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Preface 

In recent times the analysis of non-Newtonian fluids has acquired a special status due to complex 

modeling and computations. This motivation stems through the fact that non-Newtonian fluids 

have widespread applications in geophysics, biological sciences, chemical and petroleum 

industries. The well-known Navier-Stokes theory is inadequate for the behavior of non

Newtonian materials especially in engineering and biological processes. However such materials 

in view of their diverse characteristics cannot be described through one constitutive relationship 

between shear stress and deformation rate. This fact of non-Newtonian materials is quite distinct 

than the viscous fluid. Besides this the governing equations of non-Newtonian materials in 

general are higher order than the Navier-Stokes equations. Thus additional boundary or initial 

conditions are necessary in obtaining a unique solutionfor the arising differential systems. 

Further the flow of non-Newtonian materials over a moving surface with heat transfer is 

specifically significant in the extrusion processes, cooling of continuous strips or filaments, 

paper production, food processes, metallurgical processes and many others.It is due to the fact 

that the investigators are interested to increase the efficiency of various machines by increasing 

the rate of heat transfer.The properties of final product also depend greatly upon heat transfer 

rate at the stretching surface. The cooling rate depends on physical properties of cooling medium 

including thermal conductivity. To further improve the mechanical properties of the fiber/p lastic 

sheet through better cooling rate, it is necessary that we have to contro l its viscoelasticity by 

using polymeric additives. By using such additives the viscosity of the fluid is increased and it 

slows down the rate of solidification. Having such in mind this thesis develops models analyzing 

the stretched flows of viscoelastic materials in presence of heat transfer. This thesis is arranged 

in the form of eleven chapters. 

Chapter one comprises literature survey of the prevIOus published works and laws of the 

conservation of mass, linear momentum, energy and mass transport. Mathematical modeling and 

boundary layer equations of Walters-B, second-grade and third-grade fluids are presented. 

Homotopy analysis method is also outlined briefly. 

Chapter two concentrates on the flow of Walters-B fluid over a stretching surface with 

Newtonianheating. The governing partial differential equations are first simpli fied through 

boundary layer approximations and then reduced into ordinary differential equations by using the 



appropriate substitutions. The resulting problems have been solved for the series solutions by 

homotopic approach. Convergence analysis is performed. Graphical results for the dimensionless 

velocity and temperature are presented and discussed for various physical parameters. In addition 

the expressions of skin friction coefficient and the local Nusselt number are presented. The 

dimensionless expressions of wall shear stress and wall mass flux are analyzed graphically and 

numerically. The outcomes of this chapter are published in Zeitschrift Fur Naturforschung 

A 70 (5) (2015) 317-324. 

Chapter three focuses on melting heat transfer in the stagnation point flow ofWalter-B fluid 

toward an impermeable stretching sheet. Flow analysis is explored with mixed convection, 

viscous dissipation and louIe heating. Suitable transformations are employed to achieve the 

systems of ordinary differential equations. Arising nonlinear problems are solved successfully 

for the convergent series solutions. Characteristics of various pertinent parameters on the 

velocity and temperature distributions, skin friction coefficient and Nusselt number are 

examined. It is found that velocity has opposite behavior for melting parameter and Weissenberg 

number. The analysis of this chapter has been submitted for publication in Bulletin of the Polish 

Academy of Sciences. 

Chapter four investigated the magnetohydrodynamic (MHD) Falkner-Skan flow of second 

gradenanofluid. The flow is caused by a stretching wedge with melting heat transfer and heat 

generation/absorption. A system of ordinary differential equations is obtained by using suitable 

transformations. Convergent series solutions are derived. Influence of various pertinent para

meters on the velocity, temperature and concentration is evaluated. Analysis of the obtained 

results shows that fluid flow enhances with the increase of wedge and second grade fluid 

parameters. Also thermophoresis and Brownian motion parameters have reverse behavior on 

thetemperature and concentration fields.The contents of chapter four are published in Journal of 

Molecular Liquid 215 (2016) 664-670. 

Chapter five looks at the heat transfer effects in magnetohydrodynamic (MHD) axisymmetric 

flow of third-grade fluid between the stretching sheets. Viscous and louIe heating effects are 

given due attention. The resulting nonlinear problem is computed for the velocity and 

temperature fields. Expressions of skin friction coefficient and local Nusselt number are 

calculated. Dimensionless results of velocity and temperature fields are examined for various 



parameters of interest. Numerical values of skin friction coefficient and Nusselt number are 

obtained and analyzed. The investigation of this chapter is published in Computers and Fluid 

86 (2013) 103-108. 

Chapter six addresses the boundary layer flow of third grade fluid over an unsteady permeable 

stretching sheet with heat transfer. The magnetic and electric fields in the momentum equations 

are considered. Thermal boundary layer equation includes both viscous and Ohmic dissipations. 

The related nonlinear partial differential system is reduced first into ordinary differential system 

and then solved for the series solutions. The dependence of velocity and temperature profiles on 

the various parameters are shown and discussed by sketching graphs. Expressions of skin friction 

coefficient and local Nusselt number are calculated and analyzed. Numerical values of skin 

friction coefficient and Nusselt number are tabulated and examined. It is observed that both 

velocity and temperature increase in presence of electric field. Further the temperature is 

increased due to the radiation parameter. Thermal boundary layer thickness enhances by 

increasing Eckert number. The outcomes of chapter six published in Plos One 9(1) (2014) 

0083153. 

Chapter sevenlooks at the analysis of mixed convective boundary layer flow of third grade fluid 

with variable thermal conductivity. Thermal conductivity is taken temperature dependent. The 

flow is caused by an exponential stretching surface. The convergent series solutions for the 

velocity and temperature are first constructed and then analyzed. Numerical values of local skin 

friction coefficient and local Nusselt numbers are examined through tabulated values. The results 

of chapter seven are submitted for publication in Bulgarian Chemical Communication. 

Chapter eight addresses the magnetohydrodynamic (MHD) stagnation point flow of third-grade 

fluid by a stretching cylinder. Thermal radiation effectis considered in the analysis of heat 

transfer phenomenon. Joule heating and viscous dissipation effects are also retained. The 

resulting nonlinear system is computed for the series solutions. Influence of various physical 

parameters on the velocity and temperature profiles are scrutinized graphically. A comparative 

study between Newtonian and third-grade fluids is made. Velocity and temperature profiles in 

the presence/absence of stagnation point are discussed graphically. Numerical values of skin 

friction and Nusselt number are also computed and interpreted. The results of this chapter are 

submitted for publication in Pramana Journal of Physics. 



Chapter nine addresses the effects of inclined magnetic field and heat transfer in the flow of 

third-grade fluid due to an exponentially stretching sheet. Formulation and analysis are given in 

the presence of heat source and sink. The variable thermal conductivity is taken temperature 

dependent. The governing boundary layer equations and boundary conditions are simplified 

tlu'ough appropriate transformations. Resulting equations are solved for the approximate 

solutions. Convergence of derived solutions is explicitly discussed. Influences of various 

dimensionless parameters on the flow and thermal fields are discussed. Numerical values of local 

skin fr iction coefficient and the local Nusselt number are analyzed. The outcomes of chapter nine 

are publi shed in AlP Advances 5 (2015) 087108. 

Chapter ten focuses on the mathematical modeling and analysis of magnetohydrodynamic 

(MHD) mixed convection stagnation point flow by radially stretching surface. Problem 

formu lation involves the constitutive equations of an incompressible third-grade fluid. In 

addition heat transfer analysis is examined in presence of Joule heating and Soret and Dufour 

effects. Adequate transformations lead to the nonlinear ordinary differential systems. Homotopic 

approach is employed for the convergent series solutions of the resulting problems. Interval of 

convergence is explicitly determined. The velocity, temperature and concentration are analyzed 

with respect to different parameters of interest. The skin friction coefficient, Nusselt 

andSherwood numbers are numerically examined. The contents of this chapter are submitted for 

publication in Journal of Applied and Computational Mathematics. 

The main objective of chapter eleven is to model and analyze the characteristics of homogeneous 

heterogeneous reactions in the magnetohydrodynamic (MHD) flow of third grade fluid over a 

stretching surface. Both magnetic and electric fields are cosidered. Advanced heat transfer 

technique (i.e. Newtonian heating) and heat generation/absorption effects are used in the 

formu lation. Homogeneous and heterogeneous reactions are considered within the fluid and at 

the boundary respectively. Production of heat during chemical reaction is assumed negligible. 

Approximate convergent solutions are constructed. Influences of various pertinent parameters on 

the velocity, temperature and concentration distributions are analyzed and discussed. Numerical 

values of skin friction and local Nusselt number are computed. Concentration distributions for 

homogeneous and heterogeneous reaction parameters are found opposite. The results of chapter 

eleven are accepted in Plos One. 
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Chapter 1

Literature review and basic equations

1.1 Introduction

This chapter comprises literature survey of the previous work related to the viscoelastic �uid, heat trans-

fer, Newtonian heating, melting heat phenomenon and homogeneous-heterogeneous reactions. Governing

equations for boundary layer �ows of Walters-B, second grade and third grade �uids are also presented.

The basic idea of homotopy analysis method (HAM) is also included.

1.2 Background

There is a substantial interest of the recent researchers in the �ows of non-Newtonian �uids. Such moti-

vation in these �uids is mainly because of their use in the industrial and technological applications. Many

materials like mud, personal care products, ice cream, paints, oils, cheese, asphalt etc. are non-Newtonian

�uids. Most biological �uids with higher molecular weight components are non-Newtonian in nature. The

usual properties of polymer melts and solutions together with the desirable attributes of many polymeric

solids have given rise to the world-wide industry of polymer processing. The non-Newtonian �uids in

particular have key importance in geophysics, chemical and nuclear industries, material processing, oil

reservoir engineering, bioengineering and many others. Rheological properties of all the non-Newtonian

�uids cannot be predicted using single constitutive equation. Therefore many models of non-Newtonian

�uids are based either on �natural�modi�cations of established macroscopic theories or molecular con-

siderations. The additional rheological parameters in the constitutive equations of non-Newtonian �uids

are the main culprit for the lack of analytical solutions. The resulting equations are more complex and

higher order than the Navier-Stokes equation. Instead the more general Cauchy momentum equation

with a proper constitutive law must be adopted. For instance Loureiroa and Freirea [1] studied the

asymptotic analysis of turbulent boundary layer �ow of purely non-Newtonian �uids. Keimanesha et al.

[2] examined the �ow of a third grade �uid between two parallel plates using the multi-step di¤erential

transform method. Mustafa et al. [3] analyzed the stagnation-point �ow and heat transfer of a Cas-

son �uid over a stretched surface. Abbasbandy and Hayat [4] studied the series solution for unsteady

boundary layer equations with special third grade �uid. Mahmoud [5] reported the slip velocity e¤ect
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in the �ow of a power-law �uid over a moving permeable surface with heat generation. Hayat et al. [6]

investigated the boundary layer �ow of Je¤rey �uid in the presence of convective boundary conditions.

Renardy and Wang [7] studied the boundary layer �ow of the upper convected Maxwell �uid. Ramzan et

al. [8] presented the magnetohydrodynamic three dimensional �ow of couple stress �uid in the presence

of Newtonian heating. Sahoo and Labropulu [9] analyzed the steady Homann �ow and heat transfer of an

electrically conducting �uid. A subclass of non-Newtonian �uids is viscoelastic �uid. Such �uids exhibit

both viscous and elastic characteristics. The importance of viscoelastic �ow is increasing day by day in

paper and petroleum industries, chemical technology and geophysical �uid dynamics. The viscoelastic

features of non-Newtonian �uids in general are classi�ed by three categories namely the di¤erential, rate

and integral types. The simplest subclass of di¤erential type materials is second-grade. It should be noted

that second-grade �uid captures the normal stress e¤ect whereas the shear thinning and shear thickening

properties even in steady �ow situation can be only analyzed by third-grade �uid. In this thesis we

studied the viscoelastic �uids like Walters-B [10-13], second grade [14-17] and third grade [18-21] �uids.

Magnetohydrodynamics (MHD) is a study of the interaction of electrically conducting �uids and elec-

tromagnetic forces. The MHD �uid was �rst introduced by Swedish Physicist, Alfven [22]. Hartman and

Lazarus [23] studied the e¤ects of a transverse uniform magnetic �eld in the �ow of an incompressible

viscous �uid between two in�nite insulating parallel plates. In recent years the study of magnetohy-

drodynamic �ow of an electrically conducting �uid past a heated surface has attracted the attention of

many researchers. This is because of its considerable applications in many engineering problems such as

plasma studies, petroleum industries, MHD power generators, cooling of nuclear reactors, the boundary

layer control in aerodynamics and crystal growth. Extensive literature on the MHD �ows in presence of

applied magnetic �eld exists now. For example Rashidi et al. [24] considered the MHD �ow of nano�uid

induced by a rotating disk. Shehzad et al. [25] analyzed the hydromagnetic �ow of Maxwell �uid over

a bidirectional stretching surface with variable thermal conditions. Turkyilmazoglu [26] analyzed the

exact solution of magnetohydrodynamic viscous �uid by a rotating disk. Hayat et al. [27] discussed

the buoyancy driven MHD �ow of thixotropic �uid. They also examined the e¤ects of thermophoresis

and Joule heating in this investigation. An applied magnetic �eld e¤ect in natural convection �ow of

nano�uid is studied by Sheikholeslami et al. [28]. Dandapat and Mukhopadhyay [29] discussed the stabil-

ity characteristics of a thin conducting liquid �lm �owing and a non-conducting plane in the presence of

electromagnetic �eld. Hayat et al. [30] investigated the series solution of magnetohydrodynamic axisym-

metric �ow of third grade �uid between porous disks with heat transfer. Unsteady magnetohydrodynamic

mixed convection stagnation point �ow of viscoelastic �uid towards a vertical surface is discussed by Ah-

mad and Nazar [31]. Magnetohydrodynamic Je¤ery Hamel nano�uid �ow through non-parallel walls is

investigated analytically by Hatami et al. [32]. They used di¤erent base �uids and nanoparticle. Sheik-

holeslami et al. [33] considered the e¤ect of MHD in an inclined L-shape enclosure �lled with nano�uid.

Analytical solution of boundary layer magnetohydrodynamic free convective �ow over a vertical porous

plate has been studied by Raju et al. [34]. They also considered the heat transfer analysis with thermal

radiation and chemical reaction. Three dimensional boundary layer �ow of Maxwell �uid is investigated
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by Awais et al. [35]. Freidoonimehr et al. [36] has studied the e¤ect of uniform magnetic �eld on a

free convective boundary layer �ow of nano�uid. Sheikholeslami et al. [37] reported the e¤ects of radi-

ation and magnetohydrodynamics in �ow of nano�uid. Sheikholeslami and Ganji [38] investigated the

hydrothermal behavior of nano�uid with variable magnetic �eld.

Heat transfer in �ows induced by a continuously stretching surface is signi�cant in industrial en-

gineering processes like cooling of the cutting tools during machining operations, cooling of electronic

components in computers, the generation and condensation of steam in a thermal power plant, heating

and cooling of the buildings and thermal control of reentering of the space craft. In view of above men-

tioned physical situation several investigations through numerous �ow con�gurations have been carried

out. Recently melting e¤ects for heat transfer is given much attention. This is due to the fact that

it has applications in permafrost melting, preparation of semi-conductor material and solidi�cation of

magma �ows. Pedroso and Domoto [39] devised methodology for calculating melting rates based on the

di¤usion/melting. Afterwards some studies have been presented to analyze the e¤ect of melting heat

transfer. Epstein [40] investigated the e¤ect of melting on heat transfer to submerged bodies. Melting

heat transfer in a steady laminar �ow of viscous �uids over a plate has been considered by Epstein and

Cho [41]. Kazmierczak et al. [42] explored characteristics of melting heat transfer in the �ow of dissimilar

�uid by a vertical plate in porous medium. Cheng and Lin [43, 44] studied combined e¤ects of melting

and mixed convection in steady and unsteady �ows due to a vertical plate saturated with porous medium.

Ishak et al. [45] analyzed the e¤ect of melting in �ow over a surface with parallel free stream. Bachok

et al. [46] examined melting phenomenon in the stagnation point �ow towards a stretching/shrinking

surface. Yacob et al. [47] studied the steady boundary layer stagnation-point �ow of micropolar �uid

towards a horizontal linearly stretching/shrinking surface. The authors employed Runge Kutta-Fehlberg

method with shooting technique for the numerical solution. Gorla et al. [48] investigated the melting

heat transfer in a nano�uid �ow towards a permeable continuous moving sheet. Abdel-Rahman et al. [49]

numerically analyzed the problem of magnetohydrodynamic steady laminar �ow and heat transfer from

a warm laminar liquid �ow to a melting moving surface in the presence of thermal radiation. Numerical

solution by implicit �nite di¤erence method (FDM) is given. Hayat et al. [50] considered the problem

to study the characteristics of melting heat transfer in the boundary layer stagnation point �ow of third

grade �uid past a stretching surface. Boundary layer stagnation point �ow of second grade �uid towards

a stretching sheet with Dufour and Soret e¤ects combined with melting heat transfer has been examined

by Hayat et al. [51]. Awais et al. [52] presented the analytical and numerical solutions for the melting

heat transfer in boundary layer stagnation-point �ow with thermal-di¤usion and di¤usion-thermo e¤ects.

Hayat et al. [53] also investigated the characteristics of melting heat transfer in the stagnation-point

�ow of Maxwell �uid with double-di¤usive convection. Combined e¤ects of radiation and melting in

magnetohydrodynamic boundary layer �ow past a moving surface is disclosed by Das [54].

Four di¤erent types of heat transfer from wall to ambient �uid was �rst considered by Merkin [55]

i.e., (a) constant or prescribed surface temperature, (b) constant or prescribed surface heat �ux, (c)

conjugate boundary conditions and (d) Newtonian heating in which heat transfer from bounding surface
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with a �nite heat capacity is proportional to the local surface temperature. Researchers utilized the

Newtonian heating process in their practical applications such as to design heat exchanger, conjugate

heat transfer around �ns and also in convection �ows setup where bounding surfaces absorb heat by

solar radiations. Lesic et al. [56] studied free convective boundary layer �ow of viscous �uid towards a

horizontal surface embedded in a porous medium with Newtonian heating. Behavior of heat transport

in the �ow of viscous �uid towards a sheet with Newtonian heating and porous medium is reported

by Lesic et al. [57]. Salleh et al. [58] studied forced convection stagnation point �ow of viscous �uid

with Newtonian heating. Further Salleh et al. [59] examined heat transfer characteristics in �ow of

viscous �uid over a stretching surface with Newtonian heating. Magnetohydrodynamic boundary layer

�ow of nano�uid past a vertical �at plate with Newtonian heating is investigated by Uddin et al. [60].

Hayat et al. [61] discussed mixed convective heat transport in the Falkner-Skan �ow of Maxwell �uid

with Newtonian heating. Hayat et al. [62] analyzed the �ow of second grade �uid towards a stretching

surface with Newtonian heating. Makinde [63] constructed the computational modelling for unsteady

MHD �ow of viscous �uid past a �at plate with Newtonian heating and Navier slip e¤ects. Ramzan et

al. [64] discussed the magnetohydrodynamic three dimensional �ow of couple stress �uid in the presence

of Newtonian heating. Viscous dissipation e¤ect in the �ow of nano�uid with Newtonian heating was

studied by Makinde [65]. Sarif et al. [66] examined boundary layer �ow induced by stretching sheet with

Newtonian heating.

The natural processes of chemical reactions involve both homogeneous and heterogeneous reactions.

Some of the reactions have the ability to proceed very slowly or not at all, except in the presence

of a catalyst. The interaction between the homogeneous and heterogeneous reactions is very complex

involving the production and consumption of reactant species at di¤erent rates both within the �uid and

on the catalyst surface such as reactions occurring in combustion, catalysis and biochemical systems.

Merkin [67, 68] studied the isothermal model for homogeneous heterogeneous reactions in the boundary

layer �ow with equal and di¤erent di¤usivities of reactant and autocatalyst. Further Chaudhary and

Merkin [69] analyzed the characteristics of homogeneous-hetrogeneous reactions in the boundary layer

�ow with loss of reactant. Khan and Pop [70] examined the problem of stagnation point �ow of viscous

�uid over a permeable wall in the presence of homogeneous-hetrogeneous reaction. Characteristics of

homogeneous-hetrogeneous reactions in the stagnation point �ow of viscous �uid towards a stretched

surface is investigated by Bachok et al. [71]. Shaw et al. [72] investigated the e¤ects of homogeneous-

heterogeneous reactions in the �ow of micropolar �uid induced by stretching/shrinking sheet embedded

in a porous medium. The analysis of homogeneous-heterogeneous reactions in �ow of nano�uid past a

permeable stretching sheet was examined by Kaneswaran et al. [73].
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1.3 Fundamental laws

1.3.1 Conservation law of mass

Law of mass conservation states that mass neither be created nor destroyed. Mathematically, for com-

pressible �uid it can be expressed as
@�

@t
+r: (�V) = 0: (1.1)

In above expression, � indicates the density of �uid and V the velocity �eld.

For incompressible �uid, we have

r:V = 0: (1.2)

In Cartesian coordinates, one can write it as follows:

@u

@x
+
@v

@y
+
@w

@z
= 0; (1.3)

while in cylindrical coordinates we have

1

r

@

@r
(rvr) +

1

r

@

@�
(v�) +

@

@z
(vz) = 0: (1.4)

1.3.2 Conservation law of linear momentum

This law states that total linear momentum of the system is conserved. It is derived from Newton�s

second law. Mathematically we have

�
dV

dt
=r:� + �b: (1.5)

Here left hand side (L. H. S.) of Eq. (1.5) represents inertial forces while on right hand side (R. H. S.)

�rst term represents surface forces and second term represents body forces. In the above expression d
dt

denotes material time derivative, � denotes density, V denotes velocity �eld, � represents Cauchy stress

tensor and b represents body force. For incompressible �uid Cauchy stress tensor is de�ned as

� = �pI+ S: (1.6)

Here p denotes pressure, I denotes identity tensor and S denotes extra stress tensor.

Using velocity �eld V = [u (x; y; z; t) ; v (x; y; z; t) ; w (x; y; z; t)], momentum equations in Cartesian

coordinates can be expressed in the following forms

�

�
@u

@t
+ u

@u

@x
+ v

@u

@y
+ w

@u

@z

�
=
@�xx
@x

+
@�xy
@y

+
@�xz
@z

+ �bx; (1.7)

�

�
@v

@t
+ u

@v

@x
+ v

@v

@y
+ w

@v

@z

�
=
@�yx
@x

+
@�yy
@y

+
@�yz
@z

+ �by; (1.8)

�

�
@w

@t
+ u

@w

@x
+ v

@w

@y
+ w

@w

@z

�
=
@� zx
@x

+
@� zy
@y

+
@� zz
@z

+ �bz; (1.9)
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where �xx; �xy; �xz; �yx; �yy; �yz; � zx; � zy and � zz represent the components of Cauchy stress tensor and

bx; by and bz represent components of body force.

Using velocity �eld V = [vr (r; �; z; t) ; v� (r; �; z; t) ; vx (r; �; z; t)] momentum equations in cylindrical

coordinates can be written as follows:

�

�
@vr
@t

+ vr
@vr
@r

+
v�
r

@vr
@�

� v2�
r
+ vz

@vr
@z

�
=
1

r

@

@r
(r� rr) +

1

r

@

@�
(� r�) +

@

@x
(� rz)�

� ��
r
+ �br; (1.10)

�

�
@v�
@t

+ vr
@v�
@r

+
v�
r

@v�
@�

� vrv�
r
+ vz

@v�
@z

�
=
1

r2
@

@r

�
r2� �r

�
+
1

r

@

@�
(� ��) +

@

@z
(� �z) + �b�; (1.11)

�

�
@vz
@t

+ vr
@vz
@r

+
v�
r

@vz
@�

+ vz
@vz
@z

�
=
1

r

@

@r
(r� zr) +

1

r

@

@�
(� z�) +

@

@z
(� zz) + �bz; (1.12)

in which � rr; � r�; � rz; � �r; � ��; � �z; � zr; � z� and � zz represent the components of Cauchy stress tensor and

br; b� and bz represent components of body force.

1.3.3 Conservation law of energy

The conservation law of energy physically depicts that total energy of the system remains constant. It is

derived from �rst law of thermodynamics. Mathematical form of this law can express as follows:

�cp
dT

dt
= � :L� divq� divqr: (1.13)

The term on the L.H.S. of Eq. (1.13) denotes internal energy, �rst term on R.H.S. denotes viscous

dissipation while the second and third terms represent thermal and radiative heat �uxes respectively. �

the density, cp the speci�c heat at constant pressure, T the temperature of �uid, � the Cauchy stress

tensor and q and qr depict thermal and radiative heat �uxes respectively. These thermal and radiative

heat �uxes are de�ned by Fourier�s law of heat conduction and Stefan Boltzman law respectively.

1.3.4 Equation of mass transfer

This law describes that total concentration of the system under observation remains constant. It is

derived from Fick�s second law. Mathematically it can be written in the absence of chemical reaction as

dC

dt
= �r:j: (1.14)

From Fick�s �rst law we have

j = �DrC: (1.15)

Hence equation of mass transfer becomes

dC

dt
= Dr2C; (1.16)

where C denotes concentration of specie, D denotes mass di¤usivity and j denotes mass �ux.
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1.4 Boundary layer constitutive equations

This thesis is based on the description of boundary layer �ows of Walters-B, second grade and third grade

�uids. Therefore we brie�y explain the mathematical modeling of these �uid models.

1.4.1 Walters B �uid

Walters [10-13] has presented an elegant model for the rheological equation of state of a viscoelastic �uid.

This model can accurately simulate the complex �ow behavior of various polymer solutions, hydrocarbons,

paints and other industrial liquids. The Walters-B model generates highly non-linear �ow equations which

are an order higher than the classical Navier�Stokes equations. It also introduces elastic properties of the

�uid which are important in extensional behavior of polymers. The extra stress tensor S for Walters-B

�uid is de�ned as:

S = 2�0A1 � 2k0
dA1
dt

; (1.17)

where
dA1
dt

=
@A1
@t

+V:rA1 �A1:rV� (rV)t
�
:A1; (1.18)

in which A1 denotes rate of strain tensor, V denotes the velocity �eld of �uid, dA1
dt denotes the covariant

derivatives of the rate of strain tensor in relation to the material in motion, �0 denotes the limiting

viscosity and k0 denotes the short memory coe¢ cient. The values of �0 and k0 are de�ned as follows:

�0 =

1Z
0

N (�) d�; (1.19)

k0 =

1Z
0

�N (�) d�; (1.20)

where N (�) denotes the distribution function with relaxation time �. By taking short term memory into

account the following term
1Z
0

�sN (�) d�; s � 2; (1.21)

is neglected in case of Walters-B �uid.

Components of Cauchy stress tensor of Walters-B �uid are

�xx = �p+ 2�0
@u

@x
� 2k0

 
u
@2u

@x2
+ v

@2u

@x@y
� 2

�
@u

@x

�2
� @u

@y

�
@v

@x
+
@u

@y

�!
; (1.22)

�yy = �p+ 2�0
@v

@y
� 2k0

 
u
@2v

@x@y
+ v

@2v

@y2
� 2

�
@v

@y

�2
� @v

@x

�
@v

@x
+
@u

@y

�!
; (1.23)
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�xy = �yx = �0

�
@u

@y
+
@v

@x

�
� k0

�
u

�
@2u

@x@y
+
@2v

@x2

�
+v

�
@2u

@y2
+

@2v

@x@y

�
� 2@u

@x

@v

@x
� 2@u

@y

@v

@y

�
: (1.24)

Invoking the components of Cauchy stress tensor in equation of motion and applying the boundary layer

approximations (u = O (1) ; x = O (1) ; v = O (�) ; y = O (�)), we have

u
@u

@x
+ �

@u

@y
= �1

�

@p

@x
+ �

@2u

@y2
� k0

�

�
u
@3u

@x@y2
+ v

@3u

@y3
+
@u

@x

@2u

@y2
� @u

@y

@2u

@x@y

�
: (1.25)

1.4.2 Second grade �uid

The constitutive equation for the Cauchy stress in a second-grade �uid is [14�17]:

� = �pI+�A1 + ��1A2 + ��2A21; (1.26)

where p denotes scalar pressure, I denotes the identity tensor and � denotes the coe¢ cient of viscosity.

The �rst two kinematic tensors A1 and A2 are

A1 = rV+(rV)t
�
; (1.27)

A2 =
dA1
dt

+A1 (rV)+ (rV)t
�
A1; (1.28)

in which V denotes the �uid velocity, d
dt is the material derivative and �

�
1 and �

�
2 are respectively the

viscoelasticity and cross-viscosity of the �uid. According to Dunn and Fosdick [14] and Fosdick and

Rajagopal [15] the equation (1.26) is compatible with thermodynamics in the sense that all motions

satisfy the Clausius-Duhem inequality and the assumption that at constant temperature the speci�c

Helmholtz free energy is a minimum in equilibrium then the material moduli must satisfy the conditions

given below:

� � 0; ��1 > 0; ��1 + �
�
2 = 0: (1.29)

Component form of two-dimensional steady �ow of second-grade �uid are

u
@u

@x
+ v

@u

@y
= �1

�

@p

@x
+ �

�
@2u

@x2
+
@2u

@y2

�
+
��1
�

�
5
@u

@x

@2u

@x2
+ u

@3u

@x3
+ v

@3u

@x2@y
+ u

@3u

@y2@x

+
@u

@y

@2u

@y@x
+
@u

@x

@2u

@y2
+ v

@3u

@y3
+
@u

@y

@2v

@x2
+ 2

@v

@x

@2v

@x2

�
; (1.30)

u
@v

@x
+ v

@v

@y
= �1

�

@p

@y
+ �

�
@2v

@x2
+
@2v

@y2

�
+
��1
�

�
2
@u

@y

@2u

@y2
+
@v

@x

@2u

@y2
+ u

@3v

@x3
+ v

@3v

@x2@y
+
@v

@x

@2v

@y@x

+u
@3v

@y2@x
+
@v

@y

@2v

@x2
+ 5

@v

@y

@2v

@y2
+ v

@3v

@y3

�
: (1.31)
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After using the boundary layer approximations, we have

u
@u

@x
+ v

@u

@y
= �1

�

@p

@x
+ �

@2u

@y2
+
��1
�

�
@u

@x

@2u

@y2
+ u

@3u

@x@y2
� @u

@y

@2v

@y2
+ v

@3u

@y3

�
: (1.32)

1.4.3 Third grade �uid

The Cauchy stress tensor � in third grade �uid is

� = �pI+ �A1 + ��1A2 + ��2A21 + �1A3 + �2 (A1A2 +A2A1) + �3
�
trA21

�
A1; (1.33)

in which I is the identity tensor, � is the �uid dynamic viscosity and ��1, �
�
2, �1, �2, �3 are the material

constants of third-grade �uid. Note that Eq. (1.33) is compatible with thermodynamics when the material

constants satisfy

� � 0; ��1 � 0; �1 = �2 = 0; �3 � 0; ��1 + ��2 �
p
24��3: (1.34)

The expression for Rivlin-Ericksen tensors A1, A2 and A3 are

A1 = rV + (rV)T ; (1.35)

A2 =
dA1
dt

+A1 (rV) + (rV)T A1; (1.36)

An =
dAn�1
dt

+An�1 (rV) + (rV)T An�1: (1.37)

Component form of two dimensional steady �ow of third-grade �uid are given below:

�

�
u
@u

@x
+ v

@u

@y

�
= �@p

@x
+ �

�
@2u

@x2
+
@2u

@y2

�
+ ��1

�
@u

@x

@2u

@y2
+ 13

@2u

@x2
+ 3

@u

@y

@2u

@x@y

+3
@u

@y

@2v

@x2
+ 2

@v

@x

@2u

@x@y
+ 4

@v

@x

@2v

@x2
+ v

@3u

@y3
+ v

@3u

@x2@y
+ u

@3u

@y2@x

+u
@3u

@x3

�
+ ��2

�
8
@u

@x

@2u

@x2
+ 2

�
@u

@y
+
@v

@x

��
@2u

@x@y
+
@2v

@x2

��
+2�3

(
4
@2u

@y2

�
@u

@x

�2
+ 3

@2u

@y2

�
@v

@x

�2
+ 3

@2u

@y2

�
@u

@y

�2
+4

@v

@x

�
@u

@x

@2v

@x2
+ 3

@u

@x

@2u

@x@y

�
+ 2

@u

@y

@v

@x

�
3
@2u

@y2
� @2u

@x2

�
+2

@u

@x

�
3
@2u

@x@y
+
@2v

@x2

�
+
@2u

@x2

 
20

�
@u

@x

�2
�
�
@v

@x

�2
�
�
@u

@y

�2!)
;

(1.38)

�

�
u
@v

@x
+ v

@v

@y

�
= �@p

@y
+ �

�
@2v

@x2
+

@2u

@x@y

�
+ ��1

�
@u

@y

�
4
@2u

@y2
� 2@

2u

@x2

�
� @2v

@x2
@u

@x

+13
@u

@x

@2u

@x@y
+ 3

�
@2u

@y2
� @2u

@x2

�
� v

�
@3u

@y2@x
+
@3u

@x3

�
+ u

�
@3v

@x3
� @3u

@x2@y

��
13



+��2

�
8
@u

@x

@2u

@x@y
+ 2

�
@u

@y
+
@v

@x

��
@2u

@y2
� @2u

@x2

��
+2�3

�
4
@u

@x

@v

@x

�
3
@2u

@x2
� @2u

@y2

�
+ 4

@2u

@x2

�
@2v

@x2
� 5 @

2u

@x@y

�
+ 12

@u

@y

@3u

@x3

+

�
@v

@x

�2� @2u

@x@y
+ 3

@2v

@x2

�
+ 6

@u

@y

@v

@x

@2v

@x2
+

�
@u

@y

�2� @2u

@x@y
+ 3

@2v

@x2

�4@u
@x

@2u

@y2
+ 2

@2u

@x@y

@v

@x

��
: (1.39)

After using the boundary layer approximations, we have
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In cylinderical co-ordinates, component form of two-dimensional steady �ow of third-grade �uid are given

below:
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Using boundary layer approximation, we have
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1.5 Solution methodology

Homotopy analysis technique was derived from the basic and fundamental topological concept character-

ized as homotopy. Two functions are said to be homotopic if one function can be continuously deformed

into the other function. If q1 and q2 are two continuous functions which maps from a topological space

U into topological space V then q1 is homotopic to q2 if there exists a continuous map Q

Q : U � [0; 1]! V; (1.44)

such that for each u 2 U

Q (u; 0) = q1 (u) ; Q (u; 1) = q2 (u) : (1.45)

Then map Q is called homotopic between q1 and q2. Homotopy analysis method is proposed by Liao [74]

in 1992, which is used to solve the highly nonlinear equations. Homotopy is a continuous deformation

or variation of a function/equation. It has several advantages over the other methods i.e., (i) it is

independent of small or large parameters (ii) ensures the convergence of series solution (iii) provides

great freedom to select the base function and linear operator. Such �exibility and freedom help us in

solving the highly nonlinear problems. This technique is applied successfully for the construction of series

solutions of various nonlinear problems [75-89].

Consider the nonlinear di¤erential equation of the form

N [u (�)] = 0; (1.46)

where N represents the nonlinear operator, u denotes an unknown dependent function and x denotes the

independent variable. The homotopic equation [74] is

(1� q)L [û(�; q)� u0(�)] = q}N [û(�; q)] ; (1.47)

in which the embedding parameter q; 0 � q � 1, the auxiliary parameter } 6= 0, auxiliary linear operator

L and initial guess u0(�) satisfying the boundary conditions. It is also noted that the above equation is

known as zeroth order deformation equation. When q = 0 and q = 1 then

û(�; 0)� u0(�) = 0; and û(�; 1)� u(�) = 0; (1.48)
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respectively. Thus with the variation of q from 0 to 1; the solution û(�; q) starts from initial guess u0(�)

and goes to the �nal solution u(�): Writing û(�; q) in the Taylor series corresponding to the embedding

parameter q we get

û(�; q) = u0(�) +

1X
m=1

um(�)q
m; um(�) =

1

m!

@mû(�; q)

@qm

����
q=0

: (1.49)

The mth order equation is

L [um(�)� �mum�1(�)] = }Rm (um�1) ; (1.50)

with

Rm (um�1) =
1

(m� 1)!
@m�1û(�; q)

@qm�1

����
q=0

; (1.51)

�m =

8<: 0; m � 1;

1; m > 1:
: (1.52)

The solution of equation can be obtained using a suitable software like MATHEMATICA or MAPLE. If

the auxiliary parameter, the initial guess and the auxiliary linear operator is chosen accurately, the series

will converge at q = 1

û(x) = u0(�) +

1X
m=1

um(�): (1.53)
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Chapter 2

Boundary-layer �ow of Walters-B �uid

with Newtonian heating

The �ow of Walters-B �uid over a stretching surface with Newtonian heating is studied in this chapter.

The governing partial di¤erential equations are �rst simpli�ed through boundary layer approximations

and then reduced into ordinary di¤erential equations by using the appropriate substitutions. The resulting

problems have been solved for the series solutions by homotopic approach. Convergence analysis is

performed and appropriate values are determined by plotting the so called ~�curves. Graphical results for

the dimensionless velocity and temperature are presented and discussed for various physical parameters.

In addition the expressions of skin friction coe¢ cient and the local Nusselt number are presented. The

dimensionless expressions of wall shear stress and wall mass �ux are analyzed graphically and numerically.

2.1 Mathematical formulation

We consider the magnetohydrodynamic stagnation point �ow of Walters-B �uid towards a stretching

sheet along the x-axis. The �ow is con�ned to y � 0. A uniform magnetic �eld of strength B0 is applied

perpendicular to the plane of stretching surface. The induced magnetic �eld is neglected through the

assumption of small magnetic Reynolds number. The electric �eld is absent. Let Um(x) = cx be the

velocity of stretching sheet while the velocity of external �ow is Ue(x) = ax; where a and c are the

positive constants. Using the velocity �eld V = [u (x; y) ; v (x; y) ; 0] and temperature T = T (x; y) �elds,

the governing two-dimensional boundary layer equations are ([14], [15]):

@u

@x
+
@v

@y
= 0; (2.1)

u
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+ v
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dx
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(u� Ue) ; (2.2)
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u
@T

@x
+ v

@T

@y
=

K

�cp

@2T

@y2
+
�B20
�cp

(u� Ue)2 ; (2.3)

where u and v are the velocity components parallel to the x� and y� directions respectively, � the �uid

density, � the electrical conductivity of �uid, K the thermal conductivity, T the temperature and cp the

speci�c heat. The boundary conditions are given by

u (x; 0) = Uw(x) = cx; v(x; 0) = vw = 0;
@T

@y

����
y=0

= �hsT;

u ! Ue(x) = ax; T ! T1 as y !1: (2.4)

It is noted that horizontal velocity Uw (x) at y = 0; represents the stretching velocity which is produced

by applying two forces equal in magnitude but opposite in direction such that origin is kept constant

while Ue (x) represents variable free stream velocity when y approaches in�nity. Vertical velocity vw at

y = 0; represents that their is no suction/injection at the surface. It is also noted that hs is the heat

transfer coe¢ cient (which measures the strength of Newtonian heating), c the stretching rate and T1 the

ambient temperature. In Eq. (2.4) the condition of temperature at y = 0; is known as the Newtonian

heating boundary condition which indicates that heat transfer rate from the bounding surface with �nite

heat capacity is proportional to the local surface temperature.

Introducing the following dimensionless variables

u (x; y) = cxf 0 (�) ; v (x; y) = �
p
c�f (�) ; � =

T � T1
T1

; � =

r
c

�
y; (2.5)

the governing transformed equations may be written as follows:

f 000 +A2 �
�
f 0
�2
+ ff 00 �We

h
2f 0f 000 � ff (iv) �

�
f 00
�2i�Ha2 �f 0 �A� = 0; (2.6)

f 0 (0) = 1; f (0) = 0; f 0 (1) = A; (2.7)

�00 + Pr f �0 +Ha2 PrEc
�
f 0 �A

�2
= 0; (2.8)

�0(0) = �1 (1 + � (0)) ; �(1) = 0; (2.9)

in which prime denotes di¤erentiation with respect to �; Pr the Prandtl number, We the Weissenberg

number, Ha the Hartman number, Ec the Eckert number and 1 the conjugate parameter for Newtonian

heating. These parameters are de�ned as

Ha =

s
�B20
�c

; A =
a

c
; We =

k0c

�0
;

Pr =
�0cp
K

; Ec =
U2m
cpT1

; 1 = hs

r
�

a
: (2.10)
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The skin friction coe¢ cient Cf and the local Nusselt number Nux are

Cf =
�w
�U2m

; Nux =
xqw

K (T � T1)
; (2.11)

in which the wall skin friction (�w) and the wall heat �ux (qw) are given by

�w =

"
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@u
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�
u
@2u

@x@y
+ v

@2u

@y2
+ 2

@u

@x
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@y

�3#
y=0

; qw = �K
�
@T

@y

�
y=0

: (2.12)

In dimensionless form, these quantities are expressed as follows:

(Rex)
1=2Cf = (1� 3We) f 00 (0) ; (Rex)

�1=2Nux = 1

�
1 +

1

� (0)

�
; (2.13)

where Rex = cx2=� denotes the local Reynolds number.

2.2 Mechanism of homotopy analysis

This method was proposed by Liao [108] in 1992, which is used to obtain the solutions of highly nonlinear

problems. It has several advantages over the other methods i.e., (i) it is independent of small or large

parameters (ii) ensures the convergence of series solution (iii) provides great freedom to select the base

function and linear operator. Such �exibility and freedom help us in solving the highly nonlinear problems.

It is also noted that linear part of the di¤erential equation is selected as the linear operator for the

homotopy analysis method. However in semi-in�nite domain it is preferred in such a way that the

solution appears in the form of exponential functions for rapid convergence analysis. For homotopy

solutions, we de�ne the velocity and temperature distributions by the following set of base functions.

n
�k exp (�n�) jk � 0; n � 0

o
; (2.14)

with

fm (�) =

1X
n=0

1X
k=0

akm;n�
k exp (�n�) ; (2.15)

�m(�) =
1X
n=0

1X
k=0

bkm;n�
k exp (�n�) ; (2.16)

where akm;n and b
k
m;n are the constants. We have chosen the following initial guesses f0 (�), �0 (�) and the

auxiliary linear operators Li (i = f; �) :

f0 (�) = A� + (1�A) (1� exp (��)) ; �0 (�) =
1 exp (��)
1� 1

; (2.17)

Lf [f (�)] =
d3f

d�3
� df

d�
; L� [� (�)] =

d2�

d�2
� �; (2.18)
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satisfying the following properties

Lf [C1 + C2 exp (�) + C3 exp (��)] = 0; (2.19)

L� [C4 exp (�) + C5 exp (��)] = 0:

in which Ci (i = 1� 5) are constants.

2.2.1 Zeroth-order deformation problems

The zeroth order deformation problems are

(1� q)Lf
h
f̂(�; q)� f0(�)

i
= q~fNf [f̂(�; q)]; (2.20)

(1� q)L�
h
�̂(�; q)� �0(�)

i
= q~�N�

h
f̂(�; q); �̂(�; q)

i
; (2.21)

f̂ (0; q) = 0;
@f̂ (�; q)

@�

�����
�=0

= 1;
@f̂ (�; q)

@�

�����
�!1

= A;

@�̂ (�; q)

@�

�����
�=0

= �1
�
1 + �̂ (�; q)

����
�=0

; �̂ (�; q)
���
�!1

= 0: (2.22)

In the above expressions q � [0; 1] and }f 6= 0; }� 6= 0 are the embedding and auxiliary parameters

respectively. The non-linear operators are given by

Nf [f̂(�; q)] =
@3f̂

@�3
+A2 �

 
@f̂

@�

!2
+ f

@2f̂

@�2
�We

"
2
@f̂

@�

@3f̂

@�3
� f @

4f̂

@�4

�
 
@2f̂

@�2

!235�Ha2 @f̂
@�
�A

!
; (2.23)

N�[f̂(�; q); �̂(�; q)] =
@2�̂

@�2
+ Pr f

@�̂

@�
+Ha2 PrEc

 
@f̂

@�
�A

!2
; (2.24)

where Nf and N� are the nonlinear operators. For q = 0 and q = 1; we have

f̂(�; 0) = f0(�); f̂(�; 1) = f(�); (2.25)

�̂(�; 0) = �0(�); �̂(�; 1) = �̂(�); (2.26)

and f̂(�; q) and �̂(�; q) vary from initial guesses f0(�); �0(�) to the �nal solutions f(�) and �(�) when q

varies from 0 to 1. By Taylor�s series expansion, we obtain

f̂(�; q) = f0(�) +
1P
m=1

fm(�)q
m; fm(�) =

1

m!

@mf̂(�; q)

@qm

�����
q=0

; (2.27)
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�̂(�; q) = �0(�) +
1P
m=1

�m(�)q
m; �m(�) =

1

m!

@m�̂(�; q)

@qm

�����
q=0

; (2.28)

where the convergence of above series strongly depend upon ~f and ~�: Considering that ~f and ~� are

selected properly so that Eqs. (2.27) and (2.28) converge at q = 1 and thus we have

f̂(�) = f0(�) +
1P
m=1

fm(�); (2.29)

�̂(�) = �0(�) +
1P
m=1

�m(�): (2.30)

2.2.2 mth-order deformation problems

Di¤erentiate Eqs. (2.20-2.22) m-times with respect to q and then set q = 0 we get the mth order

deformation equations for momentum and energy which are given below

Lf
h
f̂m(�)� �mf̂m�1(�)

i
= ~fRfm (�) ; (2.31)

f̂m (0; q) = 0;
@f̂m (�; q)

@�

�����
�=0

= 0;
@f̂m (�; q)

@�

�����
�!1

= 0; (2.32)

L�
h
�̂m(�)� �m�̂m�1(�)

i
= ~�R�m (�) ; (2.33)

@�̂m (�; q)

@�

�����
�=0

+  �̂m (�; q)
���
�=0

= 0; �̂m (�; q)
���
�!1

= 0: (2.34)

Nonlinear operator for momentum equation is

Rfm (�) = f 000m�1 (�) +A
2 (1� �m)�

m�1X
k=0

f 0m�1�kf
0
k +

m�1X
k=0

fm�1�kf
00
k

�We

m�1X
k=0

h
2f 0m�1�kf

000 � fm�1�kf (iv)k � f 00m�1�kf 00k
i
�Ha2f 0m�1

+Ha2A (1� �m) : (2.35)

Nonlinear operator for energy equation is

R�m (�) = �00m�1 (�) + Pr
m�1X
k=0

fm�1�k�
0
k +Ha

2 PrEc

m�1X
k=0

f 0m�1�kf
0
k

+Ha2 PrEcA2 (1� �m)� 2 Ha2 PrEc Af 0m�1 (�) : (2.36)

The general solutions of the mth order deformation problems are

f (�) = f� + C1 + C2 exp (�) + C3 exp (��) ; (2.37)

� (�) = �� + C4 exp (�) + C5 exp (��) ; (2.38)
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in which f� and �� are the particular solutions.

2.3 Convergence of the homotopy solutions

The convergence of series solutions and the approximation rate strongly depend upon auxiliary parameters

}f and }�. The appropriate values of these parameters can be determined by plotting the so-called

~�curves. Here }f� and }��curves for various values of Weissenberg number We have been plotted

in the Figs. 2.2 and 2.3. The admissible values of }f and }� lie along the line parallel to the }f�

and }��axes. For example when We = 0:5 the series solutions are convergent for ~f 2 [�1;�0:5] and

~� 2 [�1;�0:5].

2.4 Results and discussion

Physical interpretation to the obtained results of velocity and temperature distributions for various

parametric values is discussed in this section. Fig. 2.4 depicts the variations in the x�component of

velocity with an increase in Weissenberg number We: When the velocity of stretching sheet is greater

than the free stream velocity i.e. A < 1, the velocity decreases with an increase in We. However it

enhances with an increase in We when A > 1. Irrespective of the values of A, the momentum boundary

layer thins when We is increased. Physically increasing values of We enhance tensile stresses which

oppose the momentum transport and hence boundary layer thickness decreases. When �uid is passing

over the surface, a thin boundary layer in such situation exists within which the �uid adapts the velocity

of the body because of friction/drag forces or it is the distance from the plate/sheet to the region where

no changes occur in the velocity of the �uid. E¤ects of Hartman number on the horizontal component

of velocity are presented in Fig. 2.5. Larger values of Hartman number correspond to a decrease in

the velocity. In fact the applied transverse magnetic �eld in an electrically conducting �uid creates a

resistive force like drag force known as the Lorentz force. This force has tendency to resist the �uid

motion and due to this reason the momentum boundary layer thins with an increase in magnetic �eld

strength. Fig. 2.6 elucidates that velocity �eld f 0 is an increasing function of ratio A. The boundary

layer thickness increases with an increase in A when A < 1; whereas boundary layer becomes thinner

when A is increased provided A > 1: Further the boundary layer is not formed for A = 1. Fig. 2.7 shows

the in�uence of Weissenberg number on the temperature distribution. An increase in the Weissenberg

number leads to an increase in the local �uids temperature and thicker thermal boundary layer. Fig. 2.8

perceives the behavior of Hartman number on the temperature � (�). Increasing values of Ha indicates

stronger Lorentz force which enhances resistance in the �uid motion and hence augments the local �uid

temperature. Impact of ratio A on temperature can be seen from Fig. 2.9. We observed that both the

temperature and the thermal boundary layer thickness increase by enhancing the free stream velocity.

The behavior of conjugate parameter 1 characterizing the strength of Newtonian heating can be depicted

from Fig. 2.10. It is obvious that stronger convective heating allows the thermal e¤ect to penetrate deeper

into the quiescent �uid. Due to this reason the thermal boundary layer thickness with an increase in 1
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surface heat �ux, being proportional to 1 is an increasing function of 1 (see in Fig. 2.6). Prandtl number

being the ratio of momentum di¤usivity to the thermal di¤usivity reduces conduction but enhances pure

convection (i.e. heat �ow per unit area). Due to this reason thermal boundary layer thins and rate of

heat transfer at the sheet increases when Pr is increased (see Fig. 2.11). Viscous dissipation is the heat

generation within the �ow caused by shear in the �ow. Larger values of Ec heat up the �uid near the

immediate vicinity of the bounding surface and hence thermal boundary layer thickness increases (Fig.

2.12). E¤ects of Weissenberg number We on the wall shear stress can be examined from Fig. 2.13. It is

noticed that wall shear stress can be appreciably reduced by assuming larger Weissenberg number. On

the other hand an opposite behavior is noted for the ratio parameter A verses Hartman number Ha on

the skin friction coe¢ cient (see Fig. 2.14). Local Nusselt number decreases with an increase in Ec but

it increases for larger Prandtl number (see Figs. 2.15 and 2.16). Table 2.1 is prepared to analyze the

convergence of series solutions for a speci�c case. Tables 2.2 and 2.3 provide the numerical values of skin

friction coe¢ cient and local Nusselt number for di¤erent values of involved parameters. The magnitude

of skin friction coe¢ cient is reduced when either We or A is increased. The magnitude of local Nusselt

number enhances with the increase in Prandtl number Pr and A while it decreases for larger We, Ha

and Ec. Table 2.4 is drawn to analyze a comparative study in the limiting case by taking Ha = 0 =We.

This table shows a very good agreement.
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Fig. 2.1: Description of �ow model.

Fig. 2.2: }�curves for the function f (�) :
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Fig. 2.3: }�curves for the function � (�) :

Fig. 2.4: In�uence of We on f 0 (�).
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Fig. 2.5: In�uence of Ha on f 0 (�).

Fig. 2.6: In�uence of A on f 0 (�).
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Fig. 2.7: E¤ect of We on � (�).

Fig. 2.8: In�uence of Ha on � (�).
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Fig. 2.9: In�uence of A on � (�).

Fig. 2.10: In�uence of 1 on � (�).
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Fig. 2.11: In�uence of Pr on � (�).

Fig. 2.12: In�uence of Ec on � (�).
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Fig. 2.13: Variation of skin friction for di¤erent values of We when

0 � Ha � 2:

Fig. 2.14: Variation of skin friction for di¤erent values of A when 0 � Ha

� 1:4:
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Fig. 2.15: Variation of Nusselt number for di¤erent values of Ec when

0 �We � 0:5:

Fig. 2.16: Variation of Nusselt number for di¤erent values of Pr when

0 �We � 1:

32



Table 2.1: Convergence of homotopy solutions when Ha = A = 0:1; 1 = We = 0:2; Pr = 1 and

Ec = 0:7.

Order of approximation �f 00 (0) ��0(0)

1 1.0053 0.26247

5 1.0958 0.28885

10 1.1003 0.30049

12 1.1004 0.30260

34 1.1004 0.30662

38 1.1004 0.30662

45 1.1004 0.30662

60 1.1004 0.30662

Table 2.2: Numerical values of skin friction coe¢ cient Re1=2x Cf for di¤erent values of physical

parameters.

We Ha A �Re1=2x Cf

0.1 1 0.1 1.0380

0.2 0.6294

0.3 0.1683

0.1 1.0 0.1 1.0380

1.1 1.0920

1.2 1.1480

0.1 1.0 0.1 1.0380

0.2 1.0210

0.3 0.9925

Table 2.3: Numerical values of local Nusselt number Re�1=2x Nux for di¤erent values of physical

parameters.

We Ha A Pr Ec Re
�1=2
x Nux

0.1 1.0 0.1 1 0.5 0.3670

0.2 0.3621

0.3 0.3558

0.1 0.8 0.1 1 0.5 0.4091

0.9 0.3860

1.0 0.3670

0.1 1.0 0.2 1 0.5 0.3719

0.3 0.3757

0.4 0.3790
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We Ha A Pr Ec Re
�1=2
x Nux

0.1 1.0 0.1 1.1 0.5 0.3802

1.2 0.3919

1.3 0.4022

0.1 1.0 0.1 1 0.5 0.3670

0.6 0.3535

0.7 0.3423

Table 2.4: Comparison of f 00 (0) with Mahapatra and Gupta [90] and Hayat et al. [100] in the

limiting cases when We = Ha = 0.

f 00 (0)

A Mahapatra and Gupta [36] Hayat et al. [37] Present

0:1 �0:9694 �0:96802 �0:96803

0:2 �0:9181 �0:91692 �0:91690

0:5 �0:6673 �0:66722 �0:66721

2:0 2:0175 2:0175 2:0175

3:0 4:7293 4:7291 4:7292

2.5 Concluding remarks

Two-dimensional stagnation point �ow of Walters-B �uid towards a surface subject to Newtonian heating

is examined. The key points of this work are mentioned below.

� The horizontal velocity f 0(�) is decreasing function of Ha and We when A < 1 whereas it is

increasing functions of Ha and We for A > 1.

� Increasing values of Ha and We correspond to a thinner momentum boundary layer.

� An increase in Prandtl number decreases the thermal boundary layer thickness and it enhances rate

of heat transfer at the bounding surface.

� The temperature and surface heat transfer signi�cantly increases when strength of Newtonian heat-

ing is enhanced.
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Chapter 3

Analysis of melting heat transfer and

mixed convection in the �ow of

Walter-B �uid

The work in this chapter focuses on melting heat transfer in the stagnation point �ow of Walter-B �uid

toward an impermeable stretching sheet. Flow analysis is explored with mixed convection, viscous dis-

sipation and Joule heating. Suitable transformations are employed to achieve the systems of ordinary

di¤erential equations. Arising nonlinear problems are solved successfully for the convergent series solu-

tions. Charateristics of various pertinent parameters on the velocity and temperature distributions, skin

friction coe¢ cient and Nusselt number are examined. It is found that velocity has opposite behavior for

melting parameter and Weissenberg number.

3.1 Mathematical formulation

Let us consider the problem of steady mixed convection �ow of Walter-B �uid towards a stretching

surface. An incompressible �uid is electrically conducting in the presence of constant magnetic �eld

of strength (0; B0; 0). Electric �eld e¤ect is not included. Induced magnetic �eld for small magnetic

Reynolds number is neglected. E¤ects of viscous dissipation and Joule heating are present. Heat transfer

through melting process is taken into account. Here x and y� axes are taken along and perpendicular

to the sheet. The �ow is con�ned to y � 0. The velocity of stretching sheet is Uw(x) = cx and the

stagnation velosity is Ue(x) = ax (where a and c are positive constants). The governing two-dimensional

boundary layer �ow equations for present �ow problem are employed as follows:

@u

@x
+
@v

@y
= 0; (3.1)
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u
@u

@x
+ v

@u

@y
= Ue

dUe
dx

+ �
@2u

@y2
� k0

�

�
u
@3u

@x@y2
+ v

@3u

@y3
+
@u

@x

@2u

@y2

�@u
@y

@2u

@x@y

�
+ g�T (T � T1) +

�B20
�
(Ue � u) ; (3.2)

u
@T

@x
+ v

@T

@y
=

K

�cp

@2T

@y2
+
�B20
�cp

u2 +
�0
�cp

�
@u

@y

�2
+
2k0
�cp

"
@u

@x

�
@u

@y

�2
� 1
2
u
@u

@y

@2u

@x@y
� 1
2
v
@u

@y

@2u

@y2

+
@v

@y

�
@u

@y

�2#
; (3.3)

where u and v are the velocity components along the horizontal and vertical directions respectively, � the

�uid density, � the electrical conductivity of �uid, K the thermal conductivity, T the temperature, k0

the short memory coe¢ cient and cp the speci�c heat. The relevent boundary conditions for the velocity

and temprature �eld are [23]:

u (x; 0) = Uw(x) = cx; T (x; 0) = Tm; (3.4)

u! Ue(x) = ax; T ! T1 as y !1; (3.5)

K

�
@T

@y

�
y=0

= � [�+ cs(Tm � T0)] v(x; 0); (3.6)

in which � is the latent heat of the �uid, cs is the heat capacity of the solid surface, T1 the ambient

temperature. The boundary condition (3.6) shows that the heat conducted by the melting surface is

equal to the heat of melting along the heat required to raise T0 the solid temperature to Tm its melting

temperature.

Considering

u (x; y) = cxf 0 (�) ; v (x; y) = �
p
c�f (�) ; � =

T � Tm
T1 � Tm

; � =

r
c

�
y; (3.7)

the incompressibility condition is identically saties�ed, whereas Eqs. (3.2-3.6) give

f 000 +A2 �
�
f 0
�2
+ ff 00 �We

h
2f 0f 000 � ff (iv) �

�
f 00
�2i

+ (Ha)2
�
A� f 0

�
+Gr� = 0; (3.8)

�00 + Pr f �0 + PrEc
�
f 00
�2 �WePrEc[f 0(f 00)2 � ff 00f 000] + (Ha�A)2 PrEcf 02 = 0; (3.9)

f 0 (0) = 1; Pr f(0) +M�0 (0) = 0; �(0) = 0;

f 0 (1) = A; f 00 (1) = 0; �(1) = 1: (3.10)

In above equationsHa is the Hartman number, A is the ratio parameter, Gr is the Grashof number,We is
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the Weissenberg number, Pr is the Prandtl number, Ec is the Eckert number and M is the dimensionless

melting parameter (which is a combination of the Stefan numbers for the liquid Cp(T1 � Tm)=� and for

the solid cs(Tm � T0)=� phases). The values of these parameters are given below:

(Ha)2 =
�B20
�c

; A =
a

c
; Gr =

g�T (T1 � Tm)
c2x

; We =
k0c

�0
;

Pr =
�0cp
K

; Ec =
(cx)2

cp (T1 � Tm)
; M =

Cp(T1 � Tm)
�+ cs(Tm � T0)

: (3.11)

Expressions of skin friction coe¢ cient Cf and the local Nusselt number Nux can be written as follows:

Cf =
�xy

� (cx)2
; Nux =

rqw
K (T � T1)

; (3.12)

in which shear stress (�xy) and heat �ux (qw) at the wall are

�xy =

"
�0
@u

@y
� k0

�
u
@2u

@x@y
+ v

@2u

@y2
+ 2

@u

@x

@u

@y

�3#
y=0

; qw = �K
�
@T

@y

�
y=0

: (3.13)

Skin friction and local Nusselt number in dimensionless forms are

(Rex)
�1=2Cf = f1� 3Wegf 00 (0) ; (3.14)

(Rex)
�1=2Nux = ��0 (0) : (3.15)

3.2 Homotopic solutions

We de�ne the velocity and temperature distribution by a set of base functions

n
�k exp (�n�) jk � 0; n � 0

o
; (3.16)

in term of following in�nite series

fm (�) =
1X
n=0

1X
k=0

akm;n�
k exp (�n�) ; (3.17)

�m(�) =

1X
n=0

1X
k=0

bkm;n�
k exp (�n�) ; (3.18)

where akm;n and b
k
m;n are the constants. We have chosen the initial guesses f0 (�) and �0 (�) and the

auxiliary linear operators Lf and L� by the rule of solution expression and the boundary conditions

f0 (�) = A� + (1�A) (1� exp (��))� M

Pr
; �0 (�) = 1� exp (��) ; (3.19)

Lf [f (�)] =
d3f

d�3
� df

d�
; L� [� (�)] =

d2�

d�2
� �; (3.20)
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Lf [C6 + C7 exp (�) + C8 exp (��)] = 0;

L� [C9 exp (�) + C10 exp (��)] = 0; (3.21)

with Ci (i = 6� 10) as the constants.

3.2.1 Zeroth-order problem

The zeroth-order deformation problems are

(1� q)Lf
h
f̂ (�; q)� f0 (�)

i
= q}fNf

h
f̂ (�; q)

i
; (3.22)

@f̂ (�; q)

@�

�����
�=0

= 1; Pr f̂ (�; q)
���
�!0

+M
@�̂ (�; q)

@�

�����
�=0

= 0;
@f̂ (�; q)

@�

�����
�!1

= A; (3.23)

(1� q)L�
h
�̂ (�; q)� �0 (�)

i
= q}�N�

h
f̂ (�; q) ; �̂ (�; q)

i
; (3.24)

�̂ (�; q)
���
�!0

= 0; �̂ (�; q)
���
�!1

= 1: (3.25)

Here q 2 [0; 1] is embedding parmeter and }f and }� are non-zero auxiliary parameters. The non-linear

operators are

Nf
h
f̂ (�; q)
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@3f̂
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+A2 �
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+Gr �; (3.26)
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3.2.2 mth-order deformation problems

The mth order deformation problems are presented in the following forms:

Lf
h
f̂m (�)� �mf̂m�1 (�)

i
= }fRfm (�) ; (3.28)

@f̂ (�; q)

@�

�����
�=0

= 0; Pr f̂ (�; q)
���
�!0

+M
@�̂ (�; q)

@�

�����
�=0

= 0;
@f̂ (�; q)

@�

�����
�!1

= 0; (3.29)

L�
h
�̂m (�)� �m�̂m�1 (�)

i
= }fR�m (�) ; (3.30)
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�̂ (�; q)
���
�!0

= 0; �̂ (�; q)
���
�!1

= 0; (3.31)

Rfm (�) = f 000m�1 (�) +A
2 (1� �m)�

m�1X
k=0

f 0m�1�kf
0
k +

m�1X
k=0

fm�1�kf
00
k

�We

m�1X
k=0

h
2f 0m�1�kf

000 � fm�1�kf (iv)k � f 00m�1�kf 00k
i

+(Ha)2A (1� �m)� (Ha)2 f 0m�1 +Gr �m�1; (3.32)

R�m (�) = �00m�1 (�) + Pr
m�1X
k=0

fm�1�k�
0
k + PrEc

m�1X
k=0

f 00m�1�kf
00
k

�WePrEc
m�1X
k=0

"
3f 0m�1�k

kX
l=0

f 00k�lf
00
l � fm�1�k

kX
l=0k�l

f 00k�lf
000
l

#

+(Ha)2 PrEc
m�1X
k=0

f 0m�1�kf
0
k: (3.33)

For q = 0 and q = 1, we can write

f̂ (�; 0) = f0 (�) ; f̂ (�; 1) = f (�) ; (3.34)

�̂ (�; 0) = �0 (�) ; �̂ (�; 1) = � (�) ; (3.35)

and with the variation of q from 0 to 1, f̂ (�; q) and �̂ (�; q) vary from the initial solutions f0 (�) and �0(�)

to the �nal solutions f (�) and �(�) respectively. By Taylor�s series, we have

f̂ (�; q) = f0 (�) +
1X
m=1

fm (�) q
m; fm (�) =

1

m!

@mf̂ (�; q)

@qm

�����
q=0

; (3.36)

�̂ (�; q) = �0 (�) +

1X
m=1

�m (�) q
m; �m (�) =

1

m!

@m�̂ (�; q)

@qm

�����
q=0

: (3.37)

The value of auxiliary parameter is chosen in such a way that the above series converge at q = 1 i.e.

f̂ (�) = f0 (�) +

1X
m=1

fm (�) ; (3.38)

�̂ (�) = �0 (�) +
1X
m=1

�m (�) : (3.39)

The general solutions (fm; �m) of Eqs. (3:28� 3:31) in terms of special solutions (f�m; ��m) are given by

fm (�) = f�m + C6 + C7 exp (�) + C8 exp (��) ; (3.40)

�m (�) = ��m + C9 exp (�) + C10 exp (��) : (3.41)

39



3.3 Convergence of the homotopy solutions

The derived series solutions (3.36) and (3.37) contain auxiliary parameters }f and }�. The convergence

of the series solutions strongly depend upon these auxiliary parameters. In order to obtain the admissible

values of auxiliary parameters, the }-curves are sketched at 14th order of approximation for velocity and

15th order for temperature (see Fig. 3.1). It is found that range for admissible values of }f and }� are

�1 � }f < �0:1 and �1:3 � }� < �0:1:

3.4 Results and discussion

This section enlightens the e¤ects of various emerging parameters on the velocity, temperature, skin

friction coe¢ cient and local Nusselt number. Fig. 3.2 is displayed to examine the e¤ect of melting

parameterM on dimensionless velocity f 0. HereM = 0 corresponds to the case when melting heat e¤ects

are negligible and M 6= 0 when melting e¤ect is appreciable. It is noted from Fig. 3.2 that dimensionless

velocity f 0 increases when melting parameter is increased. Such increase in velocity enhances momentum

boundary layer. Fig. 3.3 illustrates the in�uence of Weissenberg number We on the dimensionless

velocity f 0. Clearly an increase in We shows a decrease in velocity f 0. In fact due to liquid elasticity

there is a restoring force by the �uid against deformation. E¤ect of ratio parameter A is presented in

Fig. 3.4. By increasing ratio parameter A the velocity f 0 increases whereas momentum boundary layer

thickness increases for A > 1 and it decreases for A < 1. In�uence of external magnetic �eld on velocity

f 0 is shown in Fig. 3.5. An increase in Hartman number Ha corresponds to an increase in applied

magnetic �eld. Consequently the magnitude of Lorentz force (a drag force) increases. Since Lorentz

force opposes the �ow therefore �uid particles are slows down (see Fig. 3.5). Momentum boundary layer

via Hartman number is decreased. E¤ect of buoyancy force is portrayed in Fig. 3.6. Here Gr > 0 is

the case when buoyant force acts as favourable pressure gradient where Gr < 0 corresponds to adverse

pressure gradient and buoyant force opposes the �ow (see Fig. 3.6). Momentum boundary layer thickness

increases for Gr > 0 and it decreases when Gr < 0. Comparison of Figs. 3.6 and 3.7 shows that Pr

and Gr have opposite e¤ects on velocity f 0(�). It is found from Fig. 3.8 that dimensionless temperature

� (�) decreases when melting parameter M is increased. Since melting causes a decrease in temperature

of sheet and heat �ows from hotter �uid to colder sheet. As expected the temperature of �uid decreases.

Fig. 3.9 indicates that the temperature decreases with an increase in We. Fig. 3.10 is presented to

see the in�uence of ratio parameter on temperature � (�). Here temperature increases but the thermal

boundary layer thickness reduces. Fig. 3.11 indicates that the temperature pro�le � (�) is increasing

function of Ha. However thermal boundary layer decreases. Figs. 3.12 and 3.13 have been potrayed to

investigate the e¤ects of Pr and Ec on the temperature � (�). From Fig. 3.12 we observed that larger Pr

corresponds to an increase in temperature and decay in thermal boundary layer thickness through lower

thermal di¤usitivity. Similar behavior is noted for Eckert number Ec on the temperature � (�). Fig.

3.14 gives the variation of We on the local skin friction coe¢ cient versus Ha (1 � Ha � 2). There is an

enhancement in the skin friction coe¢ cients when Weisenberg numberWe increases. Fig. 3.15 represents
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the e¤ects of ratio A on the local skin friction coe¢ cient Re1=2x Cf versus M when 0 � M � 1. Skin

friction coe¢ cient is increased by increasing A: Figs. 3.16 and 3.17 display the e¤ect of Pr on skin friction

coe¢ cient when Gr (0:6 � Gr � 2) and Ec (0 � Ec � 1) : It is observed that Pr have opposit behavior

with respect to Gr and Ec. Fig. 3.18 indicates that the e¤ect of We on Nusselt number is a decreasing

function when 1 � Ha � 2. Nusselt number is increased for ratio parameter A when 0 � M � 1 (see

Fig. 3.19). E¤ect of Pr on Re�1=2x Nux corresponding to Gr and Ec is given in the Figs. 3.20 and 3.21.

These Figs. elucidate that both have the same increasing behavior.

Fig. 3.1: }�curves for the functions f (�) and � (�) :
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Fig. 3.2: In�uence of M on f 0 (�) :

Fig. 3.3: In�uence of We on f 0 (�) :
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Fig. 3.4: In�uence of A on f 0 (�) :

Fig. 3.5: In�uence of Ha on f 0 (�) :
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Fig. 3.6: In�uence of Gr on f 0 (�) :

Fig. 3.7: In�uence of Pr on f 0 (�) :
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Fig. 3.8: In�uence of M on �(�).

Fig. 3.9: In�uence of We on �(�).
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Fig. 3.10: In�uence of A on �(�).

Fig. 3.11: In�uence of Ha on �(�).
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Fig. 3.12: In�uence of Pr on �(�).

Fig. 3.13: In�uence of Ec on �(�).

47



Fig. 3.14: In�uence of We on Re1=2x Cf when 1 � Ha � 2.

Fig. 3.15: In�uence of We on Re1=2x Cf when 0 �M � 1.
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Fig. 3.16: In�uence of Pr on Re1=2x Cf when 0:45 � Gr � 2.

Fig. 3.17: In�uence of Pr on Re1=2x Cf when 0:0 � Ec � 1.
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Fig. 3.18: In�uence of Pr on Re�1=2x Nux when 1 � Ha � 2.

Fig. 3.19: In�uence of A on Re�1=2x Nux when 0 �M � 1.
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Fig. 3.20: In�uence of Pr on Re�1=2x Nux when 0 � Gr � 1.

Fig. 3.21: In�uence of Pr on Re�1=2x Nux when 0 � Ec � 1.
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Table 3.1: Convergence of homotopy solutions when We = 0:2; Ha = 0:1; M = 0:1; A = 0:2;

Gr = 0:1; Pr = 1 and Ec = 0:7:

Order of approximation �f 00 (0) �0(0)

1 0.8483 0.9481

2 0.8891 0.9141

5 0.9767 0.8693

10 1.0500 0.8602

19 1.0690 0.8752

28 1.0690 0.8858

30 1.0690 0.8858

35 1.0690 0.8858

3.5 Concluding remarks

The main observations of the presented analysis are listed below.

� E¤ects of melting parameter M and Weissenberg number We on the velocity are opposite.

� E¤ect of ratio A is to increase both the velocity and temperature �elds signi�cantly.

� E¤ects of We, Ha and Pr on velocity pro�le f 0 are similar in a qualitative sense.

� Behaviors of We and Pr on the temperature � are opposite.

� Temperature �eld is increased via Eckert number Ec.

� Nusselt number for Pr versus both Gr and Ec are opposite when 0:6 � Gr � 2 and 0 � Ec � 1.

� Skin friction coe¢ cient for A and Pr are similar when 0 �M � 1 and 0 � Ec � 1.
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Chapter 4

Impact of melting phenomenon in the

Falkner-Skan wedge �ow of second grade

nano�uid: A revised model

This chapter investigates the magnetohydrodynamic (MHD) Falkner-Skan �ow of second grade nano�uid.

The �ow is caused by a stretching wedge with melting heat transfer and heat generation/absorption. A

system of ordinary di¤erential equations is obtained by using suitable transformations. Convergent

series solutions are derived. In�uence of various pertinent parameters on the velocity, temperature

and concentration is evaluated. Analysis of the obtained results shows that �uid �ow enhances with

the increase of wedge and second grade �uid parameters. Also thermophoresis and Brownian motion

parameters have reverse behavior on the temperature and concentration �elds.

4.1 Mathematical formulation

Consider the steady two-dimensional Falkner-Skan �ow of an incompressible second grade nano�uid.

Fluid �ow is induced by a stretched wedge with the velocity Uw(x) = bxn: The free stream velocity

is Ue(x) = axn where b, a and n are positive constants with 0 � n � 1. We have chosen T1 > Tm

where Tm is the temperature of the melting surface and T1 the ambient temperature. The �ux of the

nanoparticle volume fraction at y = 0; is taken to be zero. A uniform magnetic �eld of strength B0 is

applied at an angle  . Electric and induced magnetic �elds are neglected. E¤ects of Brownian motion

and thermophoresis are presented. Under these assumptions, the boundary layer equations governing the

�ow can be expressed as follows:
@u

@x
+
@v

@y
= 0; (4.1)

u
@u

@x
+ v

@u

@y
= �

@2u

@y2
+
��1
�

�
@u

@x

@2u

@y2
+ u

@3u

@y2@x
� @u

@y

@2v

@y2
+ v

@3u

@y3

�
+Ue

dUe
dx

� �B20
�
sin2  (u� Ue) ; (4.2)
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u
@T

@x
+ v

@T

@y
=

k

�cp

@2T

@y2
+ �

"
DB

@T

@y

@C

@y
+
DT
T1

�
@T

@y

�2#
+
Q0
�cp
(T � Tm); (4.3)

u
@C

@x
+ v

@C

@y
= DB

@2C

@y2
+
DT
T1

@2T

@y2
: (4.4)

The corresponding boundary conditions are

u = Uw(x) = bxn; T = Tm; DB
@C

@y
+
DT
T1

@T

@y
= 0 at y = 0;

u! Ue(x) = axn; T ! T1; C ! C1 as y !1; (4.5)

and

k

�
@T

@y

�
y=0

= � [�+ cs(Tm � T0)] v(x; 0); (4.6)

where u represents velocity along x� direction and v the velocity along y� direction, � the kinematic

viscosity, ��1 the material �uid parameter, � the �uid density, � the electrical conductivity of the �uid,

T the temperature, k the �uid thermal conductivity, DB the Brownian di¤usion coe¢ cient, DT the

thermophoresis di¤usion coe¢ cient, Q0 the dimensional heat generation/absorption coe¢ cient, cp the

speci�c heat, C the concentration, C1 the ambient �uid concentration, � the �uid latent heat and cs

the surface heat capacity. The boundary condition (4.6) shows that the heat conducted to the melting

surface is equal to the melting heat plus the sensible heat required to raise the solid temperature T0 to

its melting temperature Tm (see Epstein and Cho [19]).

We employ the following transformations

� =

�
(n+ 1)Ue
2�x

� 1
2

y; 	 =

�
2�xUe
n+ 1

� 1
2

f(�); �(�) =
T � Tm
T1 � Tm

; �(�) =
C � Cm
C1 � Cm

; (4.7)

where Cm is melting surface concentration and 	 is the stream function de�ned through the relationship

u = @	=@y; v = �@	=@x. Here the continuity equation is satis�ed automatically and Eqs. (4:2 � 4:6)

take the following forms:

f 000 +

�
2n

n+ 1

�
(1� f 02) + ff 00 + �1

�
(3n� 1)f 0f 000 +

�
3n� 1
2

�
f 002

+(n� 1)�f 00f 000 �
�
n+ 1

2

�
ff iv

�
� (Ha)2 sin2  (f 0 � 1) = 0; (4.8)

1

Pr
�00 + f�0 +Nb�0�0 +Nt�02 + �� = 0; (4.9)

1

Sc
�00 + f�0 +

Nt

Nb
�00 = 0; (4.10)

f 0(�) = A; Pr f(�) +M�0(�) = 0; �(�) = 0; Nb�0(�) +Nt�0(�) = 0 at � = 0;

f 0(�)! 1; �(�)! 1; �(�)! 1 as � !1: (4.11)

Here �1 = ��1ax
n�1=� the second grade �uid parameter, (Ha)2 = �B20=�ax

n�1 the Hartman number,
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Pr = �cp=k the Prandtl number, Nb = �DB(C1 � Cm)=� the Brownian motion parameter, Nt =

�DT (T1 � Tm)=�T1 the thermophoresis parameter, � = Q0S=�cpax
n�1 the heat generation/absorption

parameter, Sc = �=DB the Schmidt number, A = b=a the ratio of rates and M = Cp(T1 � Tm)=(� +

cs(Tm � T0)) the melting parameter.

Skin friction coe¢ cient is de�ned by

Cf =
2�xy
�U2w

; �xy = �
@u

@y

����
y=0

+ ��1

�
u
@2u

@y@x
+ v

@2u

@y2
+ 2

@u

@x

@u

@y

�
y=0

: (4.12)

In dimensionless form, the above equation can be written below:

(Rex)
1=2Cf = f 00(0)� �1

�
n+ 2

2
A+

n+ 1

2
f(0)

�
f 00(0): (4.13)

Nusselt number with heat transfer qw is de�ned as

Nux =
xqw

k (T1 � Tm)
; qw = �k

@T

@y

����
y=0

: (4.14)

In dimensionless form, the above equation becomes

(Rex)
�1=2Nux = ��0(0): (4.15)

4.2 Homotopic solutions

Initial guesses (f0(�); �0(�); �0(�)) and linear operators (Lf ; L�; L�) are taken in the forms:

f0(�) = A
�
1� e��

�
� M

Pr
; �0(�) = 1� e��; �0(�) = 1 + e�

Nt
Nb
�; (4.16)

Lf = f 000 � f 0; L� = �00 � �; L� = �00 � �; (4.17)

with

Lf (C11 + C12e� + C13e��) = 0; L�(C14e� + C15e��) = 0; L�(C16e� + C17e��) = 0; (4.18)

where C11 � C17 are the arbitrary constants.

4.2.1 Zeroth�order deformation equations

The zeroth order deformation problems are constructed as follows:

(1� q)Lf
h
f̂(�; q)� f0(�)

i
= q~fNf [f̂(�; q)]; (4.19)

(1� q)L�
h
�̂(�; q)� �0(�)

i
= q~�N�[�̂(�; q); f̂(�; q); �̂(�; q)]; (4.20)
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(1� q)L�
h
�̂(�; q)� �0(�)

i
= q~�N�[�̂(�; q); f̂(�; q); �̂(�; q)]; (4.21)

where q 2 [0; 1] is the embedding parameter, ~f , ~� and ~� are the non-zero auxiliary parameters and

Nf ; N� and N� are the nonlinear operators given by
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� (Ha)2 sin2  
 
@f̂(�; q)

@�
� 1
!
; (4.22)
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�̂(�; q); f̂(�; q); �̂(�; q)

i
=

1

Pr
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@�̂(�; q)
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+Nb

@�̂(�; q)

@�

@�̂(�; q)
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+Nt

 
@�̂(�; q)

@�
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+ ��̂(�; q); (4.23)

N�[�̂(�; q); f̂(�; q); �̂(�; q)] =
1
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@2�̂(�; q)

@�2
+ f̂(�; q)

@�̂(�; q)

@�
+
Nt

Nb

@2�̂(�; q)

@�2
: (4.24)

The boundary conditions are

f̂ 0(0; q) = A; Pr f̂(0; q) +M�̂
0
(0; q) = 0; f̂ 0(1; q) = 1;

�̂(0; q) = 0; �̂(1; q) = 1;

Nb�̂
0
(0; q) +Nt�̂

0
(0; q) = 0; �̂(1; q) = 1: (4.25)

4.2.2 mth�order deformation equations

The mth-order deformation equations can be written in the forms

Lf [fm(�)� �mfm�1(�)] = ~fRmf (�); (4.26)

L� [�m(�)� �m�m�1(�)] = ~�Rm� (�); (4.27)

L�
�
�m(�)� �m�m�1(�)

�
= ~�Rm� (�); (4.28)

Rmf (�) = f 000m�1 +

�
2n
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k
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00
k + (n� 1)�
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f 00m�1�kf
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Rm� (�) =
1
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�00m�1 +

m�1P
k=0

�
�0m�1�lfl +Nb�

0
l�j�

0
j +Nt�

0
l�j�

0
j

�
+ ��m�1; (4.30)

Rm� (�) =
1

Sc
�00m�1 +

m�1P
k=0

�0m�1�lfl +
Nt

Nb
�00m�1; (4.31)

with boundary conditions

f 0m(0) = Pr fm(0) +M�0m(0) = f 0m(1) = �m(0) = 0;

�m(1) = Nb�0m(0) +Nt�
0
m(0) = �m(1) = 0: (4.32)

The general solutions (fm; �m; �m) comprising the special solutions (f
�
m; �

�
m; �

�
m) are given by

fm(�) = f�m(�) + C11 + C12e
� + C13e

��;

�m(�) = ��m(�) + C14e
� + C15e

��;

�m(�) = ��m(�) + C16e
� + C17e

��; (4.33)

where the constants Ci (i = 11; 12; :::; 17) through the boundary conditions (4.32) have the values

C12 = C14 = C16 = 0; C11 = �C13 � f�m(0)�
M

Pr

 
��m(0) +

@��m(�)

@�

����
�=0

!
;

C15 = ���m(0); C17 =
@��m(�)

@�

����
�=0

+
Nt

Nb

 
��m(0) +

@��m(�)

@�

����
�=0

!
: (4.34)

4.3 Convergence of the homotopy solutions

A homotopy analysis technique provides us great freedom and an easy way to adjust and control the

convergence region of the series solutions. The auxiliary parameters ~f ; ~� and ~� play an important role

for the convergence of the series solutions. Therefore we have sketched the ~�curves at 10th�order of

approximations (see Fig. 4.1(a, b)). The admissible ranges of the auxiliary parameters are �1:5 � ~f �

�0:6; �1:35 � ~� � �0:65 and �1:2 � ~� � �0:65. Table 4.1 shows the convergence of series solutions

of momentum, temperature and concentration equations. It is noted that 15th order of approximation is

su¢ cient for the convergence of f 00(0) and 30th order of approximations are enough for the convergence

of �0(0) and �0(0):
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4.4 Results and discussion

In�uence of various involved parameters on the velocity, temperature and concentration pro�les is

sketched in this section (see Figs. (4:2� 4:14)).

4.4.1 Dimensionless velocity pro�le

E¤ect of wedge parameter n on the velocity pro�le f 0(�) is analyzed in Fig. 4.2. There is an increase in

velocity when n is increased. In Fig. 4.3, the velocity pro�le is plotted for di¤erent values of angle of

inclination  : An increase in the angle of inclination � leads to a decrease in the velocity and momentum

boundary layer thickness. It is also noted that for  = 0 the magnetic �eld has no e¤ect on the velocity

pro�le. Fig. 4.4 illustrates the variation of second grade �uid parameter �1 on the velocity pro�le f 0(�).

It is observed that the velocity pro�le f 0(�) and boundary layer thickness are increasing functions of �1.

Behavior of Hartman number Ha on velocity pro�le f 0(�) is displayed in Fig. 4.5. The applied magnetic

�eld has the tendency to slow down the movement of the �uid which decreases the velocity pro�le.

4.4.2 Dimensionless temperature pro�le

E¤ect of thermophoresis parameter Nt on the temperature pro�le �(�) is depicted in Fig. 4.6. Substantial

increase in temperature is observed by increasing thermophoresis parameter Nt: Signi�cant rise in �uid

temperature is observed when Brownian motion parameter Nb is enhanced (see Fig. 4.7). Fig. 4.8

displays the in�uence of Prandtl number Pr on the temperature �(�). Here the temperature pro�le

increases in the presence of melting parameter by increasing Pr but thermal boundary layer thickness

decreases. In fact with an increase of Pr, heat is transferred towards the plate during the melting

process and consequently the temperature pro�le increases. It can be seen from Fig. 4.9 that the

heat generation and absorption parameter � has opposite e¤ect on the temperature �eld �(�): It is

observed that temperature distribution is increasing function of heat generation parameter while it is

decreasing function of heat absorption parameter. Because heat generation process produces more heat

so temperature pro�le enhances. Temperature �eld increases for larger values of angle of inclination  (see

Fig. 4.10). Since increasing values of angle  corresponds to stronger magnetic �eld which opposes the

�uid motion. Hence temperature pro�le increases. Fig. 4.11 shows the variations of melting parameter

M on temperature pro�le. It is noted that temperature pro�le decreases for larger values of melting

parameter due to the fact that temperature di¤erence increases between ambient and melting surface

which reduces the temperature of the �uid. Further the thermal boundary layer thickness increases when

melting parameter is increased.

4.4.3 Dimensionless concentration pro�le

Concentration pro�les �(�) for di¤erent values of thermophoresis parameter Nt, Brownian motion pa-

rameter Nb and Schmidt number Sc are plotted in the Figs. (4.12-4.14). E¤ect of thermophoresis

parameter Nt on the concentration pro�le is shown in Fig. 4.12. There is a decrease in concentration
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when Nt is increased. Fig. 4.13 elucidates the variations in the concentration �eld � for increasing values

of Brownian motion parameter Nb. Here concentration pro�le increases with an increase in Nb: E¤ect of

Schmidt number Sc on concentration pro�le is shown in Fig. 4.14. Decreasing behavior of concentration

pro�le is noted for larger Schmidt number. In fact Schmidt number is the ratio of momentum di¤usivity

to mass di¤usivity. Hence higher values of Schmidt number correspond to small mass di¤usivity and the

concentration pro�le decreases.

4.4.4 Local skin friction coe¢ cient and Nusselt number

In Table 4.2 some numerical values of local skin friction coe¢ cient and Nusselt number are given. Tabular

values show that skin friction coe¢ cient decreases by increasing n; Nt and Nb while it increases for larger

values of �1, Ha,  and M . It is also noted that Nusselt number decreases by increasing n; �1, M and

Nb and it increases for larger values of Ha,  and Nt. Table 4.3 represents the comparison of present

study with Kuo [36] and White [37] when n = �1 = Ha =  = 0. It is worth mentioning that the

comparison is in good agreement.

Fig. 4.1(a): ~�curves for f 00(0) and �0(0):
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Fig. 4.1(b): ~�curve for �0(0).

Fig. 4.2: E¤ect of n on f 0(�):
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Fig. 4.3: E¤ect of  on f 0(�):

Fig. 4.4: E¤ect of �1 on f 0(�):
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Fig. 4.5: E¤ect of Ha on f 0(�):

Fig. 4.6: E¤ect of Nt on �(�):
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Fig. 4.7: E¤ect of Nb on �(�):

Fig. 4.8: E¤ect of Pr on �(�):
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Fig. 4.9: E¤ect of � on �(�):

Fig. 4.10: E¤ect of  on �(�):
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Fig. 4.11: E¤ect of M on �(�):

Fig. 4.12: E¤ect of Nt on �(�):

65



Fig. 4.13: E¤ect of Nb on �(�):

Fig. 4.14: E¤ect of Sc on �(�):
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Table 4.1: Convergence of HAM solutions for di¤erent order of approximations when n = 0:6,

Ha = 0:3, M = � = 0:2;  = �=4; �1 = Nt = 0:1; Nb = 0:5 and Pr = Sc = 1:2:

Order of approximation �f 00 (0) �0(0) ��0 (0)

1 0.7938 0.9655 0.1931

5 0.7222 0.8641 0.1728

10 0.7182 0.7851 0.1570

15 0.7188 0.7375 0.1475

30 0.7188 0.7085 0.1417

35 0.7188 0.7085 0.1417

50 0.7188 0.7085 0.1417

Table 4.2: Numerical values of local skin friction coe¢ cient and Nusselt number when A = � = 0:1;

Pr = 1:2 and Sc = 1:3.

n �1 Ha  M Nt Nb (Rex)
1=2Cf �Re�1=2x Nux

0.0 0.1 0.5 �=3 0.3 0.1 0.5 0.3870 0.5799

0.1 0.3158 0.5127

0.2 0.2853 0.4853

0.2 0.0 0.5 �=3 0.3 0.1 0.5 0.2825 0.5239

0.1 0.2853 0.4853

0.2 0.2863 0.4709

0.2 0.1 0.4 �=3 0.3 0.1 0.5 0.2112 0.4617

0.5 0.2853 0.4853

0.6 0.3636 0.5065

0.2 0.1 0.5 �=5 0.3 0.1 0.5 0.1595 0.4662

�=3 0.2853 0.4853

�=2 0.3452 0.5238

0.2 0.1 0.5 �=3 0.3 0.1 0.5 0.2853 0.4853

0.4 0.2871 0.4632

0.5 0.2909 0.4450

0.2 0.1 0.5 �=3 0.3 0.1 0.5 0.2853 0.4853

0.3 0.2830 0.5598

0.5 0.2801 0.5737

0.2 0.1 0.5 �=3 0.3 0.1 0.3 0.2874 0.5231

0.4 0.2867 0.5038

0.5 0.2853 0.4853
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Table 4.3: Comparison of f (�) and f 0 (�) with the numerical solutions by Kuo [36] and White [37]

when n = �1 = Ha =  = 0.

f (�) f 0 (�)

� Present Kuo [36] White [37] Present Kuo [36] White [37]

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.1 0.002346 0.002348 0.00235 0.046956 0.046959 0.04696

0.2 0.009390 0.009391 0.00939 0.093906 0.093905 0.09391

0.3 0.021127 0.021128 0.02113 0.140807 0.140806 0.14081

0.4 0.037547 0.037549 0.03755 0.187606 0.187605 0.18761

0.5 0.058641 0.058643 0.05864 0.234227 0.234228 0.23423

0.6 0.084384 0.084386 0.08439 0.280578 0.280575 0.28058

0.7 0.114749 0.114745 0.11474 0.326534 0.326532 0.32653

0.8 0.149676 0.149674 0.14967 0.371965 0.371963 0.37196

0.9 0.189113 0.189115 0.18911 0.416716 0.416718 0.41672

1.0 0.232994 0.232990 0.23299 0.460632 0.460633 0.46063

1.1 0.281205 0.281208 0.28121 0.503536 0.503535 0.50354

1.2 0.333654 0.333657 0.33366 0.545248 0.545246 0.54525

1.3 0.390213 0.390211 0.39021 0.585587 0.585589 0.58559

1.4 0.450726 0.450724 0.45072 0.624385 0.624386 0.62439

1.5 0.515032 0.515031 0.51503 0.661472 0.661474 0.66147

2.0 0.886795 0.886797 0.88680 0.816696 0.816695 0.81669

2.2 1.054943 1.054947 1.05495 0.863302 0.863304 0.86330

2.6 1.414826 1.414824 1.41482 0.930602 0.930601 0.93060

3.0 1.795565 1.795568 1.79557 0.969053 0.969055 0.96905

4.5 Concluding remarks

Characteristics of melting heat transfer in Falkner-Skan wedge �ow of second grade nano�uid is studied.

E¤ects of heat generation/absorption are also taken into account. The key points are summarized as

follows:

� Fluid �ow enhances with the increase of wedge and second grade �uid parameters.

� Angle of inclination has opposite e¤ect on the velocity and temperature.

� Increasing values of Prandtl number correspond to high temperature.

� Thermophoresis and Brownian motion parameters have reverse behavior on the temperature and

concentration �elds.

� Increasing values of Schmidt number decrease the concentration �eld.
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� Wall shear stress and heat transfer rate increase by increasing Hartman number and angle of

inclination.

� Present analysis is in good agreement with previous published results in limiting sense.
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Chapter 5

MHD axisymmetric �ow of third grade

�uid between stretching sheets with

heat transfer

This chapter looks at the heat transfer e¤ects in magnetohydrodynamic (MHD) axisymmetric �ow of

third-grade �uid between the stretching sheets. Viscous and Joule heating e¤ects are given due atten-

tion. The resulting nonlinear problem is computed for velocity and temperature �elds. Expressions of

skin friction coe¢ cient and local Nusselt number are calculated. Dimensionless results of velocity and

temperature �elds are examined for various parameters of interest. Numerical values of skin friction

coe¢ cient and Nusselt number are obtained and analyzed.

5.1 Mathematical formulation

Let us consider the heat transfer characteristics in the �ow of an electrically conducting third grade �uid

between the radial stretching sheets: Constant magnetic �eld of strength B0 is applied perpendicular to

planes of sheet (i.e. along z-direction). There is no external electric �eld and induced magnetic �eld

is neglected under the assumption of small magnetic Reynolds number. Both sheets are maintained at

constant temperature Tw. In addition Joule heating and viscous dissipation are present. Conservation

laws of mass, momentum and energy equations are given below:
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The boundary conditions are

u (r;H) = ar;
@u (r; 0)

@z
= 0; T (r;H) = Tw; (5.5)

w (r;H) = 0; w (r; 0) = 0; T (r; 0) = Tw; (5.6)

where a is the stretching rate.

Setting

u (r; z) = arf 0 (�) ; w (r; z) = �2aHf (�) ; � = T

Tw
; � =

z

H
; (5.7)

incompressible condition is automatically satis�ed and Eqs. (4:11)� (4:15) after eliminating the pressure

terms give

f (iv) + 2Re ff 000 � 2�1
h
2f 00f 000 + f 0f (iv) + ff (v)

i
� 2�2

h
2f 00f 000 + f 0f (iv)

i
+�
h
56f 00

3
+ 192f 0f 00f 000 + 24f 0

2
f (iv) + 12�2f 00f 000

2
+ 6�2f 00

2
f (iv)

i
�ReHa2f 0 = 0; (5.8)

�00 + 2PrRe f�0 + EcPr
�
12f 02 + �2f 002 � �1

n
24f 03 + 24ff 0f 00 + 2�2f 0f 00

2
+ 2�2ff 00f 000

o
��2

�
24f 03 + 3�2f 0f 002

	
+ �

n
288f 04 + 48�2f 02f 002 + 2�4f 00

4
o
+ReHa2f 02

i
= 0; (5.9)

f 0 (1) = 1; f 00 (0) = 0 f (1) = 0; f (0) = 0; (5.10)

�(1) = 1; �(0) = 0; (5.11)

where the dimensionless parameters are

Re =
aH2

�
; Ha2 =

�B20H

�ar
; � =

�

�
; �1 =

��1a

�
; � =

r

H
;

�2 =
��2a

�
; � =

�3a
2

�
; Pr =

�cp
K

; Ec =
a2H2

cpTw
: (5.12)

Here Re denotes the Reynolds number, Pr the Prandtl number, Ec the Eckert number, Ha the Hartman

number, (�1; �2; �) third-grade parameters and � the dimensionless radial distance.
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Local skin friction coe¢ cient is de�ned by

Cf =
�w

1
2� (ar)

2 =
� rzjz=H
1
2� (ar)

2 ;

Cf = Re
�1=2
r

h
2f 00 (1) + 4�1f

000 (1)� 4�2f 000 (1) + 48�f 000 (1) + 4��2f 00
3
(1)
i
: (5.13)

The other physical quantity of interest is Nusselt number. It is de�ned as follows:

Nu1 =
Hqw
KTw

= �
HK @T

@z

��
z=H

KTw
= ��0(1); (5.14)

in which Rer = arH=� is the local Reynolds number.

5.2 Homotopic solutions

Here we choose the base functions �
�2n+1;n > 0

	
; (5.15)

�
�2n;n > 0

	
; (5.16)

and write

f (�) =
1X
n=0

an�
2n+1; (5.17)

�(�) =
1X
n=0

bn�
2n; (5.18)

where an and bn are the coe¢ cients to be dertermined. The initial guesses and auxiliary linear operators

are

f0 (�) =
3

2
�3 � 1

2
�; (5.19)

�0 (�) = 1; (5.20)

Lf [f (�)] =
d4f

d�4
; (5.21)

L� [� (�)] =
d2f

d�2
: (5.22)

The above linear operators have the following properties

Lf
�
C18
6
�3 +

C19
2
�2 + C20� + C21

�
= 0; (5.23)

L� [C22 + C23�] = 0; (5.24)

where Ci (i = 18� 23) are the constants.
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5.2.1 Zeroth-order deformation problem

Zeroth-order deformation problems are given by

(1� q)Lf
h
f̂ (�; q)� f0 (�)

i
= q}fNf

h
f̂ (�; q)

i
; (5.25)

f 0̂ (1; q) = 1; f̂ 00 (0; q) = 0; f̂ (1; q) = 0; f̂ (0; q) = 0; (5.26)

(1� q)L�
h
�̂ (�; q)� �0 (�)

i
= q}�N�

h
�̂ (�; q)

i
; (5.27)

�̂ (1; q) = 1; �̂ (0; q) = 0; (5.28)

where }f 6= 0; }� 6= 0 and q 2 [0; 1] are respectively the auxiliary and embedding parameters. When q

varies from 0 to 1, then f̂ (�; q) varies from initial guess f0 (�) to �nal solution f (�) and �̂ (�; q) varies

from initial guess �0 (�) to �nal solution � (�). The non-linear operators are

Nf [f (�; q)] =
@4f̂

@�4
+ 2Re f̂

@3f̂
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� 2�1

"
2
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35� ReHa2@f̂
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; (5.29)

N� [� (�; q) ; f (�; q)] =
@2�̂

@�2
+ 2PrRe f

@�̂

@�
+ PrEc
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+ �2
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8<:288
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!2 
@2f̂

@�2

!2

+2�4

 
@2f̂

@�2

!49=;+ ReHa2
 
@f̂

@�

!235 : (5.30)

In view of Taylor series expansion, we write

f̂m (�) =
1

m!

@mf (�; q)

@qm

����
q=0

; (5.31)

f̂ (�; q) = f0 (�) +

1X
m=1

fm (�) q
m; (5.32)

�̂m (�) =
1

m!

@m� (�; q)

@qm

����
q=0

; (5.33)
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�̂ (�; q) = �0 (�) +

1X
m=1

�m (�) q
m: (5.34)

The above expressions for q = 1 reduce to

f̂ (�) = f0 (�) +
1X
m=1

fm (�) ; (5.35)

�̂ (�) = �0 (�) +
1X
m=1

�m (�) : (5.36)

5.2.2 mth-order deformation problems

Di¤erentiating m-times the zeroth-order deformation problems in Eqs. (5:25)� (5:28) with respect to q

and then dividing by m! and setting q = 0 one has

Lf
h
f̂m (�)� �mf̂m�1 (�)

i
= }fRfm (�) ; (5.37)

@f̂m (�; q)

@�

�����
�=1

= 0;
@2f̂m (�; q)

@�2

�����
�=0

= 0; f̂m (1; q) = 0 f̂m (0; q) = 0; (5.38)

L�
h
�̂m (�)� �m�̂m�1 (�)

i
= }�R�m (�) ; (5.39)

�̂m (1; q) = 0: �̂ (0; q) = 0; (5.40)
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h
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000
k � 2�1

�
2f 00m�1�kf

000
k + f

0
m�1�kf

(iv)
k + fm�1�kf

(v)
k

�
�2�2

�
2f 00m�1�kf

000
k + f

0
m�1�kf

(iv)
k

�
+ �

kX
l=0

�
56f 00m�1�kf

00
k�lf
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�ReHa2f 00m�1; (5.41)
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00
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l=0

�
24f 0m�1�kf

0
k�lf

0
l + 3�
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00
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00
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kX
l=0

8<:288f 0m�1�kf 0k�l
lX

j=0

f 0l�jf
0
j + 48�

2f 0m�1�kf
0
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lX
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f 00l�jf
00
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00
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The general solutions of the problems given by Eqs. (5:37)� (5:40) are

f (�) = f� +
1

6
C18�

3 +
1

2
C19�

2 + C20� + C21; (5.43)

� (�) = �� + C22 + C23�; (5.44)

in which f� and �� are the particular solutions.

5.3 Convergence of the homotopy solutions

The Eqs. (5.8)-(5.11) have been solved using homotopy analysis method (HAM). The series solutions

strongly depends upon the auxiliary parameters }f and }�. In order to get the suitable range of these

parameters the so-called }�curves are plotted in the Figs. 5.1 and 5.2. These Figs. show that suitable

ranges for }f and }� are �0:5 � (}f ; }�) < �0:1: Furthermore, convergence of series solution is checked

and shown in Table. 5.1. It is obvious that series solutions converge at 26th order of approximation up

to 6 decimal places.

5.4 Results and discussion

This section includes the salient features of various parameters on velocity �eld f 0 and temperature �eld

�: Hence the Figs. 5.3-5.11 are sketched. Figs. 5.3 and 5.4 are displayed for the behavior of third grade

parameter � on the radial and axial velocities. It is seen that both radial and axial velocities are increasing

functions of third grade parameter �. Figs. 5.5 and 5.6 depict the variations of second grade parameter

�1 and Prandtl number Pr on temperature pro�le �. It is found from these Figs. that the dimensionless

temperature �eld decreases with an increase in �1: However an increase in Pr yields an increase in the

temperature �eld. Fig. 5.7 shows the e¤ect of Ec number on the temperature �eld. Since the Eckert

number Ec is the ratio of kinetic energy to enthalpy. Thus an increase in Ec gives an increase in kinetic

energy of �uid particles. Therefore an increase in temperature of �uid is observed when Ec increases:

Fig. 5.8 describes the in�uence of third grade parameter � on dimensionless temperature � (�). It can

be seen that the temperature �eld is increasing function of �. The behavior of second grade parameter

on the temperature �eld is illustrated in Fig. 5.9. The temperature �eld decreases when the second-

grade parameter increases. E¤ect of Reynolds number Re is plotted in Fig. 5.10. Here the temperature

�eld � increases for Re. Fig. 5.11 illustrates that the temperature �eld � is increasing function of

Hartman number Ha. Table 5.2 is prepared to examine the in�uence of dimensionless parameter on skin

friction coe¢ cient Re1=2r Cf . This table shows that Re
1=2
r Cf is an increasing function of �1; Re and Ha

whereas it decreases when �2 and � are increased. It is also noted that shear stress at the surface of

sheet increases by increasing the strength of applied magnetic �eld. Table 5.3 represents the variation

of dimensionless parameters on Nusselt numbers Re�1=2x Nu1 and Re
�1=2
x Nu2. Clearly Re

�1=2
r Nu1 and

Re
�1=2
r Nu2 are increasing functions of �, Re, Ha, Pr and Ec whereas Re�1=2r Nu1 and Re

�1=2
r Nu2
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decrease when dimensionless parameters �1 and �2 are increased.

Fig. 5.1: ~f�curve of f 00(1) at 28th order of approximation.

Fig. 5.2: ~��curve of �0(1) at 27th order of approximation.
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Fig. 5.3 : In�uence of � on f 0 (�).

Fig. 5.4 : In�uence of � on f (�).
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Fig. 5.5: In�uence of �1 on � (�).

Fig. 5.6: In�uence of Pr on � (�).
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Fig. 5.7: In�uence of Ec on � (�).

Fig. 5.8: In�uence of � on � (�).
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Fig. 5.9: In�uence of �2 on � (�).

Fig. 5.10: In�uence of Re on � (�).
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Fig. 5.11: In�uence of Ha on � (�).

Table 5.1: Convergence of homotopy solutions when �1 = 0:01; � = 0:1; �2 = 0:1; � = 0:3; Ha = 0:1;

Re = 2; Pr = 0:71; Ec = 0:1 and }f = }� = �0:4:

Order of approximation f 00 (1) ��0(1)

1 1.01239 0.0372775

2 2.03212 0.0722032

5 1.84750 0.115979

10 1.86945 0.123692

26 1.86848 0.124370

30 1.86848 0.124370

40 1.86848 0.124370

Table 5.2: Numerical values of skin friction coe¢ cients Re1=2r Cf for di¤erent values of physical

parameters.

�1 �2 � Re Ha Re
1=2
r Cf

0.00 0.01 0.1 2 0.1 6.07234

0.01 6.84608

0.02 7.74272

0.03 8.83994

0.01 0.00 0.01 0.1 0.1 6.85566

0.01 6.84609

0.02 6.82144

0.03 6.78433
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�1 �2 � Re Ha Re
1=2
r Cf

0.01 0.1 0.0 0.1 0.1 6.84608

0.1 5.13500

0.2 4.57691

0.3 4.22002

0.01 0.01 0.01 0.0 0.2 6.80888

0.1 6.84828

0.2 6.88793

0.3 6.92783

0.01 0.01 0.01 0.1 0.0 6.84535

0.1 6.84609

0.2 6.84828

0.3 6.85193

Table 5.3: Numerical values of Nusselt number Nu for di¤erent values of physical parameters.

�1 �2 � Re Ha Pr Ec Re
�1=2
r Nu1 �Re�1=2r Nu2

0.0 0.2 0.01 0.2 0.1 0.71 0.1 0.168744 0.168744

0.1 0.152786 0.152786

0.2 0.138297 0.138297

0.25 0.131467 0.131467

0.01 0.0 0.01 2 0.1 0.71 0.2 0.447318 0.447318

0.1 0.389180 0.389180

0.2 0.334372 0.334372

0.3 0.281762 0.281762

0.01 0.2 0.0 0.2 0.1 0.71 0.2 0.252642 0.252642

0.1 0.616315 0.616315

0.11 0.662727 0.662727

0.12 0.705145 0.705145

0.01 0.2 0.01 0.0 0.1 0.71 0.2 0.333765 0.333765

0.1 0.333961 0.333961

0.2 0.334153 0.334153

0.3 0.334342 0.334342

0.01 0.2 0.01 2 0.0 0.71 0.2 0.336810 0.336810

0.1 0.337080 0.337080

0.2 0.337889 0.337889

0.3 0.339237 0.339237
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�1 �2 � Re Ha Pr Ec Re
�1=2
r Nu1 �Re�1=2r Nu2

0.01 0.2 0.01 2 0.1 0.71 0.2 0.337080 0.337080

0.72 0.341904 0.341904

0.73 0.346729 0.346729

0.74 0.351557 0.351557

0.01 0.3 0.01 2 0.1 0.71 0.1 0.143037 0.143037

0.2 0.286075 0.286075

0.3 0.429112 0.429112

0.4 0.460342 0.460342

5.5 Concluding remarks

We have explored the heat transfer characteristics in the axisymmetric �ow of an electrically conducting

third grade �uid between the radial stretching sheets. The main points of the present investigation are

as follows:

� Temperature �eld increases for large values of Ha.

� Higher values of Eckert number Ec increase the temperature pro�le.

� Higher values of second grade parameter �1 reduce the temperature pro�le and associated boundary

layer thickness.

� Rate of heat transfer increases when �; Ha; Ec; Re and Pr are increased. However it decreases by

increasing �1 and �2.
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Chapter 6

E¤ect of Joule heating in �ow of third

grade �uid over radiative surface

The boundary layer �ow of third grade �uid over an unsteady permeable stretching sheet with heat

transfer is adressed in this chapter. The magnetic and electric �elds in the momentum equations are

considered. Thermal boundary layer equation includes both viscous and Ohmic dissipations. The related

nonlinear partial di¤erential system is reduced �rst into ordinary di¤erential system and then solved

for the series solutions. The dependence of velocity and temperature pro�les on the various parameters

are shown and discussed by sketching graphs. Expressions of skin friction coe¢ cient and local Nusselt

number are calculated and analyzed. Numerical values of skin friction coe¢ cient and Nusselt number

are tabulated and examined. It is observed that both velocity and temperature increase in presence of

electric �eld. Further the temperature is increased due to the radiation parameter. Thermal boundary

layer thickness increases by increasing Eckert number.

6.1 Mathematical formulation

We examine the two-dimensional boundary layer �ow of magnetohydrodynamic (MHD) third grade �uid

over a porous stretching surface. Here the �uid is electrically conducting in the presence of applied

magnetic ~B = (0; B0; 0) and electric ~E = (0; 0;�E0) �elds. The �ow is because of stretching of sheet

from a slit through two equal and opposite forces. The sheet velocity is taken linear parallel to the �ow

direction. The electric and magnetic �elds obey the Ohm�s law ~J =�
�
~E + ~V � ~B

�
. Here ~J is the Joule

current, � is the electrical conductivity and ~V is the �uid velocity. The induced magnetic �eld and Hall

current e¤ects are ignored subject to small magnetic Reynolds number. Both the electric and magnetic

�elds contribute into the momentum and thermal boundary layer equations. The relevant equations in

the aforestated conditions can be expressed as follows:

@u

@x
+
@v

@y
= 0; (6.1)
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; (6.2)

�cp
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@qr
@y

: (6.3)

In above equations u and v denote the velocity components in the x and y directions, ��1, �
�
2 and �3 are

the �uid parameters, � is the kinematic viscosity, � is the density of �uid, T is the �uid temperature, K

is the thermal conductivity of �uid, cp is the speci�c heat at constant pressure and the radiative heat

�ux qr is [41, 42]:

qr = �
4��

3k1

@T 4

@y
; (6.4)

where �� is the Stefan-Boltzmann constant and k1 is the mean absorption coe¢ cient. Through expansion

of T 4 �= 4T 31T � 3T 41 and Eq. (6.3) becomes

�cp
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�
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�4
+ � (uB0 � E0)2 : (6.5)

The subjected conditions can be mentioned as follows:

u (x; 0) = Uw; v (x; 0) = Vw; T (x; 0) = Tw;

u! 0; T ! T1; as y !1; (6.6)

with Vw de�ned by

Vw = �
�0

(1� ct)1=2
: (6.7)

Here the mass transfer at surface with Vw < 0 is for injection and Vw > 0 for suction. Also the stretching

velocity Uw (x; t) and the surface temperature Tw (x; t) are taken in the forms:

Uw (x; t) =
ax

1� ct ; Tw (x; t) = T1 + T0
ax

2� (1� ct)2
; (6.8)

where a and c are the constants with a > 0 and c � 0 (i.e. ct < 1).

If  is the stream function then de�ning

� =

r
Uw
x�

y;  =
p
�xUwf (�) ; � =

T � T1
Tw � T1

; (6.9)
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u =
@ 

@y
; v = �@ 

@x
; (6.10)

the incompressibility condition is identically satis�ed and the resulting problems for f and � are reduced

into the following forms

f 000 + ff 00 � f 02 � S
�
f 0 +

1

2
�f 00

�
+ �1

h
2f 0f 000 � ff (iv) + 3f 002
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�
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2
�f (iv)

��
+ 2�2f

002 +6�Re f 002f 000 +Ha2
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= 0 ; (6.11)
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f (0) = A; f 0 (0) = 1; f 0 (1)! 0; f 00 (1)! 0; �(0) = 1; �(1)! 0; (6.13)

with

Re =
ax2

� (1� ct) ; Ha2 =
�B20 (1� ct)

�a
; E1 =

E0 (1� ct)
B0ax

;

�1 =
��1a

� (1� ct) ; �2 =
��2a

� (1� ct) ; � =
�3a

2

� (1� ct)2
; A =

�0p
a�
;

S =
c

a
; Rd =

4��T 31
k�K

; Pr =
�cp
K

; Ec =
U2w

cp (Tw � T1)
: (6.14)

Here Re denotes the Reynolds number, Ha the magnetic parameter, E1 the electric parameter, �1 and

�2 and � the �uid parameters, A the suction parameter, S the unsteadiness parameter, Rd the radiation

parameter, Pr the Prandtl number and Ec the Eckert number.

The local skin friction coe¢ cient is de�ned by

Cf =
�w
�U2w

=
�xyjy = 0

�U2w
; (6.15)

Re1=2x Cf =

�
f 00 (0) + �1

�
3
S

2
f 00 (0) + 3f 00 (0)� Sf 000 (0)

�
+ 2�Re f 003 (0)

�
: (6.16)

The Nusselt number is given by

Nux =
xqw

K (Tw � T1)
= �

x
�
K + 16��T 31

3k1

�
@T
@y

���
y = 0

K (Tw � T1)
; (6.17)

Re�1=2x Nux = �
�
1 +

4

3
Rd

�
�0(0); (6.18)

in which Rex = ax2

�(1�ct) is the local Reynolds number.
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6.2 Homotopic solutions

The velocity and temperature in the set of base functions

n
�k exp (�n�)

��� k � 0; n � 0o ; (6.19)

can be expressed as follows

f (�) = a00;0 +
1X
n=0

1X
k=0

akm;n�
k exp (�n�) ; (6.20)

� (�) =

1X
n=0

1X
k=0

bkm;n�
k exp (�n�) ; (6.21)

where akm;n and b
k
m;n are the coe¢ cients.

The initial guesses f0 and �0 in homotopy solutions are taken through the expressions

f0(�) = A+ 1� exp (��) ; (6.22)

�0(�) = exp (��) : (6.23)

The auxiliary linear operators and their associated properties are

Lf (f) =
d3f

d�3
� df

d�
; L� (�) =

d2�

d�2
� �; (6.24)

Lf [C24 + C25 exp (�) + C26 exp (��)] = 0; (6.25)

L� [C27 exp (�) + C28 exp (��)] = 0; (6.26)

where Ci(i = 24� 28) depict the arbitrary constants.

6.2.1 Zeroth-order problem

The zeroth order problems are

(1� p)Lf [f̂(�; q)� f0(�)] = p~fNf
h
f̂(�; q)

i
; (6.27)

f̂(�; q)
���
� = 0

= A;
@f̂(�; q)

@�

�����
� = 0

= 1;
@f̂(�; q)

@�

�����
�!1

= 0; (6.28)

(1� q)L�[�̂(�; q)� �0(�)] = q~�N�
h
f̂(�; q); �̂(�; q)

i
; (6.29)

�̂(�; q)
���
� = 0

= 1; �̂(�; q)
���
� ! 1

= 0; (6.30)
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with non-linear operators Nf
h
f̂(�; q)

i
and N�

h
f̂(�; q); �̂(�; q)

i
de�ned by
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(6.31)
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+Ha2 PrEc

"
@f̂(�; q)

@�
� E1
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; (6.32)

in which q 2 [0; 1] indicates the embedding parameter and }f and }� the nonzero auxiliary parameters.

Setting q = 0 and q = 1; we have

f̂(�; 0) = f0(�); f̂(�; 1) = f(�); (6.33)

�̂(�; 0) = �0(�); �̂(�; 1) = �(�): (6.34)

When q increases from 0 to 1, f̂(�; q) and �̂(�; q) deform from the initial solutions f0(�) and �0(�) to the

�nal solutions f(�) and �(�) respectively. Taylor series of f̂(�; q) and �̂(�; q) gives

f̂(�; q) = f0(�) +
1X
m=1

fm(�)q
m; fm(�) =

1

m!

@mf̂(�; q)

@qm

�����
p=0

; (6.35)

�̂(�; q) = �0(�) +
1X
m=1

�m(�)q
m; �m(�) =

1

m!

@m�̂(�; q)

@qm

�����
p=0

: (6.36)
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The auxiliary parameters are properly chosen such that the series solutions converge at q = 1. Therefore

f(�) = f0(�) +
1X
m=1

fm(�); (6.37)

�(�) = �0(�) +
1X
m=1

�m(�): (6.38)

6.2.2 mth-order deformation problems

The mth-order deformation problems are

Lf [fm (�)� �mfm�1 (�)] = ~fRfm (�) ; (6.39)

f̂m(�; p)
���
� = 0

= 0;
@f̂ 0m(�; p)

@�

�����
� = 0

= 0;
@f̂ 0m(�; p)

@�

�����
� ! 1

= 0; (6.40)

L� [�m (�)� �m�m�1 (�)] = ~�R�m (�) ; (6.41)

�̂m(�; p)
���
� = 0

= 0; �̂m(�; p)
���
� ! 1

= 0; (6.42)
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(6.43)
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(6.44)

The general solutions of the Eqs. (6.35)-(6.37) are

fm(�) = f�m(�) + C24 + C25 exp (�) + C26 exp (��) ; (6.45)
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�m(�) = ��m(�) + C27 exp (�) + C28 exp (��) : (6.46)

6.3 Convergence of the homotopy solutions

We note that the series solutions (6.33) and (6.34) contain the non-zero auxiliary parameters }f and }�.

These parameters are useful in adjusting and controlling the convergence. The }f and }��curves are

plotted for 10th order of approximation in Fig. 6.1 for the suitable ranges of the auxiliary parameters.

Here the suitable values for }f and }� are �1:5 � }f < �0:53 �1:35 � }� < �0:4. Furthermore,

convergence of series solutions is checked and shown in Table 6.1. Note that the series solutions converge

at 26th order of approximation up to 6 decimal places.

6.4 Results and discussion

This section illustrates the impact of physical parameters. The results are displayed graphically in the

Figs. 6.2-6.20. The conclusions for �ow �eld and other physical quantities of interest are drawn. The

numerical values of the skin friction coe¢ cient and local Nusselt number are presented in the Tables 6.2

and 6.3 for various values of �1, �2, �, S, Ha, E1, Re, Rd, Pr and Ec. Fig. 6.2 displays the e¤ect

of Hartman number Ha on velocity pro�le by keeping other physical parameters �xed. It is of interest

to note that the velocity pro�le decreases with an increase in Ha whereas the boundary layer thickness

reduces. Clearly by increasing magnetic force, the Lorentz force increases which causes resistance in the

�uid �ow and consequently the velocity pro�le decreases. Fig. 6.3 shows the in�uence of third grade

parameter � on the velocity pro�le f 0 (�). Here we noticed that the velocity increases near the wall with

an increased � whereas it vanishes away from the wall. Figs. 6.4 and 6.5 illustrate the variation of second

grade parameters �1 and �2 on the velocity pro�le f 0 (�) respectively. It is observed that the velocity

pro�le f 0 (�) is an increasing function of �1. The velocity pro�le also increases when �2 is increased. Fig.

6.6 is plotted for the e¤ects of the suction parameter A on the velocity pro�le f 0 (�). The velocity pro�le

decreases by increasing parameter A. Further the boundary layer is also decreasing function of A. Fig.

6.7 is sketched for the in�uence of unsteadiness parameter S on the velocity pro�le. The velocity pro�le

and the thermal boundary layer decrease for larger values of S. The behavior of Reynolds number Re

on velocity pro�le is shown in Fig. 6.8. It is observed that the velocity pro�le decreases with an increase

in Reynolds number. The in�uence of electric parameter E1 is shown in Fig. 6.9. This Fig explains

that as electric parameter increases, the velocity boundary layer increases near the plate with small rate

but it increases away from the stretching plate more rapidly. In fact the Lorentz force (arising due to

the electric �eld acts like an accelerating force) reduces the frictional resistance which causes to shift

the stream line away from the stretching sheet. Fig. 6.10 portrays the e¤ects of magnetic parameter

Ha on the temperature pro�le � (�). It is depicted that temperature pro�le and thermal boundary layer

thickness increase with an increase in magnetic parameter. Fig. 6.11 is the plot of temperature pro�le

� (�) for various values of third grade parameter �. The e¤ect of third grade parameter � on � (�) shows

a decrease near the wall. The boundary layer thickness also decreases. Figs. 6.12 and 6.13 describe
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the e¤ects of second grade parameters �1 and �2 on temperature pro�le � (�). Fig. 6.12 depicts that

the e¤ect of second grade parameter �1 is to reduce the temperature distribution in the boundary layer

which results in thinning of the boundary layer thickness. Same behavior is shown in Fig. 6.13 for various

values of �2. The in�uence of suction parameter A and unsteadiness parameter S are analyzed in the

Figs. 6.14 and 6.15. Here the temperature pro�le decreases with the increase of unsteadiness parameter

S and the suction parameter A. Further the thermal boundary layer also decreases by increasing both the

unsteadiness parameter S and the suction parameter A. Fig. 6.16 shows that the temperature pro�le and

thermal boundary layer is decreasing function of Reynold number Re. The e¤ects of thermal radiation

parameter Rd on temperature is shown in Fig. 6.17. It is revealed that the radiation parameter Rd

causes increase in the �uid temperature � (�). On the other hand the thermal boundary layer thickness

also increases. In Fig. 6.18 the in�uence of electric parameter E1 on temperature pro�le is given. This

Fig. depicts that the temperature pro�le and the boundary layer thickness increase with an increase of

electric parameter E1. Fig. 6.19 illustrates the e¤ects of Prandtl number Pr on the temperature pro�le

� (�). Both the temperature and thermal boundary layer thickness are decreased by increasing Pr. We

displayed the temperature �eld for various values of Eckert number Ec in Fig. 6.20. E¤ect of Eckert

number is to increase the thermal boundary layer thickness due to the frictional heating. Fig. 6.21 shows

the e¤ects of Hartman number Ha on velocity f 0 (�) and shear stress f 00 (�). With the increase in Ha,

the velocity �eld f 0 (�) decreases near the wall and it vanishes far away from the wall while shear stress

f 00 (�) has same behavior for larger values of Hartman number Ha. An opposite behavior is noted when

0 � � � 0:6. Fig. 6.22 demonstrates the e¤ects of electric parameter E1 on velocity f 0 (�) and shear

stress f 00 (�). It is worthmentioning to point out that velocity is increasing function of electric parameter

E1 near the wall whereas opposite behavior for shear stress is observed for 0 � � � 1.

The numerical values of skin friction coe¢ cient for various physical parameters are shown in Table

6.2. Here the magnitude of skin friction coe¢ cient increases for larger second grade parameters (�1,

�2), third grade parameter �, unsteadiness parameter S, Hartman number Ha and Reynold number Re

whereas it decreases with an increase in electric parameter E1. Table 6.3 shows the e¤ect of physical

parameters on heat transfer characteristics at the wall ��0 (0). From this table we observe that for large

values of second grade parameters (�1, �2), third grade parameter �, unsteadiness parameter S, radiation

parameter Rd and Prandtl number Pr the heat transfer coe¢ cient at the wall ��0 (0) increases while it

decreases for Hartman number Ha, Reynold number Re, electric parameter E1 and Eckert number Ec.
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Fig. 6.1: }-curves for the functions f (�) and � (�) at 10th order of

approximation.

Fig. 6.2: In�uence of Ha on f 0 (�).
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Fig. 6.3: In�uence of � on f 0 (�).

Fig. 6.4: In�uence of �1 on f 0 (�).
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Fig. 6.5: In�uence of �2 on f 0 (�).

Fig. 6.6: In�uence of A on f 0 (�).
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Fig. 6.7: In�uence of S on f 0 (�).

Fig. 6.8: In�uence of Re on f 0 (�).
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Fig. 6.9: In�uence of E1 on f 0 (�).

Fig. 6.10: In�uence of Ha on � (�).
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Fig. 6.11: In�uence of � on � (�).

Fig. 6.12: In�uence of �1 on � (�).
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Fig. 6.13: In�uence of �2 on � (�).

Fig. 6.14: In�uence of A on � (�).
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Fig. 6.15: In�uence of S on � (�).

Fig. 6.16: In�uence of Re on � (�).
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Fig. 6.17: In�uence of Rd on � (�).

Fig. 6.18: In�uence of E1 on � (�).
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Fig. 6.19: In�uence of Pr on � (�).

Fig. 6.20: In�uence of Ec on � (�).
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Fig. 6.21: Variations of f 0 (�) and f 00 (�) with � for several values of

Hartman number Ha.

Fig. 6.22: Variations of f 0 (�) and f 00 (�) with � for several values of

electric parameter E1.
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Table 6.1: Convergence of homotopy solutions when �1 = 0:2; � = 0:5; �2 = 0:2; S = 0:2; A = 0:5;

E1 = 0:3; Re = 0:7; R1 = 0:3; Ha = 0:1; Pr = 1; Ec = 0:5.

Order of approximation �f 00 (0) ��0(0)

1 1.0419 1.0059

2 1.0720 1.0079

5 1.1210 1.0041

10 1.1442 0.99450

12 1.1458 0.99211

14 1.1458 0.99051

40 1.1458 0.99051

Table 6.2: Numerical values of skin friction coe¢ cients Re1=2x Cf for di¤erent values of physical

parameters.

�1 �2 � S Ha E1 Re �Re1=2x Cf

0.00 0.1 0.2 0.5 0.1 0.3 0.7 1.453

0.10 1.532

0.14 1.567

0.1 0.0 0.2 0.5 0.1 0.3 0.7 1.600

0.1 1.632

0.2 1.668

0.1 0.1 0.0 0.5 0.1 0.3 0.7 1.433

0.1 1.489

0.2 1.532

0.1 0.1 0.2 0.5 0.1 0.3 0.7 1.532

0.6 1.592

0.7 1.670

0.1 0.1 0.2 0.5 0.1 0.3 0.7 1.532

0.2 1.536

0.3 1.545

0.01 0.01 0.2 0.5 0.1 0.5 0.7 1.492

0.6 1.487

0.7 1.482

0.1 0.1 0.2 0.5 0.1 0.3 0.7 1.532

0.8 1.542

0.9 1.551
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Table 6.3: Numerical values of Nusselt number Re�1=2x Nux for di¤erent values of physical parameters

�1 �2 � S Ha E1 Re Rd Pr Ec Re
�1=2
x Nux

0.0 0.2 0.2 0.5 0.1 0.3 0.7 0.3 1.0 0.5 1.668

0.1 1.689

0.2 1.706

0.1 0.0 0.2 0.5 0.1 0.3 0.7 0.3 1.0 0.5 1.660

0.1 1.674

0.2 1.689

0.1 0.2 0.0 0.5 0.1 0.3 0.7 0.3 1.0 0.5 1.683

0.3 1.691

0.4 1.731

0.1 0.2 0.2 0.5 0.1 0.3 0.7 0.3 1.0 0.5 1.689

0.6 1.805

0.7 1.920

0.1 0.2 0.2 0.5 0.1 0.3 0.7 0.3 1.0 0.5 1.689

0.5 1.669

0.8 1.638

0.1 0.2 0.2 0.5 0.5 1.0 0.7 0.3 1.0 0.5 1.938

1.5 1.889

2.0 1.780

0.1 0.2 0.2 0.5 0.1 0.3 0.7 0.3 1.0 0.5 1.689

1.0 1.668

1.5 1.652

0.1 0.2 0.2 0.7 0.1 0.5 0.5 0.3 1.0 0.5 1.920

0.4 1.991

0.5 2.060

6.5 Concluding remarks

Here the �ow of third grade �uid and heat transfer in the presence of thermal radiation and Ohmic

dissipation are examined. The graphs are prepared to study the in�uence of the pertinent �ow parameters

including the second grade parameter (�1, �2), third grade parameter �, unsteadiness parameter S,

magnetic parameter Ha, electric �eld parameter E1, Reynolds number Re, radiation parameter Rd,

Prandtl number Pr and Eckert number Ec. The following observations hold:

� E¤ect of third grade parameter � is to increase the boundary layer thickness.

� Maximum velocity is attained for higher values of electric parameter E1.
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� E¤ect of suction parameter, unsteadiness parameter and Reynolds number on boundary layer thick-

ness is similar in a qualitative sense.

� E¤ects of E1 and Pr on temperature pro�le are quite opposite.

� The velocity �eld f 0 (�) is decreasing function of Hartman number Ha.

� Magnitude of skin friction coe¢ cient Re1=2x Cf is increasing function of �1, �2, �, S, Ha and Re.

� Electric parameter E1 decreases the magnitude of skin friction coe¢ cient.
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Chapter 7

Mixed convection �ow of third grade

�uid with variable thermal conductivity

Present chapter concentrates on the analysis of mixed convective boundary layer �ow of third-grade �uid

with variable thermal conductivity. Thermal conductivity is taken temperature dependent. The �ow is

caused by an exponential stretching surface. The partial di¤erential equations governing the �ow and heat

transfer have been reduced into the ordinary di¤erential equations by the appropriate transformations.

Convergent series solutions for the velocity and temperature are constructed. The variations of di¤erent

parameters on the velocity and temperature �elds are discussed. Numerical values of local skin friction

coe¢ cient and local Nusselt number are examined through tabular values.

7.1 Mathematical formulation

We investigated the two-dimensional mixed convection �ow of an incompressible third-grade �uid past an

exponentially stretching surface.Thermal conductivity of the �uid is taken variable. Thermal radiation

and viscous dissipation e¤ects are negligible. The �ow and temperature are governed by the following

expressions:
@u

@x
+
@v

@y
= 0; (7.1)
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= �
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�2 @2u
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+ g�T (T � T1) ; (7.2)

u
@T

@x
+ v

@T

@y
=

1

�cp

@

@y

�
k(T )

@T

@y

�
; (7.3)

with the boundary conditions

u (x; 0) = Uw(x) = U0 exp
�x
l

�
; v(x; 0) = 0; T (x; 0) = Tw = T1 + T0 exp

�x
l

�
;

u ! 0; T ! T1 as y !1: (7.4)
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In the above expressions u and v are the velocity components in the x� and y� directions respectively,

��1, �
�
2 and �3 are the material parameters of �uid, � is the �uid density, � is the electric charge density,

K is the thermal conductivity which depends upon temperature, cp is the speci�c heat, T0 is the reference

temperature and T1 is the ambient temperature. The temperature dependent thermal conductivity can

be expressed as follows:

K (T ) = k1

�
1 + �

T � T1
�T

�
; (7.5)

where k1 is the thermal conductivity far away from the plate and � measures the thermal conductivity

with temperature. Using Eq. (7.5), Eq. (7.3) reduces to

u
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+ v

@T

@y
=

1

�cp

@

@y

�
k1

�
1 + �
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�
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�
: (7.6)

The transformations can be put into the forms

� =

r
U0
2�l
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� x
2l

�
y;  =

p
2�lU0f (�) exp

� x
2l

�
;

u (x; y) = U0 exp
�x
l

�
f 0 (�) ; v (x; y) = �
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� x
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� �
f (�) + �f 0 (�)

�
;

� =
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; � =

r
c

�
y; (7.7)

where � is the kinematic viscosity, U0 the reference velocity and  the stream function. Using these

transformations, Eq. (7.1) is identically satis�ed and the other governing transformed equations become

f 000 � 2
�
f 0
�2
+ ff 00 + �1

n
3f 0f 000 � ff (iv) � 2�f 00f 000 � 9

�
f 00
�2o

��2
n
3
�
f 00
�2
+ �f 00f 000

o
+ 3�Re

�
f 00
�2
f 000 + �� = 0;

f 0 (0) = 1; f (0) = 0; f 0 (1) = 0; (7.8)

(1 + � �) �00 + �
�
�0
�2
+ Pr

�
f �0 � f 0 �

�
= 0; (7.9)

�(0) = 1; �(1) = 0: (7.10)

Here Pr denotes the Prandtl number, Rex is the Reynolds number and � is the mixed convection para-

meter. We de�ne

�1 =
U0�

�
1 exp

�
x
l

�
�l
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l
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�
2x
l

�
�l2

;

Pr =
�0cp
K
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Gr

Re2x
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Uwl

�
: (7.11)

The expressions of skin friction coe¢ cient Cf and the local Nusselt number Nux are

Cf =
�xy

� (cx)2
; Nux =

xqw
K (T � T1)

; (7.12)
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in which the wall skin friction (�xy) and the wall heat �ux (qw) are

�xy =

"
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��1
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; (7.13)

qw = �K
�
@T

@y

�
y=0

: (7.14)

Dimensionless expressions of skin friction coe¢ cient and local Nusselt number are

(Rex)
1=2Cf =

p
2

�
f 00 + �1(

7

2
f 0f 00 � 1

2
ff 000) + �f 003

�
�=0

; (7.15)

(Rex)
�1=2Nux = �

r
X

2
�0 (0) ; (7.16)

where X = x=l.

7.2 Homotopic solutions

The de�nitions of initial guess f0 (�) and �0 (�) and auxiliary linear operators Lf and L� are

f0 (�) = 1� exp (��) ; �0 (�) = exp (��) ; (7.17)

Lf [f (�)] =
d3f

d�3
� df

d�
; L� [� (�)] =

d2�

d�2
� �; (7.18)

with

Lf [C29 + C30 exp (�) + C31 exp (��)] = 0; (7.19)

L� [C32 exp (�) + C33 exp (��)] = 0; (7.20)

where Ci (i = 29� 33) are the constants.

7.2.1 Zeroth-order deformation problems

The zeroth-order deformation problems can be de�ned as follows:

(1� q)Lf
h
f̂ (�; q)� f0 (�)

i
= q}fNf

h
f̂ (�; q)

i
; (7.21)

f̂ (0; q) = 0;
@f̂ (�; q)
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�����
�=0

= 1;
@f̂ (�; q)

@�

�����
�!1

= 0; (7.22)
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i
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i
; (7.23)

�̂ (�; q)
���
�=0

= 1; �̂ (�; q)
���
�!1

= 0; (7.24)

110



in which q 2 [0; 1] and }f 6= 0; }� 6= 0 are the embedding and auxiliary parameters respectively. The

non-linear operators Nf and N� can be expressed in the forms:
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� 2
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By Taylor series we arrive at

f̂ (�; q) = f0 (�) +
1X
m=1

fm (�) q
m; f̂m (�) =

1
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@mf (�; q)
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; (7.27)
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The convergence of the series (7.27) and (7.28) strictly based upon }f and }�: The value of }f and }�

are chosen in such a way that the series (7.27) and (7.28) are convergent at q = 1 and hence

f̂ (�) = f0 (�) +
1X
m=1

fm (�) ; (7.29)

�̂ (�) = �0 (�) +
1X
m=1

�m (�) : (7.30)

7.2.2 mth-order deformation problems

The mth order deformation problems are given by the following relations
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f̂m (0; q) = 0;
@f̂m (�; q)

@�

�����
�=0

= 0;
@f̂m (�; q)

@�

�����
�!1

= 0; (7.32)

L�
h
�̂m (�)� �m�̂m�1 (�)

i
= }�R�m (�) ; (7.33)

�̂m (�; q)
���
�=0

= 0; �̂m (�; q)
���
�!1

= 0; (7.34)

Rfm (�) = f 000m�1 (�)� 2
m�1X
k=0

f 0m�1�kf
0
k +

m�1X
k=0

fm�1�kf
00
k + �1

m�1X
k=0

h
3f 0m�1�kf

000
m � fm�1�kf

(iv)
k

�2�f 00m�1�kf 000k � 9f 00�1�kf 00k
�
+ �2

m�1X
k=0

�
3f 00m�1�kf

00
k + �f

00
m�1�kf

000
k

�

111



+3�Re
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k � �m�1�kf 0k
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The general solutions (fm; �m) of the mth order in terms of special solutions (f�m; �
�
m) are

fm (�) = f�m + C29 + C30 exp (�) + C31 exp (��) ; (7.37)

�m (�) = ��m + C32 exp (�) + C33 exp (��) ; (7.38)

where the arbitrary constants can be determined through the boundary conditions (7.32) and (7.34). The

values of such arbitrary constants are

C31 = C32 = 0; C30 =
@f�m (�)

@�

����
�=0

; C29 = �C30 � f�m (0) ;

C33 = ���m (0) : (7.39)

7.3 Convergence of the homotopy solutions

The convergence of series solutions (7.27) and (7.28) depends upon the auxiliary parameters }f and }�

which are used to control the convergence of the series solutions. We have plotted the }-curves to select

the admissible value of auxiliary parameters }f and }� (see Fig. 7.1). The }-curves are sketched at 18th

order of approximation for velocity and temperature �eld in Fig. 7.1. It is found that the suitable ranges

of }f and }� are �1:43 � }f < �0:3 and �1:3 � }� < �0:3.

7.4 Results and discussion

In order to have an insight for the e¤ects of all the physical parameters on the velocity and temperature

pro�les, we have prepared the Figs. 7.2-7.19. Table 7.2 presents the variation of skin friction coe¢ cient

Re
1=2
x Cf and the local Nusselt number Re

�1=2
x Nux for various considered parameters. Figs. 7.2 and 7.3

are plotted to see the in�uences of velocity pro�le f 0 (�) and temperature pro�le � (�) for various values

of third grade parameter � respectively. Fig. 7.2 shows that an increase in third grade parameter �

enhances the velocity f 0 (�) and associated boundary layer thickness. Temperature �eld � (�) and the

thermal boundary layer decrease for third grade parameter � in Fig. 7.3. The behavior of second grade

parameter �1 on the velocity and temperature pro�les are presented in the Figs. 7.4 and 7.5. It is

noted that the velocity and temperature pro�les increase with the increase of second grade parameter

�1. Further the momentum and thermal boundary layers are increased for increasing values of �1. Fig.

7.6 illustrates the behavior of second grade parameter �2 on the velocity pro�le f 0 (�). An increase in

�2 enhances the velocity pro�le f 0 (�). Similar behavior is shown in Fig. 7.7 for temperature pro�le

� (�). In�uence of mixed convection parameter � on velocity pro�le f 0 (�) is plotted in Fig. 7.8. It is
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clearly seen that larger values of � increase the velocity and the boundary layer thickness. Larger mixed

convection parameter � corresponds to the stronger e¤ects of the buoyancy forces. Thus it yields an

increase in �ow velocity. Fig. 7.9 shows the e¤ects of mixed convection parameter � on the temperature

�eld � (�). It is observed that both temperature and thermal boundary layer decrease by increasing �.

It is evident from Fig. 7.10 that the velocity enhances through increase in small parameter of thermal

conductivity �. When � increases then thermal conductivity of �uid increases. Hence the velocity of the

particles increases which enhances the �uid velocity. Same trend is seen for the temperature pro�le which

increases with increasing � (see Fig. 7.11). Thermal conductivity increases with the increase of � (so heat

is transferred more rapidly through the �uid molecules). Thus temperature pro�le increases. Fig. 7.12

draws the velocity pro�le for various values of Prandtl number. E¤ect of increasing Prandtl number Pr

is to decrease the velocity at a point in the �ow �eld. There is thinning of the boundary layer. Fig.

7.13 represents the graph of the temperature pro�le for di¤erent values of Prandtl number Pr. This Fig.

depicts that the e¤ects of increasing Prandtl number Pr is to decrease the temperature throughout the

boundary layer which results in decrease of the thermal boundary layer thickness. The Prandtl number

is the ratio of momentum di¤usivity to thermal di¤usivity. Thus with the increase of Prandtl number,

thermal di¤usivity decreases, that is heat di¤uses with slow rate. Therefore temperature pro�le decreases.

Fig. 7.14 illustrates the e¤ect of Reynolds number Re on the velocity pro�le f 0 (�). An increase in Re

enhances the velocity pro�le f 0 (�). Opposite behavior is noted in Fig. 7.15 for temperature pro�le � (�).

Fig. 7.16 displays the e¤ects of third grade parameter � on the velocity and shear stress. Here velocity

pro�le is increasing function of � whereas the shear stress increases near the wall and away from the wall

it decreases. Variations of velocity f 0 (�) and f 00 (�) for several values of mixed convection parameter

� are shown in Fig. 7.17. With increasing the values of �, the horizontal velocity is found to increase

the favorable �ow. It is noted that � greatly e¤ects the solutions. The f 00 (�) increases for 0 � � � 1

otherwise it shows opposite behavior. The variations of temperature � (�) and temperature gradient �0 (�)

for various values of third grade parameter � are shown in Fig. 7.18. It is noted that the temperature

pro�le decreases for an increase in third grade parameter �. However the temperature gradient decreases

near the wall for 0 � � � 1 while it increases for �. Fig. 7.19 demonstrates the e¤ect of mixed convection

parameter � on the temperature and temperature gradient. We observe that the temperature pro�le is

decreased. The temperature gradient away from the wall is increasing while it decreases near the wall.

Table 7.1 shows the convergence of the series solutions for velocity and temperature. It is noted that

15th order of approximations are su¢ cient for the convergence of the required equations. Table 7.2 repre-

sents the numerical values of skin friction coe¢ cient Re1=2x Cf and the local Nusselt number Re
�1=2
x Nux

respectively. From Table 7.2, it can be seen that the values of Re1=2x Cf decrease for third grade para-

meter � and mixed convection parameter �. The opposite phenomenon is observed for Re�1=2x Nux (as

can be seen from Table 7.2). Increasing the values of second grade parameters �1, �2 and the Prandtl

number Pr increased Re1=2x Cf and the opposite trend is observed for second grade parameter �1, �2 on

Re
�1=2
x Nux. From Table 7.2 it is also concluded that the absolute values of Re1=2x Cf decrease as the

thermal conductivity parameter � increases. Similar phenomenon is noted for Re�1=2x Nux.
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Fig. 7.1: ~�curves for the functions of f (�) and � (�) at 18th order of

approximation.

Fig. 7.2: Variation of velocity component f 0 (�) for various values of third

grade parameter �:
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Fig. 7.3: Variation of temperature pro�le � (�) for various values of third

grade parameter �:

Fig. 7.4: Variation of velocity component f 0 (�) for various values of

second grade parameter �1:
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Fig. 7.5: Variation of temperature pro�le � (�) for various values of

second grade parameter �1:

Fig. 7.6: Variation of velocity component f 0 (�) for various values of

second grade parameter �2:
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Fig. 7.7: Variation of temperature pro�le � (�) for various values of

second grade parameter �2:

Fig. 7.8: Variation of velocity component f 0 (�) for various values of

mixed convection parameter �:
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Fig. 7.9: Variation of temperature pro�le � (�) for various values of

mixed convection parameter �:

Fig. 7.10: Variation of velocity component f 0 (�) for various values of

small parameter �:
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Fig. 7.11: Variation of temperature pro�le � (�) for various values of

small parameter �:

Fig. 7.12: Variation of velocity component f 0 (�) for various values of

Prandtl number Pr :
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Fig. 7.13: Variation of temperature pro�le � (�) for various values of

Prandtl number Pr :

Fig. 7.14: Variation of velocity component f 0 (�) for various values of

Reynold number Re :
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Fig. 7.15: Variation of temperature pro�le � (�) for various values of

Reynold number Re :

Fig. 7.16: Variation of velocity f 0 (�) and f 00 (�) for several values of

third grade parameter �.
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Fig. 7.17: Variation of velocity f 0 (�) and f 00 (�) for several values of

mixed convection parameter �.

Fig. 7.18: Variation of temperature � (�) and temperature gradient �0 (�)

for several values of third grade parameter �.
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Fig. 7.19: Variation of temperature � (�) and temperature gradient �0 (�)

for several values of mixed convection parameter �.

Table 7.1: Convergence of HAM solutions for di¤erent order of approximation when �1 = 0:06;

�2 = 0:05; � = 0:1; � = 0:2; � = 0:5; and Pr = 2.

Order of approximation �f 00 (0) ��0(0)

1 1.1468 1.0667

2 1.2252 1.0898

5 1.3015 1.1052

8 1.3134 1.1081

15 1.3153 1.1079

20 1.3153 1.1079

30 1.3153 1.1079

50 1.3153 1.1079

Table 7.2: Numerical values of skin friction coe¢ cient and local Nusselt number for di¤erent values

of physical parameters.

�1 �2 � � � Pr �Re1=2x Cf Re
�1=2
x Nux

0.1 0.1 0.3 0.2 0.5 2 2.793 1.125

0.2 3.629 1.120

0.3 4.494 1.117

0.1 0.1 0.3 0.2 0.5 2 2.793 1.125

0.2 2.965 1.118

0.3 3.151 1.112
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�1 �2 � � � Pr �Re1=2x Cf Re
�1=2
x Nux

0.1 0.1 0.1 0.2 0.5 2 3.143 1.111

0.2 2.948 1.119

0.3 2.793 1.125

0.1 0.1 0.3 0.2 0.5 2 2.793 1.125

0.3 2.711 1.131

0.4 2.633 1.137

0.1 0.1 0.3 0.2 0.5 2 2.793 1.125

0.6 2.788 1.077

0.7 2.783 1.033

0.1 0.1 0.3 0.2 0.5 2 2.793 1.125

2.1 2.798 1.159

2.2 2.802 1.192

7.5 Concluding remarks

E¤ect of variable thermal conductivity in mixed convection �ow of third grade �uid past an exponential

stretching surface is addressed. The main outcomes of the presented analysis are listed below.

� The skin friction coe¢ cient increases with an increase in the dimensionless parameters, the second

grade parameters �i (i = 1; 2) and the Prandtl number Pr while it decreases for larger third grade

parameter � and the mixed convection parameter �.

� The Nusselt number Re�1=2x Nux increases with an increase in the third grade parameter � and the

mixed convection parameter � while it decreases when second grade parameters �i (i = 1; 2) and

the Prandtl number Pr are increased.

� Behaviors of third grade parameter � on the velocity and temperature pro�les are quite opposite.

� In�uence of Pr is to decrease the temperature �eld �(�).

� Table 1 ensures that the convergence of the solutions f and � are obtained at only 15th order of

approximation for velocity and 14th order of approximation for temperature.

� Behavior of second grade parameter �1 on the velocity f 0 (�) and temperature �(�) are quite reverse.
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Chapter 8

Radiative MHD stagnation point �ow of

third-grade �uid over a stretching

cylinder

In this chapter, magnetohydrodynamic (MHD) stagnation point �ow of third-grade �uid due to a stretch-

ing cylinder is studied. Thermal radiation e¤ects are considered in the analysis of heat transfer phenom-

enon. Joule heating and viscous dissipation e¤ects are also retained. The resulting nonlinear system is

computed for the series solutions. In�uence of various physical parameters on the velocity and tempera-

ture pro�les are scrutinized graphically. Comparison between Newtonian and third-grade �uids is made.

Velocity and temperature pro�les in the presence/absence of stagnation point are discussed graphically.

Numerical values of skin friction and Nusselt number are also computed and interpreted.

8.1 Mathematical formulation

Consider magnetohydrodynamic stagnation point �ow of an electrically conducting third-grade �uid due

to a stretching cylinder. Heat transfer is analyzed in the presence of Joule heating, thermal radiation

and viscous dissipation e¤ects. Cylindrical coordinates are chosen in such a way that z�axis is along

the axis of stretching cylinder and r�axis normal to it. Under the boundary layer approximations (i.e.,

u = O (�), r = O (�), w = O (1) and z = O (1)) the laws of conservation of mass and momentum give
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The subjected conditions can be mentioned as follows:

w (r; z) =Ww (z) =
W0z

l
; u (r; z) = 0; T (r; z) = T1 + b

�z
l

�
; at r = R;

w (r; z) �!We (z) =
W1z

l
; T (r; z) �! T1; at r �!1: (8.4)

In the above expressions u and w denote the velocity components in the r and z directions respectively,

(��1; �
�
2 and �3) the �uid parameters, � the kinematic viscosity, � the density of �uid, W0 and W1 are

the reference velocities, l the characteristic length, T and T1 are the temperatures of the �uid and

surrounding respectively, k the thermal conductivity of �uid, � is the electrical conductivity, B0 is the

strength of an applied magnetic �eld, �� is the Stefan-Boltzmann constant, k� is the mean absorption

coe¢ cient, b is the dimensional constants, cp is the speci�c heat at constant pressure, qr is the radiative

heat �ux, Ww is stretching velocity and We is the free stream velocity. Using
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incompressibility condition is identically satis�ed and the Eqs. (8.2)-(8.4) can be written as follows:
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�
f 0 �A

�2
= 0; (8.7)

f (0) = 0; f 0 (0) = 1; f 0 (1)! A; �(0) = 1; �(1)! 0; (8.8)
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where  is the curvature parameter, Re is the Reynolds number,Ha is the magnetic parameter, (�1; �2; �)

are the �uid parameters, A is the ratio of velocities, Rd is the radiation parameter, Pr is the Prandtl

number and Ec is the Eckert number. These parameters are de�ned as follows:

 =

�
�l

W0R2

�1=2
; Re =

Wz

�
; Ha2 =

�B20 l

�W0
; �1 =

��1W0

l�
; �2 =

��2W0

l�
;

� =
�3W

2
0

l2�
; A =

W1
W0

; Rd =
4��T 31
k�k

; Pr =
�cp
k
; Ec =

W 2
0 (z=l)

2

cp (Tw � T1)
: (8.9)

The local skin friction coe¢ cient is de�ned by

Cf =
� rz
�U2w

=
� rzjr = R

�U2w
;

Re1=2z Cf =
�
f 00 (0) + 3�1f

00 (0) + 2�Re f 003 (0)
�
: (8.10)

The Nusselt number is

Nuz =
zqw

k (Tw � T1)
= �

z
�
k + 16��T 31

3k1

�
@T
@y

���
r = R

k (Tw � T1)
;

Re�1=2z Nuz = �
�
1 +

4

3
Rd

�
�0(0); (8.11)

in which Rez = Wz
� is the local Reynolds number.

8.2 Homotopic solutions

The velocity and temperature in the set of base functions

n
�k exp (�n�)

��� k � 0; n � 0o ; (8.12)

are

f (�) = a00;0 +

1X
n=0

1X
k=0

akm;n�
k exp (�n�) ; (8.13)

� (�) =
1X
n=0

1X
k=0

bkm;n�
k exp (�n�) ; (8.14)

where akm;n and b
k
m;n are the coe¢ cients. The initial guesses and linear operators for the dimensionless

momentum and energy equations are (f0; �0) and (Lf ;L�). The chosen initial guesses and linear operators

are given by

f0(�) = A� + (1�A) (1� exp (��)) ; (8.15)

�0(�) = exp (��) ; (8.16)

Lf (f) =
d3f

d�3
� df

d�
; L� (�) =

d2�

d�2
� �; (8.17)
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with

Lf [C34 + C35 exp (�) + C36 exp (��)] = 0; (8.18)

L� [C37 exp (�) + C38 exp (��)] = 0; (8.19)

where Ci(i = 34� 38) depict the arbitrary constants.

8.2.1 Zeroth-order deformation problems

The zeroth order problems are

(1� q)Lf [f̂(�; q)� f0(�)] = q~fNf
h
f̂(�; q)

i
; (8.20)
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; (8.22)
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in which q 2 [0; 1] indicates the embedding parameter and }f and }� the nonzero auxiliary parameters.

8.2.2 mth-order deformation problems

The mth-order deformation problems are

Lf [fm (�)� �mfm�1 (�)] = ~fRfm (�) ; (8.26)
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Setting q = 0 and q = 1; one has

f̂(�; 0) = f0(�); f̂(�; 1) = f(�); (8.32)

�̂(�; 0) = �0(�); �̂(�; 1) = �(�): (8.33)

When q varies from 0 to 1, f̂(�; q) and �̂(�; q) deforms from the initial solutions f0(�) and �0(�) to the

�nal solutions f(�) and �(�) respectively. Taylor�s series leads to the following relations

f̂(�; q) = f0(�) +
1X
m=1

fm(�)q
m; fm(�) =
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m!

@mf̂(�; q)

@qm

�����
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; (8.34)
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@m�̂(�; q)

@qm

�����
q=0

: (8.35)

The auxiliary parameters are properly chosen such that the series solutions (8.35) and (8.36) converge at

q = 1. Therefore

f(�) = f0(�) +

1X
m=1

fm(�); (8.36)

�(�) = �0(�) +
1X
m=1

�m(�): (8.37)

Denoting the special solutions by (f�m; �
�
m) one can express the general solutions (fm; �m) of Eqs. (8.26)-

(8.29) as follows:

fm(�) = f�m(�) + C34 + C35 exp (�) + C36 exp (��) ; (8.38)

�m(�) = ��m(�) + C37 exp (�) + C38 exp (��) ; (8.39)

in which the constants Ci(i = 34� 38) in veiw of the conditions (8.27) and (8.29) are

C35 = 0 = C37; C36 =
@f�m(�)

@�

����
� = 0

; C34 = �C36 � f�m(0); C38 = ���m(0): (8.40)

8.3 Convergence of the homotopy solutions

To get the series solutions through homotopy analysis method, it is important to check the convergence

of the desired solutions. Such solutions involve the auxiliary parameters }f and }�. These parameters

are useful in adjusting and controlling the convergence region. Therefore }f and }��curves are plotted

for 16th order of approximation in Fig. 8.1 for the suitable ranges of the auxiliary parameters. Here the

suitable values for }f and }� are �1:3 � }f < �0:4 and �0:9 � }� < �0:2.

8.4 Results and discussion

This section illustrates the impact of physical parameters. The results are displayed graphically in the

Figs. 8.2-8.19. The conclusions for �ow �eld and other physical quantities of interest are drawn. The
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numerical values of the skin friction coe¢ cient and local Nusselt number are presented in the Tables 8.2

and 8.3 for various values of �1, �2, �, M , Re, Rd, Pr and Ec. Fig. 8.2 displays the e¤ect of magnetic

parameter Ha on velocity pro�le f 0 (�) by keeping other physical parameters �xed. It is of interest to

note that the velocity pro�le decreases with an increase in magnetic parameter Ha whereas the boundary

layer thickness reduces. Clearly by increasing magnetic force, the Lorentz force increases which causes

resistance in the �uid �ow and consequently the velocity pro�le decreases. Fig. 8.3 shows the e¤ect of

third grade parameter � on the velocity pro�le f 0 (�). Here it is examined that the velocity increases

near the wall for larger values of � whereas it becomes vanishes away from the wall. Figs. 8.4 and 8.5

illustrate the behavior of second grade parameters �1 and �2 on the velocity pro�le f 0 (�) respectively.

It is observed that the velocity pro�le f 0 (�) is an increasing function of �1. The velocity pro�le also

increases when �2 is increased (see Fig. 8.5). In fact the second grade parameter are directly proportional

to the viscosity and by increasing the second grade parameter the viscosity of the �uid decreases and as

a result the velocity pro�le is increased. The behavior of Reynolds number Re on velocity pro�le f 0 (�)

is shown in Fig. 8.6. It is observed that the velocity pro�le f 0 (�) decreases with an increase in Reynold

number Re. Physically the Reynolds number is de�ned as the ratio of inertial forces to viscous forces and

for larger values of Reynold number the inertial forces are dominant when compared with the viscous

forces. Consequently the velocity pro�le increases. Fig. 8.7 is sketched for the in�uence of angle of

inclination  on the velocity pro�le f 0 (�). The velocity pro�le and thermal boundary layer decrease for

larger values of  . In fact due to the larger values of angle of inclination the Lorentz forces are dominant

and therefore the velocity pro�le decreases. In�uence of curvature parameter  is shown in Fig. 8.8. It

is revealed that velocity and boundary layer thickness increase when curvature parameter  increases. In

fact with the increase of curvature parameter, the radius of curvature decreases which reduces the contact

area of the cylinder with the �uid. Therefore resistance o¤ered by the surface decreases and velocity of

the �uid increases. The behavior of A on velocity pro�le f 0 (�) is shown in Fig. 8.9. It is analyzed that

velocity pro�le f 0 (�) increases for both the cases A > 1 and A < 1. However the boundary layers in

these two cases have opposite behavior. It is noticed that there is no boundary layer for A = 1.

Fig. 8.10 is sketched for the behavior of angle of inclination  on temperature �eld � (�). It is clear

from the Fig. that temperature pro�le increases with an increase in angle of inclination  . Because

Lorentz force increases with an increase in angle of inclination which is a resistive force. Hence more heat

is produced due to the resistive forces. Therefore temperature pro�le � (�) increases. Fig. 8.11 portrays

the e¤ects of curvature parameter  on the temperature pro�le � (�). It is depicted that temperature

pro�le shows mix behavior near the surface of cylinder while it increases away from the cylinder when

0:5 < � < 6 and it vanishes when � � 6. The thermal boundary layer thickness increases with an increase

in curvature parameter . In�uence of ratio parameter A is analyzed in the Fig. 8.12. It is observed

that temperature and thermal boundary layer thickness decrease for larger values of A. The e¤ects of

thermal radiation parameter Rd on temperature distribution � (�) is shown in Fig. 7.13. Temperature

and thermal boundary layer thickness increase when radiation parameter is increased. It is due the reason

that with the increase of thermal radiation parameter the mean absorption coe¢ cient decreases. This
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leads to enhancement of temperature pro�le. Fig. 8.14 is plotted to see the variation of Prandtl number

Pr on the temperature �eld � (�). It is revealed that both the temperature and thermal boundary layer

thickness are increased for smaller values of Pr. Thermal di¤usivity decreases with an increase in Prandtl

number and consequently the temperature �eld decreases. Fluids with high Prandtl number have low

thermal di¤usivity and �uids subject to low Prandtl number have high Prandtl number. We displayed the

temperature �eld for various values of Eckert number Ec by keeping other parameters �xed in Fig. 8.15.

E¤ect of Eckert number is to increase the thermal boundary layer thickness due to the frictional heating.

Fig. 8.16 gives the comparison of velocities for Newtonian, second-grade and third-grade �uids over a

cylinder in the presence of magnetohydrodynamics. It is analyzed that the velocity for third-grade �uid

is higher than the Newtonian and second-grade �uids. Further the momentum boundary layer thickness

is higher for third-grade �uid. Fig. 8.17 is sketched to see the comparison of Newtonian, second-grade

and third-grade �uids velocities by a cylinder in the absence of magnetohydrodynamics. It is analyzed

that the velocity for third-grade �uid is higher than the Newtonian and second-grade �uids. Further the

momentum boundary layer thickness is higher for third-grade �uid. Comparison between velocities of

Newtonian and third-grade �uids (with magnetohydrodynamics) over a cylinder is shown in Fig. 8.18 for

two cases (i) without stagnation point (ii) with stagnation point. It is depicted that in the presence of

magnetohydrodynamics, the velocity pro�le is higher for third-grade �uid for both the cases. Further it

is also noted that the velocity pro�le is higher for both Newtonian and third-grade �uids in the presence

of stagnation point. Fig. 8.19 is drawn for the comparison of velocities between MHD Newtonian and

third-grade �uids over a �at plat for two cases (i) without stagnation point (ii) with stagnation point.

It is noted that in the presence of MHD, the velocity pro�le is higher for third-grade �uid for both the

cases. On the other hand it is also examined that the velocity pro�le is higher for both Newtonian and

third-grade �uids with stagnation point.

The convergence of series solution is checked and shown in Table 8.1. Note that the series solutions

converge at 11th order of approximation up to 5 decimal places for the momentum equation and 12th order

of approximation is enough for the temperature. Table 8.2 shows the impact of various parameters on

skin friction coe¢ cient. It is observed that skin friction coe¢ cient increases with the increase of curvature

parameter , magnetic parameter Ha, third-grade parameter �, second-grade parameter �1, Reynolds

number Re and angle of inclination  while it decreases with the increase of second-grade parameter �2

and ratio parameter A. Hence in order to reduce the value of skin friction coe¢ cient which is very useful

for industrial applications, one needs to reduce the radius of cylinder and decrease magnetic parameter

Ha, third-grade parameter �, second-grade parameter �1, Reynolds number Re and angle of inclination

 . Table 8.3 shows the behavior of various parameters on local Nusselt number. It is examined that

local Nusselt number increases for larger �uid parameter (�1; �2; �), Reynolds number Re, radiation

parameter Rd, stagnation parameter A and Prandtl number Pr while it decreases with the increase of

magnetic parameter Ha, curvature parameter , Eckert number Ec and angle of inclination  . Therefore

higher values of �uid parameters (�1; �2; �), Reynolds number Re, radiation parameter Rd, stagnation

parameter A and Prandtl number Pr and small values of Ha, , Ec and  can be used to increase the
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rate of heat transfer.

Fig. 8:1 : ~�curves of the functions f(�) and � (�) at 16th order of

approximation.

Fig. 8.2: In�uence of Ha on f 0 (�) :
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Fig. 8.3: In�uence of � on f 0 (�) :

Fig. 8.4: In�uence of �1 on f 0 (�) :
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Fig. 8.5: In�uence of �2 on f 0 (�) :

Fig. 8.6: In�uence of Re on f 0 (�) :
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Fig. 8.7: In�uence of  on f 0 (�) :

Fig. 8.8: In�uence of  on f 0 (�) :
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Fig. 8.9: In�uence of A on f 0 (�) :

Fig. 8.10: In�uence of  on � (�) :
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Fig. 8.11: In�uence of  on � (�) :

Fig. 8.12: In�uence of A on � (�) :
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Fig. 8.13: In�uence of Rd on � (�) :

Fig. 8.14: In�uence of Pr on � (�) :
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Fig. 8.15: In�uence of Ec on � (�) :

Fig. 8.16: Comparison of velocity pro�le for Newtonian, second-grade

and third-grade �uids in the presence of MHD.
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Fig. 8.17: Comparison of velocity pro�le for Newtonian, second-grade

and third-grade �uids in the absence of MHD.

Fig. 8.18: Comparison of velocity pro�les for Newtonian and third-grade

�uids for cylinder.
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Fig. 8.19: Comparison of velocity pro�les for Newtonian and third-grade

�uids for �at plate.

Table 8.1: Convergence of homotopy solutions when �1 = �2 = � = 0:1; Ha = 0:5;  = A = Re = 0:2;

 = �=4; Rd = 0:3; Pr = 2; Ec = 0:5.

Order of approximation �f 00 (0) ��0(0)

1 0.98019 1.0966

2 1.06910 1.0973

5 1.13430 1.0458

11 1.13740 1.0316

12 1.13740 1.0315

14 1.13740 1.0315

50 1.13740 1.0315
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Table 8.2: Numerical values of skin friction coe¢ cient Re1=2x Cf for di¤erent values of physical

parameters

�1 �2 � Ha Re   A �Re1=2x Cf

0.0 0.1 0.1 0.5 0.2 0.2 �=4 0.2 1.4029

0.1 1.5374

0.2 1.6550

0.1 0.0 0.1 0.5 0.2 0.2 �=4 0.2 1.6491

0.1 1.5374

0.2 1.4408

0.1 0.1 0.0 0.5 0.2 0.2 �=4 0.2 1.5252

0.1 1.5374

0.2 1.5487

0.1 0.1 0.1 0.3 0.2 0.2 �=4 0.2 1.5080

0.5 1.5374

0.7 1.5803

0.1 0.1 0.1 0.5 0.0 0.2 �=4 0.2 1.5252

0.1 1.5314

0.2 1.5374

0.1 0.1 0.1 0.5 0.2 0.0 �=4 0.2 1.0228

0.1 1.2676

0.2 1.5374

0.1 0.1 0.1 0.5 0.2 0.2 0 0.2 1.4910

�=4 1.5374

�=2 1.5820

0.1 0.1 0.1 0.5 0.2 0.2 �=4 0.0 1.6733

0.1 1.6200

0.2 1.5374
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Table 8.3: Numerical values of Nusselt number Re�1=2x Nux for di¤erent values of physical parameters

�1 �2 � Ha Re Rd   A Pr Ec Re
�1=2
x Nux

0.0 0.1 0.1 0.5 0.2 0.3 0.2 �=4 0.2 2 0.5 1.3945

0.1 1.4440

0.2 1.4819

0.1 0.0 0.1 0.5 0.2 0.3 0.2 �=4 0.2 2 0.5 1.3860

0.1 1.4440

0.2 1.4957

0.1 0.1 0.0 0.5 0.2 0.3 0.2 �=4 0.2 2 0.5 1.4354

0.1 1.4440

0.2 1.4516

0.1 0.1 0.1 0.3 0.2 0.3 0.2 �=4 0.2 2 0.5 1.4732

0.5 1.4440

0.7 1.4018

0.1 0.1 0.1 0.5 0.0 0.3 0.2 �=4 0.2 2 0.5 1.4354

0.1 1.4398

0.2 1.4440

0.1 0.1 0.1 0.5 0.2 0.0 0.2 �=4 0.2 2 0.5 1.2022

0.1 1.2876

0.3 1.4440

0.1 0.1 0.1 0.5 0.2 0.3 0.0 �=4 0.2 2 0.5 1.5721

0.1 1.5112

0.2 1.4440

0.1 0.1 0.1 0.5 0.2 0.3 0.2 0 0.2 2 0.5 1.4899

�=4 1.4440

�=2 1.4002

0.1 0.1 0.1 0.5 0.2 0.3 0.2 �=4 0.0 2 0.5 1.2297

0.1 1.3312

0.2 1.4440

0.1 0.1 0.1 0.5 0.2 0.3 0.2 �=4 0.2 1.0 0.5 1.0444

1.5 1.2635

2 1.4440

0.1 0.1 0.1 0.5 0.2 0.3 0.2 �=4 0.2 2 0.5 1.4440

0.7 1.2745

0.9 1.1050
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8.5 Concluding remarks

MHD stagnation point �ow of third-grade �uid by a stretching cylinder with thermal radiation is exam-

ined. Impact of involved parameters is seen. The following observations hold:

� E¤ect of third grade parameter � is to increase the boundary layer thickness.

� Velocity and temperature pro�les increase away from the cylinder when curvature parameter 

increases.

� E¤ect of �uid parameters and Reynolds number on boundary layer thickness is similar in a quali-

tative sense.

� Velocity pro�le decreases while temperature pro�le increases for larger values of angle of inclination

 .

� With the increase in Pr the temperature pro�le and thermal boundary layer thickness decrease.

� Minimum values of skin friction coe¢ cient are achieved for small values of Re, �1, �, Ha, ,  and

larger values of �2 and A.

� Rate of heat transfer is higher for larger values of �1, �2, �, Re, Rd, A and Pr.
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Chapter 9

E¤ect of inclined magnetic �eld in �ow

of third grade �uid with variable

thermal conductivity

The e¤ects of inclined magnetic �eld and heat transfer in the �ow of a third-grade �uid due to an

exponentially stretching sheet is adressed in this chapter. Formulation and analysis are given in the

presence of heat source and sink. The variable thermal conductivity is taken temperature dependent.

The governing boundary layer equations and boundary conditions are simpli�ed through appropriate

transformations. Resulting equations are solved for the approximate solutions. Convergence of governed

problems is explicitly discussed. In�uences of various dimensionless parameters on the �ow and thermal

�elds are discussed. Numerical values of local skin friction coe¢ cient and the local Nusselt number are

analyzed.

9.1 Mathematical formulation

Consider the two-dimensional hydromagnetic �ow of incompressible third-grade �uid by an exponentially

stretching surface. The heat transfer e¤ects are considered when thermal conductivity varies as a linear

function of temperature. Boundary layer �ow is considered in the presence of heat generation or absorp-

tion. Uniform magnetic �eld is applied at an angle  . There is no external electric �eld and induced

magnetic �eld is neglected under the assumption of small magnetic Reynolds number. The governing

two-dimensional �ow and heat transfer equations are

@u

@x
+
@v

@y
= 0; (9.1)

u
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+ v

@u
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= �

@2u
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@3u

@x@y2
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@x

@2u

@y2
+ 3

@u

@y

@2v

@y2
+ v

@3u

@y3

�
+2

��2
�

@u

@y

@2v

@y2
+ 6

�3
�

�
@u

@y

�2 @2u
@y2

� � B20
�

sin2( )u; (9.2)
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u
@T

@x
+ v

@T

@y
=

1

�cp

@

@y

�
k(T )

@T

@y

�
+Q(T � T1); (9.3)

with the boundary conditions

u = Uw(x) = U0 exp
�x
l

�
; v = 0; T = Tw = T1 + T0 exp

� x
2l

�
at y = 0;

u ! 0; T ! T1 as y !1; (9.4)

where u and v are the velocity components in the x� and y� directions respectively, ��1, �
�
2 and �3

are the �uid parameters, � is the �uid density, � is the electric charge density, K (T ) is the temperature

dependent thermal conductivity, cp is the speci�c heat, T and T1 are the �uid and ambient temperatures

respectively and Tw is the surface temperature.

The temperature dependent thermal conductivity K (T ) can be expressed as follows:

K (T ) = K1

�
1 + �

T � T1
�T

�
; (9.5)

where � is the small parameter, K1 is the thermal conductivity of the �uid far away from the surface

and �T = Tw � T1. We de�ne the following dimensionless transformations

� =

r
U0
2�l

exp
� x
2l

�
y;  =

p
2�lU0f (�) exp

� x
2l

�
;

u (x; y) = U0 exp
�x
l

�
f 0 (�) ; v (x; y) = �

r
�U0
2l

exp
� x
2l

� �
f (�) + �f 0 (�)

�
;

� =
T � T1
Tw � T1

: (9.6)

Here  is the stream function, f is the dimensionless stream function and � is the dimensionless tem-

perature. Using the above transformations, Eq. (8.1) is identically satis�ed while Eqs. (9.2)-(9.4) are

reduced to

f 000 � 2
�
f 0
�2
+ ff 00 + �1

n
3f 0f 000 � ff (iv) � 2�f 00f 000 � 9

�
f 00
�2o

��2
n
3
�
f 00
�2
+ �f 00f 000

o
+ 3�

�
f 00
�2
f 000 � 2Ha2 sin2  f 0 = 0; (9.7)

f 0 (0) = 1; f (0) = 0; f 0 (1) = 0; (9.8)

(1 + ��) �00 + �
�
�0
�2
+ Pr

�
f �0 � f 0�

�
+ 2Pr�� = 0; (9.9)

�(0) = 1; �(1) = 0; (9.10)

where �1, �2 and � are the �uid parameters, Pr the Prandtl number, � small parameter and � the mixed
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convection parameter. These quantities are de�ned as follows:

�1 =
U0�

�
1 exp

�
x
l

�
��l

; �2 =
U0�

�
2 exp

�
x
l

�
��l

; � =
U30�3 exp

�
3x
l

�
�2�l

;

Pr =
�0cp
K

; Ha2 =
�B20 l

�Uw
; � =

lQ0
�cpUw

: (9.11)

The expressions of skin friction coe¢ cient Cf and local Nusselt number Nux are

Cf =
�xy

� (cx)2
; Nux =

xqw
K (T � T1)

; (9.12)

in which the wall skin friction (�xy) and the wall heat �ux (qw) are

�xy =

"
�0
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��1
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�3#
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�
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: (9.13)

After simpli�cation, we have

(Rex)
1=2Cf =

p
2

�
f 00 + �1(

7

2
f 0f 00 � 1

2
ff 000) + �f 003

�
�=0

; (Rex)
�1=2Nux = �

r
X

2
�0 (0) ; (9.14)

where X = x
l and Rex =

Uw x
� .

9.2 Homotopic solutions

The initial guesses f0 (�) and �0 (�) and the auxiliary linear operators Lf and L� are chosen in the

following forms

f0 (�) = 1� exp (��) ; �0 (�) = exp (��) ; (9.15)

Lf [f (�)] =
d3f

d�3
� df

d�
; L� [� (�)] =

d2�

d�2
� �; (9.16)

with

Lf [C39 + C40 exp (�) + C41 exp (��)] = 0; (9.17)

L� [C42 exp (�) + C43 exp (��)] = 0: (9.18)

where Ci (i = 39� 43) are the constants to be determined from the boundary conditions.

9.2.1 Zeroth-order deformation problem

The zeroth-order deformation problems are

(1� q)Lf
h
f̂ (�; q)� f0 (�)

i
= qhfNf

h
f̂ (�; q)

i
; (9.19)

f̂ (0; q) = 0;
@f̂ (�; q)

@�

�����
�=0

= 1;
@f̂ (�; q)

@�

�����
�!1

= 0; (9.20)
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i
; (9.21)

�̂ (�; q)
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�=0

= 1; �̂ (�; q)
���
�!1

= 0: (9.22)

In the above expression q 2 [0; 1] denotes an embedding parameter and }f 6= 0 and }� 6= 0 are the

auxiliary parameters. The non-linear operators Nf and N� are given by
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+ Pr

 
f̂
@�̂
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@�
�̂

!
+ 2Pr� �̂: (9.24)

When q = 0 and q = 1; then

f̂ (�; 0) = f0 (�) ; �̂ (�; 0) = �0 (�) and f̂ (�; 1) = f (�) ; �̂ (�; 1) = � (�) : (9.25)

In view of Taylor series, one can express f̂ (�; q) and �̂ (�; q) in the following forms:

f̂ (�; q) = f0 (�) +
1X
m=1

fm (�) q
m; f̂m (�) =

1
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@mf (�; q)

@qm
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; (9.26)
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�m (�) q
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@m� (�; q)

@qm

����
q=0

; (9.27)

where the convergence depends upon }f and }�. The convergence of the series (9.26) and (9.27) is strictly

based upon }f and }�. The values of }f and }� are chosen in such a way that the series (9.26) and (9.27)

are convergent at q = 1 and hence

f̂ (�) = f0 (�) +
1X
m=1

fm (�) ; (9.28)

�̂ (�) = �0 (�) +

1X
m=1

�m (�) : (9.29)

9.2.2 mth-order deformation problems

The mth-order deformation problems are

Lf

h
f̂m (�)� �mf̂m�1 (�)

i
= hfRfm (�) ; (9.30)

f̂m (0; q) = 0;
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�����
�=0

= 0;
@f̂m (�; q)
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�����
�!1

= 0; (9.31)
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�̂m (�; q)
���
�=0

�  �m (�; q)j�=0 = 0; �̂m (�; q)
���
�!1

= 0: (9.33)
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R�m (�) = �00m�1 + �
m�1X
k=0

�m�1�k�
00
k + �

m�1X
k=0

�0m�1�k�
0
k + Pr

m�1X
k=0

�
fm�1�k�

0
k � f 0m�1�k�k

�
+ 2Pr� �m�1;

(9.35)

The general solutions (fm; �m) of the mth order Eqs. (30)-(33) in terms of special solutions (f�m; �
�
m) are

fm (�) = f�m + C39 + C40 exp (�) + C41 exp (��) ; (9.36)

�m (�) = ��m + C42 exp (�) + C43 exp (��) ; (9.37)

where arbitrary constants are determined through the boundary conditions (8.30) and (8.32) in the values

given below:

C41 = C42 = 0; C40 =
@f�m (�)

@�

����
�=0

; C39 = �C40 � f�m (0) ;

C43 = ���m (0) :

9.3 Convergence of the homotopy solutions

In homotopy analysis method, the convergence region is essential to determine the meaningful series

solutions of the governing problems. The auxiliary parameters }f and }� are used to control the con-

vergence region of series solutions (9.28) and (9.29). Therefore the }-curves are plotted at 18th order

of approximations in Fig. 9.1. From Fig. 9.1 we observed that the suitable ranges of }f and }� are

�1:4 � }f < �0:5 and �1:5 � }� < �0:2.

9.4 Results and discussion

The theme of this section is to analyze the e¤ect of various physical parameters on the velocity and

temperature pro�les. Variation of magnetic parameter Ha on the velocity pro�le is displayed in Fig. 9.2

by keeping other parameters �xed. It is found that velocity pro�le decreases via larger Ha. Physically

by increasing magnetic �eld the Lorentz force increases. More resistance is o¤ered to the motion of �uid

and thus the velocity of the �uid is reduced. Fig. 9.3 illustrates the e¤ect of third-grade parameter �
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on the velocity pro�le f 0 (�). It is analyzed that the velocity pro�le increases near the wall for larger

values of � and it vanishes away from the wall. Moreover the momentum boundary layer thickness is

also increasing function of �. In fact � is inversly proportional to the viscosity. For larger values of �,

the viscosity of the �uid decreases and hence the velocity pro�le increases. Fig. 9.4 is drawn to see the

e¤ect of �uid parameter �2 on the velocity pro�le f 0 (�). The velocity pro�le decreases near the wall

and it shows mixing behavior away from the wall when � � 3. Momentum boundary layer thickness is

also decreased. Similar behavior is observed in Fig. 9.5 for the �uid parameter �2 (see Fig. 9.4). Fig.

9.6 is plotted to see the behavior of angle of inclination  on velocity pro�le f 0 (�). It is clearly seen

that velocity pro�le decreases by increasing values of angle of inclination  . It is due to the fact that

with an increase in angle of inclination, the e¤ect of magnetic �eld on �uid particles increases which

enhances the Lorentz force. Consequently the velocity pro�le decreases. It is also noted that for  = 0

the magnetic �eld has no e¤ect on the velocity pro�le while maximum resistance is o¤ered for the �uid

particles when  = �=2. Behavior of magnetic parameter Ha on temperature pro�le � (�) is sketched

in Fig. 9.7 for both heat generation and absorption cases. It is analyzed that temperature pro�le is

increased by increasing magnetic parameter Ha for both cases i.e. heat generation and heat absorption.

Larger values of magnetic parameter corresponds to an increase in Lorentz force. Hence temperature

pro�le increases. It is also observed that the thermal boundary layer thickness is increasing function of

magnetic parameter. Analysis of third-grade parameter � on temperature pro�le � (�) is displayed in

Fig. 9.8 for heat generation and absorption cases. It is observed that temperature pro�le is decreased

for larger values of third-grade parameter � in both heat generation and absorption. Because viscosity

of the �uid decreases for larger values of �, resistance o¤ered to �uid particles decreases and less heat

is produced. Consequently the temperature pro�le decreases. Fig. 9.9 is presented for the behavior of

�uid parameter �1 for heat generation and absorption on temperature pro�le � (�). It is found that for

both cases the temperature pro�le increases near the surface of the wall and it increases rapidly away

from the surface. Fig. 9.10 is plotted for the in�uence of �2 on temperature pro�le � (�) when � = 0:4

and � = �0:4. It is analyzed that temperature and thermal boundary layer thickness increase for higher

values of �uid parameter �2 for heat source and sink. Fig. 9.11 shows the variation of angle of inclination

 on temperature pro�le for both heat generation and absorption. It is noted that temperature pro�le is

higher for larger values of angle  for both heat generation and absorption. In fact higher values of angle  

corresponds to larger magnetic �eld which opposes the �uid motion. Hence temperature pro�le increases.

Fig. 9.12 presents the in�uence of small parameter � on the temperature pro�le in heat generation and

absorption cases. Increasing the value of small parameter � produces higher temperatures for both cases.

There is also an increase in the thermal boundary layer thickness when small parameter � increases.

Fig. 9.13 is plotted to see the e¤ects of Prandtl number Pr on the �uid temperature � (�) for both

cases of heat generation and absorption. It is observed that the �uid temperature � (�) decays through

Prandtl number Pr. Further the thermal boundary layer thickness decreases. In fact the Prandtl number

is the ratio of momentum di¤usivity to thermal di¤usivity and the thermal di¤usivity becomes smaller

(for larger Prandtl number) which reduces the temperature and associated boundary layer thickness.
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Fig. 9.14 shows the behavior of heat generation/absorption parameter � on temperature distribution.

It is noted that temperature distribution is higher for larger values of heat generation parameter while

it decreases with an increase in heat absorption parameter. In fact more heat is produced during the

heat generation process which is responsible in the enhancement of temperature distribution. Fig. 9.15

displays the behavior of skin friction coe¢ cient corresponding to Newtonian and non-Newtonian �uids

and Hartman number M . It is analyzed that skin friciton coe¢ cient for Newtonian �uid is less than

second and third grade �uids. It is also noted that skin friction coe¢ cient increases for higher values of

Hartman number in the case of Newtonian and non-Newtonian �uids. Figs. 9.16 and 9.17 show impact of

Newtonian and non-Newtonian �uids and � for the case of heat generation/absorption. Nusselt number

is higher for the third grade �uid when compared with Newtonian and second grade �uids in both cases

of heat generation and heat absorption. Further Nusselt number shows decreasing behavior for higher �.

Table 9.1 shows the convergence of series solutions numerically. It is noted that 7th order of approx-

imation is enough for velocity and 12th order of approximation is su¢ cient for the temperature. Table

9.2 depicts the numerical values of skin friction coe¢ cient for various values of �1, �2, �, Ha and  . It is

analyzed that the surface drag force increases for larger values of �1, �2, �, M and  . Table 9.3 displays

the numerical values of local Nusselt number for di¤erent values of �1, �2, �, Ha, Pr,  and � in the case

of heat absorption when � = �0:1. It is seen that local Nusselt number decreases with the increase of

�1, �2, Ha, and  while it increases when �, Pr and � are increased. Table 9.4 is constructed to see the

numerical values of local Nusselt number for di¤erent values of �1, �2, �, Ha, Pr,  and � in the case of

heat generation when � = 0:1. It is noted that rate of heat transfer increases for larger � and Pr while

it decreases when �1, �2, Ha, �, and  are increased. Table 9.5 shows the comparison of local Nusselt

number with the previous results. It is concluded that present results are in good agreement with the

previous results.
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Fig. 9.1: ~-curve for the functions f (�) and � (�) :

Fig. 9.2: Variation of velocity component f 0 (�) for magnetic parameter

Ha.
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Fig. 9.3: Variation of velocity component f 0 (�) for third-grade

parameter �.

Fig. 9.4: Variation of velocity component f 0 (�) for second-grade

parameter �1.
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Fig. 9.5: Variation of velocity component f 0 (�) for second-grade

parameter �2.

Fig. 9.6: Variation of velocity component f 0 (�) for inclination parameter

 .
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Fig. 9.7: Variation of temperature � (�) for magnetic parameter Ha.

Fig. 9.8: Variation of temperature � (�) for third-grade parameter �.
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Fig. 9.9: Variation of temperature � (�) for second-grade parameter �1.

Fig. 9.10: Variation of temperature � (�) for second-grade parameter �2.
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Fig. 9.11: Variation of temperature � (�) for angle of inclination  .

Fig. 9.12: Variation of temperature � (�) for variable conductivity

parameter �.
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Fig. 9.13: Variation of temperature � (�) for Prandtl number Pr.

Fig. 9.14: Variation of temperature � (�) for heat source and sink

parameter �.
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Table 9.1: Convergence of HAM solutions for di¤erent order of approximation when �1 = 0:01;

�2 = 0:02; � = 0:04; Re = 0:1; Ha = 0:7; � = 0:2;  = 0:2; Ec = 0:5 and Pr = 2.

Order of approximation �f 00 (0) ��0(0)

1 1.419 0.1371

2 1.534 0.1245

5 1.613 0.1099

7 1.616 0.1072

12 1.616 0.1057

18 1.616 0.1057

26 1.616 0.1057

30 1.616 0.1057

Table 9.2: Numerical values of local Nusselt number Re�1=2x Nux for di¤erent values of physical

parameters.

�1 �2 � Ha  �Re1=2x Cx

0.1 0.2 0.1 0.2 �=4 3.1690

0.2 4.1530

0.3 5.1460

0.4 6.1350

0.1 0.1 0.1 0.2 �=4 2.9610

0.2 3.1690

0.3 3.3960

0.4 3.6410

0.1 0.2 0.1 0.2 �=4 3.1690

0.2 3.1780

0.3 3.1910

0.4 3.2040

0.1 0.2 0.1 0.2 �=4 3.1690

0.3 3.2220

0.4 3.2950

0.5 3.3880

0.1 0.2 0.1 0.2 0 3.1250

�=4 3.1690

�=3 3.1910

�=2 3.2120
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Table 9.3: Numerical values of local Nusselt number Re�1=2x Nux for di¤erent values of physical

parameters for heat sink when � = �0:1.

�1 �2 � Re Ha Pr  � Re
�1=2
x Nux

0.1 0.2 0.1 0.1 0.2 1.5 �=4 0.2 0.8404

0.2 0.8378

0.3 0.8366

0.4 0.8362

0.1 0.1 0.1 0.1 0.2 1.5 �=4 0.2 0.8457

0.2 0.8404

0.3 0.8350

0.4 0.8296

0.1 0.2 0.1 0.1 0.2 1.5 �=4 0.2 0.8404

0.2 0.8471

0.3 0.8524

0.4 0.8569

0.1 0.2 0.1 0.1 0.2 1.5 �=4 0.2 0.8404

0.3 0.8377

0.4 0.8339

0.1 0.2 0.1 0.1 0.5 1.1 �=4 0.2 0.6877

1.2 0.7251

1.3 0.7611

1.4 0.7958

0.1 0.2 0.1 0.1 0.2 1.5 0 0.2 0.8426

�=4 0.8404

�=3 0.8392

�=2 0.8381

0.1 0.2 0.1 0.1 0.2 1.5 �=4 0.2 0.8404

0.3 0.7944

0.4 0.7543
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Table 9.4: Numerical values of local Nusselt number Re�1=2x Nux for di¤erent values of physical

parameters for heat source when � = 0:1.

�1 �2 � Re Ha Pr  � X Re
�1=2
x Nux

0.1 0.2 0.1 0.2 0.1 1.5 �=4 0.2 1 0.6399

0.2 0.6379

0.3 0.6359

0.1 0.1 0.1 0.2 0.1 1.5 �=4 0.2 1 0.6484

0.2 0.6399

0.3 0.6308

0.1 0.2 0.1 0.2 0.1 1.5 �=4 0.2 1 0.6399

0.2 0.6499

0.3 0.6581

0.1 0.2 0.1 0.2 0.1 1.5 �=4 0.2 1 0.6399

0.2 0.6363

0.3 0.6303

0.1 0.2 0.1 0.1 0.5 1.1 �=4 0.2 1 0.5019

1.2 0.5340

1.3 0.5739

0.1 0.2 0.1 0.1 0.2 1.5 0 0.2 1 0.6412

�=4 0.6360

�=2 0.6313

0.1 0.2 0.1 0.1 0.2 1.5 �=4 0.2 1 0.6361

0.3 0.5977

0.4 0.5642

0.1 0.2 0.1 0.1 0.2 1.5 �=4 0.2 0.7 0.5321

0.8 0.5688

1.0 0.6361

9.5 Concluding remarks

E¤ect of inclined magnetic �eld on �ow of variable thermal conductivity in third-grade �uid is investi-

gated. Main observations are listed below.

� E¤ects of �1, �2 and  on the �uid temperature are quite similar.

� The velocity �eld f 0 (�) decreases by increasing magnetic parameter while temperature pro�le � (�)

enhances for both heat generation/absorption.

� Table 1 ensures that the convergence of the functions f (�) and � (�) are obtained at only 7th and

12th order of approximations respectively.
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� E¤ects of Ha and  on the velocity �eld are qualitatively similar.

� E¤ect of �uid parameter and angle of inclination are quite opposite.

� An increase in Pr corresponds to decrease in the temperature pro�le for both heat generation and

absorption.

� E¤ects of �uid parameter � on the temperature �eld are quite similar for heat generation and

absorption.

� Numerical values of local Nusselt number decays for both heat generation and absorption cases for

larger �1, �2 and Ha.

� Skin-friction coe¢ cient increases for larger values of �1, �2, �, Ha and  .
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Chapter 10

Newtonian heating e¤ects in an

axisymmetric stagnation point �ow of

third grade �uid subject to Soret and

Dufour e¤ects

This chapter focuses on the mathematical modeling and analysis of magnetohydrodynamic (MHD) mixed

convection stagnation point �ow by radially stretching surface. Problem formulation involves the consti-

tutive equations of an incompressible third-grade �uid. In addition heat transfer analysis is examined in

presence of Joule heating and Soret and Dufour e¤ects. Adequate transformations lead to the nonlinear

ordinary di¤erential systems. Homotopic approach is employed for the convergent series solutions of

the resulting problems. Interval of convergence is explicitly determined. The velocity, temperature and

concentration are analyzed with respect to di¤erent parameters of interest. The skin friction coe¢ cient,

Nusselt and Sherwood numbers are numerically examined.

10.1 Mathematical formulation

We examine the magnetohydrodynamic (MHD) mixed convection boundary layer stagnation point �ow of

an incompressible third-grade �uid towads a radially stretching surface. Simultaneous e¤ects of heat and

mass transfer are considered. Constant magnetic �eld is applied along the z�axis. There is no external

electric �eld. Induced magnetic �eld is neglected under the assumption of small magnetic Reynolds

number. Hall e¤ects are also assumed negligible. Joule heating, Soret and Dufour e¤ects are present.

The velocity component in the �ow near stagnation point is given by Ue(r) = ar and velocity of stretching

sheet is Um(r) = cr (where a and c are the positive constants). Under the aforementioned assumptions,

the governing boundary layer �ow equations are given by:

@u

@r
+
u

r
+
@w

@z
= 0; (10.1)
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(Ue � u) + g�T (T � T1) + g�c (C � C1) ; (10.2)

u
@T

@r
+ w

@T

@z
=

K

�cp

@2T

@z2
+
DmKT

�cp

@2T

@y2
+
�B20
�cp

u2; (10.3)

u
@C

@r
+ w

@C

@z
= Dm

@2C

@z2
+
DmKT

Tm

@2T

@y2
; (10.4)

where u and w are the velocity components along the radial and axial directions respectively, � is the

�uid kinematic viscosity, � is the �uid density, � is the electrical conductivity of �uid, �T is the thermal

expansion coe¢ cient, �c is the concentration expansion coe¢ cient, K is the thermal conductivity, T1 is

the ambient temperature, C1 is the ambient concentration, B0 is the strength of magnetic �eld, D is the

mass di¤usivity, g is the gravitational acceleration and cp is the speci�c heat.

The relevent conditions for the present �ow consideration are

u (r; 0) = Uw(r) = cr; w(r; 0) = 0;
@T (r; 0)

@z
= �hsT (r; 0); C(r; 0) = Cw;

u! Ue(r) = ar; T ! T1; C ! C1 as z !1; (10.5)

where hs is heat transfer parameter and c is stretching rate. Setting

u (r; z) = crf 0 (�) ; w (r; z) = �2
p
c�f (�) ; � =

T � T1
T1

;

� =
C � C1
Cw � C1

; � =

r
c

�
z; (10.6)

the incompressibility condition is automatically saties�ed while the other equations and conditions yield

f 000 + 2ff 00 �
�
f 0
�2
+ �1

h
2
�
f 00
�2 � 2ff (iv)i+ �2 h3 �f 00�2 � 2f 0f 000i

+6�Re
�
f 00
�2
f 000 +Ha2

�
A� f 0

�
+A2 +Gs � +Gc � = 0 ; (10.7)

�00 + 2Pr f �0 +Ha2 PrEcf 02 + PrDu �00 = 0; (10.8)

�00 + 2Sc f�0 + Sc Sr �00 = 0; (10.9)

f 0 (0) = 1; f (0) = 0; �0(0) = �1 (1 + � (0)) ; � (0) = 1;

f 0 (1) = A; �(1) = 0; � (1) = 0: (10.10)
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Here prime denotes di¤erentiation with respect to �, �1 and �2 are the dimensionless normal stress

moduli, � is the dimensionless third grade �uid parameter, Ha is the Hartman number, Re is the

Reynolds number, A is the ratio of free stream to the stretching velocities, Gs is the thermal Grashof

number, Gc is the solutal Grashof number, Pr is the Prandtl number, Ec is the Eckert number, Du is the

Dufour number, Sr is the Soret number, Sc is the Schmidt number and 1 is the conjugate parameter

for Newtonian heating. The de�nitions of these parameters are

�1 =
��1c

��
; �2 =

��2c

��
; � =

�3c
2

��
; Ha2 =

�B20
�c

;

Re =
cr2

�
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a

c
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g�TT1
c2r
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g�c (Cw � C1)

c2r
;

Pr =
�cp
K

; Ec =
c2r2

cpT1
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DmKT (Cw � C1)
�cscpT1

;

Sr =
DmKTT1

�Tm (Cw � C1)
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�

Dm
1 = hs

r
�

a
: (10.11)

The skin friction coe¢ cient (Cf ), local Nusselt number and local Sherwood numbers are de�ned by

Cf =
� rz

1
2� (cr)

2 ; Nur =
rqw
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rjw
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; (10.12)
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qw = �K
�
@T

@z

�
z=0

; (10.14)

jw = �K
�
@C

@z

�
z=0

: (10.15)

In dimensionless form, we obtain

(Rer)
�1=2Cf = f 00 (0) + 3�1f

00 (0)� 2�2f 00 (0) + 2�
�
f 00 (0)

�3
; (10.16)

(Rer)
�1=2Nur = 

�
1 +

1

� (0)

�
; (10.17)

(Rer)
�1=2 Sh = ��0 (0) ; (10.18)

in which Re1=2r =
p
r2c=� denotes the local Reynolds number.
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10.2 Homotopic solutions

To obtain homotopy solutions, we express the velocity, temperature and concentration distributions by

a set of base functions n
�k exp (�n�) jk � 0; n � 0

o
; (10.19)

in the forms

fm (�) =

1X
n=0

1X
k=0

akm;n�
k exp (�n�) ; (10.20)

�m(�) =
1X
n=0

1X
k=0

bkm;n�
k exp (�n�) ; (10.21)

�m(�) =
1X
n=0

1X
k=0

ckm;n�
k exp (�n�) ; (10.22)

where akm;n, b
k
m;n and c

k
m;n are the coe¢ cients to be determined. We have chosen the following initial

guesses f0 (�), �0 (�) and �0 (�) and the auxiliary linear operators Lf , L� and L� by the rule of solution

expression and the boundary conditions (10.14):

f0 (�) = A� + (1�A) (1� exp (��)) ;

�0 (�) =
1 exp (��)
1� 1

; 1 6= 1;

�0 (�) = exp (��) ; (10.23)

Lf [f (�)] =
d3f

d�3
� df

d�
; L� [� (�)] =

d2�

d�2
� �; L� [� (�)] =

d2�

d�2
� �: (10.24)

The above linear operators have the following properties:

Lf [C44 + C45 exp (�) + C46 exp (��)] = 0; (10.25)

L� [C47 exp (�) + C48 exp (��)] = 0; (10.26)

L� [C49 exp (�) + C50 exp (��)] = 0: (10.27)

where Ci (i = 44� 50) are the arbitrary constants.

10.2.1 Zeroth-order deformation problems

The related zeroth-order deformation problems can be written as follows:

(1� q)Lf
h
f̂ (�; q)� f0 (�)

i
= q}fNf

h
f̂ (�; q)

i
; (10.28)

(1� q)L�
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�̂ (�; q)� �0 (�)
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= q}�N�
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; (10.29)
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i
= q}�N�
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�̂ (�; q) ; f̂ (�; q) ; �̂ (�; q)

i
; (10.30)
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In view of Taylor series, one can express that

f̂ (�; q) = f0 (�) +
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@m� (�; q)

@qm
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: (10.39)

In the above expressions q 2 [0; 1] and }f 6= 0, }� 6= 0, }� 6= 0 are respectively the embedding and

auxiliary parameters. When q varies from 0 to 1, then f̂ (�; q), �̂ (�; q), �̂ (�; q) vary from initial guesses

f0 (�), �0 (�) and �0 (�) to �nal solutions f (�), � (�) and � (�). Note that the convergence of the series

(10.37)-(10.39) strictly depend upon }f , }� and }�. The values of }f , }� and }� are chosen in such a way

that the series (10.37)-(10.39) are convergent at q = 1 and hence

f̂ (�) = f0 (�) +
1X
m=1

fm (�) ; (10.40)

�̂ (�) = �0 (�) +
1X
m=1

�m (�) ; (10.41)

�̂ (�) = �0 (�) +
1X
m=1

�m (�) : (10.42)
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10.2.2 mth-order deformation problems

The problems at this order are
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f̂m (�)� �mf̂m�1 (�)

i
= }fRfm (�) ;

f̂m (0; q) = 0;
@f̂m (�; q)

@�

�����
�=0

= 0;
@f̂m (�; q)

@�

�����
�!1

= 0; (10.43)
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R�m (�) = �00m�1 (�) + 2 Sc
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k=0

fm�1�k�
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k + Sc Sr �

00
m�1 (�) ; (10.48)

The general solutions (fm; �m; �m) of Eqs. (10.46) to (10.48) in terms of special solutions (f
�
m; �

�
m; �

�
m)

are given by

f (�) = f� + C44 + C45 exp (�) + C46 exp (��) ; (10.49)

� (�) = �� + C47 exp (�) + C48 exp (��) ; (10.50)

� (�) = �� + C49 exp (�) + C50 exp (��) : (10.51)

10.3 Convergence of the homotopy solutions

We note that the series solutions (10:28) to (10:30) contain auxiliary parameters }f ; }� and }�. The

convergence of the obtained series solutions strongly depend upon these parameters. For convergence

analysis, we sketched the }-curves for 12th-order of approximations in Fig. 10.2. It is found that ranges
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for admissible values of }f ; }� and }� are �2:1 � }f ; }� < �0:1, and �1:8 � }� < �0:1. Table 1

shows the convergence of series solutions through numerical values. It is observed that the 24th order of

approximations are enough for f and � whereas 26th order of approximations are required for �.

10.4 Results and discussion

This section is prepared to enlighten the e¤ects of embedded parameters on the velocity, temperature,

concentration, skin friction coe¢ cient, local Nusselt number and local Sherwood number.

10.4.1 Velocity pro�le

In�uence of the �uid parameters �1 and �2 on velocity pro�le is displayed in the Figs. 10.3 and 10.4. It

is noted that an increase in the values of �1 and �2 signi�cantly enhances the velocity pro�le f 0 (�). In

fact �1 and �2 are inversely proportional to the viscosity so by increasing the parameters �1 and �2 the

viscosity decreases which shows that the velocity increases. Fig. 10.5 displays representative velocity �eld

for various values of parameter �. It is seen that velocity pro�le is decreasing function of �. Furthermore

the boundary layer thickness is smaller for higher values of �. Fig. 10.6 depicts the behavior for velocity

�eld via magnetic parameter Ha = 0; 0:7; 1:2 and 1:7. The application of transverse magnetic �eld gives

rise to a resistive force namely the Lorentz force. E¤ects of this force slow down the motion of the �uid.

Hence by increasing the strength of the magnetic �eld, there is decrease in �uid velocity and momentum

boundary layer thickness. Fig. 10.7 is sketched for the in�uence of Reynolds number Re on the velocity

pro�le f 0 (�). It is observed that the velocity pro�le increases for larger Re. Behavior of Prandtl number

Pr on velocity pro�le is shown in Fig. 10.8. Velocity �eld increases for higher values of Prandtl number

Pr. Furthermore the momentum boundary layer thickness is smaller for larger values of Pr. In�uence of

Eckert number Ec on the velocity pro�le is presented in Fig. 10.9. This Fig. demonstrates that velocity

and momentum boundary layer thickness increase through an increase in Ec. Fig. 10.10 elucidates the

e¤ects of Dufour number Du on the velocity. Clearly an increase in Dufour number leads to an increase

in the �uid velocity. In Fig. 10.11 the velocity pro�le for di¤erent values of the solutal Grashof number

Gc is described. It is observed that an increase in Gc corresponds to a rise in the velocity �eld. In

addition, curves show that the velocity increases rapidly near the surface and have maximum value at

� = 0 and then it vanishes away from the surface. In�uence of the di¤erent values of Grashof number

Gs on the velocity pro�le are described in Fig. 10.12. It is found that the velocity pro�le is much for

larger Grashof number Gs. Here the Grashof number de�nes the e¤ects of free convection. Physically

Gs > 0 means heating of the �uid of cold boundary surface, Gs < 0 means cooling of the �uid of heated

boundary surface and Gs = 0 corresponds to the absence of free convection. Fig. 10.13 is sketched to see

the e¤ect of  on the velocity distribution. It is noted that the velocity pro�le is increased by increasing

. Fig. 10.14 displays representative velocity pro�les for di¤erent values of ratio A. The increasing value

of A means that free stream velocity is more when compared with the stretching velocity. Larger A

increases pressure and straining motion near the stagnation point and therefore velocity and boundary
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layer thickness are increased. Same behavior is shown for A < 1 on the velocity pro�le while the boundary

layer thickness has opposite e¤ect for both cases. Also no boundary layer is formed for A = 1.

10.4.2 Temperature pro�le

Fig. 10.15 displays the impact of �1 on the temperature �eld. Here the temperature and thermal

boundary layer thickness are increased for larger �1. The same behavior is observed in Fig. 10.16 for

the parameter �2. The temperature increases signi�cantly for the larger values of � (see Fig. 10.17).

Fig. 10.18 depicts that by increasing the magnetic parameter Ha the dimensionless temperature � (�)

increases. Dimensionless temperature is also increasing function of Reynolds number Re (see in Fig.

10.19). Fig. 10.20 is sketched to see the in�uence of Prandtl number Pr on temperature � (�). It

reveals that temperature � (�) is increasing function of Pr. Fig. 10.21 shows the behavior of Eckert

number Ec on � (�). Here Ec = 0 ensures the absence of Joule heating while Ec 6= 0 corresponds to

the presence of Joule heating. Dimensionless temperature � (�) enhances by increasing Ec. In fact Ec is

the ratio of the kinetic energy to the enthalpy. Hence an increase in Ec yields increase in kinetic energy

and thus temperature � (�) increases. Fig. 10.22 is drawn to see the in�uence of Dufour number Du

on the temperature pro�le � (�). It is observed that the temperature pro�le is increased by increasing

Du. The variation of temperature � (�) with respect to the solutal Grashof number Gc is presented in

Fig. 10.23. This Fig. depicts that temperature increases when Gc is increased. We also note that the

increase of parameter Gc causes an increase in the thermal boundary layer thickness. Variations of Gs on

temperature are qualitatively similar to that ofGc (see Figs. 10.23 and 10.24). Increasing Schmidt number

Sc leads to an increase in the �uid temperature (see Fig. 10.25). In�uence of Soret number Sr on the

dimensionless temperature can be observed from Fig. 10.26. It is noticed that the temperature pro�le and

thermal boundary layer thickness decrease by increasing Sr. In�uence of conjugate parameter  on the

temperature pro�le is displayed in Fig. 10.27. Higher values of  correspond to larger Newtonian heating

which shows an increase in the temperature and thermal boundary layer thickness. The characteristics

of the ratio parameter A on the temperature pro�le � (�) are described in Fig. 10.28. It is observed that

temperature decreases for larger ratio parameter A. However thermal boundary layer thickness is higher

for smaller values of ratio parameter A.

10.4.3 Concentration pro�le

E¤ects of the embedded parameters on concentration �eld � (�) are studied in the Figs. 10.29-10.36.

The variation of Reynolds number on the concentration pro�le is sketched in the Fig. 10.29. Here

the concentration �eld decreases when Reynolds number Re increases. Also the solutal boundary layer

thickness decreases. E¤ect of Dufour number Du on the concentration pro�le � (�) is shown in Fig. 10.30.

Increasing Du leads to a small decrease in the concentration boundary layer thickness. The variation in

dimensionless concentration pro�les for di¤erent values of Gc is presented in Fig. 10.31. It is noted from

the Fig. that concentration pro�le is decreasing function of Gc while the same behavior is observed for

Gs on � (�) in Fig. 10.32. In Fig. 10.33 the in�uence of the various values of Sr on concentration pro�le
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is displayed. Here the concentration pro�le is clearly increasing function of Sr. The opposite behavior

is observed for the values of Schmidt number Sc on the concentration pro�le (see in Fig. 10.34). Fig.

10.35 represents the in�uence of conjugate parameter  on the concentration pro�le � (�) versus �. It is

examined that with an increase in  the concentration pro�le increases. Fig. 10.36 illustrates the e¤ects

of A on concentration pro�le � (�) versus �. Obviously an increase in A reduces the concentration pro�le.

The solutal boundary layer thickness is also decreased.

Table 10.1 is prepared to analyze the convergence of series solutions. Tables 10.2-10.4 provide the

numerical values of skin friction coe¢ cient, local Nusselt number and local Sharwood number for di¤erent

values of involved parameters. The magnitude of skin friction coe¢ cient is reduced when �2, Re, A, Gs,

Gc, Du, Sr, Pr and Ec are increased. However the skin friction increases for �1, �, Ha and Sc (see Table

10.2). From Table 10.3 we can observe that the magnitude of local Nusselt number is more for larger

values of �1, �2, �, A, Gs and Sr. On the other hand it is reduced by the increase of Ha, Gc, Du, Sc,

Pr and Ec. The magnitude of local Sherwood number increases for �1, A, Gs, Gc, Sc and Pr while it

decreases when �2, �, Re, Ha, Sr, Ec and Du are increased (see Table 10.4).
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Fig. 10.1: Physical �ow model.

Fig. 10.2: }�curves for the functions f (�) ; � (�) and � (�).
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Fig. 10.3: In�uence of �1 on f 0 (�).

Fig. 10.4: In�uence of �2 on f 0 (�).
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Fig. 10.5: In�uence of � on f 0 (�).

Fig. 10.6: In�uence of Ha on f 0 (�).
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Fig. 10.7: In�uence of Re on f 0 (�).

Fig. 10.8: In�uence of Pr on f 0 (�).
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Fig. 10.9: In�uence of Ec on f 0 (�).

Fig. 10.10: In�uence of Du on f 0 (�).
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Fig. 10.11: In�uence of Gc on f 0 (�).

Fig. 10.12: In�uence of Gs on f 0 (�).
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Fig. 10.13: In�uence of 1 on f
0 (�).

Fig. 10.14: In�uence of A on f 0 (�).
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Fig. 10.15: In�uence of �1 on � (�).

Fig. 10.16: In�uence of �2 on � (�).
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Fig. 10.17: In�uence of � on � (�).

Fig. 10.18: In�uence of Ha on � (�).
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Fig. 10.19: In�uence of Re on � (�).

Fig. 10.20: In�uence of Pr on � (�).
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Fig. 10.21: In�uence of Ec on � (�).

Fig. 10.22: In�uence of Du on � (�).
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Fig. 10.23: In�uence of Gc on � (�).

Fig. 10.24: In�uence of Gs on � (�).
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Fig. 10.25: In�uence of Sc on � (�).

Fig. 10.26: In�uence of Sr on � (�).
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Fig. 10.27: In�uence of 1 on � (�).

Fig. 10.28: In�uence of A on � (�).
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Fig. 10.29: In�uence of Re on � (�).

Fig. 10.30: In�uence of Re on � (�).
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Fig. 10.31: In�uence of Gc on � (�).

Fig. 10.32: In�uence of Gc on � (�).
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Fig. 10.33: In�uence of Sr on � (�).

Fig. 10.34: In�uence of Sc on � (�).
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Fig. 10.35: In�uence of 1 on � (�).

Fig. 10.36: In�uence of A on � (�).
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Table 10.1: Convergence of homotopy solutions when �1 = 0:1; �2 = 0:2; 1 = 0:1; � = Sr = Gs =

0:1; Re = Gc = Du = A = 0:2; M = Ec = Sc = 0:5; Pr = 0:3.

Order of approximation �f 00 (0) ��0(0) ��0(0)

1 0.8758 0.1165 0.7569

2 0.8739 0.1170 0.7709

5 0.8845 0.1199 0.7009

10 0.8875 0.1219 0.6746

16 0.8884 0.1233 0.6579

24 0.8886 0.1238 0.6541

26 0.8886 0.1247 0.6541

40 0.8886 0.1247 0.6541

Table 10.2: Numerical values of skin friction coe¢ cients Re1=2r Cf for di¤erent values of physical

parameters.

�1 �2 � Re Ha A Gs Gc Du Sr Sc Pr Ec �Re1=2r Cf

0.1 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.2 0.1 0.5 0.3 0.5 1.794

0.2 1.926

0.22 1.953

0.1 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.2 0.1 0.5 0.3 0.5 1.794

0.3 1.559

0.4 1.316

0.1 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.2 0.1 0.5 0.3 0.5 1.794

0.2 1.886

0.3 1.974

0.1 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.2 0.1 0.5 0.3 0.5 1.794

0.3 1.774

0.4 1.760

0.1 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.2 0.1 0.5 0.3 0.5 1.794

0.6 1.859

0.7 1.938

0.1 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.2 0.1 0.5 0.3 0.5 1.794

0.2 1.770

0.3 1.750

0.1 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.2 0.1 0.5 0.3 0.5 1.794

0.3 1.701

0.4 1.611
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�1 �2 � Re Ha A Gs Gc Du Sr Sc Pr Ec �Re1=2r Cf

0.1 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.2 0.1 0.5 0.3 0.5 1.794

0.3 1.792

0.4 1.789

0.1 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.2 0.1 0.5 0.3 0.5 1.794

1 1.792

2 1.788

0.1 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.2 0.1 0.5 0.3 0.5 1.794

1.1 1.799

1.9 1.814

0.1 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.2 0.1 0.5 0.3 0.5 1.794

0.9 1.787

1.8 1.781

0.1 0.2 0.1 0.2 0.5 0.2 0.1 0.2 0.2 0.1 0.5 0.3 0.5 1.794

0.9 1.790

1.8 1.784

Table 10.3: Numerical values of Nusselt number Re�1=2r Nur for di¤erent values of physical parame-

ters.

�1 �2 � Re Ha A Gs Gc Du Sr Sc Pr Ec �Re�1=2x Nur

0.1 0.2 0.3 0.1 0.1 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.7107

0.5 0.7123

0.8 0.7159

0.1 0.2 0.3 0.1 1 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.7107

0.6 0.7138

1.0 0.7172

0.1 0.2 0.3 0.1 0.1 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.7107

0.6 0.7122

0.9 0.7221

0.1 0.2 0.3 0.1 0.1 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.7107

0.5 0.7123

0.9 0.7141

0.1 0.2 0.1 0.2 1 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.7018

1.2 0.6813

1.4 0.6652
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�1 �2 � Re a A Gs Gc Du Sr Sc Pr Ec �Re�1=2x Nur

0.1 0.2 0.1 0.2 1 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.7018

0.3 0.7020

0.4 0.7022

1 1 2 0.2 1 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.7100

0.6 0.7157

0.7 0.7170

1 1 2 0.2 1 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.7100

0.6 0.6690

0.7 0.5027

1 1 2 0.2 1 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.7100

0.6 0.6670

0.7 0.6649

1 1 2 0.2 1 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.7018

0.6 0.7128

0.7 0.7137

1 1 2 0.2 1 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.7018

0.6 0.6687

0.7 0.6673

0.1 0.2 0.1 0.2 1 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.7018

1.1 0.6878

1.2 0.6655

0.1 0.2 0.1 0.2 1 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.7018

0.3 0.6 0.6963

0.7 0.6597

Table 10.4: Numerical values of Sharwood number Re�1=2r Shr for di¤erent values of physical para-

meters.

�1 �2 � Re Ha A Gs Gc Du Sr Sc Pr Ec �Re�1=2r Shr

0.1 0.2 0.3 0.1 0.9 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.4363

0.3 0.4375

0.6 0.5572

0.1 0.2 0.3 0.1 0.9 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.4363

0.3 0.4321

0.4 0.4307
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�1 �2 � Re Ha A Gs Gc Du Sr Sc Pr Ec �Re�1=2r Shr

0.1 0.2 0.3 0.1 0.9 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.4363

0.2 0.4250

0.3 0.4130

0.1 0.2 0.3 0.1 0.9 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.4363

0.2 0.4265

0.3 0.4168

0.1 0.2 0.3 0.1 0.9 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.4363

1.0 0.4180

1.1 0.4045

0.1 0.2 0.1 0.2 0.9 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.4363

0.3 0.4481

0.4 0.5744

0.1 0.2 0.3 0.1 0.9 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.4363

0.6 0.4463

0.7 0.4575

0.1 0.2 0.3 0.1 0.9 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.4363

0.6 0.4418

0.7 0.4486

0.1 0.2 0.3 0.1 0.9 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.4363

0.6 0.3837

0.7 0.3634

0.1 0.2 0.3 0.1 0.9 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.4363

0.6 0.3835

0.7 0.3457

0.1 0.2 0.3 0.1 0.9 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.4363

0.6 0.4738

0.7 0.5149

0.1 0.2 0.3 0.1 0.9 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.4299

1.1 0.4445

1.2 0.4484

0.1 0.2 0.3 0.1 0.9 0.2 0.5 0.5 0.5 0.5 0.5 1 0.5 0.4363

0.6 0.4237

0.7 0.4162
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10.5 Concluding remarks

We examined the axisymmetric stagnation point �ow of third-grade �uid towards a radially stretching

surface with Newtonian heating. The main �ndings can be summarized as follows:

� Velocity increases while temperature decreases when the �uid parameters �1, �2 and � increased.

� In�uence of Hartman number (Ha) on the velocity and temperature pro�le is opposite.

� There is opposite behavior of ratio parameter (A) on the temperature and concentration.

� Temperature and thermal boundary layer thickness are reduced when larger values of Prandtl

number are employed.

� E¤ects of Schmidt and Soret numbers on temperature pro�le are opposite.

� In�uence of Sc on temperature and concentration is opposite.

� In�uence of thermal Grashof and solutal Grashof numbers on temperature pro�le is similar while

it has opposite behavior for concentration pro�le.

� Dufour number Du increases the temperature of �uid.

� Nusselt number decreases with the increase of Ha, Gc, Du, Sc, Pr and Ec.

� Both temperature and concentration increase when conjugate parameter 1 is enhanced.
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Chapter 11

Characteristics of

homogeneous-heterogeneous reactions

and Newtonian heating in �ow of third

grade �uid

The main objective of this chapter is to model and analyze the characteristics of homogeneous-heterogeneous

reactions in the magnetohydrodynamic (MHD) �ow of third grade �uid over a stretching surface. Both

magnetic and electric �elds are taken into account. Advanced heat transfer technique (i.e., Newtonian

heating) and heat generation/absorption e¤ects are used in the formulation. Homogeneous and het-

erogeneous reactions are considered within the �uid and at the boundary respectively. Production of

heat during chemical reaction is assumed negligible. Approximate convergent solutions are constructed.

In�uences of various pertinent parameters on the velocity, temperature and concentration distributions

are analyzed and discussed. Numerical values of skin friction and local Nusselt number are computed.

Concentration distributions for homogeneous and heterogeneous reaction parameters are found opposite.

11.1 Mathematical formulation

We consider the steady �ow of an incompressible third-grade �uid by an impermeable stretching surface.

Electromagnetic �ow analysis is examined with homogeneous-heterogeneous reactions. In addition the

e¤ect of heat generation/absorption is present. Cartesian coordinate system is chosen in such a way

that x�axis is along the stretching sheet and y�axis normal to it. Stretching velocity of the surface is

originated by applying two forces which are equal in magnitude but opposite in direction when origin is

kept �xed. Fluid is electrically conducting via uniform magnetic �eld ~B = (0; B0; 0) and uniform electric

�eld ~E = (0; 0;�E0). Newtonian heating condition is also taken into account. The heat released by the

reaction is assumed negligible. The homogeneous reaction for cubic autocatalysis can be represented as
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follows:

A+ 2B! 3B; rate = k1ab
2: (11.1)

First-order isothermal reaction on the catalyst surface is presented in the form

A! B; rate = k2a; (11.2)

in which a and b are the concentrations of chemical species A and B while k1 and k2 denote the rate

constants. These equations of reactions ensure that the reaction rate is zero in the external �ow and at

the outer edge of the boundary layer. Using the boundary layer approximations the relevant equations

through aforementioned assumptions are

@u

@x
+
@v

@y
= 0; (11.3)

u
@u

@x
+ v

@u

@y
= �

@2u

@y2
+
��1
�

�
u
@3u

@x@y2
+
@u

@x

@2u

@y2
+ 3

@u

@y

@2v

@y2
+ v

@3u

@y3

�
+2

��2
�

@u

@y

@2v

@y2
+ 6

�3
�

�
@u

@y

�2 @2u
@y2

+
�

�
sin2  

�
E0B0 �B20u

�
; (11.4)

u
@T

@x
+ v

@T

@y
=

k

�cp

@2T

@y2
+

�

�cp
(B0u� E0)2 +

Q0
�cp

(T � T1) ; (11.5)

u
@a

@x
+ v

@a

@y
= DA

@2a

@y2
� k1ab2; (11.6)

u
@b

@x
+ v

@b

@y
= DB

@2b

@y2
+ k1ab

2; (11.7)

with

u = Uw (x) = U0 exp
�x
l

�
; v = 0

@T

@y
= �hsT , DA

@a

@y
= k2a; DB

@b

@y
= �ksa at y = 0;

u! 0; T ! T1; a! a0; b! 0 as y !1: (11.8)

In above expressions u and v denote the velocity components in the axial and radial directions respectively,

� the electrical conductivity, B0 the magnetic �eld, E0 the electric �eld, (��1; �
�
2; �3) the �uid material

parameters, Uw the stretching velocity, � the kinematic viscosity, k the thermal conductivity, � the

density, cp the speci�c heat, Q0 the heat generation/absorption coe¢ cient, DA and DB the di¤usion

species coe¢ cients of A and B, hs the heat transfer coe¢ cient, T1 the ambient �uid temperature, l the

characteristic length and a0 the positive dimensional constant.

Considering the following transformations

� =

r
U0
2�l

exp
� x
2l

�
y;	 =

p
2�lU0f (�) exp

� x
2l

�
;
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u (x; y) = U0 exp
�x
l

�
f 0 (�) ; v (x; y) = �

r
�U0
2l

exp
� x
2l

� �
f (�) + �f 0 (�)

�
;

� (�) =
T � T1
T1

; g(�) =
a

a0
; h(�) =

b

a0
; (11.9)

incompressibility condition is satis�ed automatically and Eqs. (11:4) to (11:8) are reduced to

f 000 � 2
�
f 0
�2
+ ff 00 + �1

n
3f 0f 000 � ff (iv) � 2�f 00f 000 � 9

�
f 00
�2o� �2 n3 �f 00�2 + �f 00f 000o

+3�Re
�
f 00
�2
f 000 + 2Ha2 sin2  

�
E1 � f 0

�
= 0; (11.10)

�00 + Pr f�0 + 2Ha2 PrEc sin2  
h�
f 0
�2
+ E21 � 2E1f 0

i
+ 2Pr�� = 0; (11.11)

1

Sc
g00 + fg0 �Kgh2 = 0; (11.12)

�1
Sc
h00 + fh0 +Kgh2 = 0; (11.13)

f 0(0) = 1; f(0) = 0; �0(0) = �1 (1 + � (0)) ; g0 (0) = K2g(0); �1h
0 (0) = �K2g(0);

f 0(1) ! 0; � (1)! 0; g (1)! 1; h (1)! 0; (11.14)

where (�1; �2; �) depict the �uid parameters, Ha the magnetic parameter, E1 the electric parameter,

Pr the Prandtl number, Ec the Eckert number, 1 the conjugate parameter, K the strength of homo-

geneous reaction parameter, K2 the strength of heterogeneous reaction parameter, � the heat genera-

tion/absorption parameter, �1 the ratio of mass di¤usion coe¢ cient and Sc the Schmidt number. These

quantities are de�ned as follows:
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U0�

�
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�
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l

�
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D
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; Rex =
Uwx

�
; (11.15)

where the di¤usion coe¢ cients of chemical species A and B are of comparable size. This argument

provides us to make further assumption that the di¤usion coe¢ cients DA and DB are equal i.e. �1 = 1

and thus [12]:

g (�) + h (�) = 1: (11.16)

Now Eqs. (11:12) and (11:13) yield

1

Sc
g00 + fg0 �Kg (1� g)2 = 0; (11.17)
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with the boundary conditions

g0 (0) = K2g (0) ; g (�)! 1 as � !1. (11.18)

Skin friction coe¢ cient and local Nusselt number are de�ned by:

Cf =
�w
�U2w

; Nux =
xqw

k(T � T1)
; (11.19)
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Dimensionless skin friction coe¢ cient and local Nusselt number are

1p
2
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; (11.21)

r
2

X
NuxRe
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x = 1

�
1 +

1

� (0)

�
; (11.22)

where Rex = Uwx=� is the Reynolds number.

11.2 Homotopic solutions

The initial guess and linear operator. Hence the initial guesses (f0 (�) ; �0 (�) ; g0 (�)) and linear operators

(Lf ;L�;Lg) for the momentum, energy and concentration equations are expressed in the forms

f0 (�) = 1� exp (��) ; �0 (�) =
1 exp (��)
(1� 1)

; g0 (�) = 1�
1

2
exp (�K2�) ; (11.23)

Lf (f) =
d3f

d�3
� df

d�
; L� (�) =

d2�

d�2
� �; Lg (g) =

d2g

d�2
� g; (11.24)

with

Lf [C51 + C52 exp(�) + C53 exp(��)] = 0; (11.25)

L� [C54 exp(�) + C55 exp(��)] = 0; (11.26)

Lg [C56 exp(�) + C57 exp(��)] = 0; (11.27)

where Ci (i = 51; :::; 57) are the arbitrary constants. The zeroth and mth order deformation problems

are:

11.2.1 Zeroth-order problem

(1� q)Lf
h bf (�; q)� f0 (�)i = q~fNf

h bf (�; q)i ; (11.28)

bf 0 (0; q) = 1; bf (0; q) = 0; bf 0 (1; q) = 0; (11.29)
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(1� q)L�
hb� (�; q)� �0 (�)i = q~�N�

hb� (�; q) ; bf (�; q)i ; (11.30)

b�0 (0; q) = �1 �1 + b� (0; q)� ; b� (1; q) = 0; (11.31)
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where p 2 [0; 1] is embedding parameter and ~f , ~� and ~g the non-zero auxiliary parameters.

11.2.2 mth-order deformation problems

Lf [fm (�)� �mfm�1 (�)] = ~fRfm (�) ; (11.37)

f 0m (0) = 0; f 0m (1) = 0; fm (0) = 0; (11.38)

L� [�m (�)� �m�m�1 (�)] = ~�R�m (�) ; (11.39)

�0m (0) + 1�m (0) = 0; �m (1) = 0; (11.40)

Lg [gm (�)� �mgm�1 (�)] = ~gRgm (�) ; (11.41)

g0m(0) = Ksgm (0) ; gm(1) = 0; (11.42)

Rfm (�) = f 000m�1 (�)� 2
m�1X
k=0

f 0m�1�kf
0
k +

m�1X
k=0

fm�1�kf
00
k + �1

m�1X
k=0

h
3f 0m�1�kf

000
m � fm�1�kf

(iv)
k
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�2�f 00m�1�kf 000k � 9f 00�1�kf 00k
�
� �2

m�1X
k=0

�
3f 00m�1�kf

00
k + �f

00
m�1�kf

000
k

�
+3�Re

m�1X
k=0

f 00m�1�k

kX
l=0

f 00k�lf
000
l + 2Ha

2 sin2  
�
E1(1� �m)� f 0m�1

�
; (11.43)

R�m (�) = �00m�1 (�) + Pr
m�1X
k=0

fm�1�k�
0
k + 2Ha

2 PrEc sin2  

"
m�1X
k=0

f 0m�1�kf
0
k + E

2
1(1� �m)� 2E1f 0m�1

#
+2Pr��m�1; (11.44)

Rgm (�) =
1

Sc
g00m�1 +

m�1X
k=0

fm�1�kg
0
k �K1gm�1 �K1

m�1X
k=0

 
gm�1�k

kX
l=0

gk�lgl � 2gm�1�kgk

!
: (11.45)

For q = 0 and q = 1, we can write

bf (�; 0) = f0 (�) ; bf (�; 1) = f (�) ; (11.46)

b� (�; 0) = �0 (�) ; b� (�; 1) = � (�) ; bg (�; 0) = g0 (�) ; bg (�; 1) = g (�) ; (11.47)

and with the variation of q from 0 to 1, bf (�; q), b� (�; q) and bg (�; q) vary from the initial solutions f0 (�),

�0(�) and g0(�) to the �nal solutions f (�), �(�) and g(�) respectively. The values of auxiliary parameters

is selected in such a manner that the series solutions converge. The general solutions (fm; �m; gm) of Eqs.

(11:37� 11:42) via special solutions (f�m; ��m; g�m) are

fm (�) = f?m (�) + C51 + C52e
� + C53e

��; (11.48)

�m (�) = �?m (�) + C54e
� + C55e

��; (11.49)

gm (�) = g?m (�) + C56e
� + C57e

��: (11.50)

11.3 Convergence of the homotopy solutions

Homotopic technique o¤ers us great freedom to adjust and control the convergence region of the series

solutions. The region parallel to }�axis is known as convergence region. Hence we have plotted the

}�curves in the Figs. 11.2(a-c). It is noted that the admissible ranges of the auxiliary parameters }f ; }�
and }g are �0:8 � }f � �0:3, �1:5 � }� � �0:5 and �1:2 � }g � �0:2.

11.4 Results and discussion

The main emphasis of this section is to analyze the characteristics of di¤erent pertinent parameters on the

axial velocity, temperature and concentration distributions. Characteristics of magnetic parameter Ha

on the velocity distribution are illustrated in Fig. 11.3. It is concluded that velocity pro�le decreases for

M = 0:1; 0:8; 1:3; 1:9. Further boundary layer thickness also decreases. In fact higher values of magnetic
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parameter Ha corresponds to larger Lorentz force which provides more resistance to the �uid motion

and thus the velocity distribution decreases. Fig. 11.4 shows the behavior of third grade parameter �

on the velocity distribution. Here we analyzed that velocity distribution enhances for larger values of

third grade parameter. Higher values of third grade parameter corresponds to low viscosity which is

responsible in enhancement of the velocity pro�le. In�uence of electric parameter E1 on the velocity

distribution is displayed in Fig. 11.5. The velocity distribution is higher for larger values of electric

�eld. In fact the Lorentz force (arising due to the electric �eld acts like an accelerating force) reduces

the frictional resistance which causes to shift the stream line away from the stretching surface. E¤ect

of Reynold number Re on the velocity pro�le is sketched in Fig. 11.6. Velocity pro�le increases near

the surface of sheet while it vanishes gradually far away from the surface. In fact for higher values of

Reynolds number (which is the ratio of inertial forces to the viscous forces) the friction between the �uid

and surface reduces. Therefore velocity pro�le increases. Analysis of  on the velocity pro�le is shown

in Fig. 11.7. Here both velocity pro�le and associated boundary layer thickness are decreasing functions

of  . It is due to the fact that with an increase in angle of inclination, the e¤ect of magnetic �eld on

�uid particles increases which enhances the Lorentz force and consequently the velocity pro�le decreases.

It is also noted that for  = 0 the magnetic �eld has no e¤ect on the velocity pro�le while maximum

resistance is possible for the �uid particles when  = �=2.

Behavior of magnetic parameter Ha on the temperature distribution is shown in Fig. 11.8. It is

concluded that higher values of megnatic parameter give rise to the temperature distribution. Larger

values of magnetic parameter corresponds to increase in Lorentz force which is a resistive force. Therefore

temperature distribution increases. E¤ect of conjugate parameter 1 on temperature �eld is displayed in

Fig. 11.9. Temperature distribution increases for larger values of conjugate paramter 1 while thermal

boundary layer thickness decreases. Behavior of electric �eld parameter E1 on the temperature distrib-

ution is shown in Fig. 11.10. Temperature distribution is increasing function of electric �eld parameter.

Further higher values of electric �eld parameter result in enhancement of thermal boundary layer thick-

ness. In�uence of heat generation on temperature pro�le is presented in Fig. 11.11. Temperature pro�le

increases with an increase in heat generation parameter � > 0. It is also noted that thermal boundary

layer thickness increases for heat generation. In case of heat generation more heat is produced and it leads

to an enhancement of temperature. Characteristics of Eckert number Ec on temperature distribution is

sketched in Fig. 11.12. It is shown that temperature distribution increases for larger values of Eckert

number. Eckert number is the ratio of kinetic energy to the enthalpy. Higher Eckert number corresponds

to an increase in heat by friction. Hence less heat is transferred from surface to the �uid and as a result

the temperature distribution becomes higher. Fig. 11.13 shows the variation of angle of inclination on

temperature distribution. It is noted that temperature distribution is higher for larger values of angle

of inclination. In fact higher values of angle of inclination corresponds to larger magnetic �eld which

opposes the �uid motion. Hence temperature distribution increases.

Analysis of strength of homogeneous reaction K1 on the concentration pro�le is displayed in Fig.

11.14. Concentration pro�le decreases while boundary layer thickness increases for higher values of
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strength of homogeneous reaction parameter. Behavior of strength of heterogeneous reaction parameter

K2 on the concentration distribution is analyzed in Fig. 11.15. Concentration distribution increases for

higher values of heterogeneous reaction parameter K2. E¤ect of Schmidt number Sc on concentration

distribution is shown in Fig. 11.16. Increasing behavior of concentration distribution is noted for larger

Schmidt number. It is also analyzed that the solutal boundary layer thickness decreases. Note that the

Schmidt number is the ratio of momentum di¤usivity to mass di¤usivity. Hence higher values of Schmidt

number correspond to small mass di¤usivity and thus the concentration pro�le increases.

Table 11.1 shows the convergence analysis of the series solutions for momentum, energy and

concentration equations. It is concluded that 15th order of approximations is su¢ cient for convergence

analysis of momentum equation while 30th order of approximations are enough for energy and

concentration equations. Table 11.2 presents behavior of various parameters on skin friction coe¢ cient.

Higher values of �1, �2, M and  result in enhancement of skin friction coe¢ cient while it decreases for

larger values of �, Re and E1. Table 11.3 shows the characteristics of various pertinent parameters on

Nusselt number. It is noted that Nusselt number increases for higher values of �1, �2, M; K2,  and �

while it decreases with the increase in 1, Sc and K1.

Fig. 11.1: Flow sketch.
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Fig. 11.2(a): }�curve for f (�).

Fig. 11.2(b): }�curve for � (�).
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Fig. 11.2(c): }�curve for g (�).

Fig. 11.3: E¤ect of Ha on f 0 (�).
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Fig. 11.4: E¤ect of � on f 0 (�).

Fig. 11.5: E¤ect of E1 on f 0 (�).
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Fig. 11.6: E¤ect of Re on f 0 (�).

Fig. 11.7: E¤ect of  on f 0 (�).
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Fig. 11.8: E¤ect of Ha on � (�).

Fig. 11.9: E¤ect of 1 on � (�).
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Fig. 11.10: E¤ect of E1 on � (�).

Fig. 11.11: E¤ect of � on � (�).
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Fig. 11.12: E¤ect of Ec on � (�).

Fig. 11.13: E¤ect of  on � (�).
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Fig. 11.14: E¤ect of K1 on g (�).

Fig. 11.15: E¤ect of K2 on g (�).
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Fig. 11.16: E¤ect of Sc on g (�).

Table 11.1: Convergence of series solutions for various order of approximations when �1 = �2 =

� =  = � = 0:1, Ha = E1 = 0:1; Re = 2;  = �=4; Pr = Sc = 1:2; K1 = 0:5; K2 = 1 and Ec = 0:1.

Order of approximations �f 00(0) ��0(0) g0(0)

1 1.135 0.1124 0.4259

5 1.248 0.1163 0.2622

10 1.258 0.1197 0.1846

15 1.259 0.1212 0.1613

20 1.259 0.1239 0.1302

30 1.259 0.1262 0.1193

60 1.259 0.1262 0.1193

Table 11.2: Numerical values of skin friction coe¢ cient for di¤erent parameters.

�1 �2 � Re Ha E1  � 1p
2
Re

1=2
x Cf

0.0 0.1 0.1 2 0.2 0.2 �=4 1.861

0.1 2.673

0.2 3.546

0.1 0.0 0.1 2 0.2 0.2 �=4 2.531

0.1 2.673

0.2 2.824
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�1 �2 � Re Ha E1  � 1p
2
Re

1=2
x Cf

0.1 0.1 0.0 2 0.2 0.2 �=4 2.914

0.1 2.673

0.2 2.576

0.1 0.1 0.1 1 0.2 0.2 �=4 2.937

1.5 2.778

2 2.673

0.1 0.1 0.1 2 0.0 0.2 �=4 2.654

0.2 2.673

0.5 2.759

0.1 0.1 0.1 2 0.2 0.0 �=4 2.685

0.1 2.683

0.2 2.673

0.1 0.1 0.1 2 0.2 0.2 �=6 2.664

�=4 2.673

�=2 2.690

Table 12.3: Numerical values of Nusselt number for di¤erent parameters when �1 = 0:2 and �2 = 0:1:

� 1 M E1 � Pr  Ec Sc K1 K2 1(1 +
1
�(0))

0.0 0.2 0.1 0.2 0.1 0.1 �=4 0.5 1.2 0.7 1 0.10708

0.2 0.10691

0.5 0.10675

0.2 0.8 0.62383

1.2 0.74344

1.4 0.79425

1.2 0.0 0.66032

0.1 0.74341

0.3 0.85912

0.1 0.0 0.82771

0.2 0.74344

0.4 0.67655

0.2 0.0 0.74387

0.1 0.74349

0.3 0.7399
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� 1 M E1 � Pr  Ec Sc K1 K2 1(1 +
1
�(0))

0.1 1.2 0.1 0.2 0.1 0.1 �=4 0.5 1.2 0.7 1 0.73312

0.2 0.74345

0.4 0.78147

�=6 0.10674

�=4 0.10717

�=2 0.10756

0.1 0.12794

0.2 0.11736

0.3 0.10674

0.0 0.10638

0.5 0.10708

1.0 0.10749

1.2 0.5 0.12794

0.7 0.11736

0.9 0.10674

0.0 0.10638

0.5 0.10708

1.0 0.10749

11.5 Concluding remarks

Here we have explored the characteristics of electromagnetic �ow of third-grade �uid induced by an im-

permeable stretching surface with homogeneous-heterogeneous reactions and heat generation/absorption.

The key points are summarized as follows:

� Electric �eld has opposite behavior for the velocity and temperature distributions.

� Velocity distribution increases for higher values of third grade �uid parameter.

� Conjugate parameter results in enhancement of temperature and thermal boundary layer thickness.

� Temperature distribution and thermal boundary layer thickness are increasing function of heat

generation parameter. Results for heat absorption are reverse.

� Concentration distribution decreases for higher values of strength of homogeneous reaction K1.

� Larger values of strength of heterogeneous reaction K2 result in enhancement of concentration

pro�le.
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