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Preface 
In general, the Navier-Stokes equations are the non-linear partial differential 

equations describing the flows of viscous fluid. However, there are several 

materials, to name as few, such as soaps, drilling mud, ketchup and milk which do 

not obey the constitutive relationship of viscous fluids. These are categorized as 

the non-Newtonian fluids. Typ ical examples of rheological behavior occur in 

reactions of polymer and food processing. It is also an established fact now that 

the non-Newtonian fluids cannot be described by a single constitutive relation as 

for viscous fluids and they thus offer great cha ll enges to modelers of such fluids. 

Many non-Newtonian fluid models have been proposed up to date in the fluid 

literature. Non-Newtonian fluid models and their resulting equations are more 

complicated and of higher order than the Navier-Stokes equations counterpart. 

Generally, uniqueness of solutions to these equations require additional boundary 

conditions (see [1,2]). Non-Newtonian flows have been understood from various 

viewpoints from experimental to the theoretical. Few related attempts on the topic 

have been presented in the refs. [3-20]. 

Ever since the seminal work of Sakiadis [21 ], boundary layer flow engendered 

by a moving surface has engaged many investigators. Such flows are vital in both 

viscous and non-Newtonian fluids , e.g. in crystal growth. A non-Newtonian fluid 

bounded by a porous stretching surface has promising application in polymer 

processing [22]. These kinds of flows have been looked at through various aspects 

(see refs . [23-29]). 

Literature survey shows that there is little known on the flow of non-Newtonian 

fluids bounded by a porous shrinking surface. We wish to fi ll this void. In view of 

these facts, this disseliation has been arranged as follows 

Chapter one presents the re levant basic laws and equations . Chapter two 

discusses the magnetohydrodynamic (MHD) and mass transfer effects on the flow 

of an upper convected Maxwell (UCM) fluid. Analytic treatment to the nonlinear 



mathematical problem is given by using the homotopy analysis method (HAM). 

The series solutions are discussed in detail. The contents of this chapter provides 

the review of a paper by Hayat et al . [30J 

The purpose of chapter three is to extend the analysis of ref. [30J for a Jeffrey 

fluid. The relevant mathematical modeling is performed and the problem 

formulation is completed. Seri es sol ution by homotopy analysis method [31 -44J is 

included. The present solution is compared with the previous results. The 

influence of rheological parameters in a Jeffrey fl uid is displayed and discussed. 
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Chapter 1 

Preliminaries 

The purpose of this chapter is to present some dimensionless numbers, fundamental equations 

and laws required for the subsequent chapters. 

1.1 Newtonian and non-Newtonian fluids 

The real fluids for which the shear stress is directly and linearly proportional to the deformation 

rate are called Newtonian fluids. In mathematical notation one can represent as 

du 
Tyx = f.1- dy ' (1.1 ) 

where Tyx is t he shear stress, u is t he x-component of velocity and I-l is t he dynamic viscosity. 

The real fluids that do not obey the Newtons law of viscosity are known as Non-Newtonian 

fluids . For such fluids shear stress is not linearly proportional to the deformation rate. 

Mathematically 

du 
Tyx = 'fJ' dy ' (1.2) 

I I
n-l 

where 'fJ = k ~~ is the apparent viscosity, n is flow behavior and k is consistency index. 
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1.2 Fundamental equations 

The equations that will be useful for the flow descriptions in the subsequent analysis are given 

below. 

1.2.1 Equation of continuity 

In fluid mechanics , continuity equation is an equation of conservation of mass i.e. the rate at 

which the mass enters into the system is equal to the rate at which mass leaves the system. 

Mathematically 

8p 
8t + V.(pV) = 0, 

which for incompressible flows reduces to the following expression 

V.V=O. 

1.2.2 Equation of Momentum 

The equation of motion is 

eN 
Pili = V .T+pb , 

For Navier-Stokes equations 

T = -pI + /-LA 1 , 

Al = grad V + (grad V)t , 

4 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1. 7) 



where P is the fluid density, V is the velocity field , T is t he Cauchy's stress tensor, B is the 

body force , p is the pressure and f-L is t he dynamic viscosity. 

T he Cauchy's stress tensor can be expressed in matrix form as 

r 

(Jxx 

T = Tyx 

Tn 

Txy 

(Jyy 

Tzy 

T., 1 
Tyz , 

(J zz 

where (J xx, (J yy and (J zz are normal stresses while all others are shear stresses. 

Eq. (1.5) can be expressed in scalar form as 

du 8 ((Jxx) 8 (Txy) 8 (Txz ) b 
P dt 8x + 8y + 8z + P x, 

dv 8 (Tyx) 8 ((Jyy) 8 (Tyz ) b 
P dt 8x + 8y + 8z + P y, 

dw 8 (Tzx) 8 (Tzy) 8 ((J zz) b 
Pdt 8x + 8y + 8z + P z, 

where bx , by and bz are the body forces in x, y and z direction respectively. 

1.2.3 Equation of mass transfer 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

If a fluid contains species A which are slightly soluble in it t hen there will be relative transport 

of species. The species A may be transported by advection (with the mean velocity of mix

ture) and by diffusion (relative to the mean motion) in each of the coordinate directions. The 

concentration C A may also be affected by chemical reaction. Let Iv A be the rate at which the 

mass of species A is generated per unit volume due to such reaction and D is the coefficient of 

diffusing species. 

Through boundary layer approximation, the governing equation for the concentration field 

IS 

(1.12) 
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1.2.4 Maxwell's equations 

The Maxwell's equations can be expressed as 

d· E Pe 
IV app = -, 

Eo 

divB = 0, 

8Eapp 
curlB = /-LoJ + /-LOEO~. 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

In above equations t he total magnetic field is B = Bo + b (Bo and b are the applied 

and induced magnetic fields respectively), E app , Eind is the applied and induced electric field 

respectively, Pe is the charge density, J is the current density, /-Lo is the magnetic permeability, 

EO is the permittivity of the free space. 

Ohm's and the Lorentz force laws are respectively given by 

J u(Eapp + V x B) , 

F J x B , 

where u is the electrical conductivity of the fluid. 

In absence of applied electric field E app , Eq. (1.17) yields 

J = u(V x B) . 

(1.17) 

(1.18) 

(1.19) 

For small magnetic Reynolds number, Eq. (1.18) simplifies to the following expression 
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J x B = -aB5V. (1.20) 

1.3 Some useful dimensionless numbers 

1.3.1 Reynolds number (Re) 

It gives a measure of the ratio of inertial forces to viscous forces. It is further used to characterize 

different flow regimes , such as laminar or turbulent flow. Note that laminar flow occurs at low 

Reynolds numbers, where viscous forces are dominant, and is characterized by smooth, constant 

fluid motion, while turbulent flow occurs at high Reynolds numbers and is dominated by inertial 

forces. 

One may expressed it as 

Reynolds number 

or Re 

inertial forces 
viscous forces' 

mass * acceleration 
shear stress * cross sectional area ' 

volume * density * velocity 
shear stress * cross sectional area * time ' 
cross sectional area * linear dimension * p * V 

shear stress * cross sectional area * time 
V2*p 
~, 

J-Ldy 

V2 *p 
V ' 

J-L-r 
V*L 

II 

where L and V denote length and velocity respectively. 

1.3.2 Magnetic Reynolds number (Rm) 

(1.21) 

It is a number that occurs in magnetohydrodynamics . It gives an estimate of the effects of 

magnetic advection to magnetic diffusion 

7 



D _ UL 
.J.v,n - , (1.22) 

'r/ 

Here T) is magnetic diffusivity. 

1.3.3 Schmidt number (Sc) 

Schmidt number Be is a dimensionless number which is defined as the ratio of momentum 

diffusivity (viscosity) and mass diffusivity. It physically relates the relative thickness of the 

hydrodynamic layer and mass-transfer boundary layer. It is expressed as 

1/ 

Be= D' 

where 1/ is kinematic viscosity and D is the mass diffusivity. 

1.3.4 Deborah number (De) 

(1.23) 

The ratio of a relaxation time tT and the characteristic time tc is known as the Deborah number. 

In mathematical notation we have 

1.3.5 Hartman number 

D e = tT. 
tc 

It is t he ratio of magnetic body forces to the viscous forces. 

8 

(1.24) 



Chapter 2 

Magnetohydrodynamic flow of an 

upper-convected Maxwell (UCM) 

fluid past a porous shrinking sheet 

with mass transfer and chemical 

reaction species 

2.1 Introduction 

This chapter looks at the mass transfer of the steady two-dimensional magnetohydrodynamic 

(MHD) boundary layer flow of an upper-convected Maxwell (UCM) fluid past a porous shrinking 

sheet in the presence of chemical reaction. The nonlinear partial differential equations are 

transformed into the system of nonlinear ordinary differential equations by invoking similarity 

transformations. Velocity and concentration fields are derived by a homotopy analysis method 

(HAM) . Convergence of the derived series is shown. The gradient of mass transfer and the 

surface mass transfer are also tabulated. Discussion is made by sketching graphs. The content 

of this chapter are the review of a paper by Hayat et al. [30] 

9 



y 

x 

c=c ... 
ii = - a x 

Fig. 1: Geometry of the problem 

2.2 Mathematical formulation 

Consider the steady, incompressible, MHD flow of two-dimensional upper-convected Maxwell 

(UCM) fluid over a porous shrinking sheet with suction. The sheet coincides with the plane 

(y = 0) and the flow occupies the region (y > 0). The x and y axes are taken along and 

perpendicular to the sheet, respectively (Fig. 1). A constant magnetic field of strength Eo acts 

along the y-axis. The induced magnetic field is negligible. The external electric field is zero. 

The continuity, momentum and constitutive equations for an upper convected Maxwell (UCM) 

fluid are given by 

V.v=o, 

pai = V.T, 

T = -pI + S, 

10 
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(2.2) 

(2.3) 



(2.4) 

(2 .5) 

where the velocity fi eld is 

v = [1i(X, y), v(X, y), 0] . (2.6) 

Here T is the Cauchy stress tensor , S is the extra stress tensor , I is the identity tensor, Al 

is the Rivilin-Ericksen tensor, L is the velocity gradient, f.J, is the dynamic viscosity, A is t he 

relaxation time and D / Dt is the covariant derivative. 

The first Rivilin-Ericksen tensor is 

Bu+ Bv 1 By Bx . 

2Bv 
By 

(2. 7) 

Using Eqs.(2.3) - (2.7) in Eq. (2.2) we get 

(2.8) 

We have assumed that the flow is caused only due to shrinking of the sheet therefore the 

pressure gradient is neglected 

(2.9) 
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where the general form for covariant derivative D / Dt is 

For i = 1, 

( 1 + )..!2) al = v\l . Al 
Dt ' 

du au au 
dt = u ox + v oy , 
dv ov ov 
-d = u-o +v-o ' t x y 

using Eqs. (2.12) - (2.14) in Eq. (2 .11) we get 

which by continuity equation yields 

12 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2. 14) 

(2.15) 

(2.16) 



Similarly for i = 2, we get 

(2.17) 

Under order analysis in the boundary layer 

u = 0(1), x = 0(1) , v = 0(6), y = 0(6), (2.18) 

equation (2.17) satisfies identically and equation (2.16) yields 

(2.19) 

The magnetic force under the stated assumptions gives 

J x B = -aB5V, (2.20) 

where a is electrical conductivity of fluid , Eq. (2.19) in magnetohydrodynamics becomes 

(2 .21) 

Furthermore mass transfer is the flow along a sheet that contains a species A slightly soluble 

in the fluid B. Let Cw be the concentration at the sheet surface and the solubility of A in B 

and concentration of A far away from the sheet is Coo. Also the reaction of a species A with 

B be the first order homogeneous chemical reaction of rate constant J(l . The concentration of 

dissolved A is considered small enough. Through boundary layer approximations, the governing 

equation for concentration fields is 

13 



8C 8C 82C 
'u~ +v~ = D~ - KIC, 

ux uy uy 
(2 .22) 

where C, D and 5 are respectively the concentration of the species, the diffusion coefficient 

of the diffusing species in the fluid and the boundary layer thickness. 

The boundary conditions are 

u(x, y) = -ex, v(x, y ) = - Vo, C(x, y ) = Cw at y = 0, 

u (x, y) --+ 0, C(x, y) --+ Coo as y --+ 00. 

Here e > 0 is t he rate of shrinking and Vo > 0 is t he suction velocity at the surface. 

Let us define the dimensionless quantit ies 

fc C-C 
17 = V -;;y, u = CXf'(17), v = -yevf(17) , ¢ = C

w 
_ C:· 

(2.23) 

(2.24) 

(2.25) 

By using the above quantities, Eq. (2.1) is identically satisfied and the Eqs. (2.21) - (2.24) 

becomes 

f'" - M2 f' - f,2 + f f" + (3 (2f f' f" - f2 f"') = 0, 

¢/1 + 8cf¢' - 8q¢ = 0, 

with the subjected boundary conditions 

f=8, f ' =- l , ¢= 1 at 17= 0, 

l' = 0, ¢ = 0 at 17 = 00, 

14 

(2.26) 

(2.27) 

(2 .28) 

(2 .29) 



in which the primes denote the derivative with respect to TJ and 

S - Vo M2 = (J B5 (3 = AC, S 1/ "1 = J( 1 . 
- ,jVc' pc ' C = D ' C 

(2.30) 

Here S, lVI, Sc and "1 are t he suction , Hartman, Schmidt and chemical reaction parameters 

respectively. Moreover (3 is the Deborah number in terms of relaxation time. It is noted that 

for destructive/generative chemical reaction "1 > 0/"1 < 0 respectively and "1 = 0 corresponds 

to non-reactive species. The surface mass transfer is 

¢' (O) = (D¢) . 
DTJ '7=0 

(2.31) 

2.2.1 Solution by homotopy analysis method (HAM) 

In this section we will construct the HAM solution. For that we select 

fO(TJ) = S - 1 + exp( -TJ), gO(TJ) = exp( -TJ) , (2.32) 

with the following operator 

.£ J = fill - 1', C", = ¢ I! - ¢ , (2 .33) 

which satisfy 

(2.34) 

where Ci (i = 1 - 5) are the arbitrary constants . 
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2.2.2 Zeroth order deformation equation 

The corresponding problems at the zeroth order are 

~ ~ ~ ~ ~ 

f(O;p) = S, f (O;p) = -1 , f (oo,p) = 0, ¢(O;p) = 1, ¢(oo;p) = 0, (2.37) 

where p is an embedding parameter and h f, h</> are the non-zero auxiliary parameters. 

Furthermore the non-linear operators are 

(2.38) 

. f)2¢(rJ; p) f)¢(rJ; p) 
N</>[¢(rJ;p), f(17;P)] = f) 2 + SCf(17;P) f) - Scr¢(rJ;p) · 

I rJ rJ 
(2.39) 

When p = 0 and p = 1 then 

i(rJ; 0) = fo (rJ), ¢ (rJ; 0) = ¢o (rJ) and i(rJ; 1) = f (rJ), ¢ (rJ; 1) = ¢ (rJ)· (2.40) 

It is noticed that when p increases from 0 to 1 then f(rJ;p)and ¢ (rJ;p) vary from the initial 

guesses fo (rJ), ¢o (rJ) to the final solutions f (rJ) and ¢ (rJ). Using Taylor series we may write 

16 



00 

(2.41 ) 
m=1 

00 

¢ (77 ;P) = ¢O(7]) + L ¢m(7])P"\ (2.42) 
m = 1 

f ( ) = ~ am
j(7];p) I 

m 7] I J:l m ' m. u7] p=O 
(2.43) 

Obviously Eqs. (2.35) and (2.36) have two non-zero auxiliary parameters hf and h</> . The 

convergence of the series (2.41) and (2.42) is dependent upon hf and h</>. The values of hi(i = j , 

¢) are chosen properly so that Eqs. (2.41) and (2.42) are convergent at p = 1. In view of Eq. 

(2 .40) we have 

00 

(2.44) 
m=1 

00 

¢(7]) = ¢o(77) + L ¢m(7]) · (2.45) 
111=1 

2.2.3 mth order deformation equations 

The mth order deformation problems are obtained by differentiating Eqs. (2.35) and (2.36) m 

times with respect to p and then setting p = O. These are given by 

(2.46) 

(2.4 7) 
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(2 .48) 

m-I 

R~t( TJ ) = 1:;':-1 - M 2 /:n_l + L[Jm-I-kl[ - I:n- I-kl£l 
k=O 

m-I k 

+ (3 L Im-I-k L[2/Ldf' - Ik-d{" ], (2.49) 
k=O [=0 

m-l 
R't,.,(TJ) = ¢':n-l (77) - Sq¢m-l + Se L ¢~t-l-k lk ) (2.50) 

k=O 

Xm = { 0, 
I , 

m:S I , 
(2 .51) 

m > l. 

Denoting l:n (77) and ¢~t (TJ ) as the special solutions , we obtain the following general solutions: 

where 

Im(TJ) = 1:n(TJ) + C1 + C2 exp(TJ) + C3 exp( -TJ), 

¢m(TJ) = ¢~(TJ) + C4 exp(TJ) + C5 exp( -TJ) , 

(2.52) 

(2.53) 

(2.54) 

The symbolic computation software MATHEMATICA is employed to obtain series solutions 

upto first few order of approximations. The relevant series solutions can be written in the form 

18 



2m+12m+1-n 

!m(77) = L L a;n,n7]q exp(-TI.77), m ~ 0, (2.55) 
n=O q=O 

2m+12m+1-1I 
¢m(77) = L L b;n,n7]q exp( -n7]) , (2 .56) 

n=O q=O 

where the coefficients a<tn,n and b<tn ,n can be determined in the next section. 

2.2.4 Derivation of the coefficients 

First of all we calculate the derivatives involving 111 the Eqs. (2.49) and (2 .50). From Eqs. 

(2 .55) and (2.56) we have 

!:n (7]) 

n=O q=O 

2m+12m+1-n 

" " lq q -n1) ~ ~ a m,n7] e , (2.57) 
n=O q=O 

= 
n=O q=O 

2m+12m+1-n 

L L (2.58) 
n=O q=O 
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where 

a1~,n 

b1~ ,n 

Similarly 

f::~ (77) 

f::: (77) 

g~~~ (7]) 

in which 

b2~,n 

[(q + 1) a;:'~ - na~,n] . 

[(q + 1)b;:'~ - nb~,n] . 

2m+12m+l-n 

L L a2q 7]q e -n'7 
m,n , 

n=O q=O 
2m+12m+l-n 

L L 3q q -n'7 a rn,n7] e ) 
n=O q=O 

2m+12m+l-n 

L L b2q 7]q e -n7) 
n'l. ,n , 

n=O q=O 

[(q + 1)a1;:~ - na1~~,n] ) 

[( q + 1 )a2;:1~ - na2~"n] ) 

[(q + 1)b1~;,~ - nb1~,n] . 

20 
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(2.60) 

(2.61) 

(2.62) 

(2.63) 

(2.64) 
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For the product terms, let us consider 

2m-2k-12m-2k-l-r 2k+ 1 2k+l-i 

~ ~ as 'Yl S e-T17 X ~ ~ a2 j .1)je- i'7 L...t L...t m-l-k,r' / L...t L...t k,. ' 
,"=0 s=O i=O j =O 

2m-2k-12k+l 2m-2k-l -r 2k+l-i 
~ ~ e-(r+i)1) ~ ~ as a2J .'Yl j + s 
L...t L...t L...t L...t m-l-k,r k ,. ' / , 

i =O s=O j=O 

~ e-n1) min{n,2k+l} [2m-~1-r 2k~-i as a2 j 1 'Ylj+s, 

L...t L L...t L...t m-l-k,T k,i '/ 
n=O i=max{0,n-2m+2k+ l} s=O j=O 

2m min{n,2k+l} [2m n min{q,2k+l-i} 1 
~e-n1) ~ ~ q ~ q-j 2 j 
L...t L...t L...t ." L...t am-1-k,n-ia k ,i 
n=O i=max{0,n-2m+2k+l} q=O j=max{0,q-2m+2k+ l +n-i} 

2m 2m-n [min{n,2k+l} min{q,2k+l-i} 1 
L L L L a;'~!1 _k ,n_ia2{,i 17

qe
-

n
1) , 

n=O q=O i=max{0,n-2m+2k+l} .i=max{0,q-2m+2k+l+n-i} 

(2 .67) 

11t-l 2,n 217l-n 

L fm-l-kf~ = L L 
k=O n=O q=O 

[

m-l min{n,2k+l} min{q,2k+l-i } 1 
~ ~ ~ a q- j a2j 'Ylqe - n 1) , L...t L...t L...t m-l-k,n-i k,i '/ 
k=O i=max{0,n-2m+2k+l} j=max{0,q-2m+2k+l+n-i} 

(2.68) 

m-l 2m 2m-n 

L fm-l -k f~ = L L a'!n,n17qe -
n

1) , (2.69) 
k=O 

where 

m-l min{n,2k+l} min{q ,2k+l -i} 

L L L q-j 21 
a,n-l-k n_i a k i' , , (2.70) 

k=O i=max{0,n-2m+2k+l} j=max{O ,q-2m+2k+l+n-i} 

Similarly we can calculate the other terms involving in Eqs. (2.49) and (2.50) i.e. 
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m-1 2m 2m-n 

I: f:n-1-d~ = I: I: al'!n,n rJq e-n'7, (2.71) 

k=O n=O q=O 

,n-1 2"~ 2,n-n 

I: ¢'m-1-k:!k = I: I: (2.72) 
n =O q=O 

where 

m-1 min{n,2k+1} min{q,2k+1 -i} 

a l~~,n = I: I: I: a l~~l_k,n_ia l~,i' (2. 7 3) 

k=O i=max{O,n-2m+2k+1} j = max{O ,q-2m+2k+1+n-i} 

m - 1 min{n,2k+1} min{q ,2k+1-i} 

a2~~,n = I: I: I: b l~~l-k,n-iaL· (2 .74) 

k=O i=max {O,n-2m+2k+2} j=max{O,q-2m +2 k+2+n -i} 

For the terms which involve the product of three functions we have 

f ' f" k-l I 

2k-2l+12k-21+1-1' 21+121+1-t 

I: I: a l k_l,TrJ5e-T'7 x I: I: a2LirJ je -
i
'7, 

1'=0 5=0 i=O j=O 

2k-2l+121+1 2k-21+1-,-21+1-i 

'" '" e-(1'+i)'7 '" '" 15 2j 
j+5 ~ ~ ~ ~ a k-l,1' a l,i rJ , 

1'=0 i=O 5=0 j=O 

2k+2 

I: e-P'7 

p=O 
[ 

min{p,21+1} 2k-21+1-1'2l+1-i ' J 
I: I: I: a 1k-l,1'a2f,i 

i=max{0,p-2k+2l-1} 5=0 j=O 

2k+2 min{p,2l+l} [ 2k+2-P min{t,21+1-i} J 
I: e-P'7 I: I: rJt I: a1tj,p_ia2L 

p=O i=max{O,p-2k+21-1} t=O j=max{O,t-2k+21-Hp-i} 

2k+22k+2-p [min{p'21+ 1} min{t,21+ 1-i} 1 
I: I: I: I: a 1tj ,p_ia2L rJte -

P
'7 , 

p=o t=o i=max {O ,p-2k+21-1} j=max{O ,t-2k+21-Hp-i} 

(2.75) 
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m-l 

L fk-df' 
k=O 

2k+22k+2-p 

LL 
p=O t=O 

[

m - l min{p,2l+1} min{t ,2l+1-i} 1 
L L L a1~?z.p_ia2L 
k=O ~=max{0,p-2k+21- 1} j=max{0,t-2k+2l-1+p-i} 

(2.76) 

m-l 2k+22k+2-p 

L fLd[' = L L a3t,pr/e-P17 , (2.77) 
k=O p=o t=o 

m-l 2k+22k+2-p 

L fk-d{" = L L a4%,pr/e-P17 , (2.78) 
k=O p=O t=O 

m-l min{p,2l+1} min{t.2l+1-i} 

a3t,p = L L L a1~j,p_ia2i,~ (2.79) 
k=O i=max{0,p-2k+2l-1 } j=max{0,t-2k+2l-l+p-i} 

m-l min{p,2l+1} min{ t ,21+1 -i} 

a4t,p = L L L t-j 3j 
ak 1 ·a l' ~ - ,P-'l. It 

(2.80) 
k=O i=max{0,p-2k+2l-1} j=max{0 ,t-2k+2l-l+p-i} 

2m-2k-12m-2k-l-x 2k+12k+2 - p 

fm-l-kfLd/' "" "" a
Y 

'I1
Ye-

x17 x "" "" a3
t 

'I1
t
e-P17 

~ ~ m-l-k,x " ~ ~ k,p" 
x=o y=o p=o t=O 

2m-2k-12k+l 2m-2k-l-x 2k+2-p 

L L e-(X+P)17 L L a;t_l_k,xa3t,P'T)y+t , 

x=o p=o y=o t=o 

= 
2~1 e-

n17 
min{n,2k+ 2} [2m-~1-x 2k~-P y 3t 1 y+t 

~ L ~ ~ am- 1- k,x a k,p 17 , 
n=O p=max{0,n-2m+2k+ l} y=O t=o 

2m+l min{n,2k+2} [ 2m+l n m in{q,2k+2-p} 1 
L e-

n17 L L- 'T)q L a;:~1_k,n_pa3t,p 
n=O p=max{0 ,n-2m+2k+ l} q=O t=max{0,q-2m+2k+l+n-p} 

2m+12m+l-n [min{n'2k+2} min{q,2k+2-p} 1 
L L L L a~-~1_ k,n_pa3t,p 'T)qe-

n
1) , 

n=O q=O p=max{0 ,n-2m+2k+l} t=max{ 0,q-2m+2k+l+n-p} 

(2.81 ) 
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m-1 2m+12m+1-n 

L fm-1-kfLdf' = L L 
k=O n=O q=O 

[

m-1 min{n,2k+2} m in {q,2k+2-p} l 
'" '" '" q-t 3t q -m o 0 0 am_1_k.n_pa k ,p TJ e 
k=O p=max{O,n-2m+2k+1} t=max{0,q-2m+2k+1+n-p} J 

(2.82) 

m.- 1 2m+12m.+1-n 

L fm. -1 -kfLdf' = L L (2 .83) 
k=O n=O q=O 

where 

min{n,2k+2} min{q ,2k+2-p} 

L L (2.84) 
k=O p=max{0 ,n-2m.+2k+ 1} t=max{ 0,q-2m+2k+1+n-p} 

similarly 

m-1 2m+12m+1-n 

L fm-1-kfJ.:-Lf{" = L L a6~"n77qe-nTJ (2.85) 
k=O n=O q=O 

where 

min{ n,2k+2} min{ q,2k+2-p} 

L L (2 .86) 
k=O p=max{0,n-2m+2k+1} t=m ax{0,q-2m+2k+1+n-p} 

Using the above relations in Eqs. (2.49) and (2.50) we have 
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2m-12m-1-n 

hj L L [a3~_1 ,n - M2a1~_ 1 ,n] ry
q
e-

n
1) 

n=O q=O 

2111 2,n-n 

+hj L L [ain,n - a1~"nJ 17qe -
n

1) 

n=O q=O 

2m+12m+1-n 

+hj L L [2 (,8) a5~"n - (,8)a6~"nJ ryqe-
n

1) , 

n=O q=O 

2m-12m-1-n 

h,p L L [b2~_ 1 ,n - Sqb~_l ,n] 77qe-
n

1) 

n=O q=O 

2m 2m-n 

+h", L L [(Se) a2in,n] ry
q
e-n

1) , 

n=O q=O 

2m+12m+1-n 

hjR!n(ry) = L L 

or we can write 

2m+12m+1-n 

hjR!n(ry) = L L t1 q 71q e -n1) 
7n,n " , 

n=O q=O 

2m 2111-n 

h,pRfn ( ry) = L L rin ,n ryq e -n1) , 

n=O q=O 

where t1in nand rin n are , , 
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(2.87) 

(2.88) 

(2.89) 

(2 .90) 

(2.91 ) 

(2.92) 



l 

X2m+l-n-q{ a3~_1,n - M2a1~_1,n} 1 
D.in,n = hf +X2m+l-n~q{a;,',n - a~rn,n} , 

+2(,B)a5m,n - (,B)a6m,n 

(2.93) 

r q = h [ X2m+l-n-q{b2~'-1,n - SC/'b~_l,n} 1 
m,n '" q + (Se) a2m,n 

(2.94) 

Using Eqs. (2.91) and (2.92), the Eqs. (2 .46) and (2.47) become 

2m+12m+l-n 

£f [Jm(7)) - Xmfm-l(7))] = L L D.;n,n7)
q
e-nTJ , (2.95) 

n=O q=O 
2m 2m-n 

£ ", [¢m(7)) - Xm¢m-l(7))] = L L r;'"n7)
q
e-m). (2.96) 

n=O q=O 

Applying the inverse of t he linear operators on both sides, one can write 

2m+12m+l-n q+l 
fm(7)) - Xmfm-l(77) = L L LD.in,nf..d~,k7)qe-nTJ + Cr' + C:;:eTJ + C!te- TJ , 

n=O q=O k=l 
(2.97) 

2m 2m-nq+l 
¢m (7)) - Xm¢m-l (77) = L L L rin,nJ.L2;"k7)

q
e-nTJ + C'4 eTJ + C5'e-TJ , (2.98) 

n=O q=O k=l 

where Ci (i = 1 - 5) are the constants of integration. Using boundary conditions, one has 

(2.99) 
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2711+1 2m 2m+12m+1-n 

C3 = L b.~,0f-t16,1 + L b.~,1 (f-t 1i.1 - f-t 1i.0) + L L b.in,n(f-t1;',1 - f-t 1;,,0)' 
q=O q=O n =2 q=O 

(2. 100) 
2711+1 2711+1 2m+12m+1-n 

C;n = - L b.~ ,0f-t16 , 1 + L b.~, 1f-t1 i,1 + L L b.in,n{(f-t1 ;',1 - (n - 1) f-t1 ;,,0)} , 

q=O q=O n=2 q=O 

(2. 101) 

(2. 102) 

with 

q-kq-k-r 

f-t 1 ~ , k = L L -q! 
(2. 103) 

k 1 (n - 1 )q+ 1- k-r-p n7'+l (n + 1 )P+ 1 ' 
7'=0 p=O 

q-k 

2q = '" q! . 
f-t n ,k f;:o k ! (n - 1)q+1-k- p (n + 1)P+1 

(2 .104) 

Substituting the values of constants into Eqs. (2.97) and (2.98) we have 

2m+12m+1 -n 2m+12m+1-n q+1 

'" '" [bq 
- bq 

] q -nry - '" '" '" r q 
2

q 
q -nry ~ ~ m,n Xm+2-nXm+2-n-q m-1,n 'rJ e - ~ ~ ~ m ,n f-t n ,k 'rJ e 

n=O q=O n=O q=O k=l 

[

2711+ 1 2m 2711+ 1 2711+ 1-n 1 
~ r~,0 f-t26 , 0 + ~r~' 1f-t2i . 0 + ~ ~ rin ,n f-t2;, ,0 e-ry . (2. 106) 
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Comparing like powers of'r} in t he above equations we arrive at 

2m 

o 0 "'""'6.q 1q 
am,o = XmXm+2Xm+2-qam- l ,0 - 0 m,oJ-L 0,1 

q=O 
2m+1 2m+l-n 

L L 6.:;'.n(J-L1~,l - (n - 1) J-L1~ , 0 ), (2.107) 
n=2 q=O 

o 0 
am,l = XmXm+ l Xm+l- qam- l,O 

2m 2m+12m+l-n 

- L6.~,1J-L1i.l - L L 6.:;',n(J-L1~,1 -nJ-L1~ ,0) ' (2.108) 
q=O n=2 q=O 

m+l-n 

k _ k _ "'""' A q 1q 
am,n - XmXm+2-nXm+2-n- qam- l ,n 0 '-l.m ,nJ-L n,k 

q=O 
2m+12m+l-n 

L L 6.~1, n(J-L1;1 , 1 - (n - 1) J-£1 ~,0), n 2 2. (2.109) 
n=2 q=k 

Similarly 

2m+12m+l-n 

b~l,l = XmXm+lXm+l-qb~-l,l - L L r:;',nJ-L2~,0 , (2. 110) 
n=2 q=O 
2m+l-n 

bk 
- / bk 

- "'""' r q 2q 
m,n - XmXm+ l Xm+l-q m-l,n 0 m,nJ-L n,k' n 2 2. (2.111) 

q=k 

Using the above recurrence formulas we can calculate all the coefficients a:;' ,n and b7n,n using 

only the first few 

o 
ao ,o s - 1, ag ,l = 1, a6 ,0 = 1, 

0, b6 ,0 = 0, bg,l = 1 

given by the initial guess approximation in Eq. (2.32). 

Thus, the explicit analytical solutions are 

28 

(2.112) 

(2. 113) 



00 

71t=O 

(2.114) 

00 

,n=O 

lim "'""' bO +"'""' e -n7) "'""' "'""' bq 
T)q [

!vI !vI + 
1 ( !vI 2m+ l-n ) 1 

!vI ->00 L....t m ,O L....t L....t L....t m ,n 
m=O n=l m=n- l q=O 

(2 .115) 

2.3 Convergence of HAM solution 

The series solutions of the considered problems are presented in Eqs. (2.114) and (2 .115). 

Obviously the convergence of these solutions depend upon the parameters hI and h", . To see 

the admissible values of hI and h"" the h curves are plotted for 15th order of approximation in 

Fig. (2). It is apparent from Fig. (2) that admissible values of hI is - 1.7 ::; hI ::; -0 .7 and h", 

is -1.8 ::; h", ::; -0 .7. The series (2.114) and (2.115) converge in the whole region of 77 when 

hI = h", = -1.0. Table 1 is made just to decide that how much order of approximation are 

necessary for a convergent solution. It is noticed that 20th order of approximations are enough. 
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f"(O) hr 
</>'(0) hp 

'\., --------- -------------------------"'\ 

-2 - 1.5 -1 - 0.5 

\ , 
\ 
\ 

o 

Fig. 2: h curves of 1" (0) and 1;' (0) at 15th order of approximation. 
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Table 1: Convergence of the HAM solutions for different order of approximations 

when B = I , M = 1.5, Be = 'Y = 1 and (3 = 0. 2. 

Order of approximation 1"(0) - ¢' (O) 

1 1.402500 1.233333 

5 1.719884 1.431262 

10 1.732064 1.436541 

15 1.732260 1.436517 

20 1.732268 1.436517 

25 1. 732268 1.436517 

30 1.732268 1.436517 

35 1.732268 1.436517 

40 1.732268 1.436517 

50 1.732268 1.436517 

60 1.732268 1.436517 

2.4 Results and discussion 

In this section Figs. (3) - (13) are displayed for the effects of parameters B, M , (3 , Be and 'Y on 

the velocity J' and the concentration field ¢. The surface mass transfer ¢' (0) and the gradient 

of mass transfer -¢'(ry) are also given in Tables 2 and 3, respectively. Figs. (3) - (6) depict 

the effects of B, M and (3 on the velocity component 1'. From Figs. (3 and 4) it is noticed that 

the magnitude of velocity and the boundary layer thickness decreases by increasing Band M. 

The effects of the Deborah number (3 is similar to Sand M on J' (Fig.5) . Figs. (6) - (13) have 

been sketched for concentration field ¢. Figs (6 and 7) show of that ¢ is a decreasing function 

of Sand M but the change in case of S is larger than M. The boundary layer decreases when 

Sand M are increased. The variations of (3 on the concentration field ¢ for a non-reactive 

species 'Y = 0 is plotted in Fig. 8. We note that without reactive species the concentration 

field ¢ decreases when (3 increases. Figs. (9 and 10) show the concentration field ¢ for various 

values of Deborah number (3 for destructive ('Y > 0) and generative ('Y < 0) chemical reactions, 

respectively. These Figs. show that ¢ is a decreasing function of (3 but the change is larger in 

case of generative chemical reaction ('Y < 0) in comparison to the case of destructive chemical 
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reaction (-y > 0). The variation of t he destructive chemical reaction parameter (-y > 0) on the 

concentration field ¢ is displayed in Fig.11. The concentration boundary layer decreases in case 

of destructive chemical reaction. Fig. 12 describes the variation of the generative chemical 

reaction parameter (-y < 0) on ¢. The fluid concentration increases with an increase in the 

generative chemical reaction parameter. . The fluid concentration ¢ has the opposite behavior 

for (-y > 0) when compared with generative chemical reaction parameter (-y < 0). The change in 

concentration field is larger for the generative chemical reaction. The variations of the Schmidt 

number Se on ¢ is plotted in Fig. 13. From Fig. 13 it is obvious that concentration field ¢ is 

decreases by increasing Se. The concentration boundary layer also decreases for large values of 

Se. 

Table 2: Values of the surface mass transfer - ¢' (0) for some values of S , M and (3 when 

Se = 'Y = 1 

S 

0.0 

0.2 

0.5 

0.7 

1.0 

0.5 

M 

1.5 

1.0 

1.2 

1.5 

2.0 

3.0 

1.5 

(3 

0.5 

0.0 

0.2 

0.5 

0.7 

1.0 

2.0 

31 

- ¢'(O) 

0.860477 

0.949625 

1.106254 

1.227578 

1.438716 

1.060457 

1.083708 

1.106254 

1.131740 

1.163358 

1. 108198 

1.107432 

1.106254 

1.105449 

1.104212 

1.099823 



Table 3: Values of the surface mass transfer -¢' (0) and the gradient of mass transfer 

-¢'(ry) for some values of Be and "f when B = 1, M = 1.5 and f3 = 0.2. 

Be "f 

0.2 1.0 

0.7 

1.0 

1.5 

2.0 

5.0 

1.0 0.1 

0.7 

1.2 

1.7 

2.0 

3.0 

f' 

-¢' (O) 

0.505403 

1.103298 

1.412999 

1.905536 

2.386075 

5.254511 

0.667048 

1.239376 

1.513555 

1.731334 

1.845883 

2.173501 

o 
-025 

-05 

-075 

- 1 

- 1.5 

/ 
I 

I 
/ 

77 Be "f 

0.2 0.2 1 

0.7 

1.0 

0.6 0.2 

0.7 

1.0 

0.2 1.0 0.2 

0.7 

1.0 

0.6 0.2 

0.7 

1.0 

M=05,{3 = 02 

/' 
,/ 

S= OO 
S=03 
S= 05 
S=1.0 

-1.75 ..... · _-=..0....-__________ ---' 
o 2 4 6 8 10 12 

Tf 

-¢'(ry ) 

0.449991 

0.853461 

1.018820 

0.361776 

0.535222 

0.566249 

0.645063 

0.919963 

1.018821 

0.436890 

0.543046 

0.566249 

Fig. 3: The variation of suction parameter S on the velocity field f' 
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Fig. 4: The variation of Hartman number M on the velocity field l' 
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Fig. 5: The variation of Deborah number (3 on the velocity field l' 
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Fig. 6: The variation of suction parameter S on the concentration field ¢ 
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Fig. 7: The variation of Hartman number NI on the concentration field ¢ 
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Fig. 8: The variation of Deborah number f3 on the concentration field ¢ 
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Fig. 9: The variation of Deborah number f3 on ¢ for destructive chemical reaction 
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Fig. 10: T he variation of Deborah number (3 on ¢ for generative chemical reaction 
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Fig. 11: The variation of destructive chemical reaction 'Y on the concentration field ¢ 
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Fig. 12: The variation of generative chemical reaction 'Y on the concentration field ¢ 
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Fig. 13: The variation of Schmidt parameter Sc on the concentration field ¢ 
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2.5 Concluding remarks 

In this study the mass transfer in the MHD flow of an upper-convected Maxwell (UCM) 

fluid over a porous shrinking sheet with chemical reaction species is investigated. Homotopy 

analysis method is employed in developing the series solutions. Expressions of velocity l' and 

the concentration field ¢ are determined. From the presented analysis we made the following 

conclusions 

• The velocity field f' is increasing function of S, M, (3. 

• The concentration field ¢ for destructive/generative chemical reactions decreases when 

S, M, (3 and Se increases. 

• The concentration field ¢ has opposite results for destructive b > 0) and generative 

('Y < 0) chemical reactions. 

• The magnitudes of t he surface mass transfer _¢/(O) is increased by increasing Sand M 

while it decreases when (3 increases. 
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Chapter 3 

Effects of magnetic field and mass 

transfer on the flow of a Jeffery fluid 

over a porous shrinking sheet 

3.1 Introduction 

This chapter describes the mass transfer of the steady two-dimensional magnetohydrodynamic 

(MHD) boundary layer flow of a Jeffery fluid past a porous shrinking sheet in the presence 

of chemical reaction. The governing nonlinear partial differential systems are converted into a 

nonlinear ordinary differential system. Similar solutions of velocity and concentration fields are 

obtained using the homotopy analysis method (HAM). The convergence of the obtained series 

solutions is explicitly discussed. The values of the surface mass transfer and gradient of mass 

transfer for various parameters are presented. The variations of interesting flow parameters are 

discussed. 

3.2 Mathematical formulation 

Let us examine the steady, incompressible, MHD flow Jeffery fluid over a porous shrinking sheet 

with suction. The sheet coincides with the plane y = 0 and the flow occupies the region y > O. 

The x and y axes are chosen along and perpendicular to the sheet, respectively. A constant 
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magnetic field of strength Bo acts along the y-axis. The equations which can govern the flow 

are 

V.V=O, (3. 1) 

pai = V.T , (3.2) 

T = -pI + S, (3.3) 

(3.4) 

where 

v = [u(x, y) , v(x, y) , 0], (3.5) 

(3.6) 

In above equations T is Cauchy stress tensor, S is the extra stress tensor , I is identity tensor , 

A1 is Rivilin-Ericksen tensor , L is velocity gradient, J-l is dynamic viscosity, A1 is relaxation 

time, A2 is retardation time and D / Dt is covariant derivative. 

In the absence of pressure gradient, t he flow is governed by the following equation 

(3.7) 

where D / Dt is 
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(3.8) 

For i = 1 

(3.9) 

(3. 10) 

du au au 
(3.11) al dt = u ax + v ay , 

dv av av 
(3 .12) a2 -=u-+v- , 

dt ax ay 

(3.13) 

Using Eqs. (3.10) - (3.13) in Eq. (3 .9) we have 

au au 
u- +v- +>'1 

ax ay 

where l/ is the kinematic viscosity. 

Invoking continuity equation, above equation takes the form 
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(3.15) 

For i = 2 we obtained 

(3.16) 

which by the following boundary layer approximations 

u = 0(1), x = 0(1) , v = 0(5), y = 0(5), (3 .17) 

is identically satisfied. Furthermore, Eq. (3.15) in view of Eq. (3 .17) reduced to 

(3.18) 

For magnetohydrodynamic case, the above equation modifies in the following form 

(3.19) 
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Furthermore mass transfer is the flow along a sheet that contains a species A slightly soluble 

in the fluid B. Let Cw be the concentration at the sheet surface and the solubility of A in B 

and concentration of A far away from the sheet is Coo. Also the reaction of a species A with 

B be the first order homogeneous chemical reaction of rate constant J( 1. The concentration of 

dissolved A is considered small enough. Through boundary layer approximations, the governing 

equation for concentration field is 

(3 .20) 

where C, D and (j are respectively the concentration of the species , the diffusion coefficient 

of the diffusing species in the fluid and the boundary layer t hickness. 

The subjected boundary condit ions are 

u(x, y) = -ex, v(x, y) = - Va , C(x , y) = Cw at y = 0, 

u(x, y) --t 0, C(x, y) --t Coo as y --t 00, 

where e > 0 is the rate of shrinking and Va > 0 is the suction velocity at the surface. 

Defining 

fc I ~ c-coo 
7] = V -;;y , u = exf (17), v = -v ev f(1]), ¢ = C

w 
_ Coo ' 

equation (3 .1) is identically satisfied and Eqs. (3.19) - (3.22) are 
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(3.21) 

(3.22) 

(3.23) 



1'" - M2 f' - 1'2 + f 1" + (31 (2f l' 1" - f21"') + (32 (I//2 - f 1"//) = 0, (3.24) 

¢// + Sef¢' - SC'"'/¢ = 0, (3.25) 

f = S, l' = -I, ¢ = 1 at ry = 0, 

f' = 0, ¢ = 0 at 17 = 00, 

where 

(3.26) 

(3 .27) 

(3.28) 

In above expressions S , M , Se and 'Yare the suction, Hartman, Schmidt and chemical 

reaction parameters respectively. Moreover (31 and (32 are the Deborah numbers in terms 

of relaxation and retardation times respectively. It is noted that for destructive/ generative 

chemical reaction 'Y > O/'Y < 0 respectively and 'Y = 0 corresponds to non-reactive species. The 

surface mass transfer is 

¢'(O) = (8¢) . 
8ry 11=0 

(3.29) 

3.2.1 Solution by homotopy analysis method (HAM) 

For the HAM solution, we select 

fo(ry) = S - 1 + exp(-ry), go(ry) = exp(-ry) , (3.30) 

with the following operator 

44 



C f = f"' - !" c", = ¢" - ¢, (3.31 ) 

which satisfy 

(3 .32) 

where Ci (i = 1 - 5) are the arbitrary constants. 

3.2.2 Zeroth order deformation equation 

The problems at the zeroth order are 

~ ~ ~ ~ ~ 

f(O ;p) = S, f (O ;p) = -1 , f (oo,p) = 0, ¢ (O ;p) = 1, ¢ (oo;p) = 0, (3.35) 

where p is an embedding parameter and h f ' h", are the non-zero auxiliary parameters. 

Furthermore the non-linear operators are 
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(]2¢(ry;p) o¢(ry;p) 
N</>[¢ (17;P), f(ry ;p)] = a 2 + Scf(ry;p) a - SC,,!¢(17;P)' (3.37) 

17 17 

For p = 0 and p = 1 we have 

1("1; 0) = fo ("1), ¢ ("1; 0) = ¢o ("1) and 1("1; 1) = f ("1), ¢ (17; 1) = ¢ (17)· (3.38) 

Note that when p increases from 0 to 1 then f(ry;p)and ¢ (ry;p) varies from the init ial guesses 

fo ("1) , ¢o ("1) to the final solutions f ("1) and ¢ ("1). Using Taylor series we may write 

00 

f(ry ;p) = fO(17) + L fm(ry)pm , (3.39) 
m=l 

00 

¢ (ry ;p) = ¢o(ry) + L ¢m(ry)pm, (3.40) 
771=1 

f ( ) = ~ omf(ry;p)/ 
mry ,!:l m ' 

m . ury p=O 
= ~ om¢ (ry ;p) / 

¢m(ry ) m! orym p=o' (3.41 ) 

Obviously Eqs. (3.36) and (3.37) have two non-zero auxiliary parameters hf and h</> . The 

convergence of the series (3.42) and (3.43) is dependent upon hf and h</> . The values of hi (i = f , 

¢) are chosen properly so that Eqs. (3.39) and (3.40) are convergent at p = 1. In view of Eq. 

(3.38) we have 
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(3.42) 
m=l 

00 

¢ (ry) ¢O(ry) + L ¢771(ry) · (3.43) 
771=1 

3.2.3 mth order deformation equations 

The mth order deformation problems are obtained by differentiating Eqs. (3.33) and (3.34) m 

times with respect to p and then setting p = O. These are given by 

m-l 

R!n(ry) = f:~-l - M2 f~'-l + L [fm-l-kft - f:n-l-kf~] 
k=O 

m-l k 

+ (31 L f771-l-k L[2fLdf' - ik-d!"] 
k=O 1=0 
m-l 

(3 ~ f" f" f f"" ] + 2 ~ 771-l-k k - m-l-k k , 

k=O 

m-l 

R~,(77) = ¢:~- l (ry) - Scry¢m_l + Se L ¢:n-l-kfk, 
k=O 

47 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 



Xm = { 0, 
I , 

m ::; I , 
(3.49) 

m>l. 

Denoting f:" ("I) and ¢~l ("I) as the special solutions, we have the following general solutions 

where 

f:"( ry ) +C1 +C2 exp(ry) +C3 exp(-ry), 

¢~(ry ) + C4 exp(ry) + C5 exp( -17) , 

(3.50) 

(3.51 ) 

(3.52) 

The symbolic computation software MATHEMATIC A is employed to obtain series solutions 

upto first few order of approximations. The relevant series solutions can be written in the form 

2m+12m+l-n 

L L ain,n17Q exp( -nry) , m ~ 0, (3.53) 
n=O q=O 

2m+12m+l-n 

L L bin,nryq exp( -nry), (3 .54) 
n=O q=O 

in which the coefficients a~l,n and b~l,n can be determined in the next section. 

3.2.4 Derivation of the coefficients 

First of all we calculate the derivatives appearing in the Eqs. (3.47) and (3.48). From Eqs 

(3.53) and (3.54)we have the coefficients of the form 
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al~t,n = [(q + l)a:;t~ - na~,n] , 

bl~t,n = [(q + l)b:;t~ - nb~t,n] 

a2~,n = [(q + l)al:;t~ - nal~,n] , 

a3in,n = [(q + 1 )a2:;t,~ - na2~t,n] , 

a4~,n = [(q + 1)a3:;t~ - na3~,n] , 

b2~t,n = [(q + 1)bl:;t7~ - nbl~,n] . 

For the product terms in Eqs. (3.47) and (3.48) , the coefficients are 

,n-I min{n,2k+l} mi n{q,2k+l-i} 
q L L L a q- j a2j 

Q7n,n m-I-k,n-i k,i' 
k=O i=max{O,n-2m+2k+l} j=max{O,q-2m+2k+l+n-i} 

m - I min{n,2k+l} min{ q,2k+l-i} 

al~,n L L L al q-j al j 
,n-I-k,n-i k,i' 

k=O i=max{O,n-2m+2k+l} j=max{O,q-2m+2k+l+n-i} 

m-I min{n,2k+l} min{q,2k+l-i} 

a2~,n L L L a q-) a4) 
m-I-k,n-i k,i' 

k=O i=max{O,n-2m+2k+l} j=max{O,q-2m+2k+l+n-i} 

m-I min{n,2k+l} min{q,2k+l-i} 

a3~,n L L L 2q-) 2) 
a m-I-kn-ia ki' , , 

k=O i=max{O,n-2m+2k+l} j=max{O,q-2m+2k+l+n-i} 

m-I min{n,2 k+l} min{q,2k+l-i} 

a4~.n L L L blq- j .aj . 17t-I-kn-, k,' , , 
k=O i=max{O,n-2m+2k+2} j=max{O,q-2m+2k+2+n-i} 

For the product of three functions term in Eqs. (3.47) the coefficients are 

m-I min{p,21+1} min{t,21+I-i} 

a5~,p = L L L al~j,p_,a2L, 
k=O i=max{O,p-2k+21-1} j=max{O,t-2k+21-I+p-i} 

m-I min{p,21+ 1} min{t,21+1-'i} 
6t ~ ~ ~ t-j 3j 

a k,p = ~ ~ ~ ak_l,p_ia l,i' 
k=O i=max{O,p-2k+21- 1} j=max{O ,t -2k+21-1+p-i} 
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(3.55) 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

(3 .60) 

(3.61 ) 

(3.62) 

(3.63) 

(3.64) 

(3 .65) 

(3.66) 

(3.67) 



1n-l min{ n,2k+2} min{ q,2k+2-p} 

L L aq - t (3). 
m-l-k,n-p I,.' 

k=O p=max{0,n-2m+2k+l} t=max{0,q-2m+2k+l+n-p} 

m-l min{n,2k+2} min{q,2k+2-p} 

L L q-t 4) 
am _ 1_ k ,n_p a l,i' 

k=O p=max{0,n-2m+2k+l} t=max{0,q-2m+2k+l+n- p} 

Using the above relations in Eqs. (3.47) and (3.48) we get 

2m-12m-l-n 

hfRfn(ry) = hf L [ 3q M2 1q ] q -1117 a 'n-l ,n - a ,n-l,n ry e 
n=O 

2m 2m-n 

+ hf L L [a;n,n - a1~,n] ryq e -
nry 

n=O q=O 
2m+ 1 2m+ I-n 

+ hf L L [2 ((3) a7~,n - ((3)a8~ ,n] ryqe -
nry 

n=O q=O 
2,n 2m-n 

+ hf L L [a3~,n - a2~,n] 77qe -
nry

, 
n=O q=O 

2m-1 2m-1-n 

h.pRf,t(77) = h .p L L [b2;;t_1 ,n - Sel'b~_l ,n] ry
q
e - 1117 

n=O q=O 
2m 2m-n 

+ h .p L L [(Se) a4~,n] ryq e-
nry

, 
n=O q=O 

2m+12m+1-n 

hfRfn(ry) = L L hf 

X2m+1-n-q{ a3~_ 1 ,n - M2a1~_1 ,n} 

+X2m+1-n-q{ a~t,n - a1;;',n} 

+2((3)a5;;',n - ((3)a6~t,n n=O q=O 

or we can write 
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(3.69) 

(3.70) 

(3.71 ) 

(3.73) 



2m+12m+l-n 

L L 
n=O q=O 
2rn 27n-n 
L L r~tn77q e-n"" 
n=O q=O 

in which 6.~,n and r~,n are given by 

X2m+l-n- q{ a3~_1 ,n - M2a1~_1,n} 

+X2m+1-n-q{ a~t,n - a1~,n} 

+2(,B)a7~,n - (,B)a8~,n 

+X2nt+l-n- q{ a3~,n - a2~t,n} 

[ 

X2m+1-n-q {b2~-1 ,n - SC'Yb~_l,n} jl 

+ (Sc) a4~,n 

From Eqs. (3.47), (3.48), (3.74) and (3.75) we arrive at 

2m+12m+l-n 

'cf [Jm(ry) - Xmfm-l(ry)] = L L 6.~t,n77qe-n"" 
n=O q=O 
2m 2m-n 

,c", [¢m(ry) - Xm¢nt-l(ry)] = L L r~,nryqe-n7) . 
n=O q=O 

Through inverse of linear operators on both sides, we have 

2m+12m+l-n q+l 

(3 .74) 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

(3.79) 

'" '" '" 6.q 1I1q nqe-n", + em + ente') + e me-')(3 80) L L L m,nr' n,k '/ 1 2 3 , ' 
n=O q=O k=l 
2m 2m-n q+l 
'" '" '" r q 1J 2

q 
nqe-7t1) + eme'" + eme-') L L L m,nr' n,k'/ 4 5, (3.81 ) 

n=O q=O k=l 
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where Ci (i = 1 - 5) are the constants of integration. Employing boundary conditions one 

has 

c;t = 0, C:t = 0, (3.82) 

2m+l 2m 2m+l2m+l-n 

C3" L 6~,o/-L16 , l + L 6~, l (/-Ll i,l - /-L1i,O) + L L 6~,n(/-Ll~,l - p,I~ ,O) ' 
q=O q=O n=2 q=O 

(3.83) 
2m+l 2m+l 2m+l2m+l-n 

Cr' L 6;"O/-L16,l + L 6~,l/-Lli,l + L L 6~"n{(/-Ll~,l - (n - 1) /-Ll;" o)} , 
q=O q=O n=2 q=O 

(3.84) 

(3.85 ) 

q-kq-k-r 

LL -q! 
(3 .86) 

kl (n - l )q+l-k-r-p nr+l (n + l)p+l' 
r=O p=o 
q-k 
~ q! 
f;:o k! (n - l)q+l-k-p (n + l)p+l . 

(3.87) 

Substitution of values of constants into Eqs. (3 .80) and (3 .81) one may write 
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2m+12m+l-n 2m+12m+l-n q+l 

~ ~ [bq - / bq ] q -nT} - ~ ~ ~ r q 2q q -m) ~ ~ m,n Xm+2-nXm+2-n-q m-l,n 77 e - ~ ~ ~ m,nJ.L n ,k7] e 
n=O q=O n=O q=O k=l 

[

2m+1 2m 2m+12m+l-n 1 
- ~ r;n,OfL26,o + ~r;;"lfL2i.o + ~ ~ r~,nfL2~,o e-

7

). 
(3.89) 

Comparing like powers of 7] in the above equations we arrive at 

2m 2m+12m+l-n 

a~,O XmXm+2Xm+2-qa~l-I ,O - L ~;;'.OfL16,1 - L L ~~,n(fL1~,1 - (n - 1) fL1~, o), 
q=O n=2 q=O 

(3.90) 
2m 2m+12m+l-n 

a~l, l XmXm+IXm+l-qa~-I,O - L ~;;',lfL1i.1 - L L ~~,n(fL1~ , 1 - nfL1~,o) , 
q=O n=2 q=O 

(3 .91 ) 

m+l-n 2m+12m+l -n 

a~,n = XmXm+2-nXm+2-n-qa~-l.n- L ~~,nfL1~ , k - L L ~~,n(fL1~,I-(n - 1) fL1~,o) ' n 2: 2. 
q=O n=2 q=k 

(3.92) 

Similarly 

2m+12m+l-n 

b~,l = XmXm+lXm+l-qb~_l,l - L L r~,nfL2~,o, (3.93) 
n=2 q=O 
2m+l-n 

bk - bk ~ r q 2q 
m,n - XmXm+IXm+l-q m-l,n - ~ m ,nfL n ,k ' (3.94) 

The coefficients a~,n and b~,n are calculated by using the above recurrence relations. T hese 

have been presented by the initial guess in Eq. (3.30). The values of coefficients are 

s - 1, ag,l = 1, a6,Q = 1, 

0, b6,Q = 0, bg,l = 1 
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Therefore the analytic solutions are 

00 

1(1]) Lim (1]) 
m=O 

[ 

M M+l 

lim '" aO + '" e-
n

'1 M-+oo ~ m,O ~ 
1n=O n=l 

( 

M 2m+l-n q q)] L L am,n1] 
m=n-l q=O 

(3.97) 

00 

(3.98) 

3.3 Convergence of HAM solution 

The series solutions of the considered problems are given In Eqs. (3.97) and (3 .96). The 

convergence of these solutions depend upon the values of the parameters hf and h</>. To see 

the admissible values of hf and h</>, the h curves are displayed for 15th order of approximation 

in Fig. 1. From Fig. 1 it is evident that admissible values of hf is -1.1 :::; hf :::; -0.25 and 

h", is -1.5 :::; h", :::; -0.3. Our computations depict that the solutions series (3.97) and (3.96) 

converge in the whole region of 1] when hf = h</> = -0.4. Table 1 is made just to decide that 

how much order of approximations is necessary for a convergent solution. It is found that 25th 

order approximations are sufficient in the present problem. 
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M = 1.5, S = 1.0. Sc = 1.0. =y, /31 = 0..2= /32 
2r---------~--~----~--~------, 

1.5 . 

6' 0..5 ...... 
~ 

§ 0. 

~ - 0..5 

- 1 

- 1.5 

"'(0), h, 

1/1 '(0.) , h¢ 

--- -----------_._------------------------' 

- 1.5 - 1.25 - 1 - 0..75 - 0.5 - 0..25 0. 
hr, h~ 

Fig. 1: h curves of 1" (0) and ¢' (0) at 15th order of approximation. 

Table 1: Convergence of the HAM solutions for different order of approximations when 

S = 1, M = 1.5 , Se = " = 1 and (31 = (32 = 0.2 , 

Order of approximation 1"(0) -¢'(O) 

1 1.230000 1,133333 

2 1.382294 1.227511 

5 1.571364 1.369794 

10 1.600672 1.423341 

15 1.598050 1.428984 

20 1.597998 1.429452 

25 1.598038 1.429492 

27 1.598035 1.429492 

30 1.598035 1.429492 

35 1.598035 1.429492 

40 1.598035 1.429492 
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3.4 Results and discussion 

In this section Figs. 2- 16 are displayed for t he influence of parameters S , M , /31 ' /32 and Se and 

the chemical reaction parameter 'Y on the velocity l' and the concentration field ¢. T he surface 

mass t ransfer ¢I (0) and the gradient of mass t ransfer _ ¢I (r;) for several values of the emerging 

parameters are also given in Tables (2 and 3) , respectively. Figs. (2 - 5) depict t he eft"ects of 

S, M, /3 1 and /32 on t he velocity component 1'. It is worth mentioning that t he magnitude 

of the velocity decreases when S increases. The boundary layer thickness also decreases by 

increasing S. We noticed from Fig. 3 that the magnitude of the velocity fl decreases for large 

values of M . It further needs to be mentioned that the boundary layer t hickness is decreasing 

function of M. The eft"ects of the Deborah numbers /31 and /32 are similar to Sand M on fl 

(Figs. 4 and 5). It is seen that l' has t he similar results for t he large values of /31 and /32 · 

This change in the velocity is larger in case of suction. The variations of emerging parameters 

on the concentration field ¢ are shown in Figs. 6 - 16. It can be seen from Fig. 6 that ¢ is a 

decreasing function of S and the concentration boundary layer also decreases when S increases. 

From Fig. 7 we observe that ¢ decreases for large values of M. The concentration boundary 

layer also decreases when !II! increases. Figs. (8 and 9) depict the variations of /3 1 and /32 on 

t he concentration field ¢ for a non-reactive species 'Y = O. We can see that without reactive 

species t he concent ration field ¢ is decreased as /3 1 and /32 increases. Figs . 10 - 13 plot the 

distributions of t he concentration field ¢ for various values of the Deborah number /31 and 

/32 in the case of destructive b > 0) and generative b < 0) chemical reactions, respectively. 

These Figs. display that ¢ is a decreasing function of /31 and /32.The concentration field ¢ also 

decreases for large values of /31 and /32 in case of generative chemical reaction b < 0). The 

magnitude of ¢ is larger in case of ('Y < 0) when compared with the case of destructive chemical 

reaction b > 0). We found that the concentration field is decreased for several values of /31 

and /32 in all cases b = 0, 'Y > 0 and 'Y < 0). The influence of the generative chemical reaction 

parameter b < 0) on ¢ is illustrated in Fig.14. Obviously fluid concentration increases with 

an increase in the generative chemical reaction parameter. The variations of the destructive 

chemical reaction parameter b > 0) on the concentration field ¢ are sketched in Fig. 15. The 

fluid concentration ¢ has the opposite behavior for ('Y > 0) in comparison to the case of 

generative chemical reaction parameter b < 0). However the change in concentration field is 
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larger for the generative chemical reaction. The concentration boundary layer is decreased in 

case of destructive chemical reaction. The variations of the Schmidt number Be on ¢ is shown 

in Fig. 16. It is clear that boundary layer and concentration field ¢ is decreased by increasing 

Be. 

Table 2: Values of the surface mass transfer -¢'(O) for some values of B ) M ) {3 with Be = 

1' =1 

B 

o 
0.2 

0.4 

0.6 

0.8 

1 

0.6 

M 

1.5 

1 

1.2 

1.4 

1.6 

1.8 

2 

1.5 

0.2 

0 

0.5 

1 

1.5 

2 
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-¢'(O) 

0.87702 

0.96225 

1.05930 

1.16853 

1.28985 

1.42949 

1.13104 

1.14998 

1.16312 

1.17330 

1.18133 

1.18832 

1.16941 

1.16806 

l.16658 

1.16498 

l.16325 



Table 3: Values of the surface mass transfer -¢/(O) and the gradient of mass transfer for 

some values of Se and 'Y with S = 1, M = 1.5 and /31 = /32 = 0.2. 

Se 

0 

1 

2 

3 

4 

5 

1 

'Y - ¢/(O) 

1 026126 

1.40889 

2.37912 

3.32871 

4.29063 

5.23907 

0.5 1.09454 

1 1.40842 

1.5 1.64540 

2 1.84287 

2.5 2. 01559 

3 2.17098 

0 

- 02 

-04 

-06 
12-
~ - 08 I 

I 

-1 

- 1.4 

o 2 

/' 
/' 

4 

'rJ 

0.2 

0.6 

0.2 

0.6 

6 
1] 

Se 

0 

0.5 

1 

0 

0.5 

1 

1 

S= OO 
S=03 
S=06 
S=1.0 

r 
1 

0.2 

0.6 

1 

0.2 

0.6 

1 

8 10 12 

Fig. 2: The variation of suction parameter S on t he velocity field l' 
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- ¢/ (77) 

0.23374 

0.71820 

1.01645 

0.20477 

0.49168 

0.56475 

0.64435 

0.87646 

1.01979 

0.43512 

0.52897 

0.56471 



Fig. 3: 

$= 05, fJt= 02= fJ2 
0 ---.... 

"., 

- 0.25 / 

-0.5 

~ -0.75 
B 
~ 

- 1 M=OO 
M=03 
M= 06 
M= 1.0 

-1.75 
0 2 4 6 8 10 12 

1] 

The variation of Hartman number M on the velocity field f' 

- 0.2 

-0.4 

§-o.6 
~ 

-0.8 

-1 

o 2 4 6 
1] 

fJ1 = 00 
fJ1 = 0.3 
fJt=0.6 
fJ1 = 1.0 

8 10 12 

Fig. 4: The variation of Deborah number /31 on the velocity field j' 

59 



-0.2 

- 0.4 

:s -0.6 · 
"-

- 0.8 

- 1 

o 2 

M= o.q S= o.q f31 = 0.2 

4 6 
17 

f32= 0.0 
f32=0.3 
f32=0.6 
f32 = 1.0 

8 10 12 

Fig. 5: T he variation of Deborah number /32 on the velocity field l' 

1 

0.6 

0.2 

2 4 6 
'7 

S=O.O 
S=0.3 
S=0.5 
S=1.0 

8 10 12 

Fig. 6: The variation of suction parameter S on the concentration field ¢ 

60 



02 

2 4 6 
7J 

M=OO 
M=03 
M=05 
M= 1.0 

8 10 12 

Fig. 7: T he variation of Hartman number NI on the concentration field ¢ 

1 

08 

06 
12 :s: 

04 

02 

2 4 6 
7J 

f31 = 0 
f3t= 1 
f31 =2 
f31 =5 

8 10 12 

Fig. 8: The variation of Deborah number /3 1 on the concentration field ¢ 

61 



1 

08 

06 

02 

\' 
\ \', 
\\ 

\ \ '-
\ ' 

\ \ \ , \ 
\ \ ' 

\ \ 
\ \ \ 

, " \ ,\ 
\ ," , , 

\ 

" 
\ '-, , , ', , , " '\ ... 

" ..... ,'" 
...... ..... ...... 

...... ...." ...... 

fi2= 0 
fi2= 1 
fi2= 2 
fi2 = 3 

- - '-...:-:. ....... 
OL-__ ~ ____ ~ __ -~~~~~ 

o 2 4 6 
1] 

8 10 12 

Fig. 9: The variation of Deborah number (32 on t he concentration field ¢ 

1 

06 

~ 
04 

02 

2 4 6 
1] 

fit = 0 
fit = 1 
fit =2 
fit =5 

8 10 12 

Fig. 10: The variation of Deborah number (31 on ¢ for destructive chemical reaction 

62 



1 

08 

06 
~ 
~ 

04 

02 

0 

0 

\ 
\,\ 
\' \ '\ 
\ ' '-, , 
\ \ '. 
\ \ '\ 
\ \ \, , " 
\ " , " 

\ "'" 
\ " .......... " ,,' ... 

f32=0 

132 = 1 
132=2 
132=3 

...... ..... ............ 
'- - - :-.:~~-

2 4 6 
1] 

8 10 12 

Fig. 11: The variation of Deborah number (32 on ¢ for destructive chemical reaction 

1.2 

1 

08 

04 

02 

f3t =0 
f3t = 1 
f3t =2 
f3t =5 

oL-____________ -=~~~ 
o 2 4 6 

TJ 

8 10 12 

Fig. 12: The variation of Deborah number (31 on ¢ for generative chemical reaction 

63 



1.2 

08 

B :s: 06 

04 

0 2 

M= 05= S:1 S= 01, y= -05, [31 = 02 

" " 

[32=0 
[32= 1 
[32=2 
[32=3 

o~ __ ~ ______________________ ~ 
o 2 4 6 

TJ 

8 10 12 

Fig. 13: The variation of Deborah number (32 on ¢ for generative chemical reaction 

M= 1, ~= 05, S= 1, [31 = 02= [32 
--, 

I \ 
1.2 

1 1_ ... , \ 

" \ 

y= 00 
y=-02 
y=-07 
y=-1.0 

~ 06 

04 

02 

\ \ 
\ \ 

\ 
\ , 
\ , 

\ \ 
\ \ " \ 

" '" 
'" ',' 

" '"" ' ......................... ~ ...... 

OL-________ ~'= .. ~ ... ~-~=~~~~ 
o 2 4 6 

TJ 

8 10 12 

F ig. 14: T he variation of generative chemical reaction ('Y < 0) on the ¢ 

64 



1 

08 

06 

02 

M= 1, ~=05, S = 1, /31= 02=/32 

\\ 
f, 
I' 
\1 \ 

,I \ 
'I' 
\' '. , ' 
\1 \ 

" " \ , 
\ ' " , " 

\ \, '" 
".... " , ........... ... , ... 

1' = 00 
1'=02 
1'= 07 
1'= 1.0 

................... ......... 
OL-____ ~ ____ ~-_=--~'~-~-~-~~-~~~========J 

o 2 4 6 
7] 

8 10 12 

Fig. 15: The variation of destructive chemical reaction h > 0) on the ¢ 

1 

08 

06 
~ 
~ 

04 

02 

2 4 6 
7] 

~=001 
~= 070 
~= 1.20 
~= 1.70 

8 10 

Fig. 16: The variation of Schmidt parameter Se on the concentration field ¢ 

65 



3.5 Concluding remarks 

This investigation concentrates on the mass transfer in the MHD flow of Jeffrey fluid over a 

porous shrinking sheet with chemical reaction species. The non-linear system of ordinary dif

ferential equations is solved analytically using homotopy analysis method (HAM). The velocity 

f'and the concentration field ¢ are obtained and discussed. The surface mass transfer and the 

gradient of mass transfer are also computed in tabular form. As a summary we can conclude 

that 

• The velocity field f' increases by increasing B, M, (31 and (32 . 

• The concentration field ¢ decreases when Be increases in both cases of destructive/generative 

chemical reactions. 

• In destructive/generative chemical reactions, the effects of B, M , (31 and (32 on ¢ are quite 

opposite to that of f' . 

• The concentration field ¢ has opposite results for destructive b > 0) and generative 

('Y < 0) chemical reactions. 

• The magnitudes of the surface mass transfer -¢' (0) and the gradient of mass transfer 

- ¢' (TJ) are increased by increasing B. 
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