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Preface 
The exact solution of linear and non-linear differential equation are 
very rare.Because in nature every thing is nonlinear and most of 
the practical applications have been model and developed linear 
and non-linear ordinary as well as partial differentials equations. 
There are many perturbation methods to solve non-linear 
differential equations.However, in perturbation method there 
should be small or large parameter and solution is only valid for 
small values of those parameters. Recently, various analytical 
methods have been developed to find the solution of linear and 
non-linear differential equations. Prof.He in 1999 has established a 
new method known as variational iteration method. The beauty of 
this method is, it is relatively simpler analytical method. After the 
initiation of this method various researcher have discuss this 
luethod.Mention may be made to the works of [1-20]. The 
reliability of the method and the reduction in the size of 
cOluputational domain give this method as wider applicability. The 
method has wider applicability. This method gives rapidly 
convergent successive approximations of the exact solution, if such 
a solution exists . For concrete problems, a few numbers of 
approximations can be used for numerical purposes with high 
degree of accuracy. The VIM does not require specific 
transformations for non-linear terms as required by some existing 
techniques. 
Keeping in mind the importance of VIM, the aim of the present 
dissertation is to solve few problems with the help of VIM. The 
dissertation is arranged as follow: 
In chapter one, two problems of standard Blasius quations have 
been solved with VIM. 
Chapter two is devoted to the study of MHD boundary layer 
problem of viscous fluid with the help of VIM. 
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Chapter 1 

The variational iteration method for 

solving two forms of Blasius 

Equations on half infinite domain 

1.1 Introduction 

Blasius equation is one of the basic equations of fluid dynamics!. Blasius equation describes 

the velocity profile of the fluid2 in the boundary layer theory on a half-infinite interval. The 

variational iteration method is applied for a reliable treatment of two forms of the third order 

nonlinear Blasius equation which comes from boundary layer3 equations. The series solution 

is obtained without restrictions on the nonlinearity behavior. The obtained series solution is 

combined with the diagonal Pade approximants to handle the boundary condition at infinity 

for only one of these forms. This work is due to Abdul.-NIajid Wazwaz [5J. The necessary details 

I Fluid dynamics is the sub-discipline of fluid mechanics dealing with fluids (liquids and gases) in motion. It 
has several subdisciplines itself, including aerodynamics (the study of gases in motion) and hydrodynamics (the 
study of liquids in motion). 

1 A fluid is defined as a substance that continuously deforms (flows) under an applied shear stress (stress along 
the tangent) regardless of the magnitude of the applied stress. 

:1 A boundary layer is that layer of fluid in the immediate vicinity of a bounding surface . In the Earth's 
atmosphere, the planetary boundary layer is the air layer near the ground affected by diurnal heat , moisture or 
momentum transfer to or from the surface. On an aircraft wing the boundary layer is the part of the flow close 
to the wing. The boundary layer effect OCClli'S at the field region in which all changes occlli' in the flow pattern. 
The boundary layer distorts surrounding nonviscous flow. It is a phenomenon of viscous forces. This effect is 
related to the Reynolds number. 
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in the paper are incorporated in this chapter. 

1.2 Variational Iteration Method 

To illustrate the basic idea of varational iteration method, we consider the general nonlinear 

differential equation as follows 

L[u(x)] + N[u(x)] = g(x), (1.1) 

where Land N are linear and nonlinear operators respectively and g( x) is the given continous 

function . The basic idea of the method is to construct a correction function as 

Un+l(x) = un(x) + ( X >. [Lun(t) + N~(t) - g(t))dt, n ~ 0, 
Jxo 

(1.2) 

in which >. is a general lagrange multiplier which can be identified optimally via variational 

theory, 1in is the nth approximate solut ion and undenotes a restricted variation i.e. oUn = O. 

For linear problems, its exact solution can be obtained by only one iteration step due to the 

fact that the Lagrange multiplier can be exactly identified. Here an analytic treatment will be 

approached to find the numerical values of u// (0) for the both Blasius equations. We will apply 

Fade approximants for numerical approximation on series, which is obtained after applying 

variational iteration method. 

1.3 The first form of Blasius equation 

The first form of Blasius equation along with its boundary conditions are defined as 

1 
u'l/ (x) + 2'u(x)ul/(x) = 0, (1.3) 

u(O) =0, u'(O)=l, u' (oo) =0. 

To solve the above boundary value problem with the help of variational iteration method, we 

first define the initial conditions. Since the differential equation is of third order we need three 

3 



initial conditions, two initial conditions are already defined and one extra initial condition can 

be written as 

u"(O) = A. 

In the above condition A is constant which is that appropiate value at which the first derivative 

at infinity is zero. The correction functional for (1.3) takes the following form 

Using the concept of lagrange multiplier, the above equation can be written as 

With the help of integration by parts, we arrive at 

From Eq.(1.6) , we can calculate the value of lagrange multiplier A as 

\ 11/ 0 
/\~=x = . 

The corresponding boundary conditions from Eq.(1.6) can be written as 

1 + X' I~=x= 0, 

A I~=x= o. 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

The solution of Eq.(1.7) satisfying the botmdary conditions (1.8) can be directly written as 

(1.9) 
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Substituting the value of A in Eq.(1.4) , we obtain 

n 2:: O. (1.10) 

To solve Eq. (1.10), we select the following initial guess which satisfy the imposed initial 

conditions 

(1.11) 

Using (1.10), we obtain the successive approximations 

1 25 1 4 1 2 
- 240A x - 48 Ax + 2"Ax + x, (1.13) 

U2(X) 1 A4x 11 _ 1 A3x lO _ 1 A 2x 9 11 A3x 8 
5702400 518400 193536 + 161280 

11 27 1 6 1 25 1 4 1 2 
+ 20160 A x + 960 A x - 240A x - 48 Ax + 2"Ax + x, (1.14) 

x 23 A8 x 22 A 7 197x21 A6 

6282355064832000 - 273145872384000 - 6290632212480000 + U3(X) 

( 1 A 5 83 A7) 20 ( 83 A 6 
8472231936000 + 571875655680000 x + 28593782784000 

1 A4) 19 14057x18 A5 ( 1829 A4 
6049173602304 x + 65665713408000 + 26531463168000 

5449 A 6) 17 ( 5449 A 5 17 A 3) 16 
125076897792000 x + 7357464576000 + 208089907200 x 

1147x15 A4 10033 A 5 967 A 3) 14 

253609574400 + (1394852659200 - 84536524800 x 

10033 4 1 A2 13 1157x12 A3 ( 5 A4 
+( 99632332800

A 
- 105431040 )x + 2554675200 + 4257792 

23 2 11 5x10A3 43x9A 2 11 A3 1 A) 8 
+ 35481600 A)x - 387072 - 967680 + ( 161280 - 21504 x 

11x7 A2 x6 A x 5 A2 x4A x 2 A 
+ 20160 + 960 - 240 - 48 + -2- + x + ... (1.15) 

It is obvious that only three iterations are used to obtain the approximation U3(X) . Other 

methods require many iterations to get this result. 
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1.4 The Pade approximants -

To study the mathematical behavior of u(x), it is normal to derive approximation for ul/(O) = 

A > O. It was formally shown by [15 - 18] that this goal can be achieved by forming Pade' 

approximants [19] which have the advantage of manipulating the polynomial approximation 

into a rational function to gain more information about u(x). It is well- known that Pade ' 

approximants will converge on the entire real axis if u(x) is free of singularities on the real 

axis . Moreover, it is to be noted that Pade'-finding algorithms are built-in utilities in most 

manipulation languages such as Maple and Mathematica. 

More importantly, the diagonal approximant is the most accurate approximant, therefore 

we will construct only diagonal approximants in the following discussions. Using the bOlmdary 

condition u'(oo) = 0, the diagonal approximant [M/M] vanishes if the coefficient of x with the 

highest power in the numerator vanishes. The diagonal approximants will be determined for 

1/(X) where 

Table 1 

Pade approximants A = ul/ (O) 

[2/2] 0.5773502693 

[3/3] 0.516397793 

[4/4] 0.5227030796 

[5/5] Complex numbers 

[6/6] 0.5217102130 

[7/7] 0.5026354150 

[8/8] Complex umbers 

[9/9] Complex numbers 

[10/10] 0.4672639966 

[11/11] 0.5176098151 
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u'(x) 
A 8X 22 A7 x 21 197 A6x 20 1 

273145872384000 12415721472000 299553914880000 + (- 423611596800
A5 

83 A7) 19 ( 1 A4 83 A6) 18 
+ 28593782784000 x + - 318377558016 + 1504935936000 x 

14057A5x 17 1829 A4 5449 A6 16 
+ 3648061856000 + (1560674304000 - 7357464576000 )x 

17 A 3 5449 5) 15 1147A4x 14 10033 5 

+ 13005619200 - 459841536000
A 

x - 16907304960 + (99632332800
A 

967 A 3) 13 ( 10033 4 1 2 12 1157 A3 x ll 

6038323200 X + 7664025600
A 

-8110080
A

)x + 212889600 
23 A2 5 A4 10 25A3x 9 43A2x 8 

+( 3225600 - 387072 )x - 193536 - 107520 
1 11 llA2x6 Ax5 A 2x 4 Ax3 

+(-2688 A +20160
A3

)x
7
+ 2880 + 160 -48-12+ Ax +1. 

Using the Mathematica built -in utilities to solve the resulting polynomials gives the values of 

the initial slope ul/(O) = A listed in above table. The best approximation is A = ul/(O) = 

0.5227030796. 

1.5 The second form of Blasius equation 

The second form of Blasius equation along with the boundary conditions take the form 

1 
ulll(x) + 2u(x)ul/(x) = 0, 

1£(0) = 0, 1£' (0) = 0, 1£'(00) = 1. 

Let us introduce new variables 

y(x) 

u(x) 

= Bu(Bx), 

1 1 
= BY(B x ) . 

(1.15) 

(1.16) 

In which B is an unknown which we will determine. with the help of Eq.(1.16) , Eq (1.15) take 

the following form 

yl/' (x) + ~y(x)yl/(x) = 0, (1.17) 

yeO) = 0, y'(O) = 0, y'(x) = B 21L'(Bx) ---? B2 as x ---? 00. 

7 



Incorporating a new condition y"(O) = I, ull(O ) = b,. From this conditions it is obvious that 

B = Vyl(OO). (1.18) 

The correction functional for (1.17) is defined as 

(1.19) 

Using the same procedure as discussed in previous section, the lagrange multiplier A can be 

calculated from the following problem 

The above problem gives 

\111 0 /\€=x = , 

1 + A" L~=x= 0, 

A' I ~=x= 0, 

A I ~=x= O. 

(1.20) 

Substituting this value of the Lagrangian multiplier in to the functional (1.19), we obtain the 

following formula 

To solve Eq.(1.21), we select the following initial guess for Yo 

1 2 
yo(x) = '2X . 

n 2:: O. (1.21) 

vVith the help of this initial guess the next iterations can b e calculated for n =0, 1, 2, ....... which 

take the following form 
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Y1(X) 

Y2(X) 

Y3(X) 

1 2 1 5 
2"X - 240 X , 

1 2 1 5 11 8 1 11 

2"X - 240
X + 161280

X 
- 5702400 X 

, 

1 2 1 5 11 8 5 11 10033 14 

2"X - 240
X + 161280

X 
- 4257792

X + 1394852659200
X 

-

5449 17 83 20 1 23 

125076897792000 X + 571875655680000 x - 6282355064832000 x . (1.22) 

It is worth noting that only three iterations are used to obtain the approximation Y3 (x). Con­

sidering y = Y3 (x) as the best approximation, thus 

y'(x) = 
1 4 11 7 5 10 10033 13 

x - 48 x - 20160 x + 387072 x + 99632332800 x 

_ 5449 x 16 5449 x 19 _ 1 x22. 1.23 
7357464576000 + 28593782784000 273145872384000 () 

With the help of Eqs.(1.23) , (1.16) and using the Pade -approximation the best values of B 

are defined in Table 2 as 

Table 2 

x B 1£1/(0) 

2.0 1.313034017 0.4417454320 

2.2 1.347736192 0.4084936660 

2.4 1.373000106 0.3863565574 

2.6 1.387743095 0.3741732832 

2.8 1.388836100 0.3732905625 

The series solution for the second form of Blasius equation is given as 

u(x) = 
x 2 x 5 11 8 5 11 10033 14 

2B3 - 240B6 + 161280B9 x - 4257792B12 x + 1394852659200B15 x 
5449 17 83 20 

125076897792000B18 x + 571875655680000B21 x 
1 23 

- 6282355064832000B24 x , (1.24) 
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in which B is approximated by 1.388836100 from Table 2, and u"(O) = 0.3732905625. 
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Chapter 2 

Solution of boundary layer problem 

with the help of variational 

iterational method 

2.1 Introduction 

In tllis chapter,we have.presented the.solution of stretching.problem.with the help.o()f variational. 

iteration method .. We have taken. the general non ·dimensional "boundary layer . equation of . 

viscous fluid in the ,presence of magnetic .field with.the corresponding~boundary .conditions of . 

linear stretching, o nonlinear stretching.and exponential.stretching.· 

2.2 Mathematical formulations 

vVe consider an incompressible and MHDl viscous fluid 2 bounded by a stretching sheet at 

y = O. A non-uniform magnetic field B(x) is applied normal to the non-linear stretching sheet. 

vVe further assume that an induced magnetic field is negligible. The boundary layer equations 

I r,/Iagnetohydl'odynamics (MHD) is the study of the interaction of conducting fluids with electromagnetic 
phenomena. 

2 A fluid whose viscosity is sufficiently large to make the viscous forces a significant part of the total force field 
in the fluid. 
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for viscous incompressible flow3 are defined as 

au av -+­ax ay 
au au 

u-+v-
ax By 

0, (2.1) 

(2 .2) 

In above expressions, u and v indicate the velocity components in the x and y directions 

respectively, v is the kinematic viscosity, p is the fluid density, (J is the electrical conductivity 

of the B. uid and the value of B (x) is taken as 

(".-1) 
B(x) = BoX 2 , 

in which m = I, corresponds to the case of constant magnetic field. 

The relevant boundary conditions for non linear sheet are defined as 

u(x,O) = cxm
, v(x, 0) = 0, u(x, y) -t 0 as y -t 00. 

Introducing the following similarity transformations 

v c(m+1) ".-1 
TJ = 2v x - 2-y, U = cxm f'(TJ) , 

V cv(m + 1) m -1 [f() m - 1 f'( ) v = - X 2 TJ + --TJ TJ· 
2 m+l 

(2.3) 

(2.4) 

With the help of these transformations, the continuity equation (2.1) is identically satisfied 

and the momentum equation take the following form 

f'" ('T/) - (3 f'2 ('T/) + f ('T/ ) 1" ('T/) - !VI f' ('T/) = 0 (2.5) 

3 A flow, in which the volume and thus the density of the flowing fluid does not change during the flow. All 
the liquids are generally,considered to have incompressible flow. 
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The coressponding boundary condiions take the following form 

f(O) = 0, 1'(0) = 1, f' ~ 0 as 7] ~ 00, (2.6) 

where 

(3= ~ M= 2oB; 
1 + m ' pe(l + m)" 

Note that in above equation (3 = 1 corresponds to linear stretching, (3 = 2 for exponential 

stretching and (3 > 2 corresponds to nonlinear stetching 

2.3 Solution by variational iterational method 

For the solution procedme we write Eq.(2.5) as 

Using integration by parts in above equation, we obtain the following problem to calculate the 

value of lagrange multiplier A 

with the conditions 

\ '" 0 "'€=ry = , 

The solution of A can be directly written as 

13 

(2.7a) 

(2.8) 



Substituting this value of the Lagrangian multiplier into the Eq (2.7) , we obtain 

fn+l(T/) = fn(T/) - ~ .~7J (~ _ T/)2(o3;~~~) _ f3ot~~O + jn(~) 02:~~~) _ Mot;?) )d~, n ~ O. 

(2.9) 

To find the solution of Eq.(2 .9) , we require initial guess which satisfy the conditions, thus 

we choose 

(2.10) 

With the help of Eq.(2.10), for n = 0, 1,2, ... ... , Eq (2 .9) give the following solutions 

12(7/) 
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13(7]) 
C7]2 M 7]3 C7]4 1 4 C 27]5 M 7]5 M 27]5 07]6 1 6 

= 7] + -2- + -6- - 48 + 24 0M7] - 240 - 120 + ---uo + 960 - 180 0M7] 

1 2 6 11 2 7 M7]7 0 2 MTJ7 M27]7 M 37]7 07]8 
+ 720 OM 7] + 20160 0 

7] + 2520 - 1260 - 1008 + 5040 - 21504 
11 C7]8 OM7]8 130M27]8 OM37]8 43027]9 302 M7]9 19M27]9 

+ 161280 + 2016 - 26880 + 40320 967680 + 17920 + 362880 
13 0 2 M2 9 M 3TJ9 5 3 10 490 M TJI0 3C3 M TJI0 

241920 7) - 24192 - 387072
0 

TJ - 4147200 + 179200 + 
890M27)10 5C47) 11 11 2 M 11 M27)11 211702 M27)11 

1814400 4257792 1209600 C 7) - 1425600 + 159667200 
M 37)11 11302 M37]11 M47]11 115702TJ12 OMTJ12 8413C3 M7)12 

+ 332640 79833600 . 1425600 + 2554675200 + 6082560 3832012800 
20110 M 2TJ12 2117C3 M27)12 13810 M37)12 0 M47]12 C27)13 

1277337600 + 1916006400 + 638668800 4561920 105431040 + 
10033 4 13 251 3 2 14 267102 M7]13 8413C4 M7]13 

99632332800 C TJ + 2348236800 C M 7] + 11070259200 49816166400 
187102 M27)13 31M3TJ13 36702M 3TJ13 31M47)13 C2 M47)13 

2264371200 518918400 + 754790400 + 518918400 59304960 
967TJ1403 10033057)14 110M27)14 342103 M27]14 5410M37]14 

84536524800 + 1394852659200 + 541900800 211341131200 7044710400 + 
36703 M 37]14 127CM47]14 1147 4 15 57102 M7}15 1090 4M7}15 

10567065600 + 3522355200 253609574400 C TJ - 253609574400 + 5748019200 
1123C2 M 27]15 342104 M 27]15 598702 M 37]15 M 47)15 17C2 M 4TJ15 

+ 54344908800 - 317011968000 190207180800 825552000 + 2438553600 + 
17037)16 5449 5 16 9593C3 M7)16 109C5 M7)16 

208089907200 7357464576000
0 

7] + 468202212000 + 91968307200 + 
o M37]16 38303 M37)16 1 4 16 1703 M47]16 1829047)17 

1857945600 73156608000 928972800 OM TJ + 39016857600 + 26531463168000 -
5449C67) 17 59399 4 17 46702 M27)17 1555904 M27]17 

125076897792000 87553828454400
0 

M7) - 5306292633600 + 13680285696000 + 
128302 M 3TJ17 383C4 M 3TJ17 467 2 M4 17 14057057]18 
2842656768000 1243662336000 1326573158400

0 
7] + 656653713408000 + 

0 3 M 7]18 1369705lvI 7)18 208303 M27)18 15559 

159188779008 140711510016000 29847896064000 + 246245142528000
05M2

7] 18 + 
2083C3 M3TJ18 C3 M 4TJ18 C4TJ19 83C67)19 

14923948032000 19898597376 - 6049173602304 + 28593782784000 + 
1 13697C6 j\;f7]19 31907C4M 27)19 04M 37)19 

211805798400
04 

M7}19 - 2673518690304000 1559552569344000 + 52951449600 + 
C4M47) 19 1 5 20 83C77)20 197C5 M7]20 

378073350144 8472231936000 C TJ + 571875655680000 + 149776957440000 
197C5 M 2TJ20 C5 M 37)20 197 6 21 C6 M7)21 

74888478720000 + 1059028992000 6290632212480000 C 7) + 6207860736000 
197C6 NI27721 C77722 C7 M77 22 1 

- 1572658053120000 - 2731458723~UOOO + 136572936192000 - 6282355064832000C8TJ 23 
/37]3 C /37)4 7)5/3 1 2 5 1'1/7)5/3 C /37)6 1 6 7] 

7 
/3 C

2 
/37) 

7 

+6 + 12 - 120 + 60 C 
7) f3 + ~ - ---uo + 72 CMTJ /3 + 2520 - 315-

13M/37]7 0 21'117]7 /3 11 /3M2 7 10307]8/3 1 0 3 8/3 701'1/7]8/3 OM27)8f3 
5040 + 504 + 5040 TJ + 161280 - 2520 7] - 2880 + 960 



137 C2 9 19M'T)9(3 13C2M(3'T)9 M2'T)9(3 C2 M2'T)9(3 1 3 9 49C'T)10(3 
362880 'T) (3 + 181440 - 17280 - 3360 + 8640 + 10080(3M 'T) - 4147200 

233 C3 10 127CM'T) I0(3 13C3 M(317 1O 1711 2 10 11CM3'T) 10(3 
+ 2419200 'T) (3 + 806400 - 172800 - 7257600 CM 'T) (3 + 302400 + 
1447C2(3'T)11 233C4(3'T)11 M7]l1(3 2599 2 11 3 M 2 11 

10644800 + 26611200 - 712800 + 31933440 C (3M'T) + 246400 'T) (3-
1207C2M27]11(3 17M3(3'T)1l C2M3'T)1l(3 M4'T)1l(3 C7]12(3 4621 3 12 

19958400 - 1108800 + 302400 + 570240 + 6082560 - 766402560 C 'T) (3-
331ClVI7]12(3 5603C3 M(3'T)lO 2477 '.M2 12 1207C3 M2'T)12(3 149CM3(3'T)12 

79833600 + 319334400 + 159667200 C 'T) (3 - 239500800 - 14515200 + 
CM4(3'T)12 129C2(3'T)13 4201C4(3'T)13 3611 C2 M(3'T)13 431C4M7]13(3 31M2'T)13(3 

1900800 + 410009600 - 3558297600 - 1037836800 + 319334400 - 172972800 + 
33991C2 M2'T)13(3 53 3 13 1271C2 M37]13(3 - 163M4(3 C2 M4'T)13(3 

4981616640 + 86486400
M 

'T) (3 - 566092800 518918400 + 24710400 + 
27403C3'T)14(3 4201 5 14 11CM'T)14(3 13381C3 M7]14(3 
126804787200 49816166400 C (37] + 270950400 - 10567065600 -

2059 M3 14 167 3 2 14 139CM3'T)14(3 1271C3 M3'T)14(3 
5283532800 C 'T) (3 + 132088320 C M 'T) (3 + 211341312 - 792529920 

CM41714(3 571C27]15(3 13063C4'T)15(3 2659C2M'T)15(3 16991C4M7]15(3 

- 5644800 - 253609574400 + 186810624000 + 42268262400 - 80472268800 
52103C2 M2'T)15(3 167C4M2'T)15(3 M31715(3 5627C2 M31715(3 M4'T)15(3 

- 190207180800 + 1981324800 - 206388000 + 22643712000 + 99066240 
61C2 M4'T)15(3 13973C37]16(3 69271C57]16(3 12421C3 M'T)16(3 16991C5 M7]16(3 

- 1828915200 - 4682022912000 + 6437781504000 + 334430208000 - 1287556300800 
CM2'T)16(3 25201C3 M 27]16(3 377CM37]16(3 195703 M 3'T)16(3 167CM4'T)16(3 

+ 619315200 - 292626432000 - 39016857600 + 48771072000 + 19508428800 
61C3 M47]16 (3 86953C47]17 (3 69271C6'T)17 (3 467C2 M7]17 (3 

-292626643200 - 54721142784000 + 109442285568000 - 2653146316800 + 
2299453C4 M'T)17 (3 23719C2 M2'T)17 (3 45964304 M2'T)17 (3 475C2 M3'T)17 (3 

218884571136000 + 9949298688000 - 36480761856000 - 79594389504 + 
1957C4M37]17(3 1349C2M47]17(3 C3'T)18(3 3287051C5'T)18(3 

829108224000 + 497464934400 - 159188779008 7879844560896000 
459643C5 M2'T)18 (3 295877C3 M3'T)18 (3 13C3 M4'T)18 (3 41C4 M3'T)19 (3 

- 656653713408000 - 179087376384000 + 34111881216 + 5618427494400 -
131809C4M7]19(3 23677C6M'T)19(3 2449861C4M 27]19(3 41C4M3'T)19(3 

- 1188230529024000 + 314531610624000 + 7485852332851200 - 190625218560 
13C4M47]19(3 28247C5'T)20(3 1247C77]20(3 167011C5 M'T)20(3 

+648125743104 + 8387509616640000 465972756480000 6290632212480000 
126277C5 M2'T)20(3 41C5 M3'T)20(3 277C6 M4'T)21(3 C6 M7]21(3 

+ 3145316106240000 - 3812504371200 + 362423255040000 - 323326080000 + 
126277C6 M 2TJ21(3 29C7 TJ22(3 C7 MTJ22 (3 29C8'T)23 (3 

66051638231040000 + 341432340480000 7113173760000 ++7852943831040000 
TJ5(32 CTJ6(32 TJ7(32 C2TJ7(32 l\1TJ7(32 83C7]8(32 C 37]8(32 CM7]8(32 

+60 + ~ - 630 + 252 + 25123 - 40320 + 2016 + 336 
197]9(32 71C27]9(32 191\17]9(32 71C2TJ9(32 19M7]9(32 5C2M7]9(32 

+ 362880 - 72576 - 40320 - 72576 - 40320 + 6048 + 
l'vI 2TJ 9,B2 787C7]10 (32 19C3TJI0 (32 1867C M TJ10 (32 C3 M 7]10 (32 83C M 27]10 (32 

2520 + 7257600 - 86400 - 3628800 + 12096 + 302400 



T) ll (32 301C2T)1l (32 19C4T)11 (32 lVJ2T)9 (32 787CT)10 (32 

- 1425600 + 3801600 - 950400 + 2520 + 7257600 

19C31710(32 

86400 

The value of C in above equations can be determined by using pade approximation method, 

which2 are shown as 

(3 lVJ [2/2] [3/3] [4/4] [5/5] 

0.1 1 -1.179033818 -1.104564697 Complex numbers -1.194693313 

0.2 -1.202717508 -1.134533595 -1.147845193 -1.142123790 

0.3 -1.225948695 -1.163400118 -1.222358387 -1.228488722 

0.4 -1.248858327 -1.191333856 -1.198831555 -1.197533244 

0.5 -1.271527987 -1.218437609 -1 .225567562 -1.224643090 

1 0.1 -0 .9698914631 Complex numbers -0.9820379642 -.9544591990 

0.2 -1.023880173 Complex numbers -1.031277264 -1.008337571 

0.3 -1.075227430 Complex numbers -1.078368999 -1.058787633 

0.4 -1.124258739 -0 .5709056973 -1.120222278 Complex numbers 

0.5 -1.171245043 -0.5607048323 -1.159426511 -1.151074249 
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i3 = 1 

:[\'1 = 0 . 1 
IvI = 0 .5 
:[\'I = 0.7 
I\'I = 1 . 0 
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2.4 Results and discussion 

The boundary layer equations of viscous fluid in the presence of magnetic field has been solved 

analytically with the help of variational iteration method. The Pade approximation is used to 

find the bounded solution at infinity. Three types of stretching solutions cases named as linear , 

nonlinear stretching and exponential stretching have been discussed. To discuss the physical 

features we have plotted Figures 1 to 4. 

In Fig.(2.1), the nondimensional velocity j' is plotted against 'r) for various values 

of magnetic parameter lvI, the velocity field decreases and the boundary layer thickness also 

reduces for the case of linear stretching. The variation of f3 on thevelocity are shown in Fig. (2 .2). 

It is depicted that the velocity field decreases 'with the increase in f3. Moreover, the velocity field 
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for linear stretching is less than for the nonlinear stretching and the boundary layer thickness 

is reduced rapidly in nonlinear stretching case. The variation of IVI for nonlinear stretching 

and exponential stretching are displayed in Figs (2 .3) and (2.4). It is observed that the velocity 

decreases with the increase in !vI for both the cases. However, the boundary layer thickness is 

reduced rapicUy as we increase the value of /3. 
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