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Abstract

The industrial applications of non-Newtonian fluids made it one of the most important
phenomena during the last few decades. The main reason behind is the considerable
amount of work that has been done in flow characteristics of non-Newtonian fluids and
much more is also needed in different non-Newtonian models. Due to the diversity of
non-Newtonian fluids one cannot express the behavior of all non-Newtonian fluids in a
single constitutive equation. Therefore several models of non-Newtonian fluids have
been proposed. Among these a particularly simple model namely the Sisko fluid model
exists. The Sisko fluid model is the combination of Newtonian and non-Newtonian
fluids (e.g. polymeric suspensions, biological fluids, drilling mud, paints, liquid crystals
and (ubricant greases etc.). The fluid model is capable of describing shear thinning and
shear ticking phenomena. Sisko [1] was the first person who initiated the analyses of
[ubricating grease.

The present work is focused on two dimensional steady flow with mixed convective
boundary layers in Sisko fluid model over a stretching cylinder in a thermally
stratified medium. The governing partial differential equations (PDEs) are modeled.
Moreover, these obtained PDEs are reduced into ordinary differential equations by
using suitable similarity transformations. Numerical solutions are obtained by using
Shooting method in conjunction with the Runge-Kutta-Fehlberg method. To visualize
the behavior of velocity and temperature profiles after taking variation in physical
parameters results are plotted through graphs. For further analysis Skin friction
coefficient and Nusselts's number are computed.
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Chapter 1

Basic Definitions

1.1 Preliminaries

This chapter includes some basic definitions and relevant governing equations are presented.

1.2 Basic definitions

1.2.1 Fluid
A fluid is a substance that deforms continuously under an applied shear stress regardless of how

minor is the applied stress acting up on it.

1.2.2 Flow

It is a phenomenon in which the material deformation increases continuously without limit with
respect to various forces.

1.2.3 Fluid mechanics

It is branch of mechanics which deals with nature and properties of fluids at stationary position

as well as in moving state.



1.3 Some physical properties of fluids

1.3.1 Density

Density of a fluid is defined as the mass (m) per unit volume (V'). Mathematically, the density

p at a point may be defined as
om

= lim —
P = sV

(1.1)

Dimension and unit of density are [M L*?’] and kg/m3 respectively.

1.3.2 Viscosity

A physical property which offers resistance to the flow is called viscosity. Mathematically, it is

defined as the ratio of shear stress to the rate of shear strain i.e.

shear stress (1.2)

Viscosity = y =
y=# rate of shear strain’

In the above definition, p is called the coefficient of viscosity or absolute viscosity or dynamic

viscosity or simply viscosity having dimensions [M L_lT_l].

1.3.3 Kinematic viscosity

The ratio of dynamic viscosity to the density of a fluid is known as kinematic viscosity and is

denoted by v. Mathematically

I
V=—, 1.3
P (1.3)

where p is the density of the fluid and dimension of kinematic viscosity [LQTfl] .

1.4 Classification of fluids

1.4.1 Ideal / Inviscid fluids

The fluids which have zero viscosity are called ideal fluid. But naturally no fluid with zero
viscosity exists. However, in some engineering problems fluid with extremely low viscosity are

considered as ideal fluid. Usually gases are treated as ideal fluid in many engineering problems.



Ideal fluids are also called the inviscid fluids..

1.4.2 Real fluids

Real fluids are those which have non-zero viscosity. These fluids may be compressible or incom-
pressible. Depending upon the relationship between the shear stress and rate of shear strain, real
fluids are further divided into two main categories namely Newtonian and non-Newtonian

fluids.

Newtonian Fluids

The real fluids for which the shear stress is directly proportional to the linear deformation rate

are called Newtonian fluids (e.g. water). In mathematical notation it will be

du
Tyx = :ud_yv (1'4)

where 7, is the shear stress acting on a plane normal to y—axis, v is the velocity of fluid in
the x—direction and u is the constan of proportionality.
Non-Newtonian fluids

The real fluids that do not obey the Newtons law of viscosity are known as non-Newtonian fluids.

For such fluids shear stress is not linearly proportional to the deformation rate. Mathematically

du
n—1
wheren = k Z—Z is the apparent viscosity, n is flow behavior index and k is consistency index.

For n = 1 with k£ = u, the above equation reduces to the Newton’s law of viscosity. Examples
of non-Newtonian fluids include ketchup, tooth paste, blood, paints, greases, biological fluids,

polymer melts and so forth.



1.5 Types of flows

1.5.1 Laminar flow

A flow in which each fluid particle has a definite path and the path of individual particles do

not cross each other and move along well defined paths is known as laminar flow.

1.5.2 Turbulent flow

A turbulent flow is one in which fluid particle does not have a definite path and the path of

individual particles also cross each other, such types of flow cannot be handled easily.

1.5.3 Steady flow

A flow in which fluid properties at each point in flow field do not depend upon time is called
steady flow. That is a flow in which the quantity of fluid flowing per second is constant. A

steady flow may be uniform or non uniform. For such a flow, we can write

o _

o =0 (1.6)

where ( represents any fluid property, may be velocity, density etc.

1.5.4 Unsteady flow

A flow in which fluid properties at each point in flow field also depend upon time is called

unsteady flow. For such a flow, we can write

9¢

S #0. (1.7)

where ( represents any fluid property, may be velocity, density etc.

1.5.5 Incompressible flow

A flow in which density of the flowing fluid does not change during the flow. Mathematically,

incompressible fluid is expressed by saying that the density p of a fluid particle does not change



as it moves in the flow field, i.e.

p# p(x,y,2,t) or p= constant. (1.8)
or
dp
— =0 1.9
o, (1.9

where d/dt is the total derivative, which is the sum of local and convective derivatives. All the

liquids are generally exhibit incompressible flow.

1.5.6 Compressible flow

A flow in which density of the fluid varies during the flow is termed as compressible flow i.e.
p=p(r,y,21). (1.10)

1.6 Relationship in Cylindrical Coordinates

The del operator in cylindrical coordinates be

o () 1a(), 0()
o Ty o0 oz (1.11)

the divergence of vector V = [v,,vg v.] is defined as

1 0(rv;) 10 (vg) 0 (v2)
VY=o Ty e TTes (1.12)
the divergence of stress tensor T is written as
. 1_ 0 (TTTT') 1_ 6(7_7’0) 8(7—7‘2) . (7—60) R
T = [r or r 00 + 0z r | (1.13)
10 (T’Tgr) 1 8(7’99) 8(7’9z) Tro ~
+ [r or T + 0% + " .0 (1.14)
1 0(rrer) 1 0(120)  O(722)] .
* [r or + r 00 + 5. |



The gradient of a vector produces a second rank tensor.

v, 1 (v, vy

or r ( 0 'Ug) 0z

= | Ova 1(3v vy
V=13 ( o6 T U?") oz | (1.15)

duz 19v, duz

or r 00 0z

1.7 (Governing laws

1.7.1 Law of conservation of mass

This Law states that matter can change its form, mixtures can be separated or made, and pure
substances can be decomposed, but the total amount of mass remains constant. In the vector

form, it can be written as

% +V-(pV)=0, (1.16)
o lo() 190,00 (117)

r Or r 00 0z '’

a three dimensional differential operator. For an incompressible fluid, the density is constant
and thus Eq (1.16) becomes
V-V=0. (1.18)

1.7.2 Law of conservation of momentum

Every particle of fluid at rest or in steady state or in accelerated motion obeys Newton’s second
law of motion which states that, the sum of all external forces acting on a system is equal to

the time rate of change of linear momentum of the system. In vector form, it can be written as

dV
p— = div T+pb, (1.19)
dt
For Navier-Stokes equations
T = —pl + pAy, (1.20)
A; = (grad V) + (grad V)'. (1.21)

where



p = density

V = vector field

T = Cauchy stress tensor
b = body forces

p = pressure

@ = dynamic viscosity

A = First rivlin-ericksen tensor

The Cauchy’s stress tensor can be expressed in matrix form as

T —

Orr Tr0 T,
Tor oo9 Tp. | >
T, T 0.

(1.22)

where 0,.., 0gg and o0, are normal stresses while all others are shear stresses. Eq (1.23) can be

expressed in scalar form as

dvr . 1 8(TUTT) 1 a(TT9) 0 (TTZ) 060
p a  r or r 00 + 9z  r +pbr,
dvg _ 10 (TT@T) 10 (0'99) 0 (ng) Tro
p a  r Or r 00 + 0z + T + e,
dv,  10(T.,) 10(0.)  0(0:2)
p a  r Or r 00 + 0z + b=

1.7.3 Law of conservation of energy

(1.23)

Like laws of conservation of mass and momentum, law of conservation of energy is essential to

study the heat transfer phenomenon in fluid dynamics problems. It states that energy can be

transfer from one form to another in an isolated system but it cannot be created or destroyed

and the total energy of the system is conserved. Mathematically

dT
pep— = kV?T +T.L,

(1.24)

,where ¢, is specific heat at constant pressure, 6 is temperature of fluid, T.L is viscous dissipation

term and k is the thermal conductivity which describes that how fast a particular material

10



conduct heat.

1.8 Heat transfer

It is discipline of thermal engineering that deals with the generation, use, conversion and ex-

change of thermal energy and heat between physical systems.

1.8.1 Conduction

The transfer of energy between objects that are in physical contact is called condition.

1.8.2 Convection

The transfer of energy between an object and its environment, due to fluid motion is called

convection.

1.9 Boundary layer

Ludwig Prandtl a German astronomer revealed the idea of boundary layer, in 1904, on his
paper which he presented in mathematical congress. Boundary layer is a layer adjacent to the
solid surface, where the viscosity effects are dominant. In determining the flow field, the viscous
effects are considering into account, which have significant role on fluid motion. Thus a fluid
flow is retarded in the vicinity of the wall and a finite, slow moving boundary layer is formed.
The thickness of the boundary layer is taken to be the distance from the wall to the point
at which the velocity is 99% of the free-stream velocity. As the solution of the Navier-Stokes

equation is expensive, so this approach helps us to reduce equations.

1.10 Mixed Convection

The convection which involves the combine effects of natural and forced convection is known
as mixed convection. If the flow is generated by any external force in the presence of gravity

then such a convection is known as mixed convection

11



1.11 Mathematical description of Boussinesq approximation

Let us assume a two dimensional steady flow over a smooth surface. Here we consider constant

properties except that density is allowed to vary to produce buoyancy force, as

P1 = Pn + Poo, (125)

where po, and p, represent static pressure inside boundary layer and pressure variation due to

buoyancy, respectively. Using this definition, we get the following results
Pn = P1 — Poo and p, — 0 as y — o0, (1.26)

The continuity and momentum equations inside the boundary layer are

ou Ov

—+—=0 1.27
ox * Ay ’ (1.27)

ou ou Op1 0%u
a_ a_ = — A ~ o €T 1.28
p<u83:+v8y> oz +'u8y2 Pa (1.28)

While outside the boundary layer, we have

P1 — Doos Pn — 0, p — py and u — U (z) as y — oc. (1.29)

Thus the momentum equations outside the boundary layer becomes

8U (x) - 8p1
or
U (z) _ Op;
psU () 5w T Peedz =T (1.31)
Substituting Eq. (1.31) in Eq. (1.28) we get
ou ou\ oU (x) 0%u
p <u% + v8—y> = ool (2) =5 — + Hoz t (Pso = P) Gz (1.32)

12



In the above equation, the density difference, p,, — p, can be related to the temperature differ-

ence. Using the Taylor’s expansion about (7, Cx) one has

AT, C) = p(Too, Coc) + (T — T )(3}’) tC-C )<§g> b (1.33)
: P~ oo+ (T = T><§§i) sc-c >(§g) , (134)

Since the coefficient of volumetric thermal expansion 8 and volumetric mass expansion $* are

p=-= <g§> . (1.35)

«_ 1 (0p
g = (60)%, (1.36)

so the above relationship reduces to

defined as

PR Poo— (BP) oo (T —Too) = (Bp)oe (C — Cxs), (1.37)

If (Bp),, = Bp = constant, which is true for moderate temperature difference, then we have

Poo — P =p[B(T —Tw) + " (C — Cx)].- (1.38)

The above relationship (1.39) is called Boussinesq approximation.

1.12 Dimensionless numbers

1.12.1 Reynolds number

Reynolds number Re is the ratio of inertial forces (Vp) to viscous forces (u/L) which is a

dimensionless number. Mathematically

Re = —. (1.39)

13



where L is characteristic length, U free stream velocity and v is kinamatic viscosity. Laminar
flow occur at low Reynolds number where viscous forces are dominant, while turbulent flow

occur at high Reynolds number and it is dominated by inertial forces.

1.12.2 Nusselt number

It is a dimensionless number, used in heat transfer which is a ratio of convective to conductive
heat transfer across (normal) to the boundary introduced by German mathematician Nusselt.
Mathematically

Nu=—. 1.4
=" (1.40)

where h is convective heat transfer coefficient and k thermal conductivity of the fluid.

1.12.3 Prandtl number

It is a dimensionless number defined as the ratio of momentum diffusivity (v) to thermal
diffusivity (). It control the relative thickness of momentum and thermal boundary layer.
Mathematically

v

Pr=—. 1.41
=2 (1.41)

14



Chapter 2

Introduction

2.1 Introduction

During last two decades flow of non-Newtonion fluids has been involved in various physical
phenomenon such as polymer processing, ink-jet printing, geological flows in the earth mantle,
liquid crystals, additive suspensions, animal blood, turbulent shear flows and many others.
In view of litrature available regarding flow of non-Newtonion fluids and its extensive use
in industrial and technological applications, special attention has been paid to these fluids.
Therefore several fundamental equations are suggested to predict the physical behavior and
structure of such fluids. Among these, comparatively simple model, named Sisko fluids exists.
The Sisko fluid model is the combination of Newtonian and non-Newtonian fluids. The fluid
model is capable of describing shear thinning and shear thickening phenomenon, which represent
the decrease and increase in viscosity with increasing shear rate respectively. This type of fluids
exists commonly in nature. Such fluids are well known and have many industrial applications.
For the flow of greases it is the most relevant model. Sisko [1] was the first person who presented
and analyzed the lubricating grease. After that many researchers have work on this model. M.
Khan et al. [2 — 5], S. Nadeem et al. [6], N. S. Akbar [7], F. Talay Akyildiz et al. [8] and
many others investigated the Sisko fluid model in different geometries with pertinent physical
properties of fluid.

Convection is a mode of heat transfer that plays an important role in practical models.

Many convection processes take place in our surroundings, such as in atmospheres, oceans,

15



planetary mantles, and it also specify the mechanism of heat transfer for a large fraction of the
outermost interiors of our sun and all stars. Fluid movement during convection may be invisibly
slow, or it may be obvious and rapid, as in a hurricane. On astronomical scales, convection
of gas and dust is thought to occur in the accretion disks of black holes, at speeds which may
closely approach that of light. Due to abundant use in nature mixed convection is studied
by many scientists. M. Swati et al.[9] studied mixed convection along a stretching cylinder
in a thermally stratified medium. N. Bachok et al.[10] analyzed mixed convection boundary
layer flow over a permeable vertical cylinder with prescribed surface heat flux. J.J. Heckel
et al.[11] also examined mixed convection along slender vertical cylinders with variable surface
temperature. K.L. Hsiao[12] explored MHD mixed convection for viscoelastic fluid past a porous
wedge. C.H. Chen [13] discussed laminar mixed convection adjacent to vertical, continuously
stretching sheet. S. Nadeem et al.[14] analyzed unsteady mixed convection flow of nanofluid on
a rotating cone with magnetic field. J.M. Buchlin [15] inspect natural and forced convective
heat transfer on slender cylinders.

Stratification effects in any fluid may cause due to temperature variation or concentration
differences or the presence of different fluids in any medium and combination of these. As fluid
heats and cools, it expands and contracts, causing change in density. This is called thermal
stratification and it is generally occures when thermal energy transforms from heated bodies
and thermal sources into the medium. Stratification may also arise due to concentration differ-
ences such as transport processes in the sea where stratification exists due to salinity variation.
Third type of stratification occures when fluids having different densities are present and sta-
ble situation arises such that fluid having less density overlies the havier fluid. Stratification
may double in practical situations, where the heat and mass transfer mechanisms run parallel
Stratification has abundant applications in our real world. Applications of stratification include
heat rejection into the environment such as from lakes, rivers and seas. Thermal energy storage
systems such as solar ponds and heat transfer from thermal sources such as the condensers
of power plants are also examples of stratification. Due to the huge implementations in fluid
mechanics many researchers have worked on stratification phenomenon. The flow due to a
heated surface immersed in a stable stratified medium has been investigated experimentally

and analytically in several studies such as Yang et al.[16], Jaluria et al.[17], Chen et al.[18], and

16



Ishak et al.[19] Swati Mukhopadhyay et al.[20], N. Kishan et al. [21], M. A. Mansour1[22] etc.

The boundary layer flow and heat transfer due to stretching cylinders have remarkable
importance in fiber technology and extrusion process. There are many examples in metallurgical
and engineering such as hot rolling, metal and polymer sheet extrusion, drawing, annealing and
tinning of copper wires, crystal growth, glass fiber production etc. The steady two-dimensional
boundary layer flow due to contineous solid surface was first studied by B. C. Sakiadis [23].
After this J.N. Kapoor et al. [24] found the similarity solution of boundary layer equations for
power law fluids and then Crane [23] studied it. After Crane [23], Gupta and Gupta [26], Chen
et al.[27], R. R. Rangi et al.[28], Datta et al. [29] extended the work including the effect of heat
and mass transfer analysis under different physical situations. S. Nadeem et al. [30] studied
boundary layer flow of nanofluid over an exponentially stretching surface. S. Nadeem et al.[31]
presented HAM solution for boundary layer flow in the region of the stagnation point towards
a stretching sheet.

Now a days stretching of any surface to produce disturbance in any fluid is one of the leading
feature in fluid mechanics. For a long period scientists didn’t considered stretching of cylinder,
but when Lin et al. [32 — 33| considered the laminar boundary layer and heat transfer along
cylinders moving horizontally and vertically with constant velocity and found no similarity
solutions due to the curvature effect of the cylinder. After that A. Ishak et al.[34] showed that
the similarity solutions could be obtained by assuming that the cylinder is stretched with a
linear velocity in the axial direction. In fact, the study by A. Ishak et al.[34] is an extension
of the problem considered by Grubka et al.[35] and Ali [36], i.e. from a stretching sheet to a
stretching cylinder. The stretching problems [37 — 38] for steady and unsteady flows have been
studied extensively in various aspects, such as for non-Newtonian fluids, MHD flows, porous
plates, porous medium, with and without heat transfer analysis.

The main objective of this theses is to examine the behavior of mixed convection boundary
layer flow of Sisko fluid over the stretching cylinder in a stratified medium which is not discussed
so far. The final non linear differential equations are solved numerically by Shooting method.
The influence of curvature parameter M, material parameters A, mixed convection parameter
A, stratification parameter S and Prandtl number Pr on velocity and temperature profile is

discussed.

17



2.2 Objectives of dissertation
The main objectives of present investigation are

e To study the mixed convection flow along a stretching cylinder in a thermally stratified

medium

e To investigate the mixed convection boundary layer flow of Sisko fluid along a stretching

cylinder in a thermally stratified medium

2.3 Method of Solution

As we know that mathematical modelling of many physical phenomenon take place in nature
give non-linear system of equations, such as governing equations of fluid velocity and tempera-
ture. To solve governing equations of fluid different analytical as well as numerical techniques
have been used. Perturbation method, Adomian decomposition method and homotopy analysis
method are mostly used analytical techniques. For computation of numerical solutions re-
searchers have used techniques like Shooting methods, finite difference method, finite volume
method etc. In present investigation shooting method is used to find the numerical solution.
Reason behind to prefer shooting method is that it transforms boundary value problem into

initial value problem. Also it is comparatively more rapid and accurate numerical method.

2.4 Outlines of dissertation

This dissertation consist four chapters. Governing laws and basic definitions are explained
in first chapter. Chapter two includes Introduction and objective of this thesis. In chapter
three the problem of mixed convection flow along a stretching cylinder in a thermally stratified
medium is reviewed. In this chapter governing equations are modeled and effects of physical
parameters are discussed.

In chapter four problem of chapter three is extended and considered mixed convection
boundary layer flow of Sisko fluid along a stretching cylinder in a thermally stratified medium.

Numerical solution is calculated with the help of shooting method. Graphs present behavior of

18



parameters on velocity and temperature profiles while tables show the effect of parameters on

skin-friction coefficient and local Nusselt number.

19



Chapter 3

Mixed Convection Flow along a

Stretching Cylinder in a Thermally
Stratified Medium

3.1 Introduction

In this chapter we studied the axisymmetric, boundary layer mixed convection flow of a viscous
and incompressible fluid over a stretching cylinder in a thermally stratified medium. It is review
of Swati Mukhopadhyay and Anuar Ishak [7] paper. First of all modelled partial differential
equations are transformed to highly nonlinear ordinary differential equations by using similarity
transformations. Numerical solutions of these equations are obtained by shooting method in
cunjuction with Runge- Kutta- Fehlberg method. The effects of different physical parameters
on the velocity and temperature profiles are examined in detail. Influence of these parameters

on skin friction coefficient and local Nusselt number are discussed through tables.

3.1.1 Problem formulation

We consider the axisymmetric, steady, mixed convection flow of an incompressible viscous fluid

along a stretching cylinder embedded in a thermally stratified fluid-saturated medium. The
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basic governing continuity equation, momentum equation and the energy equation are

div V. = 0, (3.1)
DV
DT

Perpr = K V2T (3.3)

D
where V is the velocity field, p is the density, b represents body forces, Di is the material
time derivative, V is differential operator, T is cauchy stress tensor, ¢, is the specific heat at
constant pressure, k is the thermal conductivity of the fluid and 7" denotes the temperature of

the fluid. Some of these terms are describe below.

V =v(z,r),0,u(x,r)], (3.4)
~1o(r()  10(), 0()
V=r—a Ty "o (3:5)
D 0

Since the flow field is considered steady, so the term % is neglected throughout the problem.

So Eq (3.6) reduces to

D
5 =V.V. (3.7)
pb = gB(I' - Tw), (3.8)

where Eq (3.8) comes through Bossiness approximation
T = —pI—HLAl. (3.9)

In Eqgs (3.4) — (3.9), v and u are the components of the velocity field in r and z directions re-
spectively, I is identity tensor, p is the pressure, u is dynamic viscosity g is gravity, 5 volumetric

thermal expansion and Aj is the first Rivilin - Ericksen tensor defined as

A =VV+(VV), (3.10)
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where

ov 1 (ov v
or T (W _w) oz
= | Sw 1 (0w ow
Vv o (55 +v) G |
Ou 10u Ou
or r 00 ox
using Eq (3.11) in Eq (3.10) we have
ov 1 dv w ow ov ou
2 50 oo~ Ta o Tar
= | Qw L 10v _ w 2 (Ow. Qw | 1 0u
Al or +r 00 r T (80 +v) ox +7‘ 00
ov ou 1 Ou ow ou
o T ow o0 T or 2 5

As V =[v(z,r),0,u(z,r)] applying in above equation we have

v v ou
25" 0 5 tar
}Xl = % (U) )
ov ou ou
arta O 25:

Using Eq (3.4) and Eq (3.7) in continuity equation i.e. in Eq (3.1) we have

(rv)+a—(ru):0,

9
ox ox

Using the Fq.(3.8)and Eq (3.9) in Eq.(3.2) i.e. in momentum equation we obtain

DV

EZ—VP+MV'A1+95(T—T00)'

Since there is no pressure gradient so the Eq.(3.15) reduces to

- _ A
D1 vV 1,
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where v is the kinematic viscosity (’U = H) and (V.A1) in component form is as follows
p

(V-A), = 71"_88_7“ (r g—:f) + g%, (3.17)
(V-A), = 2D (r g—ﬁ) TN TN (3.18)
(V-Ay)y = 0. (3.19)
Material time derivative {3 for velocity field V in component form is given as
(%)x = u g—z +v g—i, (3.20)
(BY) - wlal 321
<%>9 = 0. (3.22)

Using Eqgs (3.17) — (3.22) in momentum equation i.e. Fq (3.16) , § component satisfies iden-

tically, while x and r component are respectively describe below

ou ou v 0 ou d%u
Yo T T Tar ( W) e (3:23)
v N v 2w d [ v N v0?v N vo%u 2w (3.24)
Y95 "o T T o " or 0z? Oxor r2 ’

Now we have to calculate the terms of energy equation i.e. Eq (3.3). L.H.S of Eq (3.3) is simply
material time derivative and R.H .S of Fq (3.3) is a kdiv(grad T') respectively given below

DT oT orT
o =% oy +v 5 (3.25)
k 0 or o*T
incorporating these above two equations in Fq (3.3) we have
or oT k 0 oT 0*T
= ) == —_— - 2
r <u69c T 8?) r Jr (T 87’>+k8x2’ (3.27)
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or or K 0 oTr 0T

k
where K is the thermal diffusivity of the fluid i.e. K = —. According to the boundary layer
PCp
theory we assume that

u=0(1), £ =0(1), v=0(5), r=0(), T=0(1), v=0(6%), K =0(5?). (3.29)

where 0 is small psitive number. By using above boundary layer approximation the governing

continuity, momentum and energy equations take the form

0 0
5 (7 v) + 5 —(ru) =0, (3.30)

ou ou v 0 ( ou
U—+0v—=——-—|r —
or

oz or _r or > +98 (T = Tw), (3.31)

where the term g8 (T — T) is due to mixed convection.

or 9T K 9 ( 8T>’ (3.3

Uu—+v—=— |
ox or r Or or
It is assumed that the convecting fluid and the medium are in local thermodynamic equilibrium.

The boundary conditions for the problem are given by

u(z,r)=U(z),v(x,r) =0, T (z,r) = Ty(x),at r = R where Ty, () = Ty + bTx (3.33)
u(z,r) =0, T(x,7) = Too(x), as 7 — 00 where T (x) =Tp + %

x
In the above expressions R is the radius of the cylinder, U(z) = UOL— is the stretching velocity,

bx cT
Ty = T + T is the prescribed surface temperature, and T, = Ty + T is the variable
ambient temperature. Uy is the reference velocity, Ty the reference temperature, L the charac-
teristic length, b and ¢ are positive constants. To get the similarity solution of Eq (3.31) and

Eq (3.32) subject to the boundry conditions Eq (3.33), we introduce the following similarity
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transformations

T T

= .34
T. T, (3.34)

Ui

vr

T‘2— 2 % 1
:_Ggl(ﬂg L= (Uva) R f(n), 0(n)

where 9 is the stream function, which identically satisfies the continuity Eq (3.30) and it is

1 [0 -1 [0

substituting Eq (3.34) in Eq (3.30) and (3.32), we get the following highly nonlinear ordinary

define as

differential equations
(L+2Mn) f" +2Mf + ff — 7+ 20 =0, (3.36)

(1+2Mn) 60" +2M¢ +Pr (f 0~ fo— f’s) —0. (3.37)

subject to the boundary conditions

f=1, f=0, 0=1-8, at n—0, (3.38)

where prime denotes the differentiation with respect to n, S represents the stratification parame-
ter, A denotes mixed convection parameter , M for curvature parameter, Pr denotes Prandtl’s

number. These parameters are describe below

1
c vL 2
S = — M = 3.39
‘ , () (3.39)
gBLb v
A= Pr=—.
U2 T T
3.2 Skin friction coefficient
The formula for the calculation of surface shear stress at the surface of the cylinder is
Tw
Cr=———, 3.40
f % pU2 ( )
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where 7, is the shear stress at the surface of the cylinder and defined as

ou
fw = (E>r = R’ (341)

Applying similarity transformations

Tw =M (U% y_[;fu (77)) ’ (3'42)

r=R,n=0

after imposing n = 0 and r = R we have

Tw = MU\/gf"(O), (343)

using Eq (3.43) in Eq (3.40) we have

Cy = 2\/% £(0). (3.44)

as we know that

Rez = %, (3.45)
v
so Eq (3.44) takes the form
" 1
1'(0) = 56 (Rexz)? . (3.46)

3.3 Local Nusselt number

The local Nusselt’s number of temperature distribution is defined as

Lw

Ny, = —=~ 4
where ¢, is the rate of heat transfer at the surface and it is defined as
oT
w=—k|—=— , 3.48
! < or )r =R ( )
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By usnig similarity transformation we have

quw = —k ((Tw - TO) % \/ %91 (n)) ) (349)

r=R,n=0
= —k(T, — Tp) i9’(0) (3.50)
Gu = w 0 D . .
After using Fq (3.50) in Eq (3.47) we have
=1 /
Nuy Re? = —0(0). (3.51)

U
where Re = il is Reynolds number
v

3.4 Method of solution

As we know that the non-linear momentum Fq.(3.36) is of order third in f and non-linear
energy Fq.(3.37) is second order in 6, so total order of both equations is five, which can be
diminished to a system of five first order ordinary differential equations with five unknowns.
Numerical solution of the system of equations is find by shooting method in conjunction with
Runge- Kutta- Fehlberg method. For this we must have five initial conditions to solve system
of five ordinary differential equations but as we know that we have only two initial conditions in
f and one initial condition in € i.e. one initial condition on f and one on 6 is missing. However,
the values of f " and 6 are known at n — oo. Thus, these two end conditions are exploit to
produce two unknowns. The most important step of this method is to choose the appropriate
finite value of 1. Thus to estimate the value of 1, we start with some initial guess and solve
the boundary value problem consisting of Fgs.(3.36) — (3.37) to obtain f" (0) and #'(0). The
solution process is repeated with another larger value of 77, until two successive values of f (0)
and 0'(0) differ only after desired number of significant digits. The last value of 7., is taken
as the finite value of the limit 7 for the particular set of physical parameters to determine
velocity f'(n) and 6(n) in the boundary layer. After getting all the five initial conditions we

can solve this system nuerically.
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3.5 Results and discussion

09 —M=0.0 (]
Pr=15,1=01,8=01  |._._ M=0.25

0.8‘ .......... M=05

0.7

0.6f

0.9 —M=00 |
Pr=1,8=01,,=01 |- M=0.25

Figure 3.2: Influence of curvature parameter M on temperature profile 6 (n) .
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0.9 T T T T

M=025,85=01,2=01 |~ Pr=15|]

sz R

M=025,§=041,Pr=1 |7 2=0.2

Figure 3.4: Influence of mixed convection parameter A on velocity profile f’ (n).

29



$=00,01,03,05

0(n)

M=025,Pr=1,a=0.1]

o' (n)

§$=00,01,03,05

Figure 3.5 : Influence of stratification parameter S on temperature 6 (1) and temperature gradient 0 (n).
Table 3.1: Influence of curvature parameter M and mixed convection parameter A on skin

friction coeflicient.

"

M A | ()

0 0.1 || -0.9597

0.25 -1.0608

0.5 -1.1639

0.5 0.1 -1.1639

0.2 || -1.1217

0.3 || -1.0803

30



Table 3.2: Effect of flow parameters Pr, M and S on the local Nusselt number.

PriM ||S | —6(0)

1 0.5 0.1 || 1.1537

2 1.6401
3 2.0333
1 0.0 0.9725
0.25 1.0633
0.5 1.1537

0.5 | 0.0 1.2161

0.1 || 1.1537

0.2 || 1.0912

Figure 3.1 is plotted to study the behovior of velocity field due to variation in curvature
parameter M. As curvature parameter M increases the radius of curvature decreases. This
reduce the surface area of the cylinder, so it offers less resistance to fluid motion. Hence it is
observed that with the increase of curvature parameter M velocity field increases.

Figure 3.2 shows the attribute of curvature M on temperature field. It is observed that
temperature increases with an increase in curvature parameter as surface area decreases so, the
transfer of thermal energy increases. Moreover as the curvature parameter increases the viscous
forces become weaker. So this enhances the rate of heat transfer which causes increases in the
temperature

Figure 3.3 represents the influence of Prandtl’s number on temperature field. It is depicted
that temperature field decreases with an increase in Pr, because increase in Pr causes decrease
in thermal diffusivity.

Figure 3.4 demonstrate the behavior of velocity field on varying mixed convection para-
meter A. It is perceived that velocity of the fluid increases with an increase in mixed convection
parameter A\. Because A is ratio of buoyancy to inertial forces, so by increasing mixed convection

parameter A buoyancy forces increases as a result velocity increases.
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In Figure 3.5 the influence of the stratification parameter S on the temperature € (n) and
the temperature gradient 0 (n) are exhibited. As stratification S decreases the temperature
in the boundary layer, which results in a decreasing manner of the temperature gradient in
absolute sense. The thermal boundary layer thickness also decreases with an increase in the
stratification parameter S. With the increase in the stratification parameter, the buoyancy
factor (T, — Two) reduces within the boundary layer. Ambient thermal stratification causes a
significant decrease in the local buoyancy level, which reduces the velocities in the boundary
layer. All temperature profiles decay from the maximum value at the wall to zero in the free
stream, that is, temperature converges at the outer edge of the boundary layer.

Table 3.1: Present the values of Skin-friction coeffieint for different values of physical
parameters. It is noted that the Skin-friction coefficient increases with increasing the physical
parameters M.and decreases by the increase of .

Table 3.2: Display the result of Local Nusselt’s number for the different values of parameters
M,S and Pr. It can be shown form the table that as we increase the values of curvature
parameter M and the Prandtl’s number Pr the values of Nusselt’s number increases whereaas

by increasing the values of S, Local Nusselt’s number decreases.

3.6 Concluding remarks

The main findings of present analysis are listed below

Increase of curvature parameter M causes increase in velocity and temperature profiles.

By increase of mixed convection parameter A\ velocity increases.

With an increase in Prandtl number Pr temperature decreases.

Temperature profile decreases as stratification parameter S increases.
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Chapter 4

Mixed Convection Boundary layer
Flow of Sisko fluid along a
Stretching Cylinder in a Thermally
Stratified Medium

4.1 Introduction

The ambition in this chapter is to figure out the flow and heat problem of two dimensional
steady axisymmetric laminar boundary layer mixed convection flow of Sisko fluid model along
a stretching cylinder in a thermally stratified medium. The similarity transformations are
used to reduced coupled partial differential equations into ordinary differential equations. To
solve these equations a numerical approach called Shooting method has been used for the
computation of velocity profile and temperature field for different values of physical parameters
such as curvature parameter, mixed convection parameters,stratification parameter and Prandlt
number. The dependence of Skin-friction coefficient and Nusselt’s number has been analyzed

in detail through tables.
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4.1.1 Mathematically formulation

Consider the two-dimensional steady axisymmetric flow of an incompressible mixed convection
boundary layer flow of Sisco fluid over a stretching cylinder in a thermally stratified medium.

The continuity equation, linear momentum equation and energy equation are

V.V =0, (4.1)
DV
= V.T+pb 4.2
P V. T+pb, (4.2)
DT
— =K V?T. 4.
ol v (4.3)

where V denotes the flow velocity, p is the density, K thermal diffusivity of the fluid is defined

k
as K = —. T is the fluid temperature, T Cauchy stress tensor , V is differential operator ,
PCp

D
— is the material time derivative. Some of these are defined below

V =v(z,r),0,u(x,r)], (4.4)
1o () 10o(), 0()
V=r—o v e (45)
D 0

Since the flow field is considered steady, so the term % is neglected throughout the problem.

So Eq (4.6) reduces to
D

E:

pb=gB (T — T), (4.8)

V.V. (4.7)

where Eq (4.8) comes through Bossiness approximation

T = —pI+uSs, (4.9)
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where S is the extra stress tensor and defined as

n—1

1
Si=[a+0 Etr (A2) A (4.10)

In Egs. (4.4) — (4.10) u and v are the axial and radial components of the velocity of fluid,
a viscosity at heigh shear rate, b is consistancy index and n are the material parameter, p is
dynamic viscosity, I is the identity tensor, p is the pressure, g is gravity, S volumetric thermal

expansion and Aj is the first Rivilin-Ericksen tensor defined below
A =VV+(VV), (4.11)

gradient of velocity i.e (VV) is defined as

v 1 (ov v
or T (W _w) oz
=| ow 1 (0w ow
Vv o (5 +v) G | (4.12)
Ou 10u Ou
or r 00 ox
So Eq (4.11) takes the form
ov 1 Ov w ow ov ou
2 5 ror ~ o tor  ow Tor
= | Qw L 190v _ w 2 (Ow. Ow 1 Ou
A1 or +r o0 r r ( 0 +’U) Oz +7‘ o0 ’ (4'13)
ov ou 1 Ju ow ou
o T ow Tor T or 2 5

Here u, v and w are component of velocity. As we consider two dimensional flow i.e. V =[v(z,7),0,u(z, )]

SO
2 0 Q4+l
A= 0 2 (v) 0 : (4.14)
Beg oo ol
and
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453"+ (3 + 52’ 0 23 (5 + %) +25 (5 +5)
AZ = 0 4 () 0 ,(415)
2 2
25 (Gr+3) 25 (Gr+32) O (5 +52) +4(5)

The trace of A? is also determined, which is represented in the equation below

ou . o o,y v ov  Ou
9 e v | OU.g
(A)—4(a )? +4(8) +4r2+2(8x+8r)’ (4.16)
Using Eq (4.8) and Eq (4.9) in Eq (4.2) we have
DV
Py = VPHuV-Si+ 98 (T — To) (4.17)

We have assumed that the flow is caused due to stretching of the cylinder therefore the pressure

gradient is neglected.

DV
Py =MV S1+g8 (T — To) - (4.18)

Material time derivative % for the velocity field V in component form is given as

DV ou ou
DV ov ov

<—Dt )T = U % +v W, (420)
DV

(57>9 = 0. (4.21)

The components of divergence of extra stress tensor S; defined as

(divS), = a Lo ral +82_u +5b 19 ral +82_u
L r Or or 0z2 r or or 0z?
-1

ov\ 2 ou  ov\? ou\ 2 v 2

2(5) + (F+5) ~2(5) +2(F)

nT
X
(div S), =0, (4.23)

, (4.22)
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(divs), = a <§% G%) + % + % - 2%) +
0 () e )
() (3 3) () =07
using Eqs (4.19) — (4.24) in Eq (4.18) we have
ou ou a (10 ou 0%u b /10 ou 0%u
Yor TVar T ;<25<T5>+@>+;(rar< ar)+@> X

ov\? ou  ov\? ou\ 2 v\ 2
(5) «(Gr+5) +2(5) ~2(3)

v v af20 (0v) 0 Fu v\
ar  Cor p \ror \' or Ox? &U@T 72
b (20 ov\ 0%v v
;(Fa_<a_> Tt —2> (4.26)

) (35 ()

L.H.S of Eq (4.3) is simply material time derivative and R.H.S of Eq (4.3) is a kdiv(grad T')

respectively given below

DT or orT
Dt =% 5 +uv 5 (4.27)
K 0 orT o*T
2 _ _ _
K VT = . <r 7 ) +K SR (4.28)
incorporating these above two equations in Eq (4.3) we have
or or K o or 0T
— = — K — 4.2
"o Ve Trar <r 8r> dz? "’ (429)
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Using the boundary layer theory we assume that

u = O(1),z2=01),v=0(), r=0(0), T=0(1), (4.30)

v = 0%, K=0(%, -=0(8) , —=0(").

a b
p p

Where § is a small positive number. By using above boundary layer approximation the conti-

nuity, momentum and energy equations takes the form

0 0
. (rv) + e (ru) =0, (4.31)

Ou 0w _a (L0 (0u\y b (10 [ 0Ou)ylfou
“ar TV or  p\ror "or p \ror "or or

And after simplification, above equation takes the form

ou ou a (10 ou b ou\" nb ou\""! 9%u

n—1

+98(T - Tw), (4.32)

oT oT K 0 oT
StV o= : 4.34
“ax+”ar r8r<r8r> (4.34)
subject to the boundary conditions
u(z,r) = Ulx), v(z,r) =0, T (z,r) = Ty(z), at r =19 where Ty, () = Ty + % (4.35)
dzx
u(z,r) — 0, T(x,7) = Teo(x), as r — 0o where Toe () =Ty + 7

In the above boundary conditions rg is the radius of the cylinder, U(x) = UO% is the stretching

velocity, T, = Ty + % is the prescribed surface temperature, T, = Ty + d_La: is the variable
ambient temperature. Uy is the reference velocity, Ty the reference temperature, L the charac-
teristic length, ¢ and d are positive constants. To get the similarity solution of Fq¢ (4.33) and
Eq (4.34) subject to the boundary conditions Fq (4.35), following similarity transformations

are use

7’2—7“(2) L

. =1 T —-T nyr 2—n
Re, ™" | ¢ =aroURe, " f(n), 0(n) = ——> Rey= &

4.36
Tw—Tp b ( )

n= 2rox

38



where 1 is the stream function, which identically satisfies the continuity equation Eq (4.31)

0 - 0
u:i—<%> , U:r—1<%) (4.37)

Using the similarity transformations of Eq (4.36) in Fq (4.33) and Eq (4.34), we will get the

and define as

following highly nonlinear ordinary differential equations.

" n mn—1 "
AL+ 2Mn) " + n(1 + 2Mn)"T (—f ) " oMAf -

2n

(14+n) M (1 +2My)"T (-f”)” i = 4= (4.38)
(1+2Mn)6" +2M6" + Pr <12fnf 0 —f6— f'S) =0. (4.39)
subject to the boundary conditions
f=1, f=0, 6=1-S , at n—0, (4.40)
ff=0 , 0—-0 , as n— oo.

where prime denotes the derivative with respect to 1, curvature parameter M, mixed convection
parameter A ,material parameter A, Prandtl number Pr ,and stratification parameter S are

define below

;2
M o= —% | Re,=2YT Pr:%Reb”", (4.41)
T a
roRy*
2
Re, ™" 9Bz (T, — Two) c
A = b = p__— % S =-.
Re, ’ U2 ’ d

4.2 Skin-friction Coefficient

Coefficient of skin friction for this problem is calculated as.

Tw
T 772
3pU

Cr = (4.42)
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where 7., represents shear stress at the surface of cylinder and calculated as

ou ou
Tw:a<5>r=ro_b(_5>7“:7‘o’ (4'43)

After using similarity transformation and then simplification, Fq (4.43) takes the form

a . U " "
Tw=— Re, ™ f (0) —b [—; Re, ™" (0)] , (4.44)

Substituting Fq (4.44) in Eq (4.44) and after simplification we have

"

%Cf Rel™ = A" (0) - [— f (0)}", (4.45)

4.3 Local Nusselt’s number
The local Nusselt’s number of temperature distribution is defined as

Lqw

Nuy = ——20
Y = % (Tw — T0)

(4.46)

where ¢, is the rate of heat transfer at the surface and it is defined as

oT
o = —k <_> , (4.47)
or T =70

After usnig similarity transformation we have

To—T0\ v <=
G = —k ( - °> Re[ " 6'(0), (4.48)

Using Fq (4.48) in Eq (4.46) we have

-1

T /

NugRe, ™™ = —6(0). (4.49)
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4.4 Numerical solution.

As we know that the non-linear momentum Fq.(4.38) is of order three in f and non-linear energy
Eq.(4.39) is of second order in 6, so both equations is of order five, which can be diminished
to a system of five first order ordinary differential equations giving on solving five unknowns.
In order to solve these equations we are using a numerical technique "Runge—Kutta-Fehlberg"
method. We need five initial conditions, but as we know that only two initial conditions in f
and one initial condition in # are known i.e. one initial condition of f and one of # is missing.
However, the values of f ‘and 6 are known at 7 — oo. Thus, these two end conditions was
exploiting to produce two unknowns. The most important step of this method is to choose the
appropriate finite value of 7.,. Thus to estimate the value of 7, we start with some initial
guess and solve the boundary value problem consisting of Egs.(4.38) — (4.39) to obtain f”(0)
and 6'(0). The solution process is repeated with another larger value of 7., until two successive
values of f*(0) and '(0) differ only after desired number of significant digits. The last value of
Moo 18 taken as the finite value of the limit 7, for the particular set of physical parameters to
determine velocity f(n) and temperature () in the boundary layer. After getting all the five
initial conditions we solve this system of simultaneous equations using Runge-Kutta-Fehlberg

integration scheme.
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4.5 Results and discussions

1 T T T T

—A=1]
0.9r M=05,2=01 | A=2
o8k Pr=1.5,5=0.1 a=al

Figure 4.2: Influence of material parameter A on velocity profile f (n)for n = 1.
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0.9r A=1,2=0.1
Pr=15,5=0.1

Figure 4.4: Effect of curvature parameter M on velocity profile f (1) for n = 0.2.
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1 T

A=1,2=01 —mM=0
0.0 Pr=15,8=01 |- M=0.25]

Figure 4.6: Impact of curvature

parameter M on velocity profile f (n) for n = 2.
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(=]

Figure 4.8: Effect of mixed convection parameter A on velocity profile f’ (n) for n = 1.
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0.2} ;
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Pr=15,5=0.1 —M=0
0.9 A=04,A=1 | M=0.25]]
e
4 5

Figure 4.10: Effect of curvature parameter M on temperature profile 6 (n) for n = 0.2.
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Pr=15,5=01 —M=0

Pr=15,5=0.1 —M=0
0.9 A=01,A=1 |- M=0.25
.......... M=
4 5

Figure 4.12: Impact of curvature parameter M on temperature profile 6 (n) for n = 2.
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Figure 4.14: Effect of Prandlt number Pr on temperature profile 6 () for n = 1.
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profile 6 (n) for n = 2.

Figure 4.16: Effect of stratification parameter S on 6 (n) and 0 (n) for n =0.2.
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Figure 4.18: Effect of stratification parameter S on 6 (n) and 6 (n) for n = 2.
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Table 4.1:The variation of skin-friction coefficient with respect to M, A and A for n = 0.2, 1

and 2.

n=0.2 n=1 n=2

M AN | AF0) = [ (0] || (1+A)f"(0) | Af"(0) — (£7(0))?
0 1] 0.1 | -1.7743 -1.6793 -1.3896
0.5 -1.9032 -1.8424 -1.7097
1 -2.2842 -2.1342 -1.9451
05 (1 -1.9032 -1.8424 -1.7097
2 -2.6395 -2.4577 -2.1595
3 -3.3041 -3.0506 -2.7143
1 |01} -1.9032 -1.8424 -1.7097
0.2 || -1.8569 -1.8036 -1.6696
0.3 || -1.7912 -1.7651 -1.6213

Table 4.2:The variation of —6'(0) with respect to M, and, Pr for n = 0.2,1 and 2.

n=02|n=1 n =2

Pr | M | S |[-0(n) |-0'(n |-0'(0)

1 0.5 0.1 || 1.1786 1.2136 || 1.2832

2 1.6317 || 1.7179 || 1.8203
3 1.9754 || 2.1168 || 2.2406
1.5 0 1.3921 1.4113 || 1.4349
0.5 1.4561 1.4832 || 1.5047
1 1.6022 1.6314 || 1.6542

050 1.5710 1.5444 || 1.5234

0.1 || 1.5146 || 1.4832 || 1.4799

0.2 || 1.4563 1.4319 || 1.4147
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Figures. 4.1 , 4.2 and 4.3 describe the behavior of velocity profile for different values of
A for n = 0.2,1 and 2 respectively. It is observed that velocity increases as A increases. The
effect of increasing values of the material parameter A was to enhance the velocity field and
hence the boundary layer thickness.

Figures. 4.4 | 4.5and 4.6. velocity profiles are shown for different values of M. The
velocity curves show that the rate of transport decreases with increasing distance (n) from the
surface and vanishes asymptotically. It is examined that with increase of curvature parameter
M velocity field increases. Reason behind is that by increasing curvature parameter M, radius
of curvature decreases which implies that area of the cylinder with fluid decreases. Thus area
of connectivity of fluid and cylinder decreases as a result less resistance is offered by surface of
the cylinder. Therefore velocity of the fluid increases. Further more boundary layer is thicker
for larger values of curvature parameter M for n = 0.2, 1 and 2. The velocity gradient increases
for larger values of M, which produces larger skin friction coefficient.

Figures.4.7 , 4.8 and 4.9 demonstrate the behavior of mixed convection parameter A for
n = 0.2,1 and 2 on velocity profile. It is perceived that velocity of the fluid increases with an
increase in mixed convection parameter A. Since A is the ratio of buoyancy to inertial forces, by
increasing mixed convection parameter A buoyancy forces increases as a result velocity increase.

Figures. 4.10 , 4.11and 4.12 are plotted to see the influence of Prandlt’s number for
n = 0.2,1 and 2 on temperature field. It is observed that temperature field decreases after
an increase in the Prandtl number which reduces the thermal boundary layer thickness. The
Prandtl number signifies the ratio of momentum diffusivity to thermal diffusivity. Fluids with
small Prandtl number possess higher thermal conductivities and thicker thermal boundary
layer structures. So, heat diffuses from the wall faster for large Pr with thinner boundary
layers. Hence, the Prandtl number can control the rate of cooling in conducting flows.

Figures. 4.13 , 4.14 and 4.15 show the attribute of curvature parameter M on temperature
field for n = 0.2, 1 and 2. It is observed that temperature increases with an increase in curvature
parameter as surface area decreases. Due to this the transfer of energy increases.

Figures.4.16 , 4.17 and 4.18 gives the behavior of the stratification parameter S on the
temperature field and the temperature gradient for n = 0.2,1 and 2. The temperature in the

boundary layer decreases, that results in a decreasing manner of the temperature gradient in
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absolute sense. The thermal boundary layer thickness also decreases with an increase in the
stratification parameter S. With the increase in the stratification parameter, the buoyancy
factor Ty, — Tso reduces within the boundary layer. Ambient thermal stratification causes a
significant decrease in the local buoyancy level, which reduces the velocities in the boundary
layer. All temperature profiles decay from the maximum value at the wall to zero in the free
stream, that is, converge at the outer edge of the boundary layer.

Tables 4.1 present the values of Skin-friction coeffieint for different values of physical pa-
rameters. It is noted that the Skin-friction coefficient increases with increasing the physical
parameters A, M.and decreasing by the increase of \.

Tables 4.2 display the result of Local Nusselt’s number for the different values of parameters
M and Pr. It can be shown from the tables that as we increase the value of curvature parameter

M and the Prandlt’s number Pr the values of Nusselt’s number increases.

4.6 Concluding remarks

The main findings of present analysis are listed below

The behavior of curvature parameter M on velocity and temperature profile is same i.e.

both velocity and temperature fields increases by increasing curvature parameter M.

Velocity increases with an increase in material parameter A.

By increase of mixed convection parameter \ velocity increases.

With an increase in Prandtl number Pr temperature decreases.

The Stratification parameter S decreases as temperature profile decreases.
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