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Preface 
A systematic investigation of topological rings had started since 1940 , by using the h ame 

of topological a lgebra. lVIany parts of the theory of topological rings have been exposed in 

mathematical text (for example, p-adic numbers etc.) . It was L. S. Pontrya who obtained the 

first fundamental result in the classification of locally compact skew fields by using topological 

rings. After that algebraic geometrists used topological rings and topological modules as a tool 

for solving many problems of algebraic geometry. Amongst the founders of modern algebraic 

geometry Oskar Zariski was the first to realized that the subject needed a proper foundation. 

It vvas he who laid a proper foundation of the subj ect in 1937. lVIainly, his work concentrated 

on fundamental groups. He used the notions of integral independence, valuation rings, Zariski 

rings and regular local rings in algebraic geometry. In 1949, he published a short paper "A 

simple analytic proof of fundamental property of birational transformation II in which he proved 

his main theorem using the completion and valuation of a local ring. Later on a more simple 

proof of this theorem was given using some standard facts of commutative a lgebra. 

In algebraic geometry Zariski topology is important for studying t.he polynomial equations. 

Zariski ring was first introduced I y Zariski itself in 1960 for the sake of generalization of 

Zariski topology in which he discussed the pair (R, I) , where R is a 1 oetherian ring with uni ty 

such that every submodule F of every fini tely generated R-module E is closed and I is an ideal 

of R. 

This disserta tion consists of three chapters. In chapter one we give some introductory 

concepts of ring theory and topology. In chapter two we give basic definitions and results of 

topological rings and topological modules, especia lly, the I -adic completion of a ring and Zariski 

topology. 

In ring theory, ascend and descend of various properties for ring (domain) extensions has 

been discussed frequently, that is, conditions are found under which these properties ascend 

or descend. In the papers [14J and [16], ascend and descend of factorization properties for 

atomic domains, domains satisfying ACCP, bounded factorization domains, Half factorization 

domains, Pre-Schreier and semi-rigid domains has been discussed. We studied the ascend and 

descend conditions for Zariski rings and proved some valuable results in this respect. In view of 
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the papers [10] and [11], we have discussed domain R + XT[[X]], where R e T be the unitary 

ring (domain) extension. T his has provides us with some good examples of Zariski rings. 'vVe 

also have discussed for a ring the conditions under which its ring of fractions, polynomial ring 

and the ring of formal power series becomes a Zariski ring. 

In chapter three we define Zariski ring and give conditions for the ascend and descend of 

Zariski ring property for unitary ring extensions . We also give some examples of Zariski ring 

and find the conditions for some extensions of a ring with identity to be Zariski. 
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Chapter 1 

Preliminaries 

1.1 Introduction 

This chapter consists of basic concepts of commutative ring theory, module theory and theory 

of topological spaces. We have partitioned it into three sections. In first section we discuss the 

basic definitions, examples and structmes relating to the commutative ring theory. Though we 

can not review whole of the subject but we have tried our best to include those topics which are 

necessary and are used in the forthcoming chapters. Thus we introduced specific terminology 

and its explanation. While selecting the material for this chapter, we have followed mostly ([3], 

[11], [13], [14]) and have mentioned otherwise. In section 2, we have discussed basic concepts, 

definitions, examples and structures related to the module theory. The last Section consists of 

basic definitions and examples of the structures related to the theory of topological spaces. 

1.2 Commutative Rings 

This section includes the basic concepts and discussion over the commutative ring theory. For 

explanation we give examples, as elementary as possible. Thus in the following all the basic 

definitions and concepts that we use in the later chapters are discussed. 

1.2.1 Basic Concepts 

Ring 

3 



A non-empty set R together with two binary operations, addition and multiplication is said 

to be ring if; 

(i) (R, +) is an abelian group. 

(ii) (R,.) is a semigroup. 

(iii) The multiplication is distributive over addition, that is (x + y) z = xz + yz and 

z (x + y) = zx + zy for all x, y, z E R. Rings as defined above are also called associative 

rings, a non associative ring only possess the properties (i) and (iii) . 

Identity element 

An element say 1 is called identity element if 1.x = x = x.I for all x E R. The identity 

element is also called unity and a ring with 1 is known as ring with unity or ring with identity. 

Invertible element 

Let R be a ring with unity then a E R is 

(1) Left invertible, if there exist some a' E R such that a'a = IR. 

(2) Right invertible, if there exist some a' E R such that aa' = IR. 

(3) Invertible if it is both left and right invertible. 

An invertible element is also called a unit. 

Commutative ring 

A ring R is said to be commutative ring if multiplication is commutative, that is 

ab = ba for all a, b E R. 

Examples 

(a) If Z, Q, ~ represent the set of integers, rationals and real numbers 

respectively, then the structures (Z, +,.), (Q, +,.) and (~, +,.) are the examples of com­

mutative rings with identity. 

(b) Consider the set Mn(~) of all n x n matrices with real entries. Under the usual addition 

and multiplication of matrices, (Mn (~) , +, .) forms a non-commutative ring since multiplication 

is non-commutative in matrices. 
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Zero divisor 

Let R be a ring and 0 #- a E R, then a is said to be a left (right) zero divisor in R if there 

exists some element 0 #- b E R such that ab = 0 (ba = 0). A zero divisor is any element of R 

that is, either a left or right zero divisor. 

According to this definition unit elements of a ring cannot be the zero divisors. An obvious 

example of a ring with zero divisor is Zn, where the integer n > 1 is composite; if nln2 = n in 

Z(O < nl,n2 < n), then the product nln2 = 0 in Zn. 

1.2 .2 Integral Domain 

A commutative ring with identity 1 #- 0 is said to be an integral domain if it has no zero 

divisors. 

Note that some authors defines integral domain without identity I , but throughout we take 

an integral domain a commutative ring with identity 1 #- O. 

Examples 

The ring of integers Z and the Gaussian integers ring Z [i] are the examples of integral 

domains. 

Homomorphism 

Let Rand S be rings. A ring homomorphism is a map ¢ R --+ S which satisfies the 

following for all x, y E R 

(i) . ¢(x+ y)=¢(x)+¢(y). 

(ii). ¢(xy) = ¢(x)¢(y). 

If Rand S contain identity element, then the homomorphism of R into S is usually called a 

homomorphism of rings with identity, which also preserve the identity element; that is ¢(lR) = 

Is · 

A one-one and onto ring homomorphism ¢ : R --> S is called ring isomorphism. In this case 

the rings Rand S are said to be isomorphic and we write it as, R ~ S. 

Example 
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(a) The identity mapping lR on a ring R is a ring homomorphism. 

(b) The composition of two ring homomorphism if; : R ~ S, 'U : S ~ T is again a ring 

homomorphism 'U 0 if; : R ~ T. 

Subring 

A non-empty subset S of a ring R is called a subring of R. If S is itself a ring (using the 

induced operations). 

A subring is called unitary if it contains the identity element of the ring. 

Examples 

The set of integers Z and Q are both subring of R 

Remark 1 A subset S of a ring R is a subring of R if and only if S is a subgroup of (R, +), 

and closed under multiplication. 

Ideal 

Let R be a ring and I be a subgroup of (R, +) then I is called a left ideal(resp. right ideal) 

of R if RI <; I (resp. IR <; 1). 

Two sided ideal (ideal) is both left and right ideal of the ring. 

Prime element 

A non-zero element p in a commutative ring R is said to be prime if and only if p is not 

invertible and p divides ab implies either p divides a or p divides b. 

Prime ideal 

Let P be an ideal in a commutative ring R with 1 such that P f. R and for all a, b E R 

ab E P ===? a E P or b E P 

then P is a prime ideal. 
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Spectrum 

The set of all prime ideals in a ring R is called the spectrum of R and it is regarded as 

Spec(R). 

Spec(R) = {P : P is prime ideal of R}. 

Example 

The prime ideals of the ring of integers (Z, +,.) are precisely the ideals (p), where p is a 

prime number, together with the two trivial ideals CO} and Z. 

Nil Radical of a Ring 

Nil radical of a ring R is the intersection of all prime ideals of the ring. It is denoted by 

N(R), i.e. 

N(R) = npESpec(R)P. 

Principal ideal 

An ideal I of a commutative ring R with 1 is said to be principal if it is generated by a 

single element that is , I =< a >= {ar : r E R}. 

Maximal ideal 

An ideal NI of the commutative ring with 1 is said to be maximal if M :f. R and for every 

ideal N such that M ~ N ~ R, either N = R or N = M. 

Theorem 2 (ll) Let I be a proper ideal of a commutative ring R. Then I is maximal ideal ~f 

and only if (I, a) = R for any element a E R, where (I, a) denotes the ideal generated by I U 

{a} . 

Example 

Let (Z, +,.) be the ring of integers. Then the maximal ideals of Z correspond to the prime 

numbers. More precisely, the principal ideal (p) , p > 1, is maximal if and only if p is prime. 

The prime ideals can be characterized in the following manner. 
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Theorem 3 Let I be a proper ideal of the ring R. Then I is a prime ideal (resp . maximal) ~f 

and only ~f the quotient ring R/ I is an integral domain (resp . Field). 

MAX of a Ring (Max(R)) 

The set of all maximal ideals of a ring R is called t he Max of R. It is regarded as Max(R) , 

i.e. 

Max(R) = {M : M is maximal ideal of R}. 

Jacobson Radical of a Ring 

J acobson radical of a ring R is the intersection of all maximal ideals of the ring. It is denoted 

and defined by 

J(R) = nME"t."lax(R)M. 

To know the relationship between the maximal and prime ideals the following result gives 

very important information. 

Theorem 4 In a commutative ring R with identity every maximal ideal is a prime ideal. 

Note that the converse of above theorem does not hold, as in Z although {O} is a prime 

ideal but it is not a maximal ideal of Z . 

Factor Ring 

If I be an ideal of the ring R, then the equivalence classes of y E R for the relation '" is t he 

set 

[y] {x E R: x - y E I} 

{x E R: x - y = i , i E I} 

{x E R: x = y + i, i E I} 

Y + I = {y + i, i E I} . 
1' ....... 
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Let I is an ideal of the commutative ring R with identity I, then the factor ring of R is 

denoted by R/ I . and is the collection of all distinct equivalence classes of I in R; that is, 

R/I = {a + I: a E R}. 

It is easy to verify that R / I is again a ring and R/ I is commutative if R is commutative. 

Field 

A commutative ring F with 1 (having at least two elements) whose every non-zero element 

is invertible is called a field. 

Examples 

There are some standard examples of fields, that is rational field Q, the real field ~ and t he 

finite field Zp, where p is a prime integer. 

Cancellative law 

Let R be a commutative ring and a E R where a =I- 0, then a is said to be cancellative if 

ab = ac ==> b = c and ba = ca ==> b = c. 

If R is a ring with unity and 0 =I- a E R is invertible, then a is cancelable. 

Remark 5 Cancellation law holds in a ring R if and only if R has no zero divisor. 

Division ring (Skew field) 

If every non-zero element of a ring R ,with identity, is a unit then R is called a division ring 

In a ring R with identity a unit can not be a zero divisor. 

Nilpotent element 

If R is a ring with identity then an element a E R is said to be nilpotent if there is a positive 

integer n such that an = 0, where an stands for a· a· .. a (n factors). OR is the trivial nilpotent 

element. 

If R is a ring with identity then unit elements of R can not be nilpotent. 
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1.2.3 Formal Power Series Ring 

Let R be a commutative ring and Zo be the additive monoid of non-negative integers. Set 

R710 = {J : Zo -+ R} to represent the collection of all infinite sequences from Zo to R, then we 

have 

f(O) = fo, f (l) = h, ... , f(n) = fn, ... 

This can be written as 

f = (fo , h , 12 , ... , f k. ... ) , where f ils E R , 

and is called formal power series. 

Now we will introduce operations in the set R710 such that R 710 is a ring containing R as a 

subring. Let us consider f, 9 E R710 such that 

f = (fo , h , ... ) and 9 = (gO,gl, ... ) 

and f = 9 if and only if fn = gn for all n ;;:: O. 

The addition and multiplication of formal power series is defined as follows: 

f + 9 = (fo + go , h + gl, .. . ). 

fg = (ho, h1 , ... ) , 

where for eacli. n ;;:: 0, 

(0, 0, 0, .. . ) is the zero element of RZo and the additive inverse of (fo ,h, ... ) is (- fo ,-h, .··)· 

Hence (R71o, +) becomes an abelian group. Moreover, (Rzo, .) is semigroup and multiplication 

is distributive over addition, therefore (RZO, +,.) forms a ring structure known as the ring of 

formal power series in one indeterminate over R . 

Isomorphism 
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There is an imbedding e : R --+ RZo defined by 

e(a) = (a, 0, 0, 0, ... ). 

So, an element a E R has a representation (a, 0, 0, 0, .. . ) in R Zo . 

Formation of power series 

Now we define a power series in a formal way, we have 

X=(O,l,O, ... ) 

and 

foX = (0, fo, 0, ... ), where fo E R. 

foX E R Zo which has the element fo for its second term and 0 for all other terms. In general 

fnxn, n ~ 1 denotes the sequence 

(0,0, ... , 0, fn,O, ... ), 

where fn is the element at (n + l)th term in this sequence. Now we have 

hX2 = (0,0,12,0, ... ), 

hX3 = (0,0,0 ,13 , 0, ... ) and so on. 

Thus 

f(X) = (fo , il, ... , fn, ... ) 

can be uniquely expressed in the form 

To indicate the indeterminate X , usually we denote RZo by R[[X]]. 
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Remark 6 If the ring R has a multiplicative identity I , then X E R[[X]]. 

Proposition 7 [11 j Let R be a ring and denote by R [[X]] the set of all sequences of elements 

(fa, h, ... ) of R. 

(1) R[[X]] is a ring with addition and multiplication defined by: (fo,h,···) + (gO , gl, ... ) = 
n n 

(fa + go, h + gl, ... ) and (fa, h, ··)(90, gl, ... ) = (ho, hI, .. ), where hn = I: fign-i = L: fk9j· 
i=O k+j=n 

(2) If R is commutative ring, then so is R [[X]]. 

Remark 8 If R is an integral domain, then so is its power series ring R[[X]]. 

Lemma 9 Let R be a commutative ring with identity. A formal power series f(X) = L: /kX k 

is invertible in R[[X]] if and only if the constant term fa has an inverse in R. 

Corollary 10 A power series f(X) = I: fkX k E K[[X)J, where K is a field , has an inverse in 

K[[X]] if and only ~f its constant term fa =1= O. 

Theorem 11 Let R be a commutative ring with 1. Then there is a one to one correspondence 

between the maximal ideals M of the ring R and the maximal ideals M[[X)] of its power series 

ring R[[X]] in such a way that M[[X]] corresponds to M ~f and only if M[[X]] is generated by 

M and Xj that is M[[X]] = (M,X). 

1.2.4 Polynomial Rings 

Let R[X) denote the set of all power series in R[[X]J, whose finite number of coefficients are 

nonzero. So, 

R[X] = {fa + hX + ... + fnxn : fn E R, n ~ O}. 

An element of R[X] is called polynomial in indeterminate X over the ring R. 

Proposition 12 The polynomial ring R [X) is a subring of R [[X]] . 

Remark 13 If fER [[X]] is actually a polynomial with irreducible [resp. unit] constant term 

then f need not be irreducible [resp. a unit] in the polynomial ring R. 
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1.2.5 Localization 

Localization generalizes the construction of the field of fraction of a domain but applies to 

any commutative ring. 

Multiplicative System 

Let R be a commutative ring with 1. A subset T of R with I , is called a multiplicative 

system in R if s, t E T implies st E T . 

Examples 

Let R be a commutative ring with identity. Then followings are few examples of multiplica­

tive systems in R. 

(a) {I}. 

(b) U(R), unit elements of ring R. 

(c) R\P is multiplicative system if P is prime ideal in R. 

(d ) {I, a, ... , an, ... }, where a E R \{O} is a nonzero divisor. 

(e) Intersection of multiplicative systems is again a multiplicative system. 

Saturated multiplicative system 

A multiplicative system T is said to be saturated if any factor of an element of T again lies 

in T. For example {I , a, ... , an, ... }, where a E R\ {O} is a nonzero divisor. 

Ring of fractions 

Let R be a commutative ring with identity and T be a multiplicative system in R. 

Define an equivalence relation rv on R x T by; 

(a , s) "-' (b , t) ¢:} atu = bsu for some u E T . 

Where the equivalence class of (a , s) E R x T is denoted by the fraction a Is . 

The ring of fractions of R with denominators in T is the set T-1 R = (R x T)I rv of all 

fractions with operations given by 

(als ) + (bit) = (at + bs)/st and 

13 



(a/s)(b/t) = ab/st, where a/s,b/t E T - 1R. 

It is straight forward to show that, the operations on T - 1 R are well defined and that T- 1 R 

is a ring with zero element 0/1 and identity element 1/1. For all s, t E S, s/t is a unit in T-1R, 

with (s/t) - l = t/s. 

1.2.6 Factorization Domains 

Atomic domain 

An integral domain D is called atomic domain if every non zero non unit element of D can 

be written as a product of irreducibles(atoms) . 

Half factorial domain(H F D) 

We define D to be a half factorial domain (HFD) if D is atomic and whenever Xl .... Xm = 

Yl .... Ym with each Xi,Yi E R irreducible, then m = n. 

Bounded factorization domain(BFD) 

An integral domain D is a BFD if D is atomic and for each nonzero non-unit of D there is 

a bound on the length of factorization into products of irreducible elements. 

Finite factorization domain(F F D) 

An integral domain R is an F F D if every nonzero element of R has only a finite number of 

nonassociate divisors. 

In general, 

HFD ===> BFD ===> Atomic. 

But none of the above implication is reversible. 

Noetherian domain 
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We say that a ring R is Noetherian if it satisfies one of the following three equivalent 

conditions: 

(1) Every non-empty set of ideals in R has maximal element. 

(2) Every ascending chain of ideals in R is stationary. 

(3) Every ideal in R is finitely generated. 

Theorem 14 (11) (Hilbed 's Basis Theorem)rf R is Noetherian then the polynomial ring R[X] 

is also Noetherian. 

Theorem 15 (11) rf R is Noetherian then the factor ring R/ I is also Noetherian for any ideal 

I of R. 

1.3 Module 

Definition 

Let R be a ring with 1, a (left) R-module is an additive abelian group lYI together with a 

function R x lYI -? M (the image of (T, a) being denoted by ra) such that for all r, s E R and 

m,nEM: 

(i). r(m + n) = rm + Tn . 

(ii). (r + s)m = rm + sm. 

(iii). r (sa ) = (r s)a. 

(iv). l Rm = m for all m E M, 

then M is said to be unitary R-module. 

A (unitary) right module is defined similarly. An R-module is both left and right R-module. 

Examples 

Every abelian group is a module over the ring of integers Z in a unique way. For n > 0, let 

nx = x + x + ... + x (n summands), Ox = 0, and (-n)x = -(nx). 

If R is any ring and n a natural number, then the Cartesian product Rn is both a left and 

a right module over R if we use the component-wise operations. Hence when n = 1, R is an 

R-module, where the scalar multiplication is just ring multiplication. 
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Submodule 

Suppose M is a left R-module and N is a subgroup of M. Then N is a submodule (or 

R-submodule) if, for any 71, in N and any r in R, the product rn is in N (or nr for a right 

module). 

Examples 

An ideal I of the ring R is an R-submodule of the R-module R. 

Homomorphism 

If M and N are left R-modules, then a map f : M ----+ N is a homomorphism of R-modules 

if, for any m, n in M and r, 8 in R, f(rm + 871,) = r f(m) + 8f(n). 

A bijective module homomorphism is an isomorphism of modules , and the two modules are 

called isomorphic. 

Finitely generated 

A module M is finitely generated if there exist finitely many elements Xl, ... , Xn in NI such 

that every element of NI is a linear combination of those elements with coefficients from the 

scalar ring R. 

Any ring R with 1 is a finitely generated R-module. 

1.4 Topology 

Definition 

Let X be a non-empty set, a collection T of subsets of X is called a topology if 

(1). ¢ and X are in T. 

(2) . Finite intersection of the members of T is again in T . 

(3). Union of any number of members of T is again in T. 

then the set X with topology T on it is called a topological space and is denoted by (X, T). 

Product topology 
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Let I be a (possibly infinite) index set and suppose Xi is a topological space for every i in 

I . Set X = IIXi, the Cartesian product of the sets Xi. For every i in I, we have a canonical 

projection Pi : X -t Xi. The product topology on X is defined to be the coarsest topology (i.e. 

the topology with the fewest open sets) for which all the projections Pi are continuous. 

The open sets in the product topology are unions (finite or infinite) of sets of the form IIUi, 

where Ui =f Xi only finitely many times. 

The product topology on X is the topology generated by sets of the form p;:l(U), where 

i in I and U is an open subset of Xi. In other words, the sets {p;:l(U)} form a subbase for 

the topology on X. A subset of X is open if and only if it is a (possibly infinite) union of 

intersections of finitely many sets of the form p;:l(U). The p;:l(U) are sometimes called open 

cylinders, and their intersections are cylinder sets. 

Examples 

If one starts with the standard topology on the real line R and defines a topology on the 

product of n copies of R in this fashion, one obtains the ordinary Euclidean topology on Rn. 

The Cantor set is homeomorphic to the product of countably many copies of the discrete 

space {O, I} and the space of irrational numbers is homeomorphic to the product of countably 

many copies of the natural numbers , where again each copy carries the discrete topology. 

Kolmogorov space 

A To space is a topological space X in which for every pair of distinct points x and y, there 

is an open set U which contains precisely one of the points. 

Hausdorff Space 

Suppose that X is a topological space. Let x and y be points in X. We say that x and y 

can be separated by neighborhoods if there exists a neighborhood U of x and a neighborhood 

V of y such that U and V are disjoint (U n V = ¢). X is a Hausdorff space if any two distinct 

points of X can be separated by neighborhoods. 

Examples 

Almost all spaces encountered in analysis are Hausdorff; most importantly, the real numbers 

(under the standard metric topology on real numbers) are a Hausdorff space. More generally, all 

metric spaces are Hausdorff. In fact, many spaces of use in analysis, such as topological groups 
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and topological manifolds, have the Hausdorff condition explicitly stated in their definitions. 

Compactness of topological spaces 

A topological space X is defined as compact if all its open covers have a finite subcover. 

Formally, tllis means that for every arbitrary collection {VihEI of open subsets of X such that 

UiE1Vi ;2 X, there is a finite subset J C I such that UjEJVj ;2 X. 

An often used equivalent definition is given in terms of the finite intersection property: if any 

collection of closed sets satisfying the finite intersection property has non-empty intersection, 

then the space is compact. 

Examples 

Any finite topological space, including the empty set, is compact. Slightly more generally, 

any space with a finite topology (only finitely many open sets) is compact; this includes in 

particular the trivial topology. 

Homeomorphism 

A function 1 between two topological spaces X and Y is called a homeomorphism if it has 

the following properties: 

(i). 1 is a bijection (1 - 1 and onto), 

(ii). 1 is continuous, 

(iii). the inverse function 1-1 is continuous (f is an open mapping). 

A function with these three properties is sometimes called bicontinuous. If such a function 

exists, we say X and Yare homeomorphic. A self-homeomorphism is a homeomorphism of a 

topological space onto itself. The homeomorphisms form an equivalence relation on the class 

of all topological spaces. The resulting equivalence classes are called homeomorphism classes. 

Examples 

(1). The open interval (-1,1) is homeomorphic to the real numbers R. 

(2). Let A be a commutative ring with unity and let S be a multiplicative subset of A. 

Then Spec (As) is homeomorphic to {p E SpecA : p n S = <I>} 

(3). ~n and ~m are not homeomorphic for n -=f. m. 
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Continuous Mapping 

Several equivalent definitions for a topological structure exist and thus there are several 

equivalent ways to define a continuous function. 

Open and closed set definition 

A function for which the preimages of open sets are open is continuous. Similar to the open 

set formulation is the closed set formulation, which says that preimages of closed sets are dosed. 

Neighborhood definition 

Definitions based on preimages are often difficult to use directly. Instead, suppose we have 

a function J from X to Y, where X, Yare topological spaces. We say J is continuous at x for 

some x in X if for any neighborhood V of J(x), there is a neighborhood U of x such that J(U) 

is a subset of V. Although this definition appears complicated, the intuition is that no matter 

how "small" V becomes, we can always find a U containing x that will map inside it. If J is 

continuous at every x in X, then we simply say J is continuous. 

Open and closed maps 

In topology, an open map is a function between two topological spaces which maps open 

sets to open sets. That is , a function J : X -> Y is open if for any open set U in X, the image 

J(U) is open in Y. Likewise, a closed map is a function which maps closed sets to closed sets. 

Neither open nor closed maps are required to be continuous. Although their definitions 

seem natural, open and closed maps are much less important than continuous maps. Recall 

that a function J : X -> Y is continuous if the pre image of every open set of Y is open in X. 

(Equivalently, if the preimage of every closed set of Y is closed in X). 

Examples 

Every homeomorphism is open, closed, and continuous. In fact , a bijective continuous map 

is a homeomorphism if and only if it is open, or equivalently, if and only if it is closed. 

If Y has the discrete topology (i.e. all subsets are open and closed·) then every function 

J : X -> Y is both open and closed (but not necessarily continuous). For example, the floor 
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function from R to Z is open and closed, but not continuous. This example shows that the 

image of a connected space under an open or closed map need not be connected. 

Whenever we have a product of topological spaces X = nxi , the natural projections Pi : 

X ~ Xi are open (as well as continuous). Projections need not be closed however. Consider 

for instance the projection PI : R2 ~ R on the first component; A = {(x, l/x) : x #- O} is closed 

in R2 , but PI (A) = R"'-.{O} is not closed. However, for compact Y, the projection X x Y -> X 

is closed. This is essentially the tube lemma. 

The function f : R ~ R with f(x) = x2 is continuous and closed, but not open. 

Properties 

A function f : X ~ Y is open if and only if for every x in X and every neighborhood U of 

x (however small), there exists a neighborhood V of f(x) such that V C f(U). 

It suffices to check openness on an basis for X. That is, a function f : X ~ Y is open if 

and only if it maps basic open sets to open sets. 

Open and closed maps can also be characterized by the interior and closure operators. Let 

f : X -> Y be a function. Then 

(a). f is open if and only if f(AD) C f(A)O for all A C X 

(b). f is closed if and only if f(A)- c f(A-) for all A eX 

The composition of two open maps is again open; the composition of two closed maps is 

again closed. 

The product of two open maps is open, however the product of two closed maps need not 

be closed. 

A bijective map is open if and only if it is closed. The inverse of a bijective continuous map 

is a bijective open/closed map (and vice-versa). 

Let f : X ~ Y be a continuous map which is either open or closed. Then 

(a). if f is a surjection, then it is a quotient map, 

(b) . if f is an injection, then it is a topological embedding, and 

(c). if f is a bijection, then it is a homeomorphism. 

In the first two cases., being open or closed is merely a sufficient condition for the result to 

follow. In the third case it is necessary as well. 
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Dense set 

A subset A of a topological space X is called dense (in X) if, intuitively, any point in X 

can be IIwell-approximated 11 by points in A. Formally, A is dense in X if for any point x in X, 

any neighborhood of x contains at least one point from A. 

Equivalently, A is dense in X if the only closed subset of X containing A is X itself. This can 

also be expressed by saying that the closure of A is X, or that the interior of the complement 

of A is empty. 

Examples 

(1). Every topological space is dense in itself. 

(2). The real numbers with the usual topology have the rational numbers and the irrational 

numbers as dense subsets. 

(3). A metric space M is dense in its completion M. 
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Chapter 2 

Topological Rings And Modules 

2.1 Introduction 

This chapter consists of four sections. In section 1 we discuss basic definitions examples and 

results of topological group. Section 2 is devoted to the basic definitions, examples and results 

of topological rings and topological fields. Section 3 consists of definitions , examples and results 

of topological modules. It also includes discussion on the I-adic completion. In the last section 

we discuss Zariski topology and its related topics. Most of the material included in this chapter 

is taken from [4]. 

2.2 Topological Group 

Definition 16 A topological group is an abelian group G together with a topology on G such 

that the group's binary operation and the group 's inverse function are continuous. i.e. the maps 

Gx G ---t G : (x, y) ---t x+y (addition continuity condit ion (AC)) and G ---t G: x ---t -x (additive 

inverse continuity condition (AIC)) are continuous or the map G x G ---t G : (x,y) ---t x - y 

(subtraction continuity condition (SC)) is continuous. Here, G X G is viewed as a topological 

space by using the product topology. (see [4, Def. l.l.l}) 

Remark 17 [4, Remark 1.1.2} In the neighborhoods sense the above definition is defined as 

follows : 
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For any two elements x, y E G and arbitrary neighborhood U of the element x - y there 

exist neighborhoods V and W of elements x and y respectively such that V - W c U. 

The following are some examples of topological groups. 

Example 18 (4) Every group can be trivially made into a topological group by considering 

it with the discrete(resp. anti-discrete) topologYi such groups are called discrete(resp. anti­

discrete) groups. In tIllS sense, the theory of topological groups subsumes that of ordinary 

groups. 

Example 19 (4) The real numbers JR!, together with addition as operation and its ordinary 

topology, form a topological group. More generally, Euclidean n-space JR!n with addition and 

standard topology is a topological group. More generally yet, the additive groups of all topo­

logical vector spaces, such as Banach spaces or Hilbert spaces, are topological groups. 

Remark 20 (4) The above examples are all abelian. Examples of non-abelian topological 

groups are given by Lie groups (topological groups that are also manifolds). For instance, the 

general linear group GL(n, JR!) of all invertible n x n matrices with real entries can be viewed 

as a topological group with the topology defined by viewing GL(n, JR!) as a subset of Euclidean 

space ]R!nxn. 

Example 21 (4) An example of a topological group which is not a Lie group is given by the 

rational numbers Q with the topology inherited from R This is a countable space and it does 

not have the discrete topology. For a non-abelian example, consider the subgroup of rotations 

of JR!3 generated by two rotations by irrational multiples of 27r about different axes. 

Example 22 (4) In every Banach algebra with multiplicative identity, the set of invertible 

elements forms a topological group under multiplication. 

Although we do not do so here, many authors require that the topology on G be Hausdorff. 

This is not a serious restriction, any topological group can be made Hausdorff in a canonical 

fashion. 
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Definition 23 Let (G, T) be a topological abelian group. A subset H of G is called topological 

subgroup of a topological group G if H is a subgroup of G and H is endowed with the topology 

r Ie induced by the topology r.(see [4, D ef. 1.4.1]) 

Remark 24 [4, Remark 1.4.2] A subgroup of a topological abelian group is a topological 

abelian group itself. 

Proposition 25 [4, Prop . 1.4.5] Let H be a subgroup of a topological abelian group G. Then 

[H] e(closure of H in G) is a subgroup of the topological abelian group G. 

Homomorphisms 

Definition 26 A homomorphism between two topological groups G and H is just a continuous 

group homomorphism G --+ H. An isomorphism of topological groups is a group isomorphism 

which is also a homeomorphism of the underlying topological spaces. This is stronger than sim­

ply requiring a continuous group isomorphism, the inverse must also be continuous. There are 

examples of topological groups which are isomorphic as ordinary groups but not as topological 

groups. Indeed, any indiscrete topological group is also a topological group when considered 

with t he discrete topology. The underlying groups are the same, but as topological groups there 

is not an isomorphism. (see (4, Def. 1.5.1]) 

Remark 27 [4, Remark.l.5.2] Let G and G' be topological abelian groups and (J : G --+ G' be 

an isomorphisms of these groups. Then the following conditions are equivalent: 

(i). (J is open mapping. 

(ii) . (J-l : G' --+ G is continuous mapping. 

Therefore, a topological isomorphism of topological groups is an isomorphism of these 

groups, being homeomorphism of the corresponding spaces. 

Properties 

As a uniform space, every topological group is completely regular. It follows that if a 

topological group is To (Kolmogorov) then it is already T2 (Hausdorff). 

If H is a subgroup of G the set of left or right cosets G / H is a topological space when 

given the quotient topology (the finest topology on G / H which makes the natural projection 

q : G --+ G / H continuous). One can show that the quotient map q : G --+ G / H is always open. 
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If H is a normal subgTOup of G, then the factor group, G/H becomes a topological group 

when given the quotient topology. However, if H is not closed in the topology of G, then G/H 

will not be To even if G is. It is therefore natural to restrict oneself to the category of To 

topological groups, and restrict t he definition of normal to normal and closed. 

The isomorphism theorems known from ordinary group theory are not always true in the 

topological setting. Tllis is because a bijective homomorphism need not be an isomorpllism 

of topological groups. The theorems are valid if one places certain restrictions on the maps 

involved. For example, the first isomorphism theorem states that if f : G --t H is a homo­

morphism then G/ker(f) is isomorphic to im(f) if and only if the map f is open onto its 

image. 

A topological group G is Hausdorff if and only if the identity subgroup is closed in G. If G 

is not Hausdorff then one can obtain a Hausdorff group by passing to the quotient space G / K 

where K is the closure of the identity. 

The fundamental group of a topological group is always abelian. This is a special case 

of the fact that the fundamental group of an H -space is abelian, since topological groups are 

H-spaces.(H-space is a topological space X together with a continuous map J-l : X x X --t X 

with an identity element e so that J-l( e, x) = p( x, e) = x for all x EX. Every topological group 

is an H-spacej however, in the general case, as compared to a topological group, H-spaces may 

lack associativity and inverses.) 

Proposition 28 [4, Prop. 1.1.34} Let G be a topological Abelian group g E G, and suppose H 

and K are subsets of G, then the following statements are equivalent. 

(1) . ¢g : G --t G and ¢ : G --t G with ¢g(x) = x + g and ¢(x) = -x, are homeomorphic 

mappings of G . 

(2). The following are equivalent: 

(i) . Subset H is open (closed); 

(ii). Subset - H is open (closed); 

(iii). Subset H + g is open (closed). (Among other things a subset H eGis a 

neighborhood of the element a ~f and only ~f H - a is a neighborhood of 0). 

(3). If subset H is open, then H + K is also an open subset. 
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Corollary 29 [4, Corollary 1.1.35j Any topological Abelian group is a homogeneous space (As 

for any a, bEG, :3 a homeomorphism <P(b-a) such that <P(b-a) (a) = b. 

Proposition 30 [4, Prop. 1.1.38j Let G be a topological Abelian group and Hand K be subsets 

of G, then the following statements are equivalent. 

(1 ). If Hand K are compact subsets then H + K is a compact subset of G 

(2). If H is closed subset and K is compact subset then H + K is closed subset of G. 

Corollary 31 [4, Corollary 1.1.39j The sum H + K of a closed subset H and a finite subset 

K of a topological Abelian group G is a closed subset of G. 

Proposition 32 [4, Prop . 1.1.41j Let Hand K are subsets of topological Abelian group G, 

then 

(1) . [H] + [K] ~ [H + K] 

(2). [-H] = -[H ] 

(3). [H] - [K] ~ [H - K] 

(4)· rr K is the compact subset then [H] + [K] = [H + K] = [H] + K and [H] - [K] = 

[H - K] = [H] - K 

2.3 Topological ring 

Definition 33 A topological ring is a ring R with a topology such that the additive group 

of the ring R is topological group in this topology and the m ap R x R --t R : (x, y) --t xy is 

continuous. (multiplication continuity condition (MC)). (see [4, De.f. 1.1.6j) 

Remark 34 [4, Remark 1.1.7j In the neighborhood sense we say that R is a topological ring 

if for any two elements x, y E R and arbitrary neighborhood U of the element xy there exist 

neighborhoods V and W of elements x and y respectively such that VW ~ U. 

The group of units of R may not be a topological group using the subspace topology, as 

inversion on the unit group need not be continuous with the subspace topology. Embedding 

the unit group of R into the product R x R as (x, x -1) does make the unit group a topological 
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group. (If inversion on the unit group is cont inuous in the subspace topology of R then the 

topology on the unit group viewed in R or in R x R as above are the same.) 

If one does not require a ring to have a unit, t hen one has to add the requirement of 

cont inuity of t he additive inverse, or equivalently, to define the t opological ring as a r ing which 

is a topological group (for +) in which multiplication is continuous, t oo. 

In the following we are giving some examples of topological rings. 

Example 35 (4) Let R be a ring, then its additive group could be transformed into a topolog­

ical abelian group by endowing R with the discrete or anti-discrete topology. It is easy to verify 

that the ring R satisfies condition (Me) in both topologies. In this manner any ring could be 

considered as a topological ring. 

Example 36 (4) In algebra, the following construction is common: one starts with a commu­

tative ring R containing an ideal I , and then considers the I-adic topology on R: a subset U of 

R is open if and only if for every x in U there exists a natural number n such that x + In s;; U. 

This turns R into a topological ring. 

Definition 37 Let R be a topological ring, a subset I of the topological ring R is called a 

topological subring, if it is a subring of t he r ing R and I is endowed' with t he topology induced 

by t he topology of the ring R. (see [4, Def. 1.4.3)) 

Remar k 38 [4, Remark 1.4.4) A topological subring of a topological ring is a topological ring 

itself. 

Proposition 39 [4, Prop . 1.1.44) Let R be a topological ring with unity,and M be a topological 

R-module,let r E R be an invertible element, then mappings cPr : M -+ M, wr : R -+ Rand 

w~ : R -+ R are homeomorphic mappings of the topological spaces M and R correspondingly 

onto themselves. 

Corollary 40 [4, Corollary 1.1.45) Let R be a topological ring with the unitary element, r E R 

be an invertible element and x E R, then the following statements are equivalent: 

(1) . U is the neighborhood of the element x in R. 

(2). Ur is the neighborhood of-the element xr in R. 

(3). rU is the neighborhood of the element rx in R. 
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Corollary 41 [4, Corollary 1.1.47} Let R be a topological ring with the unitary element, r E R 

be an invertible element and let H ~ R, then the following statements are equivalent: 

(1 ). H is open (closed). 

(2) . rH is open (closed). 

(3) . Hr is open (closed). 

Topological fields 

Definition 42 A skew field (field) K is called a topological skew field (field) if it is a topological 

ring and the mapping x -t x-I of the subspace K " {O} onto itself is continuous,(multiplicative 

inversion continuity condition (ill IC)) i.e. for any non-zero element x E K and any neighbor­

hood U of x-I there exist a neighborhood V of the element x such that (V" {O} )-1 C U. (see 

[4]) 

Remark 43 [4, Remark 1.1.20} The multiplication group of the topological field is a topolog­

ical abelian group. 

The following are some examples of topological fields. 

Example 44 [4] Some of the most important examples are also fields F. To have a topological 

field we should also specify that inversion is continuous, when restricted to F\ {O}. 

Example 45 !4] Let K be a skew field (field) . Consider discrete or anti-discrete topology on 

K. In both cases condition (M IC) is satisfied, and, hence, any skew field (field) is a topological 

skew field (field) in the discrete or anti-discrete topology. 

Proposition 46 [4, Prop. 1.1 .48} Let K be a topological skew .field and let 0 -I a E K. If 

element a is an accumulation point (a limit) of the sequence of non-zero elements aI, a2, ... E K , 

then the element a-I is an accumulation point (a limit) of the sequence all, a2'l, ... in the skew 

.field K. 

Proposition 47 [4, Prop. 1.1.49} Let K be a topological skew field. Then the mapping 

e : K",{O} -t K ",{O}, where e(x) = x-I, for x -I 0, is a topological homomorphism of the ,._" 

topological subspace K", {O} onto itself. 
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Topological Vector Space 

Definition 48 Let K be a topological skew field. A unitary topological K-module is called a 

topological vector space over K. (see (4, Def. 1.1 .30]) 

The following are some examples of topological vector spaces. 

Example 49 (4] In the natural way, the additive group of a topological skew field K is a 

topological vector space over K. 

Example 50 (4] The field of complex numbers C with the topology specified by the norm I . I 
are vector spaces over the field JR, of real numbers, endowed with the internal topology. 

2.4 Topological module 

Definition 51 Let R be a topological ring. A left R-mdule M is called a topological left module 

if on M is specified a topology such that M is a topological abelian group and the mapping 

(r, m) ~ rm of the topological space R x M to the topological space IvI is continuous.(see (4, 

Def. 1.1.24]) 

Remark 52 (4] In similar way we can define topological right module. 

Remark 53 (4, 1.1. 25] An R-module M. is a topological module iffor any r E Rand m E M 

and arbitrary neighborhood U of the element rm in M there exist a neighborhood V of the 

element r in R and a neighborhood W of the element m in M such that VW c U. 

Remark 54 (4] A topological left and right module is called topological module. 

In t he following we are indicating some examples of topological R-modules. 

Example 55 (4] A topological vector space is a topological module over a topological field . 

Example 56 (4, Example 1.1. 21] An abelian topological group can be considered as a topo­

logical module over Z, where Z is the ring of integers with the discrete topology. 
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Indeed, let b = k . a, where k E Z and a E A. Taking into consideration the definition of 

topological abelian group, we can suppose that k > 0, i.e. 

b = a + a + ... + a. (k summands) 

Let U be a neighborhood of the element bin A. In compliance with condition (AC), there 

exists a neighborhood W of the element a in A such that 

W + W + ... + W ~ U (k summands). 

Since the discrete topology is introduced onto Z, the subset V = {k} is a neighborhood of 

the element k in Z. Hence 

V· W = {k}· W ~ W + W + ... + W ~ U (k summands) 

I.e. condition (RMC) is satisfied. 

By this means any topological abelian group in the natural way is the topological Z-module 

over the ring of integers Z with the discrete topology. 

Topological Submodule 

Definition 57 Let R be a topological ring and Iv! be a topological R-module, a subset N 

of the topological R-module is called a topological submodule, if it is an R-submodule of the 

R-module M and N is endowed with the topology of the topological R-module M. (see (4, Def. 

1·4.3}) 

Remark 58 (4, Remark 1.4.4) A submodule of a topological module is a topological module 

itself. 

Proposition 59 (4, Prop . 1.4 .7) L et R be a topological ring and M be a topological R -module. 

Let S be a subring of the ring Rand N be a S -submodule of R-module M, then 

.-{1} . [S]R is subring of R. 

(2). [N]M is an [S]R -module. 
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Corollary 60 [4, Corollary 1.4.8J Let S be a dense subring of a topological ring Rand N be 

S-submodule of a topological R-module M. Then [N]M is a submodule of a topological R-module 

!VI. In particular, the closure of any submodule of a topological R-module is also a topological 

R-module. 

Corollary 61 [4, Corollary 1.4.9J Let S be a dense subring of a topological ring R and I be 

left (righ t, two-sided) ideal of the ring R. Then [I]R is a left (right, two-sided) ideal of the ring 

R . In particular, the closure of any left(right, two-sided) ideal of the ring R is also a left(right, 

two-sided) ideal of the ring R. 

Corollary 62 [4, Corollary 1.4.11J Let Eo be a basis of neighborhoods of zero of topological 

R-module IvI then Mo = nYEBo V is the smallest closed submodule of M. 

Remark 63 [4, Remark 1.4.12J Let Eo be a basis of neighborhoods of zero of topological ring 

R then Ro = nYEBo V is the smallest closed two sided ideal of R. 

Remark 64 [4, R emark 1.4. 14J Any topological ring without closed proper ideal is hausdorff 

or anti-discrete. 

Proposition 65 [4, Prop . l.1.42J Let R be a topological ring, M a topological R-module, 

r E R , m E M, and Q a subset in R , E a subset in M, then the following statements are true: 

(1). The mapping cPr : M ---t M, where cPr(m) = rm, mE M, is continuous mapping of the 

topological space IvI into itself. 

(2). The mapping cPa : R ---t M, where cPa(x) = xa, a E R , is continuous mapping. 

(3). [Q]R[B] M ~ [QB]M. 

(4)· If subset Q and R are compact, then QR is a compact subset. 

Corollary 66 [4, Corollary l.1.43J Let R be a topological ring, r E R , and let Hand K are 

subset in R, then the following statements are true: 

(1) . The mapping wr : R ---t R and w~ : R ---t R where wr(x) = xr and w~(x) = rx for 

x E R, are continuous mappings of the topological space R into itself. 

(2). The mapping cPa : R ---t M, where cPa(x) = xa, a E R is continuous mapping. 

(3) . [H]R[K]R ~ [HK]R. 

(4). If subset Q and R are compact, then QR is a compact subset in R. 
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2.4.1 Completion 

The set R of real numbers is a complete metric space in which the set Q of rationals is dense. 

In fact any metric space can be embedded as a dense subset of a complete metric space. The 

construction is a familiar one involving equivalence classes of Cauchy sequences. We will see 

that under appropriate conditions, this procedure can be generalized to modules. 

Definitions and Comments 

A graded ring is a ring R that is expressible as EBn~oRn where the Rn are additive subgroups 

such that RmRn ~ Rm+n. A graded module over a graded ring R is a module lvI expressible 

as ffin~olvln ' where Rmlvln ~ Nlm+n. 

Now suppose that {Rn} is a filtration of the ring R, in other words, the Rn are additive 

subgroups such that R = Ro 2 Rl 2· ·· 2 Rn 2 .. · with RmRn ~ Rm+n. We call R a filtered ring. 

A filtered module M = Mo 2 Ml 2· .. 2 ··· over the filtered ring R may be defined similarly. In 

this case, each Mn is a submodule and we require that Rm~Nln ~ Mm+n. 

If I is an ideal of the ring Rand NI is an R-module, we will be interested in the I-adic 

filtrations of R and of j\1, given respectively by Rn = In and M n = In M. (Take 1° = R, so 

that Mo = M.) 

Inverse Limits 

Suppose we have count ably many R-modules lvlo, M 1, ... , with R-module homomorphisms 

en: lvln ---7 lvln- 1, n ;::: 1. (We are restricting to the countable case to simplify the notation, but 

the ideas carryover to an arbitrary family of modules, indexed by a directed set. If i :S j, we 

have a homomorphism !ij from M j to Mi. We assume that if i :S j :S k, then !ij 0 !jk = !ik') 

The collection of modules and maps is called an inverse system. A sequence (Xi) in the direct 

product Mi is said to be coherent if it respects the maps en in the sense that for every i we 

have ei+1 (Xi+l) = Xi . The collection M of all coherent sequences is called the inverse limit of 

the inverse system and is denoted by limMn . 
+--

Note that NI becomes an R-module with componentwise addition and scalar multiplication 

of coherent sequences, in other words, (Xi) + (Yi) = (Xi + Yi) and r(xi) = (rxi)' 
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Now suppose that we have homomorphisms gi from an R-module M to lVIi, i = 0,1, .... Call 

the gi coherent if ei+1 0 gi+1 = gi for all i. Then the gi can be lifted to a homomorphism 9 from 

M to M. Explicitly, g(x) = (gi(X)), and the coherence of the gi forces the sequence (gi(X)) to 

be coherent. 

An inverse limit of an inverse system of rings can be constructed in a similar fashion, as 

coherent sequences can be multiplied componentwise, that is, (Xi)(Yi) = (XiYi). 

Examples 

1. Take R = Z, and let I be the ideal (p) where p is a fixed prime. Take Mn = Z/ I n and 

en+1(a + [n+1) = a + In. The inverse limit of the Mn is the ring Zp of p-adic integers. 

COMPLETION OF A MODULE 

2. Let R = A[X1, ... , xnl be a polynomial ring in n variables, and [ the maximal ideal 

(X1, ... ,Xn). Let Mn = R/f1t and en(f+]n) = f+f1t-l, n = 1,2, .... An element of Mn is 

represented by a polynomial f of degree at most n - 1. (We take the degree of f to be the 

ma,ximum degree of a monomial in f.) The image of f in [n-1 is represented by the same 

polynomial with the terms of degree n - 1 deleted. Thus the inverse limit can be identified with 

the ring A[[X1, ... , xnll of formal power series. 

Now let M be a filtered R-module with filtration {Mn}. The filtration determines a topology 

on lVI with the Mn forming a base for the neighborhoods of O. 

Definition of the Completion 

Let {M n} be a filtration of the R-module M. If we go far out in a Cauchy sequence, the 

difference between terms becomes small. Thus we can define a Cauchy sequence {xn} in lVI 

by the requirement that for every positive integer r there is a positive integer N such that 

Xn - Xm E lVIr for n, m ~ N. We identify the Cauchy sequences {xn} and {Yn} if they get 

close to each other for large n. More precisely, given a positive integer r there exists a positive 

integer N such that Xn - Yn E lVIr for all n ~ N. Notice that the condition Xn - Xm E Mr 

is equivalent to Xn + lVIr = Xm + Mr. This suggests that the essential feature of the Cauchy 

condition is that the sequence is coherent with respect to the maps en : M/lVIn --t lVI/Mn_1. 

Motivated by this observation, we define the completion of M as 
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Examples 

(1) . The ring of p-adic integers is the inverse limit of the rings Z/pnz with the index set 

being the natmal numbers with the usual order, and the morphisms being "take remainder". 

The natmal topology on the p-adic integers is the same as the one described here. 

(2). The ring R[[tJ] of formal power series over a commutative ring R can be thought of as 

the inverse limit of the rings R[tJ]/tnR[t], indexed by the nat mal numbers as usually ordered, 

with the morphisms from R[t]/tn+j R[t] to R[t]/tn R[t] given by the natural projection. 

(3). Let the index set I of an inverse system (Xi, iij) have a greatest element m. Then the 

natmal projection 7rm : X -+ Xm is an isomorphism. 

2.5 Zariski Topology 

modern definition 

Modern algebraic geometry takes the spectrum of a ring as its starting point. In this 

formulation, the Zariski-closed sets are taken to be the sets V(I) = {P ESpec(A) : I ~ P} 

where A is a fixed commutative ring and I is an ideal. To see the comlection with the classical 

picture, note that for any set S of polynomials (over an algebraically closed field) , it follows 

from Hilbert 's Nullstellensatz that the points of V(S) are exactly the tuples (aI, ... ,an ) such 

that (Xl - aI, ... , Xn - an) contains S. 

Examples 

(i). Spec(K), the spectrum of a field K is the topological space with one element. 

(ii). Spec(Z), the spectrum of the integers has a closed point for every prime number p 

corresponding to the maximal ideal (p) C Z, and one non-closed generic point (i.e., whose 

closme is the whole space) corresponding to the zero ideal (0). So the closed subsets of Spec(Z) 

are precisely finite unions of closed points and the whole space. 
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Chapter 3 

On Zariski Rings 

3.1 Introduction 

This chapter consists of four sections. The first section consists of the basic definitions, examples 

and results of Zariski ring. In section two It is shown that the fraction ring of a Noetherian 

ring is a Zariski ring and a compact Noetherian domain is itselg a Zariski ring. Also it is shown 

that the Noetherian intersection of finite Zariski rings is again a Zariski ring. The Zariski ring 

as a polynomial ring and power series ring is discussed in third section. In the last section we 

discuss ascent and descent of some properties of Zariski rings for (unitary) commutative ring 

extension R ~ T and related examples. 

3.2 Zariski Ring 

Let R be a topological ring with identity 1 and M be a topological R-module and 2:(M) a 

system of open sets in M which contains the zero of Nf and satisfy the following condition 

(a) Any open set in M containing zero contains an element from 2:(M) (i.e. 2:(M) is a 

local open base at zero). Then we have 

(Cl). The set {x + U :x E M, U E 2:(M)} is a open base for M . 

such a set 2:(M) is called basis of neighborhoods of zero for the topological module M. 

Let R be a topological ring and 2:(R) be the basis of neighborhoods of the zero, in the 

sense of the above definition. Then 2:(R) satisfies the following properties 
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(C2)' The intersection of any two sets of the system I:(R) contains a third set of that 

system. 

(C3)' If U E I:(R), then there exist a set W E I:(R) such that W - W ~ U and W 2 C U. 

(C4)' For any U E I:(R), any a E U and bE R there exist W E I:(R) such that W +a ~ U 

and Wb ~ U. 

Now for the topological ring R and the topological R-module !VI with system of neighbor­

hoods I:(R) and I:(M) of zeros of Rand M respectively, I:(M) satisfies the following: 

(c2) ' The intersection of any two sets of the system I:(M) contains a third set of that 

system. 

(c3) ' If u' E I:(M) , then there exist a set W' E I:(M) and a set W in I:(R) such that 

W' - W' ~ U' and WW' ~ U'. 

(c4} For any U' E I:(M), any a E U', y E M and b E R , then there exist a set W' E I:(R) 

and a set Win I:(R) such that W' + a ~ U' and bW' ~ U' and Wy ~ U'. 

For the converse process i.e. from a ring with identity how we can get the special system of 

neighborhoods of zero, we have the following lemma. 

Lemma 67 (4, Theorem 1.2.4 (i)J Let R be a ring with identity and I:(R) be the set of subsets 

of R satisfying the conditions C2, C3, and C4 then there exist a topology corresponding to I:(R), 

and I:(R) will be the basis of neighborhoods of zero for that topology on R. 

Proof. Let ~, = {B ~ R I for any bE B there exists Ub E I:(R) such that b + Ub ~ B }. 

It is obvious that 1> and R belongs to 8'. Let B 1 , B2 E 'is and let b E Bl n B 2. Then there 

exists U1 , U2 E I:(R) such that b + U1 ~ Bl and b + U2 ~ B2. In view of condition C2, there 

exists U3 E I:(R) such that U3 ~ Ul n U2. Hence, b + U3 ~ Bl n B2. Thus Bl n B2 E 8'. 

Let 1> i A' ~ 'is, B' = UBEA,B and b E B'. Then b E I:(R) is true for some Bo E A' , and, 

hence, B + U ~ Bo for some U E I:(R). Consequently, b + U ~ B' and, hence, B' ~ 'is . Thus, 

on A is defined a topology and ~} is the family of all open subsets in this topology. 

Let 's show that for any element a E A the family Ba = {a + U I U E I:(R)} is the basis of 

neighborhoods of t he element a in this topology. Verify first that for any U E I:(R) the subset 

a + U is the neighborhood of the element a. 

Let U E 2)R) and Va = {x E R Ithere exist Ux E I:(R) such that x + Ux ~ a + U}. Let 
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is obvious that a E Va and Va C a + U. If x E Va, then x + Ux ~ a + U and Ux E L:(R). In 

view of condition C3, there exists U~ E L:(R) such that (U~ + U~) ~ Ux.By virtue of this fact, 

(x + U~) + U~ ~ x + Ux ~ a + U.and, hence, x + U~ ~ Va. Thus Va E 8', i.e. Va is an open set, 

and because of this, a + U is a neighborhood of the element a. 

Now let 's verify that Ba is the bases of neighborhood of the element a. Let W be a 

neighborhood of the element a in the constructed topology, then there exists B E 8' such 

that a E B ~ W. On the strength of the definition of 8', there exists U E L:(R) such that 

a + U C B C W. Since a + U E B a, then, Ba is a basis of neighborhoods of the element a. In 

particular, L:(R) is the basis of neighborhoods of zero .• 

Lemma 68 (4, Theorem 1.2.4 (ii)j Let R be a ring with identity and L:(R) be the set of 

subsets of R satisfying the conditions C2, C3, and C4 then there exist one and only one topology 

corresponding to L:(R), and L:(R) will be the basis of neighborhoods of zero for that topology 

on R, and (R, +) is the topological Abelian gTOUp with respect to this topology. 

Proof. Now, let us show that R is topological Abelian group in the constructed topology. 

For this let's verify that condition (SC) is fulfilled. Let a, b E R, and let W be a neighborhood 

of the element a-b. Then there exists U E L:(R) such that (a - b) + U ~ W. On the 

strength of condition C3, there exists V E L:(R) such that V - V ~ U. As it was shown 

above, the subsets a + V and b + V are neighborhoods of the elements a and b respectively and 

(a + V) - (b + V) = (a - b) + (V - V) ~ (a - b) + U ~ W. Thus, condition (SC) is fulfilled, 

and hence, R is a topological group with basis L:(R) of neighborhoods of zero. Denote this 

topological group over (R,8'). 

It remains to verify that if some system <;5' of the subsets of the group R defines a topology 

on R, and this system is the family of all open subsets in the topology, and besides, (R, (5') is 

a topological group with the basis L:(R) of neighborhoods of zero, then 8' = 8". 

Let B E 8' and b E B. Then b + U ~ B for some U E L:(R). Since L:(R) is a basis 

of neighborhoods of zero in the topological group (R, S}'), so b + U is a neighborhood of the 

element b in (R, <;5'). Consequently, every element b E B enters in B together with some of its 

neighbor hood relative to the topology defined by system ~'. That means that B is an open 

subset of the topological group (R, SJ') and, hence, B E 8". Thus 8' ~ S}'. Now, let B' ~ 8", 
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hence, B' is a neighborhood of any of its elements in the topology defined by system '}'. Then 

for every bE'}' the subset B' - b is a neighborhood of zero in (R, '}'). Because of this, there 

exists Ub E L:(R) such that Ub ~ B' - b, that is b+ Ub <:;; B'. From the definition of '}' it follows 

that '}' <:;; ss. _ 

Theorem 69 [4, Theorem 1.2.5} Let R be a ring with identity and L:(R) be the set of subsets of 

R satisfying the conditions C2, C3, and C4 then there exist a topology corresponding to L:(R), and 

L:(R) will be the basis of neighborhoods of zero for that topology on R , and R is the topological 

ring with respect to this topology. 

Proof. By Lemma 67 and 68 there exists a unique topology on Rand L:(R) is the system 

of neighborhoods of zero, corresponding to which (R , +) is the topological Abelian group. So it 

just remains to verify condition (MC) is satisfied. Let a, b E A and U be the neighborhood of 

the element abo So B a, B b and Bab , where B x = {x+ V I V E L:(R)}, are bases of neighborhoods 

respectively of elements a, b and ab in the topological group A( + ). Hence, there exists a neigh­

borhood V E L:(R) such that ab+ V <:;; U. Using conditions C2, C3, and C4, it is possible to choose 

neighborhoods V1, V2 E L:(R) such that aV2 + Vib+ V1 V2 <:;; V. Then a+ V1 and b+ V2 are neigh­

borhoods ofthe elements a and b respectively. Besides, (a+ Vd(b+ V2) <:;; ab+aV2+ V1b+ Vi V2 <:;; 

ab + V <:;; U, i.e. condition (MC) is satisfied. _ 

Theorem 70 (4, Theorem 1.2.6} Let R be a topological ring and L:(M) be the set of subsets 

of R -module M satisfying the conditions c~, c~, and c~, then there exist a unique topology on M 

in which M is a topological R-module with L:(M) as a basis of neighborhoods of zero of M. 

Lemma 71 (15, Page 252} For the above system L:(M), ~f the zero of a topological module M 

is a closed set then M is a hausdorff space 

Proof. Let a 1= b are any two elements of M and suppose V = M - {O}, then b - a 1= 0 

and b - a E V <:;; V. This implies V is a neighborhood of b - a that does not contains {O}. 

N ow consider the set U = b - a + V. As U is open and b - a ~ U also 0 E U , so U is a 

neighborhood of 0 such that b - a ~ U 

N ow let W be a neighborhood of 0 such that W - W <:;; U, then a + Wand b + Ware 

disjoint neighborhoods of a and b respectively. Hence M is a hausdorff space. _ 
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Corollary 72 (1 5, P age 253) Lf 2:(M) is a basis of neighborhood of zero then M is a hausdorff 

space iff the intersection of the sets of the system 2:(M) is zero, (i.e.nVEL:(M) V = {O}). 

We shall be concerned primarily with topologies in R which can be defined by using power 

of any ideal I of R. Le.I-adic topologies 

Definition 73 A topology of a ring R is said to be the I-adic topology of R for the ideal I(two 

sided) of R in which fundamental system of neighborhoods of zero consists of all the powers of 

I (see (15)). 

Example 74 (4) The p-adic topology on the integers is an example of an I -adic topology (with 

1 = (p)). 

Lemma 75 (15, Page 253) Let I be an ideal of R , then {rn : n E Zo, where 1° = R} forms a 

system 2:(R) that will satisfy the conditions C2, C3, and C4. 

Proof. Let rn and 1m be any two sets in 2: (R) then 

In n I'm contains I n+1 if n > m , 

r n 1m contains I m +1 if m > n. 

Now for any I n in 2:(R) there exists I n+1 in 2: (R) such that, I n+1 - I n+1 C I n, since 

I n+l <;; I n and rn+1 is itself an ideal 

and lastly, for any I n in 2:(R), x E I n and a any element of R, then there exists I n+1 in 

2:(R) such that m+1 + x ~ m and In+1a ~ In. Hence the result follows .• 

Proposition 76 The I -adic topology is discrete if and only if I is nilpotent ideal of the ring 

R. 

Proof. Suppose the topology is discrete. This implies that {O} is open, so In = {O} for 

some positive integer n, which implies that I is nilpotent . 
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Conversely suppose that I is nilpotent, so In = {O} for some positive integer n. Let A ~ R 

and let a E A be any element of A, then a + {O} = {a} ~ A. 

This implies A is open subset. Hence every subset of R is open. Hence the I-adic topology 

is discrete. • 

The topology defined in above lemma will be called the I-topology hereinafter, also we can 

generalize this to the R-module M by taking L:(M) = {PM: I is ideal of Rand n E Z+}. 

In fact In Mare submodules of M, and the topology in this case defined by this L:(M) will be 

called the 1M-topology for R-module M.(see [15]) 

Lemma 77 [15, Page 253} The R-module M with 1M-topology is hausdorff iff n~=oIn M = 

{O} . 

Lemma 78 [15, §2 Lemma.l} The closure S of a subset S of M is equal to n~o(S + InM) . 

Corollary 79 A submodule F of M is closed in 1M-topology iff F = n~=o(F+PM), partic­

ularly an ideal J of R is closed in I -topology iff J = n~=o(J + In). 

The following is famous Nakayama Lemma. 

Lemma 80 [11, Ch. 8,Lemma 4.5} Let M be a finitely generated R-module, and I be an ideal 

of R such that I ~ J(R), then 1M = M => M = {O}. 

We are going to study the pair (R,1) formed by a Noetherian ring R and an ideal I in R 

with I -topology 

Definition 81 Zariski ring is a Noetherian ring R having an ideal I such that, every maximal 

ideal in R is closed in its I-topology.(cf [7, §3.3(3)}) 

Theorem 82 [15, §4 Theorem 9} For a Noetherian ring R with I -topology, the following con­

ditions are equivalent 

1. For every .finite R-module !VI and every sub module F of M, F is closed for the I M -

topology of M. 

2. Every finite R-module M (in particular R itse(f)is a hausdorff space in its I -topology. -

3. Every ideal in R is closed in I -topology of R . 
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4· The ideal I is contained in Jacobson radical of R. 

5. Every element of 1 + I is invertible in R. 

6. Nakayama lemma holds. 

Example 83 [15, §4 Example (1)) Let R be a Noetherian local ring, then R will be a Zariski 

ring with respect to the maximal ideal. 

Example 84 [15, §4 Example (2)) Suppose a semi-local Noetherian ring R then R will be a 

Zariski ring with respect to the ideal M = n!VIi, where !VIi are the maximal ideals of R. 

Example 85 [15, §4 Example (3)) A factor ring of a Zariski ring (R,I) with J is Zariski with 

respect to the ideal (I + J) / J. 

Theorem 86 [15, §4 Theorem 10) Let (R, I) be a Zariski ring then R is semi local (resp: local) 

ring iff R/ I satisfy d.c.c (resp:satisfy d.c.c, with only one prime ideal). 

Lemma 87 [15, ) Let R be a topological ring with I -topology, then R is a hausdorff space iff 

nnEzoln = {O}. 

The following is famous Krull Intersection Theorem. 

Theorem 88 [11, Theorem 4.4) Let R be a Noetherian ring, and I an ideal of R such that 

I ~ J(R) then nr = {O}. 

Remark 89 By Theorem 88 and Lemma 8'7, we can say that if R is a Noetherian ring and I 

an ideal of R such that I ~ J(R), then R is hausdorff space with respect to the I -adic topology. 

The following is famous Domainized Krull Intersection Theorem. 

Theorelll 90 For any non-unit ideal J in any Noeherian domain R we have nJn {O}, 

moreover Jm =I I n , for m =I n in Z+. 

Remark 91 By Lemma 8'7, a Noetherian domain R is a hausdorff with respect to the I-adic 

topology, where I is any proper ideal. 
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Proposition 92 Let R be a topological Noetherian domain with any I -topology then R is a 

hausdorff space. 

Proof. Let R be a topological Noetherian domain and let I be any ideal in R , then by 

domainized krull intersection theorem nrn = (0), which is necessary and sufficient condition 

for I-topology to be hausdorff. Hence R is a hausdorff space. _ 

Lemma 93 In a Noetherian ring R and for any ideal I , I ~ J(R) ~f and only if 1 + a E U(R), 

for all a E I. 

Theorem 94 (2, Theorem 2) Let R = naRa be a locally finite intersection of FFD's {Ra}. 

Then R is an FFD. 

Proposition 95 Every Noetherian hausdorff space is a Zariski ring. 

Proof. Let R be a Noetherian topological ring and I be any ideal of R also the I -topology 

on R is hausdorff, then R can be considered a topological R-module and as R is a hausdorff 

space which implies that R is a hausdorff space as an R-module. 

Hence R is a Zariski ring. _ 

3.3 Fraction ring as a Zariski ring 

In [8], J. E. eude have categorized the elements of the compact integral domains into invertible 

elements and nilpotent elements (in topological sense) in the following lemma. 

Lemma 96 (8, Lemma 1) Let R be a compact integral domain and J(R) be its Jacobson radical, 

then for x E R, x has an inverse ~f and only if x ~ J(R), and x is nilpotent ~f and only ~f 

xE J(R). 

The following theorem is a consequence of lemma 96. 

Theorem 97 A compact Noetherian domain R is a Zariski ring with respect to any proper 

ideal I of R. 
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Proof. Let us consider a proper ideal I of the compact Noetherian domain R, then by 

Lemma 96, for any element a in I, a must belongs to the Jacobson radical J(R) . This implies 

I ~ J(R). Hence by [15 , VIII, Theorem 9(d)], R is a Zariski ring with respect to the ideal I. _ 

In general fraction ring of a Noetherian ring is not necessarily be a Zariski ring, as if we 

consider the multiplicative system S = {I,X,X 2 , ... } in Noetherian ring R = Z[X], then the 

fraction ring Rs is not a Zariski ring with respect to the ideal IRs, where I = XZ[X] . But 

localization of a Noetherian ring is a Zariski ring, for instance, the localization Z(p), where p 

is prime, of Z is a Zariski ring with defining ideal (PZ)Z(p). Now it is natural to ask: Is there 

exist non local Zariski fraction ring of a Noetherian ring? The following proposition provides 

an affirmative response. 

Proposition 98 Let R be a Noetherian ring and I be a proper ideal of R. If S = 1 + I , then 

Rs is a Zariski ring with respect to the ideal IRs. 

Proof. As fraction ring of a Noetherian ring is Noetherian, so Rs is Noetherian. Also 

S is a multiplicative system, indeed, let x, YES, so x = 1 + a, y = 1 + b for a, bEl and 

xy = 1 + a + b + ab E S. Consider 

IRs {x'(a/s): a E R,x' E I and s E S} 

{x'(a/s): a E R, s = 1 +x and x,x' E I}. 

Now let k be any element of e + IRs , so 

k e + x'(a/s) , e = 1/1, s = 1 + x and x ' ,x E I. 

So k 1/1 + x'a/(1 + x), where x ' ,x E I 

= (1/1) + x 'a/(1 + x), where x', x E I 

(1 + x + x'a)/(1 + x), where x', x E I. 

As x' a E I, so x + x' a E I and 1 + x + x' a E S. 

This implies k is invertible. Thus every element of e + IRs is invertible in Rs. Hence by 

[15, VIII, Theorem 9(e)], Rs is a Zariski ring. _ 

43 



What should be an appropriate answer when one enquire about the intersection of finite 

family of Noetherian rings. We extend it and ask the following: 

Question. Is the intersection of finite family of Zariski rings Noetherian? 

In the following we assume an affirmative response of the question and establish that this 

finite intersection of Zariski rings is again a Zariski ring. For this we first need the following 

lemma. 

Lemma 99 Let {Ri}~l be a .finite family of Noetherian rings, then 

Proof. Let 

x E J(ni=lRi) -¢=> 1 + x E U(ni=lRi) 

-¢=> 1 + x E U(Ri) for each i 

-¢=> x E J(Ri) for each i 

-¢=> x E ni::1J(Ri). 

Hence J(ni=lRi) n~lJ(Ri). 

-
Proposition 100 Let R = n~l Rj, where each Ri is a Zariski ring with de.fining ideal I Ri· If 

R is Noetherian ring, then R is a Zariski ring with I as a de.fining ideal. 

Proof. Let I be an ideal in R.This implies I ~ Ri for each i and as Ri is Zariski ring with 

defining ideal IRi, so by [15, VIII, Theorem 9(d)], IRj ~ J(Ri), this implies I ~ IRi ~ J(Ri) 

for each i. So we have I ~ J(Ri) for each i, which implies I ~ n~lJ(Ri). 

By Lemma 99, I ~ J(ni=lRi), which gives I ~ J(R) 

Hence by [15, VIII, Theorem 9(d)] R is a Zarislci ring. _ 

Remark 101 An infinite intersection of Zariski rings need not to be a Zariski ring but Noetherian. 

For example Z, as {Z(p) : p is prime intger} is an infinite family of Zariski rings, but Z = npz(p) 

is not a Zariski ring. 
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3.4 Polynomial Ring and Power Series Ring 

3.4.1 Polynomial ring as a Zariski ring 

The polynomial rings are not behave as Zariski ring, indeed for any ring R (whether Zariski 

ring or not) , the polynomial extension R[X] generally is not a Zariski ring. Since for any ideal 

I of R[X], the elements of 1 + I are not all units in R[X]. 

The following remark provides that under which circumstances a polynomial ring become a 

Zariski ring. 

Remark 102 For any finite field K, the polynomial ring K[X] is Zariski ring. Indeed; since 

K is field, so K[X] is Noetherian. Also there is one-to-one correspondence between the set 

of maximal ideals of K[X] and the set K"'- {O}(cf. (12, Page 5)). This means K[X] is a semi­

local Noetherian domain, so by (15, §4 Example (2)J K[X] is a Zm'iski ring with defining ideal 

J(K[X]). 

Remark 103 By remark 102, GF(pn)[x] is Zariski ring, where p is prime and n is a positive 

integer. 

3.4.2 Formal Power Series Ring and its subrings 

Unlike the polynomial ring, the formal power series ring becomes a Zariski ring whenever we 

impose certain conditions. 

We initiate by the restatement of the well known lemma. 

Lemma 104 Let R be a commutative ring with identity, then x + u E U(R) for x E N(R) and 

u E U(R). 

Proposition 105 Let R be a commutative Noetherian ring with identity, then R[[X]] is a 

Zariski ring with respect to the ideal I , where I = n:=:o aiXi : ai E N(R)}. 

Proof. Let f be any element of 1 + I, then 

00 

f 1 + L aiXi, where ai E N(R) 
i=O 

00 

f 1 + ao + L aiXi, where ai E N(R). 
i=l 
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Since ao E N(R) and as 1 is unit so by Lemma 104, 1 + ao is unit in R. Then by lemma 9 

in chapter 1, f is a unit element in R[[X]] and hence every element of 1 + I is unit in R[[X]]. 

Thus by [15, VIII, Theorem 9(e)], R[[X]J is a Zariski ring . • 

Corollary 106 For any fi eld K, the ring K[[X]l is a Zariski ring with defining ideal XK[[X]]. 

Example 107 For the field of complex numbers C, the ring q[X]J is a Zariski ring with 

defining ideal xq[X]]. It can easily be observe that every element of 1 + xq[X]] is invertible 

in q[X]] . Also the subring R = q[X2, X 5]] of q[X]], which is quasilocal Noetherian ring [6, 

Example 3.4/ is a Zariski ring with defining maximal ideal M = (X2 , X 5 )R. 

3.5 Ascent and Descent of Zariski Ring 

In [13], T. Shah has discussed the ascent and descent of factorization properties under certain 

conditions. In this section we study the stability of Zariski ring in unitary ring extension (resp. 

the domain extension) R ~ T. A study has also been made for the composite ring extension 

(resp. the domain extension) R + X [[T]J ~ T[[X]]. 

3.5.1 Unitary Ring (domain) Extension 

Lemma 108 Let R ~ T be a unitary commutative ring extension such that U(R) = R n U(T) 

then, 1fT is a Zariski ring with respect to the I-topology then for the ideal J = (RnI) we have 

1 + J ~ U(R) . 

Proof. As 

1 + J ~ R, since J is an ideal of R (1) 

and J ~ I 

=>1+J~I+I 

and as T is a Zariski ring with respect to the ideal I , so every element of 1 + I is unit in T, 

i.e. 1 + I ~ U(T) , tillS implies 1 + J ~ 1 + I ~ U(T) 

=> 1 + J ~ U(T) (2) 
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from (1) and (2) we have 

Hence the result follows. _ 

1 + J C U(T) n R = U(R) 

=} 1 + J ~ U(R) 

Theorem 109 Let R ~ T be a unitary commutative ring extension such that U(R) = RnU(T) 

then, If T is a Zariski ring with respect to the ideal I , then if R is a Noetherian ring then R is 

a Zariski ring with respect to the ideal J = R n I. 

Proof. By Lemma 1081 + J ~ U(R), and R is considered to be a Noetherian domain. 

Hence by Theorem 82 R is a Zariski ring. _ 

The following proposition is about the condition for ascent of Zariski ring. 

Proposition 110 Let R ~ T be a unitary commutative Noetherian ring extension and R be a 

Zariski ring with defining ideal I , and every maximal ideal of T contains the ideal I , then T is 

a Z ariski ring with respect to the ideal IT of T. 

Proof. Since I is contained in every maximal ideal M of T, so I ~ J(T) implies IT ~ J(T), 

as J(T) is an ideal of T. Thus by [15, VIII, Theorem 9(d)], T is also a Zariski ring. _ 

Example 111 Let R be a Zariski ring with respect to the ideal I and Ii be the I-adic comple­

tion of R, as every maximal ideal of Ii will contains the ideal I , and so by proposition 110, Ii 
will also be Zariski ring with respect to the ideal I Ii. 

Proposition 112 Let R ~ T be a unitary commutative ring extension such that U(R) = 

R n U (T). If T is a Zariski ring with respect to the ideal I and J = R : T, then R is a Zariski 

ring with respect to the ideal generated by the subset I J of R. 

Proof. As R : T = {x E R : xT ~ R}, so for every element t in J , tT ~ R. This implies 

JT ~ R and I R ~ T so t(I R) ~ R, which implies 

l+tIR~R. (1) 
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Now as U(R) = R n U(T ) and for every t E J, we have 

Also tJ R c; I c; J(T) gives 

1 + t I R c; U(T) 

From (1 ) and (2) we have 1 + tJ R c; U(R), for all t E J. 

(2) 

This implies 1 + JIR c; U(R) . Hence by [15 , VIII , Theorem 9(e)], R is a Zariski ring .• 

Exam.ple 113 Let R be an integral domain with quotient field K and I be a proper ideal of R . 

The fraction ring Rs , and the power series ring K[[X]] are both Zariski rings, where S = 1 + I. 
Also we have Rs c; K[[X]]. 

3.5.2 Composite Ring (Domain) Extension 

Proposition 114 Let R c; T be a domain extension satisfies U(R) = R n U(T) , then the 

domain extension A = R + X T[[X ]] c; T[[X ]] satisfi es U(A) = A n U(T[ [X lJ). 

Proof. As A = R + XT[[X ]] c; T[[X ]J, so U(A) c; T[[X]]. Also U(A) c; A implies 

U(A) c; U(T[[X]]) n A 

Conversely we may see that U(A) = U(R) + XT[[X]]. 

Now let f E U(T[[XlJ) n A, this implies f E U(T[[X]]) and f E A. As U(T[[X]]) 

u + X T[[X] ], where u E U(T). So 

f 

00 

That is u + L aiX i 

i=O 

00 00 

U + LaiXi and f = ao + LaiXi, ao E R. 
i=O i=O 

00 

ao + LaiX i 

i=O 

(1) 

So comparing the coefficients we have u = ao E R. Also u = ao E U (T) , so we have 

u = ao E U(R), and f = u + 2::: 0 aiXi E U(A).This means 

An U(T[[X]]) c; U(A). (2) 

From (1) and (2) , we have U(A) = An U(T[[X]]) . • 

48 



Remark 115 We may discuss ascent and descent of Zariski ring in composite ring extension 

R + XT[[X]] ~ T[[XJJ by using the Proposition 114, Theorem 109 and Lemma 108, also we 

may construct various examples. 

Theorem 116 [15, VIII, Theorem] Let R ~ T be a unitary commutative ring extension such 

that T is a finite R -module, then, If R is a Zariski ring with respect to the I -topology then T is 

also a Zariski ring with respect to the IT -topology. 

Proof. Since every finite T-module M is also a finite R-module, so lVI is a hausdorff 

space in its I -topology because R is a Zariski ring in its I-topology and since I -topology of M 

coincides with the IT-topology, it follows that every finite T-module lVI is a hausdorff space for 

its IT-topology. 

Hence by Theorem 82 T is a Zariski ring. • 

We may record [10, Theorem 4] as remark, which ensure that when a composite ring R + 
XT[[X]] is Noetherian. 

Remark 117 [10, Theorem 4] Let R ~ T be the commutative rings with unity, then the ring 

A = R + XT[[X]] is Noetherian if and only if R is Noetherian and T is finite R-module. 

The following proposition gives us the comparison between the maximal ideals of the ring 

R and of the ring R + XT [[X]] , where R ~ T be a domain extension. 

Proposition 118 [9, Proposition 6] Let R ~ T be a domain extension then, Max(A) = {m + 

XT[[X]] : m EMax(R)}, where A = R + XT[[XJJ. 

Example 119 For the ring extension Z c Q, by Proposition 118 for the ring A = Z + XQ[[X]] 

we have 

Max(A) = {pZ+XQ[[X]J :p is prime integer}. 

Proposition 120 Let R ~ T be the domain extension such that R is semi-local and T is a 

finit e R-module. If R is a Zariski ring then the ring A = R + XT[[X]] is a Zariski ring with 

respect to the ideal J(A). 
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Proof. By Proposition 118 we have that 

Max(A) = {m+XT[[X]] : m E Max(R)} 

this implies that 

1 Max(A) 1=1 Max(R) 1 . 

This shows that A is also semi local and as R is Noetherian and T is a finite R-module so by 

Theorem 117 A is Noetherian. 

Hence by Example 84 A is Zariski ring with respect to the ideal J(A) = nMEiVlax(A)M . • 

Proposition 121 Let ReT be the domain extension such that R is a Zariski ring with respect 

to the ideal 1 and T is a finite R-module, then the ring A = R + XT[[X]J is a Zariski ring with 

respect to the ideal J = 1 + XT[[X]]. 

Proof. Since R is Zariski ring with respect to the ideal 1 so 

1 + 1 ~ U(R) . (1) 

By Theorem 117 T is a 'Noetherian ring so we just have to show that every element of 1 + J 

is unit in A, where J = 1 + XT[[X]] is ideal of A. 

1 + (1 + XT [[XlJ) (1 + 1) + XT[[X]] 

c U(R) +XT [[X]] 

c U(A). 

Hence by Theorem 82 A is a Zariski ring. • 

Corollary 122 Let R ~ T be the domain extension such that R is a Zariski ring with respect to 

the ideal 1 and T is a Noetherian. Then in domain extension A = R + XT[[X]] ~ T[[X]] = B , 

A and B both are Zariski rings. 

Remark 123 In proposition 121, T[[X]] will never be a Zariski ring unless T[[X]] is Noetherian. 
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Example 124 By example 107 the ring C[[X]] and R = C[[X2,X5]] are Zariski rings with 

defining ideals XC[[XJ] and M = (X2, X5)R respectively. So the Noetherian ring extension 

C[[X2, X5J] S; C[[X]] is a Zariski ring extension. 
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