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Abstract 
11ie iMustria[ ayylications of non-Newtonian f[uilfs mad"e it one of the most imyortant 
yfienomena auring the cast few decad"es. '11ie main reason 6ehina is the consiaem6[e 
amount of work tfiat has 6een dime in f[ow cfiaracteristics of non-Newtonian f[uilfs ana 
much more is afSo neeaea in aifferent non-Newtonian moaefS. Due to the diversity of 
non-Newtonian j[uidS one cannot exyress the 6ehavior of a[[ non-Newtonian f[uidS in a 
sing[e constitutive equation. 'I'herefore severa[ moaefS of non-Newtonian f[uidS fiave 
6een yroyosed:. Among these a yarticu[ar[y simy[e moaeC nameCy the Sisko j[uitf moaeC 
exists. 11ie Sisko f[uia moae[ is the com6ination of Newtonian ana non-Newtonian 
j[uilfs (e.g. yo[ymeric susyensions, 6iowgica[ f[uilfs, ari[{ing mud; yaints, liquitf crystafS 
aM [u6ricant greases etc.). '11ie j[uia moaeC is caya6[e of aescri6ing shear thinning ana 
sfiear ticking yfienomena. Sisko [lJ was the first yerson wfio initiatea tfie ana[yses of 
[u6ricating grease. 
11ie yresent work is focusea on two dimensiona[ stead"y fCow with mixea convective 
60urnfary [ayers in Sisko fCuitf mode[ over a stretching cylinder in a tfierma[[y 
stratifiea medium. '11ie governing yartia[ aifferentia[ equations ('PD'Es) are modeCed:. 
Moreover, tfiese 06tainea 'PD'Es are reaucea into ordinary aifferentia[ equations 6y 
using suita6[e simi[arity transformations. Numerica[ so[utions are 06tainea 6y using 
S!iooting metfioa in conjunction with the Runge-Xutta-:Jeh[6erg method:. 'I'o visualize 
the 6efiavior of vewcity ana temyerature yrofi[es after taking variation in yhysica[ 
yarameters resu[ts are y[ottea through grayfis. :Jor further ana[ysis Skin friction 
coefficient anaNusseCts's num6er are comyuted:. 
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Chapter 1

Basic Definitions

1.1 Preliminaries

This chapter includes some basic definitions and relevant governing equations are presented.

1.2 Basic definitions

1.2.1 Fluid

A fluid is a substance that deforms continuously under an applied shear stress regardless of how

minor is the applied stress acting up on it.

1.2.2 Flow

It is a phenomenon in which the material deformation increases continuously without limit with

respect to various forces.

1.2.3 Fluid mechanics

It is branch of mechanics which deals with nature and properties of fluids at stationary position

as well as in moving state.
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1.3 Some physical properties of fluids

1.3.1 Density

Density of a fluid is defined as the mass () per unit volume ( ). Mathematically, the density

 at a point may be defined as

 = lim
→0




 (1.1)

Dimension and unit of density are
£
−3

¤
and kg/m3 respectively.

1.3.2 Viscosity

A physical property which offers resistance to the flow is called viscosity. Mathematically, it is

defined as the ratio of shear stress to the rate of shear strain i.e.

Viscosity =  =
shear stress

rate of shear strain
 (1.2)

In the above definition,  is called the coefficient of viscosity or absolute viscosity or dynamic

viscosity or simply viscosity having dimensions
£
−1−1

¤
.

1.3.3 Kinematic viscosity

The ratio of dynamic viscosity to the density of a fluid is known as kinematic viscosity and is

denoted by . Mathematically

 =



 (1.3)

where  is the density of the fluid and dimension of kinematic viscosity
£
2−1

¤


1.4 Classification of fluids

1.4.1 Ideal / Inviscid fluids

The fluids which have zero viscosity are called ideal fluid. But naturally no fluid with zero

viscosity exists. However, in some engineering problems fluid with extremely low viscosity are

considered as ideal fluid. Usually gases are treated as ideal fluid in many engineering problems.

5



Ideal fluids are also called the inviscid fluids..

1.4.2 Real fluids

Real fluids are those which have non-zero viscosity. These fluids may be compressible or incom-

pressible. Depending upon the relationship between the shear stress and rate of shear strain, real

fluids are further divided into two main categories namely Newtonian and non-Newtonian

fluids.

Newtonian Fluids

The real fluids for which the shear stress is directly proportional to the linear deformation rate

are called Newtonian fluids (e.g. water). In mathematical notation it will be

 = 



 (1.4)

where  is the shear stress acting on a plane normal to −axis,  is the velocity of fluid in
the −direction and  is the constan of proportionality.

Non-Newtonian fluids

The real fluids that do not obey the Newtons law of viscosity are known as non-Newtonian fluids.

For such fluids shear stress is not linearly proportional to the deformation rate. Mathematically

 =  · 


 (1.5)

where  = 
¯̄̄



¯̄̄−1
is the apparent viscosity,  is flow behavior index and  is consistency index.

For  = 1 with  =  the above equation reduces to the Newton’s law of viscosity. Examples

of non-Newtonian fluids include ketchup, tooth paste, blood, paints, greases, biological fluids,

polymer melts and so forth.
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1.5 Types of flows

1.5.1 Laminar flow

A flow in which each fluid particle has a definite path and the path of individual particles do

not cross each other and move along well defined paths is known as laminar flow.

1.5.2 Turbulent flow

A turbulent flow is one in which fluid particle does not have a definite path and the path of

individual particles also cross each other, such types of flow cannot be handled easily.

1.5.3 Steady flow

A flow in which fluid properties at each point in flow field do not depend upon time is called

steady flow. That is a flow in which the quantity of fluid flowing per second is constant. A

steady flow may be uniform or non uniform. For such a flow, we can write




= 0 (1.6)

where  represents any fluid property, may be velocity, density etc.

1.5.4 Unsteady flow

A flow in which fluid properties at each point in flow field also depend upon time is called

unsteady flow. For such a flow, we can write




6= 0 (1.7)

where  represents any fluid property, may be velocity, density etc.

1.5.5 Incompressible flow

A flow in which density of the flowing fluid does not change during the flow. Mathematically,

incompressible fluid is expressed by saying that the density  of a fluid particle does not change

7



as it moves in the flow field, i.e.

 6=  (   ) or  = constant. (1.8)

or




= 0 (1.9)

where  is the total derivative, which is the sum of local and convective derivatives. All the

liquids are generally exhibit incompressible flow.

1.5.6 Compressible flow

A flow in which density of the fluid varies during the flow is termed as compressible flow i.e.

 =  (   )  (1.10)

1.6 Relationship in Cylindrical Coordinates

The del operator in cylindrical coordinates be

∇ =
1



 ( ())


+
1



 ()


+

 ()


 (1.11)

the divergence of vector V = [v ] is defined as

∇V =
1



()


+
1



 ()


+

 ()


 (1.12)

the divergence of stress tensor T is written as

T =

∙
1



 ( )


+
1



( )


+

( )


− ( )



¸
̂ (1.13)

+

∙
1



 ( )


+
1



 ( )


+

( )


+

 



¸
̂ (1.14)

+

∙
1



( )


+
1



 ( )


+

 ( )



¸
̂
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The gradient of a vector produces a second rank tensor.

∇V =

⎡⎢⎢⎢⎣



1


¡


− 

¢






1


³


+ 

´






1







⎤⎥⎥⎥⎦  (1.15)

1.7 Governing laws

1.7.1 Law of conservation of mass

This Law states that matter can change its form, mixtures can be separated or made, and pure

substances can be decomposed, but the total amount of mass remains constant. In the vector

form, it can be written as




+∇ · (V) = 0 (1.16)

∇ =
1



 ( ())


+
1



 ()


+

 ()


 (1.17)

a three dimensional differential operator. For an incompressible fluid, the density is constant

and thus Eq (116) becomes

∇ ·V = 0 (1.18)

1.7.2 Law of conservation of momentum

Every particle of fluid at rest or in steady state or in accelerated motion obeys Newton’s second

law of motion which states that, the sum of all external forces acting on a system is equal to

the time rate of change of linear momentum of the system. In vector form, it can be written as


V


= divT+b (1.19)

For Navier-Stokes equations

T = −pI+μA1 (1.20)

A1 = (grad V) + (grad V)
  (1.21)

where
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 = density

V = vector field

T = Cauchy stress tensor

b = body forces

p = pressure

 = dynamic viscosity

A1 = First rivlin-ericksen tensor

The Cauchy’s stress tensor can be expressed in matrix form as

T =

⎡⎢⎢⎢⎣
  

  

  

⎤⎥⎥⎥⎦  (1.22)

where ,  and  are normal stresses while all others are shear stresses.  (123) can be

expressed in scalar form as





=

1



()


+
1



()


+

 ()


− 


+ 





=

1



 ()


+
1



 ()


+

 ()


+




+  (1.23)





=

1



 ()


+
1



 ()


+

 ()


+ 

1.7.3 Law of conservation of energy

Like laws of conservation of mass and momentum, law of conservation of energy is essential to

study the heat transfer phenomenon in fluid dynamics problems. It states that energy can be

transfer from one form to another in an isolated system but it cannot be created or destroyed

and the total energy of the system is conserved. Mathematically





= ∇2 +TL (1.24)

,where  is specific heat at constant pressure,  is temperature of fluid, TL is viscous dissipation

term and  is the thermal conductivity which describes that how fast a particular material
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conduct heat.

1.8 Heat transfer

It is discipline of thermal engineering that deals with the generation, use, conversion and ex-

change of thermal energy and heat between physical systems.

1.8.1 Conduction

The transfer of energy between objects that are in physical contact is called condition.

1.8.2 Convection

The transfer of energy between an object and its environment, due to fluid motion is called

convection.

1.9 Boundary layer

Ludwig Prandtl a German astronomer revealed the idea of boundary layer, in 1904, on his

paper which he presented in mathematical congress. Boundary layer is a layer adjacent to the

solid surface, where the viscosity effects are dominant. In determining the flow field, the viscous

effects are considering into account, which have significant role on fluid motion. Thus a fluid

flow is retarded in the vicinity of the wall and a finite, slow moving boundary layer is formed.

The thickness of the boundary layer is taken to be the distance from the wall to the point

at which the velocity is 99% of the free-stream velocity. As the solution of the Navier-Stokes

equation is expensive, so this approach helps us to reduce equations.

1.10 Mixed Convection

The convection which involves the combine effects of natural and forced convection is known

as mixed convection. If the flow is generated by any external force in the presence of gravity

then such a convection is known as mixed convection
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1.11 Mathematical description of Boussinesq approximation

Let us assume a two dimensional steady flow over a smooth surface. Here we consider constant

properties except that density is allowed to vary to produce buoyancy force, as

1 =  + ∞ (1.25)

where ∞ and  represent static pressure inside boundary layer and pressure variation due to

buoyancy, respectively. Using this definition, we get the following results

 = 1 − ∞ and  → 0 as  →∞ (1.26)

The continuity and momentum equations inside the boundary layer are




+




= 0 (1.27)



µ




+ 





¶
= −1


+ 

2

2
−  (1.28)

While outside the boundary layer, we have

1 → ∞  → 0 → ∞ and →  () as  →∞ (1.29)

Thus the momentum equations outside the boundary layer becomes

∞ ()
 ()


= −1


− ∞ (1.30)

or

∞ ()
 ()


+ ∞ = −

1


 (1.31)

Substituting Eq. (131) in Eq. (128) we get



µ




+ 





¶
= ∞ ()

 ()


+ 

2

2
+ (∞ − )  (1.32)
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In the above equation, the density difference, ∞−  can be related to the temperature differ-

ence. Using the Taylor’s expansion about (∞ ∞) one has

() = (∞ ∞) + ( − ∞)
µ




¶
∞
+ ( − ∞)

µ




¶
∞
+  (1.33)

or

 ≈ ∞ + ( − ∞)
µ




¶
∞
+ ( −∞)

µ




¶
∞

 (1.34)

Since the coefficient of volumetric thermal expansion  and volumetric mass expansion ∗ are

defined as

 = −1


µ




¶
∞

 (1.35)

∗ = −1


µ




¶
∞

 (1.36)

so the above relationship reduces to

 ≈ ∞ − ()∞ ( − ∞)− (∗)∞ ( − ∞)  (1.37)

If ()∞ =  = constant, which is true for moderate temperature difference, then we have

∞ −  =  [ ( − ∞) + ∗ ( −∞)]  (1.38)

The above relationship (139) is called Boussinesq approximation.

1.12 Dimensionless numbers

1.12.1 Reynolds number

Reynolds number Re is the ratio of inertial forces ( ) to viscous forces () which is a

dimensionless number. Mathematically

Re =



 (1.39)
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where  is characteristic length,  free stream velocity and  is kinamatic viscosity. Laminar

flow occur at low Reynolds number where viscous forces are dominant, while turbulent flow

occur at high Reynolds number and it is dominated by inertial forces.

1.12.2 Nusselt number

It is a dimensionless number, used in heat transfer which is a ratio of convective to conductive

heat transfer across (normal) to the boundary introduced by German mathematician Nusselt.

Mathematically

 =



 (1.40)

where  is convective heat transfer coefficient and  thermal conductivity of the fluid.

1.12.3 Prandtl number

It is a dimensionless number defined as the ratio of momentum diffusivity () to thermal

diffusivity (). It control the relative thickness of momentum and thermal boundary layer.

Mathematically

Pr =



 (1.41)
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Chapter 2

Introduction

2.1 Introduction

During last two decades flow of non-Newtonion fluids has been involved in various physical

phenomenon such as polymer processing, ink-jet printing, geological flows in the earth mantle,

liquid crystals, additive suspensions, animal blood, turbulent shear flows and many others.

In view of litrature available regarding flow of non-Newtonion fluids and its extensive use

in industrial and technological applications, special attention has been paid to these fluids.

Therefore several fundamental equations are suggested to predict the physical behavior and

structure of such fluids. Among these, comparatively simple model, named Sisko fluids exists.

The Sisko fluid model is the combination of Newtonian and non-Newtonian fluids. The fluid

model is capable of describing shear thinning and shear thickening phenomenon, which represent

the decrease and increase in viscosity with increasing shear rate respectively. This type of fluids

exists commonly in nature. Such fluids are well known and have many industrial applications.

For the flow of greases it is the most relevant model. Sisko [1] was the first person who presented

and analyzed the lubricating grease. After that many researchers have work on this model. M.

Khan et al. [2 − 5], S. Nadeem et al. [6] N. S. Akbar [7] F. Talay Akyildiz et al. [8] and

many others investigated the Sisko fluid model in different geometries with pertinent physical

properties of fluid.

Convection is a mode of heat transfer that plays an important role in practical models.

Many convection processes take place in our surroundings, such as in atmospheres, oceans,
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planetary mantles, and it also specify the mechanism of heat transfer for a large fraction of the

outermost interiors of our sun and all stars. Fluid movement during convection may be invisibly

slow, or it may be obvious and rapid, as in a hurricane. On astronomical scales, convection

of gas and dust is thought to occur in the accretion disks of black holes, at speeds which may

closely approach that of light. Due to abundant use in nature mixed convection is studied

by many scientists. M. Swati et al.[9] studied mixed convection along a stretching cylinder

in a thermally stratified medium. N. Bachok et al.[10] analyzed mixed convection boundary

layer flow over a permeable vertical cylinder with prescribed surface heat flux. J.J. Heckel

et al.[11] also examined mixed convection along slender vertical cylinders with variable surface

temperature. K.L. Hsiao[12] explored MHDmixed convection for viscoelastic fluid past a porous

wedge. C.H. Chen [13] discussed laminar mixed convection adjacent to vertical, continuously

stretching sheet. S. Nadeem et al.[14] analyzed unsteady mixed convection flow of nanofluid on

a rotating cone with magnetic field. J.M. Buchlin [15] inspect natural and forced convective

heat transfer on slender cylinders.

Stratification effects in any fluid may cause due to temperature variation or concentration

differences or the presence of different fluids in any medium and combination of these. As fluid

heats and cools, it expands and contracts, causing change in density. This is called thermal

stratification and it is generally occures when thermal energy transforms from heated bodies

and thermal sources into the medium. Stratification may also arise due to concentration differ-

ences such as transport processes in the sea where stratification exists due to salinity variation.

Third type of stratification occures when fluids having different densities are present and sta-

ble situation arises such that fluid having less density overlies the havier fluid. Stratification

may double in practical situations, where the heat and mass transfer mechanisms run parallel

Stratification has abundant applications in our real world. Applications of stratification include

heat rejection into the environment such as from lakes, rivers and seas. Thermal energy storage

systems such as solar ponds and heat transfer from thermal sources such as the condensers

of power plants are also examples of stratification. Due to the huge implementations in fluid

mechanics many researchers have worked on stratification phenomenon. The flow due to a

heated surface immersed in a stable stratified medium has been investigated experimentally

and analytically in several studies such as Yang et al.[16], Jaluria et al.[17] Chen et al.[18], and
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Ishak et al.[19] Swati Mukhopadhyay et al.[20], N. Kishan et al. [21], M. A. Mansour1[22] etc.

The boundary layer flow and heat transfer due to stretching cylinders have remarkable

importance in fiber technology and extrusion process. There are many examples in metallurgical

and engineering such as hot rolling, metal and polymer sheet extrusion, drawing, annealing and

tinning of copper wires, crystal growth, glass fiber production etc. The steady two-dimensional

boundary layer flow due to contineous solid surface was first studied by B. C. Sakiadis [23].

After this J.N. Kapoor et al. [24] found the similarity solution of boundary layer equations for

power law fluids and then Crane [23] studied it. After Crane [23], Gupta and Gupta [26], Chen

et al.[27], R. R. Rangi et al.[28] Datta et al. [29] extended the work including the effect of heat

and mass transfer analysis under different physical situations. S. Nadeem et al. [30] studied

boundary layer flow of nanofluid over an exponentially stretching surface. S. Nadeem et al.[31]

presented HAM solution for boundary layer flow in the region of the stagnation point towards

a stretching sheet.

Now a days stretching of any surface to produce disturbance in any fluid is one of the leading

feature in fluid mechanics. For a long period scientists didn’t considered stretching of cylinder,

but when Lin et al. [32 − 33] considered the laminar boundary layer and heat transfer along
cylinders moving horizontally and vertically with constant velocity and found no similarity

solutions due to the curvature effect of the cylinder. After that A. Ishak et al.[34] showed that

the similarity solutions could be obtained by assuming that the cylinder is stretched with a

linear velocity in the axial direction. In fact, the study by A. Ishak et al.[34] is an extension

of the problem considered by Grubka et al.[35] and Ali [36], i.e. from a stretching sheet to a

stretching cylinder. The stretching problems [37− 38] for steady and unsteady flows have been
studied extensively in various aspects, such as for non-Newtonian fluids, MHD flows, porous

plates, porous medium, with and without heat transfer analysis.

The main objective of this theses is to examine the behavior of mixed convection boundary

layer flow of Sisko fluid over the stretching cylinder in a stratified medium which is not discussed

so far. The final non linear differential equations are solved numerically by Shooting method.

The influence of curvature parameter  , material parameters , mixed convection parameter

, stratification parameter  and Prandtl number Pr on velocity and temperature profile is

discussed.
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2.2 Objectives of dissertation

The main objectives of present investigation are

• To study the mixed convection flow along a stretching cylinder in a thermally stratified
medium

• To investigate the mixed convection boundary layer flow of Sisko fluid along a stretching
cylinder in a thermally stratified medium

2.3 Method of Solution

As we know that mathematical modelling of many physical phenomenon take place in nature

give non-linear system of equations, such as governing equations of fluid velocity and tempera-

ture. To solve governing equations of fluid different analytical as well as numerical techniques

have been used. Perturbation method, Adomian decomposition method and homotopy analysis

method are mostly used analytical techniques. For computation of numerical solutions re-

searchers have used techniques like Shooting methods, finite difference method, finite volume

method etc. In present investigation shooting method is used to find the numerical solution.

Reason behind to prefer shooting method is that it transforms boundary value problem into

initial value problem. Also it is comparatively more rapid and accurate numerical method.

2.4 Outlines of dissertation

This dissertation consist four chapters. Governing laws and basic definitions are explained

in first chapter. Chapter two includes Introduction and objective of this thesis. In chapter

three the problem of mixed convection flow along a stretching cylinder in a thermally stratified

medium is reviewed. In this chapter governing equations are modeled and effects of physical

parameters are discussed.

In chapter four problem of chapter three is extended and considered mixed convection

boundary layer flow of Sisko fluid along a stretching cylinder in a thermally stratified medium.

Numerical solution is calculated with the help of shooting method. Graphs present behavior of
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parameters on velocity and temperature profiles while tables show the effect of parameters on

skin-friction coefficient and local Nusselt number.
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Chapter 3

Mixed Convection Flow along a

Stretching Cylinder in a Thermally

Stratified Medium

3.1 Introduction

In this chapter we studied the axisymmetric, boundary layer mixed convection flow of a viscous

and incompressible fluid over a stretching cylinder in a thermally stratified medium. It is review

of Swati Mukhopadhyay and Anuar Ishak [7] paper. First of all modelled partial differential

equations are transformed to highly nonlinear ordinary differential equations by using similarity

transformations. Numerical solutions of these equations are obtained by shooting method in

cunjuction with Runge- Kutta- Fehlberg method. The effects of different physical parameters

on the velocity and temperature profiles are examined in detail. Influence of these parameters

on skin friction coefficient and local Nusselt number are discussed through tables.

3.1.1 Problem formulation

We consider the axisymmetric, steady, mixed convection flow of an incompressible viscous fluid

along a stretching cylinder embedded in a thermally stratified fluid-saturated medium. The
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basic governing continuity equation, momentum equation and the energy equation are

div V = 0 (3.1)


V


= ∇ ·T+b (3.2)





=  ∇2 (3.3)

where V is the velocity field,  is the density, b represents body forces,



is the material

time derivative, ∇ is differential operator, T is cauchy stress tensor,  is the specific heat at

constant pressure,  is the thermal conductivity of the fluid and  denotes the temperature of

the fluid. Some of these terms are describe below.

V = [( ) 0 ( )]  (3.4)

∇ =
1



 ( ())


+
1



 ()


+

 ()


 (3.5)




=




+V∇ (3.6)

Since the flow field is considered steady, so the term 

is neglected throughout the problem.

So  (36) reduces to




= V∇ (3.7)

b =  ( − ∞)  (3.8)

where  (38) comes through Bossiness approximation

T = −I+A1 (3.9)

In  (34)− (39),  and  are the components of the velocity field in  and  directions re-

spectively, I is identity tensor,  is the pressure,  is dynamic viscosity  is gravity,  volumetric

thermal expansion and A1 is the first Rivilin - Ericksen tensor defined as

A1 =∇V+(∇V)  (3.10)
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where

∇V =

⎡⎢⎢⎢⎣



1


¡


− 

¢






1


¡


+ 

¢






1







⎤⎥⎥⎥⎦  (3.11)

using  (311) in  (310) we have

A1 =

⎡⎢⎢⎢⎣
2 


1




− 


+ 




+ 






+ 1




− 


2


¡



+ 
¢




+ 1







+ 


1




+ 


2 



⎤⎥⎥⎥⎦  (3.12)

As V = [( ) 0 ( )] applying in above equation we have

A1 =

⎡⎢⎢⎢⎣
2


0 

+ 



0 2

() 0



+ 


0 2



⎤⎥⎥⎥⎦  (3.13)

Using  (34) and  (37) in continuity equation i.e. in  (31) we have




( ) +




( ) = 0 (3.14)

Using the (38)and  (39) in (32) i.e. in momentum equation we obtain


V


= −∇+ ∇ ·A1 +  ( − ∞)  (3.15)

Since there is no pressure gradient so the (315) reduces to

V


= ∇ ·A1 (3.16)
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where  is the kinematic viscosity

µ
 =





¶
and (∇A1) in component form is as follows

(∇ ·A1) =
1







µ





¶
+

2

2
 (3.17)

(∇ ·A1) =
2







µ





¶
+

2

2
+

2


− 2

2
 (3.18)

(∇ ·A1) = 0 (3.19)

Material time derivative D
Dt

for velocity field V in component form is given as

µ
V



¶


= 



+ 




 (3.20)µ

V



¶


= 



+ 




 (3.21)µ

V



¶


= 0 (3.22)

Using  (317) − (322) in momentum equation i.e.  (316) ,  component satisfies iden-

tically, while  and  component are respectively describe below





+ 




=









µ





¶
+ 

2

2
 (3.23)





+ 




=

2







µ





¶
+

2

2
+

2


− 2

2
 (3.24)

Now we have to calculate the terms of energy equation i.e.  (33)  L.H.S of  (33) is simply

material time derivative and R.H .S of  (33) is a  div(  ) respectively given below




= 




+ 




 (3.25)

∇ (∇ ) = 







µ





¶
+ 

2

2
 (3.26)

incorporating these above two equations in  (33) we have

 

µ




+ 





¶
=









µ





¶
+ 

2

2
 (3.27)
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



+ 




=









µ





¶
+

2

2
 (3.28)

where  is the thermal diffusivity of the fluid i.e.  =



. According to the boundary layer

theory we assume that

 = (1)  = (1)  = ()  = ()  = (1)  = (2)  = (2) (3.29)

where  is small psitive number. By using above boundary layer approximation the governing

continuity, momentum and energy equations take the form




( ) +




( ) = 0 (3.30)





+ 




=









µ





¶
+  ( − ∞)  (3.31)

where the term  ( − ∞) is due to mixed convection.





+ 




=









µ





¶
 (3.32)

It is assumed that the convecting fluid and the medium are in local thermodynamic equilibrium.

The boundary conditions for the problem are given by

 ( ) = () ( ) = 0  ( ) = ()   =    () = 0 +
 


(3.33)

 ( )→ 0  ( )→ ∞()   →∞  ∞ () = 0 +
 



In the above expressions  is the radius of the cylinder, () = 0



is the stretching velocity,

 = 0 +
 


is the prescribed surface temperature, and ∞ = 0 +

 


is the variable

ambient temperature. 0 is the reference velocity, 0 the reference temperature,  the charac-

teristic length,  and  are positive constants. To get the similarity solution of  (331) and

 (332) subject to the boundry conditions  (333)  we introduce the following similarity
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transformations

 =
2 −2

2

µ




¶ 1
2

  = ()
1
2  ()  () =

 − ∞
 − 0

 (3.34)

where  is the stream function, which identically satisfies the continuity  (330) and it is

define as

 =
1



µ




¶
  =

−1


µ




¶
 (3.35)

substituting  (334) in  (330) and (332)  we get the following highly nonlinear ordinary

differential equations

(1 + 2) 
000
+ 2

00
+ 

00 − 
0 2
+  = 0 (3.36)

(1 + 2) 
00
+ 2

0
+Pr

³
 

0 − 
0
 − 

0

´
= 0 (3.37)

subject to the boundary conditions


0
= 1   = 0   = 1−     → 0 (3.38)


0 → 0   → 0    →∞

where prime denotes the differentiation with respect to   represents the stratification parame-

ter,  denotes mixed convection parameter ,  for curvature parameter, Pr denotes Prandtl’s

number. These parameters are describe below

 =



  =

µ


02

¶ 1
2

 (3.39)

 =


20
 Pr =






3.2 Skin friction coefficient

The formula for the calculation of surface shear stress at the surface of the cylinder is

 =

1
2
2

 (3.40)
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where  is the shear stress at the surface of the cylinder and defined as

 = 

µ




¶
 = 

 (3.41)

Applying similarity transformations

 = 

Ã





r




00
()

!
 =    = 0

 (3.42)

after imposing  = 0 and  =  we have

 = 

r




00
(0) (3.43)

using  (343) in  (340) we have

 = 2

r




00
(0) (3.44)

as we know that

Re =



 (3.45)

so  (344) takes the form


00
(0) =

1

2
 (Re)

1
2  (3.46)

3.3 Local Nusselt number

The local Nusselt’s number of temperature distribution is defined as

 =


 ( − 0)
 (3.47)

where  is the rate of heat transfer at the surface and it is defined as

 = −
µ




¶
 = 

 (3.48)
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By usnig similarity transformation we have

 = −
Ã
( − 0)





r




0
()

!
 =    = 0

 (3.49)

 = −( − 0)

r




0
(0) (3.50)

After using  (350) in  (347) we have

Re
−1
2
 = −0(0) (3.51)

where Re =



is Reynolds number

3.4 Method of solution

As we know that the non-linear momentum (336) is of order third in  and non-linear

energy (337) is second order in  so total order of both equations is five, which can be

diminished to a system of five first order ordinary differential equations with five unknowns.

Numerical solution of the system of equations is find by shooting method in conjunction with

Runge- Kutta- Fehlberg method. For this we must have five initial conditions to solve system

of five ordinary differential equations but as we know that we have only two initial conditions in

 and one initial condition in  i.e. one initial condition on  and one on  is missing. However,

the values of 
0
and  are known at  → ∞. Thus, these two end conditions are exploit to

produce two unknowns. The most important step of this method is to choose the appropriate

finite value of ∞. Thus to estimate the value of ∞, we start with some initial guess and solve

the boundary value problem consisting of (336) − (337) to obtain 
00
(0) and 0(0). The

solution process is repeated with another larger value of ∞ until two successive values of 
00
(0)

and 0(0) differ only after desired number of significant digits. The last value of ∞ is taken

as the finite value of the limit ∞ for the particular set of physical parameters to determine

velocity 
0
() and () in the boundary layer. After getting all the five initial conditions we

can solve this system nuerically.
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3.5 Results and discussion

Figure 31: Effect of curvature parameter  on velocity profile 
0
() 

Figure 32: Influence of curvature parameter  on temperature profile  () 

28



Figure 33: Effect of Prandlt number Pr on temperature profile  () 

Figure 34: Influence of mixed convection parameter  on velocity profile 
0
() 
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Figure 35 : Influence of stratification parameter  on temperature  () and temperature gradient 
0
() 

Table 31: Influence of curvature parameter  and mixed convection parameter  on skin

friction coefficient.

  
00
(0)

0 0.1 -0.9597

0.25 -1.0608

0.5 -1.1639

0.5 0.1 -1.1639

0.2 -1.1217

0.3 -1.0803
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Table 32: Effect of flow parameters Pr,  and  on the local Nusselt number.

Pr   −0 (0)
1 0.5 0.1 1.1537

2 1.6401

3 2.0333

1 0.0 0.9725

0.25 1.0633

0.5 1.1537

0.5 0.0 1.2161

0.1 1.1537

0.2 1.0912

Figure 3.1 is plotted to study the behovior of velocity field due to variation in curvature

parameter  . As curvature parameter  increases the radius of curvature decreases. This

reduce the surface area of the cylinder, so it offers less resistance to fluid motion. Hence it is

observed that with the increase of curvature parameter  velocity field increases.

Figure 3.2 shows the attribute of curvature  on temperature field. It is observed that

temperature increases with an increase in curvature parameter as surface area decreases so, the

transfer of thermal energy increases. Moreover as the curvature parameter increases the viscous

forces become weaker. So this enhances the rate of heat transfer which causes increases in the

temperature

Figure 3.3 represents the influence of Prandtl’s number on temperature field. It is depicted

that temperature field decreases with an increase in Pr, because increase in Pr causes decrease

in thermal diffusivity.

Figure 3.4 demonstrate the behavior of velocity field on varying mixed convection para-

meter . It is perceived that velocity of the fluid increases with an increase in mixed convection

parameter . Because  is ratio of buoyancy to inertial forces, so by increasing mixed convection

parameter  buoyancy forces increases as a result velocity increases.
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In Figure 3.5 the influence of the stratification parameter S on the temperature  () and

the temperature gradient 
0
() are exhibited. As stratification  decreases the temperature

in the boundary layer, which results in a decreasing manner of the temperature gradient in

absolute sense. The thermal boundary layer thickness also decreases with an increase in the

stratification parameter . With the increase in the stratification parameter, the buoyancy

factor ( − ∞) reduces within the boundary layer. Ambient thermal stratification causes a

significant decrease in the local buoyancy level, which reduces the velocities in the boundary

layer. All temperature profiles decay from the maximum value at the wall to zero in the free

stream, that is, temperature converges at the outer edge of the boundary layer.

Table 3.1: Present the values of Skin-friction coeffieint for different values of physical

parameters. It is noted that the Skin-friction coefficient increases with increasing the physical

parameters and decreases by the increase of 

Table 3.2: Display the result of Local Nusselt’s number for the different values of parameters

 and Pr  It can be shown form the table that as we increase the values of curvature

parameter  and the Prandtl’s number Pr the values of Nusselt’s number increases whereaas

by increasing the values of  Local Nusselt’s number decreases.

3.6 Concluding remarks

The main findings of present analysis are listed below

• Increase of curvature parameter  causes increase in velocity and temperature profiles.

• By increase of mixed convection parameter  velocity increases.

• With an increase in Prandtl number Pr temperature decreases.

• Temperature profile decreases as stratification parameter  increases.
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Chapter 4

Mixed Convection Boundary layer

Flow of Sisko fluid along a

Stretching Cylinder in a Thermally

Stratified Medium

4.1 Introduction

The ambition in this chapter is to figure out the flow and heat problem of two dimensional

steady axisymmetric laminar boundary layer mixed convection flow of Sisko fluid model along

a stretching cylinder in a thermally stratified medium. The similarity transformations are

used to reduced coupled partial differential equations into ordinary differential equations. To

solve these equations a numerical approach called Shooting method has been used for the

computation of velocity profile and temperature field for different values of physical parameters

such as curvature parameter, mixed convection parameters,stratification parameter and Prandlt

number. The dependence of Skin-friction coefficient and Nusselt’s number has been analyzed

in detail through tables.
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4.1.1 Mathematically formulation

Consider the two-dimensional steady axisymmetric flow of an incompressible mixed convection

boundary layer flow of Sisco fluid over a stretching cylinder in a thermally stratified medium.

The continuity equation, linear momentum equation and energy equation are

∇V = 0 (4.1)


V


=∇T+ (4.2)




=  ∇2 (4.3)

where V denotes the flow velocity,  is the density,  thermal diffusivity of the fluid is defined

as  =



.  is the fluid temperature, T Cauchy stress tensor , ∇ is differential operator ,

D

Dt
is the material time derivative. Some of these are defined below

V = [( ) 0 ( )]  (4.4)

∇ =
1



 ( ())


+
1



 ()


+

 ()


 (4.5)




=




+V∇ (4.6)

Since the flow field is considered steady, so the term 

is neglected throughout the problem.

So  (46) reduces to




= V∇ (4.7)

= g ( − ∞)  (4.8)

where  (48) comes through Bossiness approximation

T = −I+S1 (4.9)
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where S1 is the extra stress tensor and defined as

S1 =

⎛⎝+ 

¯̄̄̄
¯
r
1

2

¡
A21
¢¯̄̄̄¯
−1⎞⎠A1 (4.10)

In  (44) − (410)  and  are the axial and radial components of the velocity of fluid,

 viscosity at heigh shear rate  is consistancy index and  are the material parameter,  is

dynamic viscosity, I is the identity tensor,  is the pressure,  is gravity,  volumetric thermal

expansion and A1 is the first Rivilin-Ericksen tensor defined below

A1 =∇V+(∇V)  (4.11)

gradient of velocity i.e (∇V) is defined as

∇V =

⎡⎢⎢⎢⎣



1


¡


− 

¢






1


¡


+ 

¢






1







⎤⎥⎥⎥⎦  (4.12)

So  (411) takes the form

A1 =

⎡⎢⎢⎢⎣
2 


1




− 


+ 




+ 






+ 1




− 


2


¡



+ 
¢




+ 1







+ 


1




+ 


2 



⎤⎥⎥⎥⎦  (4.13)

Here   and  are component of velocity. As we consider two dimensional flow i.e. V =[( ) 0 ( )]

so

A1 =

⎡⎢⎢⎢⎣
2


0 

+ 



0 2

() 0



+ 


0 2



⎤⎥⎥⎥⎦  (4.14)

and
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A21 =

⎡⎢⎢⎢⎣
4
¡



¢2
+
¡


+ 



¢2
0 2



¡


+ 



¢
+ 2



¡


+ 



¢
0 4

¡



¢2
0

2


¡


+ 



¢
+ 2



¡


+ 



¢
0

¡


+ 



¢2
+ 4

¡



¢2
⎤⎥⎥⎥⎦  (4.15)

The trace of A21 is also determined, which is represented in the equation below

(A21) = 4(



)2 + 4(




)2 + 4

2

2
+ 2(




+




)2 (4.16)

Using  (48) and  (49) in  (42) we have


V


= −∇+ ∇ · S1 +  ( − ∞)  (4.17)

We have assumed that the flow is caused due to stretching of the cylinder therefore the pressure

gradient is neglected.


V


= ∇ · S1+g ( − ∞)  (4.18)

Material time derivative D
Dt
for the velocity field V in component form is given as

µ
V



¶


= 



+ 




 (4.19)µ

V



¶


= 



+ 




 (4.20)µ

V



¶


= 0 (4.21)

The components of divergence of extra stress tensor S1 defined as

(divS) = 

µ
1







µ





¶
+

2

2

¶
+ 

µ
1







µ





¶
+

2

2

¶

×
¯̄̄̄
¯2
µ




¶2
+

µ



+





¶2
+ 2

µ




¶2
+ 2

³


´2 ¯̄̄̄¯
−1
2

 (4.22)

(div) = 0 (4.23)
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(div) = 

µ
2







µ





¶
+

2

2
+

2


− 2 

2

¶
+



µ
2







µ





¶
+

2

2
+

2


− 2 

2

¶
× (4.24)¯̄̄̄

¯2
µ




¶2
+

µ



+





¶2
+ 2

µ




¶2
+ 2

³


´2 ¯̄̄̄¯
−1
2



using  (419) − (424) in  (418) we have





+ 




=





µ
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L.H.S of  (43) is simply material time derivative and R.H.S of  (43) is a  div(  )

respectively given below
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incorporating these above two equations in  (43) we have
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Using the boundary layer theory we assume that

 = (1)   = (1)   = ()   = ()   = (1) (4.30)

 = (2)   = (2) 
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¢
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
= 

¡
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¢


Where  is a small positive number. By using above boundary layer approximation the conti-

nuity, momentum and energy equations takes the form
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And after simplification, above equation takes the form
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subject to the boundary conditions

 ( ) = () ( ) = 0  ( ) = ()   = 0   () = 0 +
 


(4.35)

 ( )→ 0  ( )→ ∞()   →∞  ∞ () = 0 +
 



In the above boundary conditions 0 is the radius of the cylinder, () = 0



is the stretching

velocity,  = 0 +
 


is the prescribed surface temperature, ∞ = 0 +

 


is the variable

ambient temperature. 0 is the reference velocity, 0 the reference temperature,  the charac-

teristic length,  and  are positive constants. To get the similarity solution of  (433) and

 (434) subject to the boundary conditions  (435), following similarity transformations

are use

 =
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20
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1
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 Re =
 2−


 (4.36)
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where  is the stream function, which identically satisfies the continuity equation  (431)

and define as
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Using the similarity transformations of  (436) in  (433) and  (434), we will get the

following highly nonlinear ordinary differential equations.
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subject to the boundary conditions


0
= 1   = 0   = 1−     → 0 (4.40)


0 → 0   → 0    →∞

where prime denotes the derivative with respect to  curvature parameter , mixed convection

parameter  ,material parameter A, Prandtl number Pr ,and stratification parameter  are

define below
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4.2 Skin-friction Coefficient

Coefficient of skin friction for this problem is calculated as.

 =

1
2
 2

 (4.42)

39



where  represents shear stress at the surface of cylinder and calculated as
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After using similarity transformation and then simplification,  (443) takes the form
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Substituting  (444) in  (444) and after simplification we have
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4.3 Local Nusselt’s number

The local Nusselt’s number of temperature distribution is defined as

 =


 ( − 0)
 (4.46)

where  is the rate of heat transfer at the surface and it is defined as

 = −
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After usnig similarity transformation we have

 = −
µ
 − 0
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¶
Re

1
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0
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Using  (448) in  (446) we have

Re
−1
1+

 = −0(0) (4.49)
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4.4 Numerical solution.

As we know that the non-linear momentum (438) is of order three in  and non-linear energy

(439) is of second order in  so both equations is of order five, which can be diminished

to a system of five first order ordinary differential equations giving on solving five unknowns.

In order to solve these equations we are using a numerical technique "Runge—Kutta-Fehlberg"

method. We need five initial conditions, but as we know that only two initial conditions in 

and one initial condition in  are known i.e. one initial condition of  and one of  is missing.

However, the values of 
0
and  are known at  → ∞. Thus, these two end conditions was

exploiting to produce two unknowns. The most important step of this method is to choose the

appropriate finite value of ∞. Thus to estimate the value of ∞, we start with some initial

guess and solve the boundary value problem consisting of (438) − (439) to obtain 
00
(0)

and 0(0). The solution process is repeated with another larger value of ∞ until two successive

values of 
00
(0) and 0(0) differ only after desired number of significant digits. The last value of

∞ is taken as the finite value of the limit ∞ for the particular set of physical parameters to

determine velocity () and temperature () in the boundary layer. After getting all the five

initial conditions we solve this system of simultaneous equations using Runge—Kutta-Fehlberg

integration scheme.
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4.5 Results and discussions

Figure 41: Effect of material parameter  on velocity profile 
0
() for  = 02

Figure 42: Influence of material parameter  on velocity profile 
0
()for  = 1
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Figure 43: Influence of material parameter  on velocity profile 
0
() for  = 2

Figure 44: Effect of curvature parameter  on velocity profile 
0
() for  = 02
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Figure 45: Impact of curvature parameter  on velocity profile 
0
() for  = 1

Figure 46: Impact of curvature parameter  on velocity profile 
0
() for  = 2
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Figure 47: Effect of mixed convection parameter  on velocity profile 
0
() for  = 02

Figure 48: Effect of mixed convection parameter  on velocity profile 
0
() for  = 1
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Figure 49: Effect of mixed convection parameter  on velocity profile 
0
() for  = 2

Figure 410: Effect of curvature parameter  on temperature profile  () for  = 02
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Figure 411: Impact of curvature parameter  on temperature profile  () for  = 1

Figure 412: Impact of curvature parameter  on temperature profile  () for  = 2
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Figure 413: Effect of Prandlt number Pr on temperature profile  () for  = 02

Figure 414: Effect of Prandlt number Pr on temperature profile  () for  = 1
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Figure 415: Effect of Prandtl number Pr on temperature profile  () for  = 2

Figure 416: Effect of stratification parameter  on  () and 
0
() for  = 02
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Figure 417: Effect of stratification parameter  on  () and 
0
() for  = 1.

Figure 418: Effect of stratification parameter  on  () and 
0
() for  = 2
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Table 41:The variation of skin-friction coefficient with respect to ,  and  for  = 02 1

and 2

 = 02  = 1  = 2

    00(0)− [− 00(0)]02 (1 +) 00(0)  00(0)− ( 00(0))2

0 1 0.1 -1.7743 -1.6793 -1.3896

0.5 -1.9032 -1.8424 -1.7097

1 -2.2842 -2.1342 -1.9451

0.5 1 -1.9032 -1.8424 -1.7097

2 -2.6395 -2.4577 -2.1595

3 -3.3041 -3.0506 -2.7143

1 0.1 -1.9032 -1.8424 -1.7097

0.2 -1.8569 -1.8036 -1.6696

0.3 -1.7912 -1.7651 -1.6213

Table 42:The variation of −0(0) with respect to  , Pr for  = 02 1 and 2

 = 02  = 1  = 2

Pr   -0() -0() -0(0)

1 0.5 0.1 1.1786 1.2136 1.2832

2 1.6317 1.7179 1.8203

3 1.9754 2.1168 2.2406

1.5 0 1.3921 1.4113 1.4349

0.5 1.4561 1.4832 1.5047

1 1.6022 1.6314 1.6542

0.5 0 1.5710 1.5444 1.5234

0.1 1.5146 1.4832 1.4799

0.2 1.4563 1.4319 1.4147
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Figures. 41 , 42 and 43 describe the behavior of velocity profile for different values of

 for  = 02 1 and 2 respectively. It is observed that velocity increases as  increases. The

effect of increasing values of the material parameter  was to enhance the velocity field and

hence the boundary layer thickness.

Figures. 44 , 45and 46. velocity profiles are shown for different values of  . The

velocity curves show that the rate of transport decreases with increasing distance () from the

surface and vanishes asymptotically. It is examined that with increase of curvature parameter

 velocity field increases. Reason behind is that by increasing curvature parameter  , radius

of curvature decreases which implies that area of the cylinder with fluid decreases. Thus area

of connectivity of fluid and cylinder decreases as a result less resistance is offered by surface of

the cylinder. Therefore velocity of the fluid increases. Further more boundary layer is thicker

for larger values of curvature parameter for  = 02 1 and 2. The velocity gradient increases

for larger values of  which produces larger skin friction coefficient.

Figures.47 , 48 and 49 demonstrate the behavior of mixed convection parameter  for

 = 02 1 and 2 on velocity profile. It is perceived that velocity of the fluid increases with an

increase in mixed convection parameter . Since  is the ratio of buoyancy to inertial forces, by

increasing mixed convection parameter  buoyancy forces increases as a result velocity increase.

Figures. 410 , 411and 412 are plotted to see the influence of Prandlt’s number for

 = 02 1 and 2 on temperature field. It is observed that temperature field decreases after

an increase in the Prandtl number which reduces the thermal boundary layer thickness. The

Prandtl number signifies the ratio of momentum diffusivity to thermal diffusivity. Fluids with

small Prandtl number possess higher thermal conductivities and thicker thermal boundary

layer structures. So, heat diffuses from the wall faster for large Pr with thinner boundary

layers. Hence, the Prandtl number can control the rate of cooling in conducting flows.

Figures 413 , 414 and 415 show the attribute of curvature parameter on temperature

field for  = 02 1 and 2. It is observed that temperature increases with an increase in curvature

parameter as surface area decreases. Due to this the transfer of energy increases.

Figures.416 , 417 and 418 gives the behavior of the stratification parameter  on the

temperature field and the temperature gradient for  = 02 1 and 2. The temperature in the

boundary layer decreases, that results in a decreasing manner of the temperature gradient in
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absolute sense. The thermal boundary layer thickness also decreases with an increase in the

stratification parameter . With the increase in the stratification parameter, the buoyancy

factor  − ∞ reduces within the boundary layer. Ambient thermal stratification causes a

significant decrease in the local buoyancy level, which reduces the velocities in the boundary

layer. All temperature profiles decay from the maximum value at the wall to zero in the free

stream, that is, converge at the outer edge of the boundary layer.

Tables 41 present the values of Skin-friction coeffieint for different values of physical pa-

rameters. It is noted that the Skin-friction coefficient increases with increasing the physical

parameters  and decreasing by the increase of 

Tables 42 display the result of Local Nusselt’s number for the different values of parameters

 and Pr  It can be shown from the tables that as we increase the value of curvature parameter

 and the Prandlt’s number Pr the values of Nusselt’s number increases.

4.6 Concluding remarks

The main findings of present analysis are listed below

• The behavior of curvature parameter  on velocity and temperature profile is same i.e.

both velocity and temperature fields increases by increasing curvature parameter  .

• Velocity increases with an increase in material parameter .

• By increase of mixed convection parameter  velocity increases.

• With an increase in Prandtl number Pr temperature decreases.

• The Stratification parameter  decreases as temperature profile decreases.
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