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Preface 

The peristaltic flow in cannel/tube has attained considerable importance 

from past few decades and the reason for this is that such flows occur in 

various physiological and engineering processes. In particular, peristaltic 

motion occurs in urine transport from kidney to bladder, blood flow in 

arteries, roller and finger pumps, transportation of certain corrosive fluids 

etc. Peristaltic motion with heat transfer and magnetic field effects are 

important in biomagnetic fluid dynamics. In [1-10] are reported some 

worthy contributions on related topic. In [14] Ali et al. discussed the 

peristaltic flow of a viscous fluid with variable viscosity in an asymmetric 

channel. The present dissertation is organized as follows. 

Chapter one includes some fundamental definitions related to the topic, 

that are vital in order to develop the basic understanding of the reader. The 

material presented in this chapter helps in describing the flow 

characteristics of the subsequent chapters. 

Chapter two is prepared to investigate the peristaltic transport of a viscous 

fluid in an asymmetric channel. Mathematical problem is formulated under 

the assumptions of long wavelength and low Reynolds number. Exact 

solution of the problem is calculated. Moreover, the computations for 

pressure rise and frictional forces at the upper and lower walls have been 

carried out and discussed through graphically results. This chapter 

provides a detailed review of a paper by Ali efal. [14]. 

In chapter three the effects of heat transfer on a peristaltic flow of a 

magneto hydrodynamic (MHO) fluid in an asymmetric channel with variable 

viscosity is explored. Perturbation method is adopted to obtain the results 

under the assumptions of long wavelength and low Reynolds number. 

Expressions of stream function, temperature and heat transfer coefficient 

are constructed and discussed. 
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Chapter 1 

Relevant definitions and equations 

The main purpose of this chapter is to provide some relevant definitions and equations for the 

subsequent chapters . 

1.1 Basic definitions 

1.1.1 Fluid 

Fluid is defined as a substance that deforms continuously under the action of applied shear 

stresses of any magnitude. 

The basic difference between solids and fluids is that in case of solids, the deformation 

generated by applied shear stresses is not continuous. 

1.1.2 Fluid mechanics 

Fluid mechanics is the branch of engineering which is associated with the study of fluids at 

rest or in motion. 

1.1.3 Fluid dynamics 

The brallch of engineering dealing 'Nith tIle fluids in Illation is kno\vn as fluid dynamics. 
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1.1.4 Fluid statics 

It is the branch of engineering that deals with the study of fluids at rest. 

1.2 Some definitions 

1.2.1 Density of a fluid 

We know that density of any substance (fluid) is defined as the mass of unit volume of the 

substance (fluid) at a given temperature and pressure. However (in case of fluids) if the density 

of the fluid varies throughout the system, then the density at a point is defined as the limiting 

value in the following way 

(8m) p = lim ~ . 
c>v-+O uV 

(1.1 ) 

In above equation 8m denotes the mass element, 8v is 'the volume element enclosing the point 

under consideration and p indicates t he fluid density. 

1.2.2 Viscosity 

It is defined as the ability of a fluid to resist the flow, or it is the internal resistance of a fluid. 

In a more scientific and more compact way, the ratio of shear stress to the rate of shear strain 

is known as viscosity. The mathematical relationship for viscosity is 

(
II.) __ shear stress 

Viscosity I"" 

rate of shear strain 

Depending upon certain conditions in the several cases, viscosity is also termed as absolute, 

kinematic or dynamic viscosity. It is an important property of a fluid which plays obvious role 

in experimental and mathematical analysis regarding flow. Classification of fluids is also made 

on the basis of viscosity. 
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1.2.3 Kinematic viscosity 

It is defined as the ratio of dynamic viscosity to the density of the fluid. In mathematical form 

one can write 

1. 2.4 Pressure 

Kinematic viscosity (v) = !:!:... 
p 

It is known as the magnitude of the applied force to the object (in the perpendicular direction 

to the surface) per unit area. Mathematically one can write 

1.2.5 Flow 

P 
Magnitude of applied force F 

ressure = = A 
area 

We know that the fluid goes under deformation when different forces act upon it. If the 

deformation increases continuously or indefinitely then this is known as flow. 

1.2.6 Types of flows 

(i) Steady flow 

The flow in which the physical properties of the fluid ( i.e. velocity, pressure, density etc.) at 

each point of the flow field remain invariant with respect to time is named as "steady flow II • 

For any fluid property ( we then write 

(ii) Unsteady flow 

a( = 0 at . (1.2) 

The flow in which the fluid property changes with time is called the unsteady flow. In mathe-

matical notation we have 

(1.3) 
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(iii) Incompressible flow 

Flow of constant density fluid is known as incompressible flow. In general all liquids are con

sidered to have an incompressible flow. 

(iv) Compressible flow 

The flow for which density varies is known as compressible flow. Flow of all the gases have been 

treated as the compressible flows. 

(v) One-, two-, and three-dimensional flows 

A flow is classified as one-, two-, or three dimensional depending upon the number of space 

coordinates appearing in the velocity field. 

1.2.7 Stream line 

The imaginary line in the fluid drawn in such a way that the tangent to it at any point gives the 

direction of flow at that point, is called stream line. Thus the stream line shows the direction 

of motion of a number of particles at the same time. 

1.2.8 Stream function 

It is a function, which describes the form of pattern of flow, or in other words it is the discharge 

per unit thickness and it describes flow fields in term of either mass flow rate, for compressible 

fluids , or volume flow rate, for incompressible fluids . Mathematically for a steady state two 

dimensional flow field, we may write 

v = 'V x 'IjJ, (1.4) 

where V = (u, v, 0) , therefore 'IjJ = (0,0, 'ljJ) . In Cartesian coordinate system, the velocity com

ponents in terms of stream function may be defined as 

(1.5) 
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The stream function can be used to plot the stream lines (,1/) = constant) to analyze the flow 

behavior graphically. 

1.2.9 Ideal and real fluids 

Fluids of negligible viscosity are known as ideal fluids. These fluids do not offer any resistance 

to the shear forces and thus do not practically exist in nature. However, from engineering point 

of view, gasses are considered as the ideal fluids. On the other hand, fluids of finite viscosity are 

known as real fluids. These fluids offer considerable resistance against the shear forces. Such 

fluids are further classified in to two sub classes namely the Newtonian and non-Newtonian 

fluids. 

1.2.10 Newtonian fluid 

The fluid for which shear stress is directly proportional to the linear rate of strain is termed 

as Newtonian fluid. For such fluids, the graph between shear stress and deformation rate is a 

straight line. Mathematical expression satisfied by such fluid is given below 

or 

du 
Tyx ex dy' 

du 
Tyx = J.L-d ' y 

(1.6) 

where T yx is the shear stress, J.L is the dynamic viscosity (a constant of proportionality) and 

du/dy is the rate of strain (velocity gradient perpendicular to the direction of shear) for a 

unidirectional and one-dimensional flow. 

For a Newtonian fluid, the viscosity, by definition, depends only on temperature and pres

sure, not on the forces acting upon it . In common terms, this means that the fluid continues 

to flow, regardless of the forces acting on it. If the fluid is incompressible and viscosity is con

stant across the fluid , the above equation governing the shear stress can be generalized in the 

Cartesian coordinate system as follows 

(1.7) 
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In above expression 

Tij is the shear stress on the ith face of a fluid element in the lh direction 

Ui is the velocity in the ith direction 

Yj is the lh direction coordinate. 

The most common examples of such fluids are water and gasoline. In this dissertation, the 

considered flows will be analyzed for the viscous fluid situation. 

1.2.11 Types of forces 

Surface forces 

Such forces act on the surface of any medium through direct contact with the surface. Examples 

of such forces include pressure and stress. 

Body forces 

Such forces act throughout the volume of the fluid and are independent of any type of physical 

contact. Gravity and magnetic forces· are examples of two body forces. 

1.2.12 Volume flow rate 

It is the volume of fluid which passes through a section of pipe or channel in unit time. It is 

usually represented by the symbol Q. Given an area A, and a fluid flowing through it with 

uniform velocity V with an angle e away from the perpendicular to A, then the volume flow 

rate is 

Q = AVcos(1. 

For flow perpendicular to the area A we have e = 0 and thus the volume flow rate is 

Q=AV. 

1.2.13 No-slip condition 

When a fluid flows, the outer most molecules of the fluid near the solid boundary stick with the 

boundary and the fluid velocity at the boundary is equal to that of the solid boundary. This is 
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known as the no-slip condition. 

1.2.14 Slip condition 

Although no-slip condition is extensively used in flows of Newtonian and non-Newtonian fluids 

but in most engineering applications, the no-slip condition does not always hold in reality. For 

example a large class of polymeric materials slip or stick-slip on the solid boundaries. To counter 

this situation Navier proposed a general boundary condition that incorporate the possibility of 

fluid slip at the solid boundary. According to Navier, .the relative velocity between the fluid 

and the solid boundary in the x-direction (at a solid boundary) is directly proportional to the 

shear stress at that botmdary, i.e. 

or 

Uf - Uw ex T X Y 1 

(3 
uf - Uw = ±-Txy , 

~~ 
(1.8) 

where (3 (constant of proportionality )is the slip parameter having dimension of length, the plus 

and the minus signs are due to direction of the normal on the wall, uf is the velocity of the 

fluid and U w is the velocity of the wall. This is known as slip condition at solid boundary. For 

(3 = 0 we recover the case of no-slip condition. 

1.3 Basics of magnetohydrodynamics 

Definition (MHD) 

The science that deals with the dynamics of highly conducting fluids in presence of a magnetic 

field is known as magnetohydrodynamics (MHD). 

Maxwell 's equations 

These equations describe the behavior of electric and magnetic fields in terms of basic laws 

dealing with the electromagnetism. 
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Gauss's law of electricity: According to the Gauss's law of electricity, the net electric fim< 

through any closed surface is €~ times the total charge enclosed in it, mathematically 

V.E = Pe 

EO 
(1.9) 

v.rhere p is the charge density, EO is the permittiviLy of the free space and E is the electric field. 

For free space i. e. P = 0, (there is no electric field). 

Gauss's law of magnetism: By this law, the total magnetic flux through any closed surface 

is zero, i.e. 

V.B=O. (1.10) 

vVe can further state from this law that the magnetic mono-poles do not exist or magnetic field 

lines can never end. 

Faraday's law of electromagnetic induction: It states that changing t he magnetic field 

induces an electric field . In mathematical notations, we can express that 

where B is the magnetic field . 

aB 
VxE=-at 

Ampere's law: It relates the magnetic field to the changing electric field, i.e. 

VxB 

/-La 

where /-La is the magnetic permeability and j is the current density. 

Ohm's law 

(1.11) 

(1.12) 

T his states that the total current is proportional to the voltage drop "'.vhich for a str,tionary 

conductor is 

J =O"E (1.13) 
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and for a moving conductor 

J = (J(E + V x B) , (1.14) 

where (J is the electrical conductivity. 

Lorentz force 

Lorentz force for changing magnetic field is given by 

(1.15) 

and for constant magnetic field we have 

F=J x B 

1.4 Basics of heat transfer 

Heat 

We know that the total kinetic energy of the system is known as heat . Heat is one of the most 

common form of energy that plays a vital role in transfer of energy from one place to another 

due to difference in temperature (average kinetic energy of the system). 

Heat transfer 

Heat transfer is the process that deals with the flow of heat within the system. It is different 

from thermodynamics in the sense that thermodynamics only deals with the flow of heat across 

the boundary and it is inadequate to explain the flow of heat within the system. As all of 

the transfer phenomenon are triggered by some gradient, in case of heat transfer the cause is 

difference in temperature. Heat flows from hotter to cooler side, and it keeps on flowing unless 

the temperature gradient is zero (or the heat is uniformly distributed throughout the system). 

Modes of heat transfer 

- Following are the modes through which heat can be transferred from one place to another 
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Conduction The transfer of heat, when it takes place from more energetic particles to the 

less energetic ones due to particle to particle collusions, is known as conduction. Most of the 

heat transfer taking place in solids is due to conduction, it also takes place in liquids and gases 

but not as a major mode of heat transfer. Common example of conduction is rise of temperature 

of one end of an iron rod, when the other end is heated by any source. 

Convection: Heat transfer when it takes place between a solid boundary and the fluid moving 

adjacent to the boundary, is termed as convection. It involves the combined effects of conduction 

and fluid motion. Conduction is the mode of heat transfer that is responsible for the transfer 

of heat in fluids. Example of convection can be taken as heating up of water when it is boiled 

in any container . 

Following are three types of convection 

Natural convection 

If no external force or agent is involved in the process, or the fluid motion occurs purely due 

to density difference induced by the temperature difference, then the process is called natural 

or free convection. The temperature changes in the whole control volume produces a difference 

in density that in turn induces body forces, these body forces are responsible for generation of 

flow in case of free convection. These body forces are actually generated by pressure gradients 

imposed on the whole fluid . Gravity is the most common source of this imposed pressure fields. 

The body forces in this case are in common termed as buoyancy forces. In general we can say 

that natural convection would not be possible without thermal expansion and gravity. 

Forced convection 

Forced convection is the type of convection that involves the fluid flow due to some external 

agent or source e.g. due to a fan or a pump. Buoyancy forces are negligible is this case. 

Radiation Matter in all its forms emit, absorb and transmit radiations. These radiations are 

in form of electromagnetic waves. The transfer of heat by this mode has the speciality that it 

does not require any medium of propagation, and radiations can travel through vacuum. Heat 

transfer by this mode is explained by modified Stefan-Boltzmann law. 
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Specific heat 

The amount of heat energy required to increase the temperatme of one kg of any substance by 

one degree, is know as specific heat of that substance. 

Thermal conductivity 

The ability to transmit or to conduct heat energy for different materials is different. It is the 

measure of this ability of a material to conduct heat that is known as thermal conductivity. It 

is denoted by k . A substance with a large k is a good conductor of heat e.g. iron, whereas a 

material with low k is a poor conductor but a good insulator e.g. air and wood. 

Thermal diffusivity 

The ratio of amount of heat conducted to the amount of heat stored per unit volume is known 

as thermal diffusivity. 

Viscous dissipation 

It is the transformation of kinetic energy to the internal energy of the fluid due to viscous 

effects, in other words it is the heating up of fluid. 

Note that all the material of heat transfer has been taken for the convenience of the readers 

from [15]. 

1.5 Dimensionless · numbers 

In most of the problems related to fluid mechanics, we use certain dimensionless numbers and 

parameters . Such non-dimensionalizing is important from two points of view. It simplifies the 

problem up to a certain extent and it also reduces the cost of the experiment i.e. we can discuss 

the effects of several parameters in one dimensionless numbers. 

We now define some dimensionless numbers for the related material presented in the disser

tation. 
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Reynolds number 

It is the ratio of inertial force to the viscous force. It is denoted by Re. By the use of this 

number, one can predict either the flow is laminar or turbulent . A low Reynolds number means 

that the fluid is more thicker (viscous) and the flow is laminar where the viscous forces are 

dominant and vice versa. 

Magnetic Reynolds number 

In problems involving MHD, magnetic Reynolds n,umber is a more important parameter. It 

represents the ratio of fluid flux to the magnetic diffusivity. In comparison to ordinary Reynolds 

number which determines the diffusion of vorticity along the streamlines, magnetic Reynolds 

number determines the diffusion of magnetic field along the streamlines. A high magnetic 

Reynolds number means that the magnetic field lines will be frozen in the fluid and will move 

as the fluid flows. Mathematically it is expressed by the relation 

UL 
Rem =-

rJ 

where U is the velocity scale of flow, L is the typical length scale of flow and rJ is the magnetic 

diffusivity. By considering the small values of Rem we can neglect the effects of induced magnetic 

field on the flow. 

Hartman number 

It is defined as ratio of magnetic body force to the viscous force. It measures the relative 

importance of drag forces resulting from magnetic induction and viscous forces and determines 

the velocity profile in Hartman flow. It is denoted by illf. 

Wave number 

The ratio of the channel width to the wavelength is called wave number. Its definition is 
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in which L is the half width of the channel and A the wavelength. 

Prandtl number 

It is the ratio of momentum diffusivity (kinematic viscosity) and the thermal diffusivity. It can 

be related to the thickness of thermal and velocity boundary layer. In other words it can be 

defined as the ratio of velocity boundary layer to the thermal boundary layer. When it attains 

the value 1, the two boundary layers coincide. It is denoted by Pr. 

Eckert number 

This number expresses the relation between a flow's kinetic energy and enthalpy and is denoted 

by Ec or E. This number only enters into the problem when the viscous dissipation in the 

energy equation is taken in to accolmt. 

Brinkman number 

The product of Prandtl number and Eckert mtmber is called a Brinkman number. Besides this 

it interprets the ratio of the viscous dissipation to the heat transfer rate. 

1.6 Basic governing equations 

1.6.1 Continuity equation 

The conservation law of mass leads to the fact that mass of a closed system of substances 

remains constant, regardless of the processes acting inside the system. This principal may be 

applied to a moving fluid and its mathematical formulatlon yields the continuity equation. vVith 

no somce or sink in the control volume, the continuity equation is given by 

(1.16) 
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where '1.£, V and w designate the velocity components in x, y and z directions respectively. The 

vectorial form of Eq. (1.19) can be presented as follows 

ap 
at + "V.pV = 0, (1.17) 

which for incompressible fluid becomes 

"V.V = 0, 

or 

divV = O. (1.18) 

1.6.2 Equation of motion 

The vectorial form of equation of motion is 

p d; = div T + pb, (1.19) 

where T is the Cauchy stress tensor, pb is the body force and d/ dt is the material time derivative. 

The definition of material derivative is 

d a a a a 
-=-+'I.£-+v-+w-, 
dt at ax ay az 

or 
d a 
dt = at + v."V (1.20) 

and the Cauchy stress tensor T is 

r ~"" Txy Txz 

1 
T.= Tyx (J yy Tyz 

L Tzx T zy G zz J 

(1.21) 

in which (J xx, (J yy. and (J zz denote the normal stresses and T ij (ih) are the shear stresses. 
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1.6.3 Energy equation 

The conservation law of energy states that the increase in the internal energy of a thermody

namical system is equal to the amount of heat energy added to the system plus (minus) the 

amount of energy gained (lost) by the system as a result of the work done on (by) the system 

by the surroundings. The general form of energy equation is 

dT -
p(dj = T .(VV) + V.(kVT ) (1.22) 

in which ( is t he specific heat at const ant volume and k is the thermal conductivity. In case of 

constant thermal conductivity, Eq. (1.22) becomes 

dT - 2 
p( dj = T .(VV) + kV T ). 

1. 7 Peristalsis 

The word peristalsis has b een originated from a greek word "Peristalt ikos ", which means com

pressing. Hence, peristalsis is a mechanism, for mixing and transporting fluids , which is gen

erated by progressive wave of contraction or expansion moving on t he wall of a flexible chan-

nel/tube. 

1. 7.1 Peristaltic transport 

It is a mechanism of material t ransport as a result of peristalt ic waves induced along the length 

of the walls of a distensible channel/tube containing the mat erial. 

1. 7. 2 Occurrence of peristalsis in physiology 

The mechanism of perist alsis has obvious appearance in moving food through the digestive 

tract , transport urine from kidneys to the bladder , transport of bile, transport of lymph in the 

lymphatic vessels, vasomotion of small blood vessels, movement of chYlfie in the gastrointestinal 

tract, movement of spermatozoa in the ducts efferents of male reproductive tract and the ovum 

in the female fallopian tube. It also occurs in small and large intes tines. The mechanism of 
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peristaltic motion has been exploited for industrial applications and it plays a vital role in many 

biomechanical instruments like, blood pumps in heart lung machines and roller pumps. 

1.8 Pumping and trapping 

A pump moves liquids from lower pressure to higher pressure under certain conditions and this 

operation of a pump is known as pumping This may be further elaborated as follows. 

1.8.1 Positive and negative pumping 

The positive and negative pumping are dependent upon the dimensionless mean flow rate e. For 

positive e we have positive pumping and if e is negative then it is known as negative pumping. 

1.8.2 Adverse and favorable pressure gradient 

Pressure gradient generated by peristaltic motion of the wall is adverse if pressure rise per 

wavelength (!:::"P)..) is positive and favorable if !:::"P).. is negative. 

1.8.3 Peristaltic pumping 

Peristaltic pumping appears when pumping is positive and pressure gradient is adverse i.e. 

e > 0 and !:::"P).. > O. 

1.8.4 Free pumping 

This possibility holds when pressure gradient becomes zero and pumping remains positive i. e. 

e > 0 and !:::"P).. = O. 

1.8.5 Co-pumping or augmented pumping 

Here pumping is positive and pressure gradient is favorable i.e. e > 0 and !:::"P).. < O. 

1.8.6 Bolus 

A volume of fluid bounded by closed stream lines in the wave frame is called bolus. 
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1.8.7 Trapping 

In the wave frame, stream lines under certain conditions split to trap a bolus of fluid which is 

pushed ahead along with the peristaltic wave with the speed of the wave. This phenomenon is 

called trapping. 

20 



Chapter 2 

Peristaltic transport of a viscous 

fluid in an asymmetric channel with 

variable viscosity 

2.1 Introduction 

The purpose of this chapter is to examine the influence of variable viscosity on the peristaltic 

transport of a viscous fluid in an asymmetric channel. The flow generated is due to waves 

propagating on the channel walls. Different phase and amplitude of the travelling waves are 

response to cause an asymmetry. The velocity components and longitudinal pressure gradient 

are derived after long wavelength and low Reynolds number. The graphs are sketched and 

discussed. This work provides a detailed review of a paper by T. Hayat and N. Ali [14]. 

2.2 Definition of the problem 

Let us investigate the peristaltic transport of an incompressible Newtonian fluid with variable 

viscosity in an asymmetric channel of width d1 + d2 . The sinusoidal wave trains propagate with 

constant speed c on the walls of channel which in turn propel the fluid along the walls. 

The wall shapes are described as follows: 
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h1 (X ,I) d1 + a1 cos [2; (X - d)] .... upper wall , (2.1 ) 

h2 (X, I) [
2'if (- _ ] -d2 - b1 cos ~ X - ct) + ¢ ... .lower wall. 

In above definitions a1 and a2 are the wave amplitudes, A the wavelength, c the wave speed, I the 

time, and ¢ (0 ::; ¢ ::; 'if) is the phase difference. Here (U, V) denote the velocity components in 

fixed frame of reference (X, Y) . For ¢= 0 this case corresponds to the symmetric channel with 

waves out of phase and for ¢ = 'if the waves are in phase. Further a1, a2, d1, d2 and ¢ satisfies 

the condition ai + a~ + 2a1 a2 cos ¢ ::; (d1 + d2)2 . 

The appropriate definition of velocity V is 

V= (U (X, Y, I) ,V (X, Y, I) , 0) , (2.2) 

The expression of Cauchy stress tensor T for a viscous fluid is 

(2.3) 

in which I the identity tensor, P(X, Y, t) the pressure, Ji the variable dynamic viscosity and 

first Rivilin Ericksen tensor A1 is 

(2.4) 

where t denotes the transpose of the matrix. By making use of Eq. (2) \lV and it's transpose 

are defined as 

l 

a"Q a"Q 0 1 ax ay 
\lV = a~ a~ 0 ax ay , 

000 

l ~~ au 
ay 

o 
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o 

(2.5) 

(2.6) 



From Eqs. (2.6)-(2.7) we have 

Al= 

The relevant equations are 

[ 2~~ 
e'Q + e~ ey ex 

0 

· divV 

dV 
Pdt 

eu I e\l 
BY' ex 
2e~ ey 

0 

0, 

divT, 

where P is the fluid density. Eqs. (2.9) and (2 .10) give 

au av = 0 
ax + ay , 

~ 1 
(2.7) 

(2.8) 

(2.9) 

(2 .10) 

_ ap +2 a [;U(y)au] + a [;U(y) (av + au)](~.l1) 
ax ax ax ay ax ay 

= --:= + 2-:= ;u(y)-= + -= ;u(Y) -= + -= ('2 .12) ap a [ - av] B [ - (av au)] 
ay BY BY ax ax BY 

2.3 Governing equations in the wave frame 

The frame moving with wave speed c in the positive X direction is called wave frame (x, Y). 

Surely, in the laboratory frame the flow is till steady. However in a coordinate system moving 

at the wave speed c (wave frame) (x, y) it can be considered as steady. The two coordinate 

frames are related by the following transformations 

x - ct, -y -Y - , U(x,fj) = u (X, Y,t) - c, v (x,Y) = V (X, Y, I), 

p(x,y) P(X, Y, I) (2 .13) 

where 11 and v are the velocity components in the x and y directions respectively. With the help 

of these transformations the differential operators in the two frames are related in the following 
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way 
o 

oX 
o 
ox' 

o 
oY 

o 
oy 

o 0 
---c-'ot - Ox (2.14) 

In view of Eqs . (2.13) and (2.14), the continuity equation (2.10) and component form of 

momentum equations (2.11) and (2.12) take the forms 

0, (2.15) 

--= + 2-= 7i(Y)-= + - 7i("Y) - + -= , 015 0 [ au] 0 [ (OV OU)] 
ox ox ax Oy Ox oy (2.16) 

-- + 2--= 7i(Y)--= + - Ji(Y) - + -= . 015 0 [ Ov] a [ (OV Ou)] 
Oy oy ay Ox Ox oy (2.17) 

where 15 is the pressure and Ji(Y) is the viscosity function. 

2.4 Non-dimensionalization of the problem 

In order to non-dimensionalize the above equations we introduce following dimensionless quan-

tities 

x y U v ct al d = d2 b - !:l x = y = d
l

' 'l.i=-, 
V = co' t= - a=-, 

A' c A' dl dl ' - d l ' 

d2 hl h2 f1.(y) = 7i("Y) , S-~S (2.18) p I -
hI = d

l
' h2 = d

l
' --p 

Af1.0C ' 
- , 

f1.0 f.Loc 

where f1.0 is the constant viscosity. In view of dimensionless quantities introduced in above 

equation, Eqs. (2.15)-(2 .17) can be written as 

0, (2.19) 

where the wave number 0 and Reynolds number Re are 

(2.22) 

24 



By employing the assumptions of long wavelength 6 « 1 and low Reynolds number, the Eqs. 

(2 .20) and (2.21) give 

- ~~ + :y [~ (y) (~~)] = 0, 

and ap/ay = 0, which implies that p i- p(y) . 

The dimensionless form of the wall shapes becomes 

hI = 1 + acos 27TX, h2 = -d - bcos (27TX + ¢) 

2.5 Volume flow rate and boundary conditions 

The instantaneous volume flow rate in the laboratory frame can be written as 

hl(X,t) 

Q = I u (X , Y , t) dY, 

h2(X,t) 

(2.23) 

(2.24) 

where hI and h2 are functions of X and t only. In the wave frame the expression of volume 

flow rate is 
h1(x) 

q = ./ u (x, Y) d'fj, 

h2(X) 

where hI and h2 are functions of x alone. Using Eqs. (2.14), (2.18) and (2.25) we have 

Q = q + ChI (x) - Ch2 (x) . 

The time mean flow over a period T at a fixed position X is 

T 

- 1 f' Q = T . Qdt. 
o 

(2.25) 

(2.26) 

(2.27) 

Putting Eq. (2 .26) into the above expression and then performing the integration one obtain 

(2 .28) 
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Defining the non-dimensional time mean flow rates e and F in the laboratory and wave frames 

by 

we have 

Q 
e = cd

1
' 

q 
F=-d ' 

l C 

F+d + l-B. 

The boundary conditions in the wave frame are 

-c aty=h1 ,y=h2, 

dhl dh2 
-c- at y = hI and 'iJ = -c- at y = h2 . 

dx dx 

·Which upon non-dimensionalizing give 

U - 1 at y = hI and y = h2 , 

dhl dh2 
V = - - at y = hI and v = --l- at y = h2 , 

dx ex 

2.6 Solution expressions 

The exact solution of the above problem subject to the boundary conditions is 

in which 

;
. 1 I y 

10 (y) = .---;:--() dy , II (y) = ---;:--() dy . 
. . { y . {y 

Using the dimensionless form of the volume flow rate i.e. 

hI 

F = ./UdY. 

h2 

we arrive at 
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(2.29) 

(0 7(\\ 
~<-.vVJ 

(2.31) 

(2.32) 

(2.33) 

(2.34) 



which further gives 

where 

Using Eq. (2.33) we get 

where 

dp 

dx 

12 (y) = ./ /L~:) dy 

(2.35) 

Note that the differentiation is with respect to x. The non-dimensional form of the pressure 

rise per wavelength 6.P)u and frictional forces at the upper and lower walls Flu) and Fll) 

respectively given by 

The influence of variable viscosity on the flow characteristics can be analyzed through 1o• hand 

h for any given type of viscosity /L (y) . The form of the variable viscosity /L(Y) can be adopted 

as follows 

~~(y) = e-CiY for a « 1 or ~~(y) = 1 - ay. 

in which a is the viscosity parameter. The consideration of such kind of expression for ~~ is 

justified physiologically in such a way that a normal person or an animal of the same size takes 

(1 - 2L) of the fluid every day. The small intestine receives (6 - 7 L) of the fluid as secretions 
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from salivary glands, stomach, pancreas, liver and small intestine itself. This points to the 

dependence of fluid concentration upon y and therefore the selection of {i is appropriate. 

Subtituting the above choice of viscosity in the Eq. (2.34) we finally get 

dp 

dx 
12 (F + hI - h2 ) 

(hI - h2)3 

+0 (a2
) 

r1 - ~ { 6 (hi - hi) - 8 (hI + h2) (hr - h~1 + 3 (hi - h~) (hI - h2)211 
L , (hI - h2 ) ) J 

(2.36) 

We note that the results of constant viscosity can be obtained as a special case by taking 

{L(Y) = 1. Also if we put a = b, d = 1 and ¢ = 0 the results for symmetric channel can be 

retained. The expressions for 6.p)." F~u) and F~l) involve the integration of dp/ dx. As from 

the expression of dp / dx it is o~vious that it can not be integrated analytically. As a result, a 

numerical integration scheme is adopted for the evaluation of integrals. Mathematica is used 

to evaluate the integrals and later to generate all the plots. 

2.7 Discussion 

In order to see certain features of 6.p)." F~u) and F~l), the integrals involved have been evaluated 

numerically for different values of a, b, d, and ¢. The used values of a are 0 and 0.1. Fig. 2.1 is 

plotted for the effects of upper wave amplitude a on 6.p)., . It is found that with an increase in 

a pumping increases in the pumping region (6.p)., > 0), co pumping region (6..p)., < 0) and free 

pumping region (6.p)., = 0). It is further noticed that for an appropriately chosen 6.p)., < 0, e 
is decreasing function of a . Moreover the pumping curves for a = 0.1 lie above the curves of 

a = 0 in pumping region, free pumping and copumping region for all three values of a. The 

effects of lower wave amplitude b is qualitatively similar to that of a (Fig. 2.2). Fig. 2.3 shows 

the variation of channel width d on6.p).,. In pumping region (6.p)., > 0) pumping decreases 

with increase in d. For free pumping there is no difference in the pumping curves while in the 

copumping region (6.p)., < 0) pumping decreases for large d. For a = 0.1 the pumping curves lie 

a.bove the Cllrves of a = 0 in the p1.1n1ping region. However the sitllation in COpuillping region is 

quite opposite. Fig. 2.4 is prepared for the effects of phase difference ¢ on 6.p).,. Similar effects 

are observed in the pumping and copumping region while in the free pumping, the pumping 
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decreases with an increase in ¢. 

In order to examine the effects quantitatively, we provide intervals for e where 6.p).. < 0 and 

6.p).. > O. Observe that as a increases the length of the interval for 6.p).. > 0 increases (Table 

1). Similar observation is for the case when viscosity increases from 0 to 0.1 and a fixed (Table 

2.1). This means that the interval for e in which pressure resists the flow increases in length 

as a and O! increase. The lower wave amplitude b has similar effects on the length of interval as 

that of a (Table 2.2). An increase in the channel width d leads to a decrease in the length of 

the interval where 6.p).. > 0 for both a (= 0, 0.1) (Table 2.3). The observations regarding the 

effects of ¢ on 6.p).. are similar to that of d (Table 2.4). 

Figs. 2.5 and 2.6 depict the effects of ¢ on the i1:ictional forces Flu) and Fll) respectively. 

Interestingly, frictional forces are decreasing functions of ¢ and a. Further, the frictional force 

at the upper wall is much when compared with the lower wall . 
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Fig. 2.1: The pressure rise versus flow rate for b = 0.5, d = 2, if; = 7r/4, Q = 0 and Q = 0.1. 
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Fig. 2.2: The pressure rise versus flow rate for a = 0.5, d = 2, if; = 7r/4, Q = 0 and Q = 0.1. 
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Fig. 2.3: The pressure rise versus flow rate for b = 0.5 , a = 0.5, if; = 7r /4, Q = 0 and Q = 0.1 
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Fig. 2.4: The pressure rise versus flow rate for a = 0.5 , b = 0.5, d = 0.3, a = 0 and a = 0.1. 
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Fig. 2.5: The frictional force at the upper wall versus flow rate for a 

a = 0 and a = 0.1. 
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Fig. 2.6: The frictional force at the lower wall versus flow rate for a = 0.5, b = 0.5, cl = 0.3, a = 0 

and a = 0.1. 
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Fig. 2.7: The frictional force at the upper wall versus flow rate for a = 0.5, b = 0.5, ¢ = 1f/4, 

a = 0 and a = 0.1. 

- 1 0 1 2 3 
o 

Fig. 2.8: The frictional force at the lower wall versus flow rate for a = 0.5, b = 0.5, ¢ = 1f /4, 

a = 0 and a = 0.1. 
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Fig. 2.9: The frictional force at the upper wall versus flow rate for a = 0.5, d = 0.7, ¢ = 1f /4, 

a = 0 and a = 0.1. 
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Fig. 2.10: The frictional force at the lower wall versus flow rate for a = 0.5, d = 0.7, ¢ = rr/4, 

a = 0 and a = 0.1. 
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Fig. 2.11: The frictional force at the upper wall versus flow rate for b = 0.5, d = 0.7, ¢ = rr /4, 

a = 0 and a = 0.1. 
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Fig. 2.1 2: The frictional force at the lower wall versus flow rate for b = 0.5 , d = 0.7, ¢ = rr /4, 

a = 0 and a = 0.1. 
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Table 2.1: Intervals for flow rate e for different values of a 

Parameter (a) Intervals of () where 6.p>-. > 0 Intervals of () where 6.p>-. < 0 

0.3 
a = 0.0 , -1 < () < 0.2001 a = 0.0,0.2001 < () < 3 

a = 0.1, - 1 < () < 0.2123 a = 0.1,0 .2123 < () < 3 

0.6 
a = 0.0, - 1 < () < 0.4890 Q; == 0.0, 0.4890 < e < 3 

a = 0.1, - 1 < () < 0.5031 a = 0.1,0.50310 < () < 3 

0.9 
a = 0.0, - 1 < () < 0.7747 a = 0.0,0.7747 < () < 3 

a = 0.1, -1 < () < 0.7938 a = 0.1,0.7938 < () < 3 

The other parameters are b = 0.5, d = 2, and ¢ = 1f/4. 

Table 2.2: Intervals for flow rate () for different values of b (The other parameters are a = 0.5, 

d = 2, and ¢ = 1f /4) . 

Parameter (b) 

0.3 

0.5 

0.7 

Intervals of () where 6.p>-. > 0 Intervals of e where 6.p>-. < 0 

a = 0.0, - 1 < () < 0.2143 a = 0.0,0.2143 < () < 3 

a = 0.1, -1 < () < 0.2281 

a = 0.0 , -1 < () < 0.4075 

a = 0.1, -1 < () < 0.4188 

a = 0.0 , -1 < () < 0.6776 

a = 0.1 , -1 < () < 0.6889 
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a = 0.1,0 .2281 < () < 3 

a = 0.0,0.4075 < () < 3 

a = 0.1, 0.4188 < () < 3 

O! = 0.0, 0.6776 < () < 3 

a = 0.1,0.6889 < () < 3 



Table 2.3: Intervals for flow rate e for different values of d (The other param.eters are a = 0.5 , 

Parameter (d) 

0.3 

0.35 

0.38 

b = 0.5, and ¢ = 7r/4). 

Intervals of e where 6.p>. > 0 Intervals of e where 6.p>. < 0 

a = 0.0, -1 < e < 0.7838 a = 0.0 , 0.7838 < e < 3 

a = 0.1, - 1 < e < 0.8023 a = 0.1 , 0.8023 < e < 3 

a = 0.0, -1 < e < 0.7811 

a = 0.1 , -1 < e < 0.7666 

a = 0.0 , -1 < e < 0.7690 

a = 0.1, - 1 < e < 0.7564 

a = 0.0 , 0.7811 < e < 3 

a = 0.1 , 0.7666 < e < 3 

a = 0.0, 0.7690 < e < 3 

a = 0.1, 0.7564 < e < 3 

Table 2.4: Intervals for flow rate e for different values of ¢ (The other parameters are a = 0.5, 

d = 2, and b = 0.5) . 

Parameter (¢) 

o 

11' 

'2 

Intervals of e where 6.p>. > 0 Intervals of e where 6.p>. < 0 

a = 0.0, - 1 < e < 0.8975 a = 0.0,0 .8975 < e < 3 

a = 0.1, - 1 < e < 0.9267 

a = 0.0 , -1 < e < 0.7837 

a = 0.1, -1 < e < 0.8024 

a = 0.0, -1 < e < 0.7092 

a = 0.1 , -1 < e < 0.7268 
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a = 0.1,0.9267 < e < 3 

a = 0.0,0.7837 < e < 3 

a = 0.1 , 0.8024 < e < 3 

a = 0.0,0 .7092 < e < 3 

a = 0.1, 0.7268 < e < 3 



Table 2.5: Intervals for flow rate e for different values of ¢ (The other parameters are a = 0.5, 

d= 2, and b = 0.5). 

Parameter (¢) Intervals of e where Flu) < 0 Intervals of e where Flu) > 0 

0 
a = 0.0, -1 < e < U.7706 a = 0.0,0 .7706 < e < 3 

a = 0.1, -1 < e < 0.8336 a = 0.1 , 0.8336 < e < 3 

1T 
a = 0.0, - 1 < e < 0.6006 a = 0.0,0.6006 < e < 3 

4; 
a = 0.1 , - 1 < e < 0.6107 a = 0.1, 0.6107 < e < 3 

1T 
a = 0.0, -1 < e < 0.4252 a = 0.0,0.4252 < e <; 3 

"2 
a = 0.1, -1 < e < 0.3126 a = 0.1, 0.3126 < e < 3 

Intervals of e where Fll) < 0 Intervals of e where Fll) > 0 

0 
a = 0.0, -1 < e < 0.8125 a = 0.0 , 0.8125 < e < 3 

a = 0.1, -1 < e < 0.8415 a = 0.1,0.8415 < e < 3 

1T 
a = 0.0, -1 < e < 0.2050 a = 0.0,0.2050 < e < 3 

4; 
a = 0.1, - 1 < e < 0.2121 a = 0.1,0 .2121 < e < 3 

1T 
a = 0.0, -1 < () < 0.0621 a = 0.0 , 0.0621 < e < 3 

"2 
a = 0.1 , - 1 < e < 0.0685 a = 0.1 , 0.0685 < e < 3 
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Table 2.6: Intervals for flow rate e for different values of d (The other parameters are a = 0.5, 

b = 0.5 , and ¢ = 7r/4). 

Parameter (d) 

0.3 

0.35 

0.38 

0.3 

0.35 

0.38 

Intervals of e where Flu) < 0 . Intervals of e where Flu) > 0 

a = 0.0, - 1 < e < 0.6377 a = 0.0, 0.6377 < e < 3 

a = 0.1 , - 1 < e < 0.6807 a = 0.1, 0.6807 < e < 3 

a = 0.0 , - 1 < e < 0.5969 

a = 0.1 , - 1 < e < 0.6308 

a = 0.0, - 1 < e < 0.5733 

a = 0.1, - 1 < e < 0.6026 

Intervals of e where F?) < 0 

a = 0.0, - 1 < e < 0.8163 

a = 0.1, - 1 < e < 0.8275 

a = 0.0 , - 1 < e < 0.5942 

a = 0.1, - 1 < e < 0.6098 

a = 0.0, - 1 < e < 0.3216 

a = 0.1, -1 < e < 0.3365 
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a = 0.0,0 .5969 < e < 3 

a = 0.1, 0.6308 < e < 3 

a = 0.0, 0.5733 < e < 3 

a = 0.1, 0.6026 < e < 3 

Intervals of e where Fll) > 0 

a = 0.0, 0.8163 < e < 3 

a = 0.1, 0.8275 < e < 3 

a = 0.0 , 0.5942 < e < 3 

a = 0.1,0.6098 < e < 3 

a = 0.0 , 0.3216 < e < 3 

a = 0.1,0.3365 < e < 3 



Table 2.7: Intervals for flow rate e for different values of b (The other parameters are a = 0.5 , 

d = 2, and ¢ = 7r/4). 

Parameter (b) 

0.3 

0.5 

0.7 

0.3 

0.5 

0.7 

Intervals of e where Flu) < 0 In~ervals of e where Flu) > 0 

a = 0.0 , - 1 < e < 0.6349 a = 0.0,0.6349 < e < 3 

a = 0.1, -1 < e < 0.6512 

a = 0.0 , - 1 < e < 0.5643 

a = 0.1, - 1 < e < 0.5670 

a = 0.0, -1 < e < 0.5626 

a = 0.1,0.6512 < e < 3 

a = 0.0, 0.5643 < e < 3 

a = 0.1 , 0.5670 < e < 3 

a = 0.0 , 0.5626 < e < 3 

a = 0.1, -1 < e < 0.5871 a = 0.1,0.5871 < e < 3 

Intervals of e where Fll) < ° Intervals of e where F/~l) > 0 

a = 0.0, -1 < e < 0.3220 

a = 0.1, -1 < e < 0.3364 

a = 0.0 , - 1 < e < 0.3169 

a = 0.1 , - 1 < e < 0.2900 

a = 0.0, -1 < e < 0.2878 

a = 0.1, - 1 < e < 0.2762 
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a = 0.0,0 .3220 < e < 3 

a = 0.1, 0.3364 < e < 3 

a = 0.0, 0.3169 < e < 3 

a = 0.1 , 0.2900 < e < 3 

a = 0.0, 0.2878 < e < 3 

a = 0.1 ,0.2762 < e < 3 



Table 2.8: Intervals for flow rate e for different values of a (The other parameters are b = 0.5, 

d = 2, and ¢ = 7r/4). 

Parameter (a) Intervals of 'It where Flu) < ° Intervals of e where Flu) > ° 
0·.3 

a = 0.0, - 1 < e < 0.4024 a = 0.0, 0.4024 < e < 3 

a = 0.1, - 1 < e < 0.4024 a = 0.1,0.4024 < e < 3 

0.6 
a = 0.0 , - 1 < e < 0.4126 a = 0.0 , 0.4126 < e < 3 

a = 0.1 , - 1 < e < 0.4137 a = 0.1, 0.4137 < e < 3 

0.9 
a = 0.0, -1 < e < 0.3831 a = 0.0,0.3831 < e < 3 

a = 0.1, -': 1 < e < 0.3967 a = 0.1,0.3967 < e < 3 

Intervals of e where Fll ) < 0 Intervals of e where Fll ) > ° 
0.3 

a = 0.0 , -1 < e < 0.0513 a = 0.0, 0.0513 < e < 3 

a = 0.1 , - 1 < e < 0.0513 a = 0.1 , 0.0513 < e < 3 

0.6 
a = 0.0, -1 < e < 0.2152 a = 0.0, 0.2152 < e < 3 

a = 0.1, -i < e < 0.2164 a = 0.1, 0.2164 < e < 3 

0.9 
a = 0.0, - 1 < e < 0.8125 a = 0.0, 0.8125 < e < 3 

a = 0.1, -1 < e < 0.8233 a = 0.1,0.8233 < e < 3 
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Chapter 3 

Heat transfer on the peristaltic 

transport in an asymmetric channel 

3.1 Introduction 

This chapter highlights the effects of velocity and thermal slip parameters on the peristaltic 

motion of variable viscosity and magnetohydrodynamic (MHD) fluid in an asymmetric channel. 

Heat transfer coefficient and temperature are given due attention with respect to embedded 

parameters in the problem . 

3.2 Mathematical formulation 

We consider a variable viscosity viscous fluid in an asymmetric channel of width d1 + d2 . 

The fluid is electrically conducting whereas the channel walls are insulating. Fluid is con

ducting under the effect of constant magnetic field Bo applied in the Y direction. No electric 

field is applied. Induced magnetic field is also not considered under the assumption that mag

netic Reynolds number is very small. Furthermore, it is assumed that the upper and lower 

channel walls are at temperature To and Tl respectively. The motion is initiated due to si

nusoidal wave train moving with constant speed c. The shape of channel walls surfaces are 
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described by 

Hl(X,t) 

H2(X ,t) 

21f - _ 
d1 + al sin "T(X - ct), upper wall, 

(
21f - - ) -d2 - b1 sin "T(X - ct) + ¢ , lower wall , (3.1) 

The governing Eqs. are (2 .9)-(2. 10) and the energy equation. The energy equation can be 

written as 
dT - 2 

p( dt = T. (VV) + kV T, 

where p is the fillid density, ( the specific heat at constant volume, T the t emperature. T the 

Cauchy stress tensor , V t he velocity field and k the thermal conductivity. vVe know that 

T. (VV) = tr [(T) (VV)] 

in which t r denotes the trace of the matrix. In the wave frame the complete set of governing 

equations is 

2.10 => 

2. 11 => 

[a -a -a ]-
p !:}_ + U ---= + v --= U 

ut ax ay 

2.12 => 

au av = 0 
ax + ay , 

--= + 2-= f](Y)---= + --= f](Y) ---= + --= ap a [ - au ] a [ - (av au) ] 
ax ax ax ay ax ay 

(3 .2) 

2--(JBoU, (3.3) 

(3.4) 

(_ a - a ) - [ {( au )2 (av )2} ( av aU )2] [a2T a2T] p( U --= + v -= T = f](Y) 2 --= + -= + ---= + --= +k -2 + -2 ' ax ay ax ay ax ay ax ay 
(3.5) 
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The above equations in the following nondimensional variables become 

2nx y U 'iJ 0= 2nd1 HI H2 d = d2 P = 2ndfp x = - , Y = d1' u--
V = co' hI = d;' h2 = d;' A 

- , 
A ' d1' CA/-La ' C 

T - Ta /-L(Y) = /-i('Y) , ( ) 1/2 PT = /-LaC; c2 
Va = /-La, e M = :0 Badl, E= 

Tl - Ta ' /-La k ' C;(T1 - Ta) , P 
a1 b = !!..!. R = pcd1 ct 0'IjJ o'lj! 

(3.6) a = , d ' e , t = );" ' u = oy ' v = - ox ' d1 1 /-La 

(3.7) 

Re03 
U-+V- v=--+202- ~L(Y)- +02_ /-L(Y) 0 -+- , ( 

0 0 ) op ' 0 ( ov ) 0 [ ( 2 OV Ou) ] 
ox oY oY oy oy ox ox oy 

(3.8) 

E~L (y) [402 (ou) 2 + { (o'l.£) 2 + 04 (Ov ) 2 _ 252 OU ov}] + 
ox oy ox oy ox 

(3.9) 

where 'IjJ is the stream function , Va is the kinematic viscosity, ]o.if is the Hartman number , 

Re is the Reynolds number, 0 is the wave number, Pr is the Prandtl number, E is the Eckret 

number, /-La is the constant viscosity and e is the dimensionless temperature. Adopting the long 

wavelength approximation eqs. (3.7) - (3.9) reduce to 

0= _ op + ~ ( /-L(Y) 02'IjJ ) _ M2 ( 0'IjJ + 1) 
ox oy oy2 oy 

(3 .10) 

0= _ op 
oy 

(3.11) 

(3.12) 

in which the Brinkman number Br = Pr E and continuity equation is automatically satisfied. 
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3.2.1 Derivation of slip condition 

In fixed frame of reference the slip conditions at the walls are defined as 

U X , H2, t - U'" - (- - ) -

(3 .13) 

(3.14) 

in which U (X, Y , t) is the longitudinal component of the velocity in the laboratory frame, HI 

and H2 are the shapes of the walls which are given in Eq. (2.1), U w is the velocity of the 

walls, T Xy is the shear stress and 'Y is the dimensional slip parameter. Transforming the above 

expressions in the wave frame through Eq. (2 .13) we obtain 

Uw - u (x , hI) 'Y- (3.15) -Tx y , 
{L 

u (x, h2) -uw 
'Y- (3.16) -Txy ' 
{L 

Since the wave frame is moving with the speed of the wave travelling along the distensible walls 

of the channel so the boundaries are stationary in the wave frame and therefore 

Uw = O. 

which in view of Eqs. (2. 14) become 

'it (x, hI) 

U (x, h2) 

It is convenient to use the non-dimensional variables (2.18) at this stage and obtain 

ou 
y =h1 (x) , u -(3- -1 at 

oy 
ou 

y = h2 (x) , U (3- -1 at 
oy 

where (3 =~. 
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(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 



The non-dimensional boundary conditions in terms of stream function are 

'ljJ 
F 8'ljJ 82'ljJ 88 

(3.22) 
2' 8y + f3p,(y) 8y2 = - 1, 8+'Ya = 0, at y = hI , 

Y 

'ljJ 
F 8'ljJ 82'ljJ 88 

(3.23) = 2' - - f3l-l(Y)- = -1, 8 - 'Y 8y = 1, at y = h2, 8y 8y2 

(3.24) 

(3.25) 

where p,(y) = e-Cty or J-l(Y) = 1 - ay for a « 1; a is the viscosity parameter and f3 and 'Y 

are the non-dimensional velocity and thermal slip parameters respectively. 

3.3 Solution of the problem 

We solved the system of equations as follows 

3.3.1 Case 1 for hydrodynamic fluid (NI = 0) 

For this case the governing system takes the following form 

0 8p 8 ( o2'ljJ) 
- ox + 8y J-l(Y) 8y2 ' (3.26) 

0 
8p 

(3.27) 
8y' 

0 = 
828 ( 82 '1/)) 2 
8y2 + B7'J-l(Y) 8y2 (3.28) 
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~ 
F 8w 82w 88 

= 8 +f3~ = -I, 8+'Ya = 0, at y = hI, 2' Y Y Y 

~ 
F 8~ 82~ 88 

= 2' 
- -f3- =-1 8 - 'Y 8y = I, at y = h2, 
8y 8y2 ' 

solution for which, are given as 

~= 

(2Al(hl - y)(h2 - y)(A1(A2 - 2y + (hf + hlh2 + h~ - A2y - y2)a) 

+2(A2 + hlh2a - y(2 + ay))f3) - F(Al(h~ - 6h2y2 + hfa + h~a 

-4h~y2a + hr(1- 2h2a) - hl(h~ - 4h2y + 2y2)(3 + 2h2a) 

+hf( -3h2 - 4(h2 - y)2a) + 2y3(2 + ay)) + 4(-3h~y - 3h1 (h~ - 4h2y + y2) 

+hta + h~a - h1y( -3h~ + y2)a - 3hf(h2 + Y + h2(h2 - y)a) 

+(2 - 2ya)(hr + h~) + y3(2 + 2ya) - h2y2(3 + ay))f3 + 12Al(A2 - 2y)f32)) 

(2Af(A~(1 + A2a) + 4A1(2 + A2a)f3 + 12(32)) 

dP (6(F + A1)(A1(2 + aA2) + 4(3)) 
dx = - (Af(Af(l + aA2) + 4A1(2 + aA2)f3 + 12(32)) ' 

(3.29) 

(3.30) 

, (3 .31) 

(3 .32) 

(3 .33) 

Ll = 5A~(A2 + 6(3)(A~(1 + 2A1a + 8A2(1 + A1a)f3 + 12f32)(A2 + 2'Y)), L2 = (A~(A2 + 

6f3)(A~( 1 + 2Ala) + 8A2(1 + Ala) f3 + 12(32)(h1 - Y + 'Y) - 2(F + A2)2 BT(A2(hl - y)(h2 -

y)(A2(15(hf + h~ - 2A1y + 2y2) + (23(hr + h~) + 13hlh2(Al)(37(hf + h~) + 52h1h2)y + 18A1y2 + 

18y3)a) + 6(hf + h~ + 2y( -AI + y)(5 + (AI + 3y)a)f3), L3 = 120h2y3 + 23h~a + 15h~(1 + 

3ya) - 12y4(5 + 3ya) - 30h~y(-1 + 4ya) + 10h~y2( -9 + llya) , L4 = -6(h~ + 2h~y - 6h~y2 + 

8h2y3 - 4y4)(5+ h2a+ 3ya)f3 + 3h~( -5 +46h2a -15ay - 2a(3) - 15ht(gh~a+ 2ya( -4y + f3) + 

2(y + (3) + h2(7( -1 + ya) - 2a(3)) + 3h1( -46h~a + 10h~y( -3ya) - 6f3 + 40h2y2(3 + ya)f3 + 

52h~(7( -1 + ya) + 2a(3)) + 20h~(y(1 - 2ya) + 3f3 + ya(3) + 4y3(y(5 + 3ya) - 10(2 + ya)f3)), 

L5 = 15hi(12h~ + gh~a - 2h2y(y( -3ya) + 6(3) - 12h~(f3 + ya(3) + 4y2(3f3 + y( -2 + a(3))), 

L6 = -10hr(18h~+y(y(-g+ llya)+6f3)-6h~(3f3+y(-1+2ay+af3))), L7 = -15A~(A2(2+ 

3Ala) + 2(2 + A1a)f3) 
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3.3.2 Case 2 for magnetohydrodynamic (MHD) fluid (Jv! =1= 0) 

For the case of magnetohydrodynamic fluid the governing equations are 

(3.34) 

(3.35) 

In order to solve the above equations, we expand flow quantities in terms of small parameter a 

as follows 

P 

F 

e 

'l/Jo + a'l/JI + o(a2) 

Po + apI + o(a2) 

Fo + aFI + o(a2) 

eo + aeo + o( a 2) 

Zeroth order system 

'if; 0 
Fo 8'if;0 + (J8

2
'if;0 - -1 8eo at Y = hI , = 2 ' 

80+"18 =0, 8y 8y2 - , y 

'if; 0 
Fo 8'if;0 _ (J8

2
'if;0 - -1 8eo at y = h2, -"2' eo-"I- =1, 8y 8y2 - , 8y 

First order system 

8r
el + Br [2 (82

'l/JI ) (8
2

'if;0 ) _ y (
82

'l/JI ) 2] = 0, 
8y2 8y2 8y2 8y2 
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(3 .36) 

(3.37) 

(3.38) 

(3 .39) 



'ljJ1 
F1 0'ljJ1 + f302'ljJ1 _ 13' O'2'ljJo = ° 081 

Y = hI , 2' 81 + 'Y a = 0, at oy oy2 y oy2 ' Y 

'ljJ1 
F1 0'ljJ1 02 'ljJ1 02'ljJo 081 

Y = h2 , -2' 8 - f37j2 + f3Y7j2 = 0, 81 - 'Y oy = 0, at 
y y y 

The final solution comes out to be 

_1_ [2eM(A1-Y )(F + A2) - 2eMY(F + A2) + eh2M (AI - 2y)(2 + FM A4)] _ ehl M 
2A5 

(AI - 2y)(2 + FMA3) + a [ml + m2] (3.40) 

__ 1_(_1_(e-M (2Al+Y)(A5(A6(e2M(Al+Y)(F + A2 - 8F1M - 2(F+ 
SAg J\![A6 

A2)My + 2(F + A2)M2y2) + e3A1M (F + A2 + 8F1M + 2(F+ 

A2)My + 2(F + A2)1VI2y2) + 4eM(2h1+3h2+Y) FIA1M2 A4 

ml = _4eM(3h1 +2h2+Y) FIA1M2 A3 - 8A4F1M eM(3h1 +4h2) + 2A4eM(2hl +3h2+2y) 

-AIA~1VIeM(2hl+4h2+Y) _ 2A3eM(4hl+3h2) + 2A3eM(3h1+2(h2+Y)) + 

A1A~MeM(4hl+2h2+Y))) + (F + A2)( -8A6eM(3Al+Y)A2AIM3y+ 

2e4A1M (2 - M(A1 + A~M)(2 + AIM) + A~M4( -1 + A 1M)f32)) 

_2e3Al~H2MY( -2 + M( -2Al + 3M(hi + h~) - 2hlh2M

M2(hr + h~) + M2h1h2Al + A~M3(1 + AIM)f32)) 

+eM(3h1+5h2) (-2 + M(h2 + hl(-l + 2M(A1 + hlA2M)) - 213-

4hlM(1 + hlM(l + hIM - h2M))f3 + A2M2(1 + 2hlM 

(1 + h1M) )f32)) + A7e2M(hl+2h2+Y) + 2AseM(2h1+5h2+Y)_ 

2AgeM(5h1+2h2+Y) + AlOe21H(2hl +h2+Y) + 2All eM (3h1+4h2+Y)+ 

A12eM(5hl+3h2) + 2AI3eM(4hl+3h2+Y)))) + 8eA1M(F + A2)AIMysinh[A2M] 

dP (F + A2)M3(A1 (_ e2h1M + e2h2M + 2eA1M A2M)a - 2A5eh2M A4 + 2A5ehl M A3 

dx 2A5(eh2M(2 - A2MA4) + eh1M(-2 + A2MA3)) 
(3.41 ) 

8 
1 1 1 MA 

24A5 (Nl + +2Br(F + A2)1VIa(N2 + A5A6 N3 + N4 + N5 + -48e 1 (3.42) 

FIM(cosh[A2M]- cosh[(A2 - 2y)M] + 2M'Ysinh[A2M]))) 
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Nl = 24A~1:~;~+Y) + 12BreMA1 (F + A2)2 M 2(cosh[A2MJ - cosh [A2M - 2yJ + 2M(M(hl -

y )(h2 -y) - A2M'Y + 'Y sinh [A2 MJ)) , N2 = - 6e2MY (F +A2)(1 - My + M2y2) + 6e2M(A 1-Y)(F+ 

A2)(1 + My(l + My)) + A51A6 (3e-2MY(F + A2)(2e3MAl A14 + e2M(h1 +2h2) A15 - e2M(2hl +h2) A16 + 

2eM(Al +4y) A17 - e2M(h2+2y) AlB + e2M(h1 +2y) A19 )), N3 = 6eA1M M2(2eA1M (F - (-A14 + A17) + 

A2(A14 +A17 )) - e2h2M ((F - A2 )A1S + (F+A2)A1B) +e2h1M ((F-A2)A16 + (F +A2)A19 ))((hl -

y)(h2 - y) - An)), N4 = A2~2,,/8eA1M M3(A2(hl - y)(h2 - y)( - 12Fl + (F + A2)(Al + y)) -

(hi - 4hlh2 + h~ + 2Al y - 2y2)( -12Fl + (F + A2)(Al + y))ry - 3A2( -8Fl + (F + A2)Al)ry2)) -

16 (24F1M(eh2M A4 + eh1M A3)(e2M(A1-y) - e2My + 4eMA1 M2((hl - y)(h2 - y) - An))) -

A212'Y (6e2h2M (F + A2)( -h2(1 + My - 2M,)') - 2y( -1 +'M'Y ) + hi M2(h2 - Y - 'Y) (-1 + 2M'Y) -

h~M2(Y_'Y)(-1+2M'Y)+hl(-1+My-2M'Y+h~M2(1+2M'Y)))), Ns = - A2~2'Y(6e2hlM(F+ 

A2)(hi M2(h2 - y - 'Y) (1 + 2M'Y ) - h~M2(y - 'Y)(1 + 2M'Y) + h2(1 - My + 2M'Y) - 2(y + My'Y ) + 

hl (l + My + 2M'Y + h~M2(1 + 2M'Y)))) + A5A6(~2+2'Y) (3(8A5F1M(eh2M A4 + eh1M A4)(A2 -

2'Y) (e2h2M (1- 2M'Y) + e2h1M (1 + 2M'Y) - (F + A2)( _2eM(hl +3h2)( -1 + 2M'Y) ( -h2A14 +y(A14 -

A17 )+hl A17+(A14 +A17 )ry)+2eM(3h1 +h2) (1+2M 'Y) (hlA14 -h2A17+h2A19-y(A16+A19)+,)'A16-

'YA19) +e4h1M (- 1 +2M'Y) (h2A 15 - y(A1S +A1S) -'YA1SY( -A14 +A17) + (A14 + A17)ry- e4h1M (1 + 

2M 'Y) (hlA16 -+A1B(hl +'Y)) +e2MA1 (h2 (A16+ A 1B) -y(A1S +A16+A1B +A19) - 2My(A15 -AlB + 

AlB -A19)ry) +'Y(A15 -A16 - 2h2MA16 -AlB +2h2MA1B +A19 +2M(Als +A16 -AlB -A19)))))' 

The heat transfer coefficient (Z) at the upper wall is 

(3.43) 

which upon using the results, gives 
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1 24A2 . 
Zl = -24Ag(acos[x](- A2 +L + 12BTeMA1 (F + A2?M2(2M(-M(hl -y)-

M(hl - y)) + 2M sin[M(Al - 2Y)])~Br(F + A2)Ma( - 6e2MY (F + A2)(-M 

+2M2y) _12e21"fY(F + A2)M(1- My + M 2y2) + 6e2M(A 1-Y)(F + A2)(M2y 

+M(l + My)) - 12e2M(A1-Y)(F + A2)M(1 + My(l + My)) - _1_(6e-2My 
A5A6 

(F + A2)M(2e3MAIA14 + e2M(hl+2h2)A15 - e2M(2hl+h2)A16 + 2eM(A1+4Y)A17 

_e2M(h2+2y) A18 + e2M(h1+2y) A 19 )) + _1_ (3e-2My (F + A2)(8eM(Al +4y) 
A5 A6 

M A17 - 4e2M(h2+2y) M A 18·+ 4e2M(h1+2y) A19)) + _1_(6eMAl M2(-Al + 
A5A 6 

2y)(2eMA1 (F( -A14 + A 17 ) + A2(A14 + A 17 )) - e2Mh2 ((F - Al)A15 + (F + A2) 

A 18 ) + e2Mh1 ((F - Al)A16 + (F+ A2)A19 ))) - ~6 (24F1M(-2e2M(Al-Y)M-

2e2My M + 4eMAl M2( -A2 + 2y)) (eMh2 A4 + eMhl A3)) + A
2

: 2, (8e MAl M 3(A2 

(F + A2)(hl - y)(h2 - y) - A2(hl - y)( - 12Fl + (F + A2)(Al + y)) -

A2(h2 - y)( -12Fl + (F + A2)(Al + y)) - (F + A2)(hr - 4hlh2 + h~ + 2Aly 

_2y2)r - 2(2Al - 4y)( -12Fl + (F + A2)(Al + y))r)) - A 1 (6e2Mh2 
2 + 2, 

(F + A2)(hlM - h2M - 2( -1 + M,) - hiM2( - 1 + 2M,) - h~M2( - 1 + 2M,))) 

1 
A (e2Mhl (F + A2)(hl M - h2M - 2(1 + M,,/) - hrM2(1 + 2M,)-

2 +2, 

h~M2(1 + 2M,))) - A5A6(~2 + 2"/) (3(F + A2)( _2e(h1+3h2)M (-A14 + A l7 ) 

(-1 + 2!11f"() + e4h2M (-A15 - A18 )( -1 + 2M,) + 2eM(3hl+h2) (A14 - A 17 ) 

(1 + 2M,) - e4Mhl (-A16 - A 19 )(1 + 2M,,/) + 2eMAl (-A 15 - A16 - A18 - A19 -

2M(A15 - A16 + A18 - A 19 )r))) - 96eMAl FlM2 sinh[(Al - 2y)]))) ) (3.44) 

The pressure rise per wave llength (.6.P),J and frictional forces at the upper (F)'ll) and 
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lower (FA 12 ) walls are 

(3 .45) 

(3.46) 

3.4 Discussion of results 

The purpose of this section is to see the salient features of temperature e, heat transfer coefficient 

Z and stream lines for the velocity slip j3, thermal slip ,,/, flow rate 'T/ , viscosity paramete?'-a 

and Brinkman number Br. 

Figs. 3.1 (a) - (e) show the behavior of temperature. Fig 3.1(a) explains that an increase 

in the velocity slip j3 decreases the temperature. Fig. 3.1(b) illustrates that the temperature 

increases with an increase in flow rate 77. Temperature increases by increasing in Br and "/ see 

Figs. 3.1 (c) and 3.1(d). Fig. 3.1(e) demonstrates the effect of viscosity parameter on the 

temperature. Obviously there is an increase in the temperature when the value of viscosity 

paramet er increases. 

Fig. 3.2 represents the behavior of streamlines for the different values of a and j3 . Fig. 3.2 (b) 

shows that the size of trapped bolus increases with an increase in the viscosity parameter (a). 

Figs. 3.2(a) and (b) examine that size of trapped bolus decreases when j3 increases. 

Figs. 3.3 - 3.5 represent the behavior of heat transfer coefficient at the upper wall (hd. 

Heat transfer coefficient has an oscillatory behavior due to peristalsis. Absolute value of heat 

transfer coefficient decreases with an increase in j3 (see Fig. 3.3). 

Fig 3.4 shows that absolute value of heat transfer coefficient increases by increasing BT. Fig 

3.5 represents that heat transfer coefficient increases with an increase in "f. By comparison of 

left and right panels, we conclude that the heat transfer coefficient at the upper wall increases 

with an increase in a. 
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3.5 Conclusions 

Peristalsis of variable viscosity fluid in an asymmetric channel has been studied in the presence 

of slip condition. The following observations are noted. 

• There is a decrease in temperature when (3 increases. 

• The effects of "I, Br and 'TJ on temperature are quite opposite to that of (3. 

• An increases in (3 reduces the size of trapped bolus. 

• The magnitude of the heat transfer coefficient at the upper wall increases when thermal 

slip parameter increases. 

• The no-slip results can be recovered by choosing (3 = "I = O. 
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Fig. 3.1(a) : Variation of (3 on the temperature when d = 1.1; a = 0.5; b = 0.7; M = 1.0; ¢ = i; 
x = 0; 'Y = 0.2; Br = 0.5 and 'T) = 1.4. 
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Fig. 3.1(b): Variation of 'T) on the temperature for d = 1.1; a = 0.5; b = 0.7; (3 = 0.2; ¢ = ~; 

x = 0; M = 1; Br = 0.5 and 'Y = 0. 2. 
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Fig. 3.1(c): Variation of Br on the temperature when d = 1.1; a = 0.5; b = 0.7; (3 = 0.2; ¢ = "if; 
x = 0; 'TJ = 2.2; 1\11 = 1 and, = 0.2 . 
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Fig. 3.1(d): Variation of, on the temperature when d = 1.1; a = 0.5; b = 0.7; (3 = 0.2; ¢ = "if; 
x = 0; 'TJ = 2.2; Br = 0.5 and 'TJ = 1.4. 
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Fig. 3.1(e): Variation of a on the temperature when d = 1.1; (3 = 0.2 ; b = 0.7; (3 = 0.2 ; ¢ = ~; 
x = 0; rJ = 2.2; M = 1 and ,= 0.2. 
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Fig. 3.2: Effect of f3 on the stream lines (left panels are for a = O,and right panels are for 

a = 0.2), when a(f3 = 0.4) , b(f3 = 0.08) and d = 1.2; a = 0.7; b = 1.2; ¢ = ~; rJ = 1.4; M = 1.0. 
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Fig. 3.3 : Effect of f3 on the heat transfer coefficient (Zl) at the upper wall for d = 1.4; a = 0.4; 

b = 0.8; if; = ~; 7} = 1.5; 'Y = 0.2; Br = 0.5; and M = 1. 
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Fig. 3.4: Effect of Br on the heat transfer coefficient (Zl) at the upper wall for d 1.4; 

a = 0.4; b = 0.8; ¢ = ~; 7) = 1.5; 'Y = 0.2; f3 = 0.2; and M = 1. 
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Fig. 3.5: Effect of '"Y on the heat tr:ansfer coefficient (ZI) at the upper wall when d = 1.4; 

a = 0.4; b = 0.8; ¢ = ~; 7J = 1.5; Br = 0.5 ; (3 = 0.2 ;and M = 1. 
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Appendix 

Here, we present the involved values in solution expressions. 

Al = hI + h2 , A2 = hI - h2, A3 = 1 + M(3,A4 = -1 + M(3, A5 = eh2M (2 - MA2A 4) + 

eh1M (-2 + j\I[ A2A3), A6 = eh2M A4 + eh1M A 3, A7 = -2 + M( -5hl + h2 + 2Mhlh2 + 2Mhi + 

2M2hlh~ - 2M2h~ - 2(3 + 4Mh2(1 + Mh2( - 1 - Mhl + Mh2))(3 + A2M2(1 + M hd - 1 + 
Mh2))(32), As = 2 + h2M( -3 + M(3) + Mh l (3 - M(3 + 4Mh2A4)' Ag = -2 - h2M(3 + M(3) + 

M hI (3 + M (3 +4M h2A3) , AlO = - 2+ M (2(3 - 2M2 hr A~ + 2Mhi A~ (1 + j\I[h2) + h2 ( -5+ M2 (32) + 
hl(l + M(2h2 -4(3 - M(l + 2Mh2)(32))), All = -2+ M(h2 + 2M2hrA4 - hl ( -1 + 2M2h~)A4 + 

2Mhi(A3 + Mh2A 4 ) + Mh2( -(3 + 2h2(1 + M(h2 + (3 - (3Mh2)))), A12 = -2 + M(2(3 + h2( - 1 + 

M(2h2A~ +(3(4+M(3) + 2Mh~A~)) - h1 ( -5+M(M(32 + 2Mh~A~ + 2h2( -1 + M2(32)))), A 13 = 

- 2 + M(2 + hr M2 A3 - h l ( - 1 + 2M2h~)A3 + 2Mhf(1 + h2M + M( - 1 + h2M)f3) - h2(1 + 

M((32h2( -1 + M(h2 + (3 + h2M(3 ))))) , A14 = 2 - M(AI + A~M)(2 + M AI) + A~M4( -1 + 
AIM)(32, A 15 = 2 + M(5h2 + hl(-l + 2M (AI + hlA2M)) - 2(3 - 4Mhl(1 + hl1\.1(1 + hlM

h2M))(3 +A2M2(1+ 2hl M(1+ hlM))(32), A16 = 2+ M(h2 -2(3 +h2M( -2h2A~ - (3(4+M(3)-

2Mh~A~) + hl ( - 5 + M(M(32 + 2M(h2 + Mh2(3)2 + 2h2( - 1 + M2(32)))), A17 = - 2+M(-2Al + 

3Mhf - 2Mhlh2 + 3Mh~ - M2hr + M 2hfh2 + M2h~hl - M2h~ -1\1[3 A~(1 + AIM)(32), A IS = 

-2 +M(-5hl + h2 +2Mhlh2 +2Mh~ +2M2h~hl - 2M2h~ - 2(3 +4Mh2(1+Mh2( - 1 - Mhl + 

Mh2))(3 + A2M2(1 + 2Mh2(-1 + Mh2)(32 , A 19 = 2 + M(5h2 - 2(3 - M2(32h2 + 2M2hrA~-
2M(1 + Mh2)hfA~ + h l ( -1 + M( -2h2 + 4(3 + M(l + 2h2M)(32))). 
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