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Notations 

The symbols and notations that have been used in this thesis are by and large 

standard and are available in [16], [17] and [31] . However, some extensively used 

symbols in this thesis are given b elow for the sake of convenience. 

r = (A , B, C, D : A3 = B2 = C3 = D2 = (AC)2 = (AD)2 = (BC)2 = (BD)2 = 1). 

G1 = (A, C, D : A3 = C3 = D2 = (AC) 2 = (AD) 2 = 1). 

G2 = (B, C, D : B2 = C3 = D2 = (BC) 2 = (BD)2 = 1). 

11([ = (C, D : C3 = D2 = 1) . 

{ 

0, + ki} 0,2 + k2 

Q* (b) = c : a, c, d E ~,c > 0 ,where i = yCI, k E ~ and d = c 

Q(ki) = {a: ki: a,c,cl E Z,c t= o}. 
Q (jn) = {a + bjn: a, bE Q}, where n is a squal'e-fTee positive integer. 

Q (yen) = {a -1- b.j=n: a, b E Q}. 

n are two distinct square-free integers. 

Q(i, fo) = {a + byln : a, b E Q(i)}. 

S3 = (A, D : A3 = D2 = (AD)2 = 1) is a symmetric group of degree 3. 

A4 = (A, C : A3 = C 3 = (AC) 2 = 1) is an alternating group of degree 4. 

D2 = (B, D : B2 = D2 = (BD) 2 = 1) is a dihedral group of order 4. 

Zn is a cyclic group of order n having binary operation addition mod n. 



Abstract 

vVe have invest.igated properties of Picard group r = (A, B, C, D : fl3 = B2 = 

C3 = D2 = (AC) 2 = (AD)2 = (BC)2 = (BD)2 = 1) by looking at its action on 

suitable spaces, where A, B, C and D are linear fractional transformations defined by 

fl (z) = _1_., B (z) = ~, C (z) = 1 + Z and D (z) = -1. The aim of this research 
Z - '/, z -z Z 

has been to study actions of r on the quadratic, biquadratic and finite fields by using 

diagrams. 

vVe have found out that Q (i) is the smallest infinite and the only quadratic field 

on which r acts. The one point extension of Q (i) is Q( i, vn), where n is a square-free 

positive integer, on which r acts. Among the biquadratic fields Q(i, fo), the field 

Q(i, J3) is the only one which contains all the fixed points of generators of r. So, 

action of r on Q( i , J3) must be unique and interesting. 

'lYe have defined coset diagrams for the Picard group and have used them to study 

actions of r on the above fields. vVe have shown that the coset diagram for the action 

of r on Q (i) is connected and the action of r on Q (i) is transit ive. 'lYe have shown 

also that action of r on Q( i, J3) is intransitive. 

vVe have proved that if ex is an ambiguous number in Q( i, .J3) then the ambiguous 

numbers form a closed path in the coset diagram for the orbit rex and it is the only 

closed path of ambiguous numbers contained in it . 

Next we have investigated types of the closed path formed by ambiguous numbers 

and shown that there is only one type in the coset diagram for the action of r on 



Q(i, J3) that is, (17,1, ... ,nk,nk, ... ,17,1) unlike in the case of coset diagrams for the 

action of the modular group on real quadratic irrational numbers. We have also 

found a condition under which the above closed path exists in the coset diagram for 

the action of r on P L (Fp), where p is a Pythagorean prime. 
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Preface 

A portion of infinite group theory, especially combillatorial group theory, is t.ied to 

subgroups of pro.iective general linear group PGL (2 , CC), where CC is the field of com­

plex numbers. One of its subgroups is the projective special linear group PSL (2, C). 

The survey article by vv. Magnus [21] has given a broad overview of the use of 

PSL (2, CC) in combinatorial group theory. There are several methods to generate 

interesting subgroups of PSL (2, C). One of the methods is to consider subgroups 

PSL (2, A), where A is a ring of algebraic integers in <C. The foremost example is the 

modular group j\tf = PSL (2, Z), the group of linear fractional transformations wit.h 

integet entries and determinant equal to one. In 1890's, L. Bianchi and others (see 

[20]) have initiated the study of Bianchi groups fd = PSL(2, Od), as a natural exten­

sion of t.he study of t.he modular group, where cl is a positive square-free integer and 

Od is the ring of algebraic integers in the imaginary quadratic number field Q(.J={1). 

These groups have attracted a great deal of attention both for their intrinsic interest 

as discrete groups and for their applications in hyperbolic geometry, topology and 

number theory. 

The group f 1 , that is, PSL(2, Od, where 0 1 i~ the ring of Gaussian integers, has 

been studied independently. It was first introduced by E. Picard and has been named 

the Picard group [17]. vVe have denoted t.he Picard group by f for our convenience. 

Picard group f is PSL(2 , Z[i]). The group f is an important subgroup of PSL(2, CC). 

It is an example of the fact that the discreteness on CC U {oo} does not imply the 
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discontinuity. Its action on C U {oo} is not, discontinuous, whereas its action on 

!-]3 = {z + tj : z E C, t > O} is discontinuous [2]. 

The presentat.ion for r is 

. 1 
where A, B, C and D are linear fractional transformations defined by A (z) = --. , 

Z -'L 

1 l+ z - 1 
B (z) = -, C (z) = -- and D (z) = -. In form of matrices, t.hese linear fract ional 

z - z z 

t.ransformations can be written as 

A= [0 iJ [0 iJ [1 1J [0 1] . ' B =. ' C = , and D = 

7, 1 ~ 0 -1 0 -1 0 
Now let 

/v! ( C, D : C3 = D2 = 1) . 

vVe can decompose r as a free product of G1 and O2 with III! amalgamated, that 

IS, 

This thesis is comprised of four chapters . The aim of chapter one is to provide 

background material for succeeding work. vVe have given an introduction of quadratic 

fi.elds, biquadratic fields, linear groups, Picard group and coset diagrams. We have 
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defi ned coset di agrams for the P icard group r , and have described the fragment of 

the cose t. diagram for the action of r on Q ('i ) U { CXJ }. 

In chapter two, we have shown that r acts on infinite fields like Q ('i) and Q U, fo) , 

where n is a square-free positive integer. The smallest extension of Q on which r 

act.s is Q( i). We have shown that action of r on Q (i) is transitive but actions of its 

component. groups G1 , G2 and amalgamated group 1\1 are intransit ive. 

In chapter three, we have explored some interesting group theoretic properties of 

action of r on Q( i, J3). Fixed points of a linear fr actional transformation 9 are those 

x in C which satisfy 9 (:1;) = .1:, if this is so, we say t.hat 9 fixes x. The fixed points of 

i ± }3 - 1 ± J3i . 
generators A , B , C and D of rare , ± 1, and ±i respectlVely. They 

2 2 

all lie in a biquadratic field Q('i, }3). So, it is interesting to study closed paths in 

the coset diagTam for the action of r on Q('i, }3). This is the reason why we have 

studied it independently from other biquadratic fields Q( i, fo), where n is a positive 

1 
square-free integer. The a.lgebraic integers of Q( i'}3) are "2 (( 0, + bi) + (c + di) V3) 

where 0, = d(mod2) b - c(mod 2) and 0" b, c, cl E Z [36J. We have studied algebraic 

integers in Q (i,}3) and used them to prove that the action of r on Q (i,}3) is 

intransitive. 

Coset diagrams for the orbit of r on biquadratic field Q(i,}3) give some in-

t.eresting information. The action of r on Q( i , V3) shows that some elements of 

. !0 0, + bJ3 
Q('t, v 3) of the form have a pattern; so they need to be classified. The 

c 
a+bV3 

conjugate of C\' = is a = 
c 

a - bV3 
---. A real quadratic irrational number 

c 



0' = a + bV3 E Q(i,V3) is called totally positive (negative) if a and Q are both 
c 

posit.ive (negative). 'When 0' and a ll ave opposite signs, then they are called ambigu-

ous numbers. We have noticed that ambiguous numbers in the coset diagram for the 

action of f on Q( i, V3) form a unique pattern, so they deserve special at.tention. vVe 

have shown that t.here is a finite number of ambiguous numbers in an orbit fC1: , where 

o~ is a,n ambiguous number, and they form a closed path and it is the only closed 

path in the orbit fO', In this way we have classified all the ambiguous numbers in the 

orbit, 

The ring Z of integers induces a natural ring structure on Zn = Z/nZ, the integers 

modulo n; if '/1, is prime p, then Zp is a field under this structure, also denoted as Fp. 

The proj ective ljne over finite field is denoted by PL(Fp) = ~)U {oo}. 

In cha.pter four , we have found certain types of closed paths formed by ambiguous 

numbers in the coset diagram [or the action of f on Q( i, V3) and the linear fractional 

transformation which the closed path induces. Also a condition for a closed path to 

, eL + bV3 1 1 
contalll a = with Q, o~ with - and 0' with -=- is established, where eL , b, c E Z . 

C 0' 0' 

We have found a condition under which a homomorphic image of the closed path of 

b ' b f 1 f a + bV3 . . . . am IgUOUS num ers 0 t 1e orm eXIst m the coset dmgram for the actIOn of 
c 

1 r on PL (Fp). An p.lement 0' = '2((a + b'i) + (c + ch) V3) in Q('i, V3) corresponds t.o 

(~(a -I- bm) -I- (c -I- clm)n ) modp in Fp, under the homomorphism from Q('i, V3) U 

{oo} to PL (Fp) , where m 2 
- - 1 (modp) and n2 _ 3 (modp). 

Four papers containing results from chapters two, three and four have been sub-
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mittcd for publicat.ion in international journals. Complete informaLion about. these is 

given as below. 

1. Q. Musht.aq and S. Anis, Actions of Picard group. 

2. Q. Mushtaq and S. Anis, Pattern in coset diagram for the Picard group 

when acting on biquadratic space Q (L., .J3) U {oo}. 

3. Q. Musht;;lq and S. Anis, Ambiguous numbers in the coset diagram for the 

action of r on Q('i, .J3). 

4. Q. Mushtaq and S. Anis, Closed paths of ambiguous numbers in the coset 

diagram for the action of r on Q(i, .J3). 



G 

Chapter 1 

Definitions and Basic Concepts 

The aim of this chapter is to introduce the concepts, backgroLlnd material, and 

objectives of this thesis. vVe have given a brief introduction of quadratic fields, bi­

quadratic fields, linear groups and a Pica.rd group. 'vVe have described coset diagrams, 

their brief history and examples . We have also defined coset diagrams for the Picard 

group. \1Ve have included here only those definitions which are relevant to the research 

work embodied in this thesis. 

1.1 Definitions 

Let G be a group and X be a non-empty set. By an action of G on X we mean a 

function {/, : G x X -t X such that for all x in X and g, h in G the following axioms 

are satisfied [3]. 
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(i) jI, (g, /d h,x)) = /dgh, .T) 

(ii) jI. (1, x ) = 1. x = x, where 1 denotes the identity in the group G. 

'-IVe can write x9 instead of f.L (g , x ). For example G acts on itself by conjugation, 

that is, x9 = g- lxg for each x, 9 E G. 

Let G be a group acting on a set X . Then {x9 : 9 E G} is called an orbit of x in 

G for x E X, we denote it by Gx and X is called a G-set or a G-space. Also G acts 

on X trClnsitively if X i= ¢ a,nd for any x, y E X there exists 9 E G such that x9 = y. 

If a G-space has one orbit, then the ac tion of G on X is called transitive. 

Let A = (aI, ... : R1, ... ) and B = (b1, ... : Sl, ... ) be two groups with H < A, J( < B 

and </) : 1-[ ---t J( be an isomorphism. Then t.he free product of A and B , amalgamating 

H to J( , is t he group G 'with presentation 

that. is, the group G has generators as the union of the generat.ors of A and B and has 

relations as the union of the relations of A and B together with an additional set of 

relations giving the subgroup isomorphism. Identifying H with its isomorphic image, 

G is called t.he free product of A and B with H amalgamated , denoted as G = A * B . 
H 

Here A and B are called the components of G. If H = {I} , then G is called the free 

product of A and B [17]. 

An integer a is called square-free if it can be written as a product of distinct 
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A group G is called torsion-free if every element of G except t.he identity is of 

infmite order. 

A Fuchsian group is a discontinuous subgroup of P 8L(2, C) which leaves invariant 

a disc. 

1.2 Quadratic Fields 

A quadratic field is of the form Q (~), where ~ is a zero of an in educible quadratic 

polynomial over Q. The elements of such a field are of the form aa + al~' where aa 

and al are rational numbers. If ~ is of the form (a + by'rri,) / c where a, b, c -I=- 0 are in-

tegers and 'In is a square-free integer , t.hen Q (~) = Q (a + ~Vm) = Q (a + b.Jffi) = 

Q (blffi) = Q (Fn)· These fields have degree 2 over Q, with basis {I , .Jffi} . If m. 

and n are two different square-free rational integers, then Q (.fiTi.) -I=- Q (-fo) because 

Vm does not belong to Q ( -fo). 

A complex number ~ is called an algebraic number if it satisfies some polynomial 

equation f (x) = 0, where J (x) is a polynomial over Q. An algebraic number ~ 

is called an algebraic integer if it satisfies some monic polynomial equation f (x) = 

xn + h.:r;n- l + ... + bn = 0 with integral coefficients. The set of all algebraic numbers 

forms a field and the class of all algebraic integers forms a ring. The algebraic integers 

of rat.ional numbers form Z and algebraic integers of Q (i) form Z [i]. 

Theorem 1 [[32), Theorem 9.20] BueT'Y q'Uaclmt'ic field is oj the jo'rm Q (Iffi) , where 



9 

'111 'is l/, square-free mt'ional integer, pos'it?:ve aT' negative but not eqv,al to 1. Nu.mbeT's 

of the form a + bvm. 'With mtional integers (L and bare algebmic integers of Q (.jm). 

These aTe the only integers of Q (.jm) 'if m == 2 aT 3 (mocl4). lfm = 1 (mocl4), the 

'TI,'u.mbers (a + bvm.) /2, 'With odd mtional integers a and b, are also algebra7:c integeT'S 

of Q (.jm), and there aTe no jurtheT integers. 

A quadratic field Q (vrn) is called imaginary if m < 0, and it is called real if 

m. > 1. An element 0' in Q (fiTi.) is called unit., if it is a divisor of the integer 1. An 

imaginary quadratic field has only a finite number of units; in fact ±1 are the only 

units in these fields except for the case Q Ci) where the units are ± 1 and ±'l, and for 

t.he case Q (.;=3) where the unit.s are ±1 and (±1 ± ;=3) /2 . On the other hand, 

as it is well known that every real quadratic field has infinitely many unit.s. 

A real quadratic irrational number 0' of the form (a + bfiTi.)/c where fL, b, c EZ 

and i t.s conj ugate a. = (a - b.jm) / c may have different signs. If such is the case, then 

0' is called an ambiguous number, for example, (1 + V3) /2 is an ambiguous number. A 

real quadratic irrational number a = (a + b.jm) / c, where a, b, c E Z, is called totally 

positive (negative) if 0' and a. are both positive (negative) , for example, (2 + V3)/2 

is totally positive while (- 2 + V3) /2 is totally negative real quadratic number. 
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1.3 Biquadratic Fields 

If m. and n are t.wo distinct. square-free rat.ional integers, t.hen t.he field formed by 

adjoining rm. and Vii to Q is denoted by Q (V1ii, Fn) and is called a biquadratic 

field over Q, where -vrn and Vii are zeros of an irreducible quartic polynomial over 

Q. The elements of Q (.J1Ti, Vii) are of the form ao -/- alJ1Yi -/- a2y1n -/- a3Jm.n, 

where ao, aI, a2, CL3 E Q. Any element of Q (J1Yi, fo) which satisfies a monic equa-

tion of degree 2 1 with rational integral coefficients is called an algebraic integer of 

Q (.J1Ti, yin). In [36], the explicit form of the algebraic integers , an integral basis and 

the discriminant of Q (.J1Ti, Vii) is given. These fields have degree 4 over Q. Some 

of t.he su bfields of Q ( vrn, yin) are Q ( vrn) , Q (yin) and Q ( )m:n). The aut.hor sup-

posed t.hat l is the greatest common divisor of m and n, that is, l = (171" n), so that 

Theorem. 2 [{36}, Theorem 1] Letting c/', b, c, cl denote rational integers, the algebraic 

7:ntegers of Q (.J1Ti, Vii) are given as follows: 

(i) if (Tn , n) - (ml, nl) = (1,1) (mod4), then the algebraic integers are 

1 
'4 ((I, -/- bvm -/- cfo -/- dJmI'nl) , where a - b = c - d (mod 2), C/, - b -/- c - cl -

o (mocl4); 

(ii) 'if (m , '11) - (1, I), (ml, nl) == (3 ,3) (mod4), then the algebra'ic integers are 

1 
'4 (a -/- bvm. -/- cVii -/- dJmlnl) , wheTe CL == b - c = d (mod 2), a - b - c - cl -

o (mocl4); 



(iii) if (177. , n) == (1 , 2) (mod 4), then the algebraic integeTs a:!'c 

1 
- (a + bViii + cVn + d.Jmlnl) , where a == b, c d (mod 2); 
2 

(iv) if (m.,n) = (2,3) (mod4) , then the algebraic integers a'!'e 

1 :2 (a + bViii + cvn + d.jm'lnl) , where a == c = 0, b - d (mod 2); 

(v) if (177. ,17,) - (3 , 3) (mod 4), then the algebra'ic integeTs CL'/ 'e 

1 :2 (CL + b.Jffi + cVn + el.Jmlnl), wheTe a == el, b c (mod2). 

11 

Example 3 Let m = 2 and 17, = - 1, then Q (.)2, 'i) is a biq'u,admtic field wh'ich has 

degree 4 over Q. The monic polynomial X4 - x 2 - 2 is i'lredlLcible in Q, and.)2 anel 

i aTe zems of this polynomial. The numbers of this field are ao + al V2 + a2i + a3.)2i , 

where ao, aI , a2, a3 E Q, and algebm'ic integers of the fielel are a + bV2 + ci + di.)2 , 

whe7'e CL and c are integers, band el aTe eUher both integers OT' both halves of oeld 

'integers [lB}. 

1.4 Linear Groups 

The linear fractional groups for different fields arose independently. The linear 

fractional groups and its subgroup with square determinants for the field tlp were 

studied by E. Galois in 1832. The homomorphism of G L (2 , F) to the linear fractional 

group is implied in his work. In 1847, the linear fractional group for t.he field of real 

numbers appeared in the work of V. Sta.udt as the proj ective group on a line, with 

elements formed by a. sequence of projections from one line to another in the rectI 
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projective plane [7]. 

In 1852, the linear fr actional group for the field of complex numbers was studied 

synt.hetically by A. F. Mobius. After E. Galois, the homomorphism of CL (2, F) t.o t.he 

linear fract.ional group is also implied in t.he work of J. A. Serret in 1866, and was used 

by A. Cayley in 1880 to determine properties of linear fractional transformations . In 

1893, t he linear fractional group for arbitrary finite fields was st.udied by E. H. Moore 

\Vho est.ablished t.he simplicity of PSL (2, F) for fields of order greater than 3 [7]. 

The class of non-singular 2 x 2 complex matrices is a general linear group with 

respect to the usual matrix multiplication and is denoted by G L (2 , <c). Its sub-

group , SL (2, <C), the special linear group, consists of those matrices wit.h determi-

nants l. The set Z = {aI : a E <C}, where I is 2 x 2 identity mat.rix, is a normal sub-

group of C L (2, <c). The projective general linear group is defined by PC L (2, <C) = 

C L (2, C) I Z, and the projective special linear group is defined as P S L (2 , C) = 

SL (2, C) ISL (2 , <C) n Z. 

the ::~e::e: :::~~: :l::xO:t~ni~~;:YC::~;:::~': ~:~: :::o~mati(o: 9:)0: 
c cl 

az + b 
9,4 (z) = d' The class M of Mobius transformations is a group under the 

cz + 
usual composition of functions. We denote the map A -t 9A by cJ.) . An elementary 

computation shows tha t cJ.) is a homomorphism. The kernel J( of cJ.) is {aI : a -=I O}. 

In part.icular , M is isomorphic to C L (2 , C) I J( = PC L (2, <C). The kernel of the 
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restriction of cP to SL (2,CC) is KnSL (2,CC) = {I, -I} and each grl in M is therefore 

the projection of exactly two matrices, say A and -A, in SL (2, CC). vVe deduce that 

M is isomorphic to SL (2, CC) / {I, - I} = PSL (2, CC), see [2] . 

Thus the projective genemllinear grov,p PG L (2, CC) is the group of linear fractional 

transformations T( z ) = az + db with ad - bc =I- 0 and a, b, c, dEC and the projective 
cz+ 

special linear gro'up PSL (2, CC) is the group oflinear fractional transformations T( z) = 

az + b 
-- with ad - bc = 1 and a, b, c, dEC, is a normal subgroup of PG L (2, C). 
cz + cl 

The G L (2, C) is both a group and a topological space, that is, a topologica.l group 

with respect to the metric II X - YII , where IIX - 1" 11 = [Ia - al2 + Ib - ,61 2 + Ic _ 1'12 + 

Id - 61 2]1/2 for X = (a b) and Y = (a ,6) . A subgroup G of GL (2 , CC) is discrete 

cdI' fJ 

if and only if the subspace topology on G is the discrete topology. For instance, the 

Modular group , is the subgroup of SL (2, CC) consisting of all matrices A with CL, b, c 

and d integers, is discrete. More generally, the Picard group, consisting of all matrices 

A in SL (2 , CC) with CL, b, c and d Gaussian integers, is discrete [2]. 

Let X be a topological space and G be a group of homeomorphisms of X onto 

it.self. vVe say that G acts discontinuously on X if and only if for every compact 

subset J( of X, 9 (K) n J( = 0, except for a finite number of 9 in G. 

Let H3 = {( XI,X2,X3 ) E]R3 : X3 > O} be the upper half space equipped with the 

2 dxi + dx~ + d.1:~ f 
hyperbolic metric ds = ? 0 constant cmvature - 1. In terms of 

X3 

ql.laternions IHI, H3 = {z E IHI : z = X l + x2i + X3 j , X3 > O}. The relationship between 

discret.eness and discontinuity as applied to subgroups of M is stat.ed in the following 
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T heorem. 

Theorem 4 [(2), The07'em 5.3.2] f1 Sllbgrol~P G of M is discrete if and only if 'it acts 

disCO'nt'in:/),ollsly in H3. 

Of course, Theorem 4 shows that if G acts discontinuously in some non-empty 

open subset of CC U {oo}, then G is discrete. The converse is false: it is possible for 

G to be discret e yet not act discont inuously in any open subset of CC U {oo}. Picard 

group is an example of this fact. Although its action on CCu {oo} is not discontinuous, 

its action on H3 is discontinuous [2] . 

1 .5 Picard Group 

Picard group r is P S L(2 , Z[i]) or PS L(2, 0 1) , where 0 1 is the ring of Gaussian 

. . S ' f] 11 . . 1 f l' l' . 1 .c . T() az + b mtegers. peCl 1ca y, It IS t 1e group 0 meal' ractlOna transformatIOns z = d 
ez + 

with ad - be = 1 and a, b, c, dE Z[i]. 

r belongs to the class of Bianchi groups r d = P S L (2, Od), where cl is a posit ive 

square-free integer and Od is the ring of algebraic integers in the imaginary quadratic 

number field Q(.J=d). Bianchi groups are the subgroups of P S L( 2, CC). These groups 

have att racted a great deal of attention both for their intrinsic interest as discrete 

groups and also for their applications in hyperbolic geomet ry, topology and number 

theory. The study of this class of groups was initiated in the 1890's by Bianchi and 

others [20] as a natural extension of the study of t he modular group PS L(2 , Z). The 
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l'lugs Od are all discretely normed and for cl = 1,2,3, 7, 11 , Od have a Euclidean 

algorithm. Thus they are similar to the ring of rational integers Z. 

The group r was first introduced by E. Picard and has been llamed the Picard 

group [17]. E. Picard derived both generators for r as well as fundamental domain in 

H3 . R. Fricke and F . Klein have dealt with the importance of r in the study of binary 

quadratic forms with Gaussian integer coefficients. They also found a presentation 

for r based on a fundamental region. Let (X, cl) be a metric space and let G be a 

non-trivial group of isometries of X. A subset R of X is said to be a fundamental 

region for the group G if the set R of X is open in X, the members of {gR : 9 E G} 

are mutually disjoint, and X = U{gR : 9 E G}. A fundamental domain is a connected 

[undamental region. 

With respect to group specific properties, r has been the most studied of the 

Bia.nchi groups. Real interest in the Picard group and the Bianchi groups in general 

began about 1970 as a consequence of two results of J. P. Serre. His first result which 

is covered in detail in [17] is that the Bianchi groups do not satisfy the congruence 

subgroup property. This contrasts with the fact (proved by Serre) that for all number 

fields J( other than Q and imaginary quadratics, the gTOUp SL(2, R) (where R is the 

ring of integers of K) does satisfy the congruence subgroup property. Secondly, one 

attempts to express rd as a [Tee product with amalgamation. It turns out that this 

is possible in all cases except r 3 . A method for finding presentation of SL(2, Od) in 

the Euclidean case was found by P. M. Cohn [11]. Using his method the following 



presentation for r was derived in [17J. 

- 1 
w here a (z) = -, t (z) = z + 1, 7.L (z) = z + i, and l (z) = i zi. 

z 
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In [17], this presentation is obtained by finding a fundamental domain for f. The 

translation subgroup is generated by t : Z H Z + 1 and'Ll: Z H Z + i. This together 

wit.h the transformation l : z H -z is the stabilizer of 00 . The fundamental domain 

for f is {z = x + yi+ rj E H3 : Ixl ::; ~ , o ::; y::; ~ and (:r2 + y2 + T2)~ ::::: I}. The 

fundamental domain of Picard group is shown in figure below. 

r 

y 

x 

Figure 1 

A convex polyhedron in a meLric space X is a non-empty closed, convex subset 

of X with finitely many sides and a non-empty interior. A tesselation of X is a 

collec tion P of convex polyhedra in X such that the interiors of the polyhedra in 

P are mutually disjoint, and the union of the polyhedra in P is equal to X. ·When 
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r acts on its fundamental domain, its transformed copies cover the entire space of 

H3 without overlapping except at. t.he boundaries, in other words the fundamental 

domain of r tesselates H3. 

In [17], lett.ing A = lcm-l, B = al, C- 1 = at and D = a and applying Tietze 

transformations this presentation for r can be rewritten as 

1 
where A, B, C and D are linear fractional transformations defined by A (z) = --., 

z - 7, 

B (z) = ~, C (z) = 1 -/- z a.nd D (z) = - 1. This is a modification of a presentat.ion 
z - z z 

derived by Sansone [34], using the original geometric method of 1. Bianchi . vVit.h the 

usual convention for matrices, a fait.hful representation is given with 

[0 i] [0 i] [1 1] [0 1] A =. ,B =. ' C = . ' and D = 

'Z 1 'Z 0 - 1 0 -1 0 

A. lVI. Brunner in [6], derived a 2-generator 5-relator presentation for r in 1992, that 

IS, 

where a = fiB and w = DBC. 

It is worth mentioning that r contains the well known modular group lvI as a 

proper subgroup. The transformations C and D generate M and its finite presentation 

is (C, D : C 3 = D2 = 1). 



Now let 

G1 - (A,G, D : A 3 = C3 = D2 = (AG)2 = (AD) 2 = 1), 

G2 (B , G, D : B 2 = G3 = D2 = (BG)2 = (BD)2 = 1). 

18 

The group r has decomposition as a free product of G1 and G2 with Jill amalga-

mated, that is , 

Further, the subgroup G1 has decomposition as G1 = Gll * G12 , where 
£:3 

and as it is well known that S3 is a symmetric group of degree 3, A4 an alternating 

group of degree 4 and D2 a dihedral group of order 4. 

The amalgam decomposition of r can be written as 

expressible also as a quadrangular product, where each vertex corresponds to a group 

G IJ , each edge y corresponds to a group Gy and adj acent vertices are amalgama t.ed via 
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relations along the edges. The group r is, then the group formed by the free product 

of Gv modulo the edge relations . 

A4=A 

23 22 

S3= 0 S 3= B 

22 
22 

O2 = C 

Figure 2 

The fact that the components in the amalgam decomposition for r are finite , 

forces a fTee-like structure on the torsion-free subgroups. Although the torsion-free 

subgroups have the free-like structure there can be no free subgroups of finite index 

in r . It can be s tated in the following theorem. 

Theorem 5 [{171, Theorem 5.2.5] r contains no free subgro'ups of finite 'index. Every 

s'ubgr01Lp of fiT/'it e 'index contains a free abelian subgroup of rank 2. 

Since finite subgroups of r must be conjugate to finite subgroups in the compo­

nents, it follows that the possible finite subgroups of rare Z2, Z3, D 2 , S3 and A4 . This 

argument proves the following theorem. 

Theorem 6 [(171, Theorem 5.2.6] Suppose G c rand G is torsion-free. If Ir : GI < 

00 then Ir : GI = 1217. for some n. 
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In [5] A. NI. Brunner, M. L. Frame, Y. W. Lee and N. J. vVielenbcrg have developed 

n t.heoretical met.hod which explains how to complet.ely classify, up t.o isomorphism, 

all torsion-free subgroups of r of a given finite index n. They have used the results of 

A. Karrass, A. P iectrowski, and D. Solitar on subgroups and have produced torsion-

free subgroups. T hey carried out the computations for classifying up t.o isomorphism 

all torsion-free subgroups of r of indices 12 and 24. The summary of t heir result is 

as fo llows. 

Theor em 7 [(17), TheoTem 5.2.7] Up to isomoTphism theTe aTe two tOTs'ion-free sub-

gTOUpS of 'index 12 and seventeen tOTsion-free SUbgTOUpS of i'ndex 24 . Of these se1Jen-

teen theTe is only one nOTmal SUbgTO'Up 'up to isomoTphism. 

Modular group N! plays a very importa,nt role to determine subgroups of r because 

of decomposition of r. /v! is a Fuchsian subgroup of r , and is not nurrnal. The normal 

closure of N! in r is N(D, C) = Nh * 1112 , where Nh rv M2 rv 8 3 * A4 . Further, the 
A1 Z3 

index of N(D , C) in r is two [33]. In [16], it is proved that there are exactly three 

normal subgroups of index 2 in r . So N(D, C) is one of these normal subgroups. 

In [1 5], and [16], some properties of the normal subgroups of r are determined and 

a complet e classification of the normal subgroups for indices less than 60 is given. 

In [37], the normalizer of N! in r, t hat is, a maximal subgroup of r in which M is 

normal, is obtained. 
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1.6 Coset Diagrams 

A graph G is a finite non-empty set of objects called vertices (the singular is 

vertex) toget.her wit.h a (possibly empty) set of unordered pairs of distinct vertices of 

G called edges. The vertex set is denoted by V(G), while the edge set is denoted by 

E(G). 

A coset diagram is a directed graph whose vertices are the (right) cosets of a 

subgroup of finite index in a finitely generated group. The vertices representing 

cosets 9 and h (say), are joined by an si-edge, of "colour i " directed from vertex 9 to 

vertex h, whenever gSi = h, where Si is generator of the group. It may well happen 

that gSi = g, in which case the g-vertex is joined Lo itself by an si-Ioop. 

The method of representing group actions by graphs has a long and rich hist.ory. 

The first paper in which graphs were used explicitly was by A. Cayley [10] in 1878. 

He represented the multiplication table of a group with given generators by graph , 

a.nd proposed the use of colours to distinguish the edges of the graphs a.ssociated with 

different generators. The Cayley's diagram for a given group is a graph whose vertices 

represent the elements of t he group, which are the cosets of the trivial subgroup and 

edges represent generators of the group. In 1893, A. Hurwitz [9, 14] used graphs 

to represent groups. Then in 1896 , H. lIIaschke [22J used Cayley's colour graphs to 

prove some important results on the representation of finite groups, especially on the 

rotation groups of the regular bodies in three and four dimensional spaces. 

The Cayley's graphs were rediscovered by M. Dehn, in 1910. For this reason, some 
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authors call it as the Dchnzch Gruppenbild. But Cayley's priority is indisputable, 

as he described graphs much earlier [14]. O. Schreier generalized t.his notion by 

considering a graph \vhose vertices represent the cosets of any subgroup. 

Later, mathematicians like J. H. C. Whitehead [35], H. S. M. Coxeter and vv. O. 

J. lVIoser [14], VV. Burnside [8], etc., cont.ributed seminal papers containing graphical 

representa.tions of groups. In 1965, H. S. M. Coxeter and vv. O. J. Moser [14] used 

both Cayley and Schreier diagrams to prove some results on finitely generated groups. 

About 1978, G. Higman propounded the idea of coset diagrams for the modular 

group. M. D. E. Conder [12 , 13] and Q. Mushtaq [1 , 19 ,23 - 31] in their separat.e 

works have used these diagrams to solve certain "identification problems". In G. 

Higman's words1
, "Q. Mushtaq laid the foundation of the theory of coset. diagrams 

for the modular group ". One of the examples on uses of coset diagrams is in [1]. 

In a coset diagram the vertices are ident.ifiable with the right cosets in a permuta-

!".ion group G, of the st.abilizer H of any point of the set st, so that an edge of colour i 

joins the set Hg to the set HgXi, for each element 9 of G. This is very similar to the 

notion of a Schreier coset diagram whose vertices represent the cosets of any given 

subgroup in a finitely generated group, and also to that of a Cayley's graph whose 

vertices are the group elements themselves, with trivial stabilizer. These diagrams 

may be drawn for any finitely generated group acting on any arbitrary sets or spaces. 

G. Higman introduced the coset diagrams for the modular group PSL(2, Z), which 

'Ill a private letter of Professor G. I-ligrnan to Dr. Farhana Shaheen, (available wit.h Professor 
Q. rlIushtaq). 
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118 S a. representation in terms of two generat.ors ::1; and y and the way they can be 

connected together. Since there are only two generators, it is possible to avoid using 

colours as well as the orientation of edges associated with the involution x. For y, 

'which has order 3, there is a need to distinguish y from y2. The 3-cycles of yare 

therefore represented by small triangles, with the convention that y permutes their 

vertices anticlockwise, while the fixed points of x and y, if any, are denoted by heavy 

clots. Thus the geometry of the figure makes the dist inction obvious between x-edges 

and ·y-edges. 

Fbr instance, consider the action of PGL(2 , Z) on PL (F13 ), defined by x (z) = 

- 1 z - 1 1 
-, Y (z) = -- and t (z) = -, where z E P L (F13)' Here t represents the vertical 
z z z 

symmetry. vVe can calculate the permutation representations of x, y and t as follows: 

x = (0 (0) (1 12) (2 6) (3 4) (5) (7 11) (8) (9 10) , 

y = (0 00 1) (2 7 12) (3 5 6) (4) (8 9 11) (10) , and 

T = (0 (0) (1) (2 7) (3 9) (4 10) (5 8) (6 11) (12). 

The coset diagram for the action of PGL(2 , Z) on P L (F1 3) is shown in Figure 3. 

11 10 

Figure 3 
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If 7r = {va , el, VI, e2, ... , ek, Vk} is an alternating sequence of vertices and edges of 

a coset diagram, t.hen 7r is a path in t.he diagram from va t.o Vk, where ei joins 'Ui - l 

and 'U.; for each 'i and ei i- ej ('i i- j). A closed path is one whose initial and terminal 

vertices coincide. A coset diagram is connected if any two vertices in the diagram 

are joined by a path. A wOTd is an element of group expressed as a product of its 

generators and their inverses. A word in a group is a corresponding path in a coset 

diagram. 

Every connected coset diagram for a finitely generat ed group G on a non-empty 

space corresponds to a transitive action of G on that space. 

1.7 Coset Diagrams for the Picard Group 

We have defined coset diagrams for the Picard group r . They need symbols for 

the generators as well as a method or pattern to join them. The group r consists 

of four generators, two of order 3 and two of order 2, so it is possible to avoid using 

colours. The generators A and C both have order 3, so the 3-cycles of A and C 

are represented by triangles . But to distinguish generator A from generator C, we 

have denoted the 3-cycles of the generator C by three unbroken edges of a triangle 

permuted anticlockwise. The 3-cycles of the generator A are denoted by three broken 

edges of a triangle permuted anticlockwise. 

As generators Band D are involutions so we have represented them by edges and 
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orientation of edges can be avoided. To distinguish generator B from generator D, 

the 2-cycles of generator B have been represented by a bold edge and two vert.ices 

which are interchanged by D have been joined by an edge. F ixed points of A , B , C 

and D, if they exist, have been denoted by heavy dots. 

The generators A and C together form a Cayley's diagram of A4 = (A , C : A3 = 

C3 = (AC) 2 = 1) as shown in the Figure 4. 

:~ 
I \ / \ / I 
I vr-~/ I 

I ~_~ I 
/ \ / \ 

I~I ::\: 
Figure 4 

Two diagrams of A4 have been joined by edges of generator D as shown in Figure 5. 

~~: :~7': 
1 \ ,,, II 1 1 \ " " / 1 

1 \ '-1> 1 1 '<1-t--.../ 1 
1 < L {--( ----;-1 ---'-1 --"/ V \ 1 

I I \ " \ I I I \-,' \ I 

:~: ~: 

Figure 5 

The edges have joined the 3 vertices of a triangle with broken edges of one diagram of 

A4 to that of another diagram of A4 . The generators A and D together have generated 

83 = (A, D : A3 = D2 = (AD)2 = I), which is shown in the Figure 6 below. 



• 
II 

I 1 
I I 

\ - 1 
, 1 

\ 1 
'---

i, 
I, 
I , 

1_- \ 
1 I 

1 I 

1 I 

_ . .1 
I 

Figure 6 
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A triangle having broken edges is common bebtvcen the diagrams of A4 and S3 as 

shown in Figure 5. Algebraically, 1':3 is an amalgam of A4 and S3' 

One diagram of A4 can be joined to four other diagrams of A" by edges represent.ing 

the generator D. By a fragment A - C - D , we mean the fragment. of the coset 

diagram which consists of diagrams of A4 and edges of D , that is, Figure 7, because 

this fragment of coset diagram is composed by the use of generators A, C, and D as 

shown in figure below. 



~
I 

I , ,/ I I 

I, " \ I I 
I ';</ - .'--,; I 
I ------ _ _ ~ , I 
I / , " , I 

I 

I~ '~ 

II I' II II I', II 
'I I I 

I , ,', I ,'\ I I I, ,'\ I I 

I )<t -_ t>.L~-';--+-->< -_ -_ ~I'--"-: - Kt--_1>",:--7---
I I , I ,I I , I ,I I / \,' ' I 

I : A " I II " , I I / , I 
I ~'L __ ~ __ ++-+-_---=::"",I __ -->=I ______ -"-' '----

, 
I , 
I , 

Figure 7 

I I 
I I 

I I 
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At a zero level we have one diagram of A4 , and, then at the first level, we have joined 

4 diagrams of A4 by edges representing the generator D. At the second level we have 

joined 4 x 3 = 12 diagrams of A4 and at the third level we have joined 4 x 32 = 36 

diagrams of A4 by edges . So at the {th level we have joined 4 x 3'- 1 diagrams of A4 

by edges. If we denote the diagram of A4 by a small square, then the diagram, up to 

the second level is given as follows. 



28 

Figure 8 

The two fragments A - C - D have joined by bold edges representing the generator 

B as shown in Figure 9. 

~-..... /'1 ''Z''' ...... /I' 
" ~~ II , " ~ I ' 
I \ , \ I I I \ " \ I I 

\ ' \ I 
, A - 1'-...."/-1 ---'.'--- -,-'-K[ -t-.....,.I , 
I / '-....[ __ ,1. ... / , , , _ .)/' , 
' I ' ' , I I \ I \ I I \, \ 

LI " I 
,~ /, " />; 

, I ' " , I , I "I I , I 

, "-' , I ' t' -J>''-....! ' 
I <1 -1>\ ' , K. - , , 
I / \ I I I / \ I \ I 

I \I \ / ~ . , 

:~~ :~: 

Figure 9 

The bold edges have joined t he 3 vertices of t.riangle with unbroken edges of one dia-

gram of A4 of one fr agment A - C - D to that of another fragment A - C - D. The 
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generators Band C together generate S3 = (B, C : B2 = C 3 = (BC)2 = 1), which is 

shown in Figm e 10 below. 

Figure 10 

The transformations Band D in Figme 11, which is a fragment of Figure 9, have 

generated the group D2 = (B, D : B 2 = D2 = (BD)2 = 1). A bold edge is common 

between the diagrams of S3 and D2 as shown in Figme 12. Algebraically, Z2 is an 

amalgam of S3 and D2 . 

D 
Figure 11: D2 

Figme 12 

The coset diagram for the action of r on Q (i) consists of one fragment A - C - D 

at a zero level and then at the first level it has been joined with four other fragments 

J1 - C - D by edges of the generator B. Further these 4 fragment.s A - C - D have 
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been joined by 12 fragments A - C - D, that is, each fragment A - C - D has been 

joined by 3 more fragments A - C - D at second level of diagram and so on. This 

fragment of a coset diagram explains clearly the amalgam structure of f, t.hat is, 

f = (.114 * 8 3) * (S3 * D2). A general fragment of the coset diagram for the action of 
Z3 IV! Z2 

f on <Q (i) will look as follows . 

r ...... '---...~7 ~ ............... I I' ......... I 
I \ ~ / : I \ , / I I \ ;\\ I I 
- \/I-~ \ - ...... -'-/-t----rI -VT~r--~ -'~_y \ I _ / \ I f'.l_Y'~-,-

I / ...-x-....... \ I I I \ 1 I I " ' I 
1.--- ............ I ............... " \ 

Figure 13 

vVe have deri ved the coset diagrams for f by its action on <Q (i) and <Q (i , fo), 
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and have obtained useful and interesting results related to r by using them. vVe have 

divided this coset diagram in to two layers, one containing a's and the ot.her contain-

. 1 
mg - 's. If a fragment A - C - D is in layer 1, then the four fragments A - C - D 

a 

have joined it by bold edges are in layer 2. Similarly, the four fragments A - C - D 

have further joined each with three fragments A - C - D , which are in layer 1, by 

bold edges . In this way, up to this level there are thirteen fragments A - C - D in 

layer 1 and four fragments A - C - D in layer 2. For instance, if a E ([Jl (i,)3) is m 

one layer , then its conjugate 0: over ([Jl ('i) is in another layer. 

Layerl 
Layer2 

Figure 14 
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Chapter 2 

Action of r on Imaginary 

Quadratic Fields 

In this chapter, we have studied an action of the Picard group PSL(2, Z[i]) , de-

noted by 

on Q (i) U {oo} by using coset dia,grams, where fl , B, C and D are linear fractional 

1 1 l+ z -1 
transformations defined by fl (z) = --., B (z) = -, C (z) = -- and D (z) = - , 

z - '/, z -z z 

It has been shown in [1 7] that r can be viewed as a free product of 0 1 and O2 

with ]0.1[ amalgamated, that is , 
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where 

G} (A ,C, D: A3 = C:3 = D2 = (AC) 2 = (AD)2 = 1) 

G2 (B, C, D : B2 = C3 = D2 = (BC)2 = (BD)2 = 1) , 

and j\;J is the modular group (G, D : G3 = D2 = 1). Here G1 and G2 are called the 

components of r and J'/l is called the amalgamated group . Further, G1 = S3 * A4 and 
Z3 

G2 = S3 * D 2 , where S3 is a symmetric group of degree 3, A4 an alternating group 
Z2 

of degree 4 and D2 a dihedral group of order 4. 

Recall that the real quadratic field is defined by the set {eL + bfo : eL, b E Q} and 

denoted by Q (fo) and imaginary quadratic field is Q (J=n) = {eL + bJ=n : eL , b E 

Q}, where n is square-free positive integer. The biquadratic field Q (i, fo) is defined 

as {eL + bfo : eL, b E QU)}. 

2.1 The Picard Group Action 

Modular group and the extended modular group have been studied extensively, 

and the Picard group is t he extension of these groups. In [23] Q. Mushtaq has studied 

coset diagrams for the modular group. Here, we have defined coset diagrams for the 

Picard group r and have used them to investigate various properties of the group 

vis-a-vis quadratic and biquadratic fields. The natural action of r on different fields 

gives interesting information. It is natural to study the action of r on Z[i], since 

eLZ + b 
r consists of linear fractional transformations T( z ) = l with acl - be = 1 and 

ez + G 
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a, b, c, dE Z['iJ . But r does not act on Z [iJ. The quest.ion has arisen, whether r acts on 

t.he imaginary quadratic field Q( i)? vVe have found that among t.he quadratic fields, 

r acts only on Q(-i). vVe have proved that action of ron Q (i) U {oo} is transitive but 

act.ions of its component groups G1 , G2 and amalgamated group j\;J are intransitive. 

But all the fixod points of the generators of r do not lie in Q ('i), so we need extension 

of Q (i). The one point extension of Q('i) is Q( i, fo), where n is a square-free positive 

integer. We have proved that r acts on Q( i, fo) U {oo }. 

Proposition 8 r does not act on Z[iJ. 

Proof. Let a + b'i E Z[i], where a, b E Z. Then B (a + b'i) = _ 1_. = 
a + b1, 

S· a - bi d [] f [ ] mce 2 b2 'F Z i . or all a, b E Z, therefore r does not act on Z i. • 
a + 

Proposition 9 I' does not act on Q( fo ), wheTe TL > 1 is a square-free integer. 

Proof. Let a + bfo E Q( fo), "vhere a, b E Q and n > 1 is a square-free integer. 

T hen 

1 

a + bfo - i 

a + bfo + 'i 
a2 - b2n + 2abfo + 1 

(a + b.jii + i)(a2 
- b2n + 1 - 2ab.jii) 

(a2 - b2n + 1) 2 - (2ab.jii) 2 

Since i ~ Q( fo ), t herefore A( a + bfo) ~ Q( fo). Thus I' does not act on Q( fo). • 

Proposition 10 r acts on Q( i) . 
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Proof. Let a = 0, + bi E Q (i ), where a, bE Q. Then 

A(a) 
1 0, - (b-1) 'i . 

0,2 + b2 + 1 _ 2b E Q('L). a - 'l 

1 0,- bi 
- = 2 b2 E Q(i). 
a a + B (a) 

C (a) 
1 + a - a - 0,2 

- b2 + bi . 
-- = 2 b2 E Q(z). 
-a a + 

-1 -a +bi . 
- = 2 b2 E Q(z). 
a a + 

D (a) 

We can define a mapping p : r x Q('i) -------+ Q(i) by /-dg, a) = .9 (a), where 9 E r 

and a E Q(i). Obviously g(a) E Q(i), because 9 can be written as AiIBmlcnlDol ... 

Alk Bmk Cnk DOk where l · 71 · = 0 1 2 and m· o· = 0 1 and the generators ABC ) J, J "C J, J " I , ) } 

and D give elements of Q( i) when applied on it , as proved above. vVe know that 

J.-l (1 , a) = 1 (a) = a, where 1 is the identity element of r . Also /-t(g , J.-dh, a)) = 

9 (17, (a)) = J.-I. (gh, a) by composition of linear fractional transformations. Thus r acts 

on QU) .• 

Proposition 11 r does not act on Q( J-71), wheTe n > 1 is a square-free 'integer. 

Proof. Let a + b~ E Q(J-71), where a, b E Q and 71 > 1 is a square-free 

integer. Then 

A(a + byCTi) 
1 

0,+ bJ=Ti- i 

o,+b~+i 
0,2 - b271 + 2o,bJ-n + 1 

(a + bJ=Ti + i)(a2 
- b2n + 1 - 2o,bJ=Ti) 

(a 2 - b2n + 1)2 + 4a2b2n 
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Since i ~ Q(J- n) , this means that A(a + bJ-n) ~ Q( J-n). Thus r does not act. 

on Q( J -n) naturally. -

Proposition 12 f acts on Q( i, fo), where n is a square-free positive integer. 

Proof. Let a = a + bi + cfo + dfoi E Q('i, fo), where eL, b, c, d E Q and n 

is a square-free positive integer. The generators of f are A, B, C and D defined as 

l IB 1 C 1 + z 1 D - 1 NIl' . f : z ~ --., : z ~ -, :1--> -- ane : z ~ -. ow tIe app lcatlOns 
z - 'L Z -z z 

1 c 
of generators of f on a yield A(a) = --. = b' r,;; d r,;; . . 

Ct - 'L a + 't + Cy n + y 'm - 'L 

(a + bi - i - cfo - dfoi)(a2 
- b2 - c2n + cl2n - 1 + 2b - 2abi + 2nccl-i + 2ai) 

(a2 - b2 - c2n + cl2n - 1 + 2b)2 + (2ab - 2ncd - 2a)2 

This implies that A(a) E Q(i, Vii). Also 

B(a) 
1 1 . 

. fo fo' E Q('L, vn). 
a+b'L+c 71,+ d m 

- 1 
. fo Vii' E Q('i, v'ri} a+b'L+c n+d m 

D(a) 
- 1 

C(a) = l+ a = l +a+ bi+cfo+ clylni EQ(i,vn) . 
-a -a - bz - cfo - clfoz 

0, 1,2 and mi, OJ = 0,1. This means that 9 (a) E Q(i, yin). vVe can define a mapping 

I-t : r x Q(i, fo) ~ Q(i, fo) by !L{g, a) = 9 (0) for all 0 E Q(-i , Vii). vVe know 

that p (1 , 0) = 1 (a ) = 0, where 1 is the identity element of f. Also /-t (g, p (h , 0)) = 

9 (11, (a)) = /.1, (gh , 0:) by composition of linear fractional transformations of f. This 

ensures that /-1, is an action of f on Q( i, fo). _ 
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Thus, above results imply that r acts on those infinite fields which contain i 

. .. . az + b . 
because r conSISt.s oflmear fract.lOnal transformatlOns T( z ) = Wlth ad-be = 1 

cz + d 

and CL, b, c, dE Z [i]. Among the quadrat.ic fields, Q (i) is t he only imaginary quadratic 

field on which r acts. 

An action of the Picard group on projective line over imaginary quadratic field 

Q U) is better understood by studying actions of the component groups G 1 , G2 and 

the amalgamated group NI of r on Q (i). vVe have used a graphical technique called 

coset diagrams propounded by G. I-ligman in 1978 to study these actions. In 1983 

Q. Mushtaq has defined coset diagTams for the modular group [23] and later on used 

t.hem extensively, [or example, in [19], [24]- [31]. 

A coset diagram for action of the modular group Jill = (C, D : C3 = D2 = 1) on 

Q (i) U {oo} depicts a permutation representation of the modular group: the 3-cycles 

of the generator C are denoted by three unbroken edges of a triangle permuted anti-

clockwise and two vertices which are interchanged by D are joined by an edge. For 

instance, the following portion of a diagram depicts t he action of NI on Q (i) U {oo}. 



-1+2i 

5 

-1+2i 

Figure 15 

-2+i 
2 

-4+2i 
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2 

. . " a + ki 
Let k be an mteger. ConsIder a subset Q*(h) = { : a, c, d E IZ, c > 0, d = 

c 
a2 + k 2 

--- E IZ } ofQ (i). If k = 0, Q*(ki) reduces to the field ofrational numbers, which 
c 

has been an object; of study in [19]. 

A totally positive imaginary quadratic number a = a + ki E Q* (ki), has a, c, d > 
c 

o and totally negative imaginary quadratic number has CL < 0 and c, d > O. 

To ensure that Q ('i) = U Q* (ki) or in other words every element of Q (i) lies in 
kE'Z 

one of the sets Q*(k'i), where k E IZ, we have the following result. 

CL + b1: 
Proposition 13 Every element of Q (i) can be written as --, where c cl'ivides 

c 

0,2 + b2 for all CL, b, c E IZ. 

, 

P f L CL + vi Ifl\ ( ') 1 1 ' 1 d' . 1 '2 1.') B 1 . 1 . roo. et a = --, - E 'V. ~ SUCl t lat c C oes not IVIC eo, +u- . y mu tip ymg 
c 

c (a + bi) 
and dividing a with c, we get a = '2 . Let a = ca, v = cb and c = c2 . Now 

c 
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a = a -: bi, here a2 -I- b2 = {;2 ( 6,2 -I- 62). So c divides a2 -I- b2 amI the quotient is 

? '2 ( ) f a -I- b-i 1 1· . 1 CL- -I- b . Thus we can write every element of Q 'i in the orm --, w 1ere c e IVle es 
c 

a2 -I- b2 for all a, b, c E Z. _ 

To know how these totally positive and totally negative imaginary quadratic num-

bel's belong to Q*(ki), we have proved t he following results. 

Proposition 14 If a = a -I- ki E Q* (ki) is a totally positive imaginary quadratic 
c 

n'lLmbeT, then D (C\:) is totally negat'ive and vice veTsa. 

P f L a -I- ki b 11 .... 1· b 1 . roo. et a = e a tota y posItIve Imagmary quae rat.lc num er, t mt IS, 
c 

a2 -I- k2 

a,c , d > 0, where d = --­
c 

vVhen a, c, d > 0) the generator D of r gives D (a) = D ='. (
a -I- ki) - a -I- ki 

c d 

Here al = -a < 0) CI = d > 0, and dl = C > O. This implies that D (a: ki ) is 

totally negative. 

Similarly by taking a to be totally negative, one can show that D (a) is totally 

positive. _ 

P . . 5 If a -I- ki If\\ (k) II d roposltion 1 ." a = E ".£.* 'i is a tota y positive imaginary qua ratic 
c 

nll,mbeT, then C (a) and C2 (a) aTe totally n egative. 

P f L t a -I- k?: b 11 .... ..1 . . . b 1 roo. e a = e a tota y posItIve Imagmary quaw"atlc num er) t 1at 
c 

is) a ,c, d > O. Then C(a) = C = . and C2 (L~) = (
a -I- k?: ) - a - d -I- ki 

c d 

We can tabulate the information as follows. 

-a - c -I- ki 

c -I- d -I- 2a 
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a a c d 

C(a) -a-d d c+d+2a 

C2(a) -a-c c+d+2a c 

vVe have seen t hat if a, c, d > 0, then the new values of a, c, d for C (a) and C 2 (a) 

are as follows: a < 0 and c, cl > O. Therefore C (n ) and C 2 (a) are totally negative 

imaginary quadratic numbers. _ 

Rernark 16 In a triangle oj the coset diagram fOT the action of !vI on Q (i), theTe is 

only o'ne totally pos'itive and two totally negative imaginaTy q'u,admt'ic numbeTs. 

FiguTe 16 

3 + 4i 
Example 17 Let a = -- HeTe a = 3, c = 5 and cl = 5. Since a, c and cl aTe 

5 

pos'it-ive integeTs, theTef oTe a is a totally positive 'imaginaTY quadmtic n'u,mbeT. liVe 

have C (a) 
-8 +4i 

5 ,wheTe al = -8, Cl = 5 and ch = 16. Since al < 0 and 

Cl, d l > 0, the'T'efoTe C (o!) 'is a totally negative imaginaTY q'uadmtic numbeT. The 

-8 +4i 
image of tmnsfoTmation C2

, that is, C2 (a ) = , wheTe 0,2 = -8, C2 = 16 and 
16 

d2 = 5. S ince 0,2 < 0 and C2, d2 > 0, this implies that C 2 (a) is also totally negat'ive 

-3 + 4i 
imaginaTY q'Lladmt'ic n:u:mbe'T'. The generatoT D has an image D (a) = . This 

5 
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sho'lUS that D (a) is totally negat'ive imaginary q'u.admtic number because 0.3 = - 3, 

In order to find a unique path between any two elements of Q!* (ki) in the coset 

diagram for the action of ]0.;1 on Q!* (ki), we have to define norm in Q!* (ki). The norm 

of 0'= 0.+ ki E Q!* (b) is defined as Ilevll = 10.1. This norm yields ordering in elements 
c 

of Q!* (ki) . 

0. + ki 
Proposit ion 18 rr 0' = E Q!* (ki ), then liD (0') 11 = 11 0'11· 

c 

a + ki .. 
Proof. If a = E Q!* (ki) where a , c E Z and k is a constant mteger , t hen 

c 
-0 + ki 

D (0:) = ' l · · So 11 0'11 = lal and liD (0')11 = 1-0.1· Three possibilities, namely 
G, 

(i) a > 0, (ii) a < 0 and (iii) a = 0 arise here. 

(i) W hen a > 0, then norm of D (a) is liD (0')11 which is equal to 1-0.1 = a, but 

the norm of a, that is, 110' 11 = lal = a, 

(ii) when 0.< 0, then norm of D (a) is liD (0')11 which is equal to I- al = -a. But 

the norm of a, that is , 11 0'11 = lal = -a, and 

(iii) when a = 0, then norm of D (a) is liD (a) II, that is , 101 = O. But the norm 

of a, that is, 110'11 = 101 = o. Hence in all the thTee cases the norm of D (a) and the 

norm of a are equal, that is , liD (0')11 = 11 0'11 .• 

Proposition 19 If a E Q!* (ki) is a totally positive imaginary q'Uadmtic number, then 

110'11 < IIG (0') 11 and 11 0'11 < IIG2 (0')11, where 110'11 = lal· 
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P f L a + ki b 11 ... . d · b tl t· roo -. et a = e a tota y pos1tlve nnagmary qua ratlc num er, -1a 1S , 
c 
a2 -I- k2 

a, c, cl > 0, where cl = . Then IIC (a)11 = I-a - dl = 1- (a -I- d)1 = CL -I- el, and 
c 

IIC2 (a)11 = I- a - cl = 1- (a -I- c)1 = a -I- c. Also II all =1 a 1= CL. Now CL -I- el > 0 and 

a + c > 0, because c, el > 0 for totally positive imaginary quadra tic numbers. This 

implies that Iia ll < II C(a)11 and Iiall < II C2 (a) ll· 

Theorem 20 The coset diagram for the action of .Nf on Q* (i) is connected. 

Proof. To prove this we need only to show that for any quadratic number a in 

Q*(i), there is a path joining a to i. Since one of a and D (a) is totally positive by 

Proposition 14, therefore without loss of generality, we can assume that a = CL -I- i is 
c 

totally positive. 

Let 0' = ao be a totally positive imaginary quadratic number. Then, by Proposi-

tion 14, D (0'0) is tot.ally negative. There is just one totally positive number (vertex) 

say a1, in the triangle containing D (ao). We have either of the fragments of the coset 

diagram. 

Figure 17 

a 
1 
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By using Propositions 18 and 19, we get Il a~oll > Ilalll . If we now consider al, 

then D (al) will be totally negative, whereas one of CD (al) and C2 D (al) will be 

tot.ally positive. Let it be a2. This implies that Ilalll > Ila211 . 

If we continue this way and follow the arrowheads, which show direction of unique 

path towards i, from a = ao in Figure 18, we get a sequence of totally positive 

imaginary quadratic numbers such that Ilaoll > Ilalll > Ila211 .. .. 

a 
a 

k 

ki 

Figure 18 

The decreasing sequence of non-negative integers must terminate and it will t er­

minate at the triangle, which does not contain any totally positive quadratic number, 

that is, the triangle containing i, whose norm is zero . So we reach to a triangle 

containing i as a vertex. 

A sequence oftotally positive imaginary quadratic numbers aa, al, a2, .. . such that 

Ilaoll> Ilalll > Il a2 11 ... , shows that there is a path joining a = aa to i, and the coset 

diagram for the action of !vI on Q*('i) is connecteel. • 
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Theorem 21 The action of /111 on Q* (i) U {oo} is transitive. 

Proof. Let a, (3 E Q*('i) and 9 E Nl. If 9 (a ) = (3, then D2 = 1 implies 

that gDD (a ) = (3 and since one of a and D (a ) is totally posit ive, we can assume 

without loss of generality that a is totally positive. Let a = a a and (3 = aj, for some 

j. Then from the fragment of the coset diagram (Figure 17), we note that each aj+l 

is either CD (aj) or C 2 D (aj ). This implies that (3 = CEj DCEj-1 D ... CE 1D (a ), where 

each Cj = 1 or 2. If 9 = CEj D CEj-lD .. . CElD, then (3 = 9 (a). Hence the action of Nl 

on Q*('i ) is t ransit.ive. _ 

T heorem 22 The act-ion of Jill on Q (i) U { oo} is intransitive. 

Proof. vVe can write Q (i) U {oo} = Q*(i) U {Q U) \ Q*Ci)}. By Theorem 18, the 

action of Nl on Q* (i) is transitive, so Q* (i) is one of the orbits of Q ('i). Thus the 

action of Ai on Q (i) U {oo} is intransitive because Q (i) U {oo} has more than one 

orbit.. _ 

R.ecall that an algebraic integer in Q Ci ) is a root of some monic polynomial equa­

t ion wit h integral coefficients. The algebraic integers in Q (i) form Z [i]. Action of JVl 

on Q (i) U {oo} has more than one orbit and in one orbit , the value of imaginary part 

of algebraic integers does not change. 

Theorem 23 If C and D are generators of Nl , then (C D) ±n (a + bi ) = (a =r- 17, ) + b'i, 

where CL + b'i is an algebraic integer in Q (i). 
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Proof. vVe know that algebraic integers in Q (i) are of the form a + bi, where 

a, b E 7L. To prove the result, we have used mathemat.ical induction on n E 7L+. 

For n = I, we have CD (a+ bi) = CL + bi -1 = (a -1) + bi. Let it be true for 

n = k, that is , (CD)k (a + bi ) = (a - k) + bi. Then 

CD (( a - k) + bi) 

a-k- l+bi 

a - (k +- 1) + b'i. 

Thus the result is true for all n E 7L+, that is, (CDr (a + bi) = (a - n) + bi. By 

following the same steps one can prove that (CD) -n (a + b'i) = (a + n) + bi .• 

vVe have denoted the orbit of ki when M is acting on Q (i) by NI (ki) , where 

ki E Q (i). 

Proposition 24 The algebraic integers in NI (ki) are of the farTn {a + ki : a E 7L}, 

k E 7L. 

Proof. vVe know that algebraic integers in Q (i) are of the form a + bi, where 

a , b E 7L. Let Tn + k-i be an arbitrary algebraic integer from Q ('i), where Tn, k E 7L. 

By varying the value of n E 7L+ in Theorem 23, we get algebraic iutegers of the form 

a+- ki, where a E 7L. Hence, by applying elements of NI on ki, we get element.s of 

. . a + ki . . . 
Q ('t) of the form such that CL +- b are algebraic mtegers. • 

c 
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A prime number p is called Pythagorean if it can be written as a sum of two 

squares, that is, x 2 + '1:/, where x, y E Z . Pythagorean primes are of the form ill;; + 1 

or 4k + 2, where I;; 2': O. In such primes - 1 = x 2 (modp). 

Proposition 25 If m E Fp , then theTe ex'ists an algebmic integer- in Q ('i), congTuent 

to m, by the fOTmula 171, = X + I;;~, 'WheTe x E Z, I;; is a constant integer and p 

'is a. PythagoTean pTime numbeT. 

Proof. Let m E Fp and j\l1 act on Q (i). vVe l<11oW that algebraic integers in Q (i) 

are of the form a + bi, where i = H = ~ in Fp. Let the orbit in which we 

are looking for an a.lgebraic integer is f\.1 (ki), then the algebraic integer x + ki takes 

the form x + k~, where x E Z. If m E Fp is known, then x can be founel by 

x = m - k~. Here Jp - 1 must belong to Z, that is, p - 1 is a square in Fp. In 

other words p is a Pythagorean prime. _ 

The following Proposition states nature of the path formed by the algebraic inte­

gers in the coset diagram for the action of f\.1 on Q* (ki). 

Theorem 26 TheTe does not exist a closed path of aZgebmic inLegeTs in the coset 

d'lagmm fOT the action of IVI on Q* (ki) . 

Proof. It is shown in Theorem 23 that the trallsformation CD maps an algebraic 

integer to another algebraic integer, that is, CD (a + ki) = (a - 1) + ki or CD (0:) = 

0: - 1, where 0: is an algebraic integer. Let 0:0, 0:1, ... , O:m- 1 be distinct algebraic integers 

and they form a closed pa.th, 0:0,0:1, ... , elm- I, 0:0. This implies that (CD)m (0:0) = 0:0, 
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that is, 0'0 - m = 0'0. This implies that m = 0, that is, 1 (0'0) = 0'0, where 1 is the 

identity of Iv1. Thus there does not exist a word TrV other than ident.ity such that 

Hi (0'0) = 0'0. Hence there does not exist any closed path of algebraic integers in the 

coset diagram for the action of Iv! on Q* (ki). • 

2.1.1 The Extended Modular Group 

The extended modular group G2 has the finite presentation 

(B, C, D : B2 = C3 = D2 = (BC)2 = (BD)2 = 1). 

It can decompose as a free product of S3 and D2 with Z2 amalgamated, that is , 

D2 = (BD)2 = 1) and Z2 = (B : B2 = 1). Let 

, . { eL + ki }. Q (h) = c: eL, c, dE Z, c =1= 0 c Q ('L) , 

where k 2 0 be a constant integer and d = a
2 

+ k
2

• That is, Q (ki) = Q* (ki) U 
c 

Q* (-ki ). A totally positive imaginary quadratic number a = a + ki E Q (ki) has 
c 

eL, C, d > 0 or eL, C, d < 0 and a totally negative imaginary quadratic number has a > 0 

and c, d < 0 or eL < 0 and c, d > o. 

The generator B in G2 (represented by a bold edge) has joined two fragments of 

the Figme 15, to form a fragment of coset diagram for the action of G2 on Q (ki) as 

shown in Figure 19. In this figure one can clearly see the Cayley's diagram of S3, D2 

and the amalgam Z2. 
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Figure 19 

a+b 
Proposition 27 If a = E Q (b) is a totally positive (or totally negative) 

c 

imaginary q'LLadmtic number, then so is B (a). 

a + ki 
Proof. Let a = be a totally positive imaginary quadratic number, that is, 

c 
a2 + k2 

either eL, c, d > 0 or a, c, d < 0, where d = --­
c 

vVhen a,c, d > 0, B (a) = B ( a + b) = -a+ ki. Here al = -a < 0, Cl = -d < 
c -d 

0, and d1 = -c < 0, shows that B (a: ki ) is also totally positive. 

vVhen a,c,d < 0, al = -a> 0, CI = -d > 0, and d l = -c > 0, then B ( a:ki ) 

is totally positive. Similarly, if a is a totally negative, then so is B (a). • 

a + b ' 
Proposition 28 If a = E Q (b), then liB (a)11 = Iiall where Iiall = lal· 

c 

a + ki ' -a + b 
Proof. Let a = c E <Q (ki). Then B (a) = -d ' and Iiall = lal and 

liB (a)11 = I- al· Three possibilities a > 0, a < 0 and a = 0 arise here. So, if a> 0, 

t.hen t.he norm of B (a) is liB (a) 11 which is equal to I-al = a, but lIall = lal = a. If 
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a < 0, then the norm of B (a ) is I- al = - a, but in this case the norm of a is lal, 

which is equal to - a. In the case when a = 0, t.he norm of B (a) is liB (a)11 = 101 = 

o = 101 = II a II· Thus in all t he tbree cases the norm of B (a) is equal to the norm of 

a . _ 

Theorem 29 The coset diagram faT the action of G2 on Q (i) is connected. 

Proof. To prove this we need only to show that for any quadratic number a 

(L2 + 1 
in Q (i), there is a path joining a to i . It is straight forward that for d = -­

c 

' . { a+i } QC~)= -c- : a,c,dEZ,C=/= O 

{

(L+ 'i } {CL+i } = -c-.: (L, c, d E Z, c > 0 U -c-.: a, c, cl E Z , c < 0 

a+z (L-Z 
= --: a , c, d E Z, c > 0 U --: a, c, cl E Z , c > 0 

c c 

= Q* (i) U Q* (-'i). 

Since NI :::; G2 , and by Theorem 20, the coset diagram for the action of NI on 

Q* (i) is connected, therefore the coset diagram for the action of G2 on Q* (i) is also 

connected. An analogous proof of Theorem 20 can be used to prove that the coset 

diagram for the action of G2 on Q* (-k'i) is connected. Since DB (i) = -i, this shows 

that there is a path which joins the coset diagram for the action of G2 on Q* (i) 

with the coset diagram for the action of G2 on Q* (- i). Thus there is a path for an 

imaginary quadratic number a in Q ('i) to ,t . Hence the coset diagram for the action 

of G2 on Q (i) is connected. _ 

Theorem 30 The action of G2 on Q ei) is transdive. 
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Proof. It has been proved in Theorem 21 that the action of Pd on Q*(ki) is 

transitive. Similarly, it can be proved that the action of fIIJ on Q* (-i) is transitive. 

Since 1\.1 ::; G2 , thus the actions of G2 on Q*(i) and Q*( -i) are also transitive. 

As Q (i) = Q* (i) U Q* (-i), we let CY. = a-'/, E Q* (-i) and fJ E Q* (i). Since 
c 

B (C\') = a; i E Q* (i) and action of G2 on Q*(i) is transitive, there exist some 

element C'Cj DC'Cj-l D ... C'clD E G2 such that C'CjDC'Cj-1D ... C'clDB (a) = fJ. Let 

9 = C'CjDC'Cj-1D ... C'qDB . Then g(a) = fJ implies that the action of G2 on Q(i) is 

transitive. _ 

Corollary 31 The act'ion of G2 on Q 0) U {<X)} is intransitive. 

Proof. Let the action of G2 on Q (i) U { oo} be transitive. Consider 3i and 1 + 3i E 
2 

Q('i) . There does not exist any 9 E G2 such that 9 (3i) = 1 + 3i. Hence the action of 
2 

G2 on Q (i) U {<x)} is intransitive. _ 

2.1.2 The Group G1 

The component group G1 of r has finite presentation 

which can be decomposed as a free product of A4 and 53 with Z3 amalgamated , 

A3 = D2 = (AD) 2 = 1) and Z3 = (A: A3 = 1). The generators C', D are represented 

graphically in the same way as in the case of the modular group, however, the 3-cycles 
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of generator A are denoted by three broken edges of a triangle permuted anticlockwise 

by fl as shown in Figure 20 which is a fragment of a coset diagram for the action of 

0 1 on Q> (i). One Cayley's diagram of fl4 has contained four triangles with broken 

edges. So, one diagram of A4 can be connected to four other diagrams of fl4 by 

edges representing the generator D. The connection between two diagrams of A1 is 

actually the diagram of S3, a component of G 1. One can see in Figure 20 that a 

triangle having broken edges is common between the Cayley's diagram of A4 and S3, 

which is actually Z3 = (A). We will denote the coset diagram for the action of G1 

on Q> (i) by a fragment A - C - D because this fragment of the coset diagram is 

composed by the use of generators fl, C and D. 

/ 
, 

I ' ' , I , 
1/ 

/ 
~I 
~ 

r .... 
I 71" 

I ' I I 
I ' 

/ 1 I ' / I , 
/ I I I 

, 
I \ / \ I ' 

, , I , ,'-'1> / I I 

~-
, 

-
, I 

- I __, I \ 

I / '/ ' I I I , , 
I / , , , 

I " " I~I 1/ 
/ 

1/ 
/ , 

, I 
I I 'I 

, 
/1 I , 

I I I , , , 
I , , I 

I 

1/ 
I 

Figure 20 
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Theorem 32 Under the act'ion of G1 on Q(i), 

(i) the generator G does not have any fi,-xed point , 

(ii ) t he generator A has no fixed point, and 

(iii) the fixed points of the generator Dare i and -i. 

Proof. (i) If Z E Q(i) is a fixed point of G, then G (z ) = z . Therefore 1 + z = z 
-z 

- 1 ± y'=3 
implies that 1 + z = - z2 , t.hat is, Z2 + z + 1 = O. Whence z = 2 ~ Q(i). 

1 
(ii) If z E Q(i) is a fixed point of A, then A (z) = z . Therefore --. = z 

z-~ 

i±J3 
implies that z (z - i) = 1, that is, z2-iz- 1 = O. This implies that z = 2 ~ Q(i). 

- 1 
(i ii ) If z E Q(i) is a fixed point of D , then D (z) = z. Therefore - = z, this 

z 

implies that z2 = -1 or z = ±i E Q(i) .• 

Theorem 33 The action of G1 on Q(i) U {oo} has infinite number of orbits. 

Proof. Let ex = b , where k E Z and the orbit of ki by the action of G1 on 

Q (i) be G1 (ki) . By Theorem 23, the tntnsformations (GD) ±n. yield a sequence 

{a + b : a E Z}, where k is a constant integer. Application of GA on ki and (GD)±n 

on GA (b) yield another sequence {a + (1 - k) i : a E Z}. Further, applications of 

DA on these sequences evolve the same two sequences. The transformations GA 

and DA change the imaginary part of an element in Q(i) but since both have or-

der two, that is why, they cannot yield another sequence whose imaginary part is 
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different from the above two sequences. Therefore in one orbit of Q(i) containing 

I.;·i, there are only two sequences of algebraic integers, that is, {a + ki : a E Z} and 

{a+ (1- !':)i: a E Z} for constant k E Z . 

By varying k one can get different orbits . Since Z is infinite, therefore there are 

infinite orbits of Q('i ) U {oo}. • 

There are exa.ctly two sequences of algebraic integers in one orbit of Q( i) U { oo} 

for the action of Gland they are of the form {a + ki : a E Z} and 

{CL + (1 - k) i : a E Z}, where k is a constant integer. 

2.1.3 The Picard Group 

The coset diagram for the action of t.he Picard group on Q (i) has the basic frag-

mentA - C - D. In thi s coset diagram, one fragment A - C - D is linked with other 

four fragments A - C - D by the bold edges. A general fragment of a coset diagram 

for the action of r on Q ('i) is shown in Figure 21. This fragment, the details of which 

are described in chapter 1, shows clearly the amalgam decomposition of r, that is, 
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Figure 21 

Theorem 34 The action of r on ((Jl cn u {oo} 'is tmnsitive. 

Proof. In the proof of Theorem 33, it is shown that there are 2 sequences of 

algebraic integers, that is, {a + ki : a E Z} and {a + (1 - k) i : a E Z} for k E Z. 

Therefore it suffices to show that for any l, m E Z there exists 9 E r such that 
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If ki E Q (ki) , then BA(ki) = (k - l)i and (BA)n(ki) = (k - n)'i. Also A2 B(ki) = 

(k + l)i and (A2 Bf (ki) = (k + n)i where n E Z+. This implies that (BAt and 

(A 2 B)" connect together all k E Z+. Thus the action of ron Q (i) U {oo} is transitive. 

bo + bli 0 
vVe can also prove this theorem as follows . Let ao + ali = . = -, where 

Co + Cl~ , 

0" E Z[i] and (0 , ,) = 1. By Euclidean algorithm in Z[iJ, there exists.8, 0 E Z[i] such 

. oz +.8 . 
that 00 - (3, = 1. So there eXIsts 9 E r such that g(z) = 0 and 00 - .8, = 1, 

,z+ 
where 0"8,,,0 E Z[i]. Since g(oo) = ~ = ao + ali E Z[iJ, this means 00 is mapped , 
to every element of Z[i]. Hence the action of r on Q (i) U {oo} is transitive. _ 

We conclude that t he action of component groups G 1 , G2 and amalgamated group 

!vI of r have intransitive action on Q (i) U {oo}, whereas action of r on Q (i) U {oo } 

is transitive. That is , there is only one orbit obtained by action of r on Q (-£) U {oo}, 

also this is the only imaginary quadratic number field on which r acts. 
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Chapter 3 

Action of r on Biquadratic Fields 

As described in chapter 1, the field formed by adjoining y'm. and Vii to Q, where 

m and n are square-free integers, is denoted by Q( Jffi, Vii) and is called biquadratic 

field over Q. The elements of Q( y'm., Vii) are of the form aO+o.l vm+a2fo+a3Jmn, 

We have shown that r acts on Q(i, fo), where n > 1 is a square-free integer. 

i ± J3 -1 ± J3i 
The fixed points of generators A, B, C and D of rare , ±l, and ±i 

2 2 

respectively. They all lie in a biquadratic field Q(i, J3), ""here i and J3 are zeros 

of an irreducible polynomial (t 2 
- 3)(t2 + 1) over Q. The action of r on Q(i, J3) 

is different from Q(i, JTi), where n > 1 is a square-free integer and deserves special 

account because Q(i, J3) contains all the fixed points of the generators of r. So the 

closed paths in the coset diagram for the action of ron Q(i, J3) must be significantly 

different from the coset diagrams for the action of r on QU, Vii) when n =I- 3. 
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The elements of Q(i, 13) are of the form 1i + V 13, where 'U, v E Q(i) . They 

. (a+bi) + (c+eli) 13 ,. 
can be wntten as Q = , where a, b, c, el, e E OZ. The conj ugates 

e 

[ . (a + bi ) - (c + eli) 13 (a - bi) + (c - di) J3 1 
o Q over Q are (\:' 1 = , Q2 = ane Q3 = 

e e 
(a - bi) - (c - eli ) 13 Tl . f iTl'I(') . 1 1 . t f . 1e conjugate o · Q over "£ '/, IS a1 ane t 1e conJuga eo a over 

e 

Q( 13) is a2. The action of ron Q(i, J3) shows that certain elements of Q(i, 13) of 

the form a + bv'3 behave special under this action. Thus they deserve a classification. 
c 

a + bv'3 a - bJ3 
As there are two conjugates of Q = over Q, namely, Q and , and the 

c c 

conjugate of a is again a over Q( 13), so we have considered conjugate of a over Q( i), 

. a - bv'3 .. . a + bv'3 . M 
t.hat IS, . A real quadratic IrratIOnal number a = E Q('/" v3), where 

c c 

a, b, c E OZ, is called totally positive (negative) if a and a are both positive (negative). 

\lVhen cv. and a have opposite signs , then they are called ambigl!ous numbers [25]. 

They play an important role in classifying the orbits of Q( i, 13) when r acts on it . 

In this cha.pter , we have explored some group theoretic properties of the action of 

r on Q( i, 13). 'Ne have shown that there is a finite number of ambiguous numbers 

in the orbit ra, where a is ambiguous , and that they form a closed path and it is the 

only closed path in the orbit rQ. \lVe have classified all the ambiguous numbers in 

the orbit. \lVe need Propositions 36 to 39 to obtain one ambiguous number from the 

other. 

Note. tha.t the fixed points of Band D lie in Q( i) and consequently in Q( i, yin), 

where n > 1 is a square-free integer. \lVhereas the fixed points of A. and C lie only in 

QCi, /3). 
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Proposition 35 If a = a -+ bV3 E tQl( i, V3) is a totally posdive 'J'eal quadratic irm­
c 

tional n1_I,m ber, then C (a ) and C 2 (a ) are totally negative. 

Proof. Let a be a totally positive quadratic number. Then there are two pos­

a2 - 3b2 

sibilities either a, d, c > ° or eL, d, c < 0, where d = . 'When a, el , c > 0, 
c 

then 

Here al = -a - d < 0, Cl = el > 0, and dl = 2a -+ c -+ d > 0. This shows that C(a) is 

totally negative. Also 

a2 
- 3b2 a2 -+ c2 -+ 2ac - 3b2 

Here a2 = - a -c < 0, C2 = 2a-+ c-+d > 0, and d2 = _2 __ _ 
C2 2a -+ c -+ cl 

c(2a -+ C -+ d) 
2 l 

= c > 0. This shows that C2(a ) is tot ally negative. Similarly, it can 
a-+ c-+ ( 

be proved that when a, el, c < 0, then C(a) and C 2 (a) are totally negative. _ 

a2 - 3b2 

If a number a is ambiguous, then aa = 2 < 0, that is, a2 
- 3b2 < 0. Thus, 

c 

. 1 d' b' h i Old a
2 

- 3b
2 

111 ot ler wor S a IS an am 19UOU S w en G C < ,w 1ere = ---
C 

Lemlna 36 Transformations Band D map an ambiguous numbcT to an ambiguous 

n'umber. 

a-+bV3 
Proof. Let a = E tQl(i , V3) be an ambiguous number , where a , b, C E Z. 

c 

Th" l' h 0 1 . a
2 

- 3b
2 

f 2 2 IS Imp les t at Lt a < ,t lat IS, 2 < 0 which urther implies that a -3b < O. 
C 



Now 

B(a) 

D(a) 

~ = a - bV3 and 
ad' 

-1 a - bV3 
a -d 

a2 - 3b2 --
imply that (B(a))(B(a)) = cZ2 = D(a)(D(a)). 
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a2 - 3b2 

Here < 0, since (L2 - 3b2 < 0 and d2 > O. This shows that B(a) and D(a) 
d2 

are ambiguous numbers. _ 

Lemma 37 If a is not ambiguo'Us, then so are D (a) and B (a). 

Proof. Suppose a = a + bV3 E Q(i, V3) is not ambiguous number, where 
c 

a2 - 3b2 

a, b, c E Z. This means that aei: ~ 0, that is, 2 ~ 0 which further implies 
c 

1 a - bV3 -1 
that a2 

- 3b2 ~ 0 because c2 =1= O. Since B(a) = - = , and D(a) = - = 
a d a 

- (L + bV3 -- a2 - 3b2 a2 - 3b2 
d ' so (B(a))(B(a)) = cZ2 = D(a)(D(a)). Here d2 ~ 0, because 

a2 
- 3b2 ~ 0 and cz2 > O. This shows that B(a) and D(a.) are not ambiguous numbers. 

-
Proposjtion 38 If a 'is an ambig'l.w'u.s n'Umber, then A(a) and A2(a) are not am-

big'U,o'U.s. 

a + bV3 
Proof. Let a = be an ambiguous number. This means that an < 0, 

c 
a2 - 3b2 

that is, 2 < O. This implies that a2 - 3b2 < O. After rationalization of 
c 

A(a) = _ 1_. = ~ , the imaginary part is (a2c2+c4+3b2c2-2abc2V3). This 
a-'/, a+b 3-ci 
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means that A(a) will be ambiguous if and only if (a2c2 + c4 + 3b2c2 - 2abc2V3)i = o. 

Since i =J. 0, it implies t hat a2c2 + c4 + 3b2c2 
- 2abc2V3 = O. LefL hand will be zero 

only if c = O. But c cannot be zero because otherwise a = 00 will be not ambiguous. 

This shows that A(a) is not ambiguous. 

Also, .112 (n,) __ 1 ::ia __ a - bV3
d
3 + di 

Lot L.l ----- will be ambiguous when imaginary part 

becomes zero, that is, d = O. But d cannot be zero because otherwise A2(a) will 

become 00. This shows that A2(a) is not ambiguous. _ 

a+bV3 
Proposition 39 If a = E «J!(i, V3) is an ambiguous number, then one of 

c 

C (a) and C2 (C\') is ambiglL01Ls and the other is totally negat'ive. 

Proof. Suppose that a is a positive ambiguous number. Then by Proposition 35, 

the information can be tabulated as follows. 

a C(a) C2(a) a C(a) C2(a ) 

+ - - - + -

- - + 

Similarly, if a is a negative ambiguous number, then the information about C (a) , 

C2(a), a, C (a) and C2(a) can be tabulated as follows. 

a C(a) C2(a) a C(a) C2(a) 

- + - + - -

- - + 
l......-.. 
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Therefore, from the above tables it can easily be deduced that one of C(a) and C2(0) 

is ambiguous and t.he other is totally negative. _ 

Example 40 Let a = 1 + 2V3. Here a = l, c = 1 and el = -11. As elc < 0 

Th'l.'s C(r.,) -_ 10 _+ 12
1
V3, wl' ere 0,1 --this implies that 0 is an ambiguo'l.Ls mLmber. " u; " 

10, Cl = -11 and dl = -s. As el1Cl > 0, this shows that C(o) 1:S not amb'iguo'U,s. 

Also 0,1 > 0 and c1 d l < O. Th'is shows that C(a) 'is a totally negati'Ue mLmber. Then 

-2 -I- 2V3 
C2(a) = , where 0,2 = -2, C2 = -S and el2 = 1. The i'nequaldy el2C2 < 0, -s 
.. C') ( ) " () 1 - 2)3 I 2mphes that - C:I! 'tS an amb2g'l.LO'U,S number. Thus B a = , w 1ere C3 = - 11 

- 11 

and d.'3 = 1 so thal d3c3 < O. This shows that B(o) is an ambiguous number. Also 

1- 2V3 
D ( 0) = 11 , where C4 = 11 and d4 = -1 so that d4 C4 < O. Th'is shows that 

D ( 0) is an ambiguous n'umber. 

a + bV3 0,2 
- 3b2 

Proposition 41 If 0 = E Q(i, V3) such that el = is an integer, 
c C 

then the follow'ing hold: 

(i) d of C(a) and C2(0) aTe 'integers, 

(i i) el of B(o) is an integeT, 

(iii) el of D(o) 7:S an integer. 

a I bV3 0,2 - 3b2 

Proof. (i) Let 0 = T E Q(i, V3) such that d = --- E Z. Then 
c c 

-a - d -I- bV3 - a - c + bV3 
C(o) = d ,where ell = 2a-l- c+ el E Z, and C2(0) 2a+c-l-d' 

where el2 = c E Z. 

.. . 0, - hV3 a2 - 3b2 

(II) Smce B(a) = d ' the value of el of B(o) is d = c E Z. 
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( .. . ) Al D() a - bV3 . l' 1 l f D( ). 0,2 - 3b
2 

'71 
III SO 0 ' = - cl Imp les t1at c o · a IS - d = -c E ILJ . • 

a + bV3 
Remark 42 The value of b is invaTiant jar the elements of the form a = --­

c 

in fa, where a E Q( i, V3) . 

A closed path whose all vertices are ambiguous numbers is called the closed path 

of ambiguous numbers. Lemma 43, Theorem 44 and Theorem 46 show that there are 

finite number of ambiguous numbers in one orbit and they form a single closed path 

. h b' I l ' . lId 1 1 1 f b' a + bV3 . . . 111 t e or It. n t lIS S111g e c ose pat. 1 t 1e va ue o · 111 l'emam mvanant . 
c 

Lemma 43 Ambiguous numbers in fa are finite. 

a + bV3 a2 
- 3b2 

Proof. Let a = . It will be ambiguous when 2 < 0 or a2 
- 3b2 < 0 

c c 

or 0,2 < 3b2
. This shows that the values of a are finite which satisfy the condition 

a2 < 3b2 for constant value of b. By Remark 42) the value of b remain invariant for 

CL + bV3 . . . . 
the numbers of the form 111 fa, where a) b, c E Z . By ProposItIOn 41) d IS 

c 

integer) this implies that c divides (a 2 
- 3b2 ) so values of c are also finite. As values 

of Go and c are finite and value of b is fixed in an orbit so ambiguous numbers of the 

CL + bV3 .. . 
form are also fimte m an orbIt. • 

c 

Theorem 44 In a coset diagram for f a, where a is an ambiglwlI,s n1lmber, the am-

big'/.wus numbers form a closed path. 

Proof. If ko is an ambiguous number in f a) then by Proposit ion 39) either C(ko) 

is ambiguous or C 2 (ko). If C(ko) is ambiguous) then by Proposition 36) BC(ko) is 
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ambiguous. Each triangle with unbroken edges in the coset diagram for r contains 

two ambiguous numbers, so within the kt,h triangle, the generators D or B are used 

to reach the next ambiguous number in the (k + 1 yh triangle and in m,t,h triangle 

respectively, as shown in Figure 22. Suppose the k l:h triangle, contains two ambiguous 

numbers, namely a1 and a 2. Then a~ = D(a~-1 ) , a~+1 = D(a~ ) . 

Figme 22 

Also in m,th triangle aT' = D(a~l-1). As (BD) 2 = 1, this implies that a~-1 = 

B ( a~l- l) and aT' = B (an. vVe can continue in this way as shown in Figure 22 and 

since by Lemma 43, there are only a finite number of ambiguous numbers, therefore 

after a finite number of steps we reach the vertex, a~+n = a~-1. I-renee ambiguous 

numbers form a closed path in the coset diagram. .. 

Remark 45 The 37'cl 'vertex of the tr'ia'ngle whose two vertices are in the closed path 
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a + bV3 
of arnbigll,ous numbers of the form , is not ambig'Llo'll,s and it has the form, 

e 
a + bV3 

e 

Theorem 46 If Ct is an ambiguous number, then 'in ra there is only one closed path 

of ambiguo'LLs numbers. 

Proof. In a diagram of A4 there are four triangles with unbroken edges. So the 

diagram of A4 in which a = ao is a vertex of Olle of the triangles with unbroken 

edges contains three more triangles with unbroken edges. According to Proposition 

39, if ao is an ambiguous number, then one of C(ao) and C2 (ao) is also an ambiguous 

number. Let us denote this ambiguous munber by a 1. Then by Lemma 36, these two 

ambiguous numbers are joined with other ambiguous numbers by generators Band 

Figure 23 

As the vertices of other three triangles with unbroken edges are also vertices of 

triangles with broken edges, according to Proposition 38, A(aj) and A2(aj) are not 



65 

ambiguous numbers but they contain i , where j = 0, 1. By applying transformations 

C and C 2 on them, one get s not ambiguous numuers having 'i. So this diagram for 

A4 cont.ains only one triangle having two ambiguous numbers. If we expand this 

diagram and apply generators Band D on numbers which are not ambiguous, then 

by Lemma 37, no further ambiguous numbers are found. Since these numbers which 

are not ambiguous cont.ain i, so by applying transformations C and C 2 on t.hem, 

one gets numbers which are not. ambiguous but. contain i. According to Lemma 36 

and Proposition 39, the generators B, C and D map 0'0 and 0'1 to other ambiguous 

numbers, namely, 0'2,0'3,0'4, .. . , O'n, since they are finite according to Lemma 43. By 

Theorem 44 they form a closed path. As one cannot found any further ambiguous 

numbers from the numbers which are not ambiguous, this means that there is only 

one closed path of ambiguous numbers in fO'o. • 

There are exactly two ambiguous numbers of the form a + bV3, where b remains 
c 

. . . l' f 1 ";{T' h h c a -\- bV3 h b' 111vanant, 111 one c mgram 0 .f 4. ,I V It respect to t e lorm , were IS 
c 

constant, there may be more than one closed paths of ambiguous numbers but they 

lie in difFerent orbits because one orbit contains only one closed path. For instance, 

. a+4V3 . 
wIth respect to the form , there are two closed paths of ambIguous numbers , 

c 

. . 4V3 d h h . . 103 1 . ~ bIB one cont.a111111g -3- an t e ot er conta111111g 4y 0, as s lown 111 llgures e ow. ut 

these two closed paths lie in different. orbits. 
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-1 - 20 1 - 20 6 +40 -3 + 20 -1 + 2[3 

2 2 3 2 2 

1 + 20 

2 

6 - 4[3 

2 3 

3 -4[3 

3 

3 + 40 
-3 - 4[3 

Ii 3 -4[3 
3 

4 4[3 [3 
3 - 2[3 -6 -4[3 

3 
2 3 

Figme 24 

The closed path containing 4J3 is shown in Figme 25. 

4 +4[3 5 +4[3 -6 - 4[3 -5-413 

~.; 'V 'V y:-~ 

~A 6 +4[3 6 - 4[3 A~ 
-6+4[3 V V 5 - 4[3 

Figme 25 

a+kJi 
Theorem 47 If a 'is an ambigliOus number of the form E Q('i , Ji), wheTe 

c 

a, c E Z and k is a constant integer, then 
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(ii) c is 0, divisor of 0,2 - 3k2 . 

a+kJ3 
Proof. (i) Let a = be an ambiguous number. This means that aa < 0 

c 
0,2 - 3k2 

that is 2 < O. Since c2 > 0, this implies that a2 
- 3k2 < 0, which further 

c 

implies that 0,2 < 3k2 . 

(ii) The ambiguous number in the closed path containing kJ3 are of the form 

a+kV3 
--- . \lVe know that cl of kV3 is -3k2 . By Proposition 41, d of other ambiguous 

c 
0,2 - 3k2 

numbers in the closed path containing kV3 are also integer. \lVe have d = , 
c 

it will be integer if and only if c divides a2 - 3k2• This shows that c is the divisor of 

\lVe denote the great est common divisor of a, b and c by (a , b, c), where a, b, c E 7L. 

If CL divides b, then we denote it by a I b. 

. . + ( a + m.V3 ProposItIOn 48 Let 771 #- k is 0, factor of k E 7L and 0" k, c) #- 1. If a = , 
c 

f h ( ") l 'I ,? 3 ') h b b f 1.( a + 771 V3 sue L t ,at a, 71)', C = lanG c a- - 771-, t en am iglwuS num ers 0 t LeJorm ----
c 

a+kV3 
do not ex?:st in the closed path of a:mbiglwlLs numbers of the form . 

c 
a+kV3 

Proof. Let 771 #- k be 0, factor of k . Let a = be an ambig'U,o'u,s number 
c 

. cL+mV3 
such that (a , k, c) #- 1. Th2s means that a can be written as , such that 

c 

(CL, 771, c) = 1. For q E 7L we have Q,q = a, cq = c and mq = k. Since a is amb'ig'U,ous 

number, this means that CL2 < 3m2 and c I 0,2 - 3m,2 . This means that a is an 

. o'+mV3 
amb"lg'LlOllS number of the form --,-- and by Theorem 44, it forms a closed path 

c 
CL + 'mV3 

of ambiguous n'u,mbers. By Remark 42, they are of the form , . By Theorem 
c 
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6,+ m.V3 
46, it is the only closed path of amlJ'ig'Lwlls n'U'fnbers of the fOTln , 'm an 

c 

orb'it. 50 if m =1= k, then in the closed path all ambigllolls numbers will be of the 

a+mV3 a+kV3 d a+mV3 
fonn . Hence the ambigllolls n'LLmbers of forms an lie 

c c c 

in d~fferent closed paths. • 

a+kV3 
Remark 49 By Proposit'ion 48, one can check whether an eleme'l7,t of the f07~m , 

c 
a+kV3 

where (a, k, c) =1= I , belongs to the closed path of ambiglLo1lS nlLmbers of form ---
c 

a + m-/3 a+ kV3 
or of the form, , where 771 =1= k is a f actor of k . Let cy = sllch that 

c c 

(a, k , c) =1= I, then cy can be written as a + ~,-/3 slLch that (0,,771, c) = I, wheTe 771 is a 
c 

" . ') . 0,+771-/3 . a + k-/3 . 
factor of k. If c I a2 - 3m-, then cy ~s of the form , otheTw~se , 'm 

c c 
a+k-/3 

this rase c shollld divide 0,2 - 3k2. In other words if CY = is in its simplest 
c 
. 0,+ kV3 

form and c I a2 - 3k2, then CY OCC1lrs in the closed path of the form . 
c 

Example 50 FOT k = 2. The prime decomposition of k is obviollsly 2 = 2 x 1. There­

fore ambig'Lwlls numbers of the form a-\--/3 already exist in a closed path containing 
c 

-/3. 50 they will not exist in the closed path contain'ing 2V3. By llsing Theorem 47 

and Proposition 48, it can be shown easily that the closed path containing 2V3 has 32 

amb'ig'l.w'l.Ls nllmbers. For CY = a-\- 2-/3 to be ambigllo'l.Ls, a2 < 12 which imphes that 
c 

a2 - 12 - 12 
0, = 0, ± I , ±2, ±3. Let cl = . When a = 0, then cl = -- will be integer if and 

c c 
2-/3 

only if c = ±I, :1.:2, ±3, ±4, ±6, ± I2 . When a = 0 and c = 2, then CY = -2- = -/3. 

5'ince -/3 already exist in the closed path of ambig'uollS nllmbers of the fo rm CL -\- V3 , 
c 

2-/3 V3 
we cliscard c = ±2 and its cofactor ±6. Also when c = 6, then CY = -- = - and 3 

6 3 
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a+ V3 
divides 3. This shows that C\' belongs to the closed path of the fo7'17/, , therefore 

c 

we also discard ihe cofactor 6. Eventually, we have eight val'ues of c, this means we 

have eight 'ual'u,es of 0: . 

Til/hen a = ± l , thc'J1 d 
1 - 12 -11 

= -, d E Z if and only if c = ± 1,±11 . 

So we have four val'ues of c. 

c c 
4 - 12 

VVhen a = 2, d = 
c 

if c = ±1, ±2, ±4, ±8. When a = ±2 and c = ±2, C\' = 

-8 
-, d E Z if and only 

c 
±2 ± 2V3 

= ± 1 ±V3 
2 

. a+V3 . . 
zs of the form . So we dzscard 2 and 4 (ds cofactor). TiVhen a = ±3, then 

c 
9 - 12 - 3 

cl = = - implies that c = ± 1, ±3. Here we have twelve values of c for 
c c 

a = ± 1, ±2, ±3. This 'means that there are 24 values of C\' because of the positive and 

. . a+2V3 
n egatwe values oj a. Thus the total amb'iguous n'umbers of the f orm 'in an 

c 

oTb'it of the coset diagmm obtained by act'ton of r on Q( i, V3) are 24 + 8 = 32. 

A fragment oj the coset diagmm obtained by action of r on Q( i, V3) containing 

. a+ 2V3 . . 
closed path of ambzguo1.iS n'umbers of form J '/,s shown below. In Hg1.ire 26, 

c 

there are two layers of fmgment A - C - D. These two layers are connected by bold 

edges. The dist'tnction between two layers are the conjugates, that is, if C\' = a + 2V3 
c 

a- 2V3 
OCC'LLrs in one layer, then a = OCC'LLrs in the second layer. Thm there is a 

c 

mapp'tng, say S, from one layer to the other, defined by S : 0: ~ C\o. It can be noted 

here that in each Jiagmm of A4J there are exactly two amb'iguous numbeTs. 
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Figure 26 

In the next d'iagru,m we have shown only the closed path of ambiguous n'u.mbers of the 

a-\- 2V3 
fo rm 01/,t of the fragment of Figure 26. In Fig'u,re 27, we apply repeatedly the 

c 
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-3 - 2V3 
.r; enerators C, C 2 and D to obtain the ambiguous numbers in the path from 3 

3 + 2V3 
to - 3 + 2J3 in one layer. The ambiguo'us mtmbers in .the path from 3 to 

3 - 2 J3 are in second layer. These two layers are connected by bold edges. For 

3+2V3 
instance, - 3 + 2J3 and 3 are connected by a bold edge as shown below. 

/ -1+ 2.13 

:JI 
~2J3 
1'2.13 

--u- 1+2.13 

3-2.13" 
- 3 -

3 +2.13 

-2+2.13 ·3+2.13 3+2.13 
-3-

Pigure 27 

2.13 
3 

1-2.13 

- 3 + 2.13 
3 

By choosing a = 0 and c = 2, we get a = V3 which already exists 'in the closed path 

of ambiguous numbers of the form a +J3, as shown in Figure 28. This fragment 
c 

also consists of two layers of fragment A - C - D, which are connected by bold edges . 

The distinction between two layers is because of the occurrence of a in one layer and 

its con.jugate 'in the second layer. 
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Figure 28 

The closed path of a'muiguous n:umbeTS a + J3 in Figure 28 can be seen clearly in 
c 

Figll:re 29. 
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U 
2 

3 

1-.[3 

-1 +U -l-U 
2 

2 1-U 2 1+U 

Fig'uTe 29 

1 
By Theorem 2, the algebraic integers of Q(i, V3) are 2((a + bi) + (c + cl'i) V3), 

where a _ d(mod 2), b _ c(mod 2) and a, U, c, dE'll. In other words either a and cl 

are both even or both odd. Also band c are either both even or both odd. 

Proposition 51 All amb'ig'lJ,o'lJ,s n'lJ,mbeTS of the form a + kV3 whose denominatoT is 
c 

one aTe algebmic integeTs, wheTe (a, k, c) = 1. 

a+kV3 
Proof. The ambiguous numbers in Q (i, V3) are of the form ---, where 

c 
. (a+ Oi)+(k+ Oi)V3 

a, c, k E 7l, or they can be \vntten as . 
c 

(a+Oi)+(k+Oi)V3 
Obviously the coefficients of i and iV3 are even in ex = -'-----'----'----'--

c 

Now ex will be algebraic integer when a and k are even and c = 2. Since a and k are 

even, the denominator becomes 1 after simplification. So ex will be algebraic when ex 

is of the form CL + kV3, where a, k E 7l. • 
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a+-kV3 
Proposition 52 The orbits which conta'in ambig'LwlI,s numbers of the form, --­

c 

also conta'in algebmic integers of the form l +- mi ± kV3 in Q (i, 13), where l, mE'll, 

k is a constant positive integer. 

Proof. It has been proved in Proposition 51, that a is algebraic as well as 

ambiguous if it is of the form a +- k /3, where a E 7l, a2 < 3k2 and k is a constant 

positive int.eger. By applying (CDr on a we get the series l +- kV3, where n, l E 7l . 

Fmther, applying (A2 Bt on a, we get the series l +- m,i ± kV3, where l , 171, E 7l and 

k is a constant positive integer. _ 

Proposition 53 (i) If a = (a + b'i)+(c +- di) 13, where a, b, c, dE'll, then fa have 

all the algebmic integers of the form (l + mi) ± (c ± di) 13, where l , mE'll and 

c, d are constant posit7:ve integers. 

1 
(ii) If a = 2 {( (L + bi) +- (c +- di) /3}, where a, b, c, d are odd 'integers, then all the 

1 
algebmic integeTs in fa aTe of the form 2{(l +- mi) ± (c ± di).J3}, where l, 'Tn 

aTe odd 'integeTs and c, d are constant odd positive integers. 

1 
(iii) If a = 2 {( a +- b'i) +- (c +- eli) V3}, where a and d are even (odd) integers and b, c 

. are odd( even) integers, then f a have all the algebmic integers of the form 

~{(l+-mi) ± (c±cli)V3}, where l is even (odd) integer a'nd m is odd (even) 

'integeT. 

Proof. (i) By applying transformations (CD)n and (A2 B)n on a = (a + b'i) +-

(c +- eli) .J3, we get the series (l +- mi) ± (c ± di) /3, where n, l , mE'll and c, dare 
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constant integers. T he values of c or el can not be changed because r consists of only 

those linear fractional transformations whose coefficients are from Z [i]. Hence values 

of c and d are constant. 

1 
(ii) If a is of Lhe form "2 {(a -I- bi) -I- (c -I- di ) ..j3}, where a, b, c, el are odd integers, 

then by applying transformations (CD t and (A 2 B)n, where n E Z, on a, we get the 

1 
series - {(l -I- mi) ± (c ± eli) ..j3}, where l, m are odd integers and c, el are constant 

2 

odd integers. 

(iii) Let a = ~{(a -I- bi) -I- (c -I- eli) J3}, where a, dare even(odd) integers and b, c 

are ocld(even) integers. By applying transformations (CD)n and (A2B ), n E Z on a, 

1 
we get the series "2{(l -I- mi) ± (c ± eli) ..j3}, where lis even(odd), m is ocld(even), c 

is constant odd(c~en) and d is constant even(odd) integers. _ 

Corollary 54 If l:."Y is an algebmic integer in Q (i, ..j3), then ra contains all its con-

jugates over Q. 

1 
Proof. Let a = "2{(a -I- bi)-I-(c -I- di) J3}, where a d (mocl2) , b = c (mod 2) . By 

applying transformations (CDr, (DC 2t, (A2 Bt and (BAr on a, where n E Z+, 

1 
we get algebraic integers - {( l -I- mi) ± (c ± eli) ..j3} , where l, m E Z a.nd l el (mocl2) 

2 

and m = c (mod 2), which contain ~{(a - bi )-I-(c - eli) ..j3}, ~{(CL -I- bi)- (c - eli)..j3} 

1 
and "2{ (CL - bi) - (c -I- eli ) ..j3}. -

Proposition 55 There are infinite 'mLmbe'T' of orbits containing integers ofQ(i,..j3). 

1 
Proof. If C\' = "2 {(CL-I-bi) + (c+eli)J3}, where CL - el(mod2) , b cmocl2, 
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1 0 

then by Proposition 53, ra: contains algebraic integers of the form "2{(l -/- rn'l,) ± 

(c ± cl'i) v'3}, where l = cl (mod 2), 7T/, == c(mod 2) and c, cl are constant integers. 

Thus by varying values of c and cl where c, cl E Z, we can get infinite number of 

orbits containing algebraic integers of Q (i , v'3). Also from Proposition 53, (a -/- bi)-/-

1 
(C-l-cli ) J3, where CL,b,c,cl E Z, "2{(CL-/-bi) -/- (C-I- cli)v'3}, where CL,b,c,cl are odd 

1 
integers, and "2 {( CL -/- bi) -/- (c -/- eli) J3}, where a and el are even (odd) integers and 

b, care odd(even) integers, belong to different orbits. _ 

Theorem 5G Action of r on Q( i,J3) 'is intmnsitive. 

Proof. In Theorem 34, it has been proved that action of r on Q( i) is transitive. 

So there are at least two orbits by the action of r on Q( i, J3). One orbit is QU) and 

the other is Q(i, v'3)\Q(i). This shows that action of r on Q(i, J3) is intransitive. 

-
Theorem 57 Act'ion of r on Q(i, In) is intmnsiti'ue, where n > 1 is a square-fTee 

integer. 

Proof. In Theorem 34, it has been proved t hat action of r on Q( i) is transitive. 

So one orbit is Q(i) and other is Q (i, In)\Q(i), where n > 1 is a square-free integer. 

This shows t hat action of r on Q('i, In) is intransit ive. _ 

Proposition 58 The fixecl points of a linear fmctional tmnsformation T(z) = CLZ -I- b 
cz -/- cl 

h b el '7J [ oJ lb" J cl - CL d b '7J W eTe a, ,c, E tU '/, , aTe age ra'iC mtegers w wn -- an - E tU. 

C C 
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Proof. Let II, E C be a fixed point of a linear fractional transformation T E 

r , that is, T(k) = k, where T( z ) = aZ+ b, a, b,c, d E Z[i]. This implies that 
cz + d 

') ') d - a b d-a b 
ck- + (d - a)k - b = 0, or k- + (--)k - - = O. If -- and - E Z, then the roots 

c c c c 

are algebraic integers . £J 

The fixed points of the generators A, B, C and D of r are algebraic integers. If a 

and &. are conjugates, then T (a) and T (&.) are also conjugates, where T is a linear 

fractional transformation. This means the diagram formed by applying elements of 

r on a is same as the diagram formed by applying the same elements of r on &.. We 

denote the latter diagram as "conjugate diagram" . If an edge joins two vertices of a 

triangle, then we denote this edge by a II cap II . 

Proposition 59 The fragm ent of the coset diagram containing the fixed points of 

generators A and C have four vertices and all of them are algebraic integers. 

. i ±j3 -1 ± V3i 
Proof. The fixed pomts of generators A and C are and respec-

2 2 

tively, which are of course the algebraic integers of Q( i, .J3). 

-1+2i-J3 i 

2 

Figure 30 

-1+2:itJ3i 

F· t . 1 f f h d' h' h . i + V3 B 1 . 
-j irs , conS1C er a Tagment o ' t e coset lagram w lC contams . y app ymg 

2 



i + V3 -2 + i - -J3 ( i + J3) 
generator C on 2 ' we get 2 and C2 2 

Also, by applying generator A on above values , that is, 

(
- 2+i-J3) - 1+2i-V3i ( -2+i-V3) 

it 2 = 2 and A2 2 
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-1 + 2i - J3'i 
2 

- 1 + V3i . 
= , whIch 

2 

is the fixed point of C. Further applicatjons of A and C on these values give the same 

elements. This means that we get only four elements of Q(i, V3) in the diagram 

i + V3 -1 + V3i 
containing the fixed points of it and C, namely, 2 and 2 . So the Cay-

ley's diagram of A4 is reduced to a diagram having four vertices because of the fixed 

(
i + V3) 'i - V3 'i + V3 . points of it and C. As D 2 = 2 is conjugate of 2 ' so the diagram 

f 1 b 1 . 1 d C i - V3 . . d· I . ormec y app ymg generators j an on IS conjugate Iagram. t IS same 
2 

to the eliagram formed by applying generators A a.nd C on i +2 V3 because if a and & 

are conjugates, then T (a) and T (&) are also conjugates, where T is a linear fractional 

transformation. Similarly, it can be proved that the conjugate diagram containing 

i - V3 - 1 - J3i 
2 and 2 also contains four elements as shown in Figure 30. • 

Proposition 60 The t'riangles in diagram of S3 , generated by it and D , in the coset 

diagram for the action of r on Q( i, V3) , have the same number of algebraic 'integers. 

1 
Proof. Let a be an algebraic integer ofQ(i, V3). By Theorem 2, Q = "2((a + bi)+ 

(c+ di) J3) where a _ d(mocl2), b = c(mocl2) . By applying transformation DA on 

1 
a, we get DA(a) = -a + 'i = -{ -(L - (b - 2)i - (c + d'i)V3}, where b - 2 == c(mod 2) 

2 

since b - c(mocl2). This means that DA(a) is again an algebraic integer. So if Q is a 

vertex of a triangle having broken edge~: , then the application of transformation DA 
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on a yields an algebraic integer (3 in another triangle having broken edges such that 

DA(a) = (3 . 

, I I / 
' ~I __ ./ 

a 

Figure 31 

These two triangles are joined by three edges which represent generator D. Hence, 

if all the three vertices of a triangle with broken edges are labelled by algebraic inte-

gers, then the triangle joined with this triangle by edges also contain three algebraic 

integers. _ 

Proposition 61 The tTiangles 'in d'iagram of S3, generated by Band C, in the coset 

diagram for the action of r on Q( i , J3), have the same TL1Lmber of algebraic integers. 

1 
Proof. Let a E Q(i, J3) be an algebraic integer. By Theorem 2, a = "2((a + bi) + 

(c + cli) J3)' where a - cl(mod2), b _ c(mod2) . Now CB(a) = C(B(a)) = - I ­

I 
a = "2{(-(2 + a) - bi) - (c + cli)J3}. Then a + 2 - cl(mod 2) since a _ cl(mod2). 

This implies that CB(a ) is also an algebraic integer. Similarly, for other vertices of 

the triangle with unbroken edges, that is, if all the three vertices of a triangle with 

unbroken edges are labelled by algebra ic integers, t hen the triangle wit h unbroken 

edges joined with this triangle by bold edges, also labelled by three algebraic integers. 

-
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Proposition 62 There are exactly f01/,1' rliagrams of A 4 , which conta'ins six algebraic 

integers in each diagram, in the orbit containing fi;ud pO'ints of A and C. 

Proof. It is clear from Proposition 59 and Figure 30 that one portion of the 

diagram containing the fixed points of generators A and C contains four vertices or 

two triangles, one having broken edges and the other having unbroken edges. Each 

of the trianglps is labelled by three algebraic integers. By Proposition 60, the three 

algebraic integers of the t riangle having broken edges are mapped to the triangle 

having broken edges of another diagram of A4 by edges, whose vertices are also 

labelled by algebraic integers. By Proposition 61 , the three algebraic integers of the 

triangle having unbroken edges are mapped to the triangle having unbroken edges of 

another diagram of A4 by bold edges, whose vertices are also labelled by algebraic 

integers. Since CA maps an algebraic integer to an algebraic integer, so there are 

six algebraic integers in a diagram of A4 . Consider the same argument for another 

fragment having the fixed points of A and C. So this fragment is connected to two 

other diagrams of A4 having six algebraic integers . So, in total there are four diagrams 

of A4 which contain six algebraic integers. _ 

Remark 63 The fragment of a coset diagram for the action of r on Q( i, -/3) whose 

all vertices are labelled by algebraic integers. 
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I 
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Proposition 64 If a triangle in a diagram of S3 does not have any algebraic integers, 

then the other triangle joined with it by edges does not have any algebrm:c 'integers. 

Proof. Let a, /3 and "I be vertices of a triangle having broken edges represent-

ing three cycles of generator A and they be not algebraic integers , where a, (3 , "I E 

1 
Q('i , V3). Let a = -{(a+ bi) + (c+di) V3}, where a =I=- d(mod2) or b =I=- c(mod2). 

e 

Let a =I=- d(mod2), b - c(mod2) and e = 2. Then DA (a) = t{( - a - (b - 2) i ) -

(c + di) V3} . Since a =I=- d (mod 2), so D A (a) is not an algebraic integer. Let a - d 

(mocl2), b =I=- c(mod2) and e = 2. Then (b - 2) =I=- c(mod2). So DA (a) is not an 

algebraic integer. Similarly, /32 and "12 are not algebraic integers. -

Theorem 65 The algebraic integers in the orbit containing the fixed points of A 

(±k ± li) ± V3i 
and C aTe of the fo-rrn { : k is odd 'integeT, l is even 'integeT} and 

2 
(±k ± li) ± V3 

{ 2 : k is even and l 'is odd integer}. 

. i ± V3 -1 ± V3i . 
Proof. The Fixed pomts of A and Care 2 and 2 respectlvely. By 

. i ± V3 . ±k + i ± V3 
applymg CD and DC2 repeatedly on 2 ,we get the senes 2 such 
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. . 'i ± J3 li ± V3 . 
that k IS even. D y applYll1g A2 B or B A on , we get such that l IS 

2 2 
±k ± li ± /3 . . 

odd. So we get t.he series 2 ' where k is even and l IS odd mteger. By 

- 1 ± J3i ±k =F J3i 
applying CD and DC 2 repeatedly on , we get where k is odd . 

2 2 
-l±J3i - l±li±V3i . 

By applying A2 B or BA on 2 ' we get 2 such that lIS even. By 

b" b fl ' ±k ± li ± V3i 1 k' dId l . com ll1ll1g a ave two . orms we get t 1e senes 2 ' w 1e1'e ~ IS a C an IS 

even integer. _ 

Proposition 66 In a d'iagram of AI, algebraic integers are present in pairs. 

(a + bi) + (c + d'i) V3 . . . 
Proof. If Ct = 2 IS an algebraIc ll1teger, where a == d(mod2), 

{-(2 + a) --/- (2 - b)i} - (c + d'i) J3 
b = c(rnod 2) , then CA( Ct) = - 1 +i - Ct = . Since 

2 

d a + 2 (rna 12) and c == 2 - b (mod 2), therefore C A( Ct) is also an algebraic integer. 

• 

Proposition 67 If there is one diagram of A4 having two algebraic integers, then 

there are infinite diagrams of A4 having two algebraic integers in an orbit. 

Proof. Suppose Ct, f3 exist in a diagram of A4 , where Ct, f3 are algebraic integers. 

Then CA(Ct) = f3 or CA(f3) = Ct, where Ct is a vertex of a triangle representing three 

cycles of A as well as a vertex of a triangle representing three cycles of C. Thus, 

by Propositions 60 and 61, we get two different diagrams of A4 each containing one 

algebraic integer. Application of transformation C A gives another algebraic integer 

in the same diagram of A4 . By applying DA and BC on f3 we get two more diagrams 

of A4 each containing one algebraic integer and by the transformation C A, we get 
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anot.her algebraic integer in the same diagram of A4 . In the same way by applying 

transformations DA, BC and CA on ot.her diagrams of A4 which contain algebraic 

integers, we get infinite diagrams of A4 which have two algebraic integers in them. -

Proposition 68 The fragm ent of the coset diagram for the action of r on Q( i, )3)] 

containing fixed points of the generators Band D has six vertices and four of them 

are algebraic integers. 

Proof. The fixed points of generators Band Dare ± 1 and ±i respectively which 

lie in the orbit Q( i) of Q( i, )3). The diagram containing the fixed points of both 

generators Band D, that is, - 1 and i, have six vertices in total. Starting from -1 

and applying transformations C and C2 , that is , C ( -1) = 0 and C2 ( -1) = 00. Now 

by considering i, C(i) = (-l+i) and C2 (i) = -l+i. Also A(-l+i) = -1 and 
2 

-l+i 
A2 (-1 + i) = 2 . We have A (0) = i and A2 (0) = 00 . 

co 

-1+ i ~r=--ct:-.4 -1+ i -
2 

-1 

Figm e 33 

So we get six vertices in total and 0, -I, - 1 + i and i are algebraic integers. _ 
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Proposition 69 There are three diagrams of A 4 } in the orbit con taining fixed points 

oj generators Band D} which contain /01lr algebraic integers. 

Proof. By Proposition 68 , the fragment containing fixed points of both generators 

Band D have four algebraic integers, namely 0, - I , -1 + i and ,t. Each triangle with 

unbroken edges contains two algebraic integers as shown in Figure 33. These two 

triangles are joined with two more diagrams of A4 by bold edges, so in total we have 

three diagrams of A 4 . By Proposition 61, each triangles of other diagrams of A4 which 

are joined by bold edges , also have two algebraic integers . Since the transformation 

Cft maps an algebraic integer to an algebraic integer, so both of the diagrams of ft4 

contain four algebraic integers. _ 

\1Ve conclude this section with the following observations for the coset diagram for 

the action of r on Q( i , -/3). The ambiguous numbers of the form a + b-/3 make a 
c 

closed path and it is the only closed path of ambiguous numbers in the orbit. These 

elements exist in two layers, in each layer they are connected by the generators D 

and C. The two layers are connected by the generator B. The orbit which contains 

ambiguous numbers also contains algebraic integers . The behaviour of ambiguous 

numbers as well as algebraic integers show that the action of r on Q( i, -/3) is intran-

sitive. 
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3.1 Tesselations of Picard group 

Let H 3 = {( Xl,X2,X3 ) E lR3 : X3 > O} be the upper half space equipped with the 

Idxl 
hyperbolic metric p which is derived from the line element ds = --, where x = 

X3 

(Xl, X2, X3). With this metric, (H3, p) becomes a model for hyperbolic 3-space. In 

t.erms of quaternions!HI, H3 = {z E n-IT : z = Xl +X2i+X3j, x3 > O}, where i 2 = j2 = -1 

and ij + ji = O. Let Q(i) = {a + bJii: a, b E Q}. 

- 1 
The P icard group r act.s on H3 by its generators defined by a (z) = -, t (z) = 

z 

z + 1, u (z ) = z + i, and l (z ) = izi. The fundamental domain F for r is {z = 

X + yi + rj E H3 : Ix i :::; ~, 0 :::; y :::; ~ and (X2 + y2 + r2)~ ~ 1}. 'When we act r on 

F, its images cover the entire space. For every z E H 3 , there is a , E r such t.hat 

,(z) E F. Moreover, if z and w lie in the interior of F and z = ,(w) for, E r, then 

, = ±I, where I is the identity element of r. We have divided F into four parts by 

choosing two colO1.U"s, that is, black and grey to visualize a pattern in H3. We have 

taken any point from H3 and then applied generators of r on it. By this application 

that point transformed within F. As F is divided into coloured regions so we have 

given colour to that point according to its location in F. By applying the same pro-

cedure for different points we get the whole figure. This action can be visualize in 

Figures 34 and 36 below, which is output of a program developed in Matlab. 
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0.8 

.~ 0.6 

N 04 __ ,,_,,"c 

y-axiS 

Figure 34 

The above lig
ure 

is [or - 0.92 <; x <; 0.92, -1.2 <; Y <; 1.2 and 0.1 <; r <; 1 

Another croSS section of the tesselation of r in H' is for -0.92 <; x <; 0.92, -1.2 <; 

y <; 1.2 and 0.1 <; r <; 0.5 is given below. 
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0 .5 

0.4 

y-i'lXis 
x-axis 

Figme 35 

Primarily this program is written for the Picard group but after some minor 

modifications, it can be used to find tesselations of other groups in H3. 

r also acts on Q (1-). We have defined a mapping ¢ : Q( i) ---+ Y by 

¢(x + yi) = x + Y'i + j, 

where Y = {x + yi + j E H3 : x, y E Q}. Clearly (p is bijection from Q(i) to Y c H3. 

The figure below, shows the image of Q(i ), which is developed by Matlab. 



88 

rn 
.~ 0.5 

" 

y-axis 

Figure 36 

1 1 
In other words if we take D = {z = x+yi+ j E H3: x,y E Q, ixl ~ 2,0 ~ y ~ 2 

and (x2 + y2 + r2) ~ :2: I} a.s a subset of fundamental domain then by the action of the 

generators t, u andl on D we get a plane Y. Of course by taking any r E Q we can 

define a bijection mapping from Q (i) to Y, but [or an action of r we have to take 

T > ~. Since it is the smallest value of r to satisfy (x 2 + y2 + r2) ~ :2: 1. 

Similarly, we can define a bijective mapping from Q( i, J3) to X = {u + vi + j E 

H3 : u, v E Q(V3)} by 

~/J ('u + vi) = u + vi + j. 

Again t he figure formed for the action of r on {z = u + '1xi + j E H3 : x, y E 

1 1 
Q( J3), lui ~ 2' 0 ~ v ~ 2 and Izl :2: I} by this bij ection is a plane X having the 

same pattern as shown in Figure 36. 
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Progran1 

This program has been developed in Matlab. This program gives the tesselation 

of the Picard group on H3. 

clear all 

i=l; 

j=l; 

k= l ; 

1= 1; 

count= l ; 

while count < = 3 

if (count==l) 

end 

rmin=l; 

xmin=-O.92; 

xma.,'C=O.92; 

ymin=-1. 2; 

if (count==2) 

rmin= O.l ; 

xmin=-O. 92; 

xma.,'C=-O. 92; 

ymin= -1.2; 



end 

if (count==3) 

end 

rmin=O.l; 

xmin=-0.92; 

xma,-x=0.92; 

ymin=1.2; 

xO=xmin; 

while xO<=xmax 

yO=ymin; 

while yO< = 1.2 

rO= rmin; 

while rO<=l 

x= xO; 

y=yO; 

r=rO; 

zmod= (x. ~ 2)-I-(Y. ~ 2)+(r. ~ 2); 

while ((abs(x»0.5) I (abs(y»0.5)1 (zmock1)) 

if (x<-0.5) 

x=x+1; 

else if (x> 0.5) 

90 



x=x-1; 

end 

if (y<-0.5) 

y=y+1; 

elseif (y> 0.5) 

y=y-1; 

end 

zmod= (x. ~ 2)+(y. ~ 2)+(r. ~ 2); 

if(zmod< l) 

x=-x.jzmocl; 

y=y./zmocl; 

r=r.jzmod; 

zmod= (x. ~ 2)+(y. ~ 2)+(r. ~ 2); 

end 

end % while 

if (y< O) 

x=-x; 

y=-y; 

end 

if ((x>=(-0.5)) & (x < 0)) 

if (y <=(-x)) 

91 
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X3 (1 ,k) =xO; 

Y3(l,k) = yO; 

R3(l ,k) = rO ; 

k= k+1; 

else 

X4(l, l)= xO; 

Y4(l, l)= yO; 

R4(l ,l)= rO; 

1= 1+1; 

end 

else 

if(y < x) 

X1(l ,i) = xO; 

Y1(1,i) =yO; 

Rl(l,i) = rO; 

i= i+ 1; 

else 

X2(l,j) = xO; 

Y2(1,j) = yO; 

R2(l ,j) = rO; 

j - j+ 1; 



end 

end 

rO=rO+0.02; 

end % while 

yO= yO-I-O.Ol; 

end % while 

xO=xO+O.Ol; 

end % while 

count=count+ 1; 

end % while 

plot(Xl,Yl,Rl,'.r',X2,Y2,R2,'.b',X3,Y3,R3,'.b',X4,Y4,R4,'.r'); 

grid on 

xl.im( [-0.92 0.02]) 

ylim( [-1.2 1.2]) 

zlim( [O.l 1]) 

campos([7.684 -4.568 -6.06]) 
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Chapter 4 

Closed Paths of Ambiguous 

Numbers 

Coset diagrams for the orbit of r in biquadratic field Q( i, V3) give some interesting 

information. In chapter 3, it has been shown that ambiguous numbers of the form 

CL + bV3 make a single closed path and it is the only closed path in the orbit ra, 
c 

where 0' is ambi guous. In this chapter we have classified these closed paths. vVe 

have found the types of these closed paths and the linear fractional transformations 

associated with them. vVe have observed that there are three types of closed paths 

that may occur in the coset diagram for the action of r on Q (i , J3). They are: 

(i) closed paths which contain ambiguous numbers 0' with their conjugates a, 

(ii) closed paths which contain ambiguous numbers 0' with the ambiguous numbers 

1 
- , and 
0' 
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(ii i) closed paths which contain ambiguous numbers a with t he ambiguous numbers 

1 

First notice that there is a mapping from Q(i, V3)U{ oo} onto FpU{ oo}, where p- 1 

(a+bi)+(c+di)V3 . f0. 
and 3 are squares in Fp . By this mapping a = E Q('t, v 3) 111 

e 
{(a + bi) + (c + di) V3} (modp) 

its lowest terms is mapped on to ( d) . If 3 - n2 (modp), 
e mo p 

then 3 = (p - n)2 (mod]]). Also, if p-1 = m 2 (modp) , then p-1 _ (p - m)2 (modp). 

az + b 
Thus there are four mappings from Q( i, V3) U { (x)} onto Fp U {oo}. If 9 : z -7 d 

cz + 
. [a] z + [b] 
IS any element of r, then 9 can be taken to act on Fp U {(x)} by z -7 [c] Z + [d] 

(where [a] , [b] ,[e] and [d] are residues modulo p of a, b, c and d respectively) and the 

mapping commutes with the action of r . Thus the coset diagram for the action of r 

on Fp U { (x)} is obtained from the coset diagram for the action of ron Q(i, V3) U { (x)} 

by identifying appropriate points. 

In this chapter, we have found conditions under which the closed paths of the 

types (i) , (ii) and (iii) exist in the coset d~agram for the action of ron Q(i, V3) or for 

the action of r on a projective line over a finite field Fp , where p is a prime number. 

Theorem 70 Every element ofr has real quadratic irrational numbers as fixed points, 

except: (i) the elements of order 2 and 3, (i i) the elements which are conjugates of 

(DC2t and (A2 Bt, and (iii) the elements whose trace is qi in matrix form. 

az + b 
Proof. Let 9 : z ~ E rand k be a fixed point of g . Then ck2 + (d - a) -

cz + d 

b = 0 has real roots only when (cl-Ct)2+4bc ~ O. But (cl-a)2+4bc = a2+d2-2acl+4bc. 

Since ad - bc = 1, therefore be = acl - l. That is , the discriminant becomes 
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a2 + d2 - 2ad + 4ad - 4 = (a + d) 2 -- 4 ;:::: 0, where a + cl is the trace of the ma-

trix corresponding to g. If the roots are complex, then (a + cl) 2 < 4, that is, when 

(a + cl) = 0 or 1 or qi, where q -=f. 0 E Z. 

(i) 
az + b 

If a + d = 0, then 9 will take the form z !------+ cl and so g2 = 1. 
cz+ 

ass:~: ::at a±; 'dt~e~:e ::sr:~::: ::~tC~::::t::::~: )~d l:1 i~: b_
S
: f o:a: 

gives 1112 + 1\11 + I = 0 as its characteristic equation , which yields 1113 - I = O. This 

. l' 1 az + b 1 d 3 llnp les t lat 9 : z !------+ ( ) las or er . 
cz - a + 1 

If a + cl = ± '/J1, > 2, then (a -/- d)2 - 4 > 0 and so the roots are real. In fact 

(cl - a) 2 + 4bc is a perfect square when cl - a = 0 and b = c = 1. Therefore the only 

possibilit.y for ad - bc = ±1 is that a = d = O. Hence M (9) = (: :) which is 
transformation B. 

(ii ) If a + d = ±2. Then 9 is parabolic element since tr 2 (g) = 4 and is of the 

form az + b and is conjugate to (DC 2 )n : z !------+ z -/- n or (A2 B)n : z !------+ z + ni, for 

some positive integer n . This implies that 00 is the only fixed point of 9 

(iii) If a + d = qi , q -=f. 0 E Z, then (a + d) 2 - 4 = _q2 - 4 < O. 
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Thus (cl + a) 2 - 4 cannot be a perfect square because otherwise we shall be dealing 

with a coset diagram for rational numbers in which case 00 is the only fixed point. 

As (d + a)2 - 4 cannot be a perfect square so the fixed points are real but irrational 

numbers. Thus elements of orders 2 and 3, conjugates of (DC2)n and (A2 Bt, and 

the elements having qi as its trace in matrix form, are the only exceptions where we 

do not get real quadratic irrational numbers as :/ixed points. -

Consideration of the action of r on biquadratic field Q( i, V3) suggests the im-

portance of closed paths. If nl, n2, '" n2k is a sequence of positive integers , then by 

a closed path of type (nl' n2, "., n2d, we mean a closed path in which nl triangles 

have one vertex outside the closed path and n2 triangles have one vertex inside the 

closed path and n3 triangles have one vertex outside the closed path and so on. This 

particular vertex of a triangle lying on the closed path. If k is the number of sets of 

triangles wi th one vertex outside the closed path and k is the number of sets of tri-

angles on the closed path with one vertex inside, then k = k and so the total number 

of sets of triangles in a closed path is 2k . In the coset diagram for the action of r 

on QU,J3), a point p is on a closed path of ambiguous numbers if and only if it is 

that the closed paths are permuted by any permutation which normalizes the set 

{DC, DC-I}. One such permutation is S: a f----+ a and the other is B: a f----+~ . Since 
a 

B2 = S2 = (BS)2 = 1 so we have a 4-permutation group permuting the closed paths. 
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Question arises if (11,1,11,2, ... , n2k) is the closed path, then under what conditions it 

contains: 

(i) a with its image & under the linear fractional transformation S : a ~ &, 

1 1 
(ii) a with its image - under the linear fractional transformation B : a ~ , 

a a 

and 

1 1 
(iii) a with its image -=- under the linear fractional transformation BS : a ~ -=- . 

a a 

We have proved that the closed paths pertaining to case (i), (ii) and (iii) must be 

of the type (11,1, ... , nk, nk, ... ,11,1), that is, this type of closed path in the coset diagram 

for the action of r on Ql( i, y'3) contains a with &,..!:. and :. 
a a 

Lemma 71 Let a and..!:. exist in a closed path. If a is a vertex of a triangle having 
a 

1 
one vertex 'inside/ 01dside the closed path, then the triangle conta'ining - also has one 

a 

vertex 'inside/outside the closed path. 

1 
Proof. Let a and - belong to a closed path. Let us index vertices of the triangles 

a 

belonging to the closed path by ai , where i E {l, 2, ... , m}. If ex 0 ccu pies the vertex 

of a triangle with one vertex inside the closed path, then 2. also occupies the vertex 
a 

of a triangle with one vertex inside the closed path to satisfy the relation (BC)2 = 1. 

• 
. . 1 

Lemn1.a 72 If a OCCupws a vertex labelled odd/even, then - occ'upies vertex labelled 
a 

even/odd. 

Proof. If the a's occupy vertices with oeld labels, then no 2.'8 can occupy any of 
a 
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these vertices. For otherwise, B(ar.) = ~, where T :::;: m, is odd. By Lemma 71, if a 
ar' 

1 
occupies the triangle with one vertex outside the closed path, then - occupies the 

a r 

triangle with one vertex outside. 

n 
k+1 

····v v· ·· v··· ·· ··.~ 

n r . "' <J [>1 ", 

. n~V'---a, ------<;v~··· ·~ 
L--__ -' I I 

n 
1 

Figme 37 

n 
2. 

vVe have (BC)2(C~ ,.) = aT, this implies that BC(ar ) = C2B(aT ) . But C2B(ar ) does 

not belong to closed path, as shown in Figme 37. A contradiction arises because if 

C(aT ) belongs to closed path , then by Lemma 36, BC(ar·) also belongs to the closed 

h S 
1 . 

pat. 0 - must occupIes even vertex. _ 
aT 

Lemma 73 If a and 6: exist in a closed path, then edheT both triangles (containing 

a and 6: as a veTtexj have one vertex inside the closed path or both have one vertex 

outside the closed path. 

Proof. Let a and 6: belong to a closed path. Let us index vertices of the triangles 

belongi ng to the closed path by ai, where i E {I , 2, ... , m} . If a occupies the vertex 



100 

of a t.riangle with one vertex inside the closed path, then & also occupies the vertex 

of a triangle with one vertex inside the closed path to satisfy the relation (BS)2 = 1. 

• 
Lemma 74 If a occupzes a vertex labelled odd/even, then & also occupzes vertex 

labelled odd/even . 

Proof. We label the vertices of the triangles in the closed path by ai, where 

i E {I, 2, .. . , m.} . 

n r . " <J 

n 

" 

n 
1 

Figure 38 

n 
"+1 

n 
2> 

Let a = aI, that is , a occupies the vertex of the triangle with odd label. Let 

& = a r·, where 7' is even and r :s; m.. By Lemma 73, it must occupies the trian-

gle whose one vertex is outside the closed path, as shown in the Figure 38. This 
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implies that there exists 9 E r such that g(a) = a) where 9 is of the form 9 = 

a and a are, for hE r) so C(O') is a conjugate of C(a). But C(a) = C(a1·), which 

docs not. belong to the closed path) as in the Figure 38. This is a contradiction be-

cause conjugate of ambiguous numbers are also ambiguous and belong to the closed 

path. This shows that a cannot occupy even label. So a must occupies odd label 

when a occupies odd label. Similarly, it can be proved that if a occupies even vertex, 

t.hen a also occupies even vertex. _ 

Let us denote a closed path) which is represented by the word having generators 

C and D of r) by C - D closed path while a closed path) which is represented by the 

word having generators B, C and D of r, is denoted by B - C - D closed path. ' lYe 

denote a C - D closed path containing a by COt and a C - D closed path containing 

1 
- by C 1., where a is an ambiguous number of Q( i, .)3). 
a c< 

For a given sequence of positive integers 17,1) 17,2, ... , n2k) the closed path of the type 

where k divides k) is said to have a period of length 2k~ 

Theorem 75 [[3lj, Theorem 2.3] For given positive integers 17,1, 17,2, ... ) n2k, there does 

not e:rist a closed path which has a period of length 2k', where k' divides k. 
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Lemma 76 A closed path is B - C - D if and only if the closed path is of the type 

Proof. Let a be an ambiguous number of Q( i, .)3) . Then by Theorem 44, we get 

a closed path of ambiguous numbers, which is represented by 

where a is fixed point of g. vVe call it a closed path of a and denote it by CD'. = 

(nI' ... , nk) ' By applying B on a, we get ~ and by repeatedly applying transformations 
a 

C, C 2 and D we get another closed path of ambiguous numbers in which h( ~) = ~, 
a Q 

where h E f, let us denote it by C l . By Lemma 71, if ai is the vertex of the triangle 
Q 

having one vertex outside the closed path Co., then ~ is also the vertex of the triangle 
ai 

having one vertex outside the closed path C l, where i = I, ... , m, and m is the total 
Q 

number of vertices in Cce Since (BC)2 = I, if we apply B on each ai, then we get m 

1 
vertices in Cl, such that h fixes - and is of the form (CD)n1 ... (CD) n"-1 (C-I D)nk as 

Q a 

shown in Figure 39. 



n 
k n 

k 

v1"" 

~·····~a~'~ 

C 1 
-
a 

n 
1 

Figure 39 

1 

n 
1 
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This shows that Cae is of the type (nl ' " " nk) and C 1. is of the type (nk' .. " nl), 
Q 

If we combine Co. and C 1. by generator B, then we get t he closed path of the form 
Q 

( ) 1 , h ' t 1 b BD(DC)7t l (DC- I) nk BD(DC- I)nk , ,, n l, .. "nk,nk , .. "nl W11C IS represen ec y ... 

Conversely, let the closed path which contains a is of type (nl ' .. " n k, n k, .. " nd 

and let it is a C - D closed path. The closed path (nl' .. " nk, nl.; , .. " nl) induces an 

element 

of r, By Lemma 36, generator B maps an ambiguous number to an ambiguous num-

ber. So there is another closed path or C- D closed path ofthe type (n l' .. " n k, n k, .. " nd 
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since (BC)2 = 1 and (BD)2 = 1. Combining the both closed paths we get 

which induces an element h = 92. But this is a contradiction by Theorem 75. Thus 

(nl ' ... , nk, nk, ... , nd is a B - C - D closed path. -

In the following Theorem we have given the necessary and sufficient condition for 

. a + bV3 . .. a - bV3 
a closed path to contam 0: = wIth Its conjugate a = . 

c c 

Theorem 77 A closed path contains a with its con.Jugate a iJ and only iJ it is oj the 

Proof. First we note that if 0 : and a are conjugates, then so are 9 (0:) and 9 (a) 

for every 9 in r and so the Theorem is t rue for every element on the closed path if it 

is true for any one element. 

Let 0: and a belong to C - D closed path, which is, (nl ' n2, ... , nk). There exists 

Now we index vertices ofthe triangles on the closed path as in Figure 35 by a i , where 

Since a and a are conjugates, therefore they are fixed by the same element of r , and 

so J must be equal to h. But tIlis is not the case because if it is so, then h = (gd S for 

some s > 1, g1 E r and, then a will be a fixed point of g1. By Theorem 75, this cannot 
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happen except for ht , t ::::: 1 and so gives a contradiction. Thus a belongs to B - C - D 

closed path. By Lemma 76, the closed path is of the type ('17,1 , ... , nk, nk, ... , nl)' 

Conversely, let closed path is of the type ('17,1, ... , nk, nk, ... , nl) . Let 0. E Co where 

1 1 
Co = (nl ' '17,2, .. . , nd auel B(o.) = - such that - E Cl where Cl = (nk' nk- l···, nd· 

0. 0. C< C< 

Let 91(0.) = 0. where 91 E r is of the form 91 = (DC- l)nk ... (DC- 1 )TL2(DC)TLl and 

1 1 
92(- ) = -, where 92 = (CD)TL1 ... (CD) nk-l(C- 1D)TLk. By reversing the direction, we 

0. 0. 

get 

(C- 1 D) -nk ... (C- 1 D)-n2 (CD) - n1. 

Since n 1, n2 , ... , nk, shows the number of triangles whose one vertex is inside or outside 

of the closed path, so we can t ake them positive, that is, there exist 93 E r such that 

93 is a word in C J. such that 
C< 

Since 93 is a word in a closed path C l, so there exist some h which is a word in a 
C< 

closed path C l s11ch h = (DC- 1)TLk ... (DC- l) TL2 (DCtl. So 91 = h where 91 is a word 
C< 

of Co and h is a word of C l. This shows that a is a £L"Xed point of h. • 
'" 

Corollary 78 If 0. = bV3, where b E'll is constant, then 0. and a exist in a closed 

path if and only if the closed path is of B - C - D type or closed path is of the type 
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Proof. Let 0 = b.J3. Then all the ambiguous numbers in t he closed path 

containing 0 is of the form a + b.J3. The conjugate of 0 is a = - b.J3. vVe know 
c 

that BD and DB maps z to - z , where z E Q(i , .J3), so BD(o) = a. Also if a and 

a are conjugates, then g(o) is a conjugate of g(a), for 9 E r. This shows that if f3 

belongs to the closed path of 0, then fJ also belongs to the closed path. Therefore if 

o and a exists in the closed path, then the closed path is of B - C - D type and by 

Theorem 7G, the closed path is of the type (nl, ... , nk, nk, ... , nr). 

Conversely, suppose that B - C - D is the closed path, then BD(o) = -0 = a, 

where 0 = b.J3. Also if g(a) = (3, then g(a) = fJ, for every (3 E Co.. This shows that 

a and a exist in the closed path. _ 

Example 79 Let 0 = 2.J3 and a = -2.J3 exist in the following closed path. Clearly 

it 'is a B - C - D closed path and it is of the type (2,6,6,2). 



- 1- 2}3 
1-213 11 

-2 +213 ·3 +213 3+213 
-3-

1+213 
-1+213 11 

,j3 - 213 
213 6 

- 1·,·213 
-1-213 

11 

1 -,j3 
- 1-1-13 

-2 -213 

~ 
2+213 >-4 

3 -213 -3 -213 
-3-

3+213 
-13 

2 

-3 - 213 213 -3+ 213 
-3-

3 3 

Figure 40 

Theorem 80 A closed path contains a; with ~ if and only if it is of the type 
a; 
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Proof. Let a; with ~ exist in a closed path (nl' n2, ... , n2k). Since B (a) = ~, this 
a; a; 

implies that the closed path which contains a; with ~ is a B - C - D closed path. 
ex 

Conversely, let the closed path which contains ex is of type (nl, .. . , nk, nk, ... , nl) ' 

. 1 
By Lemma 76, (nI' ... , nk, nk, ... , nd IS a B - C - D closed path and thus B (ex) = -

ex 

belongs to this closed path. _ 

1 
Theorem 81 A closed path contains a; with -=- if and only if it is of the type 

a; 
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Proof. Let ex. with ~ exist in (nl' "" n2k) if and only if B (~) = a also exist in 

the closed path, Dy Theorem 77, a closed path contains ex. with its conjugate a if and 

only if it is of tbe type (nl' "" nk, nk, "" nd, _ 

Remark 82 1, Let ex. and a exist in a closed path, then by Theorem 11, the closed 

, 1 
path ~s of the type (17,1, "" nk, nk, ",,17,1)' W e know that B(ex.) = -, Let us denote the 

ex. 
1 

tmnsfoTmation ex. 1---+ a by S, then BS(ex.) = B(a) = -=-, and (BS) 2 ex. = ex. , This 
ex. 

gives us the presentatio'l7, (B, S : B2 = S2 = 1, BS = SB) = Z2 x Z2 , 

2, The closed path in a coset chagmm for the action of r on Q( i, V3) is of the 

1 1 
type (nl ' " " nk, nk, "" nd and it contains a, -=- and - w'ith ex., where ex. is an ambiguous 

ex. ex. 

number in Q(i, V3), It is the only type of closed path which contains ambiguous 

numbers in the coset diagmm of action of r on Q( i, V3), 

" , a+4V3 
Example 83 F~g'LLre 41 ~s a closed path of ambzguous numbers of the fOTm , 

C 

V3 1 4V3 -V3 1 - 4V3 
Let ex. = 4' Then B (ex.) = -; = -3-' S (ex.) = a = - 4- and BS (ex.) = & = 3 

exist in this closed path and the closed path is of the type (4,3,3 ,4), 
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-1 -20 1 -20 6 +40 -3 + 20 -1 + 20 

2 2 3 2 2 

1 + 20 

2 

6 - 40 

2 3 

3 
3 - 40 

3 

3 -3 -40 
3 + 40 --

--13 3 -40 
3 

4 4.[3 .[3 3 

-6 -40 
3 

2 3 

Figure 41 

4.0.1 Action of r on PL (Fp) 

Suppose there exists a closed path of the type (nI' n2, ... , n2k) in a coset diagram 

for the action of r on Q(i, J3). The following questions can be raised: vVhen does a 

homomorphic image of this closed path occur and for what values of p, in the coset 

diagram representing the action of ron P L (Fp), where p is prime? r acts on P L (Fp) 

only when p - 1 is a square in Fp. In other words p is a Pythagorean prime because 

az + b . 
r is the group of linear fractional transformations T( z ) = l wIth ad - be = 1 

cz + G 

and a, b, c, d E 2 [i], that is, i is equivalent to JP=l in Fp. 

If there exists a closed path in the coset diagr am for the action of r on P L (Fp) , 

then, since there are fom' mappings from Q( i, J3) u { CXJ} to Fp U { CXJ }, there are four 
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such closed paths . The four such closed paths are not necessarily distinct. We have 

observed that only one copy of the closed path of ambiguous numbers of the form 

a + bV3 exists in the coset diagram for the action of r on P L (Fp). 
c 

Len1.ma 84 The fixed points of generators A and C exist in the coset diagrams for 

the action of rOT/, P L (~J) if and only if p can be written as 12k +- I, where k ~ 1. 

Proof. 
i±V3 -l±N 

Fixed points of generators A and Care 2 and 2 re-

spectively. vVe know that number of fixed points of A and C is same, that is , 

p+ 1 
(p + 1) - 3l-3-J because both the generators have order 3. For a particular p 

if fL'Ced points of A exist, then fixed points of C also exist . As there are two fixed 

points of A and C in Q (i , V3) so in P L (Fp) there are also 2 fixed points. This 

implies tha t (p + 1) _ 2 (mod 3) or p = 1 (mod3) and p is also Pythagorean prime, 

that is, p - 1 is perfect square in Fp or p can be written as 4k + I , where k E Z+. As 

p can be written as 3k + 1 and 4k + I, so p can be written as 12k + 1. • 

a+bV3 
Theorem 85 If a closed path of ambiguous numbers of the form exists in 

c 

the coset d'iagram for the action ofr on P L (Fp), then p is of the form 12k + I, where 

k~1. 

Proof. If p - 1 is a perfect square in Fp, then r acts on P L (Fp). The ambiguous 

b f h e a + bV3 . . 1 . l' 1 3 . .C num ers 0 t e lorm eX1st 111 t lIS coset (mgram w len 1S a penect square 
c 

. i±V3 yp=l±V3 
111 ~J ' We know that fixed points of generator A are 2 or 2 . They 

exist in the coset diagram when p - 1 and 3 are squares in Fp except for p = 2. This 
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implies that when the closed path of ambiguous llumbers exists in the coset diagram 

for the action of r on P L(Fp), then the fixed points of A also exist. By Lemma 84, 

p can be written as 12k + 1. 

-l+ 2i+J3i 
2 

i-2J3/~\ -~ -
-=-=---=""'- 1 --

~ .~ I / / -~_-=-r~ i 
,- I ____ . 2 

-2+i+13 i 
2 

Figure 42 

Hence if t.he closed path of ambiguous numbers exists in the coset diagram for the 

action of ron P L (Fp), then p can be written as 12k + 1, where k E 1::-1
- •• 

Proposition 86 If r acts on P L(Fp), then the fixed points of the generators Band 

D eX'ist 'in the coset diagram for the action of r on P L (Fp). 

Proof. Since the fixed points of generators Band Dare ±1 and ±i respectively, 

so they are equivalent to 1, p - 1, VP - 1 and p - VP - 1 respectively. These fixed 

points exist in those coset diagrams for the action of r on P L (Fp) in which p - 1 

is square in Fp. Also, if p - 1 is square in Fp, then r acts on P L (Fp) because r 

consists of linear fractional transformations T( z ) = az + b with ad - be = 1 and 
ez+ d 

CL, b, c, d E 1:: [i]. Hence the coset diagrams for the action of r on P L (Fp) contain fLxed 

points of generators B and D. • 
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Theorem 87 If p can be written as 12k; -I- 1, where k E Z+, then the copy of the 

closed path of n ambigllO'Lts T//umbers e21sts in the coset diagram for the action of r 
311, 

on PL (Fp) , when p 2: 2 + 1. 

Proof. Let p can be written as 12k; + 1. Let there are n ambiguous numbers 

in a closed path in the coset diagram for the action of r on Q (i,.J3) . This means 

that t here are % triangles representing 3-cycles of the generator C in the closed path, 

since every triangle contains two ambiguous numbers . By Lemma 84 and Proposition 

86, the fixed points of generators A , B , C and D exist in the coset diagram for the 

act ion of ron P L (Fp). Since the world representing the closed path does not contain 

generator A, we w.ill not discuss its fixed points. Let an ambiguous number be mapped 

to the fixed point of the generator C, by the mapping Q (i ,.J3) U {oo} to P L (Fp ). 

Then the closed path formed in the coset diagram for the action of r on P L (Fp) 

contains n - 2 ambiguous numbers, because of the presence of two fixed points of 

3n . 11, . . 
generator C. Thus there are 2 elements m P L (Fp) for 2" tnangles. To aVOld 

reduction in the closed path due to the fixed points of the generator C, there should 

311, ) be 2 -I- 2 elements in P L (Fp . The fixed points of generators Band D can be 

avoided. If an ambiguous number mapped to the fixed point of generator D, then 

after the application of generator B we can get a new ambiguous number and the 

same procedure can be repeated for the fixed points of generator B. Thus p should be 

311, 
at least 2 + 1 to contain the closed path of 11, ambiguous numbers without reduction . 

• 
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Remark 88 If p = 12k + 1, k E Z+, then p - 1, 3 and p - 3 are sql(,are in Fp ' 

Example 89 Take p = 37 = 12 (3) + 1. Consider the action of r on PL (F.37) 

1 1 1 + z -1 
defined by A (z ) = yIP=l' B (z ) = -, C (z ) = -- and D (z ) = -, where 

z - p - 1 z - z z 

z E P L (F37) , Then we can calculate the permutation representations of A, B, C and 

D as fo llows: 

IT = (00 0 6) (1 22 7) (2 9 25) (3 12 31) (4 18 34) (5 36 21) (29) (8 19 20) 

(1 0 28 32) (11 15 33) (13 16 26) (14) (17 27 30) (23 24 35) , 

B = (0 00) (1) (2 19) (3 25) (4 28) (5 15) (6 31) (7 16) (8 14) (9 33) (10 26) 

(11 27) (12 34) (13 20) (17 24) (18 35) (21 30) (22 32) (23 29) (36) , 

t = (0 00 36) (1 35 18) (2 17 12) (3 11 9) (4822) (5 21 6) (720 23) (10) 

(13 16 29) (14 28 32) (15 31 30) (19 34 24) (25 33 27) (26) , and 

D = (0 00) (1 36) (2 18) (3 12) (4 9) (5 22) (6) (721) (8 23) (10 11) (13 17) 

(14 29) (15 32) (16 30) (19 35) (20 24) (25 34) (26 27) (28 33) (31), 

The coset diagram for the action ofr on P L (F37) is shown in Figure 43 . We have 

omitted some edges of generators Band D for clear visibility of the coset diagram, 



Figure 43 
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The closed path of ambiguous numbers which contains elements of the form a + V3, 
c 

ocC'urs in the above coset diagram, as shown 'in Figure 44 . 
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22 14 32 

15 

23 29 16 

Figure 44 

The closed path is of the type (1 , 2, 2,1) . A s the fi eld P L (F37) consists of 38 ele-

. a + 2V3 . . 
m ents, so the closed path of ambzg'Uous numbers of the form , whzch contazns 

c 

32 ambiguous n'LLmbers, exists in the reduced f orm, as Theorem 87 states . 

Remark 90 1. The fo llowing two fragments have some triangles with clockwise 

direction. 

(oJ 

Figure 45 

The fragment (aJ exists only for those primes in which p - 1, P - 3 and 3 are 
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squares in F;J or, in other words, when p is of the form 12k + 1 and the fragment (b) 

exists when p - 1 'is square in Fp. 

2. Although V3 is eq'LLal to two values in Fp , that is, 71. a'nd p - 71. where 3 is 

square in F;J' But there exists only one closed path in the coset diagram for the action 

a + bV3 a - bV3 
of r on P L(Fp). Because if ex = e:rist in the closed path, then a = ---

c c 
a+bV3 a+bn a-bV3 a-b(p-n) 

also exist. The vahLe become and becomes m 
c c c c 

P L(Fp). So 71. and p - 71., both exist in same closed path. 

Remark 91 The coset diagrams for the action of r on P L (Fp) , where p is a Pythago-

rean prime, possess following properties: 

1. In each coset diagram, there are two caps of generator B and two caps of 

generator D , beca'LLse of two fixed points of each generator. 

2. Number of t'riangles having broken and unbroken edges 'is 3lP ; 1 J and the 

p-1 
number of edges is -2- for each generator Band D . 

3. The number of fixed points of generators A and C is equal in a coset diagram 

for the action ofr on PL (Fp), that is, (p + 1) - 3lP ; 1 J. There are two fixed points 

of each generator A and C when p is of the form 12k + 1 where k E Z+ otherwise 

there are no fixed points of the generators A and C in the coset diagmm. 
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Table of some primes p used in our work are: 

p - 1 is square in Fp 3 is square in Fp primes of the form 12k + 1 

2 2 13 

5 3 37 

13 11 61 

17 13 73 

29 23 97 

37 37 109 

41 47 157 

53 59 181 

61 61 193 

vVe novv conclude that the closed paths of ambiguous numbers in the coset diagram 

for the action of r on Q( i ,V3) is of only one type, that is , (nI, n2, ... , nk-I, nk, nk, nk- l, 

... , n2, nd. This closed path contains 0' with &, ~ and :. The homomorphic image 
ex ex 

of this closed path exists in the coset diagram for the action of r on P L (Fp) if and 

only if p - 1 and p - 3 is square in Fp or p is of the form 12k + 1. 
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