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Preface 

The flows of non-Newtonian fluids are important in chemical engineering, food processing, 

lubrication and tribology, polymer devolatisation, bubble columns etc. Analysis of the mag

netohydrodynamic (MHD) effect on the flows of such fluids has shown an increasing amount 

of attention in recent times. Such interest stems because of the occurrence of these liquids in 

industrial processes. The shear dependent viscosity and the elasticity of non-Newtonian fluids 

can make the constitutive relationships between the stress and rate of strain quite complicated. 

Such effects add extra terms in the constitutive relationships. Consequently, the mathematical 

analysis for the flows of such fluids involves equations with more nonlinear terms. It is also 

noted, in general, that order of such equations hikes in comparison to the Navier-Stokes equa

tions. Therefore, finding accurate solutions to equations of non-Newtonian fluids is not an easy 

task. 

Most fluid phenomena that occur in daily life are concerned with chemical reactions. Such 

flows are mainly encountered in several engineering applications. The concept of molecular 

diffusion of species with chemical reaction is further important in diffusive operations. For 

better tmderstanding of transport processes, the heat transfer is of great significance. T his 

interest stems from numerous practical applications including chemical catalytic reactors, grain 

storage, high performance insulation of buildings, heat exchange between soil and atmosphere, 

electrochemical processes, beds of fossil fuels such as oil shale and coal and many others. 

The boundary layer flows due to a stretching sheet are of great interest in many engineering 

applications. Some of the practical examples of such problems are glass fiber and paper pro

duction, continuous casting, hot rolling, cooling of electronic chips, the aerodynamic extrusion 

of plastic sheets, crystal growing, polymer melts and solutions, the cooling and drying of paper 

and textiles etc. There has been a renewed interest in developing analytical and numerical 

solutions for nonlinear problems of stretching / shrinking flows . Having in mind all the stated 

motivations above, the arrangement of present thesis is proposed as follows. 

Chapter one aims to present some survey background of stretching flows and considerations 

of equations of second grade and Maxwell fluids. Concept of boundary layer flow, the homotopy 

analysis method and homotopy-Pade approximation also included. 

Chapter two studies the MHD flow of an incompressible and thermodynamic second grade 
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fluid bounded by an oscillatory stretched sheet. Mathematical formulation for a time-dependent 

and nonlinear problem is developed. The resulting problem is solved both analytically and 

numerically. Analytic solution is derived in series form by homotopy analysis method (HAM) 

whereas finite difference method is employed for a numerical solution. A comparative study 

between the two solutions shows an excellent agreement . Skin friction coefficient is further 

computed. The amplitude of skin friction coefficient is found to increase when t he viscoelastic 

parameter is enhanced. The results of this chapter are published in "Int. J. Non-Linear 

Mechanics, 43, 783-793 (2008)". 

Chapter three is concerned with an investigation of the flow and heat transfer characteristics 

of the boundary layer flow of a viscoelastic fluid over a continuous moving surface with a parallel 

free stream. Elastico-viscous fluid model is chosen in the problem development . The problem 

statement is based upon laws of conservation of mass, linear momentum and energy. Series 

solution to the governing nonlinear problem is sought by homotopic approach. Homotopy-Pade 

technique is utilized in tabulating skin friction coefficient and local Nusselt number. Comparison 

of the present analysis of series solution is given to the corresponding numerical solution in a 

viscous fluid. It is concluded that the local Nusselt number increases when the value of Prandtl 

number increases. The behaviors of viscoelasticity on the skin friction coefficient and Prandtl 

number on the local Nusselt number are similar in a qualitative sense. These observations 

have been accepted for publication in "Numerical Methods For Partial Differential 

Equations" . 

Chapter four is devoted to the flow of a non-Newtonian fluid film over an unsteady stretched 

surface. The flow modeling is based upon the time-dependent equation for boundary layer flow 

in a second grade fluid. The stretching velocity is also taken time-dependent. Homotopy analysis 

method is used to solve non-linear ordinary differential system. Variations of the dimensionless 

velocity profiles for various pertinent parameters are sketched and discussed. The values of 

skin friction coefficient are also illustrated. It is noticed that velocity profiles are the increasing 

flllctions of unsteady parameter. Moreover, the magnitude of skin friction coefficient increases 

when second grade parameter is increased. These results are published in "Mathematical 

and Computer Modelling, 48, 518-526 (2008)". 

Chapter five investigates the magnetohydrodynamic boundary layer flow of a second grade 
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fluid caused by a shrinking surface. The considered surface is porous. By making use of simi

larity transformations, the partial differential system is converted into an ordinary differential 

system. Exact and homotopy solutions are first developed and then compared. Tables and 

graphs are prepared for velocity profiles and skin friction with respect to several parameters 

of interest. The boundary layer thickness is found to decrease when second grade parame

ter increases. T he influence of Hartman number, suction and second grade parameters on 

the boundary layer thickness is quantitatively similar. Such con clus ions are published in 

"ASME Journal of Applied Mechanics, 74, 1165-1171 (2007)". 

Chapter six describes the steady mixed convection in the stagnation point flow of a Maxwell 

fluid bounded by a stretching vertical sheet. Assisting and opposing flow situations are ana

lyzed carefully. Similarity transformations are invoked in reducing resulting partial differential 

equations of flow and temperature to the ordinary differential equations. The analytic and 

numerical solutions of dimensionless velocity and temperature fields are computed. Conver

gence of the series solutions is explicitly discussed. Comparative analysis for the two solutions 

is carried out. Effects of embedded parameters are discussed. As expected for assisting flow, 

the wall heat transfer is a decreasing function of Deborah number. Furthermore, the effects of 

Deborah number on assisting and opposing flows are different. These findings are accept ed 

in "Nonlinear Analysis: Real World Applications". 

Chapter seven deals with the influence of mass transfer on MHD flow of an upper convected 

Maxwell fluid over a porous shrinking sheet. An attempt is made when a chemical react ion is 

present . Homotopy analysis method is used in obtaining series solutions of velocity and con

centration fields. In addition, the skin friction coefficient , the surface mass t ransfer and the 

gradient of mass transfer are computed. Both cases of destructive/generative chemical reactions 

are analyzed. It is shown that an increase in suction parameter causes a reduction in the concen

tration field in both situations of destructive/ generative chemical reactions. However, opposite 

trend of concentration field is noted for destructive and generative chemical reactions. Such 

observations have been published in "Physics Letters A 372, 4698-4704 (2008)". 

Chapter eight aims to examine the boundary layer flow of a micropolar fluid toward a 

stretching surface with a stagnation-point on the wall, and tending to potential flow at infinity. 

The considered fluid model is useful to analyze the flow of colloidal solutions, liquid cryst als, 
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suspension solutions, animal blood etc. The sheet is stretched in a non-linear manner and 

magnetohydrodynamic nature of fluid is chosen. The obtained series solutions of dimension

less velocity and skin frictions are compared with the existing solutions in the literature. A 

good agreement is achieved. The skin friction coefficient has monotonic behavior with respect 

to vortex viscosity of micropolar fluid. The contents of this chapter are published in 

"Nonlinear Analysis: R eal W orld Applications, 10, 1514-1526 (2009)". 

Chapter nine looks at the mixed convection flow of a micropolar fluid bounded by a non

linear stretching surface. The problem formulation does not take into account the viscous 

dissipation effects. The dimensionless problems of velocity and temperature solved in the series 

forms . Convergence region of the obtained series solutions is determined. The used homotopy 

Pade approximation helps in obtaining the fast convergence of the series solutions . The mi

crorotaion velocity is found to decrease when buoyancy parameter increases. Moreover, the 

buoyancy parameter decreases the thickness of thermal boundary layer. These findings are 

published in "Physics Letters A 372, 637-647 (2008)". 
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Chapter 1 

Introduction 

1.1 Literature survey and basic equations 

The main purpose of this chapter is to present the literature review on the existing analysis of 

boundary layer equations and stretching flows . Moreover the basic ideas of solutions techniques, 

namely, the homotopy analysis method and Pade approximant are explained. 

1.2 Literature review on stretching flows 

The introduction of boundary layer theory by Prandtl [1] in the early 1904s has given great 

impetus to modern fluid mechanics. Many problems in fluid mechanics have been solved using 

this theory and the comparison of obtained results agree very well with experiments. The 

seminal work of Sakiadis [2 ,3] dealt with the boundary layer viscous flow over a continuous 

solid surface moving with constant velocity. Since then there have been many works on viscous 

aspects of the problem. The analysis of heat and mass transfer in a stretching problem with 

constant temperature on the surface was performed by Crane [4] and Gupta and Gupta [5] . For 

non-Newtonian fluids, an extension of this theory is quite intricate [6 - 8]. This is due to the 

diversity of these fluids in their constitutive behaviour. T he viscous and elastic properties are 

present in such problems. Thus most studies in Newtonian boundary layers deal with single 

model. However, inspite of these limitations richer behaviour is expected for non-Newtonian 

fluids in comparison with the Newtonian fluids [7]. For steady flow , no exact solution is available 
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for blowing in non-Newtonian fluid past an infinite porous plate [9J. Also, for non-Newtonian 

fluids boundary layers are found at large Reynolds numbers, while for non-linear fluids they even 

form at small Reynolds numbers [7,8J. One of the most striking characteristics of viscoelastic 

botmdary layers is that boundary layers of varying natures may develop [7J which sometimes 

exhibit intricate multiple deck structures with different effects that dominate in different decks 

[lOJ. In [11,12]' applications of dilute polymer solutions, the viscoelastic flow occurs on a 

stretched sheet. Such fluids of second order on a stretched sheet have been investigated by 

Rajagopal et al. [12J. Therein (see [12]) the momentum boundary layer equation was solved 

numerically. In [13], Troy et al. discussed the uniqueness of the momentum boundary layer 

equation. However, Chang [14J and Rao [15J demonstrated the non-uniqueness of the solutions. 

These works were without the heat transfer phenomena. Similar flow analysis in the absence 

of heat transfer in the flow of non-Newtonian fluid of Walters' liquid B has been considered 

by Siddappa and Abel [16J. Also the Stokes' problem for a viscoelastic fluid was studied by 

Soundalgekar [17J. This in turn was further looked at by Siddappa and Khapate [18J for second 

order viscoelastic fluids. 

The above studies utilized the boundary layer concept due to Prandtl. These are valid for 

small viscosity or high Reynolds number and simplifies the analysis of the N avier-Stokes equa

tions. Beard and Walters [19J endeavoured to obtain the governing equations for the boundary 

layer flow for a prototype viscoelastic fluid which was called liquid B. Such viscoelastic nature 

was found in polymer fluids which also exhibit elastic properties. Andersson [20J provided an 

exact solution of MHD flow of a Walters liquid B over a stretched sheet. The non-Newtonian 

behaviour of a power-law fluid was investigated by Acrivos et al. [21J and Schowalter [22J 

whereas Srivastava [23J attempted to understand differential-type fluids. The solution for the 

boundary layer flow past a stretched wall with speed proportional to the distance along the 

wall was investigated by Danberg and Fansler [24J. Further, Abel et al. [25], Ariel [26J and 

Datti et al. [27J conducted researches on MHD boundary layer viscoelastic fluids. Seddeek 

[28] looked at non-reactive species . There have been continuous focus on similar problems of 

second-grade/second-order, and, Maxwell fluids [29 - 35J. Cortell [36J also looked at MHD flow 

and mass transfer of viscoelastic fluids in porous media with chemically reactive species. An 

increase in the concentration profiles was reported when magnetic field parameter increases. In 
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[36J, it was stated that the effect of the reaction-order parameter increases the fluid concen

tration with its increase. When a destructive chemical reaction was present-an opposite effect 

was seen with a generative chemical reaction on the flow problem. The results of [36J were 

extended in Cortell [37]. Chakrabarti and Gupta [38J investigated the flows of heat and mass 

transfer over a stretching sheet while Gorla [39J presented applications in electro-chemistry. 

The study of transport of mass and momentum of chemically reactive species in the flow over 

a linear stretching sm-face was presented by Andersson et al. [40J. Moreover, Takhar et al. [41J 

researched flow and mass transfer characteristics of a viscous electrically conducting fluid over 

a stretched sheet with non-zero slot velocity. An extension of this was provided by Akyildiz et 

al. [42J. This was to the subclass of non-Newtonian, second grade fluids immersed in a porous 

medium on a stretching sheet. These authors augmented the missing boundary condition. 

The stagnation-point flow of such fluids display the incompleteness of the current boundary 

layer theory for viscoelastic fluids. Indeed for Newtonian fluid this flow results in an exact 

solution which is valid at any Reynolds number [43J while the second grade model [44J does 

not give rise to an exact solution. In fact Rajeswari and Rathna [45] relied a boundary layer 

approximations to obtain an estimate of the wall shear stress for stagnation-point flow of a 

second grade fluid. In order to provide solutions to the governing equation, they [45J utilized 

the Karman-Pohlhausen momentum integral method [43]. They concluded that the wall shear 

stress becomes larger with higher fluid elasticity. Davies [46] by using a similar approach 

corroborated the results of [43J. Beard and Walters [19J in their seminal study of stagnation 

point flows of a second grade fluid used boundary layer theory together with similarity and 

made reductions of the governing PDEs to a single nonlinear fourth order ODE. There was 

insufficient physical boundary conditions and they [19] transformed their singular pertm-bation 

problem [47J into a regular one by reducing the equation to a system of two third order ODEs. 

This was showed numerically. They concluded that the main effect of fluid elasticity is to 

increase the wall shear stress as in [45]. However, contrary to [45] and [46J, they [19J predicted 

an overshoot in the velocity inside the boundary layer as a consequence of the fluid's elasticity. 

No experiments as yet validate these theoretical results. 

Many investigators over the last few decades have been stimulated to validate the prediction 

of [19J that in stagnation point flow of a viscoelastic fluid the velocity inside the boundary layer 
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may exceed that outside this layer. It h8.'3 been hinted, Frater [48J, that this overshoot of velocity 

can be 8.'3 a consequence of looking for a straightforward perturbation solution of the problem in 

terms of the elasticity number. Teipel [49], Garg and Rajagopal [50J and Pakdemirli and Suhubi 

[51J have shown that the perturbation approach may not acceptable results for viscoelastic fluids. 

This was nicely demonstrated by Ariel [52J. Notwithstanding, Ariel [52J endeavoured to solve 

the original fourth order ODE instead of the perturbed system by utilizing an accurate hybrid 

approach. This necessitated the augmentation of the boundary conditions to four. He imposed 

an extra condition at the wall. It turns out that the findings of [52J is quite disparate from 

those of [19J especially for k > 0.1. In another work dealing with the fourth order ODE, Serth 

[53J showed that the wall shear stress computed by means of the orthogonal collocation-point 

approach is distinct from that deduced from perturbations. Moreover, Garg and Rajagopal [50J 

have shown that the elasticity number k signature should be reversed in order to imply with 

thermodynamical constraints [54, 55J. As a matter of fact, they [50J found no overshoot in the 

velocity for arbitrary k. Ariel [56J showed that by using his hybrid method and sign reversal in 

the elasticity number, he can obtain results for large values of k, while for same sign 8.'3 used in 

[19J his method gives the results up to k = 0.326. 

T he works cited thus far as regards to the overshoot of the velocity in the boundary layer 

suggests that this problem is by no means closed. The method of solution has significant on the 

results obtained. These studies were on the second grade model which is a simple reasonable 

rheological model for slow flows having small levels of el8.'3ticity. However, there are several cases 

for which one has large elasticity number [57J. This is compounded by the sign and magnitude 

of the parameters 8.'3 we have mentioned above. So the results derived at even small elasticity 

number is questionable as is in the foregoing discussion. 

Due to the mentioned limitations, it is appropriate to look at more realistic constitutive 

equations such as Maxwell, Oldroyd-B, Phan-Thien Tanner and Giesukus [44J to further inves

tigate stagnation-point flows of viscoelastic fluids. These rheological models have been tried in 

other geometries though. We mention a few studies. Sadeghy and Sharifi [58] and Sadeghy et 

al [59] have examined Blasius and Sakiadis flows of second grade and upper-convected Maxwell 

models. They observed differences between the predictions relating to wall shear stress and 

that of boundary layer thickness. The study of elastic boundary layer formed above stretching 
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sheets were looked at in terms of an Oldroyd-B model [60] . Furthermore, Renardy [62] and Ha

gen and Renardy [61] provided a general formulation for the boundary layer flows of Maxwell, 

Phan-Thien Tanner and the Giesukus models. It was shown by these authors that of the three 

rheological model tested, the derivation from Newtonian behaviour is more significant of the 

fluid adheres to the upper-convected Maxwell model [61,62]. 

The flow and heat transfer together with the effect of the fluids elasticity on an incompress

ible homogeneous second grade fluid past a stretched sheet were studied in [32]. The effects of 

viscous dissipation and strain energy stored in the fluid were taken into account in the energy 

equation. These effects are vital for heat transfer analyses. On the one hand if the viscosity of 

the fluid is high, the dissipation term becomes relevant and, on the other hand due to the flu

ids elasticity there is change in the heat transfer characteristics and temperature distributions. 

Lawrence and Rao [63] published on heat transfer for viscoelastic flows on a stretched sheet 

devoid of viscous dissipation although such flows generate heat by means of viscous dissipation. 

Another important aspect is to take into account temperature dependent heat source present 

in the boundary layer. A work on momentum and heat transfer in such fluid with both internal 

heat generation and viscous dissipation was presented by Bujurke et al. [64J. The extension 

of the problem [12J was analyzed with heat transfer by Dandapat and Gupta [65J in which 

an exact solution was given which agrees with the results of [12]. An extension of [65J was 

given in the work of Cortell [29,32J which dealt with heat transfer in an incompressible second 

order/grade fluid as caused by a stretched sheet. This was a view of examining the influence of 

the viscoelastic parameter on the temperature distributions. These results were in agreement 

of [65J. The analysis of heat transfer in a viscoelastic/second grade fluids was also discussed 

by Rollins and Vajravelu [66], Char [67], Bhattacharya et al. [68J and Vajravelu and Rollins 

[69J. Stretching and stagnation point flows with and without partial slip effect were looked in 

studies [70 - 75J and several refs. therein. 

Viscoelastic boundary layer flows and heat transfer with temperature dependent heat source/sink 

are available [76 - 83J. Heat transfer on a vertical sheet in a heat generating fluid was analyzed 

by Vajravelu and Nayfeh [84J . The effect of variable viscosity on forced convection flow past a 

horizontal flat plate in a porous space was studied by Postelnicu et al. [85J. This author [86J 

also looked at free convection boundary layer on a vertical permeable plate in porous medium 
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with internal space dependent heat generation. Again similar results were given in Postelnicu 

et al. [87]. The study of blowing/suction effects in hydromagnetic heat transfer by mixed con

vection on an inclined stretching surface with heat generation in both space and temperature 

heat source was given in Abo-Eldahab and EI Aziz [88]. 

1.3 Basic equations 

The equations of magnetohydrodynamics that describe the flow and heat transfer characteristics 

are given as follows. 

(a) Maxwell's equations 

divE = 0, divB = O, 

8B 
curlE -at' curlB = J.LmJ · 

These equations hold only when the displacement current is negligible. 

(b) Ohms' law 

J = (j (E + V x B) . 

(c) The incompressibility condition 

divV = o. 

(d) The momentum equation 

P~ = divT + ph. 

( e) The energy equation 
dT 

PCpdi = T.L - div q. 

(e) The concentration equation 

dC . 
di = D (dIVC) - knC". 
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1.4 Boundary layer flow/equations 

A major impetus to the study of fluid mechanics was initiated L. Prandtl in the year 1904. He 

was instrumental in classifying the essence and influence of viscosity in flows at high Reynolds 

numbers and he showed how the Navier-Stokes equations could be simplified to provide ap

proximate solutions under this situation. A boundary layer flow deals with that portion of a 

fluid flow, near a solid surface, where shear stresses are of significances and the inviscid-flow 

assumption is not a reliable assumption. A solid surface has interaction with a viscous fluid 

flow. This is due to the no-slip condition which is a physical requirement that the fluid and 

solid have equal velocities at their interface. Therefore a fluid flow is retarded by a fixed solid 

surface and a finite slow-moving boundary layer is formed. A requirement that the bOlmdary 

layer be thin is for the Reynolds number of the body to be large, i.e. 103 or greater. Under the 

said conditions, the flow outside the boundary layer is largely inviscid and plays the role of a 

driving mechanism for the layer. 

The discovery of the boundary layer equations can be considered as one of the more im

portant advances in fluids. The use of an order of magnitude analysis results in the governing 

Navier-Stokes equations of viscous fluid flow to be immensely simplified within the boundary 

layer. Indeed, the partial differential equations (PDE) becomes parabolic. This greatly en

hances the solution procedure for the equations. The flow is divided into an inviscid portion 

(which is easy to solve by a number of approaches) and the boundary layer (which is governed 

by an easier to solve PDE). N avier-Stokes equations for an incompressible two-dimensional flow 

are 

(1. 7) 

(1.8) 

(1.9) 

In above expressions 1/ is the kinematic viscosity, p is the density of the fluid, p is the pressure, x 

and yare the horizontal and vertical coordinates and u and v the velocity components parallel 

to x and y axes. A wall is considered y = O. The non-dimensional quantities are defined as 
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• x x =
L' y. = ~, • U 

U =
U' 

• v L 
v = Uch' 

* p ' 
p = pU2 ' (1.10) 

Here L indicates the horizontal length scale and 01 the boundary layer thickness. Equations 

(1. 7) to (1. 9) in non-dimensional variables are 

(1.11) 

(1.12) 

au· av· 
ax. + ay. = 0, (1.13) 

in which the Reynold number is written as 

R= UL, (1.14) 
v 

The inertial and viscous forces are of the same order and hence 

V (L)2 - - =0(1) 
UL 01 

(1.15) 

or 

01 = 0 (R-1
/

2 L) . (1.16) 

Dropping asterisks and utilizing above equation one obtains 

(1.17) 

(1.18) 

(1.19) 

For R ---? 00 we have 
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au au ap a2u 
u ax + v ay = - ax + ay2' (1. 20) 

_ ap = 0 
ay , (1.21) 

au av 
ax + ay = 0, ( 1.22) 

in which Eq. (1.21) shows that pressure is constant across the boundary layer. In dimensional 

form , Eqs. (1.20) to (1. 22) become 

au au 1 ap a2u u- +v-----+ v-ax ay - pax ay2 ' 

1.5 Constitutive equation 

_~ ap _ 0 
pay - , 

au av _ 0 
ax + ay - . 

(1.23) 

(1.24) 

(1.25) 

It is well established fact now that non-Newtonian fluids cannot be described by a single rela

tionship between stress and rate of strain. This is quite distinct feature of non-Newtonian fluids 

from the Newtonian ones. In fact such difficulty arises because of diversity of non-Newtonian 

fluids in nature. In view of t his several models of non-Newtonian fluids have been suggested. 

In this thesis, we will study the flows of second grade, Maxwell and micropolar fluids . 

1.5.1 B oundary layer equation in a second grade fluid 

The Cauchy stress tensor T in a second grade fl uid is represented by the following relation [9]. 

T = - PI+ F, (1.26) 

where an extra stress t ensor F is 

(1.27) 

16 



In above equation fJ. is the dynamic viscosity, p the pressure, I the identity tensor and al and 

CY2 the material moduli. The first two Rivilin-Ericksen tensors Al and A2 are given by 

= L+LT
, 

dAI T 
= Tt+AIL+L AI, 

where L = grad V and LT = (grad V) T and d/ dt signifies the material derivative. 

For two-dimensional flow, t he velocity is expressed as 

V = [u(x,y),v(x ,y),Oj . 

Employing above definition of velocity, one can write 

[ 

28u ax 
Al = av + au ax ay 

o 

a2u 2 a2u 4 (8u)2 2u 8x2 + v axay + ax 
+2 (av)2 +2 8uav 

8x 8yax 
u a2u + u 82 v + V 82u + 3 av av axay 8x2 EfYi ax 8y 

+3 au au + au av + au av + v a2 v ax ay By 8y ax ox 8xay 

o 

4(a'u)2+ (auav ) 2 ax ay 8x 

au + av ay ax 
2°V 

ay 
o 

o 

o 

A2-1-
4 (8v)2 + (au av)2 0 ax ayax 

o o o 

and now Eq. (1.27) yields 

17 

(1.28) 

(1.29) 

( 1.30) 

o 

o 
, (1.31) 

o 

(1.32) 



o 

F= 

o 

o o 
(1.33) 

Substitution of Eqs. (1.26) and (1.33) into momentum equation (1.4) yields the following scalar 

equations 

au au 
u-+v-

ax ay 

av av 
u- +v-

ax ay 

Using [1] 

(1.34) 

(1.35) 

u = O(l) , v = O(8) , x= O(l) , y = O(o) , (1.36) 
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Txx =0(1) Txy =0(8), TY1J =0 (82) 
p , P P 

(1.37) 

equation (1.35) is identical to Eq. (1.24) and Eq. (1.34) reduces to 

where [55] 

( 1.39) 

and now Eq. (1.38) can be written as 

u 8u + v 81£ = _~ 8:p + 1/ 8
2

1£ + 0!1 [8U 8
2

1£ + 1£~ + 81t 8
2
v + v 8

3
1t] . (1.40) 

8x 8y p 8x 8y2 P 8x 8y2 8x8y2 8y 8y2 8y3 

1.5.2 Boundary layer equation in a Maxwell fluid 

T he Cauchy stress tensor here is defined by Eq. (1.26). However, the expression ofF in Maxwell 

fluid satisfies 

(1.41) 

in which Al is the relaxation time and 8/8t is the upper convected derivative given by 

8F = dF -LF -FLT 
8t dt 

(1.42) 

where 

Fxx Fxy Fxz 1 
F = Fyx Fyy Fyz . 

Fzx Fzy Fzz 

(1.43) 

The momentum equation for two-dimensional flow gives 

( 
81£ 81£) 8:p EJFxx 8Fxy 

p u-+v- ---+--+--
8x 8y - 8x 8x 8y ' 

(1.44) 

. (8V 8V) 8:p 8Fyx 8Fyy 
p U-+V- =--+--+--. 

8x 8y 8y 8x 8y 
(1.45) 
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From Eq. (1.29) we write 

r 

F au + D au 
xx ax .L yx By 

LF = Fxxg~: Fyxg~ 

F au + F, 8u 
xy 8x yy 8y 

F 8v+.F! 8v 
xy 8x yy ay 

o 

Fxx~~ + Fxy~ 0 1 
Fxy ~~ + Fyy g~ 0 , 

o 0 

r 

uaF;p; + v aF"", 
ax ay 

(y . V )F = 8Fyx + aFyx 
u 8x v 8y 

o 

8Fxy + aFxy 
u ax v ay 

8Fuy + aFy'l 
u 8x v By ~ 1 o 

and now Eq. (1.44) yields 

Invoking Eqs (1.36) and (1.37) one can write 

1.5.3 Micropolar fluid 

(1.46) 

(1.47) 

(1.48) 

(1.49) 

(1. 50) 

(1.51) 

(1.52) 

For micropolar fluid, the momentum equation (1.4) along with the law of angular momentum 

in the absence of body forces and body couple are given by 

P~ = -Vp+ (/-L+ k) V2Y + kV x N , (1.53) 

.dN 
PJ dt = '1'1 V (V · N) - '1'1 V x (V x N) + kV x Y - 2kN, (1.54) 
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where V and N are the velocity and micro-rotation vectors, j denotes the gyration parameters 

of the fluid, 'Yl and k are the spin gradient viscosity and vortex viscosity, respectively. For 

two-dimensional flow, we take the micro-rotation vector N of the form 

N = [O,O,Nz(x,y)]. (1.55) 

With the help of Eqs. (1.29) and (1.55), the equations (1.53) and (1.54) for steady flow become 

u au + v 8u = _.! a:p + (f..L + k) ( a
2
u + 8

2
u) + ~ ~Nz, (1.56) 

ax 8y p ax p 8x2 ay2 p 8y 

u av + v 8v = _.! 8:P + (I-L + k) (8
2
v + a

2
v) _ ~ aNz , (1.57) 

8x 8y p8y P 8x2 8y2 P 8x 

u8Nz +v8Nz = II (8
2
Nz + 8

2
Nz ) + k (8V _ 8v) _ 2k N (1.58) 

8x ay pj 8x2 ay2 pj 8x ay pj z, 

in which the Eq. (1.58) suggests that O(Nz ) ro..J 0 ( g~) ro..J 0 (g~ ) . 
Using Eqs. (1.36) and (1.37), the Eqs. (1.56) - (1.58) give 

u 8u + v au = _.! 8:p + (v +~) 82
u + ~ 8N, 

ax 8y p ax p 8y2 p 8y 
(1.59) 

uaNz +vaNz =.1.. a
2
Nz _ k (2N + 8U). 

8x 8y pj 8y2 pj z 8y 
(1.60) 

1.6 Solution methods 

1.6.1 Homotopy analysis method 

Perturbation methods have been extensively utilized by engineers and scientists in obtaining 

solutions especially for non-linear problems. Such methods require small (large) parameters so 

that approximate solutions can be expressed in term of series. It is not necessary that many 

problems involve such a small parameter. Therefore it is important to have an analytic method 

which does not require a small (large) parameters. Bearing this in mind, Liao [90 - 98] de

veloped the homotopy analysis method (HAM) which is independent of the small parameter 

assumption. A few recent investigations in the literature that contain HAM solutions is men-
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tioned in the refs. [99 - 124). In order to describe the basic idea of homotopy analysis method, 

we consider the following (nonlinear) differential equation 

N[w (x)) = 0, (1.61) 

where N is the nonlinear operator, w is an unknown dependent function and x denotes the 

independent variable. For simplicity, we ignore all the boundary or initial conditions which can 

be treated similarly. We can construct the zero-order deformation equation as 

(1 - p) £. [$ (x; p) - Wo (x)] = pfW [$ (x;p)] , (1.62) 

where p E [0 ,1) is called t he embedding parameter, Ii is the non-zero-auxiliary parameter, £. 

is the auxiliary linear operator, Wo (x) is the initial approximation which satisfy all the boundary 

conditions. It is vital that one has freedom to choose the initial approximation and auxiliary 

linear operator. When p = 0 and p = 1 

$ (x; 0) - Wo (x) = 0 and $ (x; 1) - W (x) = 0 (1.63) 

respectively. Thus as p increases from 0 to 1, the solution $ (x; p) varies from initial approxima

tion Wo (x) to the desired solution w (x) . Expanding $ (x; p) in the Taylor series with respect 

to p, one has 

00 

$(x;p) = Wo (x) + :L Wm (x)pm, (1.64) 
m=l 

The mth order deformation equation is 

(1.65) 

where 
1 am-1$(x,P) ! 

Rm (wm- d = (m _ I)! apm-l p=o' (1.66) 
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• 

{ 

0, 
Xrn = 

1, 

m:S 1, 
( 1.67) 

m>1. 

Equation (1.65) can be easily solved by using a symbolic computation software such as :MAPLE 

or MATHEMATICA. If the aux:iliary linear operator, the initial approximation and the auxiliary 

parameter Ii is properly chosen, the series (1.64) converges at p = 1 and one has 

00 

W (x) = Wo (x) + L Wm (x) , (1.68) 
,n=l 

which must be one of the solutions of the original nonlinear Eq. (1.61 ). There are many different 

ways to deduce the higher order deformation equations. However, according to the fundamental 

theorem in calculus [125] the term Wm (x) in the series (1.64) is unique. Note that the HANI 

contains an auxiliary parameters Ii,which provides us with a simple way to control and adjust 

the convergence of the series solution (1.68). 

Remark: Since Homotopy analysis method (HAM) provides us a great freedom to choose 

any suitable linear operator and initial guess as ment ioned by Liao [90] in his book. In HAM, we 

have t o choose any operator which satisfies all the boundary condit ions. Hence, we can choose 

fo urth order and third order linear operators. Why we choose third order operator? This 

operator not only satisfies all the prescribed boundary conditions but it also enhances the rate 

of convergence of the solution when compared to the fourth order linear operator. This is in fact 

one of the beauty and soundness of the homotopy analysis method. One can choose any linear 

operator corresponding to the given situation, even in the less number of boundary conditions 

too. Moreover we are having an auxiliary parameter introduced in the mth order problem, 

which is used to control and adjust the convergence region for the solution for different values 

of the parameters. Similarly, we can choose any initial guess via different options available to 

us. Obviously, our initial guess will be the best if it enhances the rate of convergence. 

1.6.2 Homotopy-Pade approximation 

The homotopy analysis met hod is based on such an assumption that the series (1.64) of 'w (x; p) 

converges a t p = 1 for the illustrative problem. Besides, the convergence region and rate of 

solution series given by the homotopy analys is method depend upon the aux iliary parameter Ii. 
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Therefore, the au .. '(iliary parameter Ii provides us with a convenient way to adjust and control 

the convergence region and rate of solution series. 

There exist some techniques to accelerate the convergence of given series. Among them, the 

so-called Pade technique is widely applied for a given series. For a series of the form 

the Pade approximant [m"71,] is 

+00 
~c xn 
~ n , 

n=O 

n 

Lbm,kXk 

k=O 

(1.69) 

(1. 70) 

where am,k and bm,k can be found by the coefficients c; (i = 0, I, 2, 3, ... m + 71,). In many cases 

the tJ;'aditional Pade technique can greatly increase the convergence region and rate of a given 

series. 

Note that the homotopy-Pade technique [126] was proposed by combining the traditional 

Pade technique and homotopy analysis method. In order to ensure the convergence of the series 

(1.64) at p = I, we first use the traditional [m,n] Pade technique in an embedding parameter 

p to get [m" n] Pade approximant in the form 

m 

k=O 
n (1.71) 

L Bm,k(X) pk 
k=O 

in which the first several approximations Wo (x) , WI (x) , .. W m +n (x) help us in finding the 

coefficients Am,k(X) and Bm,k(X) . Putting p = 1 in Eq, (1.71) one obtains 

m 

k=O 
n (1.72) 
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Generally, the [177" m.] homotopy-Pade approximation is 

m2+m+1 

L At,k(x) 
k=O (1.73) 

m2+m+1 

L B~,k(x) 
k=O 

mk mk ffi where Al ' (T) and BI ' (T) are the coefficients. It is very interesting that these coe . cients are 

independent of the au",<iliary parameter n. We find through the comparison of Eqs. (1.70) and 

(1.73) that in accuracy the [m, m] homotopy-Pade approximation is equivalent to the traditional 

[rn2 +rn+ 1,177,2 +177,+ 1] P ade approximant . In a similar manner, the so-called homotopy-Pade 

techLique can be utilized in accelerating the convergence of the related series. 

1.6.3 Numerical Scheme: Finite Difference Method 

In order to find the numerical solution of nonlinear differential equations, the continuous vari

ables are replaced by the discrete variables. This is accomplished by replacing derivative in 

the equations by finite difference relations. Here, we replace the time derivatives by its forward 

difference and the space derivative is replaced by central difference approximation. The result is 

a system of algebraic equations which can easily be solved by t~e Gaussian elimination method. 

Let us consider the x-axis and t in finite intervals at a distance 6.x and 6.t apart. Let u be 

a function of coordinates x and t and the subscripts i and j represents x-coordinate and time. 

Thus u(x, t) can be represented by ·u(i6.x , j6.t) = U'i, j' The finite difference approximations to 

derivatives can be obtained from Taylor's series expansions . For example, the Taylor 's series 

expansion of Hi ,j about the grid points (i , j) gives 

(
au ) (a2u ) (6.x)2 

1ti+I,j = 1i'i,j + -a' 6.x + a 2 -- + ... x .. x .. 2 
IJ IJ 

(1.74) 

(
au) (a2u) (6.x)2 

Hi-I,j = Ui, j - -a " 6.x + a 2 .. -- -
X '.) X I,} 2 

(1.75) 
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Subtracting Eq. (1.75) from Eq. (1.74) and then rearranging we obtain 

(01£) = 1£i+l,j - 1£i-I ,j _ (03 U ) (6.x)2 . 
g 3 + .... ux . . 26.x ox.. 6 

t,] t,] 

or 

(01£) '" Ui+l,j - 1£i-I,j 

ox i,j 26.x 
(1. 76) 

Since the first term truncated involves 6.x2 , the truncation error is second order. Similarly, the 

second and third-order derivatives are 

(
021£) '" tLi+l,j - 21£i ,j + 'Ui-I,j 
g 2 - J\ 2 
uX 'i,j uX 

(1. 77) 

(
031£) '" 1£i+2,j - 2tL'i+l,j + 21£i-I,.i - tLi- 2,j 

ox3 .. - 26.x3 ' 
t,] 

(1. 78) 

which are again correct to second-order. Similar expansions can be written for t derivatives 
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Chapter 2 

MHD flow of a second grade fluid 

over an oscillatory stretching surface 

This chapter looks at the unsteady magnetohydrodynamic (MHD) two-dimensional boundary 

layer flow of a second grade fluid caused by an oscillatory stretching surface. An infinite elastic 

sheet is stretched back and forth in its own plane. The resulting equations from conservation 

laws of mass and momentum are reduced to a non-linear partial differential equation by invoking 

similarity transformations. Both analytic and numerical solutions of the governing partial 

differential equation are developed. Analytic solution of the nonlinear problem is derived by 

a newly developed analytic technique, namely homotopy analysis method (HAM). Numerical 

solution is presented by using the finite difference scheme, in which a coordinate transformation 

is employed to transform the semi-infinite physical space to a bounded computational domain. 

T he results obtained by means of both methods are then compared and show an excellent 

agreement. The effects of various parameters like viscoelastic parameter, the Hartman number 

and the relative frequency amplitude of the oscillatory sheet to the stretching rate on the 

velocity field are plotted and analyzed. The values of wall shear stress for these parameters are 

also tabulated and discussed. 
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2.1 Flow analysis 

Let us consider the unsteady MHD two-dimensional laminar flow of an incompressible second 

grade fluid over an oscillatory stretching sheet coinciding with the plane y = 0, the flow being 

confined to the semi-infinite space y > O. The elastic sheet is stretched back and forth peri

odically with velocity U w = eX sin wt (c is the maximum stretching rate, x is the coordinate 

along the sheet and w is the frequency) parallel to the x-axis, as shown in Fig. 2.1. A constant 

magnetic field of strength Bo is applied perpendicular to the stretching surface. The induced 

magnetic field is neglected under the assumption of small magnetic Reynolds number. Invok

ing boundary layer assumptions and in the absence of pressure gradient, the unsteady basic 

boundary layer equations governing the MHD flow of second grade fluid are: 

B .r 

Fig. 2.1. Geometry of the problem and coordinate system 

(2 .1) 

(2.2) 

In the above equations (u, v) are the velocity components in (x, y) directions respectively, v is 

the kinematic viscosity of fluid , p is the fluid density, a is the electrical conductivity of the fluid 

and Cl!l is the viscoelastic parameter of the fluid . 

The subjected boundary conditions are 
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u = U w = cxsinwt , v = 0 at V = 0, t > 0, 

1£ (y, 0) = 0 at t ~ 0, u = 0, au = 0 
By 

as 

(2.3) 

v ~ 00, (2.4) 

in which both c and w have the dimension (time) - l. Note that the system can also be solved 

by using the cosine function (coswt) instead of sinwt. The second condition in (2.4) is the 

augmented condition since the flow is in an unbounded domain, which has been discussed by 

Garg and Rajagopal [127]. 

We write 
w 

S=
c 

which denotes the ratio of the oscillation frequency of the sheet to its stretching rate. 

Any particle path on the sheet is 

x = Xo exp (~ cos wt) . 

The boundary conditions (2.3) and (2.4) suggest the following similarity transformations 

y = /fv, 7 = tw, 1l = cxfy (y, 7) , V = -.;Vcf (y , 7) . 

(2.5) 

(2.6) 

(2.7) 

Using above transformations, the continuity equation (2.1) is identically satisfied and the gov

erning equation (2.2) becomes 

The boundary conditions (2.3) and (2.4) are 

j~(O,7)=sin7, f(O,7)=0, jy(00,7) =0 and fyy(oo,7) = 0, (2.9) 

in which Id2 = aB5/cP is the Hartman number or the magnetic parameter and K = cCY.dvp is 

the non-dimensional viscbelastic parameter. Here K = 0 corresponds to the case of a viscolls 

fluid. 
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A physical quantity of interest is the skin-friction coefficient Of, which is defined as 

(2.10) 

where r w is wall skin friction given by 

(2.11) 

Using the variables (2.7), we get 

(2.12) 

where Rex = uwx/v is the local Reynolds number. 

2.2 Homotopy analysis method 

Liao [90) proposed a new approximate analytical solution technique, called the Homotopy analy

sis method (HAM), especially for non-linear problems, which can overcome the foregoing re

strictions of perturbation techniques. Different from perturbation methods, the validity of the 

HAM is independent on whether there exist small/large parameters in considered non-linear 

problems. 

2.2.1 Homotopy analytic solution 

In this part, we solve Eqs. (2.8) and (2.9) by means of homotopy analysis method (HAM). 

According to the boundary conditions (2.9) the velocity distribution f (y, r) can be expressed 

by the set of base functions 

in the following form 

00 00 00 

f (y, r) = a~,o + L L L a~,kyk sin (jr) exp (-ny) , (2.13) 
n=Ok=Oj=O 
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in which a~ k are the coefficients. These provide us with the so-called rule of solution expressions 
I , 

(see Liao [90]). With the help of these solution expressions and Eq. (2.9), it is straightforward 

to choose the initial approximations fa (y, r) for f (y, r) as 

fa (y ,r) =sinr(l-exp(-y)), (2.14) 

and the linear operator 

(2.15) 

satisfying the following properties 

£J [C1 + C2 exp( - y) + C3 exp(y)J = 0, (2.16) 

where Ci (i = 1,2,3) are arbitrary constants. 

Let p E [O,IJ denotes an embedding parameter and !'if is a non-zero auxiliary parameter. 

We construct the zeroth-order deformation problem as 

j(O, riP) 

aj(y,rip) 
ay 

y=oo 

0, 

= 0, 

where the non-linear operator NJ is defined by 

aj(y,rip) 
ay 

y=o 

a2 j(y, riP) 
ay2 

(2.17) 

= sin r, 

= 0, (2.18) 

y=oo 

(2.19) 

When p = 0 and p = 1, the above zeroth-order deformation problem has the following solutions, 
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respectively 

i(y,Tj O) = fa (y,T) and i(y,Tj1) = f(y,T) . (2.20) 

T hus, as p increases from 0 to 1, i (y, Tj p) varies from fa (y, T) to the solution f (y, T) of the 

original equation (2.8). By Taylor's theorem and the relations (2.20), one can write 

00 

i (y , Tjp ) = fa (y, T) + L fm (y , T) pm, (2.21) 
m=l 

f ( ) - ~ am i (y , T j p) 
m y,T - I a m m. p 

(2.22) 
p=o 

Substituting the expansion (2 .21) into the differential equation (2.17) and the corresponding 

boundary conditions (2.18), and equating coefficient of equal powers of p lead to the boundary

value problems for fm (y, T) (m = 0,1,2 ..... ). Note that Eq. (2.17)) contains the auxiliary 

parameter Iif. The convergence of the series given in Eq. (2.21) strongly depends upon this pa

rameter Iif . Therefore Iif should be properly chosen so that the above series (2.21) is convergent 

at p = 1. Hence, using Eq. (2.20) , we have the solution series 

00 

f (y, T) = fa (y, T) + L f m (y, T) . (2.23) 
m=l 

We differentiate the zeroth-order equation m times with respect to embedding parameter p, 

then setting p = 0, and finally dividing by m !, we have the following mth-order deformation 

equation (m ~ 1) 

(2. 24) 

with boundary equations 

fm (0, Tjp) = 0, 

where 
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8
3 

fm - l _ S 8
2
fm-l _ M2 8fm-l 7~ (f . a2

/j _ afm-l-k a/j)2 26) 
8 3 8 8 a + ~ m- l - k 8 2 8 J:l", . 

Y Y T Y k = O Y Y <J if 

KSfJ4 fm-l K ~ [28fm- l - k a
3 

fj _ a
2 

fm - l - k 8
2 

fj _ f a
4
/j] 

+ 8 3a + ~ 8 8 3 a 2 a 2 m- l - k 8 4 ' Y T k=O Y Y Y Y Y 

and 

{ 

0, 
Xm= 

1, 

m~ 1, 
(2.27) 

m>1. 

Note that, we obtain a linear non-homogeneous system equation in the form of high-order 

deformation equation, which is easy to solve using MATHEMATICA or other softwares. The 

general solution of Eq. (2.24) with f:n. (y, T) denoting the special solution can be written as 

. f m (y, 0 = f:n (y, 0 + Gl + G2 exp ( -y) + G3 exp (y) , (2.28) 

where the integral constants Gl , G2 and G3 are determined by the boundary conditions (2.18) 

and given by 

(2.29) 

2.2.2 Convergence of the H AM solution 

Liao [90] proved that, as long as a solution series given by the homotopy analysis method 

converges, it must be one of the solutions. Therefore, it is important to ensure that the solution 

series are convergent. The solution series (2.23) contains the non-zero auxiliary parameter !if, 

which can be chosen properly by plotting the so-called !i-curves to ensure the convergence of 

the solution series and rate of approximation of the HAM solution, as proposed by Liao [90]. 

To find the admissible values of !if, lircurves of 1"(0, 0) are shown in Fig. (2.2) for 15th-order 

of approximation for two groups of different parameters values: S = 0.2, M = 1, K = 0.3 and 

S = 0.5, M = 2, K = 0.5, respectively, From this Fig., it can be seen that !i-curve has a parallel 

line segment that corresponds to a region -1.2 ~ !if ~ -0.2 for S = 0.2, M = 1, K = 0.3 and 

-0.45 ~ !if ~ -0.1 for S = 0.5, M = 2, K = 0.5, respectively. To ensure the convergence of 

the HAM solution, the values of the !if should be chosen from these regions. The region for 
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the values of tif is dependent on the values of involving parameters. We can see that for the 

different values of the parameters, we get different n..cmves (for the admissible values of tif ). 

It is evident from our calculations that the solution series (2 .23) converges in the whole region 

of y if it is convergent at y = 0 when the proper values of lif is chosen. Table 2.1 shows the 

convergence of the HAM solutions 1"(0,7) for several different times (7 = 0, 0.57f, 0.757f, 1.57f) 

at different orders of approximation when S = 0.3, M = 1.2 and K = 0.2. For different times 

7 different Ii-values are chosen from the admissible ranges of the corresponding n..curves. It 

is shown that with the increase of the order of approximation a convergent solution can be 

reached. 
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Fig. 2.2. The Ii-curve of 1"(0,0) at the 15th-order of approximation: Solid line with S = 0.2, 

M = 1 and K = 0.3 and Dashed line with S = 0.5, M = 2 and K = 0.5. 
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Order of approximations 
r=O r = 0.57r r = 0.757r r = 1.57r 

tif = - 0.7 tif = - 0.5 tif = - 0.4 tif = - 0.45 

1 - 0.08400 -1.31005 -0.82134 0.91913 

3 - 0.09735 - 1.41491 - 0.91400 0.83429 

5 - 0.10051 - 1.42701 - 0.93798 0.80239 

10 - 0.10197 - 1.42876 - 0.94599 0.78789 

12 - 0.10205 - 1.42878 - 0.94620 0.78716 

15 -0.10209 - 1.42878 - 0.94627 0.78683 

18 - 0.10209 - 1.42878 - 0.94628 0.78679 

20 -0.10209 - 1.42878 -0.94628 0.78679 

30 - 0.10209 - 1.42878 - 0.94628 0.78679 

Table 2.1. The convergence of the HAM solution of 1"(0, r) for different order of approximations 

with S = 0.3, K = 0.2, M = 1.2 and r = 0, 0.57r, 0.757r and 1.57r, respectively. 

2.3 Numerical method 

The non-linear boundary-value problem consisting of Eqs. (2.8) and (2.9) is also solved by means 

of the finite difference method. For this purpose, the coordinate transformation 1] = 1/(y + 1) 

is applied for transforming the semi-infinite physical domain y E [0, 00] to a finite calculation 

domain TJ E [0,1]' i.e., 

1 
y = - - 1, 

TJ 

8 28 
8y = -TJ 81]' 
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With these transformations, the differential equation (2.8) in terms of "I can be rewritten in the 

forms 

The boundary conditions (2.9) in terms of "I can be rewritten as 

ITJ = 0, ITJTJ = 0 at "I = 0, (2.31) 

1=0, 11/ = -sinr, at "I = 1. (2.32) 

Because the equation (2.30) is a differential equation, we can discretise it for L uniformly 

distributed discrete points in "I = (TJl'TJ2,TJ3 .......... 17{L}) E (0,1) with a space grid size of 6."1 = 

1/ (L + 1) and the time levels t = (t1 , t2 , ......... ). Hence the discrete values (fl' 12', ...... .. . IF;) 

at these grid points for the time step tn = n6.t (6.t is the time step size) can be numerically 

solved together with the boundary conditions at 1] = "10 = ° and 1] = TJ{L+l} = 1, (2.31) and 

(2.32), as the initial conditions are given. We start our simulations from a motionless velocity 

field as 

1("1,7'=0)=0. 

We will see that a periodic motion will be immediately reached within the first period. We 

construct a semi-implicit time difference for I and assure that only linear equations for the new 

time step (n + 1) need to be solved 
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It should be noted that other different time differences are also possible. By means of the 

finite-difference method we can obtain a linear equation system for each time step, which can 

be solved e.g. by Gaussian elimination. 

2.4 Results and discussion 

We compute the velocity field by solving Eq. (2.8) with the boundary conditions (2.9) both 

analytically and numerically. To obtain the analytic series solutions we have used the new 

analytic technique, namely, the homotopy analysis method (HAM). For the numerical solution, 

first we solve the initial boundary-value problem in the computational space T/ E [0 ,1] and then 

the numerical solutions are transformed to the physical space with y-coordinate y E [0,00). The 

velocity field l' (= fy) is plotted to observe the irrfluence of the various involving parameters, 

for example, the viscoelastic parameter K, the Hartman number or magnetic parameter M and 

the non-dimensional relative amplitude of frequency to the stretching rate S for the time series 

of the first five periods T E [0,1071"] and the transverse profiles. Furthermore, we calculate and 

show the values of the skin-u·iction coefficient Re;/2 Cf both graphically and in tabular form. 

For the HAM solution, the higher the order of approximation is, the more accurate is the 

HAM solution. If the HAM solution does nearly not change any longer with the increase of 

the order of approximation, the HAM solution can be considered as the exact solution. For the 

problem investigated it is the case with the 20th-order of approximation (see Table 2.1). We 
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can also obtain the accuracy/error of the HAM solution by comparing the HAM solution with 

the convergent numerical solution as displayed in Figs. 2.3 and 2.4. 

Figs. 2.3-2.5 are depicted just to compare the homotopy analysis solution and the numerical 

solution with fixed S = 1, M = 5, K = 0.1 and two different times T = 0.571 and T = 1.571. 

Figs. 2.3 and 2.4 show the comparison between the HAM solutions with the 5th and 25th-order 

of approximation and the munerical solution, respectively. The results show that the HAM 

solution with the 5th-order of approximation is obviously deviated from the numerical solution, 

as displayed in Fig. 2.3. As the order of approximation of the HAM solution is increased, 

the excellent agreement of HAM solution to the numerical solution for both at T = 0.571 and 

r = 1.571 is demonstrated, as we can see from Fig. 2.4 by comparing the HAM solution with 

the 25th-order approximation with the numerical solution. Fig. 2.5 gives the comparison of the 

velocity field f' of the HAM solution with three different orders of approximation at r = 0.571 

and r = 1.571. It is also observed that the analytic solution obtained by the homotopy analysis 

method has good agreement for higher order of approximation, for example, with 15th and 25th

orders of approximation, whilst the HAM solution with the 5th-order of approximation has a 

visible deviation from the higher-order solutions. Obviously, the higher order of approximation 

the HAM solution has, the closer to the exact solution is the analytic solution. 

In the following discussions we will present only numerical solutions. Fig. 2.6 shows the 

time series of the velocity field I' at the four different distances from the oscillatory sheet for the 

first five periods r E [0,1071] with fixed values of S = 2, M = 10 and K = 0.1, 0.4, respectively. 

It can be seen from Fig. 2.6(a) (K = 0.1) that the amplitude of the flow near the oscillatory 

surface is larger as compared to that far away from the surface. As the distance increases from 

the surface, the amplitude of the flow motion is decreased and almost vanishes (approached to 

zero) for larger distance from the sheet. From Fig. 2.6(b), we observe the similar phenomenon 

for the value of K = 0.4. However, for K = 0.4 the amplitude of the flow motion is larger as 

compared with the analysis at K = 0.1. That indicates as increased effective viscosity with the 

increase of the non-Newtonian parameter K. 

Fig. 2.7 illustrates the effects of the non-dimensional relative amplitude of frequency to the 

stretching rate S, the viscoelastic parameter K and the magnetic parameter M on the time 

series of the velocity field l' at a fixed distance y = 0.25 from the surface, respectively. Fig. 
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2.7(a) shows that with the increase of S the amplitude of the flow increases slightly and a phase 

shift occurs which increases with the increase of S . The influence of the viscoelastic parameter 

K on the time series of the velocity l' can be seen from Fig. 2. 7(b) with fixed values of S = 2 

and M = 10. We see that the amplitude of the flow motion is increased by increasing the 

viscoelastic parameter K due to the increased effective viscosity. Similarly to the effects of S, 

a phase difference occurs for different values of K. Fig. 2.7 ( c) shows the time series of the 

velocity profile l' for the different values of the magnetic parameter M with fixed values of 

S = 1 and J( = 0.2. As expected, the amplitude of the flow decreases with the increase of the 

magnetic parameter M . This is because for the investigated problem the magnetic force acts as 

a resistance to the flow. Only slight phase difference occurs among the time series for different 

values of M in comparison with those for different values of Sand K . 

Fig. 2.8 gives the effects of the viscoelastic parameter K on the transverse profiles of the 

velocity l' for the different times of T = 8.511' , 911', 9.511' and 1011' in the fifth period T E [811',1011'] 

for which a periodic motion has been reached. Fig. 2.8(a) shows that at T = 8.511', f' = 1 

at the surface y = 0 equating the sheet velocity and f' ~ 0 far away from the sheet. It can 

also be seen that at this point of time, there is no oscillation ill the velocity profile and the 

velocity field f' is increased as the values of K increases, i.e. the boundary layer becomes thick 

with the increase of K . Fig. 2.8(b) gives the velocity profile f' at time point T = 911'. At this 

time point the velocity field l' is zero at the surface y = 0 and far away from the wall it again 

approaches to zero. It is also evident that near the wall, there exist some oscillation in the 

velocity profile and the amplitude of the flow increases as K increases. This oscillation in the 

transverse profile is an evidence of a phase shift in the viscoelastic fluid (K f. 0) against the 

viscous fluid (K = 0) . The velocity profiles for others two time points within the fifth period 

are displayed in Figs. 2.8c-d. For the viscous fluid , the flow in the whole domain is almost in 

phase with the sheet oscillation, as shown from the solid lines displayed in Figs. 2.8a-d (for 

K = 0). The boundary layer thickness increases by increasing the viscoelastic parameter K, as 

we can see from F ig. 2.8. 

Fig. 2.9 illustrates the influence of the magnetic parameter M on the transverse profiles of 

the velocity field f' for the different times of T = 8.511',911',9.511' and 1011'. It can be seen that the 

influence of the magnetic field reduces the boundary layer thickness. As expected, the magnetic 
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force is a resistance to the flow, hence reduces the velocity magnitude. Similar effects have also 

been shown in previous papers of MHD flows, e.g. [46 - 49]. Although for T = 97f (Fig. 2.9b) 

and T = 107f (Fig. 2.9d), there exist still velocity oscillations in the transverse profiles, their 

amplitudes are fairly small (in comparison with those in Fig. 2.8 (b,d)) . It means that for 

different values of M, the phase difference is almost invisible, which is in the agreement to the 

results shown in Fig. 2.7(c). 

Fig. 2.10 shows the effects of the non-dimensional relative amplitude of frequency to the 

stretching rate S on the velocity l' for the different times of T E [8.57f, 97r, 9.57r, 107f] in the fifth 

period. Fig. 2.10(a) is plotted for the variations of S on the velocity l' at time T = 8.57f at the 

surface. It is noted that the velocity is equal to the sheet velocity /' = 1 at the surface y = 0 

and far away from the wall it is zero. The velocity l' increases only slightly with the increase of 

S. Fig. 2.10(b) shows the influence of S on the velocity l' at time T = 97f. It can be seen that 

for very small values of S = 0.1 at this time point, the velocity in the whole transverse section 

takes its value at the plate almost to zero (/' ~ 0) , Le., for small values of S no phase difference 

occurs with the increase of the distance from the plate and the flow in the whole flow domain is 

in phase with the sheet motion. However, with the increase of S, a phase difference occurs and 

increases, as shown also in Fig. 2.7(a). The velocity profiles for others two time points within 

the fifth period are plotted in Figs. 2.10c-d and the similar observations are found as in Figs. 

2.10a-b, respectively. 

Fig. 2.11 gives the variations of the viscoelastic parameter K, the relative amplitude of 

frequency to the stretching rate and the magnetic parameter M on the skin friction coefficient 

Re~/2 Cf for the time series in the first five periods T E [0,107r]. Fig. 2.11(a) illustrates the 

influence of the viscoelastic parameter K on the skin friction coefficient Re~/2 Cj with fixed 

S = 5 and M = 12. It is noted that the skin friction coefficient varies also periodically due 

to the oscillatory surface motion. The oscillation amplitude of skin friction coefficient Re~/2 Cf 

increases as the values of K are increased. Fig. 2.11(b) shows the effects of S on the skin 

friction coefficient Re~/2 C j. It can be seen that the oscillation amplitude of the skin friction 

coefficient increases as S increases. Fig . 2.11(c) displays the results of the magnetic number 

M on the skin friction coefficient Re~/ 2 Cj with fixed S = 1 and K = 0.1. It is observed that 

the oscillation amplitude of the skin friction coefficient Re~/2 Cj is increased by increasing the 
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values of M. 

Table 2.2 shows the numerical values of the skin friction coefficient Re!/2 Cf for different 

values of K, Sand M at the different periods of time series. The results show that the values of 

the skin friction coefficient for the three different time points T = 1.57r, 5.57r and 9.57r are almost 

identical. It means that the periodic motion may be reached within the first period when the 

initial conditions are set up. The change of the skin friction coefficient from positive to negative 

with the increase of K indicates the large phase difference with the increase of K, as shown in 

Fig. 2.11(a) (but for slightly different parameters). It can also be seen that the values of the 

skin friction coefficient Re!/2 Cf are increased as the relative frequency to the stretching rate S 

or/and the magnetic field M are increased. A change in the sign of skin-friction does not appear 

for different values of Sand M cause mainly the change on the values of the skin-friction, less 

on the phase difference. 

2.5 Concluding remarks 

In the present investigation, the boundary layer flow of the MHD viscoelastic fluid over an 

oscillatory stretching sheet has been discussed. The obtained flow equation is solved both 

analytically using homotopy analysis method and numerically by means of the finite difference 

method. The comparison between both solutions is given and found in excellent agreement for 

the HAM solution with higher-order approximation. It demonstrates the convergence of the 

presented HAM solution for the investigated problem. The infiuence of the different parameters 

on the transverse profiles and the time series of velocity is illustrated and discussed. The 

numerical results give a view towards understanding the response characteristics of the second 

grade viscoelastic fluid 

41 



(a) 

0.8 

0.6 

-0.4 
0 

0 
0 

0.2 0 
0 
00 

00 

0 o 0 0 0 0 0 0 

0 0.5 1 1.5 2 

Y 

0 (b) 
000000 0 0 0 

00 
00 

-0.2 
00 

0 
0 

0 
0 

-0.4 -
-0.6 

-0 .8 

-1 
0 0.5 1 1.5 2 

Y 

Fig. 2.3. Comparison of f'(y, T) obtained from the HAM solution at the 5th-order of approxi

mation (solid lines) and the numerical solution (open circles) with S = 1, M = 5 and K = 0.1 

for two different times (a) T = 0.57r and (b) T = 1.57r, respectively. 
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K S M T = 1.57r T = 5.57r T = 9.57r 

0.0 1.0 12.0 11.678656 11.678707 11.678656 

0.2 5.523296 5.523371 5.523257 

0.5 -3.899067 -3.899268 -3.899162 

0.8 -11.674383 -11.676506 -11.676116 

1.0 - 15 .617454 - 15.624607 - 15.624963 

0.2 0.5 5.322161 5.322193 5.322173 

1.0 5.523296 5.523371 5.523257 

2.0 6.087060 6.087031 6.087156 

3.0 6.769261 6.768992 6.769294 

4.0 7.497932 7.496924 7.496870 

5.0 8.232954 8.229085 8.228996 

1.0 5.0 2.323502 2.323551 2.323548 

7.0 3.278018 3.278005 3.278123 

9.0 4.197624 4.197771 4.197733 

12.0 5.523296 5.523371 5.523257 

15.0 6.791323 6.791301 6.791278 

Table 2.2. Values of the skin-friction coefficient Re;/2 CJ for different values of K, Sand M for 

three different time points T = 1.57r, 5.57r and 9.57r. 
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Chapter 3 

Momentum and heat transfer over a 

continuously moving surface with a 

parallel free stream in a viscoelastic 

fluid 

This chapter concerns with the flow and heat transfer characteristics for a continuous moving 

surface in a viscoelastic fluid. Constitutive equations of viscoelastic fluid obey the elastico

viscous model. Expressions of velocity and temperature are developed by employing homotopy 

analysis method (HAM). The criterion to the convergence of the series solutions is properly 

checked. The features of the analytic solutions as function of the problems are discussed with 

the help of graphs. In addition the values of skin friction coefficient and the local Nusselt 

number have been computed and discussed. 

3.1 Mathematical formulation 

We consider the steady laminar boundary layer flow of a viscoelastic fluid over a surface moving 

with constant velocity U w in the same direction as that of the uniform free stream velocity 

1£00 (see Fig. 3.1). It is assumed that the wall and the free stream temperature Tw and Too 
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are constants with Tw > Too (heated wall) . We take into account of frictional heating due to 

viscous dissipation as the fluid considered for analysis is of non-Newtonian type. However, in 

order to get similarity equations, we ignore the effect of elastic stresses on the energy balance. 

Under the assumption of boundary layer equations and in the presence of viscous dissipation 

term, the boundary layer equations are given by [89, 128], 

u T 
~, OX> 

Wind up 
roll 

Fig. 3.1. Physical model and coordinate system 

ou + ov = ° 
ox oy , 

ou OU 02u (03U OU 02u OU 02u 03U) 
U ox + v oy = /J oy2 - ko u oxoy2 + ax ay2 - oy oxoy + V oy3 ' 

oT aT a o2T /J (Ou) 2 
U ox + v ay = pCp ay2 + Cp oy 

The boundary conditions of these equations are 

'1.£ = U w , 

u ~ uoo , 

v = 0, 

au 
-~ O oy , 

T = Tw at 

T ~ Too as 

y =0, 

y ~ 00, 

(3 .1) 

(3.2) 

(3.3) 

(3 .4) 

(3.5) 

where x and yare the Cartesian coordinates along and normal to the plate, respectively, U and 

v are the velocity components along x- and y-axes, respectively, p is the fluid density, /J is the 

kinematic viscosity, T is the fluid temperature, a is the thermal diffusivity, Cp is the specific 
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heat at constant pressure and ko is the viscoelastic parameter. 

We look for a solution of Eqs. (3.1) - (3.3) of the form 

'if; = ,/2xvu f ('f}) , 

U = U f'('f}), Wv 
v = -V 2;" [J('f}) - 'f}!'(77)] 

'f}=J U y, 
2xv 

(3.6) 

where U = U w + U oo . Furthermore, the velocity components u and v in term of stream function 

'if; are defined as: 
B'if; 

U=-, 
By 

Substituting (3.6) into Eqs. (3.2) and (3.3), we get the following ordinary differential equations 

fill + f j" - ~ (J,,2 - 2!' j'" - f j"") = 0, 

.2..0" + fB' + 2Ecj"2 = 0 
Pr 

and the boundary conditions (3.4) and (3.5) become 

f(O) = 0, f'(0) = E, B(O) = 1, 

f'(oo) = 1- E, fl/(oo) = 0, B(oo) = O. 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

Here E is a constant parameter, Pr is the Prandtl number, Ec is the Eckert number and K 

(~ 0) is the dimensionless viscoelastic parameter, which are defined as 

Uw 
E=U' Pr = J.LCp; 

Cl! 

K= koU, 
xv 

(3.11) 

The viscoelastic parameter K can be interpret as a local Deborah number of the flow (see Bird 

et al. [57]) as it compares fluid 's natural time, ko, to the flow characteristics (or residence) 

time, xjU, and at x = 0, there is no fluid velocity one cannot expect any influence of K on 

the velocity particularly at x = O. It should also be noticed that Ec > 0 because the wall is 

heated (Tw > Too) and Ec = 0 corresponds to the case when the viscous dissipation term in the 
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energy equation (3 .3) is neglected. FUrther, we notice that E = 0 corresponds to the flow over a 

stationary surface caused by the free stream velocity, while E = 1 corresponds to a moving plate 

in an ambient fluid, respectively. The case 0 < E < 1 is when the plate and the fluid are moving 

in the same direction. If E < 0, the free stream is directed towards the positive x-direction, 

while the plate moves towards the negative x-direction. On the other hand, if E > 1, the free 

stream is directed towards the negative x-direction, while the plate moves towards the positive 

x-direction. It is worth mentioning to this end that when K = 0 (viscous fluid) and Ec = 0, 

Eqs. (3 .7) and (3.8) along with the boundary conditions (3 .9) and (3.10) reduce to those given 

by Afzal et al. [129J. However, in this chapter we consider only the case of E ~ 1, i.e. the 

direction of the free stream is fixed (towards the positive x-direction). 

Physical quantities of interest are the skin friction coefficient C f and the local Nusselt 

number Nux, which are defined as 

(3.12) 

where T wand qw are the wall skin friction and the heat transfer from the plate, which are given 

by 

(au) (a2u a2u au av) Tw =J.L -a -ko u-a a +Va 2 -2-a -a ' 
y y=o x y y y y y=o 

qw = -a (a aT) . 
y y=O 

(3.13) 

Using variables (3 .6), we get 

(3.14) 

where Rex = Ux/v is the local Reynolds number. 

The analytical series solution of the non-linear system consisting of Eqs. (3.7) and (3 .8) 

with boundary conditions (3 .9) and (3 .10) is obtained using the homotopy analysis method 

(HAM). 
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3.2 Homotopy analysis solutions 

The velocity distribution f(ry) and the temperature profile e(17) can be expreSsed by the set of 

base functions 

{ ryk exp ( -nry) I k ~ 0, n ~ 0 } (3.15) 

in the form 
00 00 

f (1]) = ag,o + L L a~,nryk exp (-nry) , (3.16) 
n=Ok=O 

00 00 

e (ry) = L L b~,nryk exp (-nry) , (3.17) 
n=Ok=O 

where a;; nand b;; n are the coefficients. Based on the rule of solution expressions by (3.16) , , 

and (3.17) and Eqs. (3.9) and (3 .10), it is straightforward to choose 

fo (ry) = (1 - 10) ry - (1 - 210) (1 - exp( -ry)), for 10 i= 1/2, (3.18) 

(3.19) 

as our initial approximations of f (1]) and ¢(1]). Besides that we select the auxiliary linear 

operators L f and Le as 

(3.20) 

(3.21) 

which satisfy the following properties: 

(3.22) 

Le [G4 exp(ry) + G5 exp( - ry)] = 0 (3.23) 

in which Gi, i = 1 - 5 are arbitrary constants. If p (E [0,1]) and nf, ne indicate the embedding 

and non-zero auxiliary parameters, respectively then the zeroth-order deformation problems 
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are 

(3.24) 

[(OiP) = 0, l' (OiP) = E, l' (OOiP) = 1 - E, 1" (OO iP) = 0, (3.25) 

(1 - p).ell [e (7] iP) - 80 (7])] = pfieH(7])No [e (77iP), [(7];p)] , (3.26) 

e (OiP) = 1, e (OOiP) = 0, (3.27) 

in which the non-linear operators Nf and Nil are of the following forms: 

Ar [if( . ) f~( . )] = 02e(7]iP) +p f~( . ) oe(7];p) +P E (02[(7],p)) 2 
JVII 7],P, 7],P 07]2 r 7],P 07] r c 07]2 (3.29) 

and H(7]) is the base function. For the present flow problem we take H(7]) = l. 

Obviously for P = 0 and P = 1, the above zeroth-order deformation equations have the 

solutions 

[(7]i 0) = fo (7]), [(7]i 1) = f (7]), if (7]; 0) = 80 (7]), e (7]i 1) = 8 (7]) . (3.30) 

As P increases from 0 to 1, f (7]i p) and e (7]i p) vary from fo (7]) and 80 (7]) to the exact solutions 

f (7]) and 8(7]). Due to Taylors theorem and Eq. (3 .30), we have 

00 

[(7]i p) = fo (7]) + L fm (7]) pm, (3.31) 
m=! 

00 

e (7]iP) = 80 (7]) + L 8m (77) pm, (3.32) 
m=! 

where 

(3 .33) 
p=o p=o 

respectively. The convergence of the series in Eqs. (3.31) and (3.32) is dependent upon Itf 
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and fio . Assume that fif and fie are selected such that the series in Eqs. (3.31) and (3.32) are 

convergent at p = 1, then due to Eq. (3.30) one can write 

00 

f (T/) = fa (T/) + L fm (T/), (3.34) 
m=l 

00 

e (T/) = eo (T/) + L em (T/). (3.35) 
m=l 

In order to obtain the mth order deformation problems, we differentiating the Eqs. (3 .24) and 

(3.26) m times with respect to p, then set p = 0, in the resulting equations and divide them by 

m!, we obtain 

where 

and 

fm (0) = f:n (0) = f:n (00) = f~(oo) = 0, 

em (0) = em (00) = 0, 

m-1 

n~ (T/) = e~_l (T/) + Pr L [e~_l_dk + Ecf~'-l-kff] , 

Xm= 

k=O 

0, m::; 1 

1, m> 1 

The general solutions of equations (3.35) - (3.37) are given by 

f m (T/) f~t (T/) + C1 + C2 exp (T/) + C3 exp (- T/) , 

em (T/) = e;;.. (T/) + C4 exp (T/) + Cs exp (- T/) , 

(3.36) 

(3.37) 

(3.38) 

(3 .39) 

(3.41) 

(3.42) 

(3.43) 

in which f:n (T/) and e;;.. (T/) denote the special solutions of Eqs. (3.36) and (3.37), and t he 
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integral constants C1, C2, C3, C4 and C5 are determined by the boundary conditions (3.38) 

and (3.39) 

C1 = -C3 - f! (0) , C4 = -e:n (0) . (3.44) 

In this way, it is easy to solve the linear non-homogeneous Eqs. (3.36) and (3.37) by using 

Mathematica one after the other in the order Tn = 1,2,3 .... 

3.3 Convergence of the homotopy solution 

Our analytical series solutions are given by Eqs. (3.34) and (3.35). The convergence and rate 

of approximation of the series (3 .34) and (3 .35) are dependent upon lif and lie. According to 

Liao [90l one can choose the proper values of lif and lie by plotting the li-curves which ensure 

that the solution series (3.34) and (3.35) converge. For this purpose the Ii-curves are plotted 

for 15th-order of approximations of the functions f and e in Fig. 3.2(a,b) at different values of 

interesting parameters K, €, Pr and Ec. Fig. 3.2(a) is drawn for the range of the admissible 

values of lif and lie when K = € = Pr = Ec = 0.2. It can be seen from this Fig. that the 

range for the values of lif are -1.4 ~ lif ~ - 0.2 and for lie are - 1.7 ~ lie ~ - 0.2. Fig. 3.2(b) 

gives the Ii-curves when K = 0.5, € = 0.7 and Pr = 0.5 = Ec, and from this Fig., the range 

for admissible values of lif are -2 ~ lif ~ -0.1 and for lie are -1.9 ~ lie ~ -0.2. It is evident 

from our calculations that the series (3.34) and (3 .35) converge in the whole region of T/ when 

lif = fie = -1. In order to show the convergence of the HAM solutions for -1"(0) and -e'(O) 

at different order of approximations, we prepared Table 3.1. 
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(a) 

K = 0.2, E = 0.2, Pr = 0.2, Ec = 0.2 
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Fig. 3.2. The n-curves of f"(0) and e'(O) at the 15th-order of approximations. 
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order of approximations -1"(0) -e' (O) 

1 0.7000 0.6000 

5 0.6418 0.4633 

10 0.6522 0.4503 

14 0.6517 0.4487 

20 0.6517 0.4485 

25 0.6517 0.4485 

30 0.6517 0.4485 

Table 3.1. Convergence of the HAM solutions for different order of approximations when 

K = 0.5, E = 1 = Pr, Ec = 0.5 and lif = no = - 0.8. 

3.4 Results and discussion 

This section deals with the variations of some physical parameters on the velocity and temper

ature profiles. For this purpose, the Figs. 3.3 - 3.11 have been plotted just to see the influence 

of viscoelastic parameter K, the constant velocity ratio E, the Prandtl number Pr and the Eck

ert number Ec on the velocity 1', the temperature e, the skin friction coefficient ad the local 

Nusselt number, respectively. The values of the skin friction coefficient Re~/2 Of and the local 

Nusselt number Re;1/2 Nux are tabulated in case of viscous (K = 0) and viscoelastic (K =1= 0) 

fluids in Tables 3.2 - 3.4, respectively. 

The variation of the viscoelastic parameter K and the velocity ratio E on the velocity com

ponent I' and the skin friction coefficient Re~/2 Of can be seen through Figs. 3.3 - 3.6. Figs. 

3.3 and 3.4 indicate the influence of K on the velocity I' when E = 0 and E = 1. It is found 

from these Figs. that the velocity I' increases by increasing the viscoelastic parameter K. The 

bOlmdary layer thickness decreases when K increases in case of E = 0.2 and is quite opposite in 

case of E = 1. Fig. 3.5 displays the effects of E on the velocity I'. It is noted that initially f' 
increases but after 'T/ = 1, it decreases when E increases. Fig. 3.6 illustrates the variation of K 

against E on the skin friction coefficient Re~/2 Of. The skin friction coefficient increases when 

the viscoelastic parameter K increases. 
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Figs. 3.7-3.11 have been drawn just to see the effects of K, E, Pr and Ee on the temperature 

profile e and the local Nusselt number Re;1/2 Nux. Fig. 3.7 shows the influence of K on the 

temperature e. It is observed that the temperature e is a decreasing function of K . The thermal 

boundary layer decreases as K increases. Fig. 3.8 depicts the effects of E on the temperature B. 

It is noted that initially e decreases but after E > 0.7, it increases. The thermal boundary layer 

thickness increases by increasing E. Fig. 3.9 elucidates the variations of the Prandtl number Pr 

on the temperature e. It shows that e decreases when Pr increases and the thermal boundary 

layer thickness also decreases. The influence of the Eckert number Ee on the temperature field 

e is shown in Fig. 3.10. It is observed that e is an increasing function of Ee. The boundary 

layer thickness also increases when Ec increases. It is further noted that Fig. 3.10 has quite 

opposite results when compared with Fig. 3.9. Fig. 3.11 indicates the variations of the E versus 

the Prandtl number Pr on the local Nusselt number Re;1/2 Nux. The local Nusselt number 

increases by increasing E. 

Tables 3.2 - 3.4 are prepared in order to see the variations of the skin friction coefficient 

Re;/2 Cf and the local Nusselt number Re;1/2 Nux for some values of interesting parameters in 

viscous (K = 0 and E = 0) and viscoelastic fluid (K i= 0) when E = 0.2 and E = 1, respectively 

using Homotopy-Pade approximation [m, m]. Table 3.2 shows the values of the local Nusselt 

number -e'(O) for some values of Pr in case of viscous fluid (K = 0) and E = O. It is found that 

the magnitude of the local Nusselt number increases with an increase in Pr. The comparison 

between the present results with the numerical results of reference [130] is given and a good 

agreement is noted. It is also observed that the values of skin friction coefficient I" (0) = 0.333 

has a good agreement with (Ref. [130] 1"(0) = 0.332) for K = 0 and E = 0, and the present 

results for 1"(0) = 0.33299 are comparable with the results of (Ref. [131] 1"(0) = 0.33197) for 

viscous fluid (K = 0 = E = M = ~ and j = 1 = N). 

Tables 3.3 and 3.4 are made to see the values of the skin friction coefficient Re;/2 Cf and 

the local Nusselt number Re;1/2 Nux for some values of K, PI' and Ee for viscoelastic fluid 

(K i= 0) in case of E = 0.2 and E = 1, respectively. It is noted from Tab le 3.3 that both the 

skin friction coefficient Re;/2 Cf and the local Nusselt number Re;1/2 Nux are decreased by 

increasing K when E = 0.2. It is also found that the magnitude of the skin friction coefficient 

Re;/2 Cf increases and the local Nusselt number Re;1/2 Nux decreases as K increases when 
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E = 1. But this change in both the skin friction coefficient and the Nusselt number are larger 

in case of E = 1 when compared with E = 0.2. Table 3.4 shows the values of the local Nusselt 

number Re;1/2 Nux for some values of Pr and Ec when E = 0.2 and E = 1. It is observed that 

the local Nusselt number increases by increasing Pr in both cases of E = 0.2 and E = 1. It can 

also be seen that the local Nusselt number Re;1/2 Nux decreases when Ec increases for when 

E = 0.2 and E = 1, respectively. However in case of E = 1, the change in the local Nusselt 

number is larger for Ec < 0.5, and for Ec 2': 0.5 this change in the local Nusselt number is 

small. 

3.5 Final remarks 

In this chapter, the analytic solution of the highly non-linear problem is constructed. The 

effects of various sundry parameters on the velocity, temperature, skin friction coefficient and 

the local Nusselt number are analyzed. From the presented analysis, the following observations 

may be made: 

• The velocity f' increases and the temperature e decreases by increasing viscoelastic pa

rameter K . 

• The constant velocity ratio E has opposite results on f' and e. 

• By increasing K, the skin friction coefficient decreases for E = 0.2 and increases for E = 1. 

But the local Nusselt number decreases for both E = 0.2 and E = 1. 

• The behaviours of Pr and Ec on the temperature field e are opposite. 

• The thermal boundary layer thickness increases for large values of E. 

• The local Nusselt number increases as Pr increases and decreases when Ec increases. 

• The present results has a good agreement with the numerical results [130] when E = K = O. 
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Fig. 3.3. The influences of second grade/viscoelastic parameter K on the velocity component 
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Fig. 3.4. The influences of viscoelastic parameter K on the velocity component I' in case of 

moving plate € = 1. 
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the Prandtl number Pr. 

Homotopy-Pade App. PI' Ref. [130] Present results 

[25,25] 0.01 - 0.0519 - 0.0519 

[15,15] 0.1 - 0.140 -0.141 

[10,10] 0.7 -0.293 -0.293 

[10,10] 1.0 - 0.332 -0.333 

[25,25] 10.0 - 0.728 - 0.728 

Table 3.2. Values of local Nusselt number 8'(0) for some values of PI' when € = K = 0 using 

homotopy-Pade approximation [m, m]. 
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E = 0.2 E=1 

Homotopy-Pade App. [m, m] K R 1/2 C ex f R - 1/2 N ex U x 
R 1/2 C ex f R -1/2 N ex U x 

[1 5,15] 0.0 0.3070 0.4659 - 0.6276 0.4707 

[15,15] 0.2 0.2847 0.4637 - 0.6360 0.4629 

[1 5,15] 0.5 0.2571 0.4605 - 0.6517 0.4485 

[20,20] 0.7 0.2417 0.4584 - 0.6648 0.4362 

[20,20] 1.0 0.2221 0.4560 - 0.6905 0.4112 

Table 3.3. Values of skin friction coefficient Re;P Cf and local Nusselt number Re;1/2 Nux for 

some values of K when Pr = 1 and Ec = 0.5 using homotopy-Pade approximation [m, m]. 

E = 0.2 E=1 

Homotopy-Pade App. [m,m] Pr Ec R - 1/2 N ex U x 
R - 1/2 N ex U x 

[15,15] 0.0 0.5 0.03226 0.03226 

[15,15] 0.2 0.2437 0.1435 

[15,15] 0.5 0.3540 0.2841 

[15,15] 0.7 0.4027 0.3580 

[15,15] 1.0 0.4605 0.4485 

[1 5,15] 3.0 0.7111 0.8039 

[15 , 15] 1.0 0.0 0.4991 0.6174 

[15,15] 0.2 0.4836 0.5498 

[1 5,15] 0.5 0.4605 0.4485 

[15,15] 0.7 0.4450 0.3809 

[15,15] 1.0 0.4219 0. 2796 

Table 3.4. Values of local Nusselt number Re;1/2 N1tx for some values of Pr and Ec when 

K = 0.5 using homotopy-Pade approximation [m, m]. 
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Chapter 4 

Unsteady flow of a second grade 

fluid film over a stretching surface 

This chapter deals with the flow analysis in a thin liquid film of second grade fluid over an un

steady stretching sheet. The governing non-linear partial differential equation has been reduced 

first to the non-linear ordinary differential equation. The developed non-linear ordinary differ

ential equation is solved analytically using homotopy analysis method (HAM). An expression 

of analytic solution is derived in the form of a series. The convergence of the obtained series 

is analyzed through numerical computations . The effects of various parameters on the velocity 

components are shown through graphs and discussed. The values of the skin-friction coefficient 

for different emerging parameters are also tabulated. 

4.1 Governing problem 

We consider the unsteady, incompressible and two-dimensional flow of a second grade fluid thin 

liquid film of uniform thickness h(t) lies on the horizontal sheet (as shown in Fig. 4.1). The 

fluid motion within the film is induced by stretching of the elastic sheet. The x-axis is taken 

along the stretching sheet with the slot as the origin and the y-axis is normal to the sheet in 

the outward direction toward the fluid. 
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Sct 

Fig. 4.1. Flow geometry 

The unsteady bOlmdary layer equations are: 

au + av _ 0 
ax ay - , (4.1) 

(4.2) 

in which 1/ is the kinematic viscosity, p is the fluid density and 0:1 is the material parameter 

of second grade fluid, u and v are the velocity components in x- and y-directions, respectively. 

By taking 0:1 = 0, we recover the problem of Wang [132]. 

The relevant boundary conditions for the flow problem are [133 - 137] 

au = 0 ay , 

v = 0 at y = 0, 

dh 
v=-

dt 
at y = h, 

(4.3) 

(4.4) 

where Ul (x, t) is the surface velocity of the stretching sheet and the flow is caused by stretching 

the elastic surface at y = 0 such that the continuous sheet moves in the x-direction with the 

velocity 
ex 

Ul(X, t) = --. 
1 - at 
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Here a and c are positive constants with dimension (time) - l. The expression (4.5) for the 

sheet velocity Ul (x, t) reflects that the elastic sheet, which is fixed at the origin, is stretched by 

applying a force in the positive x-direction. The effective stretching rate c/ (1 - at) increases 

with time since a > O. Note that the Eq. (4.5) on which the analysis is based holds only for 

time t < l/a. 

We define the following dimensionless transformations [135] 

and the stream function 'lj;(x, y) as 

'lj; = Vci/x(l- at) -~ f(ry) , 

u = o'lj; = ~ f' (T}) , oy 1 - at 

8'lj; {lEv v = - - = - --f (T}) . 
ox 1 - at 

(4.6) 

(4.7) 

(4.8) 

The continuity equation (4.1) is automatically satisfied and from Eqs. (4.2) - (4.8) one can 

write 

f = 0, !' = 1, at ry = 0, 

f ~B<I", f" = 0 at T} = <1". (4.10) 

Here B = a/cis the unsteadiness parameter, K = cal / J.L( 1- at) is the dimensionless local second 

grade parameter and the primes indicate the differentiation with respect to T}. Moreover, <I" is 

the dimensionless film thickness and denotes the value of T} at the free surface so that Eq. (4.6) 

gives [135] 

<I" = J v(l ~ at) h(t) , 

dh(t) = _ a<l" ~ (1 _ at) -1/ 2 . 

dt 2 \I ~ 

72 

(4.11) 

( 4.12) 



Note that h(t) decreases monotonically when time increases and 0 is a constant depending only 

upon B [134] . Such scenarios have been discussed in detail in the references [134 - 137]. The 

shear stress T w on the surface of the thin liquid film sheet is 

and the local skin-friction coefficient or frictional drag coefficient is 

Tw 
Cf = - and al = Cil(l - at). 

pUr 

In dimensionless form we have 

where R!~2 = cx2/v(1 - at) is the local Reynolds number. 

We will solve Eqs. (4.9) and (4.10) analytically using HAM in the next section. 

4.2 Analytical solution 

(4.13) 

(4.14) 

To seek the series solution using homotopy analysis method (HAM), the velocity distribution 

f(",) can be expressed by the set of base functions 

(4.16) 

in the form 
00 00 

f (",) = L L am,n"'k, ( 4.17) 
n=Ok=O 

where am,n are the coefficients. Based on the rule of solution expressions by Eqs. (4.10) and 

Eq. (4.17), the initial approximation fa (77) of the velocity f(",) and auxiliary linear operator 

1:- (I) are selected as follows: 

2-B 
fo (",) =", - "482(30 - ",)",2, ( 4.18) 
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(4.19) 

where 

(4.20) 

and Gi, (i = 1,2,3) are arbitrary constants. Denoting p E [0,1] as an embedding parameter 

and lif a non-zero auxiliary parameter, the zeroth-order deformation problem is 

(4.21) 

1(0;p) = 0, p (O;p) = 1, 
~ Eo d 
f (o;p) = 2' f I (o;p) = 0, (4.22) 

where we define a nonlinear operator Nj as 

The above zeroth-order deformation equations for p = 0 and p = 1 have the solutions 

1(77; 0) = fo (77), 1(77; 1) = f (77)· (4.24) 

When p increases from 0 to 1, 1 (77; p) varies from fo (77) to the exact solution f (77) . By Taylors 

theorem and Eq. (4.24), we have 

00 

1(77; p) = fo (77) + L fm (77) pm, (4.25) 
m=l 

where 

f ( ) - ~ a
m 1(77;P) 

Tn 77 - , am m. p 
( 4.26) 

p=o 

respectively. The convergence of the series in Eq. (4.25) is dependent upon lif . Assume that 

lif is selected such that the series in Eq. (4.25) is convergent at p = 1, then due to Eq. (4.24) 
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one can write 
00 

1(7]) = 10 (7]) + LIm (7]) . ( 4.27) 
m=l 

In order to obtain the mth order deformation problems, we differentiate the Eq. (4.21) m times 

with respect to p, then set p = 0, in the resulting equations and divide them by m!, we obtain 

(4.28) 

1m (0) = 1:n(0) = 1m (0) = I~ (0) = 0, (4.29) 

where 

ntr, (7]) f ill - B (f' + !7]f" ) + BK ( 2f'" + !7]f"" ) m-l m-l 2 m-l m-l 2 m-l (4.30) 

m-l 

+ L [/m- I-k/~ - I:n- I -d~ + B (21m-I-kIf' - I~-l-k/~ - Im-I-k /~")] , 
k=O 

and 

Xm= 
0, m:::; 1 

1, m> 1 

The general solution of equation (4.28) is given by 

(4.31) 

(4.32) 

in which I:" (7]) denote the special solution of Eq. (4.32) , and the integral constants GI , G2 

and G3 are determined by the boundary conditions (4 .29). In this way, it is easy to solve the 

linear non-homogeneous Eq. (4.32) by using Mathematica one after t he other in the order 

m = 1, 2,3 .... successively, and at the Nlth-order approximation, we have the analytic series 

solution of 1(7]) as 
M 

1(7]) ~ LIm (7]) . (4.33) 
m=O 
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To ensure that f( T}) can be expressed by (4.17) and that each coefficient am,n can be modified 

as the order of approximation M goes to infinity. 

4.3 Convergence of the HAM solution 

The solution of the considered problem is analytically determined and given in Eq. (4.27). In 

this section we show the convergence of the obtained solution numerically. Note that our series 

solution contains the auxiliary parameter !'if, which provides us with a simple way to control 

and adjust the convergence of the series. Following Liao [90], one can check the range of the 

admissible values of !'if by drawing the so-called It-curves. For the present analysis the !'i-curves 

are plotted for 30th-order of approximations in Fig. 4.2. It is evident from Fig. 4.2 that the 

admissible range for the values of !'if is -1.2 ~ !'if ~ - 0.3. It is also noted that the interval 

for the admissible values of !'if increases by increasing the order of approximation. It is found 

that the series (4.27) converges in the whole region of T} when !'if = -O.B. Table 4.1 shows the 

convergence of the HAM solution for different order of approximations at K = 0.2, B = 0.5 

and 6 = 1. 

K- = 0.2, 8 = O. S, 0 = 1 
- 2. 536 rrT,........;,.......,.......,.-~....--.-...;,......,.-,:.;..,....;..-.:-,,........,.;........ .......... ,;......,;.,;.,....;......,., ............ .,.., 

-2.53S 

S - 2.54 
.'-' .:; ..... 

-2.542 

-2.544 

- 1.4 -1.2 - 1 - Q8 -Q6 - Q4 ~ Q 2 

i'?t 
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Fig. 4.2. The /i-curve of 1"(0) at the 30th-order of approximations. 

order of approximations - 1"(0) 

1 2.5390714 

3 2.5421682 

5 2.5425275 

8 2.5425162 

9 2.5425161 

15 2.5425161 

20 2.5425161 

30 2.5425161 

40 2.5425161 

Table 4.1. Convergence of HAM solution for different order of approximations. 

4.4 Results and discussion 

In this section, Figs. 4.3 and 4.4 are prepared in order to see the effects of second grade 

parameter K and unsteadiness parameter B on the velocity components I and f' by keeping 

the dimensionless film thickness fixed as 6 = 1. Also the variation of the skin friction coefficient 

R!~2Cf for the various values of the involving parameters K, 6 and B is given in Table 4.2 . 

In order to see the effects of the second grade parameter K on the velocity profiles I and 

/" we plot Figs. 4.3(a,b). Fig. 4.3 (a) depicts that the velocity I is a decreasing function 

of K. However, Fig. 4.3(b) shows that the velocity f' initially increases as K increases but 

after approximately 7] = 0.8, it decreases for large values of K . T he change in f' is small 

in comparison to f. It is also noted that the velocity component I has maximum values in 

the middle for (0 :::; 7] :::; 1) . The boundary layer thickness increases when K increases . Figs. 

4.4( a, b) give the influence of unsteadiness parameter B on the velocity profiles I and II. It 

is noted from these Figs. that both the velocities I and f' are the increasing functions of the 

dimensionless unsteadiness parameter B. The boundary layer thickness also increases for large 

values of B . 

77 



Table 4.2 is made just to see the variation of skin-friction coefficient R!~2Cf for various 

values of K and B and keeping 0 = 1 fixed. It is observed that the magnitude of the skin

friction coefficient R!~2Cf is increased by increasing K. This table also indicates that the 

magnitude of the skin-friction coefficient decreases when the unsteadiness parameter B < 2. 

For B = 2 the skin friction coefficient ~~2Cf is equal to zero and for B > 2, it increases. 

4.5 Concluding remarks 

Here we propose homotopy analysis method (HAM) to discuss the flow over an unsteady stretch

ing surface. The series solution of the highly non-linear problem is established. The auxiliary 

parameter tif provides us with a convenient way to adjust and control convergence region and 

rate of solution series. Moreover the effects of pertinent parameters are analyzed on the velocity 

and skin friction. The corresponding HAM results for a viscous fluid which are yet not available 

in the literature can be obtained as a limiting case when K = o. 
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Fig. 4.3. Influence of second grade parameter K on the velocity components f and l' at 

Ii = - 0.8. 

79 



0.4 

0.35 

0.3 

0.25 

'+- 0.2 

0.15 

0.1 

0.05 

0.8 

0.6 

0.4 

'+-
0.2 

0 

-0.2 

-0.4 

-0.6 
0 

8 = 0.0 
8 = 0.2 
8 = 0.4 
8 = 0.6 

(a) 

K = 0.5, /) = 1 

_.-.-._.-.-.-._-- .- . _.-.-.-.- -.... 
."..~ . -------, 0"'· _--- --_ 

, . .,' ---
~.:.~.~ ............................. . 

- ., . O' . .. .. . .. .. 
.~:.-... . . ". 

If/. " • •• •• ••• 

,,;'" ....... . 

0.2 0.4 

(b) 

K = 0.5. /) = 1 

0.2 0.4 

0.6 

0.6 

0.8 

8 = 0.0 
B = 0.2 
8 = 0.4 
B = 0.6 

0.8 

............. 

Fig. 4.4. Influence of unst eadiness parameter B on t he velocity components f and f' at 

n= - 0. 8. 

80 



K B 0 Rl/2C 
ex f 

0.0 0.5 1.0 -2.44408 

0.2 - 4.44940 

0.5 -7.57410 

0.7 -9.69713 

1.0 - 12.91349 

2.0 -23.75668 

0.5 0.0 -5.31440 

0.2 -5. 01055 

0.5 -4.44940 

1.0 -3.25871 

1.5 - 1.77117 

2.0 0.00000 

3.0 4.36925 

5.0 16.35201 

Table 4.2: Values of skin-friction coefficient R!~2Cf for different values of parameters K, Band 

o at 7] = O. 
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Chapter 5 

Series solution for MHD flow of a 

second grade fluid over a shrinking 

surface 

Analytical solution describing the magnetohydrodynamic (MHD) boundary layer flow of a sec

ond grade fluid over a shrinking sheet is described in this chapter. Both exact and series 

solutions have been determined. For the series solution, the governing non-linear problem is 

solved using homotopy analysis method (HAM). The convergence of the obtained solution is 

analyzed explicitly. Graphical results for the velocity field are presented and discussed for the 

embedded parameters in the flow. The influence of the involved pertinent parameters on the 

skin-friction coefficient is also analyzed. 

5.1 Mathematical statement of the problem 

Consider an incompressible second grade fluid past a horizontal shrinking sheet at y = O. The 

x- and y- axes are taken along and perpendicular to the sheet respectively (as shown in Fig. 

5.1). The flow is confined to y > O. A constant magnetic field of strength Bo acts in the 

direction parallel to the y-axis. The induced magnetic field is negligible when the magnetic 

Reynolds number is small [83,138 - 143]. Since no external electric field is applied and the 

effect of polarization of the ionized fluid is negligible, we can assume that the electric filed 
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E = O. The boundary layer equations governing the MHD flow of a second grade fluid are: 

IjI 

'·1 
u = -u ~ 

Fig. 5.1. Geometry of the problem 

8u + 8v = 0 
8x 8y 

8u 8u 82u al (83u 8u 82u 8u 82v 83u) crB8 
u 8x + v 8y = v 8y2 + P U 8x8y2 + 8x 8y2 + 8y 8y2 + v 8y3 - -pU, 

(5.1) 

(5.2) 

where 1/ is the kinematic viscosity, cr is the electrical conductivity, p is the fluid density, al is 

the second grade parameter and u and v are x- and y-components of velocity, respectively. 

The boundary conditions of the considered system are 

u = -ex, v= - V at y = 0, (5.3) 

u~O, as y ~ 00, (5.4) 

where c > 0 is the shrinking constant, V (> 0) is the suction velocity. In order to solve the 

problem completely in unbounded domains , it is possible to augment the boundary conditions by 

assuming certain asymptotic structures for the solutions at infinity. Here, the second condition 

in Eq. (5.4) is the augmented condition (see reference [127]) . Later Vajravelu and Roper [144], 

Cortell [32] and others have used this condition for flow problems over a stretching sheet. 
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The formulation of the boundary value problem is now completed. In order to solve this 

problem, it is convenient to non-dimensionalize the governing equations and conditions. This 

can be accomplished by using the following transformations: 

u = exf' (1]), v = - .jCV f (1]) , 71= ~Y' (5.5) 

The Eq. (5.1) is now identically satisfied and after performing the mathematical operations, 

the resulting dimensionless problem can be written as: 

f = A, f' = -1 at 1] = 0, 

f' -t 0, f" -t 0 as 1] -t 00, 

(5.6) 

(5 .7) 

(5.8) 

where A = V / VCV, M2 = ()' Eo 2 / pc and K = wI! v p =1= 0 and a prime indicates differentiation 

with respect to 71. 

The exact solution of Eqs. (5.6), (5.7) and (5 .8) is of the form 

f (71) = A - ~ ( 1 - e -bry) . (5 .9) 

Substituting Eq. (5.9) into Eq. (5.6) we get the following cubic equation in b as 

b3 KA - (K - 1)b2 - Ab - M2 + 1 = 0, (5.10) 

which has one real and two complex roots. The real root is given by 

__ 1_ (2(K -1)+24/3 ((1 -K)2 +3KA2 ) 2/3 ) 
b - 6KA r +2 r , 

in which 
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and the solution (5.9) is valid for all non-zero values of K. We have just shown the values of f 

in the Table 5.3 for K upto 20 in order to compare with HAM. However, we can select K > 20. 

Also, the existing solution (5 .9) is unique. 

The shear stress T w at the surface is defined as 

(5.11) 

The above equation in dimensionless form becomes 

Tw = Tw = [I" + K (31'1" - f flll)J I _ = 1"(0) . C3/2x.jiIP 7]-0 
(5.12) 

The problem consisting of Eq. (5.6) alongwith the boundary conditions (5.7) and (5.8) can also 

be solved analytically by using HAM in the next section. 

5.2 Analytic solution by homotopy analysis method 

For the series solution of Eqs. (5.6) - (5.8), we express the velocity distribution f(TJ) by the set 

of base functions 

{ TJk exp (-nTJ) I k ~ 0, n ~ O} (5.13) 

in the form 
00 00 

f (TJ) = ag,o + L L a~,nTJk exp (-m7) , (5.14) 
n=Ok=O 

where a~,n are the coefficients. Based on the rule of solution expressions (5 .14) and the bound

ary conditions (5.7) and (5.8), it is straightforward to choose the initial guess fo (TJ) for f (TJ) 

as 

fa (TJ) = A - 1 + exp(-17), (5.15) 

85 



and the auxiliary linear operator [. f is 

d3 f df 
[. f (I) = d173 - d7]' (5.16) 

Note that the operator [. f satisfies following properties: 

(5.17) 

in which Ci (i = 1 - 3) are the arbitrary constants. If p (E [0,1]) is an embedding parameter 

and Iif indicate the non-zero auxiliary parameters, respectively then we have the following 

zeroth-order deformation problem 

with the following boundary conditions 

[(7]jp)1 = A, 
1)=0 

where the non-linear operator Nf is 

81(17jP) 
87] 

= -1, 
1)=0 

81(7]j p) 
87] 

= 0, 

When p = 0 and p = 1, the above zeroth-order deformation Eq. (5 .18) has the solution 

(5.18) 

(5.19) 

(5.21) 

As p increases from 0 to 1, 1 (7] j p) varies from fa ('17) to the solution f (7]) of the original equation 

(5.6). By Taylor's theorem and the relation (5.21) we have 
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00 

!(1]iP) = fo (1]) + L fm (1]) pm, (5.22) 
m=l 

where 

(5.23) 
p=o 

Note that Eq. (5.18) contains the nonzero auxiliary parameter tif. The convergence of the 

series (5 .22) is dependent upon tif. Assuming that tif is chosen in such a way that the series in 

Eq. (5.22) is convergent at p = 1. Hence using Eq. (5.21), we have the solution series 

00 

f (1]) = fo (1]) + L fm (1]) . (5.24) 
m=l 

We differentiate the zeroth-order deformation Eq. (5.18) m times with respect to p, then setting 

p = 0, and finally dividing by m!, the mth-order deformation problem becomes 

(5.25) 

fm (0) = f:n (0) = f:n (00) = 0, (5.26) 

where 

1<./ ( ) = f'" () _ M2f' () + '"'" m-l-k k - m-l-k k m-l [ f f" f' f' 1 
m 1] m-l 1] m-l 7} L..,.; . , 

k=O +K (2f:n_ l_kf~ - f:'n-l-d~ - fm-l-kn
v

) 

and 

Xm= 
0, m::; 1 

1, m> 1 

(5.27) 

(5.28) 

The general solution of Eq. (5.25) which contain the f:;" (1]) as the special solutions can be 

written as 

(5.29) 

where the integral constants are determined by the boundary conditions (5 .26) 
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C3 = 8f:n (77) I ' 
877 '1=0 

(5.30) 

In this way, it is easy to solve the linear non-homogeneous Eq. (5.25) by using Mathematica 

one after the other in the order m = 1,2,3 ...... 

5.3 Convergence of the series solution 

The explicit, analytic expression given by Eq. (5.24) contains the auxiliary parameter Iif, which 

gives the convergence region and rate of approximation for the homotopy analysis method. The 

auxiliary parameter Iif depends upon the physical parameters of the flow problem. In Fig. 5.2, 

the Ii-curves are plotted for different values of M, A and K at 30th-order of approximation. Fig. 

5.2(a) gives the admissible range of tif for different values of M (= 1.2,1.5,1.8) keeping A and 

K fixed. The variations of A and K for the range of tif can be seen in Figs. 5.2(b) and 5.2(c), 

respectively. Fig. 5.2 indicates the range for the admissible values of the parameter tif which is 

- 1.6::; tif < - 0.1. The series (5.24) converges in the whole region of 77 when tif = - 0.8. It is 

further noted from Fig. 5.2 that the interval for admissible values of tif increases by increasing 

order of approximation. Fig. 5.3 gives the comparison between the HAM solution (5.24) and 

exact solution given in Eq. (5.9). Table 5.2 is displayed to show the convergence of the HAM 

solution with increasing order of approximation. Table 5.2 gives the comparison between HAM 

solution and shows a good agreement with exact an solution. 

Order of approximation 1 5 10 15 20 25 Exact solution 

J" (0) 1.5 1.5879 1.59416 1.59443 1.59443 1.59443 1.59443 

Table 5.1: Convergence of the HAM solution and comparison with the exact solution. 
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Fig. 5.2. The !i-curves of 1"(0) at the 30th-order of approximations. 
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Fig. 5.3. Comparison between the HAM and the exact solutions with K = 0.2, A = 1 and 

M = 1.5. 
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'TJ HAM solution [5.24] Exact solution [5.9] 

0.0 1.0 1.0 

0.2 0.818731 0.818731 

0.5 0.606531 0.606531 

1.0 0.367879 0.367879 

2.0 0.135335 0.135335 

3.0 0.0497871 0.0497871 

5.0 0.00673795 0.00673795 

10.0 0.0000453999 0.0000453999 

Table 5.2: Comparison of the velocity I for HAM solution and exact solution for different values 

of'TJ. 

5.4 Results and discussion 

The main results of interest here are the influence of suction velocity at the wall A, the Hartman 

number M and the 'second grade parameter K on the velocity profiles I and 1'. In order to 

analyze these important characteristics of the problem, we plot Figs. 5.4 - 5.9. The variations 

of these parameters on the velocity and the shear stress at the wall (the skin-friction coefficient) 

are also tabulated in Tables 5.3 and 5.4, respectively. 

Figs. 5.4 and 5.5 represent the variations of velocity components I and l' for various values 

of suction parameter A. It is noted from these Figs. that the magnitude of both I and l' 
decreases when the suction parameter A increases and this decrement is larger in case of f. 

Moreover, the thickness of the boundary layer decreases with the increase in A. This is in 

keeping with the fact that suction causes reduction in the boundary layer thickness. 

In order to illustrate the influence of Hartman number M on the velocity I and I', we 

prepared Figs. 5.6 and 5.7, respectively. As expected, by increasing the magnitude of M 

reduces the velocity profiles I and 1'. This is due to the effect of magnetic force against the 

flow direction. It can be seen that with the increase of M, the magnitude of I increases more 

rapidly when compared with 1'. Figs. 5.6 and 5.7 further depict that there is a decrease in the 
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thickness of the boundary layer due to an increase in M . 

The flow dependence of a second grade fluid or the material parameter K on the velocity 

components f and l' can be clearly observed from Figs . 5.8 and 5.9. From these Figs . it can 

be read off that increasing of K decreases the magnitude of f and 1'. T hese Figs. also indicate 

that large values of K cause the velocity f and l' to become flatter. It may also be noted from 

Fig. 5.9 that the boundary layer thickness decreases when K increases. Also , the magnitude of 

f is larger than l' when K increases. 

Table 5.1 shows the values of the skin-friction coefficient 1" (0). It is interesting to note here 

that the values of 1" (0) correspond to the exact solution at the 15th order of approximation. 

Table 5.2 provides a comparison of the values of the velocity component f for HAM and exact 

solutions for various values of TJ and keeping other parameters fixed. An excellent agreement is 

noted here. 

Tables 5.3 and 5.4 have been made just to see the influences of second grade parameter 

K, the Hartman number M and the suction velocity A on the velocity f and the skin-friction 

coefficient (Tw = 1"(0)), respectively. Table 5.3 shows the variations of K, M and A on the 

velocity f for both HAM and exact solutions given by Eqs. (5.24) and (5 .9), respectively. It 

is found that f decreases as the second grade paramet er K increases and , increases for large 

values of M and A. Table 5.4 elucidates the variation of K, M and A on the skin fr iction 

coefficient or the shear stress at the wall T w (or 1"(0)) . It is observed that the magnitude of 

the skin friction first decreases and after K = 0.5 , it increases for large values of K (::; 10) . The 

skin friction increases when both M and A increases. It is fmther noted that the agreement 

between HAM and exact solution is quite good. 

5 .5 Concluding remarks 

In this work the MHD second grade fluid flow due to a porous shrinking sheet is considered. The 

series solution is obtained and the convergence is shown. The effects of the sundry parameters 

are discussed through graphs. Comparison between HAM and exact solutions are given. Such 

kind of analytic solution for MHD flow of a second grade fluid over a shrinking sheet is presented 

first time in the literatme. The following observations have been made: 
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• The magnitude of I and I' is decreased by increasing A, M and K, respectively. 

• The boundary layer thickness is decreased as A, M and K increases. 

• The magnitude of I is larger when compared with I'. 

• The HAM results for MHD viscous fluid can be obtained by setting K = O. 

• The HAM results are identical to the exact solution (Tables 1 and 2). 
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Fig. 5.4. The variations of the suction parameter A on the velocity component f. 
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Fig. 5.5. The variations of the suction parameter A on the velocity component f' . 
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K M A HAM solution [5.24] Exact solution [5.9] 

0.1 1.5 1.0 0.829654 0.829654 

0.2 0.828747 0.828753 

0.5 0.826977 0.826944 

0.7 0.826439 0.826136 

1.0 0.825786 0.825734 

2.0 0.823493 0.823478 

5.0 0.821473 0.821484 

10.0 0.820394 0.820393 

20.0 0.819669 0.819669 

0.5 1.0 0.818731 0.818731 

1.2 0.822586 0.822585 

1.5 0.826977 0.826944 

2.0 0.832040 0.832758 

3.0 0.842011 0.842021 

4.0 0.849647 0.849604 

5.0 0.856786 0.856129 

20.0 -- - 0.907408 

1.5 0.0 -0.071811 -0.071812 

0.2 0.027922 0.027922 

0.5 0.327404 0.327402 

1.0 0.826977 0.826944 

1.5 1.326691 1.326690 

2.0 1.826531 1.826530 

3.0 2.826341 2.826340 

5.0 4.826151 4.826150 

10.0 9.825981 9.825990 

Table 5.3: Comparison of the velocity f between the HAM and the exact solutions for different 

values of K, M and A. 
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K M A HAM solution [5.24] Exact solution [5.9] 

0.1 1.5 1.0 1.427490 1.427450 

0.2 1.146130 1.146210 

0.5 0.358841 0.358816 

1.0 - 0.855190 - 0.855289 

1.5 -2.007020 -2.007130 

2.0 - 3.120720 - 3.123660 

3.0 - 5.594256 -5.594730 

5.0 - 9.502730 - 9.509060 

10.0 - 19.752400 - 19.768000 

0.5 1.0 0.0 0.0 

1.2 0.136592 0.136510 

1.5 0.358841 0.358816 

2.0 0.780263 0.780140 

3.0 1.794175 1.794080 

5.0 4.366281 4.366020 

1.5 0.1 - 0.658248 - 0.658203 

0.2 - 0.533468 - 0.533490 

0.5 - 0.184517 - 0.184580 

1.0 0.358844 0.358816 

1.5 0.881981 0.882960 

2. 0 1.396990 1.398320 

3.0 2.416510 2.416960 

5.0 4.435196 4.435010 

Table 5.4: Comparison of the skin friction coefficient f" (0) between the HAM and the exact 

solutions for different values of K, M and A. 
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Chapter 6 

Mixed convection in the 

stagnation-point flow of a M axwell 

fluid towards a vert ical stretching 

surface 

In this chapter we investigate t he steady mixed convection boundary layer flow of an incom

pressible Maxwell fluid near the two-dimensional stagnation-point flow over a vertical stretching 

surface. It is assumed that t he stretching velocity and the surface temperat ure vary linearly with 

the distance from the stagnation-point. The governing non-linear partial differential equations 

have been reduced into the coupled non-linear ordinary differential equations by the similarity 

transformations. Analytical and numerical solutions of the derived system of equations are 

developed. The homotopy analysis method (HAM) and finite difference scheme are employed 

in constructing the analytical and numerical solutions, respectively. Comparison between the 

analytical and numerical solutions is given and found in an excellent agreement. Both cases of 

assisting and opposing flows are considered. The influence of the various interesting parameters 

on the flow and heat transfer are analyzed and discussed through graphs in detail. The values 

of the local Nusselt number for different physical parameters are also tabulated. Comparison 

of the present results with known numerical results of viscous fluid is shown and noted a very 
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good agreement. 

6.1 Physical model and governing equations 

Here we examine the steady, two-dimensional st agnation-point flow of an incompressible Maxwell 

fluid adjacent a vertical stretching surface which coincides with the plane y = 0 of a Carte

sian system of coordinate Ox y (y = 0) with the x-axis along the sheet (see Fig. 6.1) . The 

Maxwell fluid occupies the half plane (y > 0). Two equal and opposite forces are applied along 

the x-axis so that the surface is stretched keeping the origin fixed. It is assumed that the 

velocity uw(x) = ex, where e (> 0) is the constant or the stretching rate and the temperature 

Tw(x) of the stretching sheet is proportional to the distance x from the stagnation-point, where 

Tw(x) > Too with Too being the uniform temperature of the ambient fluid. The velocity of 

the flow external to the boundary layer is ue(x) = ax, where a (> 0) is the constant. Under 

these assumptions along with the Boussinesq and boundary layer approximations, the governing 

equations for Maxwell fluid are [35,89]: 

":> 

l.r 
T 

0 

0 

T T Y1 T \) .(~)=o.~ 
." 

\),(~)=o.~ 

1 
T T 

u co 

IjI 

(a) Assisting flow (b) Opposing flow 

Fig. 6.1. Geometry of flow and coordinate system 
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(6.1) 



(6 .2) 

(6.3) 

(6.4) 

where 1.£, V are the velocity components in the x- and v-directions, respectively, v is the 

kinematic viscosity of fluid, P is the pressure, p is the density of fluid, Al is the relaxation 

time, gc is the gravitational acceleration, (3T is the thermal expansion coefficient, Cp is the 

specific heat, a is the thermal difi'usivity, T is the temperature and 0'1 being the boundary layer 

thickness. Here the "+" sign in Eq. (6.2) corresponds to the assisting flow while the "-" sign 

corresponds to the opposing flow, respectively. 

The appropriate boundary conditions are 

U l.£w(x) = ex, v = 0, at y = 0, 

Ue(x) = ax, T=Too as y-+oo 

in which b1 is the positive constant. 

To examine the flow regime, the following similarity variables are introduced 

T} = Ity, 

(6.5) 

(6.6) 

(6.7) 

Using above equation, the continuity Eq. (6.1) is satisfied automatically and Eqs. (6.2) and 

(6 .4) with boundary conditions (6.5) and (6.6)are 

2 

1''' - 1'2 + f!" + a2 ± Ae + {3 (2ff'!" - f2 I'") = 0, 
e 

e" + Pr (fB' - BI') = 0, 

f 0, l' = 1, B = 1 at T} = 0 

l' = a B=O 
e' 

as 7] -+ 00 
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(6.11) 



Here primes denote differentiation with respect to 'T/ and the Deborah number /3 = Al c, the 

Prandtl number Pr = f-LCp / a and the constant A (;?: 0) is the buoyancy or mixed convection 

parameter defined as 

(6.12) 

with Grx = g/3T (Tw - Too) x3/v2 is the local Grashof number and Rex = uwx/v is the local 

Reynolds number. When A = 0 and a/c = I, the solution of Eq. (6.8) subject to boundary 

condition (6 .10) and (6.11) is 

f ('T/) = 'T/. (6.13) 

The physical quantity of interest is the local Nusselt number Nux defined by 

(6.14) 

where qw is the heat transfer from the plate i.e. 

qw = -a (a aT) . 
y y=o 

(6.15) 

Using variables (6.7), we get 

Re;I/2 Nux = -8'(0). (6.16) 

In the next two sections, we will present the analytical and numerical solution of Eqs. (6.8)-

(6.11). 

6.2 Homotopy analysis of the governing problem 

In this section, we solve Eqs. (6.8) and (6 .9) by means of homotopy analysis method and discuss 

the convergence of the HAM solution. 

6.2.1 Homotopy analysis solution 

For the series solutions of Eqs. (6.8) and (6.9) using homotopy analysis method (HAM), it is 

obvious that the velocity and the temperature profiles f ('T/) and 8 ('T/) can be expressed by the 

set of base functions 
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{ rl exp (- n1')) I k 2: 0, n 2: O} (6.17) 

in the form 
00 00 

f (1')) = ag,o + L I:>~,n1')k exp (-n1')) , (6.18) 
n=Ok=O 

00 00 

8 (1')) = L L b~,n1')k exp (-n1')), (6.19) 
n=Ok=O 

where a~ n and b~ n are the coefficients. These provide us with solution expressions of f (1')) , , 

and 8(1')), respectively. With the help of boundary conditions (6 .10) and (6.11) and the solution 

expressions, one can choose fo (1')) and 80 (1')) as 

fo (1]) = ~1') + (1 - ~) (1 - exp(-1'))), (6.20) 

(6.21) 

as the initial guess approximations of f(1]) and 8(1]) and 

(6. 22) 

(6.23) 

are the auxiliary linear operators having the following properties 

(6.24) 

LO [C4 exp(1]) + C5 exp( - 1'))] = 0, (6.25) 

respectively, and Ci (i = 1 - 5) are arbitrary constants. If tif and tio denote the non-zero 

auxiliary parameters then the zeroth-order deformation problems are constructed as follows: 

(6.26) 
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1(OiP) = 0, = I , 
'7/=0 

8(OiP) = 1, 8(OOiP) = 0, 

'7/=00 

a 

c' 

where P E [0,1] is an embedding parameter and the nonlinear operators Nf and Ne are 

(6.27) 

(6.28) 

(6.29) 

(6.31) 

For P = 0 and P = I, the above zeroth-order deformation Eqs. (6.26) and (6 .27) have the 

solutions 

1("li O) = 10 ("l) , 

e ("l i O) = eo ("l), 

1("li 1) = I ("l), 

8("l i 1) = e("l) . 

Expanding 1("liP) and 8 ("liP) in Taylor's series with respect to P, we have 

00 

!("liP) = 10 ("l) + L im (7]) pm, 
1n=1 

00 

8 (7]iP) = eo (7]) + L em (77) pm, 
m=l 

where 

e () = ~ am
8 (7]iP) 

m "l I am m. P p=o p=o 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

Note that the zeroth-order deformation Eqs. (6.26) and (6.27) contain two auxiliary parame

ters Iif and lie. The convergence of the series (6 .26) and (6 .27) depend on these parameters. 

Assuming that Iif and lie are selected such that the above series are convergent at P = I, then 
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using Eqs. (6.32) and (6.33), the series solutions are 

00 

I (ry) = 10 (ry) + LIm (ry) , (6.37) 
m=l 

00 

B (ry) = Bo (ry) + L Bm (ry). (6.38) 
m=l 

Differentiate the zeroth-order deformation equations (6 .26) and (6 .27) m times with respect to 

p, then setting p = 0, and finally dividing them by m!, we obtain the mth-order deformations 

equations 

where 

'cf [1m (ry) - Xm/m-l (ry)] = fi/R~, (7]) , 

'co [Bm (ry) - XmBm-1 (ry)] = filJnr:n (ry) , 

1m (0) = dIm (ry; 0) I = dIm (ry; 0) I = 0, 
dry 1)=0 dry 1)=00 

Bm (0) = em (00) = 0, 

(6.39) 

(6.40) 

(6.41) 

(6.42) 

2 m-l [ 1m-I-kIf - l:n-l-k/~ 1 
n!n (ry) = 1:::'-1 (ry) + (1- Xm) ~2 ± )..em - 1 (ry) + L (3f ~ {2/t i" - f fill} , 

k=O + m-l-k 6 k-I 1 k-I 1 
1=0 

( 6.43) 
m-l 

n~ (ry) = e~_l (ry) + Pr L [e~'-l-kfk - em-l-k/~] , ( 6.44) 
k=O 

{ 

0, 
Xm = 

I, 

m::; I, 
(6.45) 

m>l. 

If we let I::' (ry) and e:n (ry) as the special solutions of Eqs. (6.39) and (6.40) then from Eqs. 

(6.39) and (6.40), the general solutions are given by 

(6.46) 

105 



(6.4 7) 

where the integral constants Ci (i = 1 - 5) are determined by the boundary conditions (6.41) 

and (6.42) as 

C2 = C5 = 0, C1 = -C3 - f! (0) , C4 = -8-:n (0) . (6.48) 

In this way, it is easy to solve the linear non-homogeneous Eqs. (6.39) and (6.40) by using 

Mathematica one after the other in the order m = 1,2,3 ...... . 

6.2.2 Convergence of the HAM solution 

As proved by Liao [90] that, as long as a solution series given by the homotopy analysis method 

converge, it must be one of the solutions. Therefore, it is important to ensure that the solutions 

series are convergent. The series solutions (6.37) and (6.38) contain the non-zero auxiliary 

parameters Itf and fie, which can be chosen properly by plotting the so-called n-curves to 

ensure the convergence of the solutions series and rate of approximation of the HAM solution. 

To see the range for admissible values of Itf and Ito, It-curves of 1"(0) and 8'(0) are shown in 

Fig. 6.2 for 15th-order of approximation when ale = 0.3, Pr = 0.5, A = 0.2 and {3 = 0.2 for 

both cases of assisting and opposing flows. From this figure , it can be seen that It-curves have a 

parallel lines segment that correspond to the regions -2 .2 ~ Itf ~ - 0.2 and - 1.8 ~ Ito ~ -0.3 

(for assisting flow) and -2 ~ Itf ~ -0.3 and -1.8 ~ Ito ~ -0.2 (for opposing flow), respectively. 

To assure the convergence of the HAM solution, the values of Itf and Ito should be chosen from 

these regions. The region for the values of Itf and Ito is dependent on the values of involving 

parameters. Our calculations depict that the solutions series (6.37) and (6 .38) converge in the 

whole region of 'rJ if it is convergent at 'rJ = 0 when the proper values of Itf and fie are chosen. 
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6.3 Numerical method 

Besides the HAM solution, the boundary-layer problem consisting of Eqs. (6.8) - (6.1l) are 

also solved numerically. 

Usually, there exist two methods numerically handling flow problems in a semi-infinite 

domain. The one is by a coordinate transformation, e.g. ~ = 1/(7] + I), to transform the semi

infinite physical domain, 7] E [0,00), to a finite calculation domain, ~ E [0 , 1]. For the present 

problem, due to the boundary condition f' = a/cat 7] ~ 00, which yields j ~ 00 at 7] ~ 00 in 

case of a i= 0, a numerical simulation up to ~ 00 is impossible. Therefore, we will not employ 

the method of coordinate transformation. 

The other method is by truncating the semi-infinite domain to obtain approximate solutions. 

The semi-infinite domain 7] E [0,00) is replaced by a finite domain 7] E [0 , L] and the boundary 

conditions at infinity 7] ~ 00 are enforced at 7] = L. The extent of the domain L is chosen in 

such a manner that any increase in the domain does not significantly alter the solution. 

We intend to find direct numerical solutions of the differential system (6 .8) - (6.11) by 

means of a suitable numerical technique for a finite calculation domain 7] E [0, L]. Because the 

differential equation (6.8) is nonlinear in j, we cannot solve this boundary value problem by 

the direct finite-difference method. In solving such nonlinear equation, iterative methods are 

commonly used. 

We can define an iterative procedure determining a sequence of functions j(O) (7]), j(l) (T/), 

j(2)(7]), ... .. and e(O)(7]), e{l)(7]), e(2)(7]), .... .in the following manner: j(O)(7]) and e(O)(7]) are 

chosen arbitrarily, then j(l)(7]), j(2)(T/), ..... and e(1)(7]), e(2)(77), ..... are calculated successively 

from the following iteration steps 

2 
j(n+l)1I1 _ j(n)1 j(n+1)1 + j(n) j(n+1)11 + ~2 ± .>.e(n) + (3 (2j(n) in)1 j(n+1)11 _ j(n)2 j(n+l)lII) = 0, 

(6.49) 

e(n+l)1I + Pr (j(n)e(n+1)1 - j(n)le(n+1)) = 0 (6.50) 

with the boundary conditions 

j(n+1) = 0, j(n+1)1 = 1, e(n+1) = 1 at 7] = 0, 
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e(n+1) = 0 at T/ = L, (6.51) 

which yield two linear differential boundary value problems for each iteration step n+ 1 and can 

be numerically solved by a direct different method. It is easy to confirm that if the indices (n) 

and (n + 1) are withdrawn, the differential equations (6.49) and (6 .50) as well as the boundary 

conditions (6.51) are consistent with the original differential equations (6 .8) and (6.9) as well 

as the boundary conditions(6.10) and (6.11) (if L -+ 00). 

The iteration steps are carried out until convergent solutions are reached. The effectiveness 

of the method is often influenced considerably by the form of the arrangement for the iteration 

steps (n) and (n + 1) in Eqs. (6.49) and (6.50), which are not sole, and by the choice of the 

starting functions j(O) (T/) and e(O) (T/); the method is generally more effective the closer j(O) (T/) 

and e(O)(T/) are to the solutions j(T/), e(T/), respectively. 

Usually, in order to achieve a better convergence, the so-called method of successive under

relaxation is used. We solve the Eqs. (6.49) and (6.50) for the iterative step (n + 1) to obtain 

an estimated value of j(n+1) j-(n+1) and an estimated value of e(n+1) 8(,,+1) then j(n+1) and , , , , 

e(n+1) are defined by the formulas 

-, 0 < T < 1 
j(n+1) = j(n) + T (J<n+1) - j(n)) , } 

e(n+1) = e(n) + T (e<n+1) _ e(n)) - , 
(6.52) 

where T E (O,lJ is a real under-relaxation parameter. We should choose T so small that 

convergent iteration is reached. The iteration should be carried out until the relative differences 

of the computed j(n), j(n+1) as well as e(n) , e(n+1) between two consecutive iterative steps (n) 

and (n + 1) are smaller than a given error chosen to be 10- 10 . 

6.4 Discussion of the results 

We calculated the velocity and temperature profiles by solving equations (6.8) and (6.9) with 

boundary conditions (6.10) and (6 .11) both analytically (using the analytic technique homotopy 

analysis method (HAM)) and numerically (using finite difference scheme). The velocity filed 

!'(T/) and the temperature profile e(T/) are plotted to see the influence of the various interesting 

parameters, for example, the Deborah number (3, the Prandtl number Pr, the buoyancy/mixed 
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convection parameter ).. and a/ c in both cases of assisting and opposing flows, respectively. 

The effects of various parameters on the local Nusselt number Re;1/2 Nux are also discussed 

through graphs. The values of 1"(0) and the local Nusselt number Re;1/2 Nux are given for 

different involving parameters in tabular form for viscous ((3 = 0) and non-Newtonian ((3 -=J 0) 

fluids in both cases of assisting and opposing flows. 

Fig. 6.3 compares the homotopy analytic solutions to the numerical solutions for the velocity 

field 1'(1]) and the temperature profile 8(1]) when (3 = 0.5, ).. = 0.5 , a/c = 0.5 and Pr = 1 in both 

cases of assisting and opposing flows. It is noted that the homotopy analysis method (HAM) 

has an excellent agreement with numerical solution is a sufficiently high order of approximation 

in the HAM solution is employed. As shown in Fig. 6.3, for the investigated case, the homotopy 

analytic solution for the velocity 1'(1]) and temperature profile 8(1]) has an excellent agreement 

to the numerical solution in both cases of assisting and opposing flows, if the 15th and 10th-order 

of approximations are employed in the HAM solution, respectively. 

In the following discussions we will present only the numerical solutions. 

Figs. 6.4 and 6.5 are illustrated to observe the effects of the Deborah number (3, the Prandtl 

number Pr, the buoyancy/mixed convection parameter).. and a/c on the velocity component 

1'(1]) for both the assisting and opposing flows, respectively. Generally, if a/c = 1, indicating 

the velocity f' (1]) at the wall is equal to that far apart from the wall, a deviation of the velocity 

from f' = 1 occurs only within the boundary layer near the wall. As may be expected, for the 

assisting flow, I' > 1 in boundary layer, because the thermal expansion caused by the high wall 

temperature assists the flow. On the contrary, for the opposing flow, I' < 1 in this boundary 

layer due to the resistance of the thermal expansion to the flow. Such flow behaviors can be 

seen in Figs. 6.4a,b and 6.5a. As shown in these Figs., the magnitude of the flow deviation 

from I' = 1 in the boundary layer depends on the values of the material parameters. With 

the increase of the Deborah number f3 or the relaxation time, the velocity deviation decreases, 

as displayed in Fig. 6.4a. It may be expected that for (3 --+ 00, f' = 1 in the whole flow 

domain. Fig. 6.4(b) shows that increasing the Prandtl number Pr causes the decrease of 

the flow deviation from f' = 1. This is because increasing the Prandtl number Pr indicates 

the increase of the fluid heat capacity or the decrease of the thermal diffusivity, hence causes 

a diminution of the influence of the thermal expansion to the flow. For both assisting and 
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opposing flows as /3 and Pr increases, the boundary layer thickness decreases. 

The buoyancy or mixed convection parameter A represents the ability of the fluid thermal 

expansion or the coupling of the temperature field to the velocity field. Increasing A will 

amplify the effect of the temperature variation on the velocity field, increase the buoyancy 

force, and hence cause the increase of the velocity deviation and the increase of the boundary 

layer thickness, as shown in Fig. 6.5a. When a/e i= 1, the flow velocity f' changes from 

f' = 1 at the wall to f' = a/ e far away from the wall, as we can see from Fig. 6.5b. In the 

transition region/the boundary layer the assisting flow possesses larger velocity values than for 

the opposing flow. It is interesting to note that the boundary layer thickness is decreased when 

a/e is increased. According to studies [145,146]' it can be explained as follows: for a fixed 

values of e corresponding to the stretching of the surface, an increase in a implies an increase in 

straining motion near the stagnation region resulting in increased acceleration of the external 

stream and this leads to thinning of the boundary layer by increasing a/c. 

The influence of the Deborah number /3, the Prandtl number Pr, the buoyancy/ mixed 

convection parameter A and a/e on the temperature field fJ('T]) can be seen from Figs. 6.6 and 

6.7. Comparison of Figs. 6.6a and 6.7b with Figs. 6.4a and 6.5b shows that the temperature 

field is much less intensive to the variations of the Deborah number /3 and the buoyancy or 

mixed convection parameter A. The obvious dependence of the temperature field on a/ e and 

the Prandtl number Pr can be identified from Figs. 6.6b and 6.7a. With the increase of a/e 

and Pr, the boundary layer thickness of the temperature decreases, similar to that for the 

velocity boundary layer. Generally, the difference between the assisting and opposing flows is 

still visible, but not so obvious as in the velocity field. 

The local Nusselt number Nux Re;/2 is the physical quantity of interest in practical appli

cations. This describes the heat transfer from the wall, respectively. Fig. 6.8 is illustrated to 

show the effects of the Deborah number /3 and the Prandtl number Pr on Nux Re;/2 with the 

different values of the buoyancy parameter A for both cases of assisting and opposing flows, re

spectively. It can be seen from Fig. 6.8 that the local Nusselt number (or the heat transfer near 

the wall) for the assisting flow is larger than that of the opposing flow. The wall heat transfer 

increases with the increase of the Deborah number /3 for the opposing flow. The assisting flow 

behaves on the contrary, increasing /3 decreases the heat transfer near the wall, as displayed in 
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Fig. 6.8a. Furthermore, for both the assisting and opposing flows, the Nusselt number increases 

substantially by increasing the Prandtl number Pr (Fig. 6.8b). 

In Table 6.1 the values of f" (0) obtained by other different authors are compared to our 

results obtained by the homotopy analysis method and the numerical simulation for the case 

of a viscous fluid ((3 = 0) in the absence of the buoyancy force)" = 0 (i.e. no heat transfer) . 

It demonstrates an excellent agreement of our (HAM and numerical) results with the existing 

simple results in the references [145 - 147] in such a simple flow case. 

Table 6.2 gives the numerical values of the local Nusselt number Nux Re!/2 for different 

values of (3 and Pr for the non-Newtonian fluid ((3 t= 0) investigated here in presence of buoyancy 

force A = 1. The local Nusselt number Nux Re!/2 increases with an increase of Pr for both the 

assisting and opposing flows, but decreases for the assisting flow and increases for the opposing 

flow with the increase of (3. The results are consistent with the previous graphic representations. 

Table 6.3 shows a comparison of the values of 1"(0) and the local Nusselt number Nux Re;/2 

of the present numerical results with the existing numerical results presented in [146] also for 

a viscous fluid ((3 = 0) as in Table 6.1 but in the presence of the buoyancy force (A = 1) . We 

can see that both results have a good agreement. It is also noted that the magnitude of f" (0) 

decreases when Pr increases, however, the magnitude of Nux Re;/2 increases with the increase 

of Pr in both assisting and opposing flows, as we have observed in the previous graphics. 

6.5 Final remarks 

In the present study, the stagnation-point flow of an upper-convected Maxwell fluid in the 

presence of the buoyancy force due to the heat transfer is investigated by means of both the 

homotopy analysis method and the finite difference scheme with an iterative technique. The 

comparison of the solutions shows an excellent agreement of the results obtained from both the 

methods. The numerical results for various material parameters are displayed and discussed. 

For a Newtonian fluid, the results are reduced to the existing results obtained by other authors. 
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Present solutions 
ale Mahapatra and Gupta [145] Nazar et al. [147] Ishak et al. [146] 

HAM Numerical 

0.1 - 0.9694 - 0.9694 - 0.9694 -0.9694 -0.9694 

0.2 - 0.9181 - 0.9181 - 0.9181 - 0.9181 - 0.9181 

0.5 - 0.6673 - 0.6673 - 0.6673 - 0.6673 - 0.6673 

2.0 2.0175 2.0176 2.0175 2.0175 2.0175 

3.0 4.7293 4.7296 4.7294 4.7293 4.7294 

Table 6.1. Values of f" (0) for different values of ale when the buoyancy force term )"B is absent 

in case of viscous fluid (/3 = 0) . 

Assisting flow Opposing flow 

/3 Pr N R - 1/2 U x ex N R -1/2 U x ex 

0.0 1.2578 1.1953 

0.2 1.2562 1.1972 

0.5 1.2537 1.2002 

1.0 1.2503 1.2042 

1.5 1.2476 1.2073 

2.0 1.2457 1.2096 

0.5 1 1.2727 1.2196 

7 3.2973 3.2564 

20 5.5093 5.4792 

40 7.718 7.6952 

60 9.3888 9.3693 

80 10.7802 10.7644 

100 11.9945 11 .9790 

Table 6.2. Values of the local Nusselt number Nux Re;/2 for various values of /3 and Pr when 

).. = 1 = al c in both the cases of assisting and opposing flows. 
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Buoyancy assisting flow Buoyancy opposing flow 

Pr C R 1/2 f ex 
N R - 1/2 Ux ex C R 1/2 f ex 

N R - 1/2 Ux ex 

0.3645 1.0931 -0.3852 1.0293 
0. 72 

(0.3645) (1.0931) ( - 0.3852) (1.0293) 

0.1804 3.2902 - 0.1833 3.2466 
6.8 

(0 .1804) (3 .2902) ( - 0.1832) (3.2466) 

0.1175 5.6230 - 0.1183 5.5924 
20 

(0 .1175) (5 .6230) ( - 0.1183) (5.5923) 

0.0874 7.9464 - 0.0876 7.9228 
40 

(0.0873) (7.9463) ( - 0.0876) (7.9227) 

0.0729 9.7327 - 0.0731 9.7126 
60 

(0 .0729) (9.7327) ( - 0.0731) (9.7126) 

0.0641 11.2414 - 0.0643 11.2233 
80 

(0 .0640) (11.2413) ( - 0.0642) (11.2235) 

0.0577 12.5725 - 0.0578 12.5565 
100 

(0 .0578) (12 .5726) ( - 0.0579) (12.5564) 

Table 6.3. Values of 1"(0) and the local Nusselt number Nux Re;/2 for various values of P r 

when ale = 1 = ), in case of viscous fluid (f3 = 0). The values in the brackets are from Ishak et 

al. [146]. 
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Chapter 7 

Effects of MHD and mass transfer 

on the flow of a Maxwell fluid past a 

porous shrinking sheet with 

chemical reaction species 

This chapter concerns with the mass transfer of the steady two-dimensional and magnetohy

drodynamic (MHD) boundary layer flow of a Maxwell fluid past a porous shrinking sheet in 

the presence of chemical reaction. By similarity transformations, the resulting nonlinear partial 

differential equations are reduced to the system of nonlinear ordinary differential equations. 

Expressions of velocity and the concentration fields are obtained by using the homotopy analy

sis method (HAM). Convergence of the developed series solutions is explicitly analyzed. The 

influences of sundry parameters on the velocity and the concentration fields are noted and dis

cussed in detail. Values of the skin friction coefficient and the surface mass transfer for various 

interesting parameters are also tabulated. 
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7.1 Problem statement 

We investigate the steady, incompressible, MHD flow of two-dimensional upper-convected Maxwell 

(UCM) fluid over a porous shrinking sheet with suction. The sheet coincides with the plane 

y = 0 and the flow being in the region y > O. The x and y axes are taken along and perpendic

ular to the sheet, respectively (Fig. 7.1). A constant magnetic field of strength Bo acts along 

the y-axis. The induced magnetic field is negligible, which is a valid assumption on a laboratory 

scale under the assumption of small magnetic Reynolds number. External electric field is taken 

zero. The mass transfer is the flow along a sheet that contains a species A slightly soluble in 

the fluid B . Let Cw be the concentration at the sheet surface and the solubility of A in B 

and concentration of A far away from the sheet is Coo. Also the reaction of a species A with 

B be the first order homogeneous chemical reaction of rate constant k1 . The concentration of 

dissolved A is considered small enough. Through boundary layer approximations, the governing 

equations for velocity and concentration fields are: 

',1 

Fig. 7.1. Geometry of the problem and coordinate system 

8u + 8u = 0 
8x 8y , 

(7.1) 

8u 8u [ 282u 282u 82u] 82u O'B8 
U 8x + v 8y + Al U 8x2 + v 8y2 + 2uv 8x8y = 1/ 8y2 - pU, (7.2) 

(7.3) 
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(7.4) 

In above equations (u ,v) are the velocity components in the (x , y) directions , respectively, v 

is the kinematic viscosity of fluid , p is the density of the fluid, Al is the relaxation time, (J is 

the electrical conductivity of the fluid, p is the pressure, C is the concentration of the species 

of the fluid, D is the diffusion coefficient of the diffusing species in the fluid and 81 being the 

boundary layer thickness. 

The appropriate boundary conditions are 

u(x, y) = -ex, v(x,y)=-V, C(x,y) = Cw at y = 0, (7.5) 

u(x, y) ~ 0, C(x,y) ~ Coo as y ~oo, (7.6) 

in which e > 0 is the rate of shrinking and V > 0 is the suction velocity at the surface. 

To simplify the problem, we introduce the following non-dimensional quantities 

7) = ~y, u = ex!, (7)) , v = -y'vCf (7)) , (7.7) 

Using Eq. (7.7), the incompressibility condition (7.1) is satisfied automatically and Eqs . (7.2)

(7.6) reduce to 

fill - M2 f' - f,2 + f I" + (3 (2f!' I" - f 2J"') = 0, (7.8) 

¢/1 + SeJ¢' - Se,¢ = 0, (7.9) 

f = A, J' = - 1 ¢ = 1 at 7) = 0, (7.10) 

!' = 0, ¢ = 0 as 7) ~ 00, (7.11) 

where prime denotes the differentiation with respect to 7). The dimensionless suction parameter 

A, the Hartman number or the magnetic parameter M, the Deborah number (3, the Schmidt 

number Se and the chemical reaction parameter , are given by 

(3 = Ale, 
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It is worthmentioning to note that the chemical reaction parameter '"'( can be real number ('"'( > 0 

indicates destructive chemical reaction and '"'( < 0 denotes generative chemical reaction and we 

can take '"'( = 0 for a non-reactive species) [36] . 

The skin friction coefficient Cf and the surface mass transfer ¢' at the wall are defined by 

¢' (0) = (~¢) ::; 0, 
Y ,..,=0 

(7.12) 

where the wall skin friction T w is 

(au) (au 2au) 
T w = f.-L 8 - Al 2uva + v 8 . 

Y y=o x Y y=o 
(7.13) 

Using variables (7.7), we get 

(7.14) 

where Re;/2 = uwx/v is the local Reynolds number. In the next section we will present the 

analytic solution of Eqs. (7.8) - (7.11) using homotopy analysis method (HAM). 

7.2 Homotopy analysis solutions 

For the series solutions of Eqs. (7.8) and (7.9) we express the velocity distribution 1(",) and 

the concentration field ¢( "') by the set of base functions 

(7.15) 

in the form 
00 00 

1 ("') = ag,o + L L a~,n",k exp (-n",) , (7.16) 
n=Ok=O 

00 00 

¢ ("') = L L b~,n",k exp (-n",) , (7.17) 
n=O k=O 

where a~ n and b~ n are the coefficients. Based on the rule of solution expressions and the , , . 

boundary conditions (7.10) and (7.11), one can choose 
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10 (7]) = A - I + exp( - 1)), (7.18) 

(7.19) 

as our initial approximations of 1 (7]) and ¢( 1)) . Besides that we select 

(7.20) 

(7.21) 

as our auxiliary linear operators which have the following properties: 

(7.22) 

(7.23) 

in which Ci (i = 1 - 5) are the arbitrary constants. If p (E [0,1]) is an embedding parameter and 

lif, Ii", indicate the non-zero auxiliary parameters, respectively then we construct the following 

zeroth-order deformation problems 

(1 - p) Cf [!(7]iP) - 10(7])] = plifNf [?(7];p)] , (7.24) 

(1 - p) C", [¢; (7]; p) - ¢o (7])] = pli¢N", [¢; (1); p) ,? (1);P)] , (7.25) 

subject to the boundary conditions 

?(7]ip) i = A, 
1)=0 

= - I, = 0, (7.26) 
1)=00 

(7.27) 

in which the non-linear operators Nf and N", are 
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(7.29) 

Obviously, when p = 0 and p = 1, the above zeroth-order deformation Eqs. (7.24) and (7.25) 

have the solutions 

f(ryj 0) = fa (ry), 

¢(ryjO) = <Po (ry), 

f(ryj 1) = f (ry), 

¢ (ryj 1) = <P (ry) . 

Expanding f(ryjp) and ¢ (17jp) in Taylor's theorem with respect to p, we have 

00 

f(ryj p) = fa (ry) + L fm (ry) pm, 
m = l 

00 

¢ (ry j p) = <Po (ry) + L <Pm (ry) pm, 
m=l 

where 

f ( ) _~8mf(ryjp) 
m ry - 18 m m. p 

p=o p=o 

(7.30) 

(7.31) 

(7.32) 

(7.33) 

(7.34) 

Note that Eqs. (7.24) and (7.25) contain two nonzero auxiliary parameters fif and fi</J. The 

convergence of the series (7.32) and (7.33) is dependent upon fif and fi</J. Assuming that fif and 

fi</J are chosen in such a way that the series in Eqs. (7.32) and (7.33) are convergent at p = 1, 

then due to Eqs. (7.30) and (7.31) one can write 

00 

f (ry) = fa (ry) + L fm (ry) , (7.35) 
m=l 

00 

<P (ry) = <Po (ry) + L <Pm (ry) . (7.36) 
m=l 

126 



Differentiating the zeroth-order deformation Eqs. (7.24) and (7.25) m times with respect to p, 

then setting p = 0, and finally dividing by m! , the mth-order deformation problems are 

where 

and 

£1 Um (7]) - Xmfm- l (7])J = nfRtn (7]) , 

£", [cPm (7]) - XmcPm-l (7])] = I'i",n't, (7]) , 

fm (0) = f:n (0) = f:n (00) = 0, and cPm (0) = cPm (00) = 0, 

m-l 

f:::- 1 (7]) - M2 f:n- l + L [fm-l -kf~ - f:n-l -k f£] 
k=O 

m-l k 
+fJ L fm-l-k L [2fLdt' - fk _d{lf] , 

k=O 1=0 

m - l 

n't, (7]) = cP':n-l (7]) - SqcPm-l + Be L ¢'m-l-kik, 

Xm = 
0, m:::; 1 

1, m> 1 

k=O 

(7.37) 

(7.38) 

(7.39) 

(7.40) 

(7.41) 

(7.42) 

The general solutions of Eqs . (7.37) - (7.39) which contain the f:n (7]) and e~l (7]) as the special 

solutions are 

fm (7]) = f:n (77) + C1 + C2 exp (7]) + C3 exp (- 7]) , (7.43) 

(7.44) 

where 

C2 = Cs = 0, C1 = -C3 - f,~ (0) , (7.45) 

In this way, it is easy to solve the linear non-homogeneous Eqs. (7.37) and (7.38) by using 

Mathematica one after the other in the order Tn = 1, 2,3 ..... . 
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7.3 Convergence of the HAM solutions 

Our analytic solutions (7.35) and (7.36) contain the non-zero auxiliary parameters !'if and !'icp 

which determine the convergence and rate of approximation of the HAM solution [90]. To see 

the range for admissible values of !'if and Iicp of the functions 1"(0) and ¢'(O), the so-called 

Ii-curves are plotted for 15th-order of approximation in Fig. 7.2. From Fig. 7.2, it is clearly 

seen that !'i-curves have a parallel line segment that correspond to a region for admissible values 

of Iif for f is -2 .1 ::; Iif ::; - 0.2 and the range for the values of !'il/> for ¢ is - 2 ::; !'i¢ ::; - 0.3 

when A = 0.5, M = 1, f3 = 0.2 and Be = 0.5 = 'Y. It is evident from our calculations that 

the solutions series (7.35) and (7.36) converge in the whole region of 77 when !'if = !'icp = - 1. 

Table 7.1 shows the convergence of the HAM solutions for 1"(0) and -¢' (0) at different order 

of approximations when A = 1, M = 1.5, Be = 'Y = 1 and f3 = 0.2. 

0.5 

o 

-'0.5 

-2.5 

.. \ ,. 
t 
I 
J 
. \ 
\ 
l 
I 
I 
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Fig. 7.2. The Ii-curves of 1"(0) and ¢' (O) at the 15th-order of approximations. 
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order of approximation f" (0) -¢'(O) 

1 1.402500 1.233333 

5 1.719884 1.431262 

10 1.732064 1.436541 

14 1.732260 1.436517 

18 1.732268 1.436517 

20 1.732268 1.436517 

30 1.732268 1.436517 

40 1.732268 1.436517 

50 1.732268 1.436517 

60 1.732268 1.436517 

Table 7.1. Convergence of the HAM solutions for different order of approximations when A = 1, 

M = 1.5, Be = 'Y = 1 and (3 = 0.2. 

7.4 Results and discussion 

In order to see the influence of the various parameters, for example the suction parameter A, 

the Hartman number M, the Deborah number (3, the Schmidt number Be and the chemical 

reaction parameter 'Y on the velocity f' and the concentration field ¢, we have prepared Figs. 

7.3 - 7.15. The values of the skin-friction coefficient Re;/2 G/ , the surface mass transfer ¢'(O) 

and the gradient of mass transfer -¢'(ry) for several values of the emerging parameters are also 

given in Tables 7.2 and 7.3, respectively. 

Figs. 7.3-7.5 are made to show the effects ofthe suction parameter A, the Hartman number 

M and the Deborah number (3 on the velocity component 1'. Fig. 7.3 gives the variations of A 

on the velocity 1'. It is found that the magnitude of the velocity decreases when A increases. 

The change in f' is larger near the wall when compared to far away from the surface. For 

the shrinking sheet, the vorticity of the sheet is not confined within a boundary layer and the 

flow is unlikely to exist unless adequate suction on the sheet is imposed. Thus suction occurs 

when the fluid condenses on the surface. Therefore we can say that physically the suction plays 
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very important role to flow the fluid smoothly in case of shrinking sheet. The boundary layer 

thickness also decreases by increasing A. Fig. 7.4 displays the distributions of the velocity J' 
for several values of the Hartman number M. It is noted that the magnitude of the velocity 

J' decreases for large values of M. However, this change in the velocity near the surface is 

maximum and far away from the surface, this change is small and finally approaches to zero. 

As expected the boundary layer thickness is decreased when M increases. The influence of the 

Deborah number (3 on the velocity J' can be seen from Fig. 7.5. It is observed that J' has the 

similar results for the large values of (3 (Fig. 7.3) . This change in the velocity is larger in case 

of suction. The boundary layer thickness also decreases as the Deborah number (3 increases. 

Figs. 7.6 - 7.15 illustrate the variations of the suction parameter A, the Hartman number 

M, the Deborah number (3, the chemical reaction parameter T and the Schmidt number Se on 

the concentration field ¢ and the gradient of the mass transfer - ¢'(ry). Fig. 7.6 elucidates the 

effects of A on the concentration field ¢. It can be seen that ¢ is a decreasing function of A 

and the concentration boundary layer also decreases when A increases. Fig. 7.7 depicts the 

distributions of the concentration field ¢ for various values of the Hartman number M . From 

this Fig., we observe that ¢ is decreased for large values of the magnetic parameter M. The 

concentration boundary layer also decreases when M increases. Fig. 7.8 gives the effects of (3 

on the concentration field ¢ for a non-reactive species T = O. We can see that without reactive 

species the concentration field ¢ is decreased as (3 increases . 

Figs. 7.9 and 7.10 show the distributions of the concentration field ¢ for several values of 

the Deborah number (3 in the case of destructive (-y > 0) and generative (-y < 0) chemical 

reactions, respectively. It is noted from Fig. 7.9 that the concentration field ¢ is a decreasing 

function of (3. The concentration field ¢ also decreases for large values of (3 in case of generative 

chemical reaction (-y < 0) as shown in Fig. 7.10. But the magnitude of ¢ is larger in case 

of (r < 0) when compared with the case of destructive chemical reaction (r > 0) . It is also 

fOlmd that the concentration field is decreased for several values of (3 in all cases (T = 0, T > 0 

and T < 0). Fig. 7.11 displays the influence of the generative chemical reaction parameter 

(-y < 0) on ¢. It can be seen that the fluid concentration increases with an increase in the 

generative chemical reaction parameter. Fig. 7.12 illustrates the variations of the destructive 

chemical reaction parameter (T > 0) on the concentration profile ¢. From this Fig. the 
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fluid concentration ¢ has the opposite behavior for ('Y > 0) when compared with the case of 

generative chemical reaction parameter b < 0). However the change in concentration field is 

larger for the generative chemical reaction (Fig. 7.11) . The concentration boundary layer is 

decreased in case of destructive chemical reaction. The variations of the Schmidt number Be 

on the concentration field ¢ can be seen from Fig. 7.13. As expected, the concentration field ¢ 

is decreased by increasing Be. The concentration botmdary layer also decreases for large values 

of Be. Fig. 7.14 shows the effects of destructive/ generative chemical reaction parameter 'Y on 

the gradient of mass transfer -¢'(ry). We can say that initially the gradient of mass transfer 

increases for large values of destructive chemical reaction b > 0) but after ry = 2, it has reverse 

flow and finally approaches to zero, while the gradient of concentration profile has the opposite 

behavior in the case of generative chemical reaction b < 0) . Fig. 7.15 elucidates the change in 

the gradient of mass transfer -¢'(ry) for several values of (3 in case of destructive b > 0) and 

generative b < 0) chemical reactions. It is noted from this Fig. that -¢'(ry) has the similar 

behavior for large values of (3 as in Fig. 7.14. The magnitude of -¢'(ry) is smaller in Fig. 7.15 

when compared with Fig. 7.14. 

Tables 7.2 and 7.3 are prepared to show the values of the skin-friction coefficient Re!/2 Gj, 

the surface mass transfer ¢'(O) and the gradient of mass transfer ¢' (ry) for some values of A, M, 

(3, Be and 'Y (for destructive chemical reaction 'Y > 0) , respectively. The influence of A, M and (3 

on the skin friction coefficient Re!/2 Gj and surface mass transfer - ¢'(O) are given in Table 7.2 

for destructive chemical reaction 'Y = 1. From Table 7.2 we observe that, the magnitude of the 

skin friction coefficient Re;/2 Gj increases for large values of A, M and (3. It is also noted that 

the magnitude of -¢'(O) is increased by increasing A and M, while it decreases for large values 

of (3. Table 7.3 gives the values of the surface mass transfer -¢'(O) and the gradient of mass 

transfer -¢'(ry) for several values of Be and 'Y (for 'Y > 0) with A = 1, NI = 1.2 and (3 = 0.2. It 

is found that the magnitude of -<//(0) increases as both Be and 'Y increase, respectively. The 

values of the gradient of mass transfer -¢'(ry) for different values of Be and 'Y at ry = 0.2 and 

0.6 is shown. The magnitude of the gradient of mass transfer -¢'(ry) is increased as both Be 

and'Y increases with ry = 0.2 and 0.6 . But the magnitude of -¢'(ry) is larger at ry = 0.2. 
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7.5 Conclusions 

Here we investigate the mass transfer in the MHD flow of an upper-convected Maxwell (UCM) 

fluid over a porous shrinking sheet with chemical reaction species. The nonlinear system of 

ordinary differential equations is solved analytically using homotopy analysis method (HAM). 

The velocity f and the concentration field ¢ are obtained in the form of series. The effects of 

the different emerging parameters on the velocity l' and the concentration field ¢ are shown 

through some graphs. The values of the skin friction coefficient, the surface mass transfer and 

the gradient of mass transfer are also given in tabular form. From this analysis, we have made 

the following observations. 

• The velocity field l' increases by increasing A, M and {3. 

• The concentration field ¢ decreases when A, M, {3 and Be increases in both cases of 

destructive/ generative chemical reactions. 

• The concentration field ¢ has opposite results for destructive (r > 0) and generative 

(r < 0) chemical reactions. 

• The gradient of mass transfer -¢' (7]) has opposite behavior for destructive/generative 

chemical reaction when {3 is increased. 

• The magnitude of the skin friction coefficient Re~/2 Cf increases for large values of A, M 

and (3. 

• The magnitudes of the surface mass transfer -¢' (0) and the gradient of mass transfer 

-¢' (7]) are increased by increasing A, M, Be and 'Y. However the magnitude of -¢/(O) 

decreases as {3 increases. 
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A M f3 R 1/2 C ex f - ¢' (O) 

0.0 1.5 0.5 1.223676 0.860477 

0.2 1.412204 0.949625 

0.5 1.646600 1.106254 

0.7 1.765886 1.227578 

1.0 1.868705 1.438716 

0.5 1.0 0.967329 1.060457 

1.2 1.278197 1.083708 

1.5 1.646600 1.106254 

2.0 2.186934 1.131740 

3.0 3.185976 1.163358 

1.5 0.0 1.395644 1.108198 

0.2 1.494254 · 1.107432 

0.5 1.646600 1.106254 

0.7 1.751294 1.105449 

1.0 1.913348 1.104212 

2.0 2.502933 1.099823 

Table 7.2. Values of the skin friction coefficient Re;/2 Cf and the surface mass transfer -¢'(O) 

for some values of A, M and f3 with Be = 'Y = 1. 
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Be 'Y - </;'(0) 7] Be 'Y -¢'(7]) 

0.2 1.0 0.505403 0.2 0.2 1.0 0.449991 

0.7 1.103298 0.7 0.853461 

1.0 1.412999 1.0 1.018820 

1.5 1.905535 0.6 0.2 0.361776 

2.0 2.386075 0.7 0.535222 

5.0 5.254511 1.0 0.566249 

1.0 0.1 0.667048 0.2 1.0 0.2 0.645063 

0.7 1.239376 0.7 0.919963 

1.2 1.513555 1.0 1.018821 

1.7 1.731334 0.6 0.2 0.436890 

2.0 1.845883 0.7 0.543046 

3.0 2.173501 1.0 0.566249 

Table 7.3. Values of the surface mass transfer ¢' (O) and the gradient of mass transfer -</;'(7]) 

for some values of Be and'Y with A = 1, M = 1.2 and f3 = 0.2. 
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Chapter 8 

MHD stagnation-point flow of a 

micropolar fluid over stretching 

surface 

The work here is concerned with the two-dimensional magnetohydrodynamic (MHD) stagnation

point flow of an incompressible micropolar fluid over a non-linear stretching surface. The re

sulting nonlinear system of equations is solved analytically by using homotopy analysis method 

(HAM). The convergence of the obtained series solutions is explicitly discussed and given in 

the form of recurrence formulas. The influence of various pertinent parameters on the velocity, 

micro-rotation and skin-friction are shown in the tables and graphs. Comparison is also made 

with the corresponding numerical results of viscous (Kl = 0) [148J and hydrodynamic microp

olar fluid (M = 0) [149J for linear and non-linear stretching sheets. An excellent agreement is 

found. 

8.1 Problem formulation 

We consider the steady two-dimensional, incompressible flow of a micropolar fluid near a 

stagnation-point on the stretching surface in the region y > O. The plane surface is located at 

y = 0 with a fixed end at x = O. We take the non-linear stretching sheet in the XOZ plane (see 

Fig. 8.1). Two equal and opposite forces are applied along the x-axis. The surface is stretched 
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in the x-direction such that the x-component of the velocity varies non-linearly along it, i.e. 

uw(x) = cxn , where c (> 0) is constant of proportionality and n is a power index. A magnetic 

field of uniform strength Bo is applied perpendicular to the surface. The magnetic Reynolds 

number is taken to be very small enough so that the induced magnetic field can be neglected. 

It is also assumed that the ambient fluid is moved with a external flow velocity ue(x) = axn
, 

where a (> 0) is a const ant. In the absence of body couple, the equations governing the flow 

of an incompressible micropolar fluid are described by: 

'I' 

u nl;' ,= 

) 
BI 

+-- +-- 0 -+ --+ 
U 

ru = xl; ' 

Fig. 8.1. Physical model and coordinate system. 

V·V=o, 

D V 
P Dt = - V P + (I-" + k) V2V + k V x N + J x B , 

pJ.D N = / 1 V (V· N ) - / 1 V X (V x N) + kV x V - 2kN, 
Dt 

(8.1) 

(8.2) 

(8.3) 

where D / Dt is the material derivative, V and N represent the velocity and micro-rotation 

vectors, I-" is the dynamic viscosity, p and j denot e the density and the gyrat ion parameters of 

the fluid, / 1 and k are the spin gradient viscosity and vortex viscosity, r espectively. 

The equations governing the boundary layer flow are: 

(8.4) 
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OU OU dUe ( k ) o2u k oN crB5 u-+v-=ue- + v +- -+--+--(ue-u) , 
ox oy dx P oy2 P oy P 

(8.5) 

u oN + v aN = /1 a
2
N _!:.- (2N + au ) 

ox oy pj ay2 pj ay' 
(8.6) 

where U and v are the components of the velocity in the x- and y-directions, respectively, v 

is the kinematic viscosity and cr is the electrical conductivity of the fluid . Here /1 is given by 

[149) 

/1 = (tL + ~) j (8.7) 

and j = v / cx1- n / 2 is the reference length. As pointed out by Ahmadi [150], relation (8 .7) is 

invoked to allow Eqs. (8.4) - (8.6) to predict the correct behavior in the limiting case when 

microstructure effects become negligible and in this case micro-rotation N reduces to the angular 

velocity. 

The boundary conditions of the problem are given by 

U (x, 0) 'I.Lw(X) = cxn
, 

U (x, y) -? ue(x ) = axn
, 

au 
v(x,O) = 0, N (x, 0) = -ma oy ' 

N(x, y) -? 0 as y -? 00, (8.8) 

in which ma is a const ant and 0 :::; m a :::; 1. T he case ma = 0, which indicat es N = 0 at t he 

wall, represents concentrated particle flows in which the micro elements close to the wall surface 

are unable to rotate [151). This case is also known as the strong concentration of mircoelements 

[152]. The case ma = ~ indicates the vanishing of anti-symmetric part of the stress tensor and 

denotes weak concentration [150] of mircoelements. We shall consider here both cases of rna = 0 

and ma = ~. However, it can easily be shown that for ma = ~ the governing equations can be 

reduced to the classical problem of steady boundary layer flow of a viscous incompressible fluid 

near the plane wall. However the most common boundary condition used in the literature is 

the vanishing of the spin on the boundary, so-called strong interaction. The opposite extreme, 

the weak interaction, is the vanishing of the momentum stress on the boundary [152) . A third, 

or compromise in the vanishing of a linear combination of spin, shearing stress and couple 

stress, involving some friction coefficients, a particular case of which was the condition used by 

Peddieson [153]. 
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Defining 

7] 
ve(n+1) n-l N nve(n+1) l!.=l ( ) 

2v x 2 y, = ex 2v x 2 9 7] , 

u = cxn f'(7]), vev(n + 1) l!.=l [f() n - 1 f'( )] v = - X 2 7] + --7] 7] 
2 n+1 

(8.9) 

the incompressibility condition (8.1) is automatically satisfied and Eqs.(8 .5) and (8.6) and 

boundary conditions (8.8) become 

(1 + Kd f'" + M2 (~ - f') + f!" + ~ (a2 

- /,2) + K1g' = 0, 
e n + 1 e2 

(1 Kl) II f' 3n - 1 f' 2Kl (2 f") - 0 +- 9 + 9 --- g- -- g+ -, 
2 n+1 n+1 

f 

/' 

0, 
a 
e' 

f ' = 1, f" t 0 9 = -rna a 7] = , 

g = O as 7] ~ 00, 

(8.10) 

(8.11) 

(8.12) 

where the primes indicate differentiation with respect to 77 and the local Hartman number M 

and the material parameter Kl are 

M2 = 2B50' 
ep(n + 1)xn - 1 ' 

(8.13) 

For the problem under consideration, the wall skin friction T w is 

T w = [(/-£ + k) ~u + kN] . 
y y=o 

(8.14) 

Using uw(x) = exn as a characteristic velocity, the skin friction coefficient Cf can be defined as 

C = Tw 
f pu~' 

(8.15) 

Substitution of Eq. (8 .9) into Eq. (8 .15) yields 

(8.16) 
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where Rex = 2uw x /v(n + 1) is the local Reynolds number. 

For mo = 1/2, we can take 

(8.17) 

and the Eqs. (8.10) and (8.11) can be now reduced to a single equation 

( 1 + Kl ) fill + M2 ( !!:. - I') + f 1" + ~ (a2 
- f12) = O. (8.18) 

2 c n+ 1 c2 

The boundary conditions now are 

1(0) = 0, 1'(0) = I, 1'(00) = !!:.. 
c 

(8.19) 

Writing 

(8.20) 

the resulting problem takes the following form 

hili + M2 (!!:. _ hi) + hh" + ~ (a2 
_ h12) = 0, 

c n+ 1 c2 
(8.21) 

h(O) = 0, h'(O) = I, h'(oo) = !!:. 
c 

(8.22) 

and Eq. (8.16) now is 

(8.23) 

Note that in above equation prime indicates the differentiation with respect to z. In the next 

section, we will find the series solution of Eqs. (8 .10) - (8 .12) by homotopy analysis method 

(HAM) . 

8.2 HAM solutions for f(T)) and g(T)) 

For the analytic solutions using HAM, the velocity 1('T/) and the micro-rotation velocity g(77) 

distributions can be expressed by the set of base functions 
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{ TJk exp ( -nTJ) I k 2: 0, n 2: 0 } (8.24) 

in the form 
00 00 00 

f (TJ) = ag,o + L L L a~,nTJk exp (-nTJ), (8.25) 
m=ln=Ok=O 

00 00 00 

g (TJ) = bg,o + :E :E:E b~,nTJk exp (-nTJ), (8.26) 
m=ln=Ok=O 

where a~~,n and b~,n are the coefficients. Based on the rule of solution expressions by (8.25), 

(8.26) and the boundary conditions (8.12) , we choose 

a a 
fo (TJ) = (1 - - )(1 - exp( - TJ)) + - TJ, 

c c 
(8.27) 

(8.28) 

as our initial approximations of f(77) and g(TJ). We select the auxiliary linear operators £f (1) 

and £g (1) as 

(8.29) 

(8.30) 

which have the following properties: 

(8.31) 

(8.32) 

where Ci, (i = 1 - 5) are the arbitrary constants . If p E [0 , 1) is an embedding parameter and 

nf, ng are the non-zero auxiliary parameters, respectively then the zeroth-order deformation 

problems are 

(8.33) 

[(O;p) = 0, ? (O;p) = I, 
-;, a f (oo;p) = -, 

c 
(8.34) 
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(1- p) £g [9(1]iP) - go (1])] = ptigNg [f(1]iP), 9(1]iP)] , (8.35) 

9(OiP) = -mol" (OiP) , 9(OOiP) = 0, (8.36) 

in which the non-linear operators Nf and Ng are given as 

(1 + KI) 8
3 
[(1]iP) + Kl 89(1]iP) + M2 (:: _ 8[(1]iP)) 
81]3 81] C 81] 

2n a f~(') 8 f (1]iP) 2n of (1]iP) 2 2~ (~)2 +---+ 1] P ---n + 1 c2 ' 81]2 n + 1 01] , 
(8.37) 

= (l+Kl) 8
2
g(1]iP) _ 2Kl (2~(' )+02[(TJiP)) 

2 81]2 n + 1 9 1],P 81]2 

f~( . ) 89(1]iP) 3n - 1 8[(TJiP)~( . ) 
+ 1],P 81] - n+ 1 01] g 1],p . (8.38) 

For P = 0 and P = 1, the above zeroth-order equations (8.33) and (8.35) have the solutions 

[(1]i 0) = fa (77), 9(1]i O) = go (1]), 

and 

[(1]i 1) = f (1]), 9(1]i 1) = 9 (1]) . 

Expanding [(1]) and g(1]) in Taylor series with respect to' P, we have 

where 

00 

[(1]iP) = fa (1]) + L fm (1]) pm, 
m=l 

00 

9(TJiP) = go (1]) + L gm (77) pm, 

f ( ) - ~ 8
m[(1]iP) 

m 77- 18 m m. P p=o 

m=l 

( ) _ ~ 8m
9(1]iP) I 

gm1]- 18 m ' 
m. p p=o 

(8.39) 

(8.40) 

(8.41) 

(8.42) 

(8.43) 

respectively. Equations. (8 .33) and (8.35) contain the auxiliary parameters tif and tig are 

chosen in such a way that these series are convergent at p = 1, we have, using Eq. (8.39), the 

148 



solution series of the form 
00 

I ("l) = 10 ("l) + L im ("l) , (8.44) 
m=l 

00 

9 ("l) = go ("l) + L gm ("l) . (8.45) 
m=l 

Differentiating the zeroth-order equations (8.33) - (8.36) m times with respect to p, then setting 

p = 0, and finally dividing by m! we have the mth-order deformation problems as 

.cf [1m ("l) - Xm/m-l ("l)] = n/Rfn (17) , (8.46) 

1m (0) = l!.n (0) = l!.n (00) = 0, (8.47) 

(8.48) 

gm (0) - moJ"(O) = gm (00) = 0, (8.49) 

where 

nfn ("l) = (1 + K 1) 1:::-1 + M2 (~ (1 - Xm) - l!.n- l) + K1g:n-l (8.50) 

(1 ) 2n a
2 

mL-l [ 1m-I- kit 1 + -Xm --- + , 
n + 1 c2 

2n /' I' 
k=O - n+l m-l-k k 

and 

Xm= 
0, m::; 1, 

(8.52) 
1, m> 1. 

Let I! ("l) and g:n ("l) denote the special solutions of equations (8.46) and (8.48) and using the 

boundary conditions (8.47) and (8.49) one can write the general solutions given by 

1m ("l) = I~ ("l) + C1 + C2 exp ("l) + C3 exp (-"l), (8.53) 
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gm (7]) = g-:n (7]) + G4 exp (7]) + Gs exp (-7]) , (8.54) 

where the integral constants Gi, (i = 1, 2 ... 5) are determined by the boundary conditions (8.47) 

and (8.49). It is noted that to satisfy the boundary conditions at infinity, we must put G2 and 

G4 equal to zero. 

In this way, it is easy to solve the linear non-homogeneous Eqs. (8.46) and (8.48) by using 

the symbolic software Mathematica one after the other in the order m = 1,2,3 ... .. . 

8.3 Convergence of the HAM solutions 

The series solutions of the functions f and 9 are given in Eqs. (8.44) and (8.45). The convergence 

of these series and rate of approximation for homotopy analysis method strongly depends upon 

the value of the auxiliary parameters lif and lig. To see the range of admissible values of lif and 

lig, the Ii-curves are plotted in Fig. 8.2(a, b) for the 15th-order of approximation. In Fig. 8.2(a) 

lif-curve for f" (0) is plotted when Kl = 1, M = 0.5, n = 1, rna = 0.5 and ale = 0.5. The 

admissible range of lif for the stated value of the parameters is - 0.8 ~ lif ~ - 0.2. For g' (0), the 

admissible values of lig are given in Fig. 8.2(b) . The range for values of lig is - 0.8 ~ lig ~ - O.I. 

Here, it is noted that the series solutions in Eqs. (8.44) and (8.45) converge for all values of the 

parameters in the whole region of 7] when lif = lig = Ii = - 0.5. 
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Fig. 8.2: The Ii-curves of j"(0) and g'(O) at the 15th-order of approximations. 
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8.4 Results and discussion 

In this section, Figs. 8.3 - 8.6 have been made to analyze the effects of non-linear stretching 

parameter n, the material parameter or the vortex viscosity K 1 , the magnetic parameter M 

and the ratio of the external flow rate to the stretching rate al e on the velocity component f' 

and the micro-rotation velocity g. The numerical values for the wall shear stress (skin friction 

coefficient) Cj Re~/2 in Eq. (8.16) (when rna = 0) and Eq. (8.23) (when rna = 1/2) for some 

different values of the physical parameters n, K 1 , M and ale in case of viscous (Kl = 0) and 

micropolar fluids for linear (uw = ex) and non-linear (uw = cxn ) stretching velocity are given in 

Tables 8.1 - 8.5. The comparison of the obtained results with the existing results is also made 

for viscous (Kl = 0) and hydrodynamic micropolar (M = 0) fluids. 

Fig. 8.3 shows the effects of non-linear stretching parameter or the power index of stretching 

rate n on the velocity fields f' and microrotation velocity 9 respectively. It is noted from 

Fig. 8.3(a) that the velocities f' are decreased when the power index n increases and keeping 

M = 0.2, ale = 0.1, Kl = 1, rna = 0.5 fixed . The boundary layer thickness in case of f' 
increases as n increases . Since increase in the non-linearity causes the increase in the friction of 

the wall with the fluid at TJ = 0 therefore the boundary layer thickness increases automatically. 

The effects of the power index of stretching rate n on the microrotation velocity 9 is exactly 

the same as that of f ' (see from Fig. 8.3(b)). The effects of vortex-viscosity parameter Kl on 

the velocity fields f'and microrotation velocity 9 are depicted in Fig. 8.4. From Fig. 8.4(a) , 

it is observed that the velocity I' increases by increasing micropolar effects. The velocity in 

viscous fluid is smaller when compared with that of micropolar fluid . It is also clear from Fig. 

8.4(b) that the microrotation velocity 9 increases with an increase in the vortex-viscosity K 1. As 

Kl increases, the decrease in viscosity is responsible to decrease I' and g. The boundary layer 

thickness increases as Kl increases in case of the velocity 1'. Fig. 8.5 depicts the influences of 

the magnetic parameter M on the fluid velocity f' and the angular velocity of the microrotation 

9 when n = 5, ale = 0.1, Kl = 1 and rna = 0.5. It is a known fact that the application of a 

uniform magnetic field normal to the flow direction gives rise to a force called Lorentz force . 

This force has tendency to slow down the velocity of the fluid, as in Fig. 8.5(a). It can be 

seen from Fig. 8.5 (b) that the angular velocity of the microrotation is increased by increasing 

the magnetic parameter M. It is seen from Fig. 8.6(a,b) that for ale> 1, the flow possesses 
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boundary layer structure. It is further observed that the boundary layer thickness of the flow 

decreases with an increase in al c. Since for fixed value of c, corresponding to the stretching of 

the surface, increase in a in relation to c such as (al c) implies increasing in straining motion 

near the stagnation region resulting in increased acceleration of the external stream, and this 

leads to the thinning of boundary layer with an increase in al c. Furthermore it is seen from 

Fig. 8.6(a) that when alc < 1, the flow has an inverted boundary layer structure. It results 

from the fact that when al c < 1, the stretching velocity cxn of the surface exceeds the velocity 

axn of the external stream. 

Tables 8.1 and 8.2 show the comparison of the values of the skin-friction coefficient obtained 

by homotopy-Pade approximation with the numerical results by Nazar et al. [150J for viscous 

fluid (Kl = 0 and 111 = 0), the micropolar fluid (Kl =1= 0 and 111 = 0) and linear stretching 

velocity (rna = 0 and rna = 1/2) in the absence of magnetic field. It is found that for al c < 1, the 

skin friction coefficient Of Re;/2 decreases as the vortex-viscosity Kl increases. For al c = 1, the 

values of the skin friction coefficient Of Re;/2 are zero for all values of Kl and, for alc > 1 the 

skin friction coefficient increases with the increase in K. These tables show excellent agreement 

with the existing numerical results in reference [149J. 

Table 8.3 is made in order to compare the present results of non-linear stretching sheet with 

the obtained numerical results of reference [148J for hydrodynamic viscous fluid in the absence 

of stagnation-point flow (Kl = j = 11 = 111 = a.c = 0) . The magnitude of the skin-friction at 

the wall - f" (0) increases when a power index n of stretching velocity increases and at n = 10 

the values of - f" (0) = 1.234875 is in good agreement with the references [148J and [154J. By 

varying n, an excellent agreement is noted between present results obtained by homotopy-Pade 

approximation and the existing numerical results of reference [i48]. 

Table 8.4 gives the values of the skin friction coefficient Of Re;/2 for different values of n 

in the case of hydrodynamic micropolar fluid by considering alc = 0.1, rna = 0 and alc = 0.1, 

rna = 1/2. The magnitude of the skin-friction coefficient Of Re;/2 increases with the increase 

in n both for rna = 0 and rna = 1/2. However this increment is larger in case of rna = 0 when 

compared with the case rna = 1/2. Table 8.5 is prepared to give the values of skin-friction 

coefficient Of Re;/2 by keeping alc = 0.1 fixed for micropolar fluid (K = 1) and varying the 

values of nand 111 in case of rna = 0 and rna = 1/2, respectively. As expected, the magnitude 
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of the skin-friction coefficient C f Re;/2 increases by increasing the power index of the stretching 

rate n and the magnetic parameter M for both the cases rna = 0 and rna = 1/2. It is also found 

that this change in the magnitude of the skin friction coefficient is larger in case of rna = O. 

8 .5 Final remarks 

In this chapter, the series solutions of highly non-linear problem describing the MHD flow of 

a micropolar fluid over a non-linear stretching surface is developed. A powerful easy to use 

technique is employed in obtaining the series solutions. The recurrence formulas which are not 

easy to obtain are presented. Finally, the flow quantities have been discussed through graphs 

and tables. The physical results are interesting. An excellent agreement of the present results 

with existing limiting results is shown. 
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Fig. 8.3(a,b): Influence of non-linear stretching parameter n on the velocity component j' and 

the micro-rotation velocity g. 
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ale Kl = 0 Kl = 1 Kl =2 

Ref. [149] Present Results Ref. [149] Present Results Ref. [149] Present Results 

0.01 -0.9980 - 0.99802 - 1.3653 - 1.36525 - 1.6183 - 1.61814 

0.02 - 0.9958 - 0.99578 - 1.3622 - 1.36222 - 1.6147 - 1.61454 

0.05 - 0.9876 - 0.98757 - 1.3512 - 1.35119 -1.6015 - 1.60146 

0.10 - 0.9694 - 0.96938 - 1.3268 -1.32681 -1.5726 - 1.57263 

0.20 - 0.9181 - 0.91810 - 1.2579 - 1.25792 -1.4914 - 1.49136 

0.50 -0.6673 - 0.66732 - 0.9175 - 0.91750 - 1.0893 -1.08934 

1.00 0.0000 0.00000 0.0000 0.00000 0.0000 0.00000 

2.00 2.0175 2.01750 2.8062 2.8063 3.3595 3.35941 

3.00 4.7296 4.72928 6.6024 6.6023 7.9345 7.9344 

Table 8.1. Comparison of homotopy-Pade approximations with the results of Nazar et al. [149] 

when n = 1, M = 0, rna = O. 

ale Kl = 0 Kl = 1 Kl =2 

Ref. [149] Present Results Ref. [149] Present Results Ref. [149] Present Results 

0.01 - 0.9980 - 0.99802 -1.2224 - 1.22232 - 1.4116 - 1.41142 

0.02 - 0.9958 - 0.99578 -1.2196 -1.21958 - 1.4084 - 1.40825 

0.05 - 0.9876 - 0.98757 -1.2095 -1.20953 -1.3967 - 1.39665 

0.10 -0.9694 -0.96938 -1.1872 - 1.18725 -1.3709 -1.37092 

0.20 - 0.9181 - 0.91810 - 1.1244 - 1.12445 - 1.2984 - 1.29840 

0.50 - 0.6673 - 0.66732 -0.8172 - 0.81722 - 0.9437 - 0.94365 

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2.00 2.0175 2.01750 2.4710 2.47095 2.8532 2.85321 

3.00 4.7296 4.72928 5.7925 5.79216 6.6885 6.6882 

Table 8.2. Comparison of homotopy-Pade approximations [20,20] with the results of Nazar et 

al. [149] when n = 1, M = 0, rna = 1/ 2. 
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n Cortell [148] HAM solution 

0.0 0.627547 0.627547 

0.2 0.766758 0.766837 

0.5 0.889477 0.889544 

0.75 0.953786 0.953956 

1.0 1.0 1.0 

1.5 1.061587 1.061601 

3.0 1.148588 1.148593 

7. 0 1.216847 1.216851 

10.0 1.234875 1.234874 

20.0 1.257418 1.257423 

100.0 1.276768 1.276773 

Table 8.3. Values of the wall shear stress - 1"(0) when Kl = 1'1 = j = 0 and M = alc = o. 

n rna = 0 rna = 1/2 

0.0 -0.768871 -0.714672 

0.5 -1.15945 -1.04908 

0.75 - 1.25676 -1.12981 

1.0 -1.32681 -1.18725 

1.5 -1.42134 -1.26380 

3.0 -1.55692 -1.37142 

5.0 - 1.62982 - 1.42799 

7.0 - 1.66581 - 1.45551 

10.0 -1.69508 -1.47768 

20.0 - 1.73212 -1.50538 

50.0 - 1.75606 - 1.52306 

100 .0 - 1.76436 - 1.52914 

Table 8.4. Results obtained by the homotopy-Pade approximations [20 ,20] for different values 

of the non-linear stretching parameter n when Kl = 1, alc = 0.1 and M = O. 
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n M rna =0 rna = 1/2 n M rna =0 ma = 1/2 

0.2 -1.35984 -1.21681 0.2 -1.72041 -1.49982 

0.5 -1.50982 -1.35038 0.5 -1.84454 -1.60824 
1 10 

0.7 -1.65704 -1.48075 0.7 -1.97308 -1.72032 

1 -1.93058 -1.72147 1 -2.21773 -1.93321 

0.2 -1.45175 -1.29087 0.2 -1.75699 -1.52703 

0.5 -1.59398 -1.41705 0.5 -1.87925 -1.63345 
1.5 20 

0.7 -1.73593 -1.54234 0.7 -2.00631 -1.74394 

1 -2.00139 - 1.77538 1 -2.24859 -1.95436 

0.2 -1.58444 -1.39573 0.2 - 1.78065 -1.54401 

0.5 - 1.71685 - 1.51242 0.5 - 1.90183 - 1.64958 
3 50 

0.7 -1.81574 -1.63088 0.7 -2.02801 -1.75907 

1 -2 .10634 -1.85353 1 -2.26887 -1.96794 

0.2 -1.65610 -1.45109 0.2 -1.78886 -1.55038 

0.5 -1.78390 -1.56325 0.5 -1.90968 -1.65514 
5 100 

0.7 -1.91531 -1.67826 0.7 -2.03558 -1.76428 

1 -2.16448 -1.89565 1 -2.27598 -1.97262 

Table 8.5 :. Results obtained by the homotopy-Pade approximations [20,20] for different values 

of the non-linear stretching parameter n when M = 0.2,0.5,0.7,1, ale = 0.1 and ](1 = 1. 
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Chapter 9 

Mixed convection flow of a 

micropolar fluid bounded by a 

nonlinear stretching sheet 

This chapter aims to investigate the steady two-dimensional mixed convection flow of a mi

cropolar fluid over a non-linear stretching sheet. The governing non-linear partial differential 

equations are transformed into coupled non-linear ordinary differential equations. The series so

lution of the non-linear problem is obtained by utilizing the homotopy analysis method (HAM). 

The convergence of the obtained series solutions is carefully checked. The physical significance 

of interesting parameters on the flow and the thermal fields are shown through graphs and 

discussed in detail. The values of wall shear stress, couple wall stress and the local Nusselt 

number are tabulated. Comparison is also made with the corresponding results of viscous fluid 

with no mixed convection and an excellent agreement is noted. 

9.1 Flow analysis 

Consider the steady two-dimensional, incompressible flow of a micropolar fluid over a non

linear stretching surface in the region y > O. The geometry of the problem is shown in Fig. 

9.1. Two equal and opposite forces are applied along the x-axis so that the wall is stretched 

non-linearly by keeping the origin fixed at y = O. The non-linear variation of the x-component 
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of the velocity is U w = cxn , C (> 0) is constant of proportionality and n is a power index. The 

gravitational acceleration, ge, acts in the downward direction. The temperature of the outside 

surface of the sheet is maintained at a constant temperature of Tw and far away from the sheet 

temperature is Too, where Tw > Too. The temperature difference between the body surface 

and the surrounding micropolar fluid generates a buoyancy force, which results in an upward 

convective flow. Neglecting viscous dissipation, the boundary layer equations for micropolar 

fluid are given in the following form: 

Fig. 9.1. Physical model and coordinate system 

ou ov _ 0 
ox + oy - , 

ou ou ( k) 02u k oN 
u ox +voy = v+p oy2 +p oy +ge(3T(T-Too ) , 

u8N +voN = "11 8
2
N _ k (2N + ou) 

ox oy pj oy2 pj oy' 

oT oT a 02 T 
u-+v-=---

Ox 8y pCp oy2 . 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

In above equations 1£ and v indicate the velocity components in the x- and y-directions, respec

tively, N the micro-rotation or angular velocity whose direction of rotation is in the xy-plane, 

p the fluid density, v the fluid kinematic viscosity, (3T the thermal expansion coefficient, a 
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the thermal diffusivity, Cp the specific heat, T the temperature and j, 'Yl and k the respective 

microinertial per unit mass, spin gradient viscosity and vortex viscosity. 

The above partial differential equations subject to the following conditions: 

u exn
, v=O, 

au 
N = - ma ay , T = Tw , at y = 0, 

U ---7 0, N ---7 0, as Y ---7 00. (9.5) 

According to the study of reference [149J, the definition of 'Yl is 

(9.6) 

where ma (0 ::; ma ::; 1) is a constant, f.L the fluid dynamic viscosity, and j = v/ex1
-

n / 2 the 

reference length. Also ma = ° corresponds to N = ° indicating the concentrated particle flows 

in which the micro elements close to the wall surface are unable to rotate. This case is also 

known as the strong concentration of mircoelements. For ma = 1/2, one obtains the weak 

concentration of mircoelements. This value of ma indicates the vanishing of anti-symmetric 

part of the stress tensor. Here both cases of ma = ° and ma = 1/2 are considered. As given by 

[149], ma = 1 is used for the modelling of turbulent boundary layer flow. However, it can easily 

be shown that for ma = 1/2 the governing equations can be reduced to the classical problem 

of steady boundary layer flow of a viscous incompressible fluid near the plane wall. 

To write the flow equations in simpler form, the following non-dimensional quantities are 

introduced: 

Tl = Ve(n +1) n;: l N = nve(n +1 ) ";:1 () ()() = T - Too 
./ 2v X y, ex 2v x 9 'T] , 'T] Tw - Too ' 

. jev(n + 1) n - 1 [f() n - 1 f'( )] 
V = - y 2 x 2 'T] + n + 1'T] 'T] . (9.7) 

Through Eq. (9.7) , the continuity equation (9 .1) is identically satisfied and Eqs. (9 .2) - (9 .5) 

give 

(1 Kl) II f I 3n - 1 l' 2Kl (2 1") - ° +- 9 + 9 --- g --- g+ -, 
2 n+1 n+1 
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e" + Pr fe' = 0, (9.10) 

f 0, 1'=1, g =-mof"(O), e =l at ry = O, 

f ' --+ 0 , 9 --+ 0, as ry --+ 00. (9.11) 

In above equations the prime signifies the differentiation with respect to "7, Kl = k/ J.L(> 0) the 

vortex viscosity or the material parameter, Pr = J.Lcp/a the Prandtl number and the constant 

A (~ 0) is the buoyancy or mixed convection parameter defined by 

(9.12) 

where Grx = gci3T (Tw - Too) x 3/v 2 is the local Crashof number and Rex = uwx/v is the local 

Reynolds number. 

The physical quantities of interest are the skin friction coefficient Cf and the local Nusselt 

number Nux, which are defined as 

in which the wall shear stress T wand the heat transfer qw from the plate are 

T w = [(J.L + k) ~u + kN] , 
Y y=o 

In non-dimensional form, the above quantities reduce to 

aT 
qw = -a-a . 

y y=o 

(9.13) 

(9.14) 

(9.15) 

The next section contains the series solutions of Eqs. (9 .8) - (9.11) by employing homotopy 

analysis method (HAM). 
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9.2 Homotopy analysis solutions 

For the series solutions using HAM, it is obvious that the velocity profiles f(ry), g(ry) and the 

temperature field e( ry) can be expressed by the set of base functions 

(9.16) 

in the form 
00 00 

f (ry) = ag,o + L L a':,.,nryk exp (- nry), (9.17) 
n=Ok=O 
00 00 

9 (ry) = bg,o + L L b':,.,nryk exp (- nry), (9.18) 
n=Ok=O 

00 00 

e (7]) = L L c':,.,n7]k exp (- nry) , (9.19) 
n=Ok=O 

where a~ n' b~ n and c~ n are the coefficients. Based on the rule of solution expressions by 
" , 

Eqs. (9.11) and (9 .17) - (9.19), it is straightforward to choose 

fo (ry) = 1 - exp( -ry) , (9.20) 

gO(ry) = rno exp( -ry), (9.21) 

eO(7]) = exp(- ry) (9.22) 

as our initial approximations of f(7]), g(7]) and e(7]). Besides that we select the auxiliary linear 

operators £ f (1) and £g,O (1) as 

(9.23) 

cf2f 
£g,O (1) = d7]2 - f, (9.24) 

satisfying the following properties: 

(9.25) 
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.cg,o [G4 exp(1'/) + Gs exp( -1'/)] = ° (9.26) 

in which Gi, i = 1- 5 are the arbitrary constants. If P (E [0,1]) is an embedding parameter and 

lif , lig and fio indicate the embedding and non-zero auxiliary parameters, respectively then the 

zeroth-order deformation problems are of the following form 

(1 - p).cf [f(1'/iP) - fo (17)] = plifNf [f(1'/iP) , :9(1'/iP) ,'0 (17iP)] , (9.27) 

(1 - p).cg [9(1'/iP) - 90 (1'/)] = pligNg [!(1'/iP) , 9(1'/iP)] , (9.28) 

(1 - p).co ['0 (1'/iP) - eo (1'/)] = plioNo ['0 (1'/iP) , f(17iP)] , (9.29) 

subject to the boundary conditions 

!(OiP) = 0, l' (OiP) = 1, 9(OiP) = - mol" (OiP) B (OiP) = 1, (9.30) 

l' (OOiP) = 0, 9(OOiP) = 0, B(OOiP) = 0, (9.31) 

in which we define the non-linear operators N f , N g and No as 

(9.32) 

N: [f~( ) ~ ()] (I+Kl) 8
2
g(1'/iP) _ 2Kl (2~ (' ) _8

2
! (1'/iP)) 

9 77i P ,9 17i P 2 81'/2 n + 1 9 1'/ , P 81'/2 

f~( . ) 8g(1'/iP) 3n - 1 8f(1'/iP)~( . ) 
+ 1'/, P 81'/ - n + 1 8 1'/ 9 1'/ ,P , (9.33) 

(9.34) 

For P = ° and P = 1, the above zeroth-order equations (9 .27) - (9.29) have the solutions 

!(1'/i 0) = fo (1'/) , :9(1'/i 0) = 90 (1'/), B (1'/ i 0) = eo (1'/) , (9.35) 
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and 

(9.36) 

When p increases from 0 to 1 then 1 (7]; p), 9 (7]; p) and e (7]; p) vary from fo (77), 90 (7]) and Bo (7]) 

to f (7]), 9 (7]) and B (7]). Expanding 1, 9 and e in Taylor series with respect to p, we have 

00 

1 (7]; p) = fo (7]) + L fm (7]) pm, (9.37) 
m=l 

00 

g(7];p) = 90 (7]) + L gm (7]) pm, (9.38) 
m=l 

00 

e (7]; p) = Bo (7]) + L Bm (77) pm, (9.39) 
m=l 

in which 

p=o p=o 
(9.40) 

where lif, lig and lio are chosen in such a way that these series are convergent at p = 1. Therefore 

we have through Eq. (9.35) that 

00 

f (7]) = fo (7]) + L fm (7]) , (9.41) 
m=l 

00 

9 (7]) = 90 (7]) + L gm (7]) , (9.42) 
m=l 

00 

B (7]) = Bo (7]) + L Bm (7]) . (9.43) 
m = l 

Differentiating the zeroth-order equations (9.27) - (9.29) m times with respect to p, then setting 

p = 0, and finally dividing by m! we have the mth-order deformation equations 

(9.44) 

(9.45) 
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(9.46) 

with the following bOlmdary conditions 

1m (0) = f:n (0) = gm (0) - moJ"(O) = em (0) = 0, (9.47) 

(9.48) 

where 

nt" (TJ) = (1 + K1 ) 1:::- 1 + K1g:n- l + n! 1 >,em - 1 + I: [1m- l -kf~ - n 2: 1 f:n - l- d£] , (9.49) 
k=O 

m-l 

n~ (TJ) = e~_ l + Pr L e'm- l- kik , 
k=O 

and 

0, m ~ 1, 
Xm = 

1, m > 1. 

The general solutions of equations (9.44) - (9.48) are given by 

1m (TJ) = 1~ (TJ) + C1 + C2 exp (TJ) + C3 exp (- TJ) , 

gm (TJ) g;" (TJ) + C4 exp (TJ) + C5 exp (- TJ) , 

em (TJ) = e~" (TJ) + C6 exp (TJ) + C7 exp (- 7]) , 

(9.51) 

(9.52) 

(9.53) 

in which f:n (TJ), g~" (TJ) and e;,. (TJ) denote the special solutions of Eqs. (9 .44) - (9.46), and 

the integral constants Ci, (i = 1,2 ... 7) are determined by the boundary conditions (9.47) and 

(9.48) . In order to satisfy the boundary conditions at infinity, we must put C2 , C4 and C6 equal 

to zero. 

In this way, it is easy to solve the linear non-homogeneous Eqs. (9.44) - (9.46) by using 

Mathematica one after the other in the order m = 1,2, 3 ... .. . 
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9.3 Convergence of the derived solutions 

The total explicit analytic series solutions of the functions J, 9 and e are given in Eqs. (9.41)

(9.43). The convergence of these series and rate of the approximation for homotopy analysis 

method (HAM) strongly depends upon the value of the auxiliary parameters tif, tig and tie, 

as pointed out by Liao [90]. In order to find the range of admissible values of tif , tig and tie, 

the ti-curves are plotted in Fig. 9.2 (a,b) for the 15th-order of approximation at different values 

of emerging parameters K1 , ma, n, A and Pr. In Fig. 9.2(a) for j"(0), g'(O) and 8'(0) the 

ti-curves are plotted for Kl = ma = 0.2, n = 0.5, A = 0.2 and Pr = 0.2. For simplicity we 

can put tif = tig = tie = ti, so that the range for values of ti for J is - 1.6 :::; ti :::; - 0.2, for 9 

is - 1.7 :::; ti :::; - 0.1 and similarly for 8 is - 1.9 :::; ti :::; - 0.2. Fig. 9.2(b) shows the range for 

values of ti when Kl = ma = 0.5, n = 1.5, A = 1 and Pr = 0.5. From this Fig. the ranges 

for suitable values of ti for J are - 1.3 :::; ti :::; - 0.2, for 9 are - 1.3 :::; ti :::; - 0.1 and for e are 

- 1.65 :::; ti :::; - 0. 2, respectively. From Fig. l(a,b) we can say that the range of admissible 

values of ti depends upon the values of involving physical parameters of the flow problem. It is 

also evident from this Fig. that the series in Eqs. (9.41) - (9.43) converge in the whole region of 

r; when ti = - 0.8. Table 9.1 is prepared to show the convergence of the series solutions given in 

Eqs. (9.41) - (9.43) for different order of approximations using homotopy-Pade approximation. 

Homotopy-Pade approximation helps us to obtain the fast convergent of the series solutions. 
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Fig. 9.2. The n-curves of f" (0), g' (0) and e' (0) at 15th-order of approximations. 

171 



Homotopy-Pade approximations [m, m] - /,,(0) - 9'(0) - B'(O} 

[1,1] 0.92817 0.19007 0.35855 

[5,5] 0.93689 0.19164 0.14812 

[10,10] 0.93597 0.19153 0.13126 

[15, 15] 0.93450 0.19148 0.13093 

[18,18] 0.93456 0.19147 0.13010 

[20,20] 0.93454 0.19147 0.13009 

[24,24] 0.93454 0.19147 0.13011 

[30,30] 0.93454 0.19147 0.13011 

[40,40] 0.93454 0.19147 0.13011 

Table 9.1. Convergence of series solutions using homotopy-Pade approximation when Kl = 0.1, 

.A = Pr = ma = 0.1 and n = 1.5. 

9.4 Results and discussion 

This section presents the influence of physical parameters on the velocity f', the micro-rotation 

velocity 9 and the temperature field B. For this purpose , Figs. 9.3 - 9.12 have been plotted 

to analyze the effects of power index of plate velocity n, the material parameter or vortex 

viscosity K 1 , the buoyancy or the mixed convection parameter .A and the Prandtl number 

Pr on the velocity component !" the micro-rotation velocity 9 and the temperature profile B, 

respectively. Tables 9.2 - 9.6 are made to show the values of the skin-friction coefficient Cf Re;p 

and the Nusselt number Nux Re; 1/2 for viscous (Kl = 'Yl = j = .A = 0) and micropolar fluids 

for various parameters of interest, respectively. 

To see the variations of power index of plate velocity n, the material parameter or vortex 

viscosity K 1 , the buoyancy or the mixed convection parameter .A on the velocity filed !" Figs. 

9.3 - 9.5 have been plotted. Fig. 9.3 indicates that as the nonlinearity of the stretching 

surface (n) increases the velocity f' decreases. The boundary layer thickness also decreases as 

n increases. Fig. 9.4 illustrates the effects of vortex viscosity Kl on the velocity!,. It can be 

seen from this Fig. that the velocity !' is an increasing function of K1 . The boundary layer 
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thickness is also increased for large values of K 1 . Fig. 9.5 shows the distributions of the velocity 

f' for various values of the buoyancy parameter A. It is noted that the velocity f' increases 

when A increases. The boundary layer thickness also increases for large values of A in this case. 

Figs. 9.6 - 9.8 have been made to see the effects of n, Kl and A on the micro-rotation 

velocity g. Fig. 9.6 depicts the influence of power index of plate velocity n on the micro

rotation velocity g. It is found that initially 9 is an increasing function of n but after T) > 1, it 

decreases for large values of n . The boundary layer thickness increases as n increases in case 

of micro-rotation 9 when compared with the velocity f'. From this Fig. we can see that 9 has 

quite opposite results when compared with Fig. 9.3. The variation of vortex viscosity or the 

material parameter Kl responsible for micropolar fluid on 9 is shown in Fig. 9.7. It is observed 

that initially 9 decreases by increasing the values of K 1 . It can also be seen from this Fig. that 

the micro-rotation velocity 9 is greater when compared with the viscous case (Kl = 0) for large 

values of K 1 • The boundary layer thickness also decreases as Kl increases. Fig. 9.8 depicts 

the effects of the buoyancy parameter A on g. The micro-rotation velocity 9 is a decreasing 

function of A. The boundary layer thickness is decreased for large values of A. 

In order to see the variations of n, K 1 , A and Pr on the temperature profile e, the Figs. 

9.9 - 9.12 are displayed. Fig. 9.9 gives the influence of the factor causes the nonlinear plate 

velocity n on the temperature field e. It is noted that the temperature e increases by increasing 

n. The thermal boundary layer thickness also increases when n increases. Fig. 9.10 elucidates 

the effects of the material parameter Kl on the temperature e. The temperature profile e is a 

decreasing function of K 1. It is evident from this Fig. that such decrease occurs at very large 

values of K 1 . The thermal boundary layer thickness also decreases when Kl increases. Fig. 

9.11 shows the variations of the mixed convection parameter A on the temperature e. It is found 

that e decreases by increasing the buoyancy effects. But the thermal boundary layer thickness 

is decreased for large values of A. The influence of the Prandtl number PI' on the temperature 

field e can be seen in Fig. 9.12. As expected, the temperature e deceases by increasing the 

values of the Prandtl number Pr. The thermal boundary layer thickness also decreases for large 

values of Pr . 

Tables 9.2 and 9.3 are made for the values of the wall shear stress -1" (0) (or the skin friction 

coefficient Cf Re~/2) and the local Nusselt number Nux Re; 1/2 for viscous fluid (Kl = II = j = 0) 
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and the comparison is shown with the existing numerical results of viscous fluid ([148]). Table 

9.2 shows that the magnitude of the wall shear stress - 1"(0) increases when n increases. Table 

9.3 gives the values of the local Nusselt number Nux Re;1/2 for different values of nand Pr. 

It is noted that the local Nusselt number Nux Re;1/2 decreases for large values of n but it 

increases by increasing the Prandtl number Pr. From the comparison of these two tables it is 

noted that the agreement of the HAM solution for viscous fluid with the existing numerical 

results in reference [148] is excellent. 

Table 9.4-9.6 are prepared just to see the values of the skin friction coefficient Of Re~/2 and 

the local Nusselt number Nux Re; 1/2 for different parameters of interest in both the cases of 

rna = 0 and ma = 1/2, respectively using homotopy -Pade approximation for viscous fluid Kl = 

O. Table 9.4 displays the variations of the skin friction coefficient Of Re;/2 and the local Nusselt 

number Nux Re;1/2 for Newtonian fluid (Kl = 0) when A = 1 and Pr = 0.72 in case of ma = 0 

and ma = 1/ 2. It is observed that both the magnitudes of the skin friction coefficient Of Re;/2 

increases and the local Nusselt number Nux Re;1/2 decreases when n increases, respectively 

and the same observation is noted in both the cases of ma = 0 and ma = 1/ 2. Table 9.5 gives 

the values of the skin friction coefficient Of Re;/2 and the local Nusselt number Nux Re;1/2 for 

micropolar fluid (Kl i= 0) when A = 1 and PI' = 0.72 in the cases of rna = 0 and rna = 1/ 2. It 

is evident from this table that for micropolar fluid (Kl = 1) the magnitude of the skin friction 

coefficient Of Re;/2 increases while the local Nusselt number Nux Re;1/2 decreases for large 

values of n . But this change in skin friction coefficient is larger in case of ma = 1/2 when 

compared with rna = 0, and this situation is quite opposite for the local Nusselt number. The 

variations of Kl and the Prandtl number Pr on the skin friction coefficient Of Re;/2 and the 

local Nusselt number Nux Re;1/2 can be seen in Table 9.6 when n = 1.5 and A = 1 in both 

the cases of ma = 0 and ma = 1/2, respectively. The magnitudes of the skin friction coefficient 

Of Re;,/2 and the local Nusselt number Nux Re; 1/2 increase by increasing Kl and Pr. The 

increment in the skin friction coefficient is larger in case of ma = 1/2 when compared with 

ma = 0 for large values of Kl and Pr and is quite opposite for the local Nusselt number . 
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9 .5 Concluding remarks 

The highly non-linear problem of mixed convection flow of a micropolar fluid has been analyzed 

in this chapter. Analytic solutions of governing momentum and energy equations have been 

obtained. The HAM solutions for viscous fluid which are yet not available in the literature can 

be deduced as the limiting cases ofthe present analysis. The HAM solutions in viscous fluid with 

no mixed convection are compared with the numerical results [148] and an excellent agreement 

is found. The influence of the buoyancy parameter, the micropolar material parameter, nand 

the Prandtl number have been systematically examined. The following main features of the 

velocity and temperature profiles can be withdrawn from the discussion section: 

• The velocity l' is reduced by n and increases when Kl and A increase. 

• The magnitude of 9 decreases by increasing n, [(1 and A. 

• The temperature increases with n but decreases as [(1, A and Pr increases. 

• The skin friction coefficient increases with n, [(1 and Pr for viscous and micropolar fluids 

with and without mixed convection. 

• The local Nusselt number decreases with n and increases by increasing Kl and Pr for 

viscous and micropolar fluids . 

• The HAM solutions with no mixed convection can be deduced by choosing A = O. Such 

solutions with no mixed convection in a viscous fluid can be obtained by taking A = Kl = 

71 = j = O. 
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n Cortell [148] HAM solution 

0.0 0.627547 0.627555 

0.2 0.766758 0.766837 

0.5 0.889477 0.889544 

0.75 0.953786 0.953957 

1.0 1.0 1.0 

1.5 1.061587 1.061601 

3.0 1.148588 1.148593 

7.0 1.216847 1.216850 

10.0 1.234875 1.234875 

20.0 1.257418 1.257424 

100.0 1.276768 1.276774 

Table 9.2. Values of the wall shear stress - f"(0) for viscous fluid when K1 = 'Y1 = j = A = O. 

Cortell [148] HAM solution Cortell [148] HAM solution 

Ec n Pr = 1 Pr = 1 Pr = 5 Pr = 5 

0.0 0.2 0.610262 0.610202 1.607175 1.607925 

0.5 0.595277 0.595201 1.586744 1.586833 

1.5 0.574537 0.574730 1.557463 1.557672 

3.0 0.564472 0.564662 1.542337 1.542145 

10.0 0.554960 0.554878 1.528573 1.528857 

Table 9.3 . Values of the local Nusselt number Nux Re; 1/2 for viscous fluid when K1 = 0, 

'Y1 = j = A = O. 
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Homotopy-Pade app. K1 = O,ma = 0 K1 = O,ma = 1/2 

[m,m] n C R 1/2 f ex 
N R - 1/2 U x ex C R 1/2 f ex 

N R - 1/2 U x ex 

[25,25] 0.2 0.22178 0.61715 0.22178 0.61715 

[15,15] 0.75 - 0.31176 0.56849 - 0.31176 0.56849 

[15 , 15] 1.0 - 0.44320 0.55528 - 0.44320 0.55528 

[12,12] 1.5 - 0.61992 0.53639 - 0.61992 0.53639 

[12,12] 3.0 -0.87283 0.50604 - 0.87283 0.50604 

[12,12] 7.0 - 1.07672 0.47655 -1.07672 0.47655 

[12,12] 10.0 -1.13200 0.46714 -1.13200 0.46714 

[12,12] 20.0 - 1.20256 0.45361 - 1.20256 0.45361 

[12,12] 100.0 - 1.26507 0.43923 - 1.26507 0.43923 

Table 9.4. Values of the skin friction Cf Re~/2 and the local Nusselt number Nux Re;1/2 for 

viscous fluid (K1 = 0) when A = 1 and Pr = 0.72. 

Homotopy-Pade app. K = l ,ma = 0 K = 1,ma = 1/2 

[m,m] n C R 1/2 f ex 
N R -1/2 

U x ex C R 1/2 f ex 
N R -1/2 

U x ex 

[20,20] 0.2 0.07791 0.61944 0.093194 0.62025 

[15,15] 0.75 - 0.41927 0.58259 - 0.49564 0.57803 

[13,13] 1.0 - 0.54447 0.57275 - 0.64181 0.56671 

[12,12] 1.5 - 0.71435 0.55894 - 0.83876 0.55067 

[12,12] 3.0 - 0.96020 0.53768 -1 .12087 0.52548 

[12,12] 7.0 -1.16000 0.51884 - 1.34726 0.50218 

[10 ,10] 10.0 - 1.21421 0.51341 - 1.40815 0.49514 

[10,10] 20.0 -1.28316 0.50625 - 1.48519 0.48548 

[10,10] 100.0 - 1.34359 0.49973 - 1.55227 0.47608 

Table 9.5. Values of the skin friction Cf Re~/2 and the local Nusselt number Nux Re;1/2 for 

micropolar fluid (K1 =f:. 0) when A = 1 and Pr = 0.72. 
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Homotopy-Pade app. n = 1.5, ma = 0 n = 1.5,ma = 1/2 

[m,m] K Pr C R 1/2 j ex 
N R -1/2 U x ex C R 1/2 j ex 

N R -1/2 U x ex 

[12,12] 0.0 0.72 -0.61992 0.53639 -0.61992 0.53639 

[12,12] 0.2 -0.64146 0.54215 -0.66972 0.53975 

[12,12] 0.5 - 0.67003 0.54937 -0.73709 0.54422 

[12,12] 0.7 - 0.68807 0.55350 - 0.77902 0.54693 

[12,12] 1.0 - 0.71435 0.55894 -0.83876 0.55067 

[15,15] 2.0 - 0.79736 0.57276 - 1.01928 0.56107 

[25,25] 1.0 0.0 - 0.34602 0.019608 - 0.39979 0.019608 

[20 ,20] 0.2 - 0.56008 0.27352 - 0.65749 0.27110 

[16, 16] 0.5 - 0.66850 0.45475 - 0.78452 0.44870 

[15 , 15] 0.72 - 0.71435 0.55894 - 0.83876 0.55067 

[15 ,15] 1.0 - 0.75479 0.67335 - 0.88703 0.66284 

[20,20] 3.0 - 0. 87215 1.24369 -1.02932 1.22607 

Table 9.6. Values of the skin friction Cj Re;P and the local Nusselt number Nux Re;1/2 for 

micropolar fluid (K1 =1= 0) when A = 1. 
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