Eqs. (1.20) to (1.25) in Eqs. (1.18) and (1.19) , we get 

a? 
of 

~ [[2-(f) ail] + 2 P (f) (ail _~) + ~ [_ (f) (ail + ow)] 
of /-L of f of f 02 /-L 02 of 

[ail ail] -p il- +w-of · of' 
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(1.25) 

(1.26) 

(1.27) 



a p a [ ( -) aw] 1 a [ - (au aw) ] 2 2 az = az 2p, T az + f af' p,(T)f' az + af' - aJ.lmHo w 

[
aw aw] ( - - ) - p u af' + w az + pga T - To , (1.28) 

which are the required continuity and momentum equation in component form for hy­

dromagnetic fluid. 

In the above equations the viscosity is taken to be a function of temperature, the last 

t erm on the right hand side of Eq. (1.28) is due to convection. 

1.12 Energy equation 

In general, energy equation is expressed as 

de 
p dt = T.L - divQ + pr, (1. 29) 

where Q is the heat flux vector, e = pCp is the specific internal energy and r is the radiant 

heating. 

According to Fourier law 

Q = -kgradT, 

where k is the constant of thermal conductivity and T is the temperature. 

Since we are dealing with the two dimensional flow therefore we seek 

t = t(r, z) . 

Using Eq. (1.31) in Eq. (1.30), we obtain 

=-k --+-+-[
1 dt d2t d2T] 

Q f' df' df'2 dz2 · 
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(1.30) 

(1.31) 

(1.32) 



With the help of these Eqs.(1.30) to (1.32), Eq. (1.29) can be written as 

(1.33) 

where Qo is the constant heat addition/absorption. 
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Chapter 2 

Hydromagnetic flow of fluid with 

variable viscosity in a uniform tube 

with peristalsis 

2.1 Introduction 

The chapter deals with the effects of hydro magnetic fluid and variable viscosity in a 

uniform tube with peristalsis. The governing two dimensional problem has been for­

mulated under the longwave length approximation. The problem is simplified using 

non-dimensional variables and then used the regular perturbation method to find the 

analytical solution for small viscosity parameter. This chapter is due to Hakeem et al 

[13] and a necessary calculations missing in the paper by Hakeem et al [13] are incorpo­

rated. At the end, we have presented the graphical results to see the physical behavior 

of various parameters appears in this chapter. 
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2.2 Formulation and analysis of the problem 

We consider the creeping flow of an incompressible Newtonian fluid with variable vis­

cosity through an axisymmetric form in a uniform tube thickness with a sinusoidal wave 

travelling down its wall. We also assume that the fluid is subjected to a constant trans­

verse magnetic field. The induced magnetic field is negligible, which is justified for flow 

at small magnetic Reynolds number. The external electric field is zero and electric field 

due to polarization of charges is also negligible. Heat due to viscous and joule dissipation 

is neglected. Also we can neglect the gravity effects since gravity transverse to the flow 

in the small intestine and it does not interact with fluid particles. Height of the wall is 

- 21f ( - :;:\ 
h = a + b sin>: Z - ct J ' (2.1) 

where a is the radius of the tube at inlet, b is the wave amplitude, A is the wavelength, 

c is the propagation velocity and f is the time. We are considering the cylindrical 

coordinates system (Jl, Z), where Z-axis lies along the centreline of the tube and Jl is 

transverse to it. 

Introducing a wave frame (f, z) moving with velocity c away from the fixed frame 

(R, Z) by the transformations 

z = Z - ct, f - R-- , (2.2) 

w=W-c , (2.3) 

where f), Wand u, ware the velocity components in the radial and axial directions in 

the fixed and moving coordinates respectively. 

The governing equations (which are already derived in chapter one) are 

1 a (fu) aw 
- --+-=0 
f af az ' 
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(2.4) 



oP 
or 

oP 
OZ 

- II r- +-- --- + - II r -+-a [[2- (-) au] 211 (1') (au u) a [_ (_) (au aiD)] 
or r or l' or l' OZ r OZ or 

[ aU au] 
-p u-+ iD-or or' 

The corresponding boundary conditions are 

iD = -c, 

aiD = 0 
or ' 

dh u = -c­
dz 

u=o at l' = 0, 

- 21f 
at l' = h = a + bsin ~ (z), 

where p is the density, P is the pressure, 11(1') is the variable viscosity 

(2.5) 

(2.6) 

(2.7a) 

(2.7b) 

It is convenient to non-dimensionalize the variables appearing in Eqs (2.1) to (2.7), 

introducing the wavenumber 8 and the Hartmann number (M) as follows 

R l' Z z W=W iD 
R = r= - Z = >:' z = 'X, W= -, , , 

a a c c 
AU AU a2p 

h = ~ = 1 + </>sin 21fz, U - , U=- p=-, 
CA/lo' ac ac a 

/l(r) 
11 (1') cf a 

M = (J/lmHo~, Re = pca
2 (2.8) Mo' t = >:' 8 = 'X' , 

I-lo /l 

where </> is the amplitude ratio (</> = ~) . 

Using non-dimensional variables (2.8), Eqs. (2 .4) to (2.7) take the following form 

(2.9) 
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aP 
az 

aP 
or 

1 a [ ( 2 au ow) ] 2 a [ ow ] 2 -- p(r)r 0 -+- +0 - 2p(r)- - M w 
rar az or az az 

- Reo u-+w- , (
OW ow) 
or az 

ow 
or = 0, 'U = 0, at r = 0, 

w = - I, 
clh 

u = - - at r = h = 1 + ¢ sin 211" z . 
clz 

(2.10) 

(2.11) 

(2.12a) 

(2.12b) 

Using the long wavelength approximation (0 = 0), Eqs. (2.10) and (2.11) reduces to 

aP 
or = 0, (2.13) 

a PIa [ (ow) ] 2 - = -- p(r)r - - M w. 
az r or or 

(2.14) 

The effects of viscosity variation on peristaltic flow can be investigated for any given 

function p (r) . For the present analysis, Hakeem [13] assume the viscosity variation in 

the dimensionless form as 

p(r) = e-aT or p(r) = 1 - ar for a« 1. (2.15) 

This assumption is reasonable for the following physiological reasons because a normal 

person or arumal of similar size consumes one to two liters of the fluid every day. On top 

of that, another six to seven liters fluid is recurred by a small intestine daily as secretions 

from salivary glands, stomach, pancreas, liver and small intestine itself. Also the viscosity 
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of the gastric mucus (near the wall) varies between 1 - 1O-2cp but the viscosity of the 

chyme varies between 10-3 to 1O-6cp. 

2.3 Rate of volume flow 

The instantaneous volume flow rate in the fixed coordinates system is given by 

Ii. 

Q = 27f j RM/dR, (2.16) 

o 

where h is a function of Z and i. Substituting Eqs. (2.2) and (2.3) into Eq. (2.16) and 

integrating yields 

where 

Ii. 

ij = 27f jfiDdf, 
o 

(2.17) 

(2.18) 

is the volume flow rate in the moving coordinates system and is independent of time. 

Here Ii is the function of z alone and defined through Eq. (2 .16) . Using the dimensionless 

variables, we find 

(2.19) 

The time-mean flow over a period T = ~ at a fixed Z -position is defined as 

T 

- 1 j ~ Q = T Qdi. (2.20) 

o 
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Invoking Eq. (2. 16) into Eq. (2.20) and integrating, we get 

_ (b 2
) Q = q + 7rC a

2 +"2 ' (2.21) 

which may be written as 

(2.22) 

The dimensionless time-mean flow can be defined as e = 2 Q2 • 
'ITa c 

Rewrite Eq. (2.22) as 

1 ( </}) 8=F+ - 1+-
2 2' 

(2.24) 

where F in the wave frame defined through (2 .19) . 

2.4 Perturbation solution 

For the solution of Eqs. (2.13) and (2.14), we look for a regular perturbation in term of 

small parameter a as follows 

W 

u 

dp 

dz 

F 

Wo + aWl + 0 (a) 2 
, 

'Lto + aUl + 0 (a) 2 
, 

dpo + a dPl + 0 (a) 2 , 
dz dz 

Fo + aFl + 0 (a) 2 
. 

(2.25a) 

(2.25b) 

(2.25c) 

(2.25d) 

Substituting Eqs. (2.25a) to (2.25c) in Eqs. (2.12a) to (2.14) and comparing the like 

power of a, we have the following system of equations. 

2.4.1 Zeroth order system 

~ a (ruo) + awo = 0 
r or az ' (2.26) 
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aPo = 0 
ar ' 

awo = 0 
ar ' Uo = 0 at r = 0, 

Wo = -1, 
dh 

Uo = - dz at r = h = 1 + ¢ sin 21f Z. 

2.4.2 First order system 

1 a (rUI) aWl - a + ~ = 0, r r u Z 

aPI = 0 
ar ' 

aPI = ~~ [_r2 (awo) + r (aWl)] _ M2WI, 
az r ar ar ar 

aWl = 0 
ar ' 

Ul = 0 , at r = 0, 

'Ul=O, at r=h=1+¢sin21fz. 

2.4.3 Solution of zeroth order system 

From Eq. (2.27) it is obvious that Po =f Po (r) and Eq. (2.28) can be written as 

we assume 
dPo 

, dz 
Wo = Wo - M2' 

then Eq. (2 .34) takes the form 

a2wo 1 awo M2' --+--- wo=O. 
ar2 r ar 
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(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.30) 

(2.31) 

(2.32) 

(2.33a) 

(2.33b) 

(2.34) 

(2.34a) 

(2 .35) 



Multiplication of r2 on the both sides of Eq. (2.35) gives 

82 ' 8' 2 Wo Wo 2 2, 
r 8r2 + r 8r - r M Wo = O. (2.36) 

Eq. (2.36) is a modified Bessel equation of first kind , whose solution can be written as 

where C1 and C2 are arbitrary constants. 

Using Eq.(2.37) , Eq.(2.34a) takes the following form 

~ 

Wo (r) = ClIo (Mr) + C2K O (Mr) - ;;2' 
With the help of boundary conditions (2.29a), and (2.29b) , we obtain 

dPo _1 - 1 
C dz M 2 C 0 

1 = 10 (Mh) , 2 = . 

T hus solution (2.38) finally can be written as 

(1zo - NJ2
) 

Wo = M2 10(M h) (10 (Mr ) - 10 (M h)) - 1. 

The volume flow rate Fo in the moving coordinates system is given by 

h 

Fo = Jrwodr. 
o 

Substituting Eq. (2 .39) into Eq. (2.40) and solving the result for 1zo, we get 

dpo 
dz 

M 4Io (Mh) (2Fo + h2) M2 
2Mh11 (Mh) - M2h210 (Mh) + . 
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(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 



2.4.4 Solution of the first order system 

Using Eq. (2 .39) into Eq. (2.32) and after simplifying, we obtain 

where (d:: _ M2) 
g (z ) = M2Io (Mh) . 

(2.42) 

(2.43) 

Dividing Eq. (2 .42) by r2 and then differentiating the resulting equation with respect to 

r, we get 

g (z) [M2 10 (Mr) + M2r10 (Mr) 

+M 11 (Mr) ] , (2.44) 

or 

g (z) [2M2Io (Mr) + M 3rII (Mr) 

- ~ II (Mr)] . 

Now substituting 

Eq. (2.45) take the form 

s = aWl 
ar ' 

8
2 
S lIas 2 ([ 2 ( ) 3 ( ) M ( )] 

8 
2 - -s + --a - M S = g z) 2M 10 Mr + M rIl Mr - -II Mr 

r r r r r 

Multiplying above equation by r2 we have 
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(2.45) 

(2.46) 



Invoking 
00 (Mr) 2k 

10 (Mr) = ~ 22k (k!) 2' 
00 (Mr) 2k+1 

11 (Mr) = L 22k+l (k !) (k + I)!' 
k=O 

in Eq. (2.42), we obtain 

282Wl 8Wl M2 2 dPl 2 9 (z ) ~ bk (~1 )2k+3 r--+r-- rWl=-r +--~ lVtJ r 
8r2 8r dz M (k + 1) , 

k=O 

where 
b _ (2k + 1) (2k + 3) 

k - 22k+l (r (k + 1))2 (k + 1) 
for k = 0,1,2,3 ... 

(2.48) 

(2.49) 

(2.50) 

Eq. (2.49) is a non homogenous modified Bessel equation, its general solution is defined 

as 

(2.51) 

where C3 , and C4 , are constants. 

To get the particular solution of Eq. (2.49), we assume a solution of the form 

WI = __ l_ dpl + 9 (z ) ~ ak (Mr)2k+3. 
p M2 dz M ~ (2k+3) 

k=O 
(2.52) 

Thus the complete solution of Eq. (2.49) can be written as 

(2.53) 

Using boundary conditions (2.33a) and (2.33b) in Eq. (2.53), we get 

_ 1 dpl _ 9 (z ) ~ ak h 2k+3 
C3 - M210 (Mh) dz M1o(Mh) 6 (2k + 3) (M) , C4 = 0, 
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with the help of these constants Eq. (2.53) takes the following form 

~(Io (Mr) - 10 (JvIh)) c:::o - JvI2) 00 ak (Mr)2k+3 
JvI2Io(JvIh) + M310(Mh) L 2k + 3 k=O 

(d:: _ M2) 10 (Mr) 00 ak (Mr)2k+3 

- M3 (Io(Mh))2 £; 2k + 3 
(2.54) 

The volume flow rate F 1 in the moving coordinates system is defined as 

(2.55) 

Substituting Eq. (2.54) into Eq. (2 .55) and solving the result for ~l, yields 

2F M41, (M h) 00 a (M h)2k+3 
1 a +A L k + 

2MhIl (Mh) - (Mh)2Io (Mh) 1 k=O 2k + 3 

00 ak (Mh)2k+5 
A2L 2k+5 ' 

k=O 
(2.56) 

where 10 (M r) and h (M r) are lmown as modified Bessel functions of the first kind and 

ak, A l , and A2 are constants which are defined as 

1 
ao = 2' ak = (2k + 3) (2k + 1) 

for k = 0,1,2,3,4 .... 

2JvIhIl (Mh) - (Mh) 2 10 (Mh)' 
M310 (Mh) (2Fo + h2) 

[2Mhh (Mh) - (Mh)2 10 (Mh)]2' 
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(2.57) 

(2.58a) 

(2.58b) 



Invoking Eqs. (2 .39) and (2.54) into Eq. (2.25a) and using the relation 

neglecting terms greater than 0 ( a), we get 

(d:: _ M 2) ((d:: _ M2) 00 ak (MI)2k+3 
w M 2Ia(NIh) (10 (MI) - 10 (Mh)) - 1 + a M3Ia(Mh) £; 2k + 3 

_ (d:: _ NI2) 10 (1\111) 00 ak (MI)2k+3) 
M3 (Ia(Mh)) 2 £; 2k + 3 . (2.59) 

Substituting Eqs. (2.41) and (2.56) into Eq. (2.25c) using the relation 

where F is defined in Eq. (2.24) and neglecting the terms greater than O(a) we get 

where 

M3 ( 28 _ (~2 _ 1 + h 2 ) 

2MhIl (Mh) - (Mh) 2 10 (NIh)' 

M3Ia (Mh) (28 - ~ -1 + h2) 

[2MhIl (Mh) - (Mh)2 10 (Mh)J2 : 

(2.60) 

(2.61a) 

(2.61b) 

The non-dimensional pressure rise per wavelength 6.P)" and friction force F)" (on the wall) 
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in the tube length A in their non-dimensional forms are given by 

(2.62) 

(2.63) 

where ~~ is defined through Eq. (2.60). 

2. 5 Numerical Results and Discussion 

We have used a regular perturbation series in term of the dimensionless viscosity para­

meter (a) to obtain an analytical solution to the field equations for peristaltic flow of a 

Newtonian fluid in an axisymmetric tube. To study the behavior of solutions, numerical 

calculations for several values of Hartmann number M, viscosity parameter a and ampli­

tude ratio ¢ have been carried out using a digital computer. Also infinity in Eq. (2.60) 

is approximated to 9 since the variation in pressure gradient ~~ is negligible at k > 9 for 

all values of the parameters of interest and all values of z. The relation between pressure 

rise and flow rate given by Eq. (2 .62) is plotted in Figures 2.1 (A), 2.1 (B) and 2.2 

(A) , The relation between friction force and flow rate given by Eq. (2.63) and plotted in 

Figures 2.2 (B) ,2.3 (A) and 2.3 (B) . It may be noted that the theory of long wavelength 

and zero Reynolds number of the present investigation remains applicable here, since the 
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radius of the small compared with wavelength. 
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Figure 2. 1. Pressure rise versus flow rate for (A) ¢ - 0.6, M = 3. (B). a 0.1, 

¢ = 0.6. 
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Figure 2.3. Friction force versus flow rate for (A) a = 0.1, ¢ = 0.6. (B) a = 0.1, M = 3. 

Figure 2.1 (A) represents the variation of dimensionless pressure rise ~PA with time­

mean flow rate e at a = 0,0.1, 0.2, ¢ = 0.6, M = 3. It is clear that an increase in 

flow rate decreases the pressure rise at 0 ~ e < 0.48 for different values of viscosity 

parameter, otherwise it increases with increasing flow rate. Also pressure rise increases 

with decreasing viscosity parameter and it is independent of viscosity parameter at certain 

value of flow rate. Moreover the peristaltic pumping occurs at 0 ~ e < 0.48, otherwise 

augmented pumping occurs. 

Figure 2.1 (B) represents the variation of dimensionless pressure rise ~PA with time­

mean flow rate e at a = 0.1 , ¢ = 0.6, M = 1,1.5,2 which shows a linear relation 

between them and maximum pressure rise occur at zero flow rate for different values of 

Hartmann number. Also pressure rise increases as flow rate decreases at 0 ~ e < 0.45, 

M = 1, 0 ~ e < 0.48, M = 1.5 and 0 ~ e < 0.5 , All = 2 other wise it increases with 

increasing flow rate. Furthermore, the pressure rise increases with increasing Hartmann 

number, and it is independent of Hartmann number variation at a certain value of flow 

rate. Moreover peristaltic pumping where e > 0 (positive pumping) and ~PA > 0 

(adverse pressure gradient) occurs at 0 ~ e < 0.45, Iv1 = 1 , 0 ~ e < 0.48, M = 

37 

0.7 



1.5 and 0 ~ 8 < 0.5, M = 2, otherwise augmented pumping occurs where 8 > 0, 

(positive pumping) and /::).P,\ < 0 (favorable pressure gradient) . 

Figure 2.2 (A) represents the variation of dimensionless pressure rise /::).P>. with time­

mean flow rate 8 at ex = 0.1, ¢ = 0, M = 3 (no peristalsis) , ¢ = 0.2 (small occlusion) , 

¢ = 0.4 (high occlusion) . It is obvious that the pressure rise increases with increasing 

amplitude ratio. It is maximum at zero flow rate. Also, it is independent of flow amplitude 

ratio at certain values of flow rate. Furthermore, the peristaltic pumping occurs at 

o ~ 8 < 0.23 , ¢ = 0, 0 ~ 8 < 0.26, ¢ = 0.2 and 0 ~ 8 < 0.48, ¢ = 0.4, otherwise 

augmented pumping occurs. 

In order to illustrate the effects of viscosity parameter, magnetic field and amplitude 

ratio on friction force Figures 2.2 (A), 2.3 (A, B) are plotted and it is observed that 

friction force has an opposite behaviour as compare to the pressure rise. 
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Chapter 3 

Peristaltic transport and heat 

transfer of a MHD Newtonian fluid 

with variable viscosity 

3.1 Introduction 

In this chapter we have discussed the influence of heat transfer and magnetic field on 

the peristaltic flow of Newtonian fluid with variable viscosity, under the assumptions of 

long wavelength approximation. We have consider the temperature dependent viscosity 

and using well known Reynold model of viscosity. A perturbation series in dimensionless 

viscosity parameter ( f3 « 1) is used to obtain explicit form for the velocity field, 

temperature field, relation between the flow rate and pressure gradient. The expression 

for the pressure rise, friction force, temperature and velocity are computed and plotted for 

different values of variable viscosity parameter /3, Hartmann number M and amplitude 

ratio ¢. 
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3.2 M athemat ical formulat ion 

We consider MHD flow of an electrically conducting Newtonian fluid through an axisym­

metric tube of uniform cross-section with a sinusoidal wave travelling down its wall. We 

assume that the fluid is incompressible with uniform properties, i.e., density p and elec­

trical conductivity a are constant . The walls of the tube are set to a given temperature 

at T = Tl and fluid viscosity is assumed to depend upon temperature given by Reynolds 

model. We assume that the fluid is subjected to a constant transverse magnetic field B. 

A very small magnetic Reynolds number is assumed and hence the induced magnetic field 

can be neglected . When fluid moves into the magnetic field, two major physical effects 

arise. The first one is that an electric field E is induced in the flow. We will assume that 

there is no excess charge density therefore .6..E = O. Neglecting the induced magnetic 

field implies that .6. x E = 0, and therefore the induced electric field is negligible. The 

second effect is dynamical in nature i.e. a Lorentz force (J x B) where J is the current 

density, this force acts on the fluid and modifies its motion. These results transfers the 

energy from the electromagnetic field to the fluid. In present study, the relativistic effects 

are neglected and the current density J is given by Ohm's law as J = (j (V x B) . The 

geometry of wall is presented as 

- 21f ( - f\ 
h = a + b sin>: Z - ct J ' (3.1) 

where a is the radius of the undisturbed tube, b is the amplitude of the peristaltic wave, 

A is the wavelength, c is the wave propagation speed and [ is the time. Rand Z are the 

radial and axial coordinates of the tube with Z taken along the axis of the symmetry of 

the tube. We are considering the cylindrical coordinate system (R, Z ), where Z-axis 

lies along the centreline of the tube and R is transverse to it . The wall of the tube is 

maintaining at temperature Tl and at the centerline, we have used symmetry condition 

on temperature and velocity. 
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\.------ C 

In the laboratory frame (R, 2), the flow is unsteady but if we introduce a wave frame 

(f, z) moving with velocity c away from the fixed frame, then the flow can be treated as 

steady. 

The coordintates frames are related by the transformations 

z = Z - ct, (3.2) 

w=W-c , u = [J , (3.3) 

where [J ,Wand u, w are the velocity components in the radial and axial directions in 

the fixed and moving coordinates respectively. 

Taking into account the magnetic Lorentz force and the energy transfer, the equations 

governing the flow of a viscous, Newtonian, MHD fluid are given by 

10 (fu) ow 
---+-= 0 
f of OZ ' 
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of 
of 

of 
oz 

~ [[2-(f) ou] + 2TL (f) (au _~) + ~ [_ (f) ( au aiD )] ~- /-L ~- - ~- - ~_ /-L ~- + ~-
uT' u T' T' u T' T' u Z u Z uT' 

[
au au] -p u- +iD-of of' (3.5) 

(3.6) 

(3.7) 

The corresponding boundary conditions are the symmetry at the centerline and no-slip 

at the walls 

iD = -c, 

aiD = 0 
of ' 

dh 
u=-c-

dz 

of = 0 
of ' 

u=o at f = 0, (3.6a) 

- 21f 
at f = h = a + b sin -:\ (z) , (3.6b) 

at f = 0, (3.7a) 

at f = h, (3.7b) 

where p is the density, F is the pressure, p,(T) is the temperature dependent viscosity, 

Qo is the constant heat addition/absorption, T is the temperature, k denotes the the 

thermal conductivity, cp is the specific heat at constant pressure. The viscous dissipation 

is assumed to be negligible in the energy equation. 

We non-dimensionalise the governing equations and boundary conditions by intro-
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ducing the following non-dimensional parameters 

R if Z Z W=W ill 
R = r= - Z = I' z = >:' w=-, , , 

a a c C 

AU AU a2p 
B= 

(T - To) p _ p,ep U = - , u=- P=- r - k ' , CAP,O , (T1 - To ) , ac ac 

p,(B) 
p,(T) cf a 

M = (J"P,mHo~, Re = Pca2 
---;;;;' t = I' 0 = >:, , 

P,o p, 

h Q a2 aga3 (T1 - To) 
h ~ = 1 + c/>sin27fz, 131 = k (T

1
0
_ To),G7• = v2 (3.8) 

where c/> is the amplitude ratio (c/> = ~ ) , 0 and M are the wave number and Hartmann 

number respectively. Using the above non-dimensional parameters in Eqs. (3.4) to (3.7) , 

the non-dimensional system becomes 

w = -1, 

aP 
az 

aP 
or 

02~ [2P, (B) au] + [202 p, (B) (au _ !::)] 
or or T aT r 

+0 - p, (B) (0 - + -) - Reo (u - + w-), 2 a [ 2 au ow] 3 au au 
az az or or az 

1 a [ ( 2 au ow) ] 2 a [ ) ow] 2 -- P, (B) r 0 - + - + 0 - 2p, (B - - M w 
raT OZ or OZ az 

(
OW ow) 

- Re 0 u or + w oz + GrB, 

[ 
oB aB] 02 BloB 2 02 

Z 
RePro u or + w OZ = or2 + -:; or + 0 or2 + 131 , 

ow 
Or = 0, u=O, at r = 0, 

dh . 
u = - dz at r = h = 1 + c/> sm 27f Z , 
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(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13a) 

(3.13b) 



oe 
or = 0, at r = 0, (3.13c) 

e = 1, at r = h. (3.13d) 

Using the long wavelength approximation (& = 0) in Eqs. (3.10), (3.11) and (3.13), the 

appropriate equations describing the peristaltic flow with heat transfer reduce to 

oP 
or = 0, (3.14) 

oP 1 0 [ (ow)] 2 - = -- f-L(e)r - - M w+Gre, oz r or or (3.15) 

02e 1 oe 
.Q 2 + -~ + i3 1 = O. ur r ur (3.16) 

Before we proceed towards finding the solutions of the above equations note that in the 

long wavelength limit (& = 0) the energy equation (3.16) is decoupled from the rest of 

the equations and thus can be solved independently. Also from the radial component of 

the momentum equation, we find that the pressure is independent of the radial direction. 

We will utilize these facts in finding the analytical and numerical solutions. 

3.3 Rate of volume flow 

The instantaneous volume flow rate in the fixed frame is given by 

Ii 

Q = 27r /RWdR, (3.18) 

o 

where h is a function of Z and t. Substituting from Eqs. (3.2) and (3.3) into Eq. (3.18) 

and then integrating yields 

Q = if. + 7rch, (3.19) 

where 
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h 

lj = 21f J fwdf . 

o 

(3.20) 

The quantity q represents the volume flow rate in the moving coordinates system and is 

independent of time. Here h is the function of z alone and defined through Eq. (3.18). 

Using the dimensionless variables, we find 

(3.21) 

The time-mean flow over a period T = ~ at a fixed Z - position is defined as 

T 

Q = ~ J Qdt. (3.22) 

o 

Invoking Eq. (3.18) into Eq. (3.22) and integrating, we obtain 

(3.23) 

which may be written as 

(3.24) 

The dimensionless time-mean flow can be defined as 

(3.25) 

Eq. (3.24) can be written as 

cr=F+- 1+-1 ( q}) 
2 2' 

(3.26) 

where F in the wave frame defined through (3.21). 
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In the forthcoming analysis, we shall use the following exponential viscosity-temperature 

relation, also known as Reynolds model of variable viscosity. 

J-L (8) = e- f3 (), J-L (8) = 1- (38 for (3« 1, (3.27) 

where (3 represents the Reynold model viscosity parameter. The choice of J-L is justified 

due to physiological applications. When dealing with bio-fluids, the viscosity of the fluid 

is not constants in all phenomenon, in some typical situations viscosity depends upon 

temperature. Here we have considered the well known temperature dependent viscosity 

model known as Reynold model of viscosity. 

3.4 Analytical solution 

In this section, we will present analytical solution of the system given in Eqs. (3.15) and 

(3.16) with boundary conditions (3.13a) and (3 .13b). We will use regular perturbation 

technique to find the solutions. The temperature Eq. (3.16) yields 

(3 r2 
8 (r) = -+ + C1 ln (r) + C2 . (3.28) 

Using the boundary conditions (3 .13c) and (3.13d), we get 

C1 = 0, (3.29) 

Thus Eq. (3 .28) can be written as 

(3.30) 
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For the solution of Eqs. (3.14) and (3.15), we look for a regular perturbation in term of 

small parameter j3 as follows 

U 

dp 

dz 
F 

Uo + (3UI + 0 ((3)2 , 

d: + (3dIzI + 0 ((3)2 , 

Fo + (3FI + 0 ((3)2 . 

(3.31a) 

(3.31b) 

(3.31c) 

(3.31d) 

Substituting from Eqs. (3 .31a) to (3 .31c) in Eqs. (3 .12a) (3 .12b) (3.15) and (3 .16) and 

comparing the like power of (3, we have the following system of equations 

3.4.1 Zeroth order system 

OWo = 0 
or ' 

Wo = - 1, 

1 a (ruo) oWo 
- 0 + !:l = 0, 
r r uZ 

apo = 0 
ar ' 

Uo = 0 at r = 0, 

dh 
Uo = -- at r = h = 1 + ¢sin27fz. 

dz 

3.4.2 First order system 

OWl = 0 
ar ' 

~o(rud + OWl = 0 
r or OZ ' 

UI = 0 , at r = 0, 
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(3.32) 

(3.33) 

(3.34) 

(3.35a) 

(3.35b) 

(3.36) 

(3.37) 

(3.38) 

(3.39a) 



WI = 0, Ul = 0, at r=h= 1+¢sin27fz. (3.39b) 

3.4.3 Solution of zeroth order system 

With the help of temperature solution (3.30), Eq.(3.34) can be written as 

(3.40) 

Eq. (3.40) is a non homogenous modified Bessel equation, its complementary solution is 

defined as 

Woe = Cnlo (Mr) + C22KO (!VIr) , (3.41) 

where 10 (!VIr) and II (Mr) are known as modified Bessel functions of the first kind and 

Cn , and C22 are constants. To get the particular solution of Eq. (3.40) we assume a 

solution of the form 

(3.42) 

Thus from Eqs.(3.41) and (3.42) , we get 

Using Eqs. (3.35a) (3 .35b) in Eq. (3.43) we have 

(3.44) 

Finally the solution can be written as 

Wo 1 (dPO 2 ) Io(Mh)M2 dz - M + Ks (Io (Mr) - 10 (Mh)) - 1 

+ ~~~ (h2 _ r2) . (3.45) 
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The volume flow rate Fo in the moving coordinates system is given by 

h 

Fo = /rwoclr. 

o 

Substituting Eq. (3.45) into Eq. (3 .46) and solving the result for to, yields 

clpo JvJ410 (Mh) (2Fo + h2 + K 5 ) 

clz = 2Mhl1 (Mh) - M2h210 (NJh) + KG, 

where 

Kl -

K2 

K4 -

3.4.4 Solution of the first order system 

With the help of Eqs. (3.30) and (3.45) ,Eq. (3.38) can be written as 

2 {]2Wl OWl M2 2 
r --+r-- r WI 

or2 or 

(3.46) 

(3.47) 

Eq. (3.48) is a non homogenous modified Bessel equation, its complementary solution is 

defined as 

(3.49) 
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where C33 ,and C44 , are constants.To get the particular solution of Eq. (3.48) we assume 

a solution of the form 

The general solution can be written as 

where 
1 

ao = 4' a = bk b = (k + 1) 
k (2k + 2) (k + 2)' k 22k+I (k!)2· 

With the help of Eqs. (3 .39a) and (3.39b) , we obtain 

Therefore Eq. (3 .51) takes the form 

dPI 1 
- ( h) M2 [(10 (Mr) - 10 (Mh) + KIlo (l\IIr)] + 9 (z) K210 (Mr) 
dz 10 M 

00 (M )2k+4 00 (M )2k+2 
2 ~ ak r ~ ak r 

+f32 +f33r +g(z ) K3 6 2k+4 +g (z ) K4 6 2k+2 
k=O k=O 

The volume flow rate F 1 in the moving coordinates system is defined as 
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(3.52) 

(3.53) 

(3.54) 



Substituting Eq. (3.53) into Eq. (3.54) and solving the result for ~, yields 

dPl M4Io (Mh) (2Fl - K 7 ) M610 (NIh) K77 (2Fo + h2) 
dz = 2MhIl (Mh) - M2h210 (Mh) + (2Mhll (NIh) _ M2h210 (Mh))2 + Kg, (3 .55) 

where 

Finally, substituting Eqs. (3.45) and (3.53) into Eq. (3.31a) and using the relation 

dPo = dP _ f3d Pt + 0 (13)2 . 
dz dz dz 

neglecting terms greater than 0(13), we get 

1 dp 2 
W - Io(Mh)M2 (( dz - M ) + Ks)) (Io(Mr) - Io (Mh)) - l. 

+ ~;:~ (h2 - r2) + f3(Kllo(NIr) + g(z )K2Io(NIr) 

2 00 ak(Mr)2k+4 00 ak(Mr)2k+2 
+132 + f3 3r + g(z )K 3 L 2k + 4 + g( Z)K4 L 2k + 2 ). (3.56) 

k=O k=O 

Also using Eqs. (3.47) and (3.55) into Eq. (3.31c) and the relation 
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where F is defined in Eq. (3.21) and neglecting the terms greater than 0 ((3), we get 

where 

dP 

dz 

M4Io (Mh) (28 - ~ -1 + h2 + KlO) 

2JvIhI1 (Mh) - M2h2Io (Mh) + K6 

(

2M6IO (Mh) (28 - ~2 - 1 + h2)K77) ) 
+(3 (2MhIl (Mh) _ M2h2Io(Mh))2 -/- Kg , (3.57) 

The non-dimensional pressure rise per wavelength 6.P).. and friction force F).. (on the wall) 

in the tube length A in their non-dimensional forms are given by 

(3.58) 

(3.59) 

where ~~ is defined through equation (3.57). 

The corresponding stream function (u = - ~ ~~ and w = ~ ~~) is 

'l/J (r, z) 
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3.5 Numerical computations 

A finite difference technique is employed to check the results of the perturbation analy­

sis and to indicate their validity. Recall that the system of equations and boundary 

conditions in the long wavelength limit are given by 

02e 10e 

O 2 + --0 + (31 = 0, r r r 

oP = ~i. [I-L (e) r (ow)] - M 2w + Gre, 
OZ r fJr or 

oe 
or = 0, at r = 0, e = 1, at r = h, 

ow = 0 
or ' at r = O, w=-l, at r=h. 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

We notice that in the long wavelength limit (0 = 0), the energy equation (3 .60) is decou­

pIes from the axial velocity equations and thus can be solved independently which are 

already computed in previous section and represented by Eq. (3 .30). 

With the help of Eq. (3.30) and variable viscosity model I-L (e) = 1 - (3() and using 

the fact that P =1= P (r) , the axial momentum equation becomes after some algebra 

02W [1 _ (3 _ (31(322 (h2 _ r2)] + ~ ow [1 _ (3 _ (31(322 (h2 _ r2) + 
or2 22 4 r or 22 4 

(3.64) 

We use finite difference method to solve the above equation treating it as an ordinary 

differential equation with the boundary conditions (3.63) . The first step is to partition 

the domain [0, h] into a number of sub-domain or intervals of length dx. We denote by 

Xi the interval end points or nodes, with Xl = 0, and Xn+1 = h. In general we have 

Xi = (i - 1) dx for i = 1,2, 3 .... N. We represent the axial velocity w at the ith node by 

Wi, The second step is to express the differential operators in discrete form. This can be 

accomplished using finite difference approximations to the differential operators. In this 
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problem we will use the central difference approximation and replaced the derivatives by 

their discrete approximations 

Wi = Wi+l + Wi - 1 

2 (dx) 
(3.66) 

Using Eq. (3.66) in Eq. (3.65) and after rearranging, we get a system of algebraic 

equations 

i = 1,2, 3 .... . N. (3.67) 

Finally, the resulting tridiagonal system is solved the using the famous Thomas-alogorithm. 

Jl=O 
0 .5r-;;;;;~:-'---~'--~-;=====~ 

·0.5 . 

.---- Numerlca 1501 
- ..... Analyllca I sol 

.1 '--_L-_-'-_--'--_ _ '-_-'-__ L..----''-' 
o 0.2 0.4 0.6 0 .8 1.2 1 .4 

~ 

P=O·1 
0.6 

................................... 
- Numerical Sol 

0.4 
.. ..... Analytical Sol 

0.2 

O ' 

·0.2 

.0.4 

·0.6 

· 0.8 

·1 
0 0.2 0.4 0.6 0.8 1.2 

Figure 3.1. Comparison of analytical and Numerical velocity for fz - 0.4, M = 3, 

Gr = 2, and f31 = 5 for f3 = 0,0.1 

Figur.3.1 represents the comparison of analytical and numerical solutions of the axial 

velocity w. We find a very good agreement between the two results for the case (f3 = 0) 

which corresponds to a constant viscosity fluid and a fairly good agreement with variable 

viscosity coefficient for (f3 = 0.1) 
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3.6 Results and discussion 

In this section results are presented and discussed for different physical quantities of 

interest. Pressure rise in the tube due to peristalsis is an important physical quantity. In 

order to better understand the effects of variable viscosity and magnetic field, the average 

pressure rise 6.P)., is plotted against (J, the time averaged mean flow rate. Figures 3.2, 

3.3 represents the average pressure rise 6.P>. for different values of viscosity parameter 

/3, Hartmann number M as well as for the different amplitude ratio cp, of the wave train 

traveling at the walls of the tube. 
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Figure 3.2. Pressure rise against flow rate (A) ¢ = 0.6, M = 3, /31 

¢ = 0.6, /3 = 0.1, /31 = 5, Gr = 3 
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Figure 3.3. Pressure rise against flow rate (A) /3 = 0.1, M = 3, /31 = 5, G1• = 3 (B) 

Friction force against flow rate for ¢ = 0.2, M = 3, /31 = 5, Gr = 3 
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Figure 3.4. It'riction force against flow rate (A) ¢ = 0.6, /3 = 0.3, /31 = 5, Gr = 3 (B) 
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/3 = 0.1, M = 3, /31 = 5, Gr = 3 
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Figure 3.5. Temperature profile for cP = 0.2 , Z 

0.6,[31 = 5, M = 3, z = O.l,Gr = 2, ~ = 0.4 
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Figure 3.6. (i) Axial velocity for cP = 0.6, /31 = 5, [3 = 0.1, z = 0.1, G7• = 2, ~ = 0.4 (ii) 

cP = 0.6,/31 = 5,/3 = O.I, z = O.I,M = 3, ~ = 0.4 

From Figure 3.2-A, it can be observed that the maximum pressure rise occurs at 
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zero flow rate for different values of viscosity parameter 13. The theoretical pressure 

rise increases as flow rate decreases and pressure rise decreases linearly with increasing 

time-mean flow. Moreover, it is observed that the pressure rise is maximum for constant 

viscosity (13 = 0) case and it is decreases for increasing 13. The average pressure rise 

6.P).. decreases as (7 increased in peristaltic pumping region, (7 > 0, and 6.P).. > 0, but it 

increases with (7 in augmented pumping region, where (7 > 0, and 6.P,\ < O. 

Figure 3.2-B represents the pressure rise 6.P).. for different magnetic parameter M, 

the Hartmann number. The pressure rise increases with M for a ~ (7 < 0.4 and for the 

range (7 ~ 0.4 6.P).. decreases with the increase in Hartmann number. Furthermore, the 

peristaltic pumping occurs upto almost at (j = 0.41 for each Hartmann number, otherwise 

augmented pumping occurs. 

Figure 3.3-A shows the effects of amplitude ratio on average pressure rise 6.P).. plotted 

against the time-mean flow rate (7. It is observed that the behavior of pressure rise 

reverses at (j = 0.5. As seen from the graph, the pressure rise increases with increase in 

amplitude ratio cp upto (j = 0.5 and for (j > 0. 5 pressure rise decreases with the increases 

in amplitude ratio. Furthermore the peristaltic pumping occurs in the region 0 ~ (j < 0.5 

and augmented pumping occurs otherwise. 

The friction force Fp>. is plotted in Figure 3.3 (B)and 3.4 for different values of 

viscosity parameter 13, Hartmann number M as well as for the different amplitude ratio 

cp. Increase in f3 results in the decrease of friction force and increase in magnetic parameter 

M decreases the friction in the range 0 ~ (7 ~ 0.13 and increases for (7 > 0.13. The effects 

of the increase in amplitude ratio cp of the peristaltic wave results in the decrease of the 

friction force Fp>. for 0 ~ (j ~ 0.85. Overall, we observe that friction force Fp>. has 

the opposite behavior as compared to pressure rise 6.P".Figures 3.5, 3.6 represents the 

temperature and velocity profiles for different range of influential system parameters. 

The temperature field () is plotted for different values of heat absorption parameter f31' 

It is found that with increasing f31, temperature field increases. Further the temperature 

field is maximum at the inlet region of the tube (r = 0) . 
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The variation of the axial velocity is plotted against the radial coordinate r. The 

effect of variable viscosity parameter /3 is found to have a significant effect on the velocity 

profile. It is observed from the results that the velocity is maximum at (r = 0) and it 

increases with the increase in fJ upto r = 0.9 and later on it decreases . 

The influence of Hartmann number M and free convection parameter Gr is also 

studied. FigUTe 3.6 shows that with the increase in M the velocity decreases upto r = 0.9 

and velocity is positive. After r = 0.9 the velocity becomes negative and we see the 

opposite effect of increasing Hartmann number. Further, the velocity is maximum for 

low Hartmann number. The effects of free convection parameter Gr is also given in FigUTe 

3.6. It is observed from the figUTe that with the increase in Gr , results in the increase, 

of the axial velocity. 

3.7 Trapping 

Trapping is an interesting phenomenon in peristaltic motion. It is basically the formation 

of an internally circulating bolus of fluid by closed streamlines. This trapped bolus pushed 

a head along with the peristaltic wave. Figure 3.7(i) illustrates the streamline graphs for 

different values of time mean flow rate 0'. It is observed that the size of trapped bolus 

decreases by increasing mean flow rate. It is also observed that the number of trapped 

bolus decreases by increasing flow rate. The streamlines for different values of amplitude 

ratio ¢ are shown in Figure 3.7(ii) . It is evident from the figUTe that the trapped bolus 

increases by increasing the amplitude ratio. The effects of heat absorption parameter 

fJ1 is illustrated in FigUTe 3.8(i) . It is depicted that increasing fJ 1 the size of the bolus 

increases. FigUTe 3.8 (ii) shows the effects of the free convection parameter, Gr with a 

given fixed set of the other parameters. By increasing Gr the size of bolus increases. 

FigUTe 3.9(i) shows the effects of Hartmann number M. When we increase !VI the size 

of trapped bolus increases. To see the effects of viscosity paremeter /3, Fig UTe 3.9(ii) is 

plotted. It is observed that when we increase fJ, the size of trapped bolus increases 
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1 .2 (f) 
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Figure 3.7(i). Streamlines for different values of a = .8, 1, 1.2,(panels (a) to (c)) The other 

parameters are ¢ = 0.4, f31 = 3, G1" = 0.6, M = 1.5, f3 = 0.4. Figure 3.7(ii) . Streamlines 

for different values of ¢ = 0.2, 0.3, O.4,(panels (d) to (1)) The other parameters are 

a = 0.9, f3 1 = 3, Gr = 0.6, M = 1.5, f3 = 0.4. 
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Figure 3.8(i). Streamlines for different values of (31 = 2,2.5, 3,(panels (g) to (i)) The other 

parameters are ¢ = 0.4, a = 0.8, Gr = 0.6, M = 1.5, (3 = 0.4. Figure 3.8(ii) . Streamlines 

for different values of Gr = 0.7, 0.8, 0.9,(pane1s (j) to (1)) The other parameters are 

a = 0.9, (31 = 3, ¢ = 0. 2, M = 1.5, (3 = 0.4. 
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Figure 3.9(i) . Streamlines for different values of M = 0.8, 0.9, l,(panels (m) to (0)) The 

other parameters are ¢ = 0.1, (J = 1, G,. = 0.7, /31 = 3, /3 = 0.5. Figure 3.9(ii) . Stream­

lines for different values of /3 = 0.4, 0.5, 0.6,(panels (p) to (r)) The other parameters are 

(J = 0.9, /31 = 3, ¢ = 0.2, M = 1.5, Gr = 0.6. 
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