
On the Decoding ofBCH-~odes over Zpm and Zp

ISLAMABAD

By

Muhammad Asif

Department of Mathematics
Quaid-i-Azam University

Islamabad, Pal{istan
2016

On the Decoding of BCH-Codes over Zpm and Zp

•

By

Muhammad Asif

A DISSERTATION SUBMITTED IN THE PARTIAL FULFILLMENT OF THE
REQUIREMENT FOR THE DEGREE OF

MASTER OF PHILOSOPHY
IN

MATHEMATICS

Supervised By
Prof. Dr. Tariq Shah

Department of Mathematics
Quaid-i-Azam University

Islamabad, Pal<istan
2016

On the Decoding of BCH-Codes over Z pm and Z p

By

Muhammad Asif

CERTIFICATE

A THESIS SUBMITTED IN THE PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPHY IN

MATHEMATICS

We accept this thesis as conforming to the required standards

1~ \aN9 M 2.~L~k_,
Prof. Dr. Tariq Shah

(Supervisor)
Prof. Dr. Akbar Azam
(External Examiner)

3. ____ ~~~==~ ____ -
Prof. Dr. Tasawar Hayat

(Chairman)

DEPARTMENT OF MATHEMATICS
QUAID-I-AZAM UNIVERSITY'

ISLAMABAD, PAKISTAN ·
2016

Acknowledgment

I express my sincere thanks towards my guide Professor Dr. Tariq Shah for his continuous
help, inspiration and encouragement throughout the thesis work also for providing directions to
make progress in this work. Without their invaluable guidance, this work would never have been
a successful one.

I also like to convey my sincere gratitude to Professor Dr. Tasawar Hayat, Head of
Department of Mathematics and all faculty members of Department of Mathematics,
Quaid-i-Azam University, Islamabad.
I also would like to thanks my friends specially Muhammad Tanveer, Yasir Naseer,

Mubasher Umer, Usman Nazir, Abdullah Naeem, Usman Gillani, Imran Gillani and Wahid
for their necessary cooperation in the accomplishment of dissertation.

Last but not least, I would like to dedicate my thesis to my great father , who got embraced
"SHAHADAT" for our beloved country during service in Pakistan Army.

Muhammad Asif

Preface

The study of error correcting codes is called Coding theory. This area is discrete applied
mathematics which includes the study and discovery of various coding schemes that are used to

increase the number of errors that can be corrected during data transmission. Correcting errors is

even more important when transmitting data that have been encrypted for security.

The development of data transmission codes starts with the first paper of Claude Shannon "A

Mathematical theory of communication" in 1948. He explained in this paper that every

communication channel has some capacity. If the rate of data transmission is smaller than the

capacity then design of communication system for the channel is possible with the help of data

transmi.ssion codes. This system has small probability of output errors but Shannon did not give

the method for the construction of such type of codes.
The first block codes for this purpose were developed by Hamming in 1950. He represents the

class of codes which correct only one error. However in 1954, Muller described the class of codes

which correct multiple errors and Reed also in 1954 gave the decoding algorithm for these codes.

But both these codes are not good for the Shannon's hypothesis.

The remarkable development in coding theory begins when Bose, Chaudhuri and Hocquenghem

in 1960 explain the large class of codes which corrects multiple errors known as BCH codes and

Reed-Solomon codes. They explain the BCH codes over finite fields that is Galois fields. In 1972,

Blake [3] gave the method for construction of codes over ring ~n' where n is product of distinct

primes But he does not explain the codes over 'lpm, for m> 1. Further in 1975, Blake [4] discuss

Linear codes over the ring 'ln' where n=pf and p is a prime and r EZ+. He also define Hamming

and Reed-Solomon codes over Galois field by considering their properties.

Spiegel [15] in 1977 shows that codes over 'lpm can be described in terms of codes over ~p

and thus we are able to define codes over 'ln for any positive integer n. In 1979, Shankar [14]

constructs the BCH codes over ~pm . Shankar use ~pm [x] which is the polynomial ring in variable

x over ~pm. BCH codes over finite commutative rings with identity are constructed by Andrade

and Palazzo [1] in 1998. In the construction techniques of both [1] and [14], the cyclic subgroup
of the group of units of an extension ring is specified. Interlando, Palazzo and Elia [6] proposed
powerful decoding method which is based on Barlekamp-Massey algorithm for RS and BCH codes

over integer residue ring ~pm. This is very difficult to decoding manually over the higher order

integer residue ring and Galois ring.

There are many algebraic concepts which if incorporated in Computer and Information

technologies, can have prodigious impacts. For instance, Galois rings and maximal cyclic

subgroups of groups of units of Galois rings. The most widespread application of these concepts
can be seen in the coding theory. The aim of using this algebraic structure is to provide the secure
data transmission because it makes the communication system more complicated in encoding and
decoding process. Galois Ring in coding theory are first used to n length primitive BCH codes. By
using the Galois ring of greater size the exhaustive search method becomes more difficult.

So in proposed work, the modified Barlekamp Massey algorithm solved computationally
which is used for decoding of BCH codes and Reed-Solomon codes.

Dissertation details are hereunder:
• First chapter serves as the pillar under the foundations of Algebraic Coding Theory.

In this chapter, some basic concepts, needed to understand the discussion in the next
chapters, are defined. It shall be understood that this work requires some knowledge
from both mathematics and computer science. This chapter consists of two sections.
In the first section, we define some fundamental Algebraic structures . While in the
other section some basics of Coding Theory are discussed.

• In second chapter, the concept encoding and decoding over Galois Field is discussed
in detail. This chapter consists of three sections. In the first section, we discuss
historical background of BCH codes, Reed Solomon codes and Barlekamp Massey
algorithm. In the second section, we explain the encoding and decoding ofBCH codes
over Galois field with the help of Barlekamp Massey algorithm and extend this
algorithm to simplified algorithm for binary BCH codes. While in third section we
develop an algorithm in computer language for decoding BCH codes computationally.

• In third chapter, the concept of encoding and decoding of BCH and RS codes over
integer residue ring and Galois ring are discussed . This chapter consist of four
sections. In the first section, we discuss the historical background of codes over ::lpnl.

In the second section, we explained the encoding of BCH codes over extension ring

of ::lpnl by constructing the maximum cyclic subgroup of group of units of Galois ring.

In third section, we explained the decoding procedure of RS and BCH codes over
integer residue ring and Galois ring respectively with the help of modified Barlekamp
Massey algorithm. While in section four, we develop the program in C# for decoding
of RS and BCH codes over integer residue ring and Galois ring respectively.

Contents

1 Some Fundamental Algebraic Structures 3

1.1 Basic concepts . 3

1.1.1 Groups . 4

1.1.2 Rings . 9

1.1.3 Linear Spaces . 16

1.2 Some Basic Concepts of Coding Theory . 18

1.2.1 Codes . 18

1.2.2 Linear Codes . 20

1.2.3 Hamming Codes . 23

1.2.4 Cyclic Codes . 24

1.2.5 BCH Codes . 25

2 Construction and Decoding of BCH-Codes over Zp 28

2.1 Historical Background . 28

2.1.1 History of BCH Codes . 28

2.1.2 History of Reed Solomon Codes . 29

2.1.3 History of Barlekamp Messey algorithm 29

2.2 Encoding and Decoding of BCH Codes Over Zp 29

2.2.1 Encoding of BCH Codes . 30

2.2.2 Decoding of BCH Codes Over Zp . 32

2.2.3 Barlekamp Massey Algorithm . 35

2.2.4 Decoding of BCH Codes over Binary Field 39

1

2.3 Computationally Decoding over Zp . 41

2.3.1 Construction of Galois Field Computationally in C# 41

2.3.2 Computational check on received word to correct the errors 46

3 Construction and Decoding of BCH Codes Over Zpm 52

3.1 Introduction and History of Codes over Zpm . 52

3.2 BCH Codes over Galois Ring: Construction . 53

3.3 Decoding procedure of Reed-Solomon and BCH-Codes 58

3.4 Computationally Decoding of RS and BCH Codes over Zpm 67

3.4.1 Calculation the Elements of Galois Ring in C# 67

3.4.2 Computationally Find the inverse of element in Galois Ring 69

3.4.3 Computationally Calculation of Maximum Cyclic Subgroup of Group of

units of Galois Ring . 75

2

Chapter 1

Some Fundamental Algebraic

Structures

1.1 Basic concepts

In this part of dissertation we discuss some de�nitions of algebraic structures. Some part of

this section is taken from [7].

Binary Operation: Let � 6= S and ���be a mapping � : S � S ! S then ��� is binary

operation if S is closed under the operation ���or �(s1; s2) = s1 � s2 2 S for all s1; s2 2 S:

Example 1 : Z ;Q;R;C are closed under addition so �+� is binary operation of these non

empty sets.

Remark 2 : Z is not closed under division because if we divide two integers then it is not

necessary that result is an integer so division is not binary operation of Z.

Algebraic Structures

Any set � 6= S which have atleast one binary operation is called algebraic structure.

Semigroup: Let � 6= S with binary operation ���is called semigroup (S; �) if binary opera-

tion is associative on S that is if for all s1;s2; s3 2 S then

3

s1 � (s2 � s3) = (s1 � s2) � s3:

Example 3 :Z;Q;R;C are semi groups under the binary operation addition and multiplication.

Remark 4 :Z is not semi group under the binary operation subtraction.

Monoid: A semigroup (S; �) with identity is called monoid that is an element e 2 S is called

identity of semigroup S if

s � e = e = e � s for all s 2 S then S is called monoid.

Example 5 :Z;Q;R;C are monoid under both binary operations �+�and � � �.

Remark 6 :Set of natural numbers N have not monoid under �+�.

1.1.1 Groups

A monoid (S; �) with each element of S is invertible is called group. An element s1 2 S is called

invertible if there exists s2 2 S such that

s1 � s2 = e = s2 � s1 for all s1 2 S;

where e is identity of S:

Example 7 :Q;R;C are groups under �+�and � � �with identities 0 and 1 respectively.

Remark 8 :Z is not group under multiplication because inverse of each element of Z is not

exist.

Remark 9 :f0g and f1g are trivial groups under �+�and � � �respectively.

Remark 10 :The identity and inverse of every element of a group is always unique.

Abelian Group: A Group (S; �) is abelian if binary operation ��� is commutative that is

s1 � s2 = s2 � s1 for all s1; s2 2 S:

Example 11 :Q;R;C; V4 are abelian groups under multiplication:

4

Remark 12 :Group of matrices are not abelian groups under operation multiplication.

Example 13 Let Mn(R) denote the collection of all non singular matrices where entries of

matrices are come from set of real numbers R forms a non abelian group with respect to multi-

plication. Mn(R) is also known as GL(n;R) which is general linear group.

Binary Relation: Let � 6= S then any non empty subset of S � S is called binary relation.

Equivalence Relation: Any relation which is binary R on a set � 6= S is called equivalence

relation if the following conditions are satis�ed.

(i) Re�exive: Any binary relation is called re�exive if sRs for all s 2 S and we also

denote it (s; s) 2 R:

(ii) Symmetric: A binary relation is called Symmetric if s1R s2then s2Rs1 for all

s1;s2 2 S:

(iii) Transitive: A binary relation is called transitive if s1R s2 and s2R s3 then s1Rs3

for all s1; s2; s3 2 S:

Subgroup: Let � 6= T � S and (S; �) be a group then T is called subgroup of S if T is group

itself under the operation ���.

We write mathematically as T � S .

Example 14 :Z under the binary operation �+� is a subgroup of (Q;+) ; (R;+) ; (C;+) :

Remark 15 :Every group S has atleast two subgroups namely feg and S are called trivial

subgroups and anyother subgroup of S is called proper subgroup of S:

Theorem 16 :Let S be a group and T � S then T is called subgroup of S if and only if

t1t
�1
2 2 T for all t1; t2 2 T:

Cyclic Group

Let S be a group then it is called cyclic group if it is generated by single element of S:

If S is under addition cyclic group then we denote it by,

5

S =< s >= fns : n 2 Zg :

If S is under multiplication cyclic group then we write it as,

S =< s >= fsn : n 2 Zg ;

where s is the generator of the cyclic group.

Example 17 :Let n 2 Z+ and S be the collection of all nth roots of unity then S is called

cyclic group we denote it by S =< w >=
�
1; w; w2; w3; :::; wn�1

	
:

Remark 18 :In cyclic group order of group and order of generator is always same.

Remark 19 :Cyclic group may have more then one generators.

Example 20 :Z is in�nite cyclic group under addition it has two generators 1 and �1:

Remark 21 :Every abelian group is not cyclic group but converse is true.

Example 22 :V4is abelian group but it is not cyclic.

Theorem 23 :A group having prime order is always cyclic.

Normal Subgroups

Let H be a subgroup of a group G then H be a normal subgroup if

gH = Hg 8g 2 G

or

gHg�1 � H 8g 2 G

or

ghg�1 2 H 8g 2 G,h 2 H;

we denote it as H�G:

Example 24 :Centre of a group G is always normal subgroup.

6

Example 25 :Any subgroup is normal subgroup of group G if G is abelian group so fe; bg is

normal subgroup of V4:

Remark 26 :feg and G are trivial normal subgroups of a group G.

Remark 27 :If H�G then left and right cosets of H in G are equal for all g 2 G:

Theorem 28 :Any subgroup having index 2 in a group G is normal in G:

Theorem 29 :The product of two normal subgroups of group G are normal subgroup of G:

Quotient or Factor Group

Let H�G then the collection of all the left or right cosets of H in G become a group under the

operation which is de�ned as,

Hg1 �Hg2 = Hg1g2 for all g1; g2 2 G,

and it is known as factor group and it is represented by G=H that is G=H = fHg :8g 2 Gg :

Example 30 :If G = S3 =
�
e; a; a2; b; ab; a2b

	
is become a group and H =

�
e; a; a2

	
is normal

subgroup of G then factor group is

G=H = fH; bHg :

Remark 31 :Q=Z is in�nite factor group but its each element have �nite order.

Homomorphism or structure preserving mapping

Let � be a mapping from (G; �) to (J; �) where G and J are groups under the operations ���

and ���respectively then � is called homomorphism if

�(g1 � g2) = �(g1) � �(g2) for all g1; g2 2 G:

Kernel of a Homomorphism: let � : G �! J be a homomorphism then kernel of the

mapping � is de�ned as

ker� = fg 2 G : �(g) = e�g :

Remark 32 :If ker� is zero or identity then � is 1� 1:

7

Endomorphism: A homomorphism from group G ! G is known as endomorphism.

Monomorphism: A homomorphism � : G �! G� is said to be a monomorphism if it is

1� 1:

Epimorphism: A homomorphism � : G �! G� is called an epimorphism if it is onto.

Isomorphism: A homomorphism � : G �! G� is called an isomorphism if it is one-one and

onto.

Automorphism: It is an isomorphism from a group G ! G.

Fundamental theorem of Structure preserving mapping

Let G and J be two groups and � be a mapping from G �! J is an epimorphism then

G= ker� �= J:

2nd Isomorphism Theorem

Let G be a group and H � G , K�G then

H

H \K
�=
HK

K
:

3rd Isomorphism Theorem

Let G be a group K�G and K � H and H �G then G=K
H=K

�= G
H :

Permutation: Let � 6= X a bijective mapping � : X �! X is said to be a permutation .The

set of all permutations on X is represented by SX . If X contains n elements then the set of all

permutation denoted by Sn and if jXj = n then jSnj = n!.

Symmetric Group: The collection of all bijective mappings of a set consisting of n elements

together with the usual multiplication of mappings as an algebraic operation is called Sn which

is symmetric group of degree n:

8

Cyclic Permutation: A Permutation of the form � =
�
a1 a2 a3 ::: ak
a2 a3 a4 ::: a1

�
in which �(a1) = a2,

�(a2) = a3:::; �(ak) = a1 is called cyclic permutation or cycle of length k and written as � = (a1

a2 a3 ::: ak):

Transposition: A transposition is cycle having length two.

Example 33 :A cycle of the form (x y) is called transposition and (x y)2 = I:

1.1.2 Rings

A � 6= eR together with binary operations �+�and ���is said to be a ring if it satis�es following
conditions.

1) eR is abelian group under �+�.
2) eR is semigroup under ���.
3) (eR; �) is distributive over addition.

Example 34 : Z; R; Q; C; Zn are the the examples of rings.

Commutative Ring: If any Ring eR satis�es the condition of commutative with respect to
���that is r1 � r2 = r2 � r1 for all r1; r2 2 eR then it is called commutative ring:
Subring: Let � 6= S � eR is the subring of eR if S is a ring itself.
Example 35 2Z = f0;�2;�4; � � �g is commutative subring of Z without multiplicative identity.

Example 36 :Mn(eR) is not commutative ring. Moreover if eR is commutative then Mn(eR) is
not a commutative ring with multiplicative identity.

Remark 37 :There is also a ring which is not commutative without identity that is Mn (2Z)

because 2Z have not multiplicative identity.

Ideal of Ring

Let eR be a commutative ring with identity then any � 6= eI � eR is called an ideal of ring eR if
it satisfy the following axioms,

9

i) ea�eb 2 eI for all ea;eb 2 eI:
ii) er ea 2 eI for all er 2 eR;ea 2 eI:

Example 38 :nZ are ideals of Z:

Remark 39 :It is not necessary that every subring is an Ideal but converse is true.

Example 40 : A ring of integers is subring of Q but it is not an ideal of Q:

Remark 41 :Every �eld F have only two maximal ideal namely f0g and F :

Remark 42 :Every ring eR is an Ideal of itself.
Zero Divisors

Let eR be a ring and 0 6= r1 2 eR is said to be zero divisor from left if there exist 0 6= r2 2 eR
such that r1r2 = 0 where r2 is right zero divisor and if eR is commutative then r1 and r2 are
zero divisors of each other.

Example 43 : 2 and 3 are zero divisors of each other in Z6 because 2 � 3 = 0 under modulo 6.

Integral Domain

If there does not exist any zero divisor in ring eR then it is called an Integral domain.
Example 44 :Z; Q; R;C are integral domain because these rings have no zero divisors.

Remark 45 :Mn(eR) and Z4; Z6; Z8 are not integral domains.
Remark 46 :Every �eld is integral domain because �eld has no zero divisors.

Unit Element

Let 1 2 eR be a ring which is commutative then U(eR) is the set of unit elements or invertible
elements in eR and we de�ned it as let 0 6= r1 2 eR is called unit element if there exist 0 6= r2 2 R
such that r1r2 = r2r1 = 1:

Remark 47 :U(eR) is the set of unit elements forms a group under the operation ���and unit
element can never be zero divisor.

10

Field: Any ring eR with identity �1�is said to be �eld if U(eR) = eRn f0g :
Prime Field A �eld is said to be prime �eld if it has no proper sub�eld.

Example 48 :A �eld of rational numbers is prime �eld because it has no proper sub�eld and

Zp is also prime �eld where p is prime.

Division Ring: A ring eR is said to be division ring if each non zero element of eR is unit.
Example 49 :Every �eld is division ring.

Remark 50 :The unit elements of Zn are those elements of Zn having greatest common divisor

is 1 with n:

Nilpotent Element

Let r 2 eR is said to be nilpotent if there exist n 2 Z+ such that rn = 0:
Example 51 : 2 is nilpotent element in Z4 because 22 = 0 under modulo 4.

Remark 52 :Every zero divisor is not nilpotent element but converse is true.

Example 53 2 and 3 are zero divisors in Z6 but these are not nilpotent elements so every zero

divisor may or may not nilpotent element.

Principal Ideal: Any Ideal eI is called principal ideal if it is generated by single element.
Polynomial Ring

If eR is commutative ring with identity and Z�0 is additive monoid then

11

eRZ�0 =
n
h j h : Z�0 �! eRo

where h : Z�0 �! eR is de�ned by
h (0) = h0 2 R

h (1) = h1

�

�

�

h (n) = hn

so if h 2 eRZ�0 then h can be written as h = (h0; h1; h2; :::hn; ::) :
(eRZ�0 ;+; �) is ring under the operation addition and multiplication which is de�ned as

follows.

Let for any f; g 2 eRZ�0 then ,
i)Addition: f+g = (f0; f1; f2; :::fn; ::)+(g0; g1; g2; :::gn; ::) = (f0 + g0; f1 + g1; :::; fn + gn:::) :

ii)Multiplication: fg (n) =
X
i+j=n

figj

This implies that fg = (f0g0; f1g0 + f0g1; f2g0 + f1g1 + f0g2; :::; f0gn + f1gn�1 + :::+ fng0; :::)

If we de�ne a mapping,eX : Z�0 �! eR byeX (q) = 0 if q 6= 1eX (q) = 1 if q = 1

If eX =
� eX0; eX1; eX2; :::; eXn; :::�

then eX = (0; 1; 0; 0; :::; 0 ; :::)

and eX2 = eX: eX = (0; 1; 0; 0; :::; 0; :::)�(0; 1; 0; 0; :::; 0; :::) = (0:0; 0:1 + 1:0; 0:0 + 1:1 + 0:0; 0; :::; 0; :::)eX2 = (0; 0; 1; 0; 0; :::; 0; :::)eX3 = (0; 0; 0; 1; 0; :::; 0; :::)eX4 = (0; 0; 0; 0; 1; :::; 0; :::)

�

12

�

�eXn = (0; 0; 0; ::::; 0; 1; 0; :::)

Let f = (f0; f1;::::;fn; :::) 2 eRZ�0
f = (f0; 0; 0; :::; 0; :::) + (0; f1; 0; :::; 0; :::) + ::: + (0; 0; :::; fn; 0; :::) since eR is

imbedded in eRZ�0
= f0 + f1 (0; 1; 0; :::; 0; :::) + f2 (0; 0; 1; :::; 0; :::) + :::+ fn (0; 0; :::; 1; 0; :::) + :::

= f0 + f1 eX + f2 eX2 + :::+ fn eXn + :::

then f can be written as

f = f0 + f1 eX + f2 eX2 + f3
3 + :::+ fn eXn + ::

f
� eX� = 1X

i=0

fi eXi

It is called formal power series in eR and we denote the ring eRZ�0 by eR[[eX]] this ring is in
one indeterminate eX over the ring eR:if we take �nite terms from formal power series and say

remaining terms are zeros then it becomes polynomial ring that is,(
nX
i=0

fi eXi 2 eR[[eX]] j n 2 Z�0) :
This type of formal power series is called polynomial ring in one indeterminate and we

denote it by eR[eX]:
Remark 54 :eR[eX] has �nite terms but eR[[eX]] has in�nite terms so eR[eX] � eR[[eX]]:
Example 55 :Z[eX] � Q[eX] � R[eX] � C[eX]:
Example 56 :Zp[eX] is polynomial Ring with �nite coe¢ cients and it is also �eld because co-
e¢ cient Ring is �eld.

Local Ring: If Ring have only one maximal ideal then it is called local Ring.

Example 57 :Every �eld is local Ring if F [eX] is �eld then it is local and it has eXF [eX] is only
maximal ideal.

Prime Element

A non unit element 0 6= p of an integral domain eR is called prime element in eR if pjr1r2 then
either pjr1 or pjr2 where r1; r2 2 eR:

13

Example 58 :2; 3; 5; 7::: are prime elements in the ring of integers Z:

Irreducible Elements

A non unit element 0 6= q of an integral domain eR is called an irreducible element (atom) in eR
if q = r1r2 then either r1 2 U(eR) or r2 2 U(eR):
Example 59 :Prime elements in Z are irreducible elements:

Example 60 :1 + eX2 2 Z[eX] is irreducible in Q[eX]:
Remark 61 :In PID every irreducible element is maximal ideal.

Remark 62 : F [eX]
(q(x)) ' Field if and only if q (x) is an irreducible element.

Theorem 63 :If eR is an integral domain and p; q 2 eR then,
i) q is irreducible i¤ (q) is maximal ideal.

ii) Every irreducible is not prime element but converse is true.

iii) If eR is GCD then every irreducible element is prime.
Example 64 :The element 3 in the quadratic integer ring Z[i

p
5] is irreducible but it is not

prime element because

�
2 +

p
5i
� �
2�

p
5i
�
= 32 is divisible by 3 but neither 2+

p
5i nor 2�

p
5i is divisible by 3.

Primitive Polynomial

A polynomial with unit content is called primitive polynomial here content of polynomial is

GCD of all coe¢ cients of polynomial. If � is primitive root of irreducible polynomial in Galois

�eld then corresponding polynomial is primitive polynomial or called generator of Galois �eld.

Example 65 :If f = 2 eX + 6 eX2 + 12 2 Z[eX] then C (f) = 2 so f is not primitive polynomial
because 2 is not unit element of Z:

Example 66 : If f = 2 eX + 1 2 Z[eX] then it is primitive polynomial because C (f) = 1 which
is unit element of Z:

14

Monic Polynomial: A polynomial whose leading coe¢ cient is one is called monic polyno-

mial.

Galois Ring

Let n;m; p be any positive integers, here p is any prime and m is degree of basic irreducible

polynomial f (x) then we de�ne Galois ring as, Zp
n [x]

(f(x)) = fp0 + p1x + p2x2 + ::: + pm�1xm�1 :

p0; p1; :::; pm�1 2 Zpng:

We denote it as R = GR (pn;m) and it is Galois extension ring of Zpn having pnm elements.

Galois Field

GF (pm) =
Zp[x]
�(f(x)) = fp0 + p1x+ p2x

2 + :::+ pm�1xm�1 : p0; p1; :::; pm�1 2 Zpg = K.

It has pm number of elements, where � (f (x)) = Rp(f (x)):

Rp(f (x)) is a polynomial f (x) which has the coe¢ cient modulo prime p and � (f (x)) is

primitive irreducible polynomial of degree m over Zp:We denote GR(pn;m) by R and GF (pm)

by K and their multiplicative group of units are denoted by R� and K� respectively.

It is �nite �eld which means that it has �nite number of elements.

If q = pn where p is prime and n 2 Z+ and f (x) is irreducible polynomial of degree m then

Fq[X]

(f (x))
' Fqm = GF (q

m) ;

where m is degree of f (x) :

Example 67 :If q = 21and m = 3 then

Z2[X]

< X3 +X + 1 >
' GF

�
23
�
= GF (8) ;

Here X3 +X + 1 is an irreducible element in Z2[X]. Let � is primitive root of X3 +X + 1

then �3 + �+ 1 = 0:

GF (8) =
�
r + s�+ t�2 : r; s; t 2 Z2 ,1 + �+ �3 = 0

	
also GF (8) n f0g = h�i so elements

of GF (8) are as follows,

15

0

�1 = �

�2 = �2

�3 = �+ 1

�4 = �+ �2

�5 = 1 + �+ �2

�6 = 1 + �2

�7 = 1

GF (8) =
�
0; 1; �; �2; �+ 1; �+ �2; 1 + �+ �2; 1 + �2

	
:

Remark 68 :Zn is �eld i¤ n is prime and Zp = Fp = GF (p) where p is prime number.

Theorem 69 :Fpr � Fps i¤ rjs:

Example 70 : F22 � F24 because 2j4:

1.1.3 Linear Spaces

In this subsection we de�ne some basic de�nitions of linear algebra which help us to understand

this dissertation.

Vector Space

Let � 6= V having two binary operations �+�and scalar multiplication (scalar come from �eld

F) is called vector space over F if the following conditions holds.

i) V is abelian group under �+�.

ii) for all � 2 F and v1 2 V =) �v1 2 V:

iii) � (v1 + v2) = �v1 + �v2 for all v1; v2 2 V and � 2 F:

iv) (�+ �) v1 = �v1 + �v1 for all v1 2 V and �; � 2 F:

v) � (�v1) = (��) v1 for all v1 2 V and �; � 2 F:

vi) There exist 1 2 F such that 1 � v1 = v1 = v1 � 1 for all v1 2 V:

Example 71 :V = f(r1; r2) j r1; r2 2 Rg is vector space over R:

16

Subspace: Let � 6= S � V then S is called subspace of V if S is vector space itself under the

same binary operation of vector space V:

Example 72 :If vector space V = R2 over R then S = f(s; 0) : s 2 Rg is subspace of V:

Remark 73 : To prove Subspace S we have to check only following conditions

1) 0 2 S:

2) r1 + r2 2 S for all r1; r2 2 S

3) �r 2 S for all r 2 S and � 2 F:

Remark 74 :If V1 and V2 are two subspaces of V then it is not necessary that V1 [V2 is

subspace of V .

Example 75 :If S1 = f(r1; 0) : r1 2 Rg and S2 = f(0; r2) : r2 2 Rg are two subspaces of R2

then S1 [S2 is not subspace of R2:

Linearly Independent and Linearly Dependent

Suppose that
nX
i=1

�ivi = 0 and not all ai�s are zero then M = fv1; v2; v3; :::vng is called linearly

dependent (where �i 2 F; vi 2 V) :

If all ai�s are equal to zero then M is called linearly independent.

Example 76 :Consider vector space C over C then f1 + i; ig is linearly dependent over C:

Example 77 : f(1; 0) ; (0; 1)g is linearly independent over R:

Basis: A subset M = fv1; v2; v3; :::; vng of a vector space is known as basis of V if V = hMi

and M is linearly independent set.

Example 78 :f(1; 0; 0) ; (0; 1; 0) ; (0; 0; 1)g is a basis of R3 over R:

Algebra: A vector space B over the �eld F is algebra over F if it satisfy the following

conditions.

(1) B is a ring.

(2) � (b1b2) = b1 (�b2) for all b1; b2 2 B and � 2 F:

17

1.2 Some Basic Concepts of Coding Theory

Coding theory deals with the problem of errors that occur when a message is transmitted

through a channel which is communication channel. The channel might be a television link,

telephone line ,recording device or radio .The error may be caused by thermal noise, atmospheric

disturbance,faulty equipment,or human negligence. A channel prone to transmission errors is

called a noisy channel. An error correcting code is a scheme of encoding the message in such

a way that the correct message may be recovered even when errors have taken place during

transmission. The general principle of an error correcting code is to add redundancy to the

message so that the errors can be calculated and corrected in most cases. The basic de�nitions

of this section is taken from [10].

1.2.1 Codes

Let V be a �nite set of q elements and V n denote the set of all n-tuples of elements of V where

n is positive integer greater then 1:So there are qn elements in V n which are called words or

vectors. Let � 6= C subset of V n then C is called a q-ary code of length n over V:

In particular if q = 2 then the code C is known as binary code , for q = 3 the code C is

known as ternary code. The elements of C are known as codewords. If C have only one element

or C = V n then C is called trivial code. If every element of C is a vector of the form vvv:::v

for some v 2 V then C is called repetition code. Hence q-ary repetition code contains exactly

q codewords.

Example 79 :C = f0000; 1111g is binary repetition code of length 4. So it contains exactly 2

codewords.

Hamming Distance: Let w;v 2V n,w = w1w2w3:::wn,v = v1v2v3:::vn:The hamming dis-

tance between the vectors w and v denoted by d (w; v),is de�ned as

d (w; v) = jfi : wi 6= vigj:

Example 80 : If w = 1100 and v = 1010 then hamming distance between w and v is 2: we

write it as d (1100; 1010) = 2:

18

Remark 81 :The hamming distance satis�es all the conditions of metric space so it is metric

on V n and (V n; d) is called metric space.

Minimum Distance: The least distance between any two di¤erent codewords in C are called

minimum distance. Mathematically, d (C) = minfd (w; v) : for all w; v 2 C;w 6= vg:

Example 82 :The minimum distance of C = f000; 101; 100; 111g is 1:

Remark 83 The error-correction and error-detection capabilities of a code can be calculated

by the d (C) :

Theorem 84 :Suppose C is a code having minimum distance d. let t =
�
d�1
2

�
then

(i) There are d� 1 errors detected in any transmitted codeword in C.

(ii) There are t errors corrected in any transmitted codeword in C.

Example 85 :Let C = f000; 111g be a code with d = 3 then C can detect 2 errors and corrected

only single error.

Remark 86 :Every code C can be represented as (n;M; d) where n is the length of code C and

M tells about the number of codewords in C and d represents minimum distance of C:

Good Code

The code C is known as good code if it satis�es,

1) Length n of the code is smaller.

2) Size of M is very large.

3) d (C) of the code is large.

Remark 87 Length of the code smaller means transmission of code is very fast and cost of the

code is very lower. Size of M is very large gives that we can sent more variety of messages

and if minimum distance of the code is very large then it can be corrected greater number of

errors. The main task of the algebraic theorists is to �nd such codes whose sizeM and minimum

distance is maximum for �xed length n:

19

Perfect Code: Suppose C � V n is a code having minimum distance 2t+1. If for all w 2 V n

then there exist v 2 V n such that d (w; v) � t;then C is known as perfect code.

Example 88 The binary code f000; 111g is perfect code with minimum distance 3:

Remark 89 If C = V n then it is trivial perfect code with minimum distance 1:

Theorem 90 Suppose C is a q-ary (n;M; d) code having minimum distance 2t + 1. Then C

is a perfect code i¤,

M

tX
j=0

�
n

j

�
(q � 1)j = qn:

In particular a binary code is perfect iff M
tP
j=0

�
n
j

�
= 2n:

Example 91 A binary (23; 4096; 7) is perfect code.

1.2.2 Linear Codes

In coding theory linear codes are very special kind of codes have great importance. They have

huge interest for advance objectives in coding theory. Linear codes have many applications in

combined coding and modulation. These codes have many algebraic properties. In these codes

we take scalars from the �nite �eld F :The set Fn is an n-dimensional vector space over the

�eld F here n is a positive integer and every element u 2 Fn can be written as u1u2u3:::un:

Linear Code: Suppose F is a �nite �eld and n is a positive integer. Any subspace of Fn is

called linear code. If C is a subspace of dimension s,then it is known as [n; s] code. But if the

code C with minimum distance then it is denoted as [n; s; d] code.

Example 92 C = f00000; 11111g is a linear [5; 1; 5] code over the �eld F2: But the binary code

C = f00; 10; 11g is not linear because 10 + 11 = 01 =2 C:

Remark 93 There are qs codewords in q-ary [n; s] code and binary [n; s] code consists of 2s

codewords. The notion (n;M; d) is used for a code of M codewords and the notion [n; s; d] is

used for s dimension linear code.

20

Generator Matrix

Suppose C is a linear [n; s] code and G is a s� n matrix where rows of G are basis of C: Then

G is known as generator matrix of C: Generator matrix gives us complete linear code because

every member of C can be written as linear combination of the rows of G:So row space of G is

code C;that is C = fwG : w 2 F sg:

The vectors in the space F s are of length s and vectors of an [n; s] code C are of length n.

The size of F s and C is same, So there is a bijection � : F s ! C; de�ned as, �(w) = w:G for

all w 2 F s here elements of domain of � are known as messages and elements of range of � are

called codewords, that is, w:G is the codeword. The bijection � maps a message of length s on

to a codeword of length n. The number n � s is redundancy of the code C and its code rate

s=n. The mapping � is called encoding mapping.

Dual Code: Suppose C is [n; s] code over the �eld F : Then we can de�ne dual code of C is,

C? = fw 2 Fn : w:v = 0 for all v 2 Cg:

Any two vectors w; v 2 F sare orthogonal if and only if w:v = 0: If every element of C is

orthogonal to itself and every vector of C then a linear code C is called self orthogonal also if

C � C? then it self orthogonal.

Theorem 94 Suppose C is [n; s] code over F :Then C dual is [n; n� s] code and
�
C?
�?
= C:

Example 95 The C? of [4; 1] binary code C = f0000; 1111g is

C? = f0000; 1100; 1010; 1001; 0110; 0101; 0011; 1111g

and it is [4; 3] code, by �nding the those elements of (F2)4 whose product with the elements of

C is zero. It is also self orthogonal because C contained in C?.

Parity Check Matrix

Suppose C is [n; s] code and H is a (n� s)�n matrix which is generator matrix of the C?:Then

H is known as parity check matrix of the code C:

21

Theorem 96 Suppose C is a [n; s] code over F and H is a parity check matrix of C;then

C = fw 2 Fn : wHT = 0 = HwT g:

Theorem 97 Suppose C is a [n; s] code and G is a generator matrix and H is a parity check

matrix of the code C then ,

GHT = 0 = HGT ;

Conversely suppose that G is a s�n matrix and H is (n� s)�n matrix such that GHT = 0:

Then H is a parity check matrix of the code C i¤ G is generator matrix of C; where rank of G

is s and rank of H is n� s:

Example 98 If C = f000; 111g then C? = f000; 110; 011; 101g So unique generator matrix

G = [1 1 1] and if we take any two non zero vectors from C? then they form a parity check

matrix that is,

H =

�
1 1 0

1 0 1

�
:

The following theorem gives us how to �nd G from H and H from generator matrix G. This

is very useful theorem in algebraic coding theory.

Theorem 99 Suppose C is [n; s] code. If C has generator matrix G = [Is :B] here B is s�

(n� s) matrix, then H =
�
�BT : In�s

�
:

If parity check matrix H = [A : In�s] then generator matrix G =
�
Is : �AT

�
:

Equivalent Code

Let C and C? be [n; s] codes over the F : If C with generator matrix G and C? with generator

matrix G? then the codes C and C? are equivalent i¤ one matrix determined from other matrix

by applying the following operations,

(1) By Applying the Elementary operations on the rows of matrix.

(2) By Applying Permutation to the columns of matrix.

(3) By Multiply to any column by a non zero element from the �eld F :

22

Remark 100 These properties of equivalent codes are also holds H.

Weight of Codeword: The weight of any codeword u 2 C is de�ned as the number of

nonzero components in u and it is denoted as W (u) :

The d (C) of the code is also de�ned with the help of weight that is d (C) = minfW (u) :

u 2 C; u 6= 0g:

Example 101 :Let C = f000; 111g then w (111) = 3 and d (C) = 3:

Theorem 102 Suppose H is a parity check matrix of an [n; s] code C over the �eld F ; The

minimum distance of the code C and minimal number of linearly dependent columns of H are

equal;Consequently, d (C) � n� s+ 1:

1.2.3 Hamming Codes

In this subsection we de�ne very special kind of linear codes which are hamming codes. We

�rst discuss the particular case of hamming codes and then general q-ary hamming codes.

Binary Hamming Codes

Let 1 6= m 2 Z+ and H be an m � (2m � 1) matrix having non zero distinct vectors as its

columns in Fm2 : Then the code with H as its parity check matrix is said to be binary hamming

code and it is represented by Ham(m; 2) :Hence for every given m there are (2m � 1)! equivalent

binary hamming codes.

Since H is m� (2m � 1) matrix, Ham(m; 2) is a code of length n = 2m � 1 and dimension

s = n�m = 2m� 1�m:Hence Ham(m; 2) is a [2m � 1; 2m � 1�m] code and m = n� s shows

the redundancy of the code.

Example 103 Suppose m = 2 then Ham(2; 2) is a [3; 1] code because here n = 22 � 1 = 3 and

s = 3 � 2 = 1. The parity check matrix of this code H =
�
1 1 0
1 0 1

�
and the generator matrix

G = [1 1 1] so hence Ham(2; 2) is simple binary repetition code that is f000; 111g:

23

q-ary Hamming Codes

Let F = Fq and 1 6= m 2 Z+. Let n = (qm � 1) = (q � 1) and H be an m�n matrix having non

zero columns in Fm such that there is not any column which is scalar multiple of other column.

Then [n; n�m] code with H which is its parity check matrix is known as q-ary hamming code

and is represented by Ham (m; q) :

Theorem 104 Ham(m; q) is a perfect code with minimum distance 3:

1.2.4 Cyclic Codes

In this subsection the special class of linear codes will be discussed. In Ring theory and in

advanced algebraic structure properties of cyclic codes are very interesting then general linear

codes. There are very large class of important codes which are related to cyclic codes.

Cyclic Shift: The mapping � : Fn ! Fn is de�ned as � (u1; u2; u3; :::; un) = (un; u1; u2; :::; un�1)

is called a cyclic shift and this is also linear mapping.

Cyclic Code: A linear code C � Fn is said to be cyclic code if � (u) 2 C for all u 2 C:

Example 105 The code C = f000; 100; 010; 001g is binary cyclic code.

Suppose F [X]n = f�0 + �1x+ �2x2 + :::+ �n�1xn�1 : �i 2 Fg is the set consisting of all

polynomials having degree smaller then n over the �eld F : The mapping � : Fn ! F [X]n is

de�ned as � (u) = u (x) for all u = (u0; u1;u2; :::; un�1) 2 Fn: This mapping is an isomorphism:

Now suppose that F [X] is the polynomial ring over F : Let h (x) 2 F [X] is an irreducible

element over the �eld F then the quotient ring,

F [X]
< h (x) >

= f�0 + �1t+ �2t2 + :::+ �n�1tn�1 : �i 2 Fg;

is a �eld, here t = x+ < h (x) > so h (t) = 0 and h (x) be the degree of n:

Let h (x) = xn � 1 then the quotient ring is ,

F [X]
< xn � 1 > = f�0 + �1t+ �2t2 + :::+ �n�1tn�1 : �0; �1; �2; :::; �n�1 2 Fg ,

24

not �eld because h (x) = xn � 1 is not irreducible . So if we replace t by x in this ring then

it becomes F [X]n. Hence we prove that F [X]n is a ring with xn � 1 = 0 and F [X]n is an

algebra over the �eld F :.

Theorem 106 Let 0 6= C ideal of F [X]n. Then ,

1) There exist monic polynomial which is unique g (x) of smaller degree of C:

2) g (x) jxn � 1 in ring F [X]:

3) g (x) jw (x) in ring F [X] for all w (x) 2 C:

4) C =< g (x) > :

Conversely suppose that C is an ideal and C =< h (x) > where h (x) 2 F [X]n : Then h (x)

is polynomial of least degree in C i¤ h (x) j xn � 1 in ring F [X] :

Example 107 If we have to �nd the cyclic codes of length 3 and all non trivial ideals of

F [Y]3,here F = F2 then the polynomial y3 � 1 = (y � 1)
�
y2 + y + 1

�
here both non trivial

factors of y3 � 1 are irreducible over the �eld F2 so we can generate ideals from these factors

that is,

< y � 1 >= f0; 1 + y; 1 + y2; y2 + yg;

< y2 + y + 1 >= f0; y2 + y + 1g;

by writing these polynomials as vectors we get the cyclic code of length 3 that is f000; 011; 101; 110g

and f000; 111g:

1.2.5 BCH Codes

In this subsection we discuss very important kind of cyclic codes named as BCH codes. BCH

stands for Bose Chaudhuri and Hocquenghem.Firstly we discuss some properties of irreducible

polynomials and �nite �elds. Every �nite �eld has order power of some prime p. GF(q) or

Fq denotes the unique �eld of order q = pm for some prime p and m 2 Z+. If m = 1 then

Fp = Zp: The set F
�
q denotes the set of all non-zero elements of the �eld Fq and it becomes a

cyclic group of order pm � 1 under multiplication. Hence bpm�1 = 1 or all b 2 F�
q ,and b

pm = b.

If pm � 1 is divisible by any number n, then there is an element b 2 F�
q whose order is n that

25

is o(b) = n, and then b is called primitive nth root of unity in Fq. Furthermore, b 2 F
�
q is said

to be primitive element if o(b) = pm � 1. The characteristic of the �eld Fq is p. Hence pb = 0

and also qb = 0 for all b 2 Fq:For the �nite �eld Fq and r 2 Z+, there exists an irreducible

polynomial h(x) 2 Fq [x] of degree r, the quotient ring Fq [x] =(h(x)) is a �eld of size qr, denoted

by Fqr or GF (q; r). The �eld Fqr or GF (q; r) is called an extension �eld of Fq of degree r so

hence bp
m
= b for all b in Fq and q� = 0 for all � 2 Fqr .

Theorem 108 Let b1; b2; b3:::; bn 2 Fq and �1; �2; �3; :::; �n 2 Fqr then (b1�1 + b2�2 + b3�3 + :::+ bn�n)q =

b1�
q
1 + b2�

q
2 + :::+ bn�

q
n:

Let � 2 Fqr or GF (q; r) then there exist unique monic polynomial of least degree g (x) 2

Fq[x] such that g (�) = 0:The g (x) is an irreducible and minimal polynomial of � over Fq. If

any polynomial f (x) in Fq[x] such that f (�) = 0 then g (x) j f (x) and also degree of g (x)

divides r. If � is primitive element in Fqr then degree of g (x) is equal to r:

Theorem 109 Let � be any element in Fqm : Then �; �q; �q
2
; �q

3
; ::: have the same minimal

polynomial over the �eld Fq:

BCH Code

Let c; d; n; q 2 Z+ such that 2 � d � n and q is exponent of some prime p and n; q are relatively

prime. Suppose r is the least positive integer such that n divides qr � 1 and � be the nth root

of unity in Fqr . Suppose that mj(x) 2 Fq [x] are the minimal polynomials corresponding to

the �j where j = c; c+ 1; :::; c+ d� 2. Suppose C is the cyclic code with generator polynomial

which is g(x) = lcmfmj(x) : j = c; c + 1; :::; c + d � 2g in Fq [x]n. Then C is known as BCH

code of length n over Fq with designed distance d.

Application of BCH Code: BCH codes are used in satellite communication, computer

networks, mobile communications and storage systems for example in computer memories like

hard disc or the compact disc.

Remark 110 If n = qr � 1 then the BCH code is known as primitive BCH code and if c = 1

then it is called narrow sense BCH code.

26

Reed-Solomon Code: A code which is narrow sense primitive BCH is called Reed Solomon

code.

Theorem 111 Suppose that C is a BCH code having length n over Fq with the designed

distance d then,

C = fu (x) 2 Fq [x]n : u
�
�j
�
= 0 for all j = c; c+ 1; c+ 2; :::; c+ d� 2g.

Equivalently C is the null space of H which is de�ned as,

H =

26666666666664

1 �c �2c � � � �(n�1)c

1 �c+1 �2(c+1) � � � �(n�1)(c+1)

� � � � �

� � � � �

� � � � �

1 �c+d�2 �2(c+d�2) � � � �(n�1)(c+d�2)

37777777777775
:

Where H is (d� 1)� n quasi parity check matrix over Fqm :

Theorem 112 Suppose C is a BCH code having designed distance d then the minimum distance

is greater then or equal to designed distance that is d (C) � d:

Remark 113 Binary hamming code is also called BCH code.

27

Chapter 2

Construction and Decoding of

BCH-Codes over Zp

In this chapter we will explain the construction and decoding procedure of BCH code over

the �eld Zp by using fast decoding algorithm which is Barlekamp Messey Algorithm. We also

explain the historical background of Barlekamp Messy and BCH codes,Reed Solomon Codes.

2.1 Historical Background

There are two men Shannon and Hamming work together at Bell labs and contribute alot

in developing adnvancement of algebraic coding theory. Later, in 1959 Hocquenghem and in

1960 Bose and Ray-Chaudhuri independently developed the large class of codes named as BCH

codes. After that Reed and Solomon comes with a set of particular types of BCH codes, these

codes are better for detecting and correcting burst errors. A decade later Berlekamp come up

with a decoding algorithm which was modi�ed in 1969 by James Massey . Later the compact

disc was the �rst storage device which is used for correcting errors in 1982.

2.1.1 History of BCH Codes

There was a French mathematician Alexis Hocquenghem (1908-1990), in an article in 1959

�Codes correcteurs d�erreurs�mentioned the codes that he developed as a �generalization of

Hamming�s work� . In 1960 Dwijendra Ray-Chaudhuri and his Ph.D. advisor Raj Bose pub-

28

lished �On a class of error correcting binary group codes� . After Bose, Ray-Chaudhuri and

Hocquenghem this class of linear codes are known as BCH codes.

2.1.2 History of Reed Solomon Codes

Irving Reed and Gustave Solomon are American mathematicians. They developed a class of

algebraic codes which are called Reed-Solomon codes or RS codes . RS codes are special kind

of the larger class of BCH codes but a decade later, by regarding them as cyclic BCH codes,

that an e¤ective decoding algorithm which gives the great potential to their wide applications.

2.1.3 History of Barlekamp Messey algorithm

Elwyn Berlekamp was a professor of mathematics,computer science and electrical engineering

at the University of California, Berkeley. During his studying at MIT in electrical engineering

department Claude Shannon was his Ph.D. advisor. An algorithm for decoding of BCH codes

was invented by Barlekamp in 1968. There was James Massey which is cryptographer and

information theorist who modi�ed this algorithm in 1968 which is named as the Berlekamp-

Massey algorithm.

Due to this algorithm it is possible to develop a e¢ cient and fast decoder with a linear

feedback shift register (LFSR), however it is not possible until 1982 with the invention of

compact disk that the era of digital information as we know it was started. Immink describes

that �without error-correcting codes, digital audio would not be technical feasible�. Now a

days RS codes are used in large scale having many applications which involves transmission of

data, like computer networks, wireless communication, GPRS, GSM, telephony, digital video

broadcasting and data storage for example hard disk in computers and memory cards in cameras

and mobile telephones, and optical storage devices that are CD, Digital Versatile Discs also use

Reed-Solomon codes.

2.2 Encoding and Decoding of BCH Codes Over Zp

In this section we discuss the encoding and decoding schemes over the �eld. We encode the

message by �nding the generator polynomial and send it to receiver through noisy channel.

29

After encoding message we decode that message through Barlekamp Messey Algorithm and

correct errors.

2.2.1 Encoding of BCH Codes

If we have to sent a message through a channel which is noisy then we divide the message

into parts of k digits and if we have to encode this message then attach n � k check digits or

redundant digits to each block to obtain n length codeword such type of code is called (n; k)

code. Now the codeword can be send through the noisy channel then there are two possibilities

in transmitted codeword either received word is codeword or not, if the received word is not

codeword then during transmission there must be an error occurred and then receiver can

request to the transmitter that the word would be retransmitted but if the received word is

codeword then there is no error occur. It is noted that error correction capabilities of word is

less then or equal to the error detection.

How to encode a message: Any message w of k bits can be encoded by following steps,

1) Write a message w into the form of polynomial w (x).

2) Find the generating polynomial g (x).

3) Encoded message c (x) = w (x) g (x), here c (x) is n length code polynomial.

Example 114 Suppose that we encode the message w = 11010 through the encoder [15; 5] and

designed distance d = 7 here n = 15 and k = 5.

Step1: Message w into the form of polynomial is w (x) = 1 + x+ x3.

Step2:-

To �nd generator polynomial g (x) we construct �rst Galois �eld GF (16) which is

generated by primitive polynomial h (x) = x4 + x + 1. Assume that � is the primitive root of

h (x) then �4 + � + 1 = 0 and �4 = � + 1

30

Exponent form Binary form elements in the form of polynomials

0 0000 0

� 0100 �

�2 0010 �2

�3 0001 �3

�4 1100 1 + �

�5 0110 � + �2

�6 0011 �2 + �3

�7 1101 1 + � + �3

�8 1010 1 + �2

�9 0101 � + �3

�10 1110 1 + � + �2

�11 0111 � + �2 + �3

�12 1111 1 + � + �2 + �3

�13 1011 1 + �2 + �3

�14 1001 1 + �3

�15 1 1

Since � is primitive root of unity in F24 so h (x) is minimal polynomial corresponding to �:

Now we �nd the minimal polynomials of �i corresponding to the value of i = 1; 2; 3:::6.

Since �; �2; �4 have the same minimal polynomial so we can write m1 (x) = x
4 + x+ 1 .

Now we �nd minimal polynomial for �3, since we know that �3; (�3)2; (�3)2
2
;
�
�3
�23
; ::: have

same minimal polynomial so by using �15 = 1 we get �3; �6; �9; �12 are roots of m2 (x) so it is

expressed as,

m2 (x) =
�
x� �3

� �
x� �6

� �
x� �9

� �
x� �12

�
After simpli�cation and using the elements of Galois �eld we get the minimal polynomial,

m2 (x) = x
4 + x3 + x2 + x+ 1:

Similarly we �nd minimal polynomial for �5;we know �5;
�
�5
�2
;
�
�5
�22
; ::; have same minimal

31

polynomial again by using the �15 = 1 we get the �5; �10 are the roots of m3 (x) so it is expressed

as,

m3 (x) =
�
x� �5

� �
x� �10

�
= x2 + x+ 1:

Hence the g (x) of the BCH code is,

g (x) = lcmfmi (x) : i = 1; 2; 3; ::; 6g;

g (x) = m2 (x)m3 (x)m1 (x) ;

g(x) =
�
1 + x+ x2 + x3 + x4

� �
1 + x+ x2

� �
x4 + x+ 1

�
;

g (x) = 1 + x+ x2 + x4 + x5 + x8 + x10

Step3 : Encoded message is c (x) = w (x) g (x),

c (x) =
�
1 + x+ x3

� �
1 + x+ x2 + x4 + x5 + x8 + x10

�
;

c (x) = 1 + x5 + x6 + x7 + x9 + x10 + x13;

c = 100001110110010 is our desired encoded message of 15 length and this is codeword.

Now if we transmit this message through noisy channel then error may be occur during

transmission so we have to �nd out that errors and then correct these errors this process is

called decoding.

2.2.2 Decoding of BCH Codes Over Zp

Suppose that codeword ec (x) = ec0 + ec1x + ec2x2 + ::: + ecn�1xn�1 is sent through noisy channel
then let error e (x) occurs during transmission so the received code polynomial is er (x) =ec (x) + e (x) = er0 + er1x+ er2x2 + :::+ ern�1xn�1 .

To decode this received polynomial �rst we �nd the syndromes by this formula eSi = er ��i�
here i = 1; 2; 3; :::; 2t:

Since ec (x) is codeword so ec(�i) = 0 therefore eSi = er ��i� = e ��i� :
Suppose that e (x) = xl1 + xl2 + :::+ xl� here 0 � l1 < l2 < l3 < :::l� < n;eS1 = er ��1� = e ��1� = �l1+�l2+:::+�l� here � denotes the errors introduced by the channel.eS1 = �l1 + �l2 + :::+ �l� ;eS2 = ��l1�2 + ��l2�2 + :::+ ��l��2 ;

32

�

�

�eS2t = ��l2�2t + ��l2�2t + :::+ ��l��2 :
Here �l1 ; �l2 ; �l3 ; :::; �l� are unknowns , any method for solving these equations and �nd the

unknowns is called decoding algorithm for BCH codes.

If we �nd �l1 ; �l2 ; �l3 ; :::; �l� then powers l1; l2; :::; l� denotes the error positions in received

message.

Let for our simpli�cation k = �
jk be the error location numbers ,here 1 � k � �:

eS1 = (1) + (2) + :::+ (�)eS2 = (1)
2 + (2)

2 + :::+ (�)
2

eS3 = (1)
3 + (2)

3 + :::+ (�)
3

�

�

�

eS2t = (1)
2t + (2)

2t + :::+ (�)
2t :

Now we de�ne error locator polynomial as,

� (x) = (1 + 1x) (1 + 2x) (1 + 3x) ::: (1 + �x) ;

� (x) = �0 + �1x+ �2x
2 + :::+ ��x

� :

Here the coe¢ cients of x are elementary symmetric functions we de�ned as,

�0 = 1

�1 = 1 + 2 + :::+ �

�2 = 12 + 23 + :::+ ��1�

�

33

�

�

�� = 1234:::� :

Remark 115 The inverses of roots of � (x) are error location numbers .

We can relate elementary symmetric functions with the syndromes by using the newton

identities as follows,

eS1 + �1 = 0

eS2 + �1 eS1 + 2�2 = 0

eS3 + �1 eS2 + �2 eS1 + 3�3 = 0

�

�

�

eS� + �1 eS��1 + :::+ ���1 eS1 + ��� = 0

eS�+1 + �1 eS� + :::+ ���1 eS2 + �� eS1 = 0
We decode any received message over Galois �eld is as follows,

Step1: Find syndromes from received polynomial.

Step2:Calculate Error locator polynomial � (x) :

Step3:Find error location numbers by �nding the inverses of roots of � (x) :

Step4:Correct the errors.

Our main step is to calculate � (x) and this can be calculated by Berlekamp Massey algo-

rithm.

34

2.2.3 Barlekamp Massey Algorithm

This is very fast decoding algorithm and it is used for binary and non binary BCH codes. We

start this algorithm by following initial conditions ,

� �� (x) d� l� �� l�

�1 1 1 0 �1

0 1 S1 0 0

1

2

�

�

�

2t

Here d� is nth discrepancy, l� is degree of �� (x) ; S1 is �rst non zero syndrome , t is error

correction capabilities.

Important steps to complete this table,

Step1: If d� = 0 then ��+1 (x) = �� (x) and l�+1 = l�:

Step2: If d� 6= 0 then �nd m < � such that dm 6= 0 and m � lm has largest value in last

column of the table then

��+1 (x) = �� (x) + d�d
�1
m x

(��m)�m (x) and l�+1 = max (l�; lm + ��m)

Step3:To �nd discrepancy use this formula,

d�+1 = S�+2 + �
(�+1)
1 S�+1 + :::+ �

(�+1)
l�+1

S�+2�l�+1:

The Polynomial �2t (x) in last row of the table is required error locator polynomial .

After �nding the �2t (x) we calculate roots of this polynomial and take inverses of these

roots then inverses of roots are known as error location numbers, powers of the error location

numbers shows error positions in received code. To correct these errors subtract error vector

from received vector then we get corrected codeword. If we have to �nd the message word then

divide corrected codeword by generator polynomial g (x) :

35

Example 116 Suppose that [15; 5; 7] BCH code generated by g (x) = 1+x+x2+x4+x5+x8+x10.

Suppose that codeword ec = 100001110110010 is sent through channel and the error occur during
transmission then received vector is er = 110101110110011. Find the error in this received vector
and then determine corrected codeword also �nd the message word.

Solution 117 Here n = 15; s = 5; d = 7 so t =
�
d�1
2

�
=
�
7�1
2

�
= 3 and GF (16) = Z2[X]

<x4+x+1>

here x4+x+1 is primitive polynomial and let � is primitive root of this polynomial so 1+�+�4 =

0:

The received vector in the form of polynomial is ,er (x) = 1 + x+ x3 + x5 + x6 + x7 + x9 + x10 + x13 + x14
Step1: Calculate syndromes by using the formula Si = er ��i� here i = 1; 2; 3; 4; 5; 6:
S1 = er (�) = (1 + � + �3 + �5 + �6 + �7 + �9 + �10 + �13 + �14)mod �1 + � + �4� = � + 1 = �4

(from the table of Galois �eld)

S2 = er ��2� = �
1 + �2 + �6 + �10 + �12 + �14 + �18 + �20 + �26 + �28

�
mod

�
1 + � + �4

�
=

�2 + 1 = �8:

S3 = er ��3� = �
1 + �3 + �9 + �15 + �18 + �21 + �27 + �30 + �39 + �42

�
mod

�
1 + � + �4

�
=

�3 + �2 + 1 = �13

S4 = er ��4� = �1 + �4 + �12 + �20 + �24 + �28 + �36 + �40 + �52 + �56�mod �1 + � + �4� = �
S5 = er ��5� = �1 + �5 + �15 + �25 + �30 + �35 + �45 + �50 + �65 + �70�mod �1 + � + �4� = 0
S6 = r

�
�6
�
=
�
1 + �6 + �18 + �30 + �36 + �42 + �54 + �60 + �78 + �84

�
mod

�
1 + � + �4

�
=

�3 + �2 + � = �11 (from table)

S =
�
�4 �8 �13 � 0 �11

�
Step2: Now We use Berlekamp Massey Algorithm to �nd error locator polynomial � (x) :

This algorithm starts with following initial conditions,

� = �1; ��1 (x) = 1; d�1 = 1; l�1 = 0; �� l� = �1� 0 = �1;

� = 0; �0 (x) = 1; d0 = S1 = �
4; l0 = 0 �� l� = 0� 0 = 0;

In this Algorithm we use the following formulas,

(1) �(�+1) (x) = �� (x) + d�d
�1
m x

��m�m (x) :

(2) d�+1 = S�+2 + �
(�+1)
1 S�+1 + :::+ �

(�+1)
l�+1

S�+2�l�+1 :

(3) l�+1 = max (l�; lm + ��m) :

36

To �nd �1 (x) put � = 0 and m = �1 in formula(1) :

�1 (x) = �0 (x) + d0d
�1
�1x

1�0 (x) = 1 +
�
�4
�
(1)�1 x (1) = 1 + �4x;

also put n=0 and m=-1 in formula(2) then l1 = maxfl0; l�1 + 0 + 1g = maxf0; 1g = 1

Now �nd d1 =?

Put � = 0 in formula(2) we get , d1 = S2+�
(1)
1 S1 = �

8+ �4 � �4 = 0 here �(1)1 is coe¢ cient

of x in �1 (x).

Since d1 = 0 so �2 (x) = �1 (x) and l2 = l1 this implies that �2 (x) = 1 + �4x and l2 = 1:

Now we �nd d2 =??

Put � = 1 in formula(2) then d2 = S3 + �
(2)
1 S2 + �

(2)
2 S1 = (1 + �

2 + �3) + �4 � �8 + 0 � �4 =

1 + �2 + �3 + �12,here �(2)1 is coe¢ cient of x in �(2) (x) and �(2)2 is coe¢ cient of x2 in �(2) (x) ;

from the table of Galois �eld �12=1 + � + �2 + �3 so we get

d2 = 1 + �
2 + �3 + 1 + � + �2 + �3 = � 6= 0

Since d2 6= 0 so we �nd �3 (x) by using the formula(1), Put � = 2 and m = 0 because

d0 6= 0 and 0 � l0 = 0 is largest in last column of the table. Therefore, �3 (x) = �2 (x) +

d2d
�1
0 x

2�0�0 (x) =
�
1 + �4x

�
+ (�)

�
�4
��1

x2 (1) = 1 + �4x+ (�)
�
�11
�
= 1 + �4x+ �12x:

Also put � = 2 in formula(3) we get l3 = maxfl2; l0 + 2 � 0g = maxf1; 2g = 2 and

�� l3 = 3� l3 = 3� 2 = 1:

Now I �nd d3 =???

Put � = 2 in formula(2) then d3 = S4 + �
(3)
1 S3 + �

(3)
2 S2 = �+ �4:�13 + �12:�8 = 0

(by using the table of Galois �eld) :

Since d3 = 0 so �4 (x) = �3 (x) and l4 = l3 = 2 so �� l� = 4� l4 = 4� 2 = 2:

�4 (x) = 1 + �4x+ �12x

To �nd d4 =??

Put � = 3 in formula(2) then we get d4 = S5 + �
(4)
1 S4 + �

(4)
2 S3 = 0 + �4:� + �12 � �13 =

�5 + �10 = 1:

Since d4 6= 0 so we calculate �5 (x) =??

Put � = 4; and m = 2 in formula(1) because d2 6= 0 and m� lm is largest value.

�5 (x) = �4 (x) + d4d
�1
2 x

(4�2)�2 (x) = 1 + �4x + �12x + (1) (�)�1 x2
�
1 + �4x

�
=1 + �4x +

�12x+ �14x2
�
1 + �4x

�
�5 (x) = 1 + �4x+ �5x2 + �3x3 and l5 = maxfl4; l2 + 4� 2g = maxf2; 1 + 4� 2g = 3:

37

To �nd d5 put � = 4 in formula(2) then we get d5 = S6 + �51S5 + �
5
2S4 + �

5
3S3 = �

11 + �4 �

0 + �5 � � + �3 � �13 = 0:

Since d5 = 0 so �6 (x) = �5 (x) this implies that �6 (x) = 1 + �4x+ �5x2 + �3x3:

Now putting all the values in the form of table as follows,

� �� (x) d� l� �� l�

�1 1 1 0 �1

0 1 �4 0 0

1 1 + �4x 0 1 0

2 1 + �4x � 1 1

3 1 + �4x+ �12x2 0 2 1

4 1 + �4x+ �12x2 1 2 2

5 1 + �4x+ �5x2 + �3x3 0 3 2

6 1 + �4x+ �5x2 + �3x3 � � �

Table1

Hence �2t (x) = �6 (x) = 1 + �4x+ �5x2 + �3x3 is error locating polynomial .

Step3: Find the roots of error locating polynomial by substituting the non zero elements

of Galois �eld , here Galois �eld is GF (16) so by substituting 1; �; �2; �3; �4; �5; :::; �14 we get

�; �12; �14 are roots of error locator polynomial. Now to �nd error location number we take

inverses of these roots so ��1 = �14; (�12)�1 = �3; (�14)�1 = � this implies that �; �3; �14 are

error location numbers and powers 1; 3; 14 shows that error positions in received vector. The

error vector is e (x) = x+ x3 + x14.

Step4: The corrected code polynomial is ec (x) = er (x)� e (x) so,ec (x) = (1 + x+ x3 + x5 + x6 + x7 + x9 + x10 + x13 + x14) + �x+ x3 + x14� = x13 + x10 +
x9 + x7 + x6 + x5 + 1ec = 100001110110010 is corrected codeword.

To �nd message word we divide corrected code polynomial by generated polynomial ,

w (x) = ec(x)
g(x) =

x13+x10+x9+x7+x6+x5+1
1+x+x2+x4+x5+x8+x10

= 1 + x+ x3 this implies that w = 11010 is message

word of s = 5 length which was transmitted after encoding through noisy channel.

38

2.2.4 Decoding of BCH Codes over Binary Field

Algorithm for binary BCH code to �nd the error locator polynomial is very e¢ cient because it

needs only t steps to �nd the error locator polynomial. We start Barlekamp Massey algorithm

by following conditions ,

� �� (x) d� l� 2�� l�
�1
2 1 1 0 �1

0 1 S1 0 0

1

2

�

�

�

t

Table2

1) Start with � = �1=2:

2) If d� = 0 then �(�+1) (x) = �(�) (x) :

3) If d� 6= 0 then �nd m < � such that 2m� lm is large as possible in last column of the

table and dm 6= 0 then use the formulas,

1) �(�+1) (x) = �(�) (x) + d�d
�1
m x

2(��m)�(m) (x) ;

2) d�+1 = S2�+3 + �
(�+1)
1 S2�+2 + �

(�+1)
2 S2�+1 + :::+ �

(�+1)
l�+1

S2�+3�l�+1 ;

3) l�+1 = deg
�
�(�+1) (x)

�
:

The polynomial �t (x) in last row of the table is our required error locator polynomial.

Example 118 If we apply this algorithm to above example then we get error locator polynomial

after 3 steps as follows,

39

Step1 is same as above example.

Step 2: Apply Barlekamp Massey algorithm with initial conditions as de�ned in Table2, So

put � = 0 ,m = �1
2 in formula1 we get,

�(1) (x) = �0 (x) + d0(d�1
2
)�1x2(

1
2)�

�1
2 (x) ;

�1 (x) = 1 + d0(d�1
2
)�1x;

�1 (x) = 1 + �4 (1)�1 x

�1 (x) = 1 + �4x

Now put � = 0 in formula3 we get l1 = deg
�
�1 (x)

�
= 1:

Now we �nd d1 =??

Put � = 0 in formula2 we get,

d1 = S3 + �
1
1S1

d1 = �13 + �4 � �8 = �13 + �12 = �3 + �2 + 1 + �3 + �2 + � + 1

d1 = �

Similarly we �nd �2 (x) by putting � = 1 and m = 0 in formula1 we get ,

�2 (x) = 1 + �4x+ �12x2

Also from formula2 , d2 = 1 and from formula3, l2 = 2.

To �nd �3 (x) we substitute � = 2 and m = 1 in formula1 we get, �3 (x) = 1+ �4x+ �5x2+

�3x3 which is required error locator polynomial and this error locator polynomial is same as

above example which was after 6 steps. We complete table as follows ,

40

� �� (x) d� l� 2�� l�
�1
2 1 1 0 �1

0 1 �4 0 0

1 1 + �4x � 1 1

2 1 + �4x+ �12x2 1 2 2

3 1 + �4x+ �5x2 + �3x3 � � �

Table3

If we compare Table3 and Table1 then we get �3 (x) and �6 (x) are same error locator

polynomial. So by this algorithm half steps are needed to �nd error locator polynomial.

Remark 119 If degree of error locator polynomial is greater then t which is error correction

capability of the code then there are more then t errors occur and to locate these errors is not

possible in general.

Remark 120 The computation required for binary BCH code is one half of the computation

required for non binary BCH code.

Remark 121 If the number of errors in er (x) is less then t then it is not necessary to �nd t
steps for error locator polynomial.

2.3 Computationally Decoding over Zp

It is very di¢ cult to decode manually over a higher order �eld so for this we construct algorithm

and develop the programs in computer languages which help us for decoding of BCH code in

few seconds.

2.3.1 Construction of Galois Field Computationally in C#

Algorithm to �nd the elements of Galois Field

int qVal = Convert.ToInt32(q.Text);

string polnolq = ppq.Text;

41

Polynomial polynomialppq = new Polynomial(ppq.Text);

int maxInd = polynomialppq.MaxIndex;

int FinalQVal = (int)Math.Pow(qVal, maxInd - 1);

string maxPolinomial = new Polynomial("x^" + maxInd).ToString();

string[] strIrreducible = new Polynomial(polnolq).ToString().Split(�+�);

string[] minPolynomialArr = (new Polynomial(polnolq) - new Polynomial("x^" +

maxInd)).ToString().Split(�+�);

for (int j = 0; j < minPolynomialArr.Length; j++)

{

int index = minPolynomialArr[j].IndexOf("x");

string npn = new Polynomial("x^" + j).ToString();

string piece = string.Empty;

if (index != -1)

{

piece = minPolynomialArr[j].Substring(minPolynomialArr[j].LastIndexOf(�x�));

}

if (index == 0)

{

minPolynomialArr[j] = (qVal - 1) + new Polynomial(minPolynomialArr[j]).ToString();

}

else if (index > 0 && npn != "1")

{

minPolynomialArr[j] = (-Convert.ToInt32(minPolynomialArr[j].Substring(0, index))

+ qVal).ToString() + "" + npn;

}

else if (index > 0 && npn == "1")

{

minPolynomialArr[j] = (-Convert.ToInt32(minPolynomialArr[j].Substring(0, index))

+ qVal).ToString() + "" + piece;

}

42

else if (index == -1)

{

minPolynomialArr[j] = (qVal - Convert.ToInt32(minPolynomialArr[j])).ToString();

}

}

for (int k = 0; k < minPolynomialArr.Length; k++)

{

for (int pc = 0; pc < maxInd; pc++)

{

string npn = new Polynomial("x^" + pc).ToString();

string myString = minPolynomialArr[k];

int index = myString.IndexOf("x");

string piece = "";

if (index > 0 && index <= (myString.Length - 1))

{

piece = myString.Substring(myString.LastIndexOf(�x�));

if (piece == npn)

{

string nsigmastr = minPolynomialArr[k];

minPolynomialArr[k] = ((Convert.ToInt32(minPolynomialArr[k].Substring(0, index))

% qVal)).ToString() + "" + npn;

}

}

else if (index == 0)

{

}

else if (index == -1)

{

minPolynomialArr[k] = (Convert.ToInt32(minPolynomialArr[k]) % qVal).ToString();

}

43

}

}

string minPolynomial = string.Join("+", minPolynomialArr);

Polynomial modPolynomial = new Polynomial(minPolynomial);

Polynomial maxpPolynomial = new Polynomial(maxPolinomial);

int MaxPolyValue = 0;

var list = new List<KeyValuePair<string, string>>();

list.Add(new KeyValuePair<string, string>(maxpPolynomial.ToString(), modPolynomial.ToString()));

{

maxpPolynomial = maxpPolynomial * new Polynomial("x^1");

Polynomial p1 = modPolynomial * new Polynomial("x^1");

string[] p1Arr = p1.ToString().Split(�+�);

for (int i = 0; i < p1Arr.Length; i++)

{

if (p1Arr[i].Contains("x^" + maxInd))

{

int index = p1Arr[i].IndexOf("x");

string sstr = p1Arr[i].Replace("x^" + maxInd, "+" + new Polynomial(minPolynomial));

string[] strr = sstr.Split(�+�);

p1Arr[i] = string.Empty;

if (string.IsNullOrEmpty(strr[0]))

{

strr[0] = "1";

}

for (int j = 1; j < strr.Length; j++)

{

strr[j] = (new Polynomial(strr[0]) * new Polynomial(strr[j])).ToString();

if (string.IsNullOrEmpty(p1Arr[i]))

{ p1Arr[i] += strr[j]; }

else

44

{

p1Arr[i] += "+" + strr[j];

}

}

}

}

Polynomial p2 = new Polynomial(string.Join("+", p1Arr));

string[] strp2 = p2.ToString().Split(�+�);

for (int k = 0; k < strp2.Length; k++)

{

for (int pc = 0; pc < maxInd; pc++)

{

string npn = new Polynomial("x^" + pc).ToString();

string myString = strp2[k];

int index = myString.IndexOf("x");

string piece = "";

if (index > 0 && index <= (myString.Length - 1))

{

piece = myString.Substring(myString.LastIndexOf(�x�));

if (piece == npn)

{

string nsigmastr = strp2[k];

strp2[k] = ((Convert.ToInt32(strp2[k].Substring(0, index)) % qVal)).ToString()

+ "" + npn;

}

}

else if (index == 0)

{

}

else if (index == -1)

45

{

strp2[k] = (Convert.ToInt32(strp2[k]) % qVal).ToString();

}

}

}

modPolynomial = new Polynomial(string.Join("+", strp2));

list.Add(new KeyValuePair<string, string>(maxpPolynomial.ToString(), modPolynomial.ToString()));

if (modPolynomial.ToString() == "1")

{

MaxPolyValue = new Polynomial(maxpPolynomial.ToString()).MaxIndex;

break;

}

}

Result.Text = "";

Result.Text += "Galois Field:" + Environment.NewLine;

for (int i = 1; i < maxInd; i++)

{

Result.Text += new Polynomial("x^" + i).ToString() + Environment.NewLine; ;

}

2.3.2 Computational check on received word to correct the errors

It is very di¢ cult to check manually the received message of large length have errors or not and

to calculate syndromes for decoding the received message. So for this problem we construct an

algorithm which tell us received message is code word or not in few seconds and also shows all

syndromes for decoding of BCH codes very fast .

To check the received vector have errors or not

If all the syndromes of received vector are zeros then it means that there is no error in received

vector or if all the non zero elements of Galois �eld are roots of received polynomial then it also

shows that there is no error in received vector.

46

Algorithm to calculate all syndromes

//To find syndromes

string[] Syndrome = new string[2*TVal];

for(int i = 0;i< (2*TVal); i++)

{

string[] receiveStrArr = receiveStr.Split(�+�);

for (int j = 0; j < receiveStrArr.Length; j++)

{

int index = receiveStrArr[j].IndexOf("x");

if (index > 0)

{

int cof = Convert.ToInt32(receiveStrArr[j].Substring(0, index));

int maxIndRecVec = new Polynomial(receiveStrArr[j]).MaxIndex;

receiveStrArr[j] = cof.ToString() + "" + new Polynomial("x^" + ((maxIndRecVec

* (i+1)) % MaxPolyValue));

}else if(index == 0)

{

int maxIndRecVec = new Polynomial(receiveStrArr[j]).MaxIndex;

receiveStrArr[j] = new Polynomial("x^" + ((maxIndRecVec * (i + 1)) % MaxPolyValue)).ToString();

}

}

for(int k = 0;k<receiveStrArr.Length;k++)

{

if (list.Where(n => n.Key == receiveStrArr[k]).FirstOrDefault().Key == receiveStrArr[k])

{

receiveStrArr[k] = list.Where(n => n.Key == receiveStrArr[k]).FirstOrDefault().Value;

}

}

string receiveStrArrStr = string.Join("+", receiveStrArr);

Polynomial p1 = new Polynomial(receiveStrArrStr);

47

string[] strp2 = p1.ToString().Split(�+�);

for (int k = 0; k < strp2.Length; k++)

{

for (int pc = 0; pc < maxInd; pc++)

{

string npn = new Polynomial("x^" + pc).ToString();

string myString = strp2[k];

int index = myString.IndexOf("x");

string piece = "";

if (index > 0 && index <= (myString.Length - 1))

{

piece = myString.Substring(myString.LastIndexOf(�x�));

if (piece == npn)

{

string nsigmastr = strp2[k];

strp2[k] = ((Convert.ToInt32(strp2[k].Substring(0, index)) % qVal)).ToString()

+ "" + npn;

}

}

else if (index == 0)

{

}

else if (index == -1)

{

strp2[k] = (Convert.ToInt32(strp2[k]) % qVal).ToString();

}

}

}

Polynomial ppp = new Polynomial(string.Join("+",strp2));

Syndrome[i] = ppp.ToString();

48

}

Result.Text += "Syndrome:" + Environment.NewLine;

for(int i=0;i<((2*TVal)); i++)

{

if(list.Where(m=>m.Value == Syndrome[i]).FirstOrDefault().Value == Syndrome[i])

{

Result.Text = "S" + (i + 1).ToString() + " ==> " + list.Where(m => m.Value ==

Syndrome[i]).FirstOrDefault().Key + " = " + Syndrome[i] + Environment.NewLine;

}

else

{

Result.Text += "S" + (i + 1).ToString() + " ==> " + Syndrome[i] + Environment.NewLine;

}

}

}

Calculation of inverse in Galois Field Computationally

We can calculate computationally inverse of each non zero element of Galois �eld in few seconds

which helps us to decode the received message. Algorithm to �nd the inverse in Galois �eld is

follows,

Write the program �rst for the construction of Galois �eld as above then we �nd inverse as,

int qVal = Convert.ToInt32(q.Text);

string polnolq = ppq.Text;

Polynomial polynomialppq = new Polynomial(ppq.Text);

int maxInd = polynomialppq.MaxIndex;

int FinalQVal = (int)Math.Pow(qVal, maxInd - 1);

string maxPolinomial = new Polynomial("x^" + maxInd).ToString();

string[] strIrreducible = new Polynomial(polnolq).ToString().Split(�+�);

string[] minPolynomialArr = (new Polynomial(polnolq) - new Polynomial("x^" +

maxInd)).ToString().Split(�+�);

49

for (int j = 0; j < minPolynomialArr.Length; j++)

{

int index = minPolynomialArr[j].IndexOf("x");

string npn = new Polynomial("x^" + j).ToString();

string piece = string.Empty;

if (index != -1)

{

piece = minPolynomialArr[j].Substring(minPolynomialArr[j].LastIndexOf(�x�));

}

if (index == 0)

{

minPolynomialArr[j] = (qVal - 1) + new Polynomial(minPolynomialArr[j]).ToString();

}

else if (index > 0 && npn != "1")

{

minPolynomialArr[j] = (-Convert.ToInt32(minPolynomialArr[j].Substring(0, index))

+ qVal).ToString() + "" + npn;

}

string ElementHighPower = string.Empty;

if (!string.IsNullOrWhiteSpace(list.Where(m => m.Value == ElementValue).FirstOrDefault().Key))

{

ElementHighPower = list.Where(m => m.Value == ElementValue).FirstOrDefault().Key;

}

else

{

ElementHighPower = ElementValue;

}

int inversePower = MaxPolyValue - new Polynomial(ElementHighPower).MaxIndex;

Result.Text = "";

Result.Text += Environment.NewLine;

50

Result.Text += "Inverse of Element is:" + Environment.NewLine;

string pinverse = new Polynomial("x" + inversePower).ToString();

if (!string.IsNullOrWhiteSpace(list.Where(m => m.Key == pinverse).FirstOrDefault().Value))

{

Result.Text += pinverse + " = " + list.Where(m => m.Key == pinverse).FirstOrDefault().Value;

}

else

{

Result.Text += pinverse;

}

}

else

{

Result.Text += "Invalid element.";

}

}catch(Exception ex)

{

Result.Text = ex.InnerException.ToString();

}

}

}

}

51

Chapter 3

Construction and Decoding of BCH

Codes Over Zpm

In Coding theory, generally design of codes for the reliable transmission of data through noisy

channels by using classical and more e¢ cient algebraic techniques. There are many applications

of coding theory in di¤erent �elds for example In magnetic and optical recording, wireless and

network communication systems. Error detection and error correction are basic goals in coding

theory because during in data transmission there is possible in most cases error must be occurs

due to distortion, noise, interference. The main aim of coding theory is to design error control

codes. To achieve the aim of coding theory many mathematicians,engineers uses di¤erent

algebraic techniques to develop the good codes as much as possible.

3.1 Introduction and History of Codes over Zpm

The development of data transmission codes starts with the �rst paper of Claude Shannon in

1948. He explained in this paper that every communication channel has some capacity. If the

rate of data transmission is smaller then the capacity then design of communication system

for the channel is possible with the help of data transmission codes. This system has small

probability of output errors but Shannon did not give the method for the construction of such

type of codes.

The �rst block codes for this purpose were developed by Hamming in 1950. He represents

52

the class of codes which correct only one error. However in 1954, Muller described the class

of codes which correct multiple errors and Reed also in 1954 gave the decoding algorithm for

these codes. But both these codes are not good for the Shannon�s hypothesis.

The remarkable development in coding theory begins when Bose, Chaudhuri and Hoc-

quenghem in 1960 explain the large class of codes which corrects multiple errors known as BCH

codes and Reed-Solomon codes. They explain the BCH codes over �nite �elds that is Galois

�elds. In 1972, Blake [3] gave the method for construction of codes over ring Zn; where n is

product of distinct primes pj , from cyclic codes over GF (pj). But he does not explain the codes

over Zpm , for m > 1: Further in 1975, Blake [4] discuss Linear codes over the ring Zn; where

n = pr and p is a prime and r 2 Z+. He also de�ne Hamming and Reed-Solomon codes over

Galois �eld by considering their properties.

Spiegal [14]in 1977 shows that codes over Zpm can be described in terms of codes over Zp

and thus we are able to de�ne codes over Zn for any positive integer n. In 1979, Shankar

[13]constructs the BCH codes over Zpm . Shanker use Zpm [x] which is the polynomial ring in

variable x over Zpm ; he also construct BCH code for arbitrary integer M , where M =
lQ
i=1
pkii :

BCH codes over �nite commutative rings with identity are constructed by Andrade and Palazzo

[1]in 1998. In the construction techniques of both [1] and [13], the cyclic subgroup of the group

of units of an extension ring is speci�ed. Interlando, Palazzo and Elia [6] proposed powerful

decoding method which is based on Barlekamp-Massey algorithm for RS and BCH codes over

integer residue ring Zpm :Andrade and Palazzo [1] explain decoding procedure of C(n; �) with

same algorithm that can correct all errors up to Hamming weight t:This is very di¢ cult to

decoding manually over the higher order integer residue ring and Galois ring so we have solve

the decoding of BCH code and Reed-Solomon code by using Barlekamp Massey algorithm

computationally.

3.2 BCH Codes over Galois Ring: Construction

The �rst algorithm for construction of BCH codes over Galois Ring was given by Priti Shankar.

He construct the codes over Zpm by the method which is same as the construction of codes over

GF (p) : For this purpose, extension of Galois rings is used, where few conditions of extension

53

of Galois �eld are lost. To explain important properties of Galois extension rings, let Zpm [x]

be the ring of polynomial and h (x) be the irreducible polynomial of degree r over Zpm and

also over GF (p) : Then R = GR (pm; r) = Zpm [x] = < h (x) > is called Galois extension of

Zpm of dimension r. For certain value of n, xn � 1 can be written as into linear factors over

GR (pm; r) ; where n is such that gcd (n; pm) = gcd (n; p) = 1: With the help of these factors

we determine the cyclic and BCH codes over Zpm . Zero divisors of GR (pm; r) form an abelian

group under �+�having elements of degree r � 1 or less. The coe¢ cients of these polynomials

are zero divisors in Zpm : It means GR (pm; r) is a local ring. The Units of GR (pm; r) are

those polynomials having atleast one coe¢ cient is unit in Zpm . The units of GR (pm; r) form

a multiplicative group and it is represented by R�: It is an abelian group and can be written

as direct product of cyclic groups. We are looking for the maximal cyclic subgroup Gn, whose

elements are the zeros of xn � 1:

The following results are important for construction of Gn and BCH codes:

Theorem 122 [6, Theorem 2] There is unique Gn of R� of order relatively prime to p. This

cyclic subgroup has order pr � 1.

Theorem 123 [6, Theorem 3] Let � generates the cyclic subgroup having order n in R�, such

that gcd (n; p) = 1: Then the polynomial xn�1 can be factorized as xn�1 = (x� �)
�
x� �2

�
� � � (x� �n)

i¤ Rp (�) has order n in K�, which is the multiplicative subgroup of K = GF (pr) :

Corollary 124 [6, Corollary 1] Assume that � generates the cyclic subgroup having order n in

R�, then the polynomial h (x), which divides xn � 1 having coe¢ cient in Zpm can be factorized

over Gn as h (x) = (x� �e1) (x� �e2) � � � (x� �el) i¤ Rp (h (x)) can be factorized over GF (pr)

as Rp (h (x)) = (x� (Rp (�))e1) (x� (Rp (�))e2) � � � (x� (Rp (�))el) :

Theorem 125 [6, Theorem 4] Let � = Rp (�) generate a subgroup which is cyclic of order n

in K�:Then � generate cyclic subgroup of order n:d in R�, where d � 1, and Gn =< �d > of

R�:

Lemma 126 [1, Lemma 3.1] Let � be a primitive element of Gn. Then the di¤erences �l1��l2

are units in R if 0 � l1 6= l2 � n� 1:

54

On the basis of above results, the generator polynomial g (x) of cyclic BCH code of length

n in GR (pm; r) can be calculated as

g (x) = lcm
�fM1 (x) ;fM2 (x) ; :::;fM2t (x)

�
where fMi (x) ; 1 � i � 2t are the minimal polynomials of �b+i over Zpm ; for some b � 0 and

t � 1: The polynomials Mi (x) over GR (pm; r) are calculated by the method similar to the

calculation of mi (x) (minimal polynomial over GF (pr)): And the parity check matrix of BCH

code having generator polynomial g (x) is of the form

H =

26666664
1 �b+1 �2(b+1) � � � �(n�1)(b+1)

1 �b+2 �2(b+2) � � � �(n�1)(b+2)

...
...

...
. . .

...

1 �b+2t �2(b+2t) � � � �(n�1)(b+2t)

37777775 : (3.1)

The minimum distance is guaranteed by following theorem:

Theorem 127 The minimum distance of the BCH code is de�ned in 3.1 is greater then or

equal to 2t+ 1:

Generator polynomial of BCH Code and Maximum Cyclic Subgroup over Galois

ring

The BCH codes over Galois rings are constructed corresponding to each Galois �eld. For Galois

�elds GF (pm) of order pm, there are many Galois rings GR (pn;m) of order pmn; where n 2 Z+

and m is the degree of monic irreducible polynomial f (x). The polynomial f (x) is irreducible

in Galois rings and f (x) = Rp (f (x)) is primitive irreducible in the corresponding Galois �eld.

By increasing the value of n, we have codes having more codewords. Some other observations

are made by considering the following example.

Example 128 For the rings Z2n, Z2 is the residue �eld. Since f (x) = x3 + x+ 1 be a monic

and irreducible polynomial over Z2n and f (x) = x3 + x+1 is irreducible over Z2, so it is basic

irreducible polynomial. Galois ring R = GR (2n; 3) = Z2n [x]
(f(x)) of order 2

3n and corresponding

55

Galois �eld of order 8 becomes K = Z2[x]
(f(x))

. Let � be the root of f (x); then �3 + � + 1 = 0:

By calculating the powers of � modulo 2 and modulo f (�); we have �7 = 1. The powers of

� represents number of non zero elements in GF
�
23
�
: Now we consider �3 = �� � 1 modulo

22; 24,25 and modulo f (u) ;and again modulo 22; 24,25 then 14; 56,112 powers of � are equal

to 1 respectively. It implies that the Maximal cyclic subgroup G7 is generated by �2; �8 and

�16 in Galois rings GR
�
22; 3

�
; GR

�
24; 3

�
and GR

�
25; 3

�
respectively. The possible generator

polynomials gn (x) of primitive BCH codes Cnm of length 7 in rings GR (2n; 3) are:-

g2 (x) in GR
�
22; 3

�
g4 (x) in GR

�
24; 3

�
g5 (x) in GR

�
25; 3

�
x3 + 2x2 + x+ 3 x3 + 6x2 + 5x+ 15 x3 + 6x2 + 5x+ 31

x6 + x5 + x4 + x3 + x2 + x+ 1 x6 + x5 + x4 + x3 + x2 + x+ 1 x6 + x5 + x4 + x3 + x2 + x+ 1

Table : Generator Polynomials of BCH codes of length 7

It means that possible codes of length 7 are (7; 4) and (7; 1) having minimum distances 3 and 7,

error correction capabilities 1 and 3, and code rates 0:571 4 and 0:142 8 respectively. Further, it

is observed that if we take f (x) = x3+3x+1 and f (x) = x3+5x+3 as the irreducible polynomial

over Z22 and Z23 respectively, the generator polynomials and all above results remains the same.

By considering the other example of primitive BCH codes,

Example 129 Suppose that f (x) = x3 + x + 1 is irreducible polynomial over Z8. We have

to construct BCH codes over extension ring of Z8 which is Z8[x]
<x3+x+1>

' GR (8; 3) : Firstly we

construct maximum cyclic subgroup of GR (8; 3) which is isomorphic to K� = GF (8) nf0g: Let

� be the primitive root of the polynomial f (x) so �3 + �+ 1 = 0:

This implies that �3 = ��� 1 = 7�+ 7 now by taking powers of � until we get 1 it means

56

that we have to �nd the order of � in GR (8; 3) .

�4 = 7�+ 7�2 �13 = 7�2 + 3 �22 = 6 + 5�+ 4�2

�5 = 1 + �+ 7�2 �14 = 1 + 4� �23 = 4 + 2�+ 5�2

�6 = 1 + 2�+ �2 �15 = �+ 4�2 �24 = 3 + 7�+ 2�2

�7 = 7 + 2�2 �16 = 4 + 4�+ �2 �25 = 6 + �+ 7�2

�8 = 6 + 5� �17 = 7 + 3�+ 3�2 �26 = 1 + 7�+ �2

�9 = 6�+ 5�2 �18 = 4 + 3�+ 3�2 �27 = 7 + 7�2

�10 = 3 + 3�+ 6�2 �19 = 5 + �+ 3�2 �28 = 1

�11 = 2 + 5�+ 3�2 �20 = 5 + 2�+ �2

�12 = 5 + 7�+ 5�2 �21 = 7 + 4�+ 2�2

Hence order of � in GR (8; 3) is 28 so Gs maximum cylic subgroup is generated by �4 and order

of Gs is 7 by theorem 122. Therefore G7 =< � = �4 > and elements of G7 are given as ,

� = 7�+ 7�2

�2 = 6 + 5�

�3 = 5 + 7�+ 5�2

�4 = 4 + 4�+ �2

�5 = 5 + 2�+ �2

�6 = 3 + 7�+ 2�2

�7 = 1

This implies that G7 = f1; �; �2; �3; �4; �5; �6g and these all elements are roots of x7 � 1 mod-

ulo 8: Now we construct BCH code for designed distance d = 4 .So �nd the minimal poly-

nomial of �i where i = 1; 2; 3:Since �; �2; �4 have same minimal polynomial so m1 (x) =

(x� �)
�
x� �2

� �
x� �4

�
= x3 + 6x2 + 5x+ 7 . Now �3; �6; �5 have same minimal polynomial

so m2 (x) =
�
x� �3

� �
x� �5

� �
x� �6

�
= x3 + 3x2 + 2x+ 7 therefore g (x) = m1 (x) �m2 (x) =

x6 + x5 + x4 + x3 + x2 + x + 1 is generator polynomial of BCH code corrosponding to Galois

57

Ring. If we have to �nd the generator polynomial for corrosponding Galois �eld then there is

no need to construct all minimal polynomial just take modulo p of coe¢ cients of g (x) which is

already constructed for Galois ring so we get g (x) = x6 + x5 + x4 + x3 + x2 + x + 1 for the

Galois �eld Gf
�
23
�
:

Remark 130 If � is generator of GF (p;m) ; then �p
n�1

generator of cyclic subgroup in GR (pn;m) :

Remark 131 The generator polynomials gn (x) of Cnm are converted to generator polynomials

gn�1 (x) of Cn�1m by reducing the coe¢ cients of gn (x) modulo pm�1:

Remark 132 Error correction capability and code rate remains same for codes in Galois rings

GR (2n;m) and in corresponding Galois �elds GF (2m). But the number of codewords in Galois

ring are greater then the Galois �eld.

Reed-Solomon Codes over Zpm

Let � 2 Zpm be a primitive element of the integers modulo p: Suppose n = p� 1 and a positive

integer m relatively prime to n then according to Blake [4] we de�ne the matrix eH as

eH =

26666664
1 �m �2m � � � �(n�1)m

1 �m+1 �2(m+1) � � � �(n�1)(m+1)

...
...

...
. . .

...

1 �m+d�2 �2(m+d�2) � � � �(n�1)(m+d�2)

37777775
Theorem 133 The null space of eH over Zpm is a code C having length n = p�1 and minimum

Hamming distance d and dimension (p� d) :

Hence eH is a parity check matrix of a (p� 1; p� d; d) Reed-Solomon code over Zpm : We

suppose m = 1 and d = 2t + 1 here t �
�
n�1
2

�
; So we have t-error correcting Reed Solomon

codes.

3.3 Decoding procedure of Reed-Solomon and BCH-Codes

In this section we solve the major issues related to decoding on Reed-Solomon codes and BCH

codes of n length which has t errors correction capability whose minimum hamming distance

58

� 2t + 1: We take Ring R = Zpm in the case of Reed-Solomon codes and take R =GR (pm; r)

in the case of BCH codes. The symbol � will be used to represent primitive element of Zp or

Gn:

Interlando, Palazzo and Elia [6] presents the decoding procedure which is based on Berlekamp-

Massey algorithm for Reed-Solomon and BCH codes over Zpm ; where m is positive integer: This

algorithm is further extended by Andrade and Palazzo [1] for C(n
0
; �): This code corrected all

errors up to Hamming weight and decoding procedure have following steps.

(1) Syndromes calculation with the help of parity check matrix.

(2) Calculation of elementary symmetric functions from syndromes.

(3) Calculate the error location numbers.

(4) For RS or BCH codes over Zpm, the error values or error magnitudes to be calculated..

To explain these steps, let ec = (ec1;ec2; :::;ecn) be a n length transmitted vector and er =
(er1; er2; :::; ern) be a received vectors, then error vector is given by e = (e1; e2; :::; en) = er � ec: By
considering � as primitive element of Gn; the above steps are analyzed as:

Step 1: Syndromes calculation Calculation of syndromes is very simple just take

product of received vector and transpose of parity check matrix as,

eS = er� eHt

There are total 2t syndromes are calculated.

Step 2: Calculation of elementary symmetric functions The elementary symmet-

ric functions �1; �2; :::; �v are de�ned as coe¢ cients of the polynomial

(X � Z1) (X � Z2) ::: (X � Zv) = Xv + �1X
v�1 + :::+ �v�1X + �v

where v represents number of errors introduced by the channel. These functions are obtained

by �nding a solution �1; �2; :::; �v of the following equations over R with minimum possible v.

eSj+v + eSj+v�1�1 + :::+ eSj+1�v�1 + eSj�v = 0 for j = 1; 2; :::; 2t� v; (3.2)

59

Where eS1; eS2; :::; eS2t are the sequence of syndromes. This solution is obtained by modi�ed
Berlekamp-Massey algorithm which holds for commutative rings with identity. The solution

is unique i¤ error magnitudes are unit in ring R. It is an iterative algorithm because at �th

step, we have to determine l� values �
(�)
i such that the following ��l� equations holds with l�

possibly small and �(�)0 = 1:

eS��(�)0 + eS(�)��1�
(�)
1 + :::+ eS(�)��l��

(�)
l�
= 0eS��1�(�)0 + eS��2�(�)1 + :::+ eS��l��1�(�)l�
= 0

...eSl�+1�(�)0 + eSl��(�)1 + :::+ eS1�(�)l�
= 0

(3.3)

At nth stage the solution is represented by the polynomial �(�) (x) = �
(�)
0 + �

(�)
1 x + �

(�)
l�
xl�

and nth discrepancy d� is de�ned by d� = eS�+1�(�)0 + eS��(�)1 + :::+ eS�+1�l��(�)l�
: The modi�ed

Berlekamp-Massey algorithm is explained by following results:

Lemma 134 [6, Lemma 1]Let �(�) (x) be a solution to the �rst � power sums and has next

discrepancy d� 6= 0 Let

�(m) (x) = 1 + �
(m)
1 � x+ � � �+ �(m)lm

� (x)lm

be any polynomial solution to the �rst m power sums, where 1 � m <�; such that the linear

equations d� � y:dm = 0 in R have solutions in y. Then the polynomial,

�(�+1) (x) = �(�) (x)� y: (x)��m :�(m) (x)

is a solution to the �rst �+ 1 power sums. Further, l�+1 = maxfl�; lm+��mg:

Lemma 135 [6, Lemma 2]Suppose that �(�) (x); l�; and d� 6= 0 are de�ned as in above lemma

and �(�+1) (x) be the any polynomial solution satisfying �+ 1� l�+1 power sums. Then let

�(�+1) (x) = �(�) (x)� a: (x)��m :�(m) (x);

where a is unit in R and �(m)0 = 1:Then the polynomial �(m) (x) is a polynomial solution to the

60

�rst m � lm equations of (3.3) and has next discrepancy satisfying d� + a � dm = 0 and lm =

l�+1� (��m).

Theorem 136 [6, Theorem 6]Let �(�) (x) be a solution at the �th stage and �(m) (x) be one of

the prior minimal solutions, where 1 � m <�, such that d�� y:dm = 0 have solutions in y and

m� lm have largest value in last column of the table. Further, suppose that �(�) (x) is modi�ed

by the following method. If d� = 0 then

�(�+1) (x) = �(�) (x) and l�+1 = l�: (3.4)

If d� 6= 0 then

�(�+1) (x) = �(�) (x)� y: (x)��m :�(m) (x) and l�+1 = maxfl�; lm + ��mg: (3.5)

If there is not any solution D(�+1) (x) with degree smaller than maxfl�; lm + � �mg; and the

coe¢ cient of the smallest exponent of x in D(�+1) (x)� �(�) (x) is a zero divisor in R, then at

(�+ 1)th stage �(�+1) (x) is a minimal polynomial solution.

Proof. :If d� = 0 then �(�+1) (x) = �(�) (x) is minimal solution because �(�) (x) is minimal

solution. Now we suppose that if d� 6= 0 then by 3.5 �(�+1) (x) is known. By 134 �(�+1) (x) is

a polynomial solution of degree l�+1 = maxfl�; lm+��mg:

Now we show that this solution is minimal,

From above lemma if m� lm � �� l� then l�+1 = l� and at (�+ 1)th stage �(�+1) (x) is a

minimal solution.

If m� lm < �� l� then l�+1 = maxfl�; lm + ��mg = lm + ��m > l�:

Now if we take �(�+1) (x) is minimal solution then assume that there exist a polynomial

D(�+1) (x) of degree d such that l� � d < lm+��m and the coe¢ cient of the smallest exponent

of x in D(�+1) (x)� �(�) (x) is unit in R:

We consider two cases,

1) If d = l� then from 135 there is a solution �

�
�
m

�
(x) with l�

m
= d �

�
�� �

m
�
that is

�
m� l�

m
= �� l�:From our supposition m� lm< n� ln so m� lm <

�
m� l�

m
. So m� lm was

taken to be the largest of the value k�lk for the previous solutions which shows a contradiction.

61

2) If d > l� then from above lemma d = l�
m
+�� �

m . However because m� lm �
�
m� l�

m
so

d = ��
��
m� l�

m

�
� n� (m� lm) = l�+1 > d

that is d > d which shows a contradiction.

Hence if the coe¢ cient of the smallest power of x in D(�+1) (x)��(�) (x) is a unit inR then

�(�+1) (x) is a minimal solution.

Modi�ed Berlekamp Massey Algorithm

We take in this algorithm syndromes as a input and output of this algorithm will be elementary

symmetric functions which satis�es equations 3.3 for minimum �:We start this algorithm by

following initial conditions as in [19],

�(�1) (x) = 1, l�1 = 0; d�1 = 1, �(0) (x) = 1, l0 = 0; and d0 = eS1, here eS1 is �rst non
zero syndrome. Further steps of this algorithm are follow as

Step1) 0!�:

Step2) If d� = 0; then �(�) (x)! �(�+1) (x), l� ! l�+1 and then go to step 5.

Step3) If d� 6= 0; then �nd a m < �, such that d��ydm = 0 has solution in y and m� lm
has the greatest value. Then

�(�) (x)� y � x��m � �(m) (x) ! �(�+1) (x)

maxfl�; lm + ��mg ! l�+1:

Step4) If l�+1 = max fl�; �+ 1� l�g, then go to step 5, else �nd the solution D(�+1) (x) of

minimum degree in the range max fl�;�+ 1� l�g � l � l�+1, such that �(m) (x) is de�ned by

x��m � �(m) (x) = D(�+1) (x)� �(�) (x) is a solution for the �rst m power sums and dm = �d�;

with �(m)0 is a zero divisor in R: If such type of solution is found then D(�+1) (x)! �(�+1) (x)

and l! l�+1:

Step5). If �� 2t� 2; then eS�+2 + eS�+1�(�+1)1 + :::+ eS�+2�l�+1�(�+1)l�+1
! d�+1:

Step6). �+1!�; if �� 2t� 1 then go to step 2, else stop the algorithm.

The coe¢ cients �2t1 ; �
2t
2 ; :::; �

2t
l�
of �(2t) (x) satisfy equation 3.2. This algorithm allows

�(�) (x) is updated from �(m) (x) whose discrepancy may be a non invertible element in com-

mutative ring R:

62

Step 3: Determining error location numbers There is one extra step over ring to

�nd error location number rather then over �eld because in ring R the solution of equation 3.2

is not unique in general. The reciprocal of polynomial �2t (x) (output of Barlekamp Massey

algorithm) is � (x) which may not be the correct error locator polynomial. So to �nd error

location numbers �rst computing the roots x1; x2; :::; xv of � (x) and then select from z0 =

�0; z1 = �1; z2 = �2; :::zn�1 = �n�1 such that zi � xi are zero divisors in ring R where i is a

positive integer less than or equal to n� 1: These z0is are correct error location numbers.

Step 4: Calculation of error magnitudes To calculate error magnitudes y1; y2; :::; yv

we use Forney�s method from [5] where error magnitudes de�ned as:

yj =

v�1P
l=0

�j;l � eSv�l
v�1P
l=0

�j;l � zv�lj

where j = 1; 2; :::; v:

The coe¢ cients �j;l are calculated by �j;i = �i + zj � �j;i�1, where i = 0; 1; :::; v � 1 and

�0 = �j;0 = 1:

Example 137 Consider a two error correcting Reed-Solomon code over Z121: Here n = p�1 =

11� 1 = 10 and t = 2 then d = 2t+1 = 5: and k = p� 2 = 9: Let � = 2 be a primitive element

of Z11: Hence we have (10; 9; 5) code with parity check matrix is,

eH =

26666664
1 2 4 8 16 32 64 7 14 28

1 4 16 64 14 56 103 49 75 58

1 8 64 28 103 98 58 101 82 51

1 16 14 103 75 111 82 102 59 97

37777775
Now suppose that codeword ec = (0 0 0 0 0 0 0 0 0 0) is transmitted and the vector er =

(0 0 0 0 0 4 0 0 0 9) is received. We have to decode this vector by using modi�ed Berlekamp

Massey algorithm .

Step 1: To calculate syndrome we use this method

eS = er � eHt = (17 20 4 107)

63

Step 2: Calculation of polynomial which satisfy equation 3.2 by using Barlekamp

Massey algorithm so we �nd �2t (x) as follows,

� �� (x) d� l� �� l�
�1 1 1 0 �1

0 1 17 0 0

1 1 + 104x 94 1 0

2 1 + 70x 73 1 1

3 1 + x+ 84x2 97 2 1

4 1 + 61x+ 49x2 � � �

Hence �4 (x) = 49x2 + 61x+ 1 is required polynomial.

Step 3: Calculation of error positions and error location numbers.

First we calculate reciprocal of �4 (x) which is � (x) = x2 + 61x+ 49 then we �nd roots of

this polynomial by substituting x = f0; 1; 2; 3; 4; :::; 120g so we get x1 = 32 and x2 = 28 are

roots of � (x). Now we select those zi from the elements {�0; �1; �2; �3; �4; �5; �6; �7; �8; �9g

that is �0 = 1; �1 = 2; �2 = 4; �3 = 8; �4 = 16; �5 = 32; �6 = 64; �7 = 7; �8 = 14; �9 = 28 such

that zi � xi are zero divisors in Z121 therefore z1 = �5 = 32 and z2 = �9 such that z1 � x1 and

z2 � x2 are zero divisors in Z121: Hence z1 = �5 = 32 and z2 = �9 = 28 correct error location

numbers and powers of � represents error positions in received vector so here at 5th and 9th

position error occurs.

Step 4: Calculation of error magnitudes,

To �nd calculation of error magnitudes �rst we �nd correct elementary symmetric function

as ,

(x� z1) (x� z2) = (x� 32) (x� 28) = x2+61x+49 this implies that �1 = 61 and �2 = 49:

Now we apply Forney�s procedure to �nd error magnitudes ,

64

y1 =
�1;0 � eS2 + �1;1 eS1
�1;0 � z21 + �1;1 � z1

�1;0 = 1; �1;1 = �1 + z1�1;0

y1 =
1 � (20) + (93) (17)
1 � (32)2 + (93) (32)

y1 =
28

7
= 28 (7)�1 = 28 (52)mod 121

y1 = 4

Similarly we �nd y2 as

y2 =
eS2 + �2;1 � eS1
(z2)2 + �2;1 � z2

;

By putting the values we get y2 = 9:

Hence the error vector e =(0 0 0 0 0 0 4 0 0 0 9) this implies that encoded message is

v = er � e = (0 0 0 0 0 0 0 0 0 0)
Example 138 In this example we discuss the decoding of BCH codes over Galois Ring:

Suppose C is a (8; 3) BCH code which have 2 error correction capability over Z9 and exten-

sion ring of Z9 is R = GR (9; 2) = Z9[x]
<x2+x+2>

.

We have to decode received message overR = GR (9; 2) for this �rst we �nd maximum cyclic

subgroup of order 32�1 which is G8. Let � = 2+8x is generator of maximum cyclic subgroup.

So hence G8 = f1; �; �2; �3; �4; �5; �6; �7g: Suppose that codeword v = (0 0 0 0 0 0 0 0) is

transmitted through the channel may be noisy then the received message is er = (0 3 0 0 0 0 6 0)
. We decode this received message by using Barlekamp Messey algorithm .First we check that

r is codeword or not. We compute the parity check matrix eH of order 2t � n ,here t = 2 and

n = 8 so order of H is 4� 8:

eH =

26666664
1 � �2 �3 �4 �5 �6 �7

1 �2 �4 �6 1 �2 �4 �6

1 �3 �6 � �4 �7 �2 �5

1 �4 1 �4 1 �4 1 �4

37777775

65

If er � eHt = 0 then there is no error occurs in other words if syndrome is zero then received

message is codeword.

Decoding Procedure:-

Step1: Calculation of Syndrome as,eS = er � eHt = (3 3x 3 3)

Step2: Calculation of polynomial which satisfy the equation 3.2 by using the modi�ed

Barlekamp Massey algorithm apply to syndrome we get the following table.

� �� (Z) d� l� �� l�

�1 1 1 0 �1

0 1 3 0 0

1 1 + 6Z 3x 1 0

2 1 + (6 + 8x)Z 3x 1 1

3 1 + (5 + 8x)Z + 3Z2 6x 2 1

4 1 + (3 + 8x)Z + (2x)Z2 � � �

Hence �4 (Z) = 1 + (3 + 8x)Z + (2x)Z2

Step3: Calculation of correct error location number,

Take reciprocal of �4 (Z) then polynomial is � (Z) = Z2 + (3 + 8x)Z + 2x is correct error

locator polynomial. Now we �nd roots of this polynomial by substituting all the elements of

Galois ring so we get Z1 = 5 + 8x and Z2 = 1 + 2x are roots of � (Z). Now from the elements

of G8; �0 = 1; �1 = 2+8x; �2 = 2+4x; �3 = 3+x; �4 = 8; �5 = 7+x; �6 = 7+5x; �7 = 6+8x

Choose those elements Xi such that Xi �Zi are zero divisors in R =GR (9; 2) ; So select X1 =

�1 = 2 + 8x such that X1 � Z1 = 2 + 8x� 5� 8x = 6 is zero divisor in GR (9; 2) similarly we

take X2 = �6 = 7 + 5x such that X2 � Z2 = 6 + 3x is zero divisor in GR (9; 2) : Therefore X1
and X2 are correct error location numbers and powers of � shows error positions, Hence error

occur at position 1 and at position 6: To �nd correct elementary symmetric function we take

(Z �X1) (Z �X2) = (Z � (2 + 8x)) (Z � (7 + 5x)) = Z2 + (5x)Z + (6 + 8x) this implies that

�1 = 5x and �2 = 6 + 8x:

Step4: Computing the error magnitudes,

66

To calculate error magnitudes we apply Forney�s procedure to Syndrome and elementary

symmetric function as like in above example so we get error magnitude Y1=3 and Y2 = 6:

Therefore the error is e = (0 3 0 0 0 0 6 0) Hence the corrected codeword v = er � e =

(0 0 0 0 0 0 0 0) :

3.4 Computationally Decoding of RS and BCH Codes over Zpm

Decoding of BCH and RS codes manually is very di¢ cult and time consuming. If we have

higher order integer residue ring then it is very complicated to calculate manually the elements

of Galois ring and decoding of RS and BCH codes. So to resolve this problem we construct an

algorithm to decode the received message over the Zpm :

3.4.1 Calculation the Elements of Galois Ring in C#

By using this algorithm we can �nd the all elements of Galois ring in few seconds So this help

us to fast decoding of RS and BCH codes. The algorithm is as,

// INPUT THE VALUE OF q AND IRREDUCIBLE POLYNOMIAL

int qVal = Convert.ToInt32(q.Text);

string polnolq = ppq.Text;

Polynomial polynomialppq = new Polynomial(ppq.Text);

int maxInd = polynomialppq.MaxIndex;

int FinalQVal = (int)Math.Pow(qVal, maxInd - 1);

string[,] qaloisRing = new string[FinalQVal, qVal];

//Find the elements of Galois Ring

for (int i = 0; i < FinalQVal; i++)

{

for (int j = 0; j < qVal; j++)

{

if (i == 0)

{

qaloisRing[i, j] = j.ToString();

67

}

else

{

Polynomial p1 = new Polynomial("x" + qaloisRing[(i - 1), j]);

string[] strArr = p1.ToString().Split(�+�);

for (int strCounter = 0; strCounter < strArr.Length; strCounter++)

{

if (strArr[strCounter].Contains(qVal.ToString()))

{

string a = strArr[strCounter].Substring(0, strArr[strCounter].IndexOf("x"));

int ii = strArr[strCounter].IndexOf("x");

string b = strArr[strCounter].Substring(ii);

if (a == qVal.ToString())

{

Polynomial Coefficient = new Polynomial("x") * new Polynomial(b);

strArr[strCounter] = Coefficient.ToString();

}

}

}

for (int strCounter = 0; strCounter < strArr.Length; strCounter++)

{

if (strArr[strCounter].Contains("x^" + maxInd.ToString()))

{

strArr[strCounter] = strArr[strCounter].Replace("x" + maxInd, "x^" + (maxInd

- 1) + "x").ToString();

}

}

qaloisRing[i, j] = new Polynomial(string.Join("+", strArr)).ToString();

}

}

68

}

int intCounter = 0;

Result.Text = "";

for (int i = 0; i < FinalQVal; i++)

{

for (int j = 0; j < qVal; j++)

{

Result.Text += "Pol " + (intCounter++) + "=" + qaloisRing[i, j] + "ntnt";

3.4.2 Computationally Find the inverse of element in Galois Ring

It is not possible that to �nd the inverse of each element in Galois ring because in ring there

may be some zero divisors so each element of Galois ring is not invertible. So it is very di¢ cult

to �nd the inverse of element manually in Galois ring that�s why we construct an algorithm to

�nd inverse of the elements of Galois ring in few seconds so this algorithm save our time and

help us to decode the received vector. Algorithm is as,

int qVal = Convert.ToInt32(q.Text);

string inverseVal = inverse.Text;

string polnolq = ppq.Text;

Polynomial polynomialppq = new Polynomial(ppq.Text);

int maxInd = polynomialppq.MaxIndex;

int FinalQVal = (int)Math.Pow(qVal, maxInd - 1);

string[,] qaloisRing = new string[FinalQVal, qVal];

string maxPolinomial = new Polynomial("x" + maxInd).ToString();

string[] strIrreducible = new Polynomial(polnolq).ToString().Split(�+�);

string[] minPolynomialArr = (new Polynomial(polnolq) - new Polynomial("x^" +

maxInd)).ToString().Split(�+�);

for (int j = 0; j < minPolynomialArr.Length; j++)

{

int index = minPolynomialArr[j].IndexOf("x");

string npn = new Polynomial("x^" + j).ToString();

69

string piece = string.Empty;

if (index != -1)

{

piece = minPolynomialArr[j].Substring(minPolynomialArr[j].LastIndexOf(�x�));

}

if (index == 0)

{

minPolynomialArr[j] = (qVal - 1) + new Polynomial(minPolynomialArr[j]).ToString();

}

else if (index > 0 && npn != "1")

{

minPolynomialArr[j] = (-Convert.ToInt32(minPolynomialArr[j].Substring(0, index))

+ qVal).ToString() + "" + npn;

}

else if (index > 0 && npn == "1")

{

minPolynomialArr[j] = (-Convert.ToInt32(minPolynomialArr[j].Substring(0, index))

+ qVal).ToString() + "" + piece;

}

else if (index == -1)

{

minPolynomialArr[j] = (qVal - Convert.ToInt32(minPolynomialArr[j])).ToString();

}

}

for (int k = 0; k < minPolynomialArr.Length; k++)

{

for (int pc = 0; pc < maxInd; pc++)

{

string npn = new Polynomial("x^" + pc).ToString();

string myString = minPolynomialArr[k];

70

int index = myString.IndexOf("x");

string piece = "";

if (index > 0 && index <= (myString.Length - 1))

{

piece = myString.Substring(myString.LastIndexOf(�x�));

if (piece == npn)

{

string nsigmastr = minPolynomialArr[k];

minPolynomialArr[k] = ((Convert.ToInt32(minPolynomialArr[k].Substring(0, index))

% qVal)).ToString() + "" + npn;

}

}

else if (index == 0)

{

}

else if (index == -1)

{

minPolynomialArr[k] = (Convert.ToInt32(minPolynomialArr[k]) % qVal).ToString();

}

}

}

string minPolynomial = string.Join("+", minPolynomialArr);

Polynomial modPolynomial = new Polynomial(minPolynomial);

Polynomial maxpPolynomial = new Polynomial(maxPolinomial);

for (int i = 0; i < FinalQVal; i++)

{

for (int j = 0; j < qVal; j++)

{

if (i == 0)

{

71

qaloisRing[i, j] = j.ToString();

}

else

{

Polynomial p1 = new Polynomial("x" + qaloisRing[(i - 1), j]);

string[] strArr = p1.ToString().Split(�+�);

for (int strCounter = 0; strCounter < strArr.Length; strCounter++)

{

if (strArr[strCounter].Contains(qVal.ToString()))

{

string a = strArr[strCounter].Substring(0, strArr[strCounter].IndexOf("x"));

int ii = strArr[strCounter].IndexOf("x");

string b = strArr[strCounter].Substring(ii);

if (a == qVal.ToString())

{

Polynomial Coefficient = new Polynomial("x") * new Polynomial(b);

strArr[strCounter] = Coefficient.ToString();

}

}

}

for (int strCounter = 0; strCounter < strArr.Length; strCounter++)

{

if (strArr[strCounter].Contains("x^" + maxInd.ToString()))

{

strArr[strCounter] = strArr[strCounter].Replace("x^" + maxInd, "x^" + (maxInd

- 1) + "x").ToString();

}

}

qaloisRing[i, j] = new Polynomial(string.Join("+", strArr)).ToString();

}

72

}

}

Result.Text = "";

bool bResult = true;

for (int i = 0; i < FinalQVal; i++)

{

for (int j = 0; j < qVal; j++)

{

Polynomial ppppp = new Polynomial(inverseVal) * new Polynomial(qaloisRing[i,

j]);

string[] inverserArr = ppppp.ToString().Split(�+�);

for (int l = 0; l < inverserArr.Length; l++)

{

if (maxInd == new Polynomial(inverserArr[l]).MaxIndex)

{

string myString = inverserArr[l];

int index = myString.IndexOf("x");

if (index > 0)

{

inverserArr[l] = (new Polynomial(inverserArr[l].Substring(0, index)) * modPolynomial).ToString();

}

else

{

inverserArr[l] = (modPolynomial).ToString();

}

}

}

Polynomial p4 = new Polynomial(string.Join("+", inverserArr));

inverserArr = p4.ToString().Split(�+�);

for (int k = 0; k < inverserArr.Length; k++)

73

{

for (int pc = 0; pc < maxInd; pc++)

{

string npn = new Polynomial("x^" + pc).ToString();

string myString = inverserArr[k];

int index = myString.IndexOf("x");

string piece = "";

if (index > 0 && index <= (myString.Length - 1))

{

piece = myString.Substring(myString.LastIndexOf(�x�));

if (piece == npn)

{

string nsigmastr = inverserArr[k];

inverserArr[k] = ((Convert.ToInt32(inverserArr[k].Substring(0, index)) % qVal)).ToString()

+ "" + npn;

}

}

else if (index == 0)

{

}

else if (index == -1)

{

inverserArr[k] = (Convert.ToInt32(inverserArr[k]) % qVal).ToString();

}

}

}

string pinverse = new Polynomial(string.Join("+", inverserArr)).ToString();

if (pinverse == "1")

{

Result.Text += Environment.NewLine + "Inverse = " + qaloisRing[i, j];

74

bResult = false;

break;

}

}

}

if (bResult)

{

Result.Text += Environment.NewLine + "It is not invertible.";

}

}

}

}

3.4.3 Computationally Calculation of Maximum Cyclic Subgroup of Group

of units of Galois Ring

For decoding of BCH codes over Galois ring we need a maximum cyclic subgroup of group of

units of Galois ring because every element of Galois ring is not invertible and we decode the

BCH code with the help of maximum cyclic subgroup. It is very time consuming process of

construction of Gs manually and transmission of data is very slow. So we develop the algorithm

in computer language which give us maximum cyclic subgroup in few seconds and with this

program we transmit and receive the data very fast. Program in C# is as follows,

int qVal = Convert.ToInt32(q.Text);

int nVal = Convert.ToInt32(nValText.Text);

string polnolq = ppq.Text;

Polynomial polynomialppq = new Polynomial(ppq.Text);

int maxInd = polynomialppq.MaxIndex;

int FinalQVal = (int)Math.Pow(qVal, maxInd - 1);

string[] recmatrix = new string[nVal];

string maxPolinomial = new Polynomial("x^" + maxInd).ToString();

string[] strIrreducible = new Polynomial(polnolq).ToString().Split(�+�);

75

string[] minPolynomialArr = (new Polynomial(polnolq) - new Polynomial("x^" +

maxInd)).ToString().Split(�+�);

for (int j = 0; j < minPolynomialArr.Length; j++)

{

int index = minPolynomialArr[j].IndexOf("x");

string npn = new Polynomial("x^" + j).ToString();

string piece = string.Empty;

if (index != -1)

{

piece = minPolynomialArr[j].Substring(minPolynomialArr[j].LastIndexOf(�x�));

}

if (index == 0)

{

minPolynomialArr[j] = (qVal - 1) + new Polynomial(minPolynomialArr[j]).ToString();

}

else if (index > 0 && npn != "1")

{

minPolynomialArr[j] = (-Convert.ToInt32(minPolynomialArr[j].Substring(0, index))

+ qVal).ToString() + "" + npn;

}

else if (index > 0 && npn == "1")

{

minPolynomialArr[j] = (-Convert.ToInt32(minPolynomialArr[j].Substring(0, index))

+ qVal).ToString() + "" + piece;

}

else if (index == -1)

{

minPolynomialArr[j] = (qVal - Convert.ToInt32(minPolynomialArr[j])).ToString();

}

}

76

for (int k = 0; k < minPolynomialArr.Length; k++)

{

for (int pc = 0; pc < maxInd; pc++)

{

string npn = new Polynomial("x" + pc).ToString();

string myString = minPolynomialArr[k];

int index = myString.IndexOf("x");

string piece = "";

if (index > 0 && index <= (myString.Length - 1))

{

piece = myString.Substring(myString.LastIndexOf(�x�));

if (piece == npn)

{

string nsigmastr = minPolynomialArr[k];

minPolynomialArr[k] = ((Convert.ToInt32(minPolynomialArr[k].Substring(0, index))

% qVal)).ToString() + "" + npn;

}

}

else if (index == 0)

{

}

else if (index == -1)

{

minPolynomialArr[k] = (Convert.ToInt32(minPolynomialArr[k]) % qVal).ToString();

}

}

}

string minPolynomial = string.Join("+", minPolynomialArr);

Polynomial modPolynomial = new Polynomial(minPolynomial);

Polynomial maxpPolynomial = new Polynomial(maxPolinomial);

77

int MaxPolyValue = 0;

var list = new List<KeyValuePair<string, string>>();

list.Add(new KeyValuePair<string, string>(maxpPolynomial.ToString(), modPolynomial.ToString()));

{

maxpPolynomial = maxpPolynomial * new Polynomial("x^1");

Polynomial p1 = modPolynomial * new Polynomial("x^1");

string[] p1Arr = p1.ToString().Split(�+�);

for (int i = 0; i < p1Arr.Length; i++)

{

if (p1Arr[i].Contains("x^" + maxInd))

{

int index = p1Arr[i].IndexOf("x");

string sstr = p1Arr[i].Replace("x^" + maxInd, "+" + new Polynomial(minPolynomial));

string[] strr = sstr.Split(�+�);

p1Arr[i] = string.Empty;

if (string.IsNullOrEmpty(strr[0]))

{

strr[0] = "1";

}

for (int j = 1; j < strr.Length; j++)

{

strr[j] = (new Polynomial(strr[0]) * new Polynomial(strr[j])).ToString();

if (string.IsNullOrEmpty(p1Arr[i]))

{ p1Arr[i] += strr[j]; }

else

{

p1Arr[i] += "+" + strr[j];

}

}

}

78

}

Polynomial p2 = new Polynomial(string.Join("+", p1Arr));

string[] strp2 = p2.ToString().Split(�+�);

for (int k = 0; k < strp2.Length; k++)

{

for (int pc = 0; pc < maxInd; pc++)

{

string npn = new Polynomial("x^" + pc).ToString();

string myString = strp2[k];

int index = myString.IndexOf("x");

string piece = "";

if (index > 0 && index <= (myString.Length - 1))

{

piece = myString.Substring(myString.LastIndexOf(�x�));

if (piece == npn)

{

string nsigmastr = strp2[k];

strp2[k] = ((Convert.ToInt32(strp2[k].Substring(0, index)) % qVal)).ToString()

+ "" + npn;

}

}

else if (index == 0)

{

}

else if (index == -1)

{

strp2[k] = (Convert.ToInt32(strp2[k]) % qVal).ToString();

}

}

}

79

modPolynomial = new Polynomial(string.Join("+", strp2));

list.Add(new KeyValuePair<string, string>(maxpPolynomial.ToString(), modPolynomial.ToString()));

if (modPolynomial.ToString() == "1")

{

MaxPolyValue = new Polynomial(maxpPolynomial.ToString()).MaxIndex;

break;

}

}

int dVal = MaxPolyValue / nVal;

string[] Gn = new string[nVal];

Gn[0] = "x^" + MaxPolyValue;

for (int i = 1; i < nVal; i++)

{

Gn[i] = new Polynomial("x^" + (dVal * i)).ToString();

}

Result.Text = "";

Result.Text += "G" + nVal + " Maximum Cyclic Subgroup:" + Environment.NewLine;

Result.Text += Environment.NewLine;

for (int i = 0; i < nVal; i++)

{

if (list.Where(n => n.Key == Gn[i]).FirstOrDefault().Value != null)

{

Gn[i] = list.Where(n => n.Key == Gn[i]).FirstOrDefault().Value;

}

Result.Text += "Polynomial" + i + "=> " + Gn[i] + Environment.NewLine + " "

+ Environment.NewLine;

}

Result.Text += Environment.NewLine;

}

}

80

Conclusion
In second chapter of my dissertation we have done decoding of BCH codes over Galois �eld

by using Barlekamp Massey algorithm and extend this algorithm to simpli�ed algorithm for

binary BCH codes. We conclude that decoding of BCH codes over binary �eld is required half

steps for computing as compare to decoding over non binary BCH codes. We also done decoding

of BCH codes over Zp computationally. So we develop an algorithm to check the received word

have errors or not and to calculate the syndromes for determining errors. These algorithms help

us for data transmission very fastly and we can correct errors during transmission of codes very

fast. Correcting errors is even more important when transmitting data that have been encrypted

for security. In chapter three we have done decoding of RS and BCH codes over integer residue

ring computationally. In this correspondence we described the decoding procedure of BCH

and RS codes over integer residue ring with the help of modi�ed Barlekamp Massey algorithm.

The di¤erence between modi�ed Barlekamp Massey algorithm and original Barlekamp Massey

it always allows to update the minimal solution at step n by making use of previous solution

whose discrepancies can even be non units in R and for minimality of new solution one extra

step had to be introduced. The solution provided by the modi�ed Barlekamp Massey algorithm

is not unique in general, then in Galois �eld reciprocal of the polynomial may not be the correct

error locator polynomial. The complexity of decoding procedure of BCH and RS codes over

Galois �eld and Galois ring essencially the same. We solve the modi�ed Barlekamp Massey

algorithm computationally which remove the complexity of decoding procedure. By using the

computational approach transmission of data and decoding of RS and BCH codes is very fast

and communication channel for data transmission code work fastly and correct errors during

transmission.

81

Bibliography

[1] A.A. Andrade and R. Palazzo Jr., Construction and decoding of BCH codes over �nite

rings, Linear Algebra Appl., 286, (1999), 69-85.

[2] A.A. Andrade and R. Palazzo Jr., Linear codes over �nite rings, TEMA Tend. Mat. Apl.

Comput., 6(2) (2005), 207-217.

[3] I.F. Blake, Codes over certain rings, Inform. Control., 20, (1972), 396-404.

[4] I.F. Blake, Codes over integer residue rings, Inform. Control., 29, (1975), 295-300.

[5] G.D. Forney Jr., On decoding BCH codes, IEEE Trans. Inform. Theory, IT-11(4), (1965),

549-557.

[6] J.C. Interlando, R. Palazzo Jr., M. Elia, On the decoding of Reed-Solomon and BCH codes

over integer residue rings, IEEE Trans. Inform. Theory, IT-43 (1997) 1013-1021.

[7] A.V. Kelarev., Ring Constructions and Applications, World Scienti�c, River Edge, New

York (2002).

[8] A.V. Kelarev, Algorithms for computing parameters of graph-based extensions of BCH

codes, Journal of Discrete Algorithms, 5 (2007), 553-563.

[9] B.R. McDonald, Finite rings with identity, Marcel Dekker, New York (1974).

[10] S.R. Nagpaul and S.K. Jain, Topics in applied abstract algebra, The Brooks/ Cole Series

in Advanced Mathematics, (2004).

82

[11] T. Shah, Amanullah and A.A Andrade, A decoding procedure which improves code rate

and error corrections, Journal of Advanced Research in Applied Mathematics, 4(4) (2012),

37-50

[12] T. Shah, M. Khan and A. A. Andrade, A decoding method of an n length binary BCH

code through (n + 1)n length binary cyclic code, An. Acad. Bras. Cienc 85(3) (2013),

345-354.

[13] P. Shankar, On BCH codes over arbitrary integer rings, IEEE Trans. Inform. Theory,

IT-25(4), (1979), 480-483.

[14] E. Spiegel, Codes over Zm, Inform. Control, 35 (1977), 48-51.

[15] E. Spiegel, Codes over Zm, Reviseted, Inform. Control, 37 (1978), 100-104.

[16] C. E. Shannon, A mathematical theory of communication, Bell syst. Tech. J., 27 (1948),

379�423 (part I); 623�656 (part II).

[17] R. W. Hamming, Error detecting and error correcting codes, Bell syst. Tech. J., 29 (1950),

147�160.

[18] David F. Anderson, Multiplicative Ideal Theory in Commutative Algebra 2006, pp 21-37.

[19] W.W. Peterson and E. J.Weldon, Jr., Error Correcting Codes, 2nd. ed. Cambridge, MA:

MIT Press, 1972.

83

	MAT 1337
	MATH 1337

