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Abstract 

The aim of this thesis is to address the scattering problems of acoustic waves by dif­

ferent geometries (e.g., half plane, junction, strip and slit) satisfying soft-hard boundary 

conditions which are substantial and important in the existing and prevailing diffraction 

theory and has been addressed since long and by many researchers [33, 34, 151 - 153] 

working in the area of scattering of waves. The soft-hard boundary conditions on a bar­

rier or on a part of barrier involves tedious mathematical analysis since the applications 

of these conditions result into the coupled Wiener-Hopf (W-H) equations that cannot 

be decoupled trivially. The mathematical route of the presented problems comprises of 

an integral transform, the W-H technique in Jones ' interpretation, the steepest descent 

asymptotic method and the Geometrical Theory of Diffraction (GTD). 

In chapters 3 and 4 two problems of line source and point source scattering of acoustic 

waves by a soft-hard half plane and by the junction of transmissive and soft-hard half 

planes have been investigated. Both of these problems are not only physically important 

but mathematically difficult to work out because from a line source and point source 

excitations the waves are coming from a known position as compared to the case of plane 

wave excitation in which the waves are known to be incident from infinity and hence the 

line and point sources are considered to be better substitutes than a plane wave situation 

-[54] . Both of the problems also involve the multiplicative splitting of the kernel matrices 

appearing in these problems. The far field solution of both of these problems is obtained 

using the method of steepest descent and hence extending the recent works of [33] and 

[70]-

XlV 



The plane wave situation graphs can be recovered by shifting the line source to a far 

off distance and the mathematical results of [33] and [70] are modified by a multiplicative 

factor in the case of line source excitation and agrees well with the existing evidences. 

Point source problems are examined using the results of line source cases. 

The second problem considered is that of diffraction of a plane acoustic wave by a 

finite soft-hard strip. Using the Fourier integral transform and Jones' method [14, 135] 

the boundary value problem resulted into a matrix W-H functional equation which is 

solved by a procedure outlined in [14]. Several integrals in the analysis of the problem 

formulated for strip are approximated by using the physical concept of GTD which takes 

into account that the strip length is large as compared to the incident wavelength. The 

far-field solution is determined by using the steepest descent asymptotic method. In 

addition, some graphs are also plotted and discussed about the parameters of interest. 

The final and last problem considered concerns about the diffraction of plane acoustic 

waves by a slit aperture in an infinite soft-hard expanse. The mathematical treatment 

of the problem for diffraction from the slit aperture is same as that of strip barrier. 

The slit width is assumed to be larger than the incident wavelength so that integrals in 

the analysis can be evaluated by using the GTD. The effects of various parameters like 

observer distance from the origin, the wave number parameter and slit width parameter 

on the separated diffracted field produced by the two edges of the slit are also noted. 

The problems considered in this thesis complete to some extent the discussion for the 

soft-hard half plane and offer considerable scope for further research. 

xv 
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Chapter 1 

Introduction 

Acoustics is the science of sound. One of the most fascinating subject of mankind 

and is as old as our universe is. Although acoustic wave motion has fascinated many 

generations of applied mathematicians, acoustic physicists, communication engineers, 

numerical simulists, geophysicists and otologists etc., yet the scientific study of sound 

is generally attributed to Greeks. The word acoustics is derived from the Greek word 

'akouein' means 'to hear' and 'Sauver' appears to be the first person to apply the 

term acoustics to the science of sound in 1701 [1] . 

Historical developments in acoustics [2] 

Acoustic waves have found their applications in many areas such as music, archi­

tecture, engineering, medical science (acoustic tomography), oil and gas exploration 

(bore-hole sounding) aerodynamics and linguistics etc. Nowadays acoustics have been 
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established as the most modern branch of science with itself has so many branches. 

To name a few only e.g., Architectural Acoustics, Physical Acoustics, Engineering 

Acoustics, Structural Acoustics, Underwater Acoustics, Physiological and psycholog­

ical Acoustics and many others. 

Like many other branches of science and technology, the developments in acoustics 

were proceeded by empirical observation. It is not surprising because the required 

solutions are very complicated and problems are generally not amenable to the direct 

theoretical treatment . Many existing acoustical phenomena are not less than three 

dimensions and are transient in nature as well. Most of the scattering of acoustic 

waves is taking place in the medium which is neither at rest nor isotropic. further, 

the boundary conditions to which wave equation is subjected are not necessarily on 

a regular shaped geometry and hence require complex analytic treatment in order to 

solve the problem under consideration. Anyone who has just taken a casual look at 

the equations which arise while solving a relatively simple problem of acoustic wave 

scattering realizes that why a scientist working in this field has frequently turned to 

his apparatus instead of turning towards the pencil. It is also worthwhile to mention 

at this stage that a subject can be understood better when something about its history 

is known. Here we mention some of the important and distinct experiments that took 

place in the history of acoustics during the various centuries. 

Before the 18th century, the scientific apparatus in acoustics was of the simplest 

kind. Pythagoras established mathematics in the Greek culture and studied vibrating 
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strings and musical sounds before 16th century. Galileo (1564 -1642) used pendulum 

as a demonstration instrument. Mersenne (1588 - 1648), using pendulum, measured 

the speed of sound to be 1038 ft./sec. The first serious attempt to measure velocity 

of sound was made by Sir Isaac Newton. Flamsteed and Halley (1708) calculated the 

speed of sound to be 1142 ft./sec. 'lUning fork was invented in 1711 by John Shore, 

a trumpeter in the service of George I of England. A variable standard of frequency 

was given by Stancari in 1706. A commission at French Academy of Sciences in 1738 

again calculated the speed of sound to be 1094 ft.jsec. at O°C. In the history of 

acoustics, no remarkable event took place between 1750 and 1800. 

In the nineteenth century, tremendous progress in the field of acoustics has been 

achieved. Chaldni (1802) determined the wave patterns of vibrating bodies by means 

of sand figures, longitudinal and torsional vibrations of rods and strings and transverse 

vibrations of bars and plates. In 1807, Thomas Young described a graphical apparatus 

for accurate determination of frequency. Wheatstone in 1833 proved the existence of 

nodal lines. 

Scott adopted the smoked surface technique for the measurement of air waves in 

1858. Rudolph Koeing presented his results in the form of large collection of phonD­

grams in London in 1862, which comprises all the applications of the method that 

have so far been discovered in acoustics. 

An optical method to determine the strength of sound waves was first described 

by Biot in 1820 and developed further by Kundt in 1864 and by Mach in 1872. A 
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second optical method was developed by Toepler and Boltzmann in 1870. Acoustic 

siren, which is the principal source of continuous variable sound, in its present form 

was first constructed by Seeback (1841), improved by Koenig in 1867. 

The other great names that appeared on the important published papers on 

acoustics are those of Rayleigh, Stokes, Lamb, Helmholtz, Tyndall, Morse, Taylor, 

Sabine and Webster. Lord Rayleigh's two-volume treatise on 'The Theory of Sound' 

was based mainly on the mathematical treatment of the subject of acoustics and was 

soon acknowledged by the scientific world as authoritative. This great treatise con­

tains the whole physical theory and a logical order of a huge material collected from 

all sources. Another great mass of work on acoustics may be found in the classical 

volumes of' Vibrations and Sound' contributed by P.M. Morse. With this bird's eye 

view of the history of acoustics, attention is now focused on the scattering of acoustic 

waves. 

Literature survey 

In this thesis, the emphasis will be on some scattering problems of acoustic waves 

using matrix Wiener-Hopf approach. A brief account of scattering phenomenon, the 

Wiener-Hopf (W-H) technique, matrix factorization methods and geometries related 

to the solved problems etc. and some details of relevant literature survey are now 

presented. 

The scattering of acoustic waves was first investigated mathematically by Lord 
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Rayleigh under the assumption that scatterers are small as compared to the wave­

length. The solution of scattering by rigid, immovable circular cylinders and spheres, 

not necessarily small compared to the wavelength, was given by Morse [3]. 

Scattering is a physical process where some forms of radiation such as light, sound 

or moving particles are forced to 'deviate from a straight path by one or more localized 

non-uniformities in the medium through which they pass. In conventional applica­

tions, this also includes deviation of reflected radiation from the angle given by the 

law of reflection. The types of non-uniformities that can cause scattering are known 

as scatterers or scattering centers. The effects of such features on the path of almost 

any type of propagating wave or moving particle can be described in the framework of 

scattering theory. Scattering theory has played a central and vital role in the twenti­

eth century mathematical physics. Scattering phenomenon has attracted, perplexed 

and challenged mathematicians, scientists, physicists and engineers for centuries be­

cause the problem of calculating an exact analytical solution for the problem of scat­

tering of acoustic/electromagnetic waves by an arbitrarily shaped body is generally 

intractable. However, for particular geometries, e.g., half planes, junctions, wedges, 

strips, slits and certain other restricted classes of problems, it is possible to obtain an 

analytical solution of the governing boundary value problem. Broadly speaking, the 

scattering theory is concerned with the effect that is caused on an incident wave by 

the inhomogeneous medium. 

Although the mathematical analysis of scattering of light by faceted objects was 
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the focus of attention of many medieval scientists, one pertinent name is that of Ibn­

ul-Haitham of Basra, who flourished in 10th century A. D. The extensive studies of 

the scattering of acoustic/electromagnetic waves proceeded after the investigations 

of half plane and wedge problems by Poincar'e [4] and Sommerfeld [5]. Poincare [4] 

calculated the asymptotic field for diffraction off a wedge. Sommerfeld [5] considered 

the diffraction of a plane wave from the half plane by employing the method of 

images on a Riemann surface. The technique of constructing the requisite many 

valued solution of the wave equation was simplified by Sommerfeld in a subsequent 

paper [6] . 

Finally, Carslaw [7] replaced the image method with a direct construction of a 

solution that yields simpler formulae. These had already been obtained independently 

by McDonald [8] by summing the Fourier series representation of the Green's function . 

Sommerfeld's results were also obtained by Lamb [9] by using parabolic coordinates. 

It was later shown by Magnus [10] that the problem of diffraction of sound waves of 

small amplitude can also be reduced to the solution of a singular integral equation. 

Later on the integral equation apparatus was also used by Levine and Schwinger [11], 

Miles [12] and Copson [13] to study the diffraction of waves by a plane screen. 

Copson [13] solved the integral equation arose in his work with the help of W-H 

technique and showed that his solution was in accordance with that of Sommerfeld's 

[5, 6] half plane problem. Afterwards, it was shown by Levine and Schwinger [1l] 

that all problems involving diffraction (scattering) of a plane wave by a number of 
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semi-infinite parallel cylinders or plates can be formulated into W-H type integral 

equation(s) which is/ are capable of exact solution(s) . 

W-H technique [14] was introduced around 1931 to solve certain integral equations, 

of the type 
DO J f (0 K (x -~) d~ = 9 (x) (O<x<oo) , (1.1) 

o 

where K and 9 are given and f is to be found. In fact, Cops on [13] was the first 

to apply this method to solve diffraction problems by formulating the problem of 

diffraction of sound waves by a perfectly reflecting half plane in terms of an integral 

equation. The elegance and analytical sophistication of this method, now called the 

W-H technique, impresses all who use it. Its applicability to almost all branches 

of engineering, mathematics, physics and applied mathematics such as diffraction 

of acoustic, elastic, sonar, radio and electromagnetic waves, crystal growth, frac-

tme mechanics, flow problems, diffusion models, hydrodynamics, electrodynamics, 

aerodynamics, neutron transport theory, nuclear reaction theory, plasma physics and 

mathematical finance etc., is borne out of many thousands of papers published in 

these areas since its conception. The W-H technique remains an extremely important 

tool for modern day scientists and the areas of applications continue to broaden [15]. 

Lawrie and Abrahams [15] pronounced the Noble's monograph [14] to be the Bible of 

a W-H practitioner. 

This technique is based on the application of integral transforms and the theory of 

analytic continuation of complex valued functions. Here we describe the mathematical 
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maneuvers that are central to the W-H technique. In this procedure, the associated 

mathematical boundary value problem is transformed to the W-H functional equation 

involving two unknown functions of a complex variable. These unknown functions, 

which are Fourier transform of the solution of a partial differential equation or an 

integral equation, are analytic in two overlapping half planes. This provides sufficient 

information to conclude by means of theory of analytic continuation, that the two 

functions are the representations in their half planes of analyticity of a function which 

is analytic in the whole complex plane. In other words, these two functions represent 

an entire function . From the asymptotic behavior of this entire function, enough 

information can be obtained to determine the Fourier transform and from these, by 

inverse transformation, the solutions of the original equation [16]. 

An important step in the solution of the W-H functional equation is to decom­

pose the kernel function. In general, it is known function of a complex variable with 

a number of poles characterizing the underlying physical process. Thus it is required 

to split the kernel function into a product or sum of two functions, one being reg­

ular in upper/right and other being regular in lower/left half of the complex plane. 

The procedure for decomposition is relatively simple for a scalar kernel. However, in 

the case of system of W-H equations, one has to work with a matrix W-H equation 

involving a matrix kernel. For the coupled or system of W-H equations, one needs 

the explicit factorization of a kernel matrix into a product of two matrices, one being 

regular in the upper (right) and the other being regular in the lower (left) half plane. 
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The factor matrices should be non-singular and of algebraic growth at infinity. To 

find such factors of the kernel matrix is both vital and difficult at the same time. The 

non-commutativity and the satisfaction of radiation conditions present further prob­

lems. There is, as yet, no general and comprehensive procedure for factorization of 

such matrices, although the factorization of the restricted class of matrices has been 

achieved. The absence of general procedure for finding the factor matrices has been 

a stumbling block in finding the solutions of many problems. Nevertheless, the de­

velopment and improvement of matrix factorization techniques has been progressing 

steadily. For example, the Wiener-Hopf-Hilbert (W-H-H) method introduced by [17], 

[18] and [19] is a powerful tool in the case when the kernel matrix has only branch­

point singularities, while the Daniele-Kharapkov method proposed independently by 

Daniele [20] and Kharapkov [21], is effective for the class of kernel matrices having 

pole-singularities and branch-point singularities. A major breakthrough for a fairly 

large class of matrices has been made by Jones [22] who for the first time examined 

the question of commutative factorization of the kernel matrices and presented a nat­

ural extension of Kharapkov's [21] work. It was shown by Asghar and Hassan [23] 

that Jones' [22] and Kharpkov's [21] methods may be considered as methods that 

cover the whole range of matrix factorization methods worked out so far. Another 

detailed survey of matrix factorization methods with reference to applications of these 

methods to different diffraction problems may also be found in a paper of Btiytikaksoy 

and Serbest [24]. Although the target of factorizing a general 2 x 2 matrix is known 
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to exist from the work of Gohberg and Krein [25] yet it has only been achieved for 

the restricted class of matrices. The problem of factorizing a matrix having exponen­

tially growing elements has been addressed by Abrahams and Wickham [26]. They 

suggested to obtain a single scalar integral equation, the solution of which generates 

the required factors. It is worthwhile to mention here that use of Fade approximants 

for kernel factorization proposed by Abrahams [27] has successfully been applied to 

obtain explicit exact factorization for both scalar and matrix kernels by [28, 29] . 

For factorizing scalar kernels Carrier [30] in his remarkable paper made very useful 

suggestions in which he pointed out that if a complicated scalar kernel is replaced 

by another simpler scalar kernel, provided that the substituted kernel has the same 

singularity, the same area and the same first moment as that of the original kernel, 

even then the obtained results are of great importance and work equally as good as 

those factors which are very complicated functions of the complex variable. 

Bates and Mittra [31] introduced an integral representation for the W-H factoriza­

tion of a class of scalar functions in a form convenient for numerical processing. This 

proposed representation is particularly suitable for the radiation problems involving 

waveguide structures. Recently Crighton [32] has proposed that matched asymptotic 

expansions (MAE) may be used for the asymptotic factorization of W-H kernels. 

With these some details about the phenomenon of scattering, the W-H technique 

and the decomposition of the kernel function, the scattering problems discussed in 

this thesis and the literature survey relevant to these problems is now presented. 
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Motivation and thesis plan 

The scattering of two dimensional plane acoustic waves from a semi-infinite pla­

nar screen is a fundamental problem in the theory of acoustic scattering. Recently, 

Buyukaksoy [33] studied the problem of diffraction of plane waves by a soft-hard half 

plane. The continued interest in the problem of diffraction from a soft-hard half 

plane stems from the fact that it constitutes the simplest half plane problem that 

can be formulated as a system of coupled W-H equations that cannot be decomposed 

trivially [33]. 

Rawlins [34] was the first who solved the problem of diffraction of acoustic waves 

by a soft-hard half plane. Rawlins [34] pointed out that two unusual features arose in 

this boundary value problem and adopted an adhoc method for the solution of this 

boundary value problem. After the lapse of many years, Buyukaksoy [33] not only 

reconsidered the problem solved by Rawlins [34] but also proposed an appropriate 

method for the solution of the said boundary value problem. What had not been 

done is the consideration of a line source (cylindrical wave) and point source (spherical 

wave) diffraction of acoustic waves from a soft-hard half plane. 

Numerous past investigations have been devoted to the study of classical problems 

of line source and point source scattering of acoustic, electromagnetic, shear horizontal 

(SH) and seismic waves by various types of half planes, cylinders and other types of 

objects. To name a few only, e.g., the line source diffraction of electromagnetic waves 

by a perfectly conducting half plane [35] . Hohmann [36] considered the cylindrical 
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inhomogenity buried in a conductive half space with line source excitation, line source 

diffraction of acoustic waves by a hard half plane attached to a wake in still air as 

well as when the medium is convective [37J , line source diffraction of acoustic waves 

by an absorbing half plane [38]. Boersma and Lee [39] studied the electric line source 

diffraction by a perfectly conducting half plane. Hongo and Nakajima [40] considered 

the diffraction problem of an anisotropic cylindrical wave by a cylindrical obstacle. 

Engheta and Papas [41] obtained the far-zone radiated fields due to a line source 

located at the interface of two homogenous media using an asymptotic technique. 

The other significant contributions regarding the line source excitation are line 

source diffraction of sound waves by an absorbent semi-infinite plane such that the 

two faces of half plane have different impedances [42], Sanyal and Bhattacharyya 

[43J obtained a uniform asymptotic expansion of the Maliuzhinetz's exact solution 

for the plane wave and line source illuminations by a half plane with two face im­

pedances by using Vander Waerden's method. Buyukaksoy and Uzgoren [44] studied 

the magnetic line source diffraction by the edges of cylindrically curved surface with 

different face impedances. Rawlins et al [45] considered the line source diffraction 

by an acoustically penetrable or an electromagnetically dielectric half plane. Line 

source and point source diffraction by three half planes in a moving fluid has been 

discussed by Asghar et al [46], line source diffraction by a rectangular cylinder on 

an infinite impedance plane has been examined by Tayyar and Buyukaksoy [47], line 

source diffraction of acoustic waves by an absorbing half plane using Myre's condi-
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tions has been contributed by Ahmad [48]. Hussain [49] analyzed the problem of line 

source diffraction of electromagnetic waves by a perfectly conducting half plane in a 

homogeneous bi-isotropic medium. Recently, Ayub et al [50, 51, 52] studied the line 

source diffraction phenomenon by a junction, reactive step and an impedance step 

and more recently Ahmed and Naqvi [53] studied the response of a coated nihility 

circular cylinder subjected to directive electromagnetic radiation produced by a line 

source. 

The phenomenon of point source excitation has alflo been continuously and rig­

orously investigated by several authors. Point sources are regarded as fundamental 

radiating devices [54] and are considered to be better substitutes for plane wave or line 

source incidences. The solutions of point source problems are regarded as fundamen­

tal solutions of the differential solution [55]. Some important contributions regarding 

the point source scattering situations can be found in the works of Vlaar [56], Ghosh 

[57], Wenzel [58], Chattopadhyay et al [59], Balasubramanyam [60], Asghar et al [46 , 

61 - 64]' Hayat and Asghar [65], Rawlins [66], Ahmad [67] and Ayub et al [50, 52]. 

Inspired by the above mentioned studies for line source and point source excita­

tions, Chapters 3 and 4 of this thesis are devoted to investigate the problems of line 

source and point source diffraction of acoustic waves by a soft-hard half plane and by 

the junction of transmissive and soft-hard half planes. 

Soft and hard boundaries are not only well known in acoustics but now these 

have also been artificially made to study the diffraction of dually polarized elec-
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tromagnetic waves from a large number geometries, e.g., plane reflector, rationally 

symmetric reflector, circular cylinder and cylindrical waveguides etc. [68]. The prob­

lem of diffraction of waves from a soft-hard half plane is both mathematically difficult 

and physically important because it results in a matrix W-H equation. In order to 

complete the solution of the problem the involved matrix kernel has to be factorized. 

Incidentally for the case of line and point source excitations, the kernel matrix re­

mains unchanged which has been factorized by Btiytikaksoy [33]. However, for the 

sake of completeness the missing steps in the factorizations of the kernel matrices 

have been incorporated and details are reported in Appendix A of the thesis. 

The introduction of line source changes the incident field and the method of solu­

tion requires a careful analysis in working out the diffracted field . The consideration 

of point source diffraction will help understand the acoustic differentiation and will go 

a step further to complete the discussion for the soft-hard half plane. The mathemat­

ical importance of the point source lies in the fact that introduction of point source 

introduces another variable. The difficulty arises in the solution of the integrals which 

occur while taking the inverse transform. The integrals are difficult to handle because 

of the presence of branch points and are amenable to solution via asymptotic meth­

ods. The results for the line source and point source diffraction of acoustic waves by 

a soft-hard plane are presented in Chapter 3 of this thesis. It is noted that the line 

source incidence, Btiytikaksoy [33] results are modified by a multiplicative factor of 

the form 
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(1.2) 

which agrees well with the results already known [35,46]. The results obtained for line 

source incidence lead to the consideration of point source and diffracted field due to 

the point source is also presented. The mathematical route of both problems consists 

of Fourier integral transform, the W-H technique in Jones' interpretation [14] and the 

method of steepest descent [69] . The contents of Chapter 3 have been published in 

Archives of Mechanics, 62 (2), (2010) 157 - 174. 

In Chapter 4, firstly the analysis of Buyukaksoy et al [70] for the scattering of 

plane waves by the junction of transmissive (impedance) and soft-hard half planes 

is extended to the case of line source. Using the results of line source, the analysis 

is further extended to the case of point source. The kernel matrix appearing in this 

problem was same as that of [70] but has been reported with sufficient details in 

Appendix B of the thesis. Mathematically, the results of [50] differ from those of [70] 

by a multiplicative factor of the form Eq. (1.2). Several graphs for noting the effects 

of various parameters on the scattered field are also plotted. It is observed that the 

graphs of [70] can be recovered by shifting the line source to a large distance, which 

can be considered as check of correctness of presented results in [50] . The importance 

of present work stems from the facts that: 

(a) The scattering properties of a surface are functions of both its geometrical and 

material properties. 
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(b) The edge scattering by dihedral structures whose surfaces can be modeled by 

the impedance [Leontovich] boundary condition has been the focus of attention of 

many scientists for both acoustic and electromagnetic waves [71]. 

(c) The junction geometry constitutes a canonical problem for scattering because 

it requires the use of more sophisticated analytical techniques involving Bessel/Hankel 

transforms. The diffraction coefficients related to discontinuities in the junction geom­

etry are quite complicated and these have to be used in the problems of practical 

interest [72]. 

The pattern of solution of problems of Chapter 4 is same as that of Chapter 3. The 

contents of Chapter 4 have been published in Journal of Mathematical Analysis 

and Applications, 346 (2008) 280 - 295. 

Now turning to another class of canonical geometries consisting of strips and slits 

which are important in diffraction theory and have received a great deal of attention 

and appreciation. Because of their practical applications in science, engineering and 

communication systems, strips and slits are typical examples among a number of 

simple obstacles, and scattering and diffraction problems related to these geometries 

have been extensively investigated by many authors using a variety of numerical and 

analytical techniques. From both the strip and slit geometries, t he phenomenon of 

multiple diffraction often occurs which is of great importance in diffraction theory [73] . 

It has been reported in [74] that the problem of diffraction by a strip with parallel 

edges was first solved by Fox and in his two subsequent papers, the same author 
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studied the diffraction of pulses by a slit and by a grating. Morse and Rubenstein 

[75] studied the diffraction of acoustic waves by ribbons and by slits using the method 

of separation of variables. 

Bowman et al [76] summarized and reviewed much of the work done on half planes, 

strips, slits and cylinders etc. Myre's [77] used symmetry-like principles to study the 

wave scattering by strip geometry. 

Another important technique namely geometrical theory of diffraction (GTD) 

introduced by Keller [78] has been applied by Senior [79], Tiberio and Kouyoumjian 

[80] and Tiberio et al [81] to study the diffraction of electromagnetic waves by strips 

satisfying various types of boundary conditions. 

Some of the authors, e.g., Bowman [82], Chakrabarti [83] and Wickham [84] at­

tempted the problems corresponding to strip configuration by using the method of 

successive approximations. Another well-known technique which proved to be promis­

ing, to study scattering by canonical strip and slit configurations, is the W-H tech­

nique. Many scientists, e.g., Jones [35], Kobayashi [73], Noble [14], Faulkner [85], 

Chakrabarti [86], Asghar [87], Asghar et al [88 - 90], Asghar and Hayat [91 - 92], 

Hayat and Asghar [93, 94] and Ayub et al [95 - 100] successfully employed the W­

H technique [14] to study the scattering of acoustic/electromagnetic waves by strips 

(satisfying different types of boundary conditions). 

Another distinct contribution regarding the studies of diffraction by strips using 

W-H technique in conjunction with ray optical method and spectral iteration tech-
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nique (SIT) has been developed by Serbest and Btiytikaksoy [101] and applied by 

Btiytikaksoy et al [102]' Btiytikaksoy and Uzgoren [103], Serbest et al [104]' Btiytikak­

soy and Uzgoren [105], Erdogan et al [106], Btiytikaksoy and Alkumru [107, 108] and 

Cinar and Bliytikaksoy [109] . 

Recently, Imran et al [1l0, 111] used the Kobayashi's potential method and Castro 

and Kapanadze [112] used the theory of Bessel potential spaces to study the diffraction 

by a strip geometry. 

Motivated by these studies, Chapter 5 of the present thesis is devoted to the study 

of diffraction of a plane acoustic wave by a soft-hard strip. The resulting functional 

matrix W-H equation in the problem is solved by the W-H technique [14]. Some 

graphs for the different parameters of interest are plotted and discussed. The key 

attributes of the use of Wiener-Hopf technique are: 

(a) Uniform asymptotic solution obtained for the diffracted field has no restriction 

on incident and observation angles, contrary to GTD [73] . 

(b) As compared to the numerical techniques which are valid only for boundaries 

of finite length, the W-H method does not have such a restriction [1l3] . 

The contents of Chapter 5 have also appeared in Optics Communications 282, 

(2009) 4322 - 4328. 

The last and sixth chapter of the dissertation is dedicated to the study of scattering 

of acoustic waves by a slit in an infinite soft-hard plane. Almost all the methods that 

are available for strip geometry are equally good to study the diffraction from a 
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slit geometry with minor modifications. Keller [114] applied the GTD to study the 

diffraction from a slit of any shape in a thick screen. Clemmow [11 5] derived dual 

integral equations for the diffracted field by a slit. Diffraction of plane electromagnetic 

waves by a slit in an infinite conduction plane has been studied by Hamid et al [116] 

and Karp and Russek [117]. Levine [118] studied diffraction of acoustic waves by a slit 

in an infinite hard plane. Btiyiikaksoy and Topsakal [119] and Birbir and Btiytikaksoy 

[120] studied the diffraction of electromagnetic waves by a slit in a thick impedance 

slit using the W-H technique in conjunction with an iterative procedure. Using W-H 

technique, the diffraction of waves (acoustic and electromagnetic) have been treated 

by Asghar et al [1 21, 122], Asghar and Hayat [123], Hayat et al [1 24, 125] and Ayub 

et al [126, 127]. 

Another important configuration consisting of a slit in an impedance plane and a 

parallel complement ary strip, which may be used for the purpose of electromagnetic 

shielding and optimal coupling between incident and transmitted field , has been con­

sidered by Cinar and Btiytikaksoy [128] to study the electromagnetic plane wave 

diffraction. Using Kobayashi's potential, method based on discontinuity properties 

of Weber-Schafheitlin integral, Hongo [129] and Imran et al [130] studied the diffrac­

tion of electromagnetic waves by a slit configuration. Recently, Naveed et al [131] 

used Maliuzhinitz function to study the diffraction of electromagnetic plane waves 

by a slit in an impedance screen and Ahmad and Naqvi [132] discussed the problem 

of electromagnetic scattering from a two dimensional perfect electromagnetic con-
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duct or (PEMC) strip and PEMC strip grating (slit ) using numerical simulation and 

presented a semi analytical solution. 

A new technique namely Sommerfeld-Maliuzhinetz integral representation has 

been recently developed by Bernard [133J to study the delicate problem of three 

part impedance plane such that the impedance of each part is different. 

Keeping in view of the importance of slit geometry, the last and sixth chapter 

of the thesis throws light on the diffraction of plane acoustic waves by a slit in an 

infinite soft-hard half plane. Integrals transforms, the W-H technique and asymptotic 

methods are used to analyze the situation. The explicit expressions for the singly 

diffracted field (separated field) and doubly diffracted field (interaction of one edge 

upon the other) are obtained. 

The contents of this chapter have been published in Progress in E lectromag­

netics Research B, 11 (2009) 103 - 131. 

Throughout the thesis, the following considerations have been taken into account: 

• The time dependence of the form e-iwt is assumed and suppressed. 

• For the problems under consideration, a matrix W-H equation is formulated 

and then solved to give the solution of the corresponding problem. 

• Far field approximation is used so that the scattered field dominates and the 

effects of surface waves can be neglected. 
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Chapter 2 

Mathematical Preliminaries 

In this chapter, some definitions and mathematical preliminaries which will be 

used in the subsequent chapters are presented. These consist of the analytical prop­

erties of the Fourier transform [134]' the W-H technique [14, 54], Jones' method [14, 

135], the method of steepest descent used for the asymptotic evaluation of certain 

integrals appearing in different diffraction problems [69 , 136 - 138]' the Daniele­

Kharapkov methods for the matrix factorization [20 , 21, 139], the Green's function 

[140, 141], and the famous Maliuzhinetz half plane function [142 - 148]. The contents 

of this chapter can be found in many standard text books [14, 54, 69 , 134, 136 - 138, 

140, 141] and in some technical reports [139, 143, 148, 150]. These are presented for 

the sake of completion of the thesis document. 
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2 .1 Analytic properties of the Fourier transform 

[134] 

Consider 
00 

7 (a) = vk J f (x) eioxdx, (2.1.1) 

-00 

where the transform variable a is complex in general. In order to discuss the properties 

of the function 7 (a) we write 

f(x) = f+ (x) + f- (x) , (2.1.2) 

where 

h(X)~{ 0 
x<o 

f (x) x> 0, 

(2.1.3) 

{ f (x) x<o 
f- (x) = 0 

x> o. 
(2.1.4) 

Thus, 
00 

7+ (a) = vk J f (x) eiOXdx (2.1.5) 

o 
and 

o 

7 - (a) = vk J f (x) eiOXdx . (2.1.6) 

-00 

The analytic properties of 7 ( a) by establishing the properties of 7 + (a) and 7 _ (a) 

are now discussed. Firstly, consider Eq. (2.1.5) 

00 

7+ (a) = vk J f (x) eiOX dx. 
o 
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If the function 1+ (x) is of exponential order, i.e., 

as x -----? 00, (2.1.7) 

then the function f + (a) is an analytic function of the complex variable a = (J + iT in 

the domain 1m a> T _ and in this domain f + (a) -----? 0 as lal -----? 00. Noticing that 

(2.1.8) 

is bounded when (L - T) < 0 or equivalently T > T _ or Ima > L . Now by taking 

the inverse Fourier transform 

00 

f+ (x) = Jirr J Y + (a) e-iaxda, (2.1.9) 

-00 

where the integration will be performed over any straight line 1m a > T _ parallel to 

the real axis in the complex a - plane. Now for the problems considered in this thesis, 

the strips of analyticity can be calculated by considering the following cases . 

• For T _ < 0, (i.e., 1+ (x) decreases at infinity), the domain of analyticity of 

f + (a) contains the real axis and Eq. (2 .1.9) can be integrated along the real 

axis . 

• For T _ > 0, (i.e., f+ (x) increases at infinity but not faster than the exponential 

function with the linear exponent), the domain of analyticity off + (a) lies above 

the real axis of the complex a - plane and Eq. (2.1.9) can be integrated above 

the real axis. 



Similarly for the function 

{ 

f (x) 
f- (x) = 0 

satisfying the exponential order condition 

Then consider Eq. (2.1.6) 

o 

x< o 

x> 0, 

as x ---? 00 . 

1- (a) = ~ J f (x) eiexxdx, 
-00 

26 

(2 .1.10) 

is analytic for the complex variable a in the domain rm a < T + . By the inverse Fourier 

transform 
00 

1 J- . f- (x) = ~ f _ (a) e-texxda, (2.1.11) 

-00 

for T + > 0, the domain of analyticity of 1- (a) contains the real axis and for T + < 0, 

the domain of analyticity does not contain the real axis. Hence the Eq. (2.1.11) is 

analytic in the domain T _ < rm a < T + as shown in Fig. 2.1. 
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a-plane 

Fig. 2.1 Strip of analyticity 

The functions f (x) and 7 (a) are related by the inverse Fourier transform 

OO+L'T 

f (x) = ~ J 7 (a) e-ioxda, (2.1.12) 

-OO+L'T 

where the integration is performed along the straight line parallel to the real axis of 

the complex a - plane lying in the strip T _ < 1m a < T +. In particular, the function 

7 (a) is analytic for T + > 0 and T _ < 0 in the strip containing the real axis of the 

complex a - plane. 
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2.2 The Wiener-Hopf technique [14, 54J 

Historically W-H technique is the outcome of the collaboration between N. Wiener 

and E. Hopf which was initiated by their mutual interest in the differential equations 

governing the problems of radiation equilibrium of stars [15J . This collaboration also 

resulted in their famous paper [149J in which they established the tool by which such 

equations could be solved. 

Considerable difficulty is usually encountered in finding solutions for the shapes 

not covered by the method of separation of variables. The W-H technique provides a 

significant extension of the range of problems that can be solved by Fourier, Laplace 

and Mellin integral transforms. The W-H technique was originally invented to solve 

an integral equation of the form 

00 J f (~) K (x - ~) d~ = 9 (x) (O<x<oo), 
o 

where K and 9 are the given functions and f is to be calculated [14J . An important 

modification was done by D. S. Jones [135J known as Jones' method based on the 

application of integral transform directly to the partial differential equation and the 

related boundary conditions, by-passes the initial derivation of the integral equation 

and directly resulted into the formation of complex W-H functional equation. 
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2.2.1 General scheme of Wiener-Hopf procedure 

The typical problem obtained by applying Fourier transform to partial differential 

equations is the following. It is required to determine the functions 'lj;+ (a) and 'lj;_ (a) 

of a complex variable a, which are analytic respectively in the half planes rm a > T _ 

and rm a < T + (T _ < T +) and tend to zero as lal -t 00 in both domains of analyticity 

and in the strip T _ < 1m a < T +, satisfy the functional equation [14] 

A(a)'lj;+ (a) + B(a)'lj;_ (a) + C(a) = 0, (2.2.1.1) 

where A(a), B(a) and C(a) are given functions of the complex variable a analytic 

in the strip T _ < rm a < T + and A(a) and B(a) are non-zero in the strip. 

The fundamental step in the Wiener-Hopf technique for the solution of the equa-

tion is to find L+ (a) regular and non-zero in rm a > T _ and L_ (a) regular and 

non-zero in 1m a < T + such that 

A(a) 
B(a) 

Then using Eq. (2.2.1.2) in Eq. (2.2.1.1) we may write 

The last term in Eq. (2 .2.1.3) may be decomposed as 

(2.2 .1.2) 

(2.2.1.3) 

(2.2.1.4) 

where the functions D + (a) and D _ (a) are analytic in the half planes rm a > T _ and 
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1m a < T + respectively. In the strip the following equation holds true 

(2.2 .1.5) 

This equation defines only in the strip T _ < 1m a < T +. The first part of Eq. 

(2 .2.1.5) is a function analytic in the half plane Ima > T _, and the second part is 

a function analytic in the domain 1m a < T +. Hence by the analytic continuation 

principle we can define J(a) over the whole a - plane. Now suppose that 

as a ---t 00, Ima > T_, (2.2 .1.6) 

as a ---t 00, Ima < T +. (2 .2.1.7) 

Then by the extended Liouville's theorem [14], which states that"If J(a) is an 

integral function such that IJ (a) 1 < M lalP as a ---t 00 where M and p are constants 

then J (a) is a polynomial of degree less than or equal to [p] where [p] is the integral 

part of p." J(a) is a polynomial P(a) of degree less than or equal to the integral part 

of (p , q) i.e., 

(2.2.1.8) 

(2.2 .1.9) 

These equations determine 'l/J+ (a) and 'l/J- (a) in terms of P(a) . Thus the use of 

Wiener-Hopf technique is based on the representations (2 .2.l.8) and (2.2 .1.9). For 

the factorization of certain functions in W-H procedure the following results are quite 

useful. These results and their proofs are now presented. 
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2 .3 Additive decomposition theorem [14] 

Statement 

Let a function j(a) be an analytic function in the strip T _ < 1m a < T + and j(a) 

tends to zero uniformly in the strip as lal -+ 00, then in the strip 

(2.3.1) 

where j + (a) is analytic in the domain 1m a >. T _ and j _ (a) is analytic in the domain 

1ma < T+. 

Proof 

Consider an arbitrary point a lying in the given strip and construct a rectangle 

PI P2 P3 P4 containing the point a and bounded by the straight lines 1m a = T ~, 

1m a = T~, Re a = - A and Re a = A such that T _ < T~ < T~ < T + as shown in 

Fig. 2.2. 

Then by Cauchy's integral formula 

-A+ir~ A+ir~ 

(2.3.2) 
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. 
T - ax~s 

----------------------- T = T + 

0' =-A • 

I 

T=T 

a=A 

----------l------------
Fig. 2.2 Contour of integration 

0' - aX2S 

Taking the limit A -t 00, the second and fourth integrals on the right hand side of 

Eq. (2.3.2) will tend to zero and hence Eq. (2.3.2) reduces to 

where 
I 

OO+iT + 

1_(a) = __ 1. J f(~) d~, 
2m ~ - a 

-OO+iT~ 

is regular in the lower a - plane T < T + and 

I 
OO +iT _ 

1 (a) = ~ J f(~) d~, 
+ 27f~ ~ - a 

-OO+iT~ 

(2 .3.3) 

(2.3.4) 

(2.3.5) 
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is regular in the upper a - plane defined by T > T _. These integrals represent analytic 

functions provided that the point a does not lie on the contour of integration. Since 

the point a and the straight lines 1m O! = T~ and 1m a = T~ are arbitrary, therefore, 

this proves the t heorem. 

2.4 Multiplicative decomposition theorem [14] 

Statement 

Let a function 'IjJ( O!) be analytic and non zero in the strip T _ < 1m a < T + and 

~(a) tends to zero uniformly as lal - 00 in the strip. Then in the given strip ~(a) 

can be factorized such that 

(2.4.1) 

where the functions ~ _ (O!) and 'IjJ + ( O!) are analytic and non-zero in the half planes 

rm a < T + and 1m a > T _, respectively. 

Proof 

Let 

](a) = log ~(a), (2.4.2) 
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which satisfies all the conditions of the additive decomposition theorem. Thus, the 

function ](0:) can be splitted as 

Substituting 

so that 

and 

1fi + ( 0: ) = exp (J + ( a: )) , 

1/J _ ( 0: ) - exp (J _ ( 0: )) , 

Thus using Eqs. (2.4.5a, b) in Eq. (2.4.3), result in 

which proves the result 

2.5 The Jones' method [14, 135] 

(2.4.3) 

(2.4.4) 

(2.4.5a) 

(2.4.5b) 

(2.4.6) 

The possible methods for the solution of Sommerfeld's half plane diffraction prob­

lem may be 
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• Green's function: Integral equation method 

• Dual integral equation method 

• Jones'method 

In this thesis, the Jones' method proposed by D. S. Jones [135] is followed, which 

provides a straight forward procedure for solving the problems using W-H technique. 

2.5.1 Problem formulation 

Consider a half plane problem. Steady state waves with harmonic time dependence 

e-iwt exists in two dimensional (x, y) space. There is a rigid boundary along the 

negative real axis and the plane waves 

(A = e-ikxcos 8-ikysin8 (0 < e < 7r) , (2.5.1.1 ) 

are incident on the screen. The total velocity potential cPt (x, y) can be written as 

(2.5.1.2) 

where cP is the diffracted potential and satisfies 

(2 .5.1.3) 

where k is assumed to have positive imaginary part which is necessary for the appli-

cation of W-H technique [14]. The following conditions apply: 

BcPt = 0 
By 

on y = 0, - 00 < x ::; 0, (2.5.1.4) 
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or equivalently 

B¢ = ik sin fJe -ikx cos 6 y = 0 - 00 < x _< 0, 
By " 

(2.5.1.5) 

B¢ B¢ . 
Byt and hence By are contmuous on y = 0, - 00 < x < 00, (2.5.1.6) 

¢t and hence ¢ are continuous on y = 0, 0 < x < 00. (2.5.1. 7) 

The different regions in which various potentials exist are shown in Fig. 2.3. 

y - axis 

Diffracted + Reflected waves 
Incident wave 

(1) 

Hard half-j:Dlane 

O¢t = 0 
8y 

, , , , , 

Diffracted - Incident waves 

(2) 

, , , , , , , , 
" 

" , , , , 
80 

Di'ffracted wave 

(3) 

Fig. 2.3 Different regions in the complex plane 

x - axis 
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Defining 

00 

¢(a, y) = ¢+(a, y) + ¢_(a, y) = ~ J ¢(x, y)eiOCXdx, (2.5.1.8) 

-00 

where 

o 
1 J . -I2ii ¢(x, y)etocxdx, (2.5 .1.9) 

-00 

(2.5.1.10) 

Further it is required that 

(2 .5.1.11) 

So that ¢+ is analytic for 1m a > -k2 and ¢_ is analytic for 1m a < k2 cos B. Applying 

Fourier transform (2 .5.1.8) on above Eq. (2.5.1.3), yields 

where 

2-
d ¢ 2-
-d 2 -, ¢ = 0, 

y 

Eq. (2.5.1.12) has solution 

_ { A1(a)e- iY + B1(a)eiY , 
¢(a, y) = 

A2 (a)e- iY + B2(a)eiY , 

(2.5.1.12) 

(2.5.1.13) 

y 2:: 0, 
(2.5.1.14) 

y ~ o. 
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In Eq. (2.5 .12) , the real part of'Y is always positive in the strip -k2 < 1m Cl:' < k2 cos e 

and therefore in Eq. (2 .5.1.14) one must have A2 = Bl = O. From condition (2 .5. 1.6) 

d¢(Cl:',O+) 
dy 

d¢(Cl:',O-) 
dy 

Thus letting -Al = B2 = A, in Eq. (2 .5.1.14) will give 

_ { A (Cl:')e-'YY, 
¢(Cl:', y) = 

-A(Cl:' )e'YY, 

(2.5.1.15) 

y ~ 0, 
(2.5.1.16) 

y ~ O. 

When a transform is discontinuous across y = 0, the notation can be extended as 

follows: 

(2.5.1.17) 

-00 

By using condition (2.5.1.7) 

(2.5 .1. 18) 

and by condition (2.5.1.6) 

(2.5 .1.19) 

and similarly 

(2.5. 1.20) 

Applying conditions (2.5.1.18 - 2.5.1.20) in Eq. (2.5 .1.16) will result in the following 

(2.5.1.21) 
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(2.5.1.22) 

(2.5.1.23) 

Now at this stage it is required that one has to deal with the equations which contain 

only the functions whose regions of regularity are known. Addition of Eqs. (2.5.1.21) 

and (2 .5.1.22) will result in 

(2.5.1.24) 

whereas subtraction of Eqs. (2.5.1.21) and (2.5 .1.22) will yield 

(2.5.1.25) 

Using Eq. (2.5.1.25) in Eq. (2 .5.1.23) will result into 

(2.5.1.26) 

Taking Fourier transform of Eq. (2.5.1.5) will give 

¢' (0) = k sin e . 
- V21f (a - k cos e) 

(2.5.1.27) 

For convenience, let us introduce the following notations 

¢_(o+) - ¢_(O-) 2D_, 

¢_(o+) + ¢_(o-) (2.5.1.28) 

Therefore, Eqs. (2.5.1.24) and (2 .5.1.26) become 

(2.5. 1.29) 
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¢~(O) + k sin B = -,D_. 
J27r (a - k cos B) 

(2.5.1.30) 

- -/ 
In Eqs. (2.5.1.29) and (2.5 .1.30) ¢+(O), ¢+(O), S_ and D_ are unknown functions 

and each of these equations holds in the strip of analyticity -k2 < 1m a < k2 cos B 

and is in standard W-H form. Substituting, = va + kva - k in Eq. (2.5.1.30) and 

arranging it in the form 

(2 .5.1.31) 

where va + k being regular in the upper half plane 1m a > -k2 and va - k being 

regular in the lower half plane 1m a < k2 cos B. It is noticed that first term on the left 

hand side of Eq. (2 .5.1.31) is regular in the upper half plane and the second term is 

regular in the strip -k2 < 1m a < k2 cos B whereas the right hand side of this equation 

is regular in the lower half plane. The middle term of Eq. (2.5.1.31) can be split ted 

in the following manner 

k sin B k sin B [1 1] 
J27rJa+k(a-kcosB) = J27r(a-kcosB) va+k - Vk+kcosB 

ksinB 

+ J27r (a - k cos B) Vk + k cos B' 
(2.5 .1.32) 

or 

(2.5.1.33) 

where H+(a) is regular in Ima > -k2 and H_(a) is regular in Im a < k2cosB. 

Substituting Eq. (2.5 .1.33) in Eq. (2.5.1.31) yields 

(2.5.1.34) 
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In the present form Eq. (2.5.1.34) defines a function J(a) which is regular in Ima > 

-k2 and in 1m a < k2 cos e, so it is regular in the strip -k2 < 1m a < k2 cos e, provided 

that J(a) has algebraic behavior as a ~ 00, hence one can use the extended form 

of the Liouville's theorem to determine the exact form of J(a). Now examining 

the behaviors of the functions appearing in Eq. (2.5.1.34) and by using the edge 

conditions [14 , 150] as a ~ 00 will yield 

I¢- (0+) I < C1 1al- 1 as a ~ 00 in T < k2 cos e, 

I¢~(O) I < C2 I al-~ as a ~ 00 in T > -k2, 

H_(a) < C3 Ial- 1
, as a ~ 00 in T < k2 cos e, 

(2.5.1.35) 

Using these asymptotic approximates (2.5.1.35) ofthe various functions in Eq. (2.5.1.34), 

it is observed that 

1 

J(a.) < C5 1a.1-'2 as a. ~ 00 in T < k2 cos e, (2.5.1.36) 

This implies that J(a.) is regular in the whole a.-plane and tends to zero as a. ~ 00 . 

Hence by extended Liouville's theorem, J(a.) must be identically equal to constant 

(zero). Therefore 

(2.5.1.37) 
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Substituting ¢~(O) and ¢~(O) in Eq. (2 .5.1.23), A(a) is found out to be 

A(a) = _ ksine . 
/2iiva - k (a - k cos e) Vk + k cos e 

(2.5.1.38) 

Finally by taking the inverse Fourier transform and substituting the value of A( a) 

into Eq. (2.5.1.16), one has 

oo+ia . 
1 .-:-----:----::' J e-tc:>x'F'l'Y 

¢(x, Y) = 4=-2 Vk - k cos e r.:-7:. ( da. 
1r ya - k a - k cos e) 

-oo+ia 

(2.5.1.39) 

The above contour integral of a certain type can be solved by using asymptotic meth-

ods. In sequel an asymptotic method for the solution of certain integrals will be 

outlined. Lastly the main steps while using the Jones ' method can be summarized 

as: 

(a) Extend the range of definition of the integral/partial differential equation from 

- 00 to 00 . 

(b) Apply the integral transform (Fourier, two-sided Laplace, Mellin etc). 

(c) Determine the line of junction (often it is called strip of analyticity). 

(d) Carry out the additive/multiplicative factorization of the kernel formed in the 

problem. 

(e) Separate the W-H functional equation into positive and negative portions. 

(f) Apply the extended Liouville's theorem to conclude the entire function = J(a). 

(g) Determine J (a) from the behavior of ¢( a) (which can usually be gleaned from 

physical consideration) at small x. 

(h) Evaluate the corresponding inverse transform. 
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2.6 Method of steepest descent [69, 136-138J 

The radiation and diffraction fields can be represented in terms of an integral 

representation. These integrals are often difficult and rather sometimes impossible 

to be evaluated in closed form (due to diverging field parameters). The integrands 

of these integrals in most of the cases contains a large parameter say X and one can 

approximate the integral in terms of X (due to large value contributing towards the 

integral) [138]. Some of the famous methods to solve sHch integrals are 

(i) Integration by parts 

(ii) Laplace method 

(iii) Method of stationary phase 

(iv) Method of steepest descent 

(v) Numerical integration methods etc. 

An appreciable number of standard text books on these methods are available 

e.g., [69, 136 -138]. In the forthcoming chapters of this thesis the method of steepest 

descent has been widely applied to approximate several integrals appearing in different 

boundary value problems. The method of steepest descent was originated by Riemann 

and developed by Debey [137] . 

Considering an integral of the form 

B 

I(X) = J j(z)exh(z)dz, 

A 

(X --t 00) (2.6.1) 

in which it is assumed that j(z) and h(z) are the analytic functions of the complex 



44 

variable z = x + iy along the path A to B in the complex z - plane and x to be the 

large and positive parameter. One can consider X to be real, if not, writing X = Xoei[i 

and eit9 can be absorbed into h(z ). The magnitude of the integral crucially depends 

on the real part of h(z ). Writing h(z ) = u (x, y) + iv (x, y) , (7.~ and v are real) then 

(2.6 .2) 

The bound for the integral I is given by 

(2 .6.3) 

where L is the length of the contour, j is the maximum value of lJ(z) 1 on the path 

and U is the maximum value of u on the path from A to B. Clearly Eq. (2.6.3) might 

be an over estimate since a path deformation might produces a much less value of u. 

Hence the best bound is chosen by taking the path such that u is as small as possible. 

2.6.1 Contours of u(x, y) 

Imagine u(x, y) to be the height of the surface above a reference plane u = O. 

It will be found expedient to deform the path of integration so that it join the end 

points A and B and passes along the low ground of the surface where u is as small 

as possible. An overall picture of u(x, y) can be obtained by considering the contours 

u = constant. It is also useful to visualize the family of contours v = constant which 

are the lines of constant phase 1m h(z ) = constant. The two families of the curves are 



easily seen to be mutually orthogonal as 

ou ov ou ov 
\lu.\lv = ox ox + oy ay ' 

By using Cauchy-Riemann equations, Eq. (2.6 .4) will t ake the form 

'\7 '\7 = ou av _ ou ov = 0 
vU . v V ox ox ox ox ' 
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(2.6.4) 

(2.6.5) 

i. e., \lu is perpendicular to \lv. The points at which h'(z ) = 0 is called a saddle point 

or col. Let z = Zo = Xo + iyo be a saddle point. As h'( z ) = 0 so 

au = av = ou = ov = o. 
ox ox oy oy 

(2.6.6) 

Observe that u (and also v) cannot have a maxima or minima at a saddle point (xo , Yo) 

because ~~ = ~~ = O. Also it is observed that ~:~ + ~ = 0 implies that U xx = -uyy 

which means that both of the quantities Uxx and U yy have opposite signs. Further 

__ 2 _ _ ( 2+2 ) < 0 - U xx U yy uxy - U xx uxy _ . (2.6.7) 

uy x U yy 

The above relation also implies that Zo = (xo , Yo) is neither a maxima nor a minima. 

The saddle point links the valleys and ridges on the surface u( x, y) , the curve v = 

constant will go either up a ridge or down a valley since these are the derivatives of the 

greatest change. These are the points of steepest descent for which the neighborhood 

of the saddle point produces the most significant contribution. A sketch of the saddle 
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y 

A 

o 
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Fig. 2.4 Vallies and Ridges 
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B 
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x 
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At a saddle point we have ~~ = ~~ = 0 that is h'(zo) = O. Further it is assumed that 

h"(zo) i= 0 and along the path of steepest descent one can expand h(z) in a Taylor's 

series as 

h(z) = h(zo) + ~ (z - zO)2 h"(zo) + ... , (2.6.8) 

or 

h(z) - h(zo ) = ~ (z - zO )2 h"(zo). (2.6.9) 

As v = constant so right hand side of above equation is purely real. Thus introducing 

a variable t2 such that 

(2.6.10) 
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and it changes the complex variable z to a real variable t and describes the path from 

valley to valley along a route that descends most rapidly on the either side of the 

point zoo Now using Eq. (2.6.10) in Eq. (2.6.1), we have 

B 

I(X) = jj(z )eX(h( ZO)-t2)dZ. 

A 

The above integral can be rearranged in another suitable form as 

B 

I(X) ~ eXh(ZO)jj(z)e-xt2 dz dt. 
dt 

A 

(2.6.11) 

(2.6.12) 

As the exponential in the above integrand decays more rapidly as compared to the 

function j (z), therefore further simplification of above integral will result in 

tl 

I(X) ~ exh(zo)j(zo) j e-xt2 ~~ dt , (2.6.13) 

-tl 

provided that j(zo) is not singular in the vicinity of z = zo o The remaining task left 

is to calculate the value of ~:. Writing Eq. (2.6.10) in the form 

(2.6.14) 

and introducing the polar coordinates 

(2.6.15) 

in Eq. (2.6.14), it can easily be concluded from Eq. (2 .6.14) that 

(2.6.16) 

This gives 
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which simplifies to 

'7T 11 " I-! TO = eTt "2h (ZO) (2 .6.17) 

By using Eq. (2.6. 17) in Eq. (2 .6.15) and calculating ~~, we arrive at 

1 

dz _11 h" ( ) 1-2" i!L +iBo 
dt -"2 Zo e 2 • (2.6. 18) 

Substitution of Eq. (2. 6.18) in Eq. (2. 6.13) will give 

or 

(2.6.19) 

In order to elaborate the method of steepest descent, it has been applied to two 

famous examples, first to establish Stirling's formula and second to approximate the 

Bessel's function of first kind and order zero. 

The Stirling's Formula 

Consider the integral 
00 

s! = J e-Ci.cl da 

o 

S ---t 00. 

S ---t 00 . 

In order to solve the above integral, substitute a = SZ, therefore 

00 

s! = S 5+ 1 J e-sz zS dz, 

o 

(2.6.20) 

(2. 6.21) 

(2. 6. 22) 
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which can also be written as 

00 

8! = 8s+1 J e(ln z- z)sdz . (2.6.23) 

o 

On comparing Eq. (2.6.23) with Eq. (2 .6. 1) it is noted that 

h (z ) = (In z - z ), j(z )=l, I hI! (z) I z= 1 = l. (2.6.24) 

Using various values from Eq. (2 .6.24) into Eq. (2.6 .19), the value of the integral in 

Eq. (2.6.23) becomes 

The Bessel's function 

Consider 
1 

1 J eiCtz 
Jo(a) = - vr=zzdz , 

7l" 1 - z2 
-1 

(2.6.25) 

a ~ oo, (2.6 .26) 

where Jo (a) is called the Bessel's function of the first kind and order zero. It is 

noted that integration by parts fails because for the choice of first function to be eiCtz 

1 

and the second function to be (1 - z2f2 dz , leads to a non asymptotic expansion. 

1 

Alternatively if first function is taken to (1 - z2f2 and the second function is taken 

to be eiCtzdz leads to a singular expansion at z = ±l. Thus to use the method of 

steepest descent, the contour of integration has to be deformed into a constant phase 

contour. Here 

h (z) = iz = i(x + iy) = ix - y. (2.6.27) 
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For z = ±1 , the phase is ±1. Thecontour of integration is shown in Fig. 2.5. 

(-1,y) C 2 (1,y) 
.----------------.-. --~)~---------e 

(D,y) 

--e---'-------If---------:-:-e--
(1,0) (-1,0) 

Fig. 2.5 Contour of integration of Bessel's function 

Thus 

(2.6.28) 

As y ---t 00, the integral along C2 vanishes because the integrand vanishes uniformly 

there. On C1 : z = -1 +iy and on C2 : z = 1 +iy. Thus 

- l+ioo 1 

1 J e
iaz 

1 J e
iaz 

Jo(a) = - Jf=Z2dz + - Jf=Z2 dz , 
7r 1 - z2 7r 1 - z 2 

-1 l+ioo 

00 0 

ie-ia J e-
ay 

ie
ia J e-

ay 

- -- dT+- dy. 
7r J2iY + y2 7r J -2iy + y2 

o 00 

(2 .6.29) 
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The above integral after some mathematical manipulation results in 

(2.6.30) 

The above integrals are the Laplace type integrals and only the immediate neigh-

borhood of y = 0 contributes to their asymptotic developments for large a. For the 

leading order term integrals (2.6.30) can be written as 

(2.6.31) 

Substituting ay = t , will yield 

(2.6.32) 

which finally simplifies to be 

Jo(s) ~ {f cos (a - J) a~oo. (2.6.33) 

2.7 The Daniele-Kharapkov method [20, 21, 139J 

The central problem in solving the matrix W-H equation is the factorization of 

the kernel matrix (usually a 2 x 2 matrix). Let a be the complex variable and G(a) 

be the 2 x 2 matrix whose elements are the functions of a, then the splitting of the 
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form 

(2.7.1) 

is required, where G+(o:) is regular in the upper half plane and G_(o:) is regular 

in the lower half plane. It is very important to emphasize at this stage that the 

above factorization (2.7.1) must be carried out in such a way that the elements of the 

factor matrices have algebraic behavior as lad ~ 00 in the appropriate half planes, 

respectively. No method is known of factoring a general 2 x 2 matrix. However, a 

number of ways exist for the matrices of a particular form. These are [139J 

• The scalar method, 

• The method of logarithm, 

• The Wiener-Hopf-Hilbert method [17 - 19J , 

• The Daniele method [20J , 

• The Kharapkov method [21J , 

• The Jones' method [22J . 

Since there are many similarities between the Daniele's method [20] and the Khara­

pkov's method [21J yet it can be said safely that the later contains the former method 

in it. Now a gist of the Kharapkov's method [21J is presented. Kharapov [21J consid­

ered a matrix of the form 

G(o:) = I+I1Q, (2 .7.2) 



53 

where p, is a scalar and Q is a polynomial matrix which can be written as 

G(a) = I+~ (Q+Q) + ~ (Q-Q) , (2 .7.3) 

where tilda denotes the formal inverse, i.e., Q = (detQ) Q-I [139]. Eq. (2.7.3) can 

be put in another form as 

(2.7.4) 

with aI , a2 being scalars and 

C = Q_Q = [l m] 
n - l ' 

(2.7.5) 

where l, m, n are polynomials and C is called the 'commutant matrix' by Kharapkov 

[21] and its formal inverse is equal to negative of it and 

(2.7.6) 

Kharapkov [21] writes l2 + mn = g2 j , where 9 and j are polynomials and j being 

non-square of minimum degree. The eigen values of G are calculated to be 

(2.7.7) 

T he eigen values gl and g2 are related through an 'index' E. Once the branch VI is 

decided, the index E is computed by the formula 

1 (21 
E=- log- . 

2 g2 
(2.7.8) 
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Let us introduce a quantity F defined as 

E 

F= ,,/1' (2.7.9) 

On eliminating al and a2 from Eq. (2.7.7) in view of Eq. (2.7.8), one gets 

(2.7.10) 

Since det G =a~ - a~g2 f. Therefore 

(2.7.11) 

By using Eq. (2.7.11) into Eq. (2.7.10), will yield 

al = v'det G cosh E, 

_ ~GsinhE 
a2 yaetu n' 

gyf 
(2.7.12) 

By substituting Eq. (2.7.12) into Eq. (2.7.4), one gets 

r;-;-;::; [ . sinh € ] G(a) =ydetG coshE 1+ gv'f C . (2.7.13) 

On introducing F from Eq. (2.7.9), it takes the form 

[

sinh (F v'f) 1 
G(a) =v'detG cosh (FVJ) 1+ gv'f C. (2.7.14) 

Matrices of this form, whose determinants and indices differ, can be multiplied simply 

by taking the product of their determinants and sum of their indices. This suggests 

how G can be factorized. Therefore 

det G= (det G)+ (det G)_ (2.7.15) 
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and 

(2.7.16) 

Then, G commutes, i.e., 

(2.7.17) 

with 

(2.7.18) 

Lastly the factors given in Eq. (2 .7.18) sometimes suffer from the presence of poles 

occurring due to zeros of g. Luckily this hurdle can be removed as follows. Noting 

that 

(2.7.19) 

Let us write 

G=GI, 

which implies 

(2.7.20) 

Thus, a new factorization is achieved 

(2.7.21) 

where 

(2.7.22) 

These factors do not have undesirable poles. 
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2.8 The Green's function [140, 141] 

Let £ be a differential operator and g( x) be a continuous function, £ and g( x) are 

given and remaining is to find an unknown function y(x) which satisfies 

£ [y( x) ] = g(x), (2.8. 1) 

for specified boundary conditions. If the operator £ is one-one t hen the £ -1 also 

exists such that 

y(x) = £-1 [g(x)]. (2.8.2) 

Then Eq. (2.8.2) can also be expressed as 

y(x) = J £-1 [g(xo)O' (x - xo) dxo]. (2.8.3) 

The solution of Eq. (2.8.1) when 

g(x) = 0' (x - xo) , (2.8.4) 

is called the Green's function G (x, xo) . The Green's function then satisfies 

£[G(x,xo)] = O'(x - xo), (2.8.5) 

with the same boundary conditions as on the function y(x) . In engineering terminol­

ogy the Green's function is the impulse response of the system and also known as the 

(transfer function ' [140]. 
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2.8.1 Construction of the Green's function 

The Green's function will be different for the different equations. 8ince every 

second order non-homogenous differential equation can be converted into 8turm-

Liouville (8-L) form. Therefore, now the construction of the Green's function for 

the 8-L boundary value problem is presented. 

[d~ {p(x) ~~} - q(x)y] + gr(x)y = g(x), (2.8.6) 

subject to the homogeneous boundary conditions [141]. An alternate form of Eq. 

(2.8.6) is 

[£ + gr(x)] = g(x), (2.8.7) 

where g is an eigen value of the corresponding 8-L system. Now if the Green's function 

exist for Eq. (2.8.6) then its solution can be written as 

b 

y(x) = J g(xo)G (x, xo) dxo· 
a 

For a unit impulse deriving function, Eq.(2.8.6) will take the form 

[d~ {p(x) ~~} ~ q(x)G] + gr(x)G = 6 (x - xo) , 

(2.8.8) 

(2.8.9) 

where G(x, xo) is the Green's function. At x =1= xci Eq. (2.8.9) will take the form 

[! {p(x) ~~} - q(x)G] + gT(X)G = 0, (2.8.10) 

the solution of Eq. (2.8.10) can be written in the form 

{ 

AlYl(X) 
G(x, xo) = 

A2Y2(X) 

a:::; x:::; Xo, 
(2.8.11) 

Xo :::; x :::; b. 
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By using the various properties of the Green's function, the constants Al and A2 

appearing in Eq. (2.8.11) can be determined. The continuity of C(x, xo) at x = Xo 

implies that 

(2.8.12) 

To establish that the derivative of G(x, xo) is discontinuous at x = Xo, integration of 

Eq. (2.8.9) from x = Xo - c to Xo + c will yield 

~~ ~~ 

lim J [~ (p(x) dd
G

) + {-q(x) + er(x)} c] dx = lim J <5 (x - xo) dx. 
10--->0 dx x 10--->0 

xo-e: xo-e: 
(2.8.13) 

Since q(x), r(x) and G(x, xo ) are continuous at x = Xo, Eq. (2.8.13) reduces to 

(2.8.14) 

which simplifies to 

{ 
dG(xo+, xo) _ dG(xo_, xo)} = _ 1_ 

dx dx p(xo)' 
(2.8.15) 

or 

(2.8.16) 

which shows the discontinuity of the derivative of the Green's function . Solving Eqs. 

(2.8.12) and (2.8.16) will lead to 

(2 .8.17) 
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Substituting the values of Al and A2 into Eq. (2 .8.11) gives the Green's function in 

the closed form as 

{ 

yz (xo) (x) 
G( ) 

= W (xo )p(xo) YI 
X,xo -

Yl (xo) (x) 
W (xo)p(xo) Y2 

a ::; x ::; xo, 
(2.8.18) 

xo ::; x ::; b. 

Thus some of the properties of the Green's function can be summarized as follows: 

• G(x, xo) satisfies the homogeneous differential equation except at x = Xo. 

• G(x, xo) is symmetric with respect to x and Xo . 

• G(x , xo) sat isfies the homogeneous boundary conditions. 

• G(x , xo) is continuous at x = Xo. 

• The derivative of G(x, xo) is discontinuous at x = Xo. 

2.9 The Maliuzhinetz function [142-148] 

In the study of diffraction of acoustic/electromagnetic waves by an impedance half 

plane the central role is played by the function M'/r (z) , defined as 

( ) 
{

I JZ 7f sin t - 2V2 sin ~ + 2t } 
M'/r Z = exp - -8 dt , 

7f cos t 

° 
(2. 9.1) 

known as Maliuzhinetz's function introduced by Maliuzhinetz [142] . In (2.9.1) , z is 

complex and the integration is along the path not crossing any of the singularities 

of the integrand [143]. In [142], the aut hor discussed some the analytic properties 
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of the introduced function shortly. In another paper [144] Maliuzhinetz mentioned 

that M. P. Sacharowa tabulated the Maliuzhinetz function for numerical computation 

purposes but no reference to the literature was given. The two main propositions 

in Maliuzhinetz method are the inversion formula for the Sommerfeld integral and 

the nullification theorem which can be found in [145]. Bucci [143] and Bowman [82] 

derived some analytic properties of the Maliuzhinetz function in sufficient details. 

Since the apparent complication of the expression (2.9.1) is a major deterrent to its 

use so it is desirable to compute it in a convenient manner and hence it can easily be 

incorporated into the scattering code. 

Volakis and Senior [146] derived two simple expressions, one for small argument 

and the other is for large complex argument of M1f (z) . 

For small argument, 

(2.9.2) 

where a = 116 (1 - V2 +~) = 0.01390, and a small argument approximation to M1f (z) 

is therefore 

(2.9.3) 

If y » 0, 

[ 
1 ] ~ M1f (z) = 1.05302 cos 4 (z - i'1) y > 8. (2 .9.4) 

where '1 = In 2 = 0.69315. These expressions (2.9.3) and (2.9.4) must be employed 

within the strip 0 ::; x ::; ~. For other values of x the following recurrence relations 

of M1f (z) must be employed to relate M1f (z) to its value at the corresponding point 



61 

within the strip 

(2.9.5) 

with M1f ( ~ ) = 0.96562, 

(2.9.6) 

and 

M1f (z* ) = M; (z) , (2 .9.7) 

where the asteriks denote the complex conjugate. Hu et al [147] applied the t anh 

transformation for the numerical computation of the Maliuzhinetz function Mn (z) 

and showed that their analysis is valid for all values of Z and n . Another detailed 

account of excellent work for the development of FORTRAN subroutines for the 

numerical computation of Maliuzhinetz function can be found in the report of Osipov 

and Stein [148] . Now some of the important analytic properties of the Maliuzhinetz 

function are enlisted here. 

2.9.1 Some properties of the Maliuzhinetz function [82] 

(a) M1f (z) is an even meromorphic function of z. 

(b) Its logarithmic derivative is given to be 

M~ (z ) sin z v'2 sin ( ~ ) z 
-:-:''--:--:- = - -- + ----'-=~ 
M1f( z) 8cos z 4cos z 47fcOS Z 

(2.9.7) 

(c) Two Maliuzhinetz's functions are multiplied as follows 

(2.9.8) 
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(d) By successive application ofEq. (2.9.8), the following expressions can be obtained 

(2.9.9) 

Mn ( z+ 3;) Mn ( z- 3;) = ~ [Mn (;)f ~:::, (2.9. 10) 

Mn (z+1r) _ cos (~+~ ) 
Mn (z - 1r) cos (1- ~ ) ' 

(2.9 .11) 

and 

(2.9.12) 

( e) The function M (z) can be expressed in t erms of the function M n (z) by the 

product 

(f) By manipulating expression (2.9.13) with expression (2.9.12) one can derive two 

more identities of the function M (z) . 

M (1r + z) M~ (z + e + 21r) M~ (z - e + 21r) 
-

M (1r - z) M~ (z + e - 21r) M~ (z - e - 21r) 

= cot ( : + ~ + ~) cot ( : _ ~ + ~) = cos e - sin z 
2 2 4 2 2 4 cos e + sin z ' 

(2. 9.14) 

and similarly 

M ( - 1r - z) cos <p - sin z 
--'-----'- = 
M ( -1r + z) cos <p + sin z . 

(2. 9.15) 
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Chapter 3 

Wiener-Hopf Analysis Of 

Diffraction Of Acoustic Waves By 

A Soft-Hard Half Plane 

The problem of diffraction of acoustic waves by a soft-hard half plane is a very 

special and substantial academic problem because: 

(i) Two unusual features arose in this boundary value problem [34]. 

(ii) It constitutes the simplest half plane problem which can be casted in term of 

two coupled W-H equations that cannot be decoupled trivially [33]. 

After Rawlins' work [34], the same problem was again addressed by Chakrabarti 

[151] and he claimed to add the correct edge condition in the corresponding boundary 

value problem and pointed out that the W-H equations which arose in the paper 
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of Rawlins [34] did not hold in the strip of analyticity which is one of the most 

important feature about the W-H analysis. The same boundary value problem was 

later on addressed by Heins [152] . He employed a function theoretic method which 

is based on the combination of ideas of Wiener and Hopf, and Car leman on singular 

integral equations. In a subsequent paper Heins [153] presented the detailed matrix 

factorization of the matrix appearing in the same boundary value problem. 

Keeping in view of the above mentioned contributions about the soft-hard half 

plane, in this chapter two problems have been studied. The first problem deals with 

a line source diffraCtion by a soft-hard half plane. The introduction of line source 

changes the incident field and the method of solution requires a careful analysis in 

working out the diffracted field. The second problem is related to the point source 

diffraction by a soft-hard half plane. The introduction of a point source introduces 

another variable and an additional Fourier transform is required to transform the 

problem into two dimensions. These considerations are important since the line source 

and the point source are better substitutes for the plane wave situation and also the 

point sources are regarded as fundamental radiating devices [54]. The mathematical 

route of the problem consists of Fourier transform, the W-H technique and the method 

of steepest descent. A key attribute of the W-H technique is that it is not only 

independent of the incidence and reflection angles [73] but also provides an insight 

into the physical structure of the diffracted field [14]. The mathematical results of this 

chapter for the line source incidence modify the results of plane wave incidence [33] by 
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a multiplicative factor which agrees well with the results already known [35, 46]. This 

can be considered as a check of correctness of the results presented in this chapter. 

Some graphs showing the effects of parameters kp (distance of the observer from the 

point of observation), kpo (distance of the source from the point of observation) and 

80 (the angle of incidence) on the diffracted field 'I/J are also plotted. 

3.1 The boundary conditions 

The Dirichlet (soft or pressure release) and Neumann (hard or rigid) boundary 

conditions are the classical one in acoustics and these conditions are also involved 

in the standard form of Babinet's principle. If ¢ is the velocity potential then the 

boundary conditions on a soft surface is the Dirichlet one, i.e., ¢ = O. At the hard or 

rigid surface the normal component of the fluid velocity is zero and thus giving rise 

to the Neumann boundary condition ~~ = 0 [154]. 

Another way to derive the soft-hard boundary conditions is to consider a surface 

which may yield a little under the influence of pressure, e.g., a surface having an 

absorbing lining on one of its face [34]. Such a surface is described by an impedance 

relation between pressure p and the normal velocity fluctuation and is mathematically 

described by a relation of the form 

op 'kf3~- 0 an-'/, p-, 

[155], such that Re(f3) > 0, where n is the normal pointing into the absorbing lining, 
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k = ~ > C is a velocity of sound and f3 is the complex specific admittance of the c 

absorbing lining. For an acoustically hard surface 1f31 - 0 and 1f31 - 00 corresponds 

to an acoustically soft surface. Rawlins [34] examplified such a surface to be a barrier 

made of hard board having a foam rubber sheet on one of its face . 

3.2 The line source diffraction problem 

Consider the diffraction of an acoustic wave due to a line source located at the 

position (x o> Yo) by a soft-hard half plane located at x > 0, y = 0 so that the edges lie 

along the z-axis. Thus the field is assumed to be independent of the z-axis and 

let 80 be the angle of incidence. The geometry of the problem is depicted in Figure 

3.1. 

y-axis Line Source 

( x. y ) 

X-axlS 
Hard 

Fig. 3.1 Geometry of the half-plane problem 
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For harmonic acoustic vibrations of the time dependence e- iwt, which are assumed 

and suppressed, a solution of the wave equation 

( 
82 fj2 ) 

8x2 + By2 + k2 'ljJt (x, y) = 6 (x - xo) 0 (y - YO ) , (3.1) 

is required, where 'ljJt is the total velocity potential, and the boundary and cont inuity 

conditions are given as follows: 

and 

'ljJt (x , 0+) = 0, 

B'ljJt (x, 0-) = 0 
By , 

'ljJt (x ,O+) = 'ljJt (x ,O- ) , 

x> 0; (3.2) 

x > 0, (3.3) 

x < 0, (3.4) 

x < O. (3.5) 

For a unique solution of the problem, it is required that the radiation condition [14] 

1 

as r = (x2+ y2) 'i ~ 00, (3.6) 

must be satisfied. Following [34, 37], for the analysis purpose it is convenient to 

express the total field for the line source incidence as 

{ 

'ljJi (x, y) + 'IjJ (x, y) 
'ljJt(x,y) = 

'IjJ (x, y) 

y > 0, 
(3.7) 

y < 0, 

where 'ljJi (x , y) accounts for the inhomogeneous source term and 'IjJ (x , y) represents 

the diffracted field. In Eq. (3.7) 'ljJi (x, y) is the incident field satisfying the equation 

(3.8) 
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and the diffracted field 'IjJ (x, y) satisfies the Helmholtz equation 

(3.9) 

For analytic convenience it is assumed that the wave number k has small imaginary 

part for which k = kr + iki , where kr and ki are both positive and ki ---t 0+ is the loss 

factor of the medium. The appropriate Fourier transform pair is defined as 

00 

'if; (a, y) = J 'IjJ (x, y) eiOlxdx, (3.10) 

-00 

and 
00 

'IjJ (x, y) = 2~ J'if; (a, y) e-iOlxda. (3.11) 
-00 

The solution of inhomogeneous Eq. (3 .8) can be obtained by using the Green's func-

tion method as [140] as follows: 

Applying Eq. (3.10) to Eq. (3.8) will result in 

(3.12) 

where K2 = (k2 - a2) and G (a, y, Xo, Yo) is the Green's function corresponding to 

the concentrated source located at (xo,yo). The homogenous solution of Eq. (3.12) 

can be written as 

(3.13) 

As the Green's function satisfies homogeneous boundary conditions, therefore, a suit-



able form of the radiated field can expressed as 

{ 

C (a )e')'(a)y 

G (a, y ; xo, Yo ) = 
C(a )e-,(Q)Y 
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- 00 < y < Yo 
(3 .14) 

Yo < Y < 00, 

where C is an unknown constant, C is taken to be same for both cases by using the 

property that the Green's function is continuous across the boundary y = Yo. The 

above result can further be simplified as 

(3.15) 

From Eq. (3.15) one gets 

dG 
dy = - C, (a) e--y(a)ly- yol sgn (y - Yo) , (3.16) 

where sgn denotes the signum function defined as 

1 x>O 

sgnx = o x= O (3.17) 

- 1 x < O. 

To find the unknown constant appearing in Eq. (3 .15), integrating Eq. (3.1 2) from 

Yo - c to Yo + c, where c is a small vanishing quantity, will result into 

(3.18) 

The constant C can be determined by utilizing another property of the Green's func-

tion that the derivative of Green's function is discontinuous at y = Yo . Using Eq. 

(3.15) into Eq. (3.18) and simplifying, C is determined to be 

eiQXo 

C = 2iK(a) ' (3 .19) 
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where I (a) = - iK (a) [14] has been used in Eq. (3.19). Using I (a) = -iK (a) and 

the value of C in Eq. (3 .15) , the Green's function (influence function) due to a line 

source located at (xo, YO) is determined to be 

-::1:. (a y) = 1 eiaxo+iK(a)ly-yol 
'f't' 2iK(a) , (3 .20) 

where K (a) = -J k2 - a2 . Defining K (a) , the square root function, to be that branch 

which reduces to +k when a = 0 and the complex plane is cut either from a = k to 

a = koo or from a = - k to a = - koo . 

For the diffracted field the solution of homogeneous Eq. (3 .9) satisfying the radi-

ation condition can formally be written as 

_ { Al (a) eiK(a)y 

7fJ(a,y) = 
A2 (a) e-iK(a)y 

y>O 
(3 .21) 

y < 0, 

where Al (a) and A2 (a) are the unknown coefficients to be determined. 

Taking the Fourier transform ofthe boundary and continuity conditions (3.2-3.5) 

will yield 

and 

00 

7fJ+ (a, 0+) = - J 7fJi (x, 0+) eiaxdx, 

o 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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For a unique solution of the problem, the edge conditions require that 'l/Jt and its 

normal derivative must be bounded near x = 0 and these must be of the following 

orders [33] 

'l/Jt(x,O) = - 1 +0 (xi ), x -+ 0, (3.26) 

B'l/Jt~:,O) = 0 (x-i ), x -+ O. (3.27) 

The substitution of solution (3.21) into boundary and continuity conditions (3.22 -

3.25) will yield 

and 

00 

Al (a) = - j'l/Ji (x, 0+) eiaxdx + 'l/J-I (a), 
o 

where 'l/J- 1,2(a) and 'l/J+ 1,2(a) are defined as follows: 

o 

'l/J-I (a) = j 'l/J(x, O+)eiaxdx, 
-00 

o 
-::r. ( ) _ 'jB'l/J(X,O-) iaxd 
'1'-2 a - 2 By e x, 

-00 

00 

7jj+I (a) = j ['l/J(x, 0+) - 'l/J(x, O- )J eiaxdx, 
o 

(3 .28) 

(3 .29) 

(3.30) 

(3.31) 

(3.32) 

(3 .33) 

(3.34) 
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and 
co ./, ( )( ) _ -'J [B?jJ(X,O+) _ B?jJ(x, 0-)] ioxd' 

'f' +2 a a - 2 By By ex. (3.35) 

o 

Due to the analytical properties of the Fourier integrals [134]' ?jJ _ 1,2 (a) and '1i + 1,2 (a) 

are regular functions of a in the half planes 1m a > 1m k cos eo and 1m a < 1m k, 

respectively. By using the edge conditions in (3.26 - 3.27), it can be shown that when 

lal -+ co in the respective regions of regularity then 

'1i+l(a) = 0 (a- ~ ) , 

'1i±2(a) = 0 ( a-i) . 

(3.36) 

(3.37) 

(3 .38) 

The elimination of Al (a) and A2 (a) between (3.28 - 3.31) leads to the following 

matrix Wiener-Hopf equation 

(3.39) 

valid in the strip of analyticity 1m k cos eo < 1m a < 1m k, as shown in Fig. 3.2. 
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1m a 

c- c+ 

----------------~----------~~------£-

• ~ = a . ------
kcos8 o 

----------------------~---------------------------.Re a o 

- k 

n 
Fig. 3.2 Branch cuts and integration lines in the complex plane 

The bold letters are used to denote the matrices and H(ex), W±(ex), q(ex ) and r( ex ) 

are given as follows: 

H(ex) = [ 1 1/K

1

(ex) ] , 

- K(ex) 
(3 .40) 

(3.41 ) 



and 

00 

q(a) = j 'l/Ji (x, 0+) eio:xdx, 

o 

00 

( ) _ 'j8'l/Ji (x , 0- ) io:xd 
r a - 2 8y e x. 

o 

3.3 Solution of the matrix W -H equation 

Incidentally, the kernel matrix H( a), which can be written as 

1 [ OIl H( a) = I + f{ (a) , 
- (k2 - a2 ) 0 
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(3.42) 

(3.43) 

(3.44) 

is the same as in [33], where I is the unit matrix. Although the matrix H(a) has 

been factorized by Btiytikaksoy [33] by using the Daniele-Kharapkov methods [20, 21] 

yet for the sake of completeness and readers convenience, the complete factorization 

details have been given in Appendix A. Some of the import ant results are given below 

with 

where 

and 

[ 

coshx(a) 
H+(a) = 21

/
4 

, ( a) sinh x ( a ) 

sinh x (a) / , (a) 1 ' 
cosh x(a) 

i a i [ a] x ( a) = - '4 arccos k' x ( - a) = - '4 7f - arccos k ' 

(3.45) 

(3.46) 

(3.47) 

(3 .48) 
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Also we note that as lal ~ 00, the orders of the elements of H+(a) can be calculated 

as follows. From Eq. (3 .47) 

(3.49) 

or in another convenient form 

(3.50) 

As lal ~ 00 

(2) i 1 
eX(o) f'V k 0 (a)4 (3.51) 

and 

(3 .52) 

Hence 

(3.53) 

and 

1 1 1 

24coshx (a) f'V (4kt4 0 (a)4 . (3 .54) 

Keeping in view of the Eqs. (3.49 - 3.52) the order estimates of the other elements 

of the matrix H+ (a) can be easily determined and these are found to be 

(3.55) 

and 

(3.56) 
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Also keeping in view H+( -0) = H_( +0) we found the orders to be 

(3.57) 

Using the factorization of the kernel matrix, Eq. (3.39) can be rearranged as 

1 1 [ q (0) j H+ 'l1 + (0) = 2 [H_ (0) J - 'l1 _ (0) - 2 [H_ (0) J - . 

r (0) 
(3.58) 

Eq. (3.58) is the matrix Wiener-Hopf equation. To make it regular in the upper and 

lower half planes it is required to split the term 

To achieve this end, the additive decomposition theorem [14J is applied which results 

in 

where 

oo+ic 
= ±_1 J T(~) d~ 

27ri (~ - 0) 
-oo+ic 

oo+ic 1 

_ ±_1 J 2- 4 [coshx(-~)q(~) - r(~)sinhx(-~)lr(-OJd 
2'7fi (~ - 0) ~, 

-oo+ic 

(3.60) 
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and 

oo+id 

_ ±_1 J S(~) d~ 
27ri (~ - a) 

-oo+id 

oo+id 1 

±_1 J 2-4 [-q (~), (-~) sinhx (-~) + r (~) coshx (-0] d~. 
27ri (~ - a) 

-oo+id 

(3.61) 

Hence Eq. (3.58) can finally be arranged as follows: 

(3 .62) 

The left hand side of Eq. (3.62) is regular in the upper half plane 1m a > 1m k cos eo 

and the right hand side is regular in the lower half plane 1m a < 1m k and hence by the 

analytic continuation principle they define an entire matrix valued function p . (a). 

By taking into account the order relations (3.36 - 3.38), Eqs. (3.46) and (3 .57), it 

can be concluded from the extended Liouville's theorem that P* is a constant matrix 

of the form 

(3.63) 

Thus the solution of Eq. (3.62) becomes 

(3.64) 
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where the unknown constant p* can be determined as follows. Simplification of Eq. 

(3.64) will give 

(3.65) 

By considering the order relation in Eq. (3.57) , the unknown constant p* can be 

specified with the help of Eq. (3.65) as follows, 

with 

(3.67) 

The correct behaviors of 7fj -1 (a) and 7fj - 2 (a) are recovered if 

p* - T_ = O. (3.68) 

Hence the expressions for 7fj - 1 (a) and 7fj - 2 (a), the elements of 'l1 _ (a) defined in Eq. 

(3 .41), are given as 

1>-1 (a) ~ [COShX ( - a) { - 2~i_Z: [coshx ( - f,) q (f,) - (; ~)~inhX ( - 0 h H) J dE, } 

+ sinhx(-a) {2ip*_ ~ ooJ+ia [_q(~) 1 (-~)sinhx( -O+7'(OCOShX (-~)ld~}1 ' 
I (-a) 27l'~ (~ - a) 

-oo+ia 
(3 .69) 
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and 

;j;_,(a)= ['Y (-a) sinhx( -a) { - 2~i_l~ [coshx( -f,) q (0 -(; ~)~inhxH) hH)1 elf, } 

1 ( ) 
{ 

1 * 1 ooJ +ia [-q (~) 'Y (-0 sinhx ( -~) + r (0 coshx (-~ ) l dC}] 
+cos 1X -a 24 p - - <, . 

27fi (~ - a) 
-oo+ia 

(3.70) 

3.4 Far field solution 

Now by substituting Eq. (3.69) into Eq. (3.28) and then the result in Eq. (3.21) 

and taking the inverse Fourier transform, the diffracted far field for y > 0 is given to 

be 

1/J(x,y) = ~ Joo [COShX(-a) {_~ =J+ia[COShX(-~)q(~) -r(OSinhX(-O/'Y(-Old~} 
27f 27f2 (~ - a) 

-00 -oo+ia 

{ 

oo+ia }] + sinhx( -a) 2tp* _ ~ J [-q (~) 'Y ( -~) sinhx (-~) + r (e) coshx( -~)l de 
'Y (-a) 27f2 (~ - a) 

-oo+ia 

xeiK(o)y-i" da - 2~ J {J,pi (x, 0+) ei"dx} eiK(Ct)y-iCtXda. (3 .71) 

-00 0 

To determine the far field behavior of the diffracted field the following substitutions 

can be introduced 

x = p cos B, y = p sin B (0 < 8 < 7f) , (3.72) 

Xo = PocosBo, Yo = PosinBo (7f < 80 < 0), (3.73) 



80 

and the transformation 

a = -kcos(e + i(), (3.74) 

where ( given in Eq. (3.74) is real. The contour of integration over 0: in Eq. (3 .71) 

goes into the branch of hyperbola around - ik if i < e < 1l'. It is further observed 

that in deforming the contour into a hyperbola the pole 0: = ~ may be crossed. If 

one makes the transformation ~ = k cos(eo + it1) the contour over ~ also goes into 

a hyperbola. The two hyperbolae will not cross each other if e < eo. However , if 

the inequality is reversed there will be a contribution from the pole which cancels the 

incident wave in the shadow region. The explicit expression for the unlmown constant 

p* is determined with the help of Eqs. (3 .60) , (3 .67) and (3.68) and found to be 

oo+ic 

p*= 2~i J 2-i[coshx(-~)q(~)-r(~)sinhx(-O/T(-~)]d~. (3.75) 

-oo+ic 

By using Eqs. (3.42), (3.43) , (3 .73) and the transformation ~ = k cos(eo + itd in Eq. 

(3 .75), p* is determined to be 

-oo+ic 

(3 .76) 

A saddle point for the integral appearing in the last Eq. (3 .76) occurs at tl = O. By 

using the method of steepest descent [69] , the explicit expression of p* is given by 

(3. 77) 
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By using Eqs. (3.72 - 3.74) and (3 .77) in Eq. (3.71) and the method of steepest 

descent [69], we obtain 

i [ . Bo sinhx(k cos B) { . Bo 
'ljJ(p, B) :::::: 411"2 sm"4 ,(k cos B) - coshx (k cos B) sm"4 

sinhx (k cos B) Bo .} 1 V2eik(p+po) . + cos - ksmBo smB. 
,(kcosB) 4 k(cosB+cos Bo) VPPo 

Substituting 

sinh x (k cos B) 

coshx (k cos B) 

.. B 
- - 2sm 4, 

B 
cos 4' 

,(k cos B) = -ik sin B 

(3.78) 

(3.79) 

in Eq. (3.78) the field due to a line source at a large distance from the plate for y > 0 

is given as 

0/'( B) ~ . o· 4 4 4 4 v'" i { B B cos !t sin ~ sin B + sin !t cos Bo sin Bo } '2eik(p+po) 

'f/ P, ~ -4 2 sm -4 sm -4 - B B k I7l7l: ' 
11" cos + cos 0 V P Po 

(3.80) 

which after some trigonometric simplification reduces to 

'ljJ (p, B) :::::: --- 1 + cos - + cos - . 
e~ ( sin B; sin £ ) ( B Bo) eik(p+fJo) 

V211"2 cos B + cos Bo 2 2 kjPPo 
(3.81) 

The contour of steepest descent is shown in Fig. 3.3. 
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Fig. 3.3 The path of steepest descent 

3.5 The point source diffraction problem 

For the case of point source scattering, suppose that a point source is occupying 

the position (xo , Yo , zo) . Thus for harmonic time variations e-iwt , the solution of the 

equation 

( 
82 82 82 ) 

8x2 + 8y2 + 8z2 + k2 <pdx, y, z) = 0" (x - xo) 0" (y - Yo) 0" (z - zo) , (3 .82) 

subject to the following boundary conditions, 

for x > 0 

<Pt (x , 0+, z) = 0, - 00 < z < 00, (3 .83) 



8<1?dx,0-, z ) = 0 
8y , 

and for x < 0 

8<1?t (x, 0+, z) 
8y 

- 00 < z < 00, 

- 00 < z < 00, 

- 00 < z < 00, 

is required, where <1?t is the total acoustic field defined as 

<1?t(x, y, z ) = <1?o(x, y, z) + <1?(x, y, z), 
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(3.84) 

(3.85) 

(3 .86) 

(3 .87) 

where <1? is the scattered field and <1?0 represents the effect due to a point source. 

Let us define the Fourier transform and the inverse Fourier transform with respect 

to the variable z as follows 

00 

<1? (x, y, f-L) = J <1? (x, y , z ) eikJ.LZdz, (3.88) 

- 00 

00 

~ ( ) - k J ~ ( ) -ik/-LZd ':If x,y,z - - ':If X,Y,/-L e /-L. 
21T 

(3.89) 

-00 

Taking Fourier transform of the Eqs. (3.82 - 3.86), the problem with boundary 

conditions in the transformed domain f-L takes the following form 

( 
82 8

2 
2 2) - ( ) ( ) 8x2 + 8y2 + k T)l <1?t = a5 x - Xo 5 y - Yo , (3.90) 

The transformed boundary conditions take the form 

<1?t (X,O+ , /-L) = 0 x> 0, (3 .91) 



8~dx, 0-, f.L) = 0 
8y 

<Pt (x, O+, f.L) = <Pt (x, 0-, f.L) 

x> 0, 

x < 0, 

x < O. 
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(3.92) 

(3.93) 

(3.94) 

Thus, it is seen that the problem (3.90) together with the boundary conditions (3.91 -

3.94) in the transformed domain f.L is the same as in the case of two dimensions 

formulated in the section 2 except that k27]f replaces k2 [46 , 60, 61] . 

3.6 Solution of the problem 

As mentioned before, the mathematical problem (3.90) together with the bound-

ary conditions (3.91 - 3.94) in the transformed domain JL is the same as in the case 

of two dimensions formulated in the section 3.2 except that k217f replaces k2. Thus, 

using the solution obtained in section 3.2, the diffracted field due to a point source is 

given to be: 

For y > 0, we have 

!!!. ( . ~ . B ) - e 2 sm 4 sm 4' 
<P p e f.L ~--

( , ,) 1l'2 cos e + cos eo ( 
e eo) eik7Jl(P+Po)+ikj.Lzo 

1.+ cos -2 + cos -2 k;ry-;:;-;;-
7]1 v ~PPo 

(3.95) 

The scattered field in the spatial domain can now be obtained by taking the inverse 

Fourier transform of Eq. (3.95) . Thus, for y > 0 

OO { . ( ) k e T sin ~ sin ft <P p e z ~ _ __ 4 4 
( , , ) 21[ 1 1[2 cos 8 + cos 80 

( 
e eo) } eik7J1 (p+po)-ikj.L(z-zo) 

1+cos -+cos- k ~ df.L . 
2 2 7]1 PPo 

(3.96) 
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In order to solve the problem completely, the following substitutions [60, 61] in the 

Eq. (3 .96) 

f./, cos 8, rh = VI - f./,2 = sin 8, (3.97) 

P + Po = Rl sin v, z - Zo = Rl cos V, (3.98) 

(3.99) 

are introduced. Using the method of steepest descent [69], the integral appearing in 

Eq. (3 .96) can be evaluated asymptotically for large kR1 . The contour of integration 

is taken such that it passes through the point of steepest descent 8 = v . Therefore, 

for kRl » 1, omitting the details of calculations, the final form of field for y > 0 is 

given as follows . 

For y > 0, 

<I> (p e z ) ~ _1_ [( sin ~ sin ~ ) (1 + cos ~2 + cos e20)] e-ikRl+i% 
" 21f2 cos e + cos eo V1fkR1PPo 

(3.100) 

3.7 Graphical results and discussions 

In this section, some graphical results showing the effect of some dimensionless 

parameters such as the observer distance from the origin kp, source distance from the 

origin kpo and the observation angle eo on the diffracted field 'l/J produced by the line 

source are presented. 
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• Figures (3 .4 - 3.6) show the variation of the parameter kpo by fixing eo = 7r /2 

and kp = 1,2, 3 respectively. It is observed that by increasing the parameter 

kpo the magnitude of the diffracted field decreases. 
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• Figures (3.7 - 3.9) are plotted to note the variation of the parameter kp on the 

diffracted field. It is observed that the diffracted field decreases by increasing 

the parameter kp and fixing the other parameters to be eo = 11"/2 and kpo = 

0.01 ,0.05,1 respectively, but the field lines are almost very close in these figures 

as compared to the Figures (3.2 - 3.4). 
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• Figures (3.10 - 3.12) depict the variation of the observation angle eo on the 

diffracted field. It is observed that the highest curve corresponds to the normal 

incidence and the magnitude of the diffracted field decreases and the peaks shift 

toward right as the angle of incidence decreases which is as expected. 

3.8 Concluding remarks 

In this chapter, the line source and the point source scattering of acoustic waves 

by the soft/hard half plane are studied. By means of Fourier transform technique, 

the boundary value problem is reduced to the matrix Wiener-Hopf equation whose 

solution is obtained by considering the Wiener-Hopf factorization of the kernel ma-

trix. It is observed that the results obtained in this chapter for the case of line source 
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incidence differ from [33] by a multiplicative factor. The result of point source exci-

tation is also obtained. Some graphs, showing the effect of sundry parameters, for 

the case of line source situation are also plotted and discussed. 

• The line source results modify the plane wave situation [33] results by a multi-

plicative factor of 

![f7r ikp +i71'/4 -e 0 

kpo 

which agrees well with the already known results [35, 46] . 

• Point source results are based on line source results. 

• The explicit analytical expressions for the diffracted field produced by the line 

source and the point source in the half space y < 0 can also be calculated in a 

similar manner. 
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Chapter 4 

Line Source And Point Source 

Scattering Of Acoustic Waves By 

The Junction Of Transmissive And 

Soft-Hard Half Planes 

The aim of this chapter is to study the line source and point source scattering 

of acoustic waves by the junction of partially transmissive (Senior 's resistive-type) 

o and soft-hard half planes. The junction configuration has been the focus of at­

tention of many researchers both in acoustics and electromagnetics. To name a few 

only, e.g., the problem of diffraction by the junction of impedance half planes was 

first treated by Maliuzhinetz as a special case of wedge diffraction. Rojas employed 
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Wiener-Hopf technique to develop diffraction coefficients for impedance junction il­

luminated at skew incidence. Senior used dual integral equation approach to derive 

diffraction coefficients for resistive/conductive sheet junctions [72]. Btiytikaksoy et al 

[70] studied the scattering of plane waves by the junction of transmissive and soft­

hard half planes. Recently Ahmad [67] studied the diffraction of a spherical acoustic 

wave by the coupling of pressure release and absorbing half planes. Much more work 

related to the junction configuration can be found in the book of Senior and Volakis 

[72]. It has been mentioned by Rojas [71] that scattering properties of a surface are 

functions of both of its geometrical and material properties. Diffraction by a junction 

configuration is an important topic in diffraction theory and it constitutes a canoni­

cal boundary value problem for diffraction because of abrupt changes in the material 

properties, besides this it is also relevant to many engineering applications. 

4.1 Approximate boundary condit ions 

The boundary conditions on a partially transmissive half plane are the first order 

impedance (Leontovich) conditions relating field and its normal derivative and some­

times also referred as standard impedance boundary conditions [72]. For detailed 

historical discussion on impedance boundary conditions the reader may be referred 

to [156]. These conditions were first introduced by Rytov [157] and subsequently were 

used to model radio waves propagation along the surface of the earth and near con­

ducting obstacles [158] . Mathematically the first order impedance conditions are given 
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by [72] 

a¢ z* 
- - iko.Jl¢ = 0, an 'T} 

where ¢ is the velocity potential, 'T} is the specific impedance of the surface, Zo is 

the intrinsic impedance of the surrounding medium and ko is the free space wave 

number. It is also worthwhile to mention here that a surface which may yield a 

little under the influence of pressure is also characterized by the condition (4.1) (see 

[154]). Approximate boundary conditions are also used for computational purposes, 

e.g., absorbing boundary conditions [155], Myre's impedance conditions [159] etc. 

have been employed by many researchers, e.g., Rawlins [38], Asghar [61]' Asghar and 

Hayat [63 , 64] and Ahmed [48] etc. Recently Ayub et al [51, 52] used such first order 

impedance conditions to study magnetic line source, and line source and point source 

scattering of electromagnetic waves by an impedance and reactive steps. Another 

detailed account of higher order impedance and absorbing boundary conditions can 

be found in [160, 161] . Keeping in view of the all above mentioned studies about the 

geometry of junction and impedance boundary conditions, this chapter is dedicated 

to study the scattering of cylindrical and spherical acoustic waves by a junction of 

transmissive and soft-hard half planes. 
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4.2 The line source scattering problem 

Consider the problem of scattering of an acoustic wave from a line source located 

at (xo, Yo) by the junction of the soft-hard half plane located at y = 0, x > 0, and 

the penetrable half plane located at y = 0, x < 0, respectively so that their edges lie 

along the z-axis . Thus it can be said that the field is independent of the z -axis. 

Line Source 

(x,y) 

Penetrable Soft 
• - - - - - - - - - +.;::....J.........I. ____ + x-axis 

Hard 

Fig. 4.1 Geometry of the junction problem 

The geometry of the problem is shown in Figure 4.1. For the harmonic acoustic 

vibrations of time dependence, the solution of the following equation is required 

( 4.1) 
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where 'l/Jt is the total velocity potential, and the boundary conditions at the soft and 

hard surfaces are 

'l/Jt (x, 0+) = 0, 

o'l/Jt (x, 0-) = 0 
oy , 

x> 0, 

x> 0, 

and at the partially transmissive surface are [154] 

o'l/Jt (x, 0+) ik n/, ( 0+) = 0 
!:l + 'rt x, , 
uy 'fl 

o'l/Jt (x, 0-) _ ik n/, ( 0-) = 0 
~ 'rt x, , 
uy 'fl 

(4.2) 

(4.3) 

x < 0, ( 4.4) 

x < 0, (4.5) 

x < O. (4.6) 

In above relations 'fl is the normal specific impedance of the material relative to the 

impedance of the surrounding medium, k is the wave number, and a time factor e - i.wt 

is assumed and suppressed. The boundary conditions in (4.4 - 4.6) represent the 

situation in which the pressure on both sides of the sheet is equal and producing the 

jump discontinuity in the normal component of the fluid velocity across it . These are 

the valid conditions from the mathematical view point and are acoustic counter part 

of an electrically resistive sheet in which 'l/J is then the tangential component of the 

electric field [154]. 

It is assumed that the wave number k has positive imaginary part. The lossless 

case can be obtained by making 1m k --t 0 in the final expressions. For the analysis 

purpose it is convenient to express the total field as follows [37, 38] 
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'l/Jt(x, y) = 'l/Jo (x, y) + 'l/J (x, y) , ( 4.7) 

where 'l/Jo (x, y) is regarded as the unperturbed field that would exist ifthe whole plane 

y = 0+ were a soft boundary. Hence the complementary part 'l/J (x, y) represents the 

diffracted field. In Eq. (4 .7), we have 

{ 

'l/Ji (x, y) + 'l/J,. (x, y) 
'l/Jo (x, y) = 

o 

for y > 0 
( 4.8) 

for y < 0, 

where 'l/Ji is the incident field satisfying the equation 

(4.9) 

and 'l/J .,. is the corresponding reflected field . The scattered field 'l/J (x) y) satisfies the 

Helmholtz equation 

(4.10) 

For analytic convenience, it is assumed that k has small imaginary part for which 

k = kr + iki , where kr and ki are both positive. It is appropriate to define the 

following Fourier transform pair as follows 

00 

"1f(a, y) = j 'l/J (x , y) eiaxdx, ( 4.11) 
-00 

and 
00 

1 j - . 'l/J (x, y) = 27T 'l/J(a , y) e-Wxda. (4 .12) 

-00 
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Using Eq. (4.11), Eq. (4.10) can be written as 

(4.13) 

where K (a) = Vk2 - a2. The square root function is defined in the complex a-plane 

cut such that K (0) = k. The solution ofEq. (4.13) satisfying the radiation conditions 

can be written as 

_ { A(a)eiK(a)y 
'l/J(a, y) = 

B(a)e-iK(a)y 

y>O 

y < 0, 

(4.14) 

where A(a) and B(a) are the unknown coefficients to be determined. 

Using Eq. (4.11), from Eq. (4.9) the incident field and the corresponding reflected 

field can be calculated by using the Green's function method as given in Chapter 3 

and [140] as follows: 

;:r, . (a y) = _l_eiaxo+iK(a)ly-yol 
'fit' 2iK ' 

and 

;:r, (a y) = __ l_eiaxo+iK(a)ly+yol 
'fir' 2iK . 

Taking Fourier transform of the boundary conditions (4.2 - 4.6), will give 

00 

1fi+ (a, 0+) = - J'l/Jo (x, 0+) eiaxdx , 

o 

B1fi+ (a, 0-) = 0 
By , 

_ 0 _ 

B'l/J_ ~~' 0+) + i;1fi_ (ee,O+) = _ J [B'l/Jo~, 0+) + i; 'l/Jo (x , 0+)] eiaxdx, 

-00 

(4.15) 

(4.16) 

(4.17) 

( 4.18) 

(4.19) 
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( 4.20) 

o 

VJ- (a, 0+) - VJ- (a ,O- ) = - J VJo (x, 0+) eiC'<xdx. (4.21) 

- 00 

In order to obtain the unique solution it is necessary to take into account the following 

edge conditions 

VJ (x, 0) = 0 (xi) as x -) 0, (4 .22) 

oVJ ~:' 0) = 0 (x -~ ) as x -) o. (4.23) 

The substitution of Eq. (4.14) into boundary conditions (4 .17 - 4.21) will yield the 

following integral equations 

00 

A (a) = VJ_(a, 0+) - J VJo (x, 0+) eiC'<x dx, ( 4.24) 

o 

B ( ) = 1[;'_(a, 0- ) 
a K (a) , ( 4.25) 

o 

A (a) - B (a) = A+(a) - J VJo (x, 0+) eiaxdx, ( 4.26) 

-00 

[2: + K (aJ 1 A (aJ + K (aJ B (aJ = A+(aJ - 2: [1'PO (x, 0+) e'=dx 1 
o 

-~ J VJ~ (x, 0) eiQXdx, ( 4.27) 

-00 

where prime denotes the differentiation with respect to y and VJ _(a, 0+), 1[;~(a, 0-), 

A+ ( a) and A~ ( a) are defined by 

o 

1[;_(a,O+) = J VJ (x, 0+) eiQXdx, (4.28) 

-00 
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o 
-:;/,' ( 0-) = 'jB1/J(X,O-) icrxd 
'1-' - a, '/, By e x, (4.29) 

- 00 

00 

A+(a) = j [1/J (x, 0+) -1/J (x, 0- )] eicrxdx, ( 4.30) 

o 
00 

A~(a) = j [B1/J~;O+) _ B1/J~;O- )] eicrxdx. 

o 

(4.31) 

Due to the analytic properties of the Fourier integrals [134] ?/! _ (a, 0+) , ?/!~ (a, 0- ), 

A+ ( a) and A~ (a) are regular functions of a in the half planes 1m a < 1m k cos eo and 

lma > lm( - k), respectively. By using the edge conditions (4.22 - 4.23) it can be 

easily shown that when lal -+ 00 in the respective regions of regularity one obtains: 

( 4.32) 

and 

( 4.33) 

The elimination of A (a) and B (a) among Eqs. (4.24 - 4.27) leads to the following 

matrix W-H equation valid in the strip 1m (-k) < 1m a < 1m k cos eo 

( 4.34) 

as shown in Fig. 4.2 
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Fig. 4.2 Strip of analyticity for the problem 

and the various quantities appearing in Eq. (4.34) are defined as 

o DO 

q = - J '1/;0 (x, 0+) eiaxdx + J 'I/;o (x, 0+) eiaxdx, 

-00 0 

r ~ - 2~k [1';'0 (x , 0+) ei.xdx] - ~l,;,~ (x, 0) ei.Xdx 

o 

+ (2; + K (a)) J '1/;0 (x , 0+) eiaxdx, 

-00 

( 4.35) 

( 4.36) 
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with 

M (0) = [ 1 - K

1

(Q) 1 
2: + K (0) 

( 4.37) 

In order to obtain the explicit solution of Eq. (4.34), it is required to factorize the 

kernel matrix M (0) as the product of two non-singular matrices say M+ (0) and 

M_ (0) whose entries are the regular functions of 0 in the upper and lower half 

planes, respectively. The kernel matrix M(a) is factorized by [70] using the Daniele-

Kharapkov methods [20, 21, 139] . Further details can be found in [70]. The Daniele-

Kharapkov methods suggest pre-multiplication of the matrix given in Eq. (4.37) by 

the following constant matrix 

( 4.38) 

and then writing it in the form suitable for the application of Daniele-Kharapkov 

methods. Thus 

w (0) = eM (0) = 

( 4.39) 

The matrix W (0) is a special form which can be factorized through the Daniele-
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Kharapkov methods. Omitting the details [70] the final expression for W + (a) is 

1 [c h () k sinh x(a} 
2 - 1 os X a --

W+ (a) = _ 4 ." Ja2-CT~ (~) v'i4Tc0 (k' _ ,,2) ,'nh_(_1 
JaLCT~ 

sinh x(a} 1 
- JaLCT~ 

h ( ) + k sinh x(n} cosxa -~ 
"'ya--CT1 

( 4.40) 

so that 

(4.41) 

( 4.42) 

and 

( 4.43) 

In Eq. (4.40), "'+ (a) and "'_ (a) = "'+ (-a) are the split functions regular and free of 

zeros in the upper and lower half planes, respectively, resulting from the factorization 

of 

as 

K(a) 
",(a) = k+ryK(a)' 

/'i, ( a) = "'_ (a) "'+ (a) . 

( 4.44) 

( 4.45) 

Noticing that "'+ (a) and "'_ (a) can be expressed in terms of Maliuzhinetz function 

[162] as follows: 



105 

with 

. 1 
sm r.p = -, 

'7 
(4.47) 

and 

( ) 
{

I JZ 7r sin u - 2V2 sin ~ + 2u } 
M1T Z = exp --8 du , 

7r casu 
o 

( 4.48) 

and as lal ----700 in the upper half plane, one obtains 

(4.49) 

With this factorization of the kernel matrix, Eq. (4.34) can be rearranged as 

( 4.50) 

or 

(4.51) 

Eq. (4.51) is the matrix Wiener-Hopf equation. To make it regular in the upper and 

lower half planes one has to split the term 

(4.52) 
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This can be achieved by using the additive decomposition theorem [14] . This term 

can be decomposed as follows 

W:j:' (<» C r q 1 = r T 1 = [ T+ +T-l 
L r L 8 8+ + 8_ J 

( 4.53) 

Using Eqs. (4.38) and (4.40) will give 

( 4.54) 

where 
oo+ ic 

1 J T(O 
T± (a) = ± 21fi (~ _ a) d~ 

-oo+ic 

1 OOJ+iC [J+ (0 q (~) - G+ (() ( -~ + r (~)) 1 
- ±21fi (~_ a) d~ , 

-oo+ic 

( 4.55) 

oo+id 

1 J 8(0 
8± (a) = ±21fi (~ _ a) d~ 

-oo+id 

1 OOJ+id [ -H+(~)q(~) + F+(~) (- ~~ +r(~))l 
- ±21fi (~ _ a) d~. 

-oo+id 

(4.56) 

Using Eqs. (4.35), (4.36) and (4.40) in Eqs . (4 .55) and (4.56) , the explicit expressions 

for T _ (a) and 8_ (a) are given as follows 

__ 1 ooJ+ia [(~)! JK+ (~) exp (i~xo + iK (~) IYol) j;2~~~ 1 
T_ (a) - 21fi (~ _ a) d~ 

-oo+ia 

(4.57) 

and 

_ 1 ooJ+ia [(~) i JK+(Oexp(i~xo+iK(~)IYol) { COShX(O - ~J;2~(:~}1 
8_ (a) - 21fi (~ _ a) d~ . 

-oo+ia 

(4.58) 
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Using Eq. (4.53) in Eq. (4.51) and separating into positive and negative portions, 

one arrives at 

( 4.59) 

The left hand side of Eq. (4.59) is regular in the lower half plane 1m a < 1m k cos eo 

and the right hand side is regular in the upper half plane 1m a > Im( - k) . Hence 

by analytic continuation principle both sides define an entire matrix-valued function 

P (a) . To find the exact value of P (a), the order relations in Eqs. (4.32) , (4.33) , 

(4.41) and (4.49) can be taken into account which help to conclude from the extended 

Liouville's theorem that the P (a) is a constant matrix of the form 

P (a) = [ 0 ] 
p* ' 

( 4.60) 

where p* can be evaluated as follows. 

From Eq. (4.59) 

(4.61) 

The above equation can further be simplified to get 

( 4.62) 

The unknown constant p* can be specified by taking into account the order relations 
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in Eqs. (4.32) and (4.33). By using (4.41) one obtains 

[ :~(a, 0+) 1 ~ V2 {k - v:r2 
- O"I }-l [p' - T-J [ (-a)~: 1 + 0 [ (-a)~: 1 ' 

.,p_(a,O- ) (-a) 4 (-a) 4 

(4.63) 

with 

(4.64) 
£>-+00 

- - / 

The correct behaviors of .,p_(a, 0+) and .,p_(a, 0-) are recovered if 

(4.65) 

Hence the explicit expressions for .,p_(a , 0+) and "ij)~(a , 0-) are given as 
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and 

4.3 Far field solution 

Now by substituting Eqs. (4.66) and (4.67) into Eqs. (4.24) and (4.25) and then 

resulting equations in Eq. (4.14) and taking the inverse Fourier transform will obtain 

the scattered far field for y > 0 as, 

( 4.68) 
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and for y < 0 

'" (x, y) = 2~1 G) l VK- (,,) [ { 2~i_l~ < ~ " G) I VK+ «) expi<xo + iK (0 IYo! 

x (sinhX(()) d(} {_ (k2 _ a2 ) SinhX(-a)} + [coshx(-a) _ ~SinhX(-a)} 
J e - (Jr . J a 2 - (Jr l TJ J a 2 - (Jt 

x { 2~i_l~ « ~ ,,) G) I VK+ «) exp (i<xo + iK (0 Iyol) 

x ( COSh x (0 - ~ sinh x (()) d( + p*}] e-iK(et)y-iaxda. 

77 Je - (Ji 

To determine the far field behavior of the scattered field the following substitutions 

x = pcos e, y = psine (o<e <1f), (4.70) 

Xo = Po cos eo, Yo = Po sin eo. (1f < eo < 0) , (4.71) 

and the transformation 

a = - k cos (e + i() , (4.72) 

are introduced into Eqs. (4.68, 4.69). The explicit expression for the constant p* is 

determined from Eqs. (4.57), (4.64) and (4.65) which give it as: 

* 1 ~1f (TJ)~ k JK:+(kcoseo) (1f) P =-. -k -2 -sineo sinhx(kcoseo)exp ikpo+i-
4 

' 
21f~ Po 1f Jk2 cos2 e - (Jr 

(4.73) 

where t I , given in Eq. (4.72) is real. The contour of integration over a in Eqs. (4.68) 

and (4.69) goes into the branch of hyperbola around -ik if ~ < e < 1f. It is further 

observed that in deforming the contour into a hyperbola the pole a = ( may be 

crossed. If another transformation ( = k cos (eo + it I ) is also introduced, the contour 

( 4.69) 
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over ~ also goes into a hyperbola. The two hyperbolae will not cross each other 

if 8 < 80 . However, if the inequality is reversed there will be a contribution from 

the pole which, in fact, cancels the incident wave in the shadow region. Omitting 

the details of calculations, using the method of steepest descent, where the path of 

steepest descent is shown in Fig. 4.3, 

Ima 

""'---r---- Re a 

Fig. 4.3 The steepest descent path 

the field due to a line source at a large distance from the edge is given for both cases 

y > 0 and y < 0, respectively. 
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For y > 0, 

For y < 0, the far field is given as follows 

./, ( 8)""'" e -i" ('2) ~ / (k 8) exp (ikp + ikpo) 
'P P, ,....., 27f 2 y"+ cos kVPPo 

x - sm x ~ - --
[{ 

k2 . 28 SinhX(kCOS8)} {. (T7)~ sin~ 
.Jk2 cos2 8 - O'f 2 2 cos ~ 

.J"'+ (k cos ( 0) . h (k 8)} { h (k 8) k sinhx(kcos8) } x sm x cos 0 + cos x cos - - ---r=======:==:;;: 
.Jk2 cos2 80 - O'f T7 .Jk2 cos2 8 - O'f 

{ (
i ('2) ~ sin ~8 .J "'+ (k cos ( 0)) x 

2 2 cos 2' 

x (COSh x (k cos ( 0) - ~ sinh x (k cos ( 0) ) + sin ~8 (cos 80 + cos ( 0) p}] 
T7 .Jk2 cos2 80 - O'f 2 cos 2' 

x [F( .J2kPcos8~(0) +F( .J2kPcos8~(0)]. (4.75) 
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It is also worthwhile to mention that the unknown constant p* goes into p as 

determined by [70] at this stage and F(z) stands for the Fresnel function as defined 

in [37, 38]. 

00 

F(z) = e-iz2 J eit2 dt. (4.76) 

4.4 Computational results 

In this section, some graphical results showing the effects of parameters resistiv-

ity 77 and the distance of the line source Po on the scattering phenomenon will be 

presented. 
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Fig. 4.4 Amplitude of the diffracted field 'ljJ Vs 8 for p = I, k = I , 80 = ~ and Po = 0.001. 
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Fig. 4.5 Amplitude of the diffracted field 'ljJ Vs e for P = 1, k = 1, eo = ~ and Po = 0.01. 
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l;). 

150 -- " = - 0.25 1 

- - ,, = - 0.5 01 

100 ---- '1= - 0.751 

50 

0 

-50 

-100 

- 150 

-200 
0 .0 0.5 1 .0 1.5 

(J 

2 .0 

115 

2.5 3 .0 

Fig. 4.7 Amplitude of the diffracted field 'IjJ Vs e for p = I , k = I , eo = ~ and Po = 0.5 . 

• Figures (4.4 - 4.7) are plotted to note the effect of parameter 77, when it is 

imaginary, on the amplitude of the diffracted field 'IjJ (for y > 0) plotted against 

the observation angle e by fixing the parameters to be Po = 0.001 (Fig. 4.4), 

Po = 0.01 (Fig. 4.5), Po = 0.05 (Fig. 4.6), Po = 0.5 (Fig. 4.7) and the other 

parameters eo = 7r /2, P = 1 and k = 1. It is observed that by decreasing the 

parameter 77 and fixing all the other parameters the amplitude of the diffracted 

field increases for the case y > O. 
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Fig. 4.8 Amplitude of the diffracted field 'IjJ Vs e for P = 1, k = 1, eo = ~ and Po = 0.001 
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Fig. 4.9 Amplitude of the diffracted field 'IjJ Vs e for p = 1, k = 1, eo = ~ and Po = 0.01. 
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Fig. 4.10 Amplitude of the diffracted field 'l/; Vs e for P = 1, k = 1, eo = ~ and Po = 0.05 
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Fig. 4.11 Amplitude of the diffracted field 'l/; Vs e for p = 1, k = 1, eo = ~ and Po = 0. 5. 
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• Figures (4.8 - 4.11) depict the effect of parameter TJ, when it is real, on the 

amplitude of the diffracted field 'ljJ (for y > 0) plotted against the observation 

angle e by fixing the parameters to be Po = 0.001 (Fig. 4.8), Po = 0.01 (Fig. 

4.9), Po = 0.05 (Fig. 4. 10) , Po = 0.5 (Fig. 4.11) and the other parameters 

eo = 7f / 2, P = 1 and k = 1. It is noted that by decreasing the parameter TJ and 

fixing the all other parameters the amplit ude of t he diffracted field increases for 

the case y > O. 
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Fig. 4.13 Amplitude of the diffracted field 'I/J Vs e for P = 1, k = 1, eo = ~ and TJ = -0.2 . 

• Figures (4.12) and (4.13) are plotted to study the effect of parameter Po, on the 

amplitude of the diffracted field 'I/J (for y > 0) plotted against the observation 

angle e by fixing the parameters to be TJ = - 0, 25i (Fig. 4.12) and TJ = -0,25 

(Fig. 4.13), and the other parameters are eo = 1r /2, p = 1 and k = 1. It is 

seen that by increasing the parameter Po and fixing all the other parameters the 

amplitude of the diffracted field decreases for the case y > O. 
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Fig. 4.16 Amplitude ofthe diffracted field 1/J Vs e for P = I, k = I , eo = ~ and Po = 0.05 
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• Figures (4.14 - 4.17) are sketched to note the effect of parameter r;, when it is 

imaginary, on the amplitude of the diffracted field 'ljJ (for y < 0) plotted against 

the observation angle 8 by fixing the parameters to be Po = 0.001 (Fig. 4.14), 

Po = 0.01 (Fig. 4.15), Po = 0.05 (Fig. 4.16), Po = 0.5 (Fig. 4.17) and the other 

parameters 80 = 1f /2, P = 1 and k = 1. It is observed that by decreasing the 

parameter r; and fixing the all other parameters the amplitude of the diffracted 

field increases for the case y < O. 
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Fig. 4.19 Amplitude of the diffracted field 'IjJ Vs e for P = 1, k = 1, eo = ~ and TJ = -0.5i 

• Figures (4.18) and (4.19) are plotted to study the effect of parameter Po, on the 

amplitude of the diffracted field 'IjJ (for y < 0) plotted against the observation 

angle e by fixing the parameters to be TJ = -0.25i (Fig. 4.18) and TJ = - 0.25 

(Fig. 4.19), and the other parameters are eo = 1r/2, P = 1 and k = 1. It is 

seen that by increasing the parameter Po and fixing all the other parameters the 

amplitude of the diffracted field decreases for the case y < O. 
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4.5 The point source scattering problem 

For the case of point source scattering, suppose that a point source is occupying 

the position (xo, Yo, zo). Thus the appropriate equation representing the point source 

incidence is 

( 
82 82 82 2) 8x2 + 8y2 + 8z2 + k 4?t(x , y, z) = 0 (x - xo) 0 (y - Yo) 0 (z - zo) , 

subject to the following boundary conditions, for x > 0 

and for x < 0 

4?t (x, 0+, z) = 0, 

84?t(x,0-,z) =0 
8y , 

84?d x, 0+ , z) ik if.. ( 0+ ) = 0 
J:l + '±'t x, , z , 
UY TJ 

8CPdx ,0-,z)_ ik if..( 0- ) = 0 
J:l '±'t x, , Z , 
UY TJ 

4?dx,O+, z) -4?t (x, O-,z) = 0, 

where CPt is the total acoustic field, defined as 

4?t(x, y, z) = 4?o(x, y, z) + cp(x, y, z), 

( 4.77) 

(4.78) 

(4.79) 

( 4.80) 

(4.81) 

( 4.82) 

(4.83) 

where 4? is the scattered field and 4?o represents the effect due to a point source. 

Let us define the Fourier transform and the inverse Fourier transform with respect 

to the variable z as follows 

00 

4? (x, y, p,) = J cP (x, y, z) eikJl.Zdz, ( 4.84) 

-00 
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00 

"" ( ) - k J "" ( ) -ikp.z d ':I:' x, Y, z - 21f ':I:' X, Y, /-I. e /-I.. ( 4.85) 

-00 

Taking Fourier transform of the Eqs. (4.77) to (4.82), the problem with boundary 

conditions in the transformed domain /-I. takes the following form 

( 4.86) 

The transformed boundary conditions take the form 

<Pt (x , 0+ , /-I.) = 0, ( 4.87) 

( 4.88) 

( 4.89) 

( 4.90) 

(4.91) 

Thus the problem (4.86) together with the boundary conditions (4.87 - 4.91) in the 

transformed domain /-L is the same as in the case of two dimensions formulated in the 

Section 4.2 except that k27]r replaces k2 . 



126 

4.6 Solution of the problem 

As mentioned before, the mathematical problem (4.86) together with the bound-

ary conditions (4.87 - 4.91) in the transformed domain 11 is the same as in the case 

of two dimensions formulated in the Section 4.2 except that k2,2 replaces k 2 [46, 60, 

61]. Thus making use of the equations (4.74) and (4.75), the scattered field due to a 

point source can be calculated as follows: 

For y > 0 

<l> (p, 0,1') '" (e;!" G) l v'"+ (k~l cos 0)) 

[{ 
h (k 0) kTJl sinh x (kTJl cos 0) } 

x cos X TJl cos + - --r::::;::::=;;:=,=::;;=:==~ 
TJ V k2TJf cos2 0 - O"f 

x {i ('2.
2

) t sin ~2 sin 020 V"'+ (kTJl cos eo) sinh x (kTJl cos 00) } 
Vk2TJf cos2 00 - O"f 

sinh x (kTJl cosO) {( . (TJ) i . 0 . 00 . / (k e )) + z - sm - sm - V "'+ TJl cos 0 
Vk2TJf cos2 0 - O"f 2 2 2 

x ( cosh X (kTJl cos 0
0
) ) + sin ~ sin ~o (cos 0 + cos eo)pH}] 

_~ sinhx(k1)l casliol 

1) Vk21)~ cas2Iio-a~ 

X [j ( V2kTJIPCOS 0 ~ 00
) + j ( V2kTJIPCOS 0 ~ eo)] 

x exp[ikTJl (p + Po) + ikftzo]. (4.92) 
VPPo 
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For y < 0 

The scattered field in the spatial domain can now be obtained by taking the inverse 

Fourier transform of equations (4.92) and (4.93). 



128 

Thus, for y > 0, 

( 4.94) 
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and for y < 0 

The integrals appearing in expressions (4.94) and (4.95) can be evaluated asymptot-

ically by the method of steepest descent [69] (see Appendix C), and the far field for 

y > 0 and y < 0 are finally given as follows: 

For y > 0 
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For y < 0 

where 

In expressions (4.96) and (4.97) H (.) is the usual Heaviside function and the quantities 

J.Ll1 !I (J.L) 191 (J.L) 1 aI, Rlll T R1I El and Rl have already been explained in the Appendix 

C. It is important to remark here that the other quantities for e·g· 1 R121 T R21 E2 etc. 

may be seen from [60, 61]. 

The unknown constant p •• for the case of point source scattering is given as follows 

( 4.99) 

4.7 Concluding remarks 

In this chapter 1 the line source and the point source scattering of acoustic waves 

by the junction of partially transmissive and soft-hard half planes are studied. The 

first boundary value problem of line source excitation is reduced to a matrix W-H 

equation by using the Fourier transform technique. Then solution of the problem 
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requires the W-H factorization of the kernel matrix involved in the equation. This 

factorization is performed by Buyukaksoy et al [70] which can be used for the analysis 

presented in this chapter. The problem is then solved completely. It is observed that: 

• For the case of line source incidence our results obtained in this chapter differs 

from [70] by a multiplicative factor which agrees well with the already existing 

literature [35, 46]. 

• If a line source is removed to a far-off distance (at infinity) the graphical results 

of plane wave situation [70] can be recovered. 

• Mathematically point source problem is strongly based on the results obtained 

for the line source situation and it is also well known in the existing literature 

e.g., see [46, 60, 61] . 

• Various graphs of interest showing the effects of different parameters on the 

amplitude of the scattered field produced by the line source are also plotted 

and discussed. 



132 

Chapter 5 

Diffract ion Of A Plane Wave B y A 

Soft-Hard Strip 

An attempt is made in this chapter to investigate the diffraction of a plane acoustic 

wave by a finite soft-hard barrier. Scattering/Diffraction by strips/slits is an im­

portant and classical topic both in electromagnetic and acoustic wave theory. As 

mentioned earlier that in order to study diffraction patterns (single or multiple) from 

a st rip a large number of analytical, numerical or a combination of both analytical 

and numerical methods such as separation of variables [75], geometrical theory of 

diffraction (GTD) [78, 163], Kobayashi's potential method [110, 111], spectral iter­

ation technique (SIT) [101], method of successive approximations [83, 84], and the 

W-H technique [87 - 100] have been successfully applied. Some recent developments 

in the literature are also based on Bessel's potential spaces [112] and Maliuzhinetz-
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Sommerfeld integral representation [133]. 

The problem of a plane acoustic wave diffraction presented in this chapter resulted 

into a typical matrix W-H functional equation of the form 

where 'l! + (a ) and 'l! _ (a) are the unknown functions being regular in the upper half 

plane T > k2 cos eo and the lower half plane T < k2, 'l! 1 (a) is an entire function, H (a) 

is the kernel matrix, G(a) is a known function and A(a) is a known column vector 

respectively and the bold letters are used to indicate matrices and will be defined in 

the sequel. 

By using the Fourier transform technique the related boundary value problem 

is reduced to a matrix W-H equation which in turn requires the factorization of the 

kernel matrix involved as a product of two non-singular matrices having entries which 

are regular and of algebraic growth in certain overlapping halves of the complex plane. 

Luckily for the problem under consideration the kernel matrix remains the same as 

that of [33] and has been factorized by [33]. However for the sake of completeness 

we have given the complete factorization details in the Appendix A of this thesis. 

By applying the W-H technique [14] in the Jones' interpretation [135] the problem 

under consideration is completely solved. Finally, by calculating the undetermined 

coefficient A( a), expressed in terms of functions whose regions of regularity are known, 

the inverse Fourier transform is calculated using the method of steepest descent [69, 

136 - 138] , and the scattered field is presented. It is also shown that the scattered 
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field is sum of two fields, i.e., separated field 'l/J sep (x, y) (field radiated from each edge 

p and q) and the interacted field 'l/Jint (x, y) (interaction of one edge upon the other 

edge). 

It is also important to mention here that the problem presented in this chapter is 

solved under the physical assumption that the strip width is large as compared to the 

incident wavelength and hence a high frequency approximate solution of the problem 

can be obtained by using GTD [163]. Several integrals (II - h) in the presented 

analysis have been evaluated under this assumption. 

Some practical applications of the strip geometry may be found with reference 

to noise reduction by barriers [99], decontamination chambers of hospital in which 

textiles and operation apparatuses are routinely sterilized using highly toxic organic 

gases [90], microwave filters, reflectors and design of frequency selective surfaces. 

Uniform high frequency expressions for the field scattered from strip are also obtained 

for plane, cylindrical and spherical wave illuminations by using the promising W-H 

technique and can be found in the works [95, 96 , 100], [87,97,99] and [89, 94, 98]. 

5.1 Mathematical formulation of the problem 

Considering the diffraction of a plane acoustic wave incident on the finite soft­

hard plane S = {x E (p ,q) , y = 0, Z E (-oo,oo)} . The geometry of the problem is 
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depicted in Figure 5.1. 

y-axis 

Aperture soft Aperture 
x-axis 

p q 

Fig. 5.1 Geometry of the strip problem 

The plane is assumed to be of infinitesimal thickness and soft (pressure release) at the 

top and hard (rigid) at the bottom. A time factor e-iwt is assumed and suppressed 

throughout. The wave equation satisfied by the total velocity potential 'ljJt is 

(5.1) 

subject to the boundary and continuity conditions: 

on p < x < q, (5 .2) 

on p < x < q, (5.3) 

and 

{ 

- 00 < x < p } , 

q<x<oo 

(5.4) 

8'ljJt (x, 0+) _ 8'ljJt (x, 0-) = 0 
8y 8y , on 

{ 

-00 < x < p } . 

q<x<oo 

(5 .5) 
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For the unique solution of the problem it is required that '1f;t and its normal derivative 

must be bounded and these must be of the following orders [33, 34] 

as x ~ p, 
(5.6) 

as x ~ q, 

and 

8'1f;t(x,0) = { O(x-p)-~ 
8y 3 

O(x - qt" 

as x ~ p, 
(5.7) 

as x ~ q. 

Let a plane acoustic wave 

./' . = e-ik(xcos8o+ysin8o) 
'f't , (5.8) 

be incident upon the soft-hard half finite plate occupying the position p < x < q, 

y = O. In Eq. (5.8), eo is the angle of incidence and for the analytic convenience it is 

assumed that the wave number k has positive imaginary part. 

For the analysis purpose it is convenient to express the total field '1f;t as [14] 

(5.9) 

where'1f; is the diffracted field and '1f;i is the incident field given by Eq. (5.8). Thus, 

scattered field satisfies the Helmholtz equation 

(5.10) 

subject to the boundary conditions 

'1f; (x, 0+) = _e-ikxcos80 on p < x < q, (5.11) 



B'ljJ (x, 0-) 'k' e -ikxcosllo 
B 

= 2 sm oe on p < x < q, 
y 

and the continuity conditions 

and 

B'ljJ (x, 0+) 
By 

B'ljJ(x, O- ) 
By 

on - 00 < x < p, q < x < 00, 

on - 00 < x < p, q < x < 00. 

The Fourier transform pair is defined as follows 

00 

- 1 J . 'ljJ (a, y) = 211" 'ljJ (x , y) elCtXdx, 
-00 
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(5 .12) 

(5 .13) 

(5 .14) 

= eiCtP~_ (a , y) + ~l (a , y) + eiCtq~+ (a, y) , (5.15) 

and 
00 

'ljJ (x, y) = J ~ (a, y) e-iCtXda, (5.16) 

-00 

where 

p 

~_ (a, y) 2~ J 'ljJ (x, y) eiCt(x-p)dx, 

-00 

q 

~1 (a, y) 1 J . 211" 'ljJ (x, y) elCtXdx, 
p 
00 

~+ (a, y) = ~ J'ljJ (x, y) eiCt(x-q)dx . (5 .17) 
211" 

q 

The function 'ljJ_ (a, y) is regular in the lower half plane Im a < Im k, ~+ (a , y) is 

regular in the upper half plane Im a > Im k cos eo and 'lj;1 (a , y) is an analytic function 

and therefore regular in the common region Im k cos eo < Im a < Im k. 
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The Fourier transform of the Eq. (5.10) will yield 

(5.18) 

Defining K(a), the square root function, to be that branch which reduces to +k 

when a = 0 and when the complex a-plane is cut either from a = k to a = koo or 

from a = -k to a = -koo as shown in Figure 3.2. 

The solution of Eq. (5.18), representing the outgoing waves at infinity, can for-

mally be written as 

_ { A(a )eiJ«(Q)Y 
'ljJ (a , y) = 

B (a )e-iJ«(Q)Y 

y > 0, 
(5.19) 

y < 0, 

where A(a) and B(a) are the unknown coefficients which are to be determined. The 

Fourier transform of the boundary conditions (5 .11 - 5.14) yield 

- ( +) _ 1 'ljJ l a, O - - 'v'27fG(a ), '/, 27[' 
(5.20) 

B~l (a ,O- ) = ksineoG(a) 
By v'27f ' 

(5.21) 

and 

~± (a, 0+) = ~± (a, 0+) , (5.22) 

B~± (a, 0+) B'ljJ± (cx, 0- ) 
(5.23) = By By 

where 

G(a) = 
ei(Q-k coslio)q _ e i (Q-kcos lio)p 

(5 .24) 
yI2if (a - k cos eo) 
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Using Eqs. (5 .20 - 5.23) in Eq. (5.19), will give 

(5.25) 

(5.26) 

A(a) - B(a) = 2"if1 (a) , (5 .27) 

() () 
"if2 (a) 

A a + B a = 2 K(a) , (5.28) 

where 
P 

"if-I (a) = 2~ J 7/; (x, 0+) eia(x-p)dx , (5.29) 
-00 

00 

7/;+1 (a) = 2~ J 7/; (x , 0+) eia(x-q)dx, (5.30) 

q 

p 

:-r. () = ~ J B7/; (x , 0-) ia(x-p)d 
'1'-2 a 27r By e x, (5 .31) 

-00 

00 

:-r. () = ~J B7/; (x , 0- ) ia(x-q)d 
'1'+2 a 27r By e x, (5.32) 

q 

q 

"if 1 (a) = 4~ J [7/; (x, 0+) - 7/; (x, 0-) ] eiox dx, (5 .33) 

p 

and 
q 

nl , ( ) = 1 J [B7/; (x, 0+) _ B7/; (x, 0- )] iaxd 
'1'2 a 41fiK(a) By By e x . (5.34) 

p 

The elimination of the coefficients A(a) and B(a) among the Eqs. (5 .25 - 5.28) will 

lead to the following matrix Wiener-Hopf equation valid in the strip of analyticity 
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Imkcoseo < Ima < Imk, 

In compact form Eq. (5.35) can further be arranged as 

where bold letters are used to denote the matrices. Also Eq. (5.36) is an equation of 

the form (5.60) available in [14] . In Eq. (5 .36) H (a) is the kernel matrix and in order 

to solve it, one has to factorize the matrix H (a) as the product of two non-singular 

factor matrices such that one factor matrix being regular in the lower half plane and 

the other factor matrix being regular in the upper half plane with the additional 

requirements that both the factor matrices as well as their inverses contain elements 

of algebraic growth at infinity and both of these factor matrices should commute with 

each other. The factorization of H (a) satisfying the conditions mentioned above, has 

been done in [33] by using the Daniele-Kharapkov methods [20, 21] and the result is 

as follows: 

1 [ cosh X (a) 
H+ (a) = 24 

"( (a) sinh X ( a) 

with 

sinh X ( a) / "( ( a) j , 
cosh X (a) 

(5.37) 

(5.38) 
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where 

X (a) = - ~ arccos~ , X (- a) = -~ [7r - arccos ~] , (5 .39) 

and 

(5.40) 

Also as lal --t 00, it is noted that 

(5.41 ) 

Since the factorization of the matrix H (a) has been accomplished, therefore Eq. 

(5.36) can be rearranged as: 

or 

5.2 Solution of the matrix W -H equation 

Pre-multiplying Eq. (5.42) by e-iaq [H+ (a)rl, substituting the value of G(a) 

from Eq. (5.24) and simplifying will result into 

e-ikcosBoq eia(p-q)-ik cos Bop 
-:------"7' [H (a)l-l A - [H+ (a)] - l A (5.44) 
27r(a-kcoseo) + J 27r(a - kcoseo) . 
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According to the procedure defined in [14J different terms occurring in Eq. (5.44) can 

be decomposed as follows, 

The pole contribution of the first term on right hand side of Eq. (5.44) can be 

expressed as 

e-ik cos lIoq 

2 ( k e) [{H+ (a)}-l - {H+ (k cos eo)}-l + {H+ (kcoseo)}-l] A . (5.47) 
7l' a - cos 0 

Using Eqs. (5.45 - 5.47) in Eq. (5.44) and separating it into positive and negative 

terms, will yield 

e-ik cos lIoq 

[H+ (a) r 1 'l' + ( a) + U + ( a) - 2 ( k e ) 
7l' a - cos 0 

x [{H+ (a)}-l - {H+ (kcoseo)}-l] A + V+(a) 

(5.48) 

Now pre-multiplying Eq. (5.44) by e-iexp [H_ (a )rl, substituting the value of G(a) 

from Eq. (5.24) and simplifying will give 

= 
eiex(q- p) -ik coslloq e -ikcosiJop 

( ) [H_ (a)J- l A - ( ) [H_ (a )rl A . 
27l' a - k cos eo 27l' a - k cos eo (5.49) 
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Decomposing different terms in Eq. (5.49) by following [14], will obtain 

(5 .50) 

(5 .51) 

Using Eqs. (5.50, 5.51) in Eq. (5.49) and separating it into positive and negative 

portions will show that 

(5.52) 

The left hand side of Eq. (5.48) and right hand side of Eq. (5.52) are regular in 

1m a> 1m k cos eo and 1m a < 1m k . Hence using the extended form of the Liouville's 

theorem each side of Eqs. (5.48) and (5.52) is equal to zero, i.e., 

and 

The explicit expressions for U + ( a), V + ( a), R_ ( a) and S _ ( a) are given as follows: 

(5.55) 

oo+ic 
1 J ei~(p-q)-ikcosliop [H+ (~)rl A 

V+(a) = - d~, 
2rri 2rr(~ - a) (~ - k cos eo) 

(5 .56) 

-oo+ic 
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(5.57) 

and 

(5.58) 

where - 1m a < c < 1m k cos eo and - 1m a < d < 1m k cos eo, also 1m a > c in Eqs. 

(5.55, 5.56) and 1m a < din Eqs. (5.57, 5.58) as given in [14] . Using Eqs. (5 .55, 5.56) 

in Eq. (5.53) and Eqs. (5 .57, 5.58) in Eq. (5.54) and simplifying these equations will 

give 

[H+ (a )rl w* (a) + e-ikcos90q [H+ (k cos eO)r 1 
A 

+ 27f(a - kcoseo) 

oo+ic 
1 J ei{(p-q) [H+ (Or1 w_(O _ 

+ 27fi (~ _ a) d~ - 0 (5.59) 

-oo+ic 

and 

where 

e-ik cos 90q A 
w~(a) = w+(a) - 2 ( k e ) 7f a - cos 0 

(5.61) 

and 

(5 .62) 

From the assumption that 0 < eo < I, one can choose a such that - k2 cos eo < a < 

k2 cos eo and d = -c = a [14]. In Eq. (5.59) replacing ~ by -~ and in Eq. (5.60) a 

by -a and also noting that H_ (-a) = H+ (a) will give 
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[H+ (a)rl 'IJI* (a) + e-ik cos 80 q [H+ (kcosBo)r
1 

A 
+ 27T (a - kcosBo) 

oo+ia 
__ 1 J eie(q-p) [H_ (Or 1 'IJI _ ( -~) dt: = 0 

27Ti (~ + a) <, (5.63) 
-oo+ia 

and 

Addition and subtraction of Eqs. (5.63) and (5.64), will result into 

oo+ia 
1 J ei'(q-p) [H (~)rl S* (~) 

-- - + d~ = 0 
27Ti (~+ a) 

(5.65) 

-oo+ia 

and 

[H+ (a)rl D* (a) + e-ikcos8oq [H+ (k cos Bo)r
1 

A 
+ 27T(a-kcosBo) 

oo+ia 
_1 J eie(q-p) [H_ (~)rl D~(~) _ 

+ 27Ti (~ + a) d~ - 0, (5.66) 

-oo+ia 

where 

(5.67) 

(5 .68) 

The Eqs. (5 .65) and (5 .66) are of the same type and an approximate solution can be 

obtained by a method due to Jones [164] . Setting 

S~(a) = D~(a) = F~ (a) , (5 .69) 
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the Eqs. (5.65 - 5.66) will take the form 

e - ikcos90q [H+ (k cos 80)r l A(a) 
= 

271' (a - k cos 80 ) 
(5.70) 

where 

Ae-ikcos90q AAe-ikcos90p 

F~ (a) = F + (a) - 271' (a _ k cos 8
0

) + 271' (a + k cos 8
0
)' (5.71) 

and A = ±1. 

A more elaborative form of Eq. (5.70) is as follows 

[

cosh x (a) F~* (a) - sinh x (a) F~* (a) I, (a) 1 
- , ( a ) sinh x ( a ) F~* (a) + cosh x ( a ) F~* (a) 

A ooJ+ia ei~(q-p) [ coshx(-~)F~* (~) - sinhx(-~)F~* (~)/, (O 1 
+ 271'i (~ + a) d~ 

-oo+ia - , ( -~) sinh x ( -~) F~* (~) + cosh x ( -~) F~* (~) 

+ e - ikcos90q [ Al cosh x (k cos 80) - A2 sinh x (k cos 80 ) I, (k cos eo) 1 = o. 
271' (a - k cos eo) 

-An (k cos 80) sinh x (k cos 80 ) + A2 cosh x (k cos eo) 

(5.73) 

The Eq. (5 .71) in matrix form can be written as: 

[ 

F~* (a) ] = [ F~ (a) ] _ e-ikcos90q [ Al ] + Ae-ikcos90p [ Al ]. 
2 I) 271'(a-kcoseo) 271'(a + k cos eo) 

F/ (a) F+ (a A2 A2 

(5.74) 
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Considering the first row of Eq. (5.73) and using the values of F~* (a) and F~* (a) in 

it, will give 

Writing 'Y(~) = 'Y+(~h-(~) = J~ + k~ and considering the integral arising in 

Eq. (5 .75) , one has 

where 
oo+ia . _ J et~(q-p) cosh x (-~) F~ (~) 

h - (~ + a) d~, (5.77) 

-oo+ia 

oo+ia 

J 
ei~(q-p) cosh x ( -~) 

fz = d~) 
(~+ a) (~ - kcoseo) 

(5.78) 

-oo+ia 

oo+ia 

J 
ei~(q-p) cosh x ( -~) 

13 = d~) 
(~ + a) (~ + k cos eo) 

(5.79) 

-oo+ia 

oo+ia 

J ei~(q-p) F~ (~) sinh x (-~) / V[+kd 
h= (~+a)~ ~, 

-oo+ia 

(5 .80) 
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oo+ia 

J ei~(q-p) sinh x ( -~) / J[+k 
Is = d~ 

(~- kcos()o) (~+ a) J~ - k 
-oo+ia 

(5.81) 

and 
oo+ia 

J eiHq-p) sinh x ( -~) / J[+k 
16 = d~. 

(~ + k cos ()o) (~ + a) -vt:="k (5.82) 

-oo+ia 

Integrals (5.77 - 5.82) are solved by a method described in [14] and are substituted 

in Eq. (5 .75) to get 

(5.83) 

Similarly considering the second row of Eq. (5.73), solving the integrals appearing in 

it and simplifying will yield 
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e-ikcosOoq Ae-ikcosOop 
-,(a)sinh x (a)[F~(a) - ( k e )Al + 2 ( k e )Al1 27f a - cos 0 7f ~ + cos 0 

2 e-ik cos OOq Ae-ik cus OOP 
+coshx(a)[F+(a)-2 ( k B)A2+ 2 ( k e)A21 7f a - cos 0 7f a + cos 0 

e-ikcos90q eiklcos 90 sinh x ( -k cos eo) , ( -k cos eo) 
= -AT2(a)F~ (k) - A 2 Al { (k e ) + R6(a)} 

7f a + cos 0 

e-ik cos OOP e-ik cos OOq 
+Al R5(a) - >'T(a)F; (k) + A 2 A2 

27f 7f 
eiklcosOo cosh x (-k cos eo) e-ikcos90p 

x{ ( k e) +R2(a)}-A2 2 Rl(a) a+ oos 0 7f 

e-ikcosOoq 
+ ( k B) [Alsinh x(kcoseo),(kcosBo) -A2 coshx(kcosBo)]' (5.84) 

27f a - cos 0 

where l = q - p, 

T ( ) 
_ 1 E_IW_I{-i(k+a)l}sinhx(-a) 

1 a --
27fi Ja+k ' 

(5.85) 

R ()
_ D_l[W_l{-i(k±kcoseo)l}-W_l{-i(k+a)l}l 

34 a - .( k B) , , 2m, a =F cos 0 
(5.86) 

D 
_ E_lsinhx(-k) 

-1 - , (k) . (5.87) 

Now at this stage full simplification details of the Eq. (5.83) are presented and hence 

Eq. (5.84) can be simplified exactly on these same lines . Therefore, Eq. (5.83) can 

be simplified to achieve 

sinh x(a) 2 2 
coshx(a) F~ (a) - ,(a) F+ (a) = -AT(a)F~ (k) + >'TI(a)F+ (k) 

e-ikcos 90q e-ik cos OOP e-ik cos OOq e-ik cos 90p 
+Al 27f PI(a) - >'A1 27f P2(a) - A2 27f P3(a) + >'A2 27f P4(a) 

e-ikcos90q e-ik cos OOP e-ik cos90q e-ikcos90p 
+AA1 27f R2(a) - Al 27f RI(a) - AA2 27f R4(a) + A2 27f R3(a), 

(5.88) 
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where 

P () 
_ sinh x (a) IT (a) - sinh x (±k cos eo) IT (±k cos eo) 

34 a - . 
, a =f k cos eo 

(5.89) 

Further simplification of Eq. (5.88) will yield 

sinh x (a) 2 
coshx(a) F~ (a) - ,(a) F+ (a) = -)"T(a)F~ (k) + ).,Tl(a)Fi (k) 

+ Al {e -ikcosBOq Pl(a) _ e-ik cos Bop Rl(a)} _ )"A1 { e-ik cos Bop P2(a) _ e-ikcosOoq R2(a)} 
2rr 2rr 

_ A2 {e- ik cos OOq P3(a) _ e-ik cos Oop R3(a)} + )"A2 { e-ikcos Bop P4(a) _ e-ikcosOoq R4(a)} . 
2rr 2rr 

(5 .90) 

Letting 

(5.91) 

(5 .92) 

in Eq. (5.90), the solution of the first W-H equation, obtained by considering the 

first row of matrices in Eq. (5.73), is given as follows: 

() 
1 () sinh x ( a) Fi (a) 

cosh x a F + a - , (a) = 

\ () h ( k) 1 (k) \ Tl (a) sinh x ( - k) F; (k) -AT a cos x - F+ + A ~ 
v2k 

Al A2 + 2rr [G1 (a) - )"G2 (a)] - 2rr [G3 (a) - )"G4 (a)] . (5.93) 

The second W-H equation corresponds to the second row of the matrix Eq. (5.73) 

and its solution can be obtained in a similar manner as for the first row of the Eq. 
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(5.73). Omitting the details, the solution of the second W -H equation is given by 

-, ( a) sinh x ( a) F~ (a) + cosh x ( a) F~ (a) = 

>'T2 (a) V2k sinh x ( - k) F~ (k) - >'T ( a) cosh x ( - k) F~ (k) 

A2 Al + 21T' [G1 (a) - >'G2 (a)] - 21T' [G5 (a ) - >'G6 (a)] , (5.94) 

where the various quantities used in the above equation are as follows 

1 
T2 (a) = -2 . EoWo{ -i (k + a) l}v'a + ksinh x (-a), 

1T''/, 

R () 
_ Do[Wo{-i(k±kcos80)l} - Wo{-i(k+a)l}] 

5 6 a - --=-----=---=-----;------'-::-=------::c--:--"-----'----'--'-'-
, 27J'i (a =t= k cos 80 ) , 

R () 
_ , (a)sinhx(a) -, (±kcoseo)sinhx(±kcos80 ) 

5 6 a - ----'--'---..:........:..--'--'---,-----,-:-----'-----'­
, a =t= k cos 80 ' 

G5 (a) = e - ik cos 90qP5 (a) - e-ik cos 90P R5 (a), 

Do = EoV2k sinh x( -k) , 

E - 2 !1!+i k1 l-r-! 'rh r - e 4 2'/, Tl (5.95) 

and following are the cornmon factors in both of the Eqs. (5 .83) and (5.84), and are 

defined below 

1 . 
T(a) = -2 .E_!W_! {- '/,(k+a)l}coshx(-a) , 7J''/, 2 2 

cosh x (-a) E_! [w_! {-i (k ± k cos eo) l} - W_! {-i (k + a) l}] 
R () 2 2 2 

1 2 a = . , 
, 27J''/, (a =t= k cos eo) 

P ( ) 
_ coshx(a) - cosh x(±k cos eo) 

1 2 a - --~-'------'-----'-

, a =t= k cos 80 ' 

G1 (a) = e-ikcos 90qPl (a) - e-ikcos90PRl (a), 

(5.96) 
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In Eqs. (5.85 - 5.87), (5.95) and (5.96) we have 

(5 .97) 

where z = -i (k + a) land n = -~, O,~. Wm,n is known as a Whittaker function [164, 

165] . It is worthwhile to mention here that since the strip width is considered to be 

large as compared to the incident wavelength so the integrals appearing in the analysis 

have been approximated asymptotically in terms of Whittaker functions whereas for 

the small strip width as compared to the incident wavelength Whittaker functions 

can be replaced by the Fresnel Integrals [166]. By putting a = k in Eqs. (5.93) and 

(5 .94) and solving these simultaneously, the values of the functions F,t. (k) and FJ (k) 

are found to be 

A { (coshx(k)+AT(k)coshx(-k))(Gdk)-AG2(k)) } 
F1 (k) =_1 

+ 211' 
- (sinh x (k) h (k) + AT1 (k) sinh x ( - k) / V2k) (G 5 (k) - A G6 (k)) 

+ ~; { (sinh x (k) h (k) + AT1 (k) sinhx( -k) /V2k) (G1 (k) - AG2 (k)) } 

- (cosh x (k) + AT (k) cosh x (-k)) (G3 (k) - AG4 (k)) 

1 
x 

1 + T2 (k) cosh 2 x ( - k) + T1 (k) T2 (k) sinh 2 x ( - k) 

+2T (k) A cosh x(k) cosh x( -k) + + CT2~~l~ - >'Tl~(k)) sinh x (k) sinh x (-k) 

(5 .98) 
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and 

F2 (k) = 1 
+ sinh x (k) h (k) + ATI (k) sinh x (-k) /Vik 

x {(cosh x (k) + AT (k ) cosh x ( - k)) F~ (k) 

+ ;; (G3 (k) - AG4 (k)) - ;; (GI (k) - AG2 (k))} . (5 .99) 

Now as 

F + (a) = [ F: (aJ ] = [ ~+I (a) ] _ A [ 'l/J-I (a) ] . (5.100) 

F+ (a) 'l/J+2 (a) 'l/J-2 (a) 

Eq. (5.100) is considered for the cases of A = 1 and A = -1 and when the values of 

Fi (a) and F~ (a) are substituted in Eqs. (5.93) and (5.94) the results are as follows: 

For A = 1 

- sinhx(a) -
coshx(a) [7ij+1 (a) - 'l/J-I (a)] - ,(a) [7ij+2 (a) - 'l/J - 2 (a)] = 

- T(a)coshx( - k) F~ (k)I>'=1 + Tl (a)s~x(-k) F.~ (k)I>'=1 

Al A2 + 271' [GI (a) - G2 (a)] - 271' [G3 (a) - G4 (a)] (5.101) 

and 

-, (a) sinh x(a) ~+1 (a) - ~-1 (a)] + cosh x(a) ~+2 (a) - 'l/J-2 (a)] 

- - T (a) cosh x ( - k) F~ (k) 1>.=1 + V2kT2 (a) sinh x ( - k) F~ (k) I >.=1 

A2 Al + 271' [GI (a) - G2 (a)] - 271' [G5 (a) - G6 (a)] , (5.102) 



154 

and for)' = -1 

and 

- sinh x(01) -
coshx(01) [iij+l (a) + VJ-l (a)] - 'Y (a) [iij+2 (a) + VJ-2 (a)] = 

+T (a) cosh x( -k) F~ (k) 1>.=-1 - Td
01

) s~x (-k) F! (k) 1>.=-1 

Al A2 + 27r [G1 (a) + G2 (a)] - 27r [G3 (a) + G4 (a)] , (5.103) 

- 'Y ( a) sinh x ( a) [iij + 1 (a) + ~ -1 (a)] + cosh x ( a) [iij + 2 (a) + VJ _ 2 (a)] 

= T(01)coshx(-k) F!(k) I>.=_I -T2 (01)V2ksinhx(-k) F~(k) I >'=_1 

A2 Al + 27r [G1 (a) + G2 (01)] - 27r [G5 (a) + G6 (a)]. (5.104) 

Adding Eqs. (5.101) and (5.103), will result 

- sinh x (01)- Al A2 
cosh x(01) VJ+l (a) - 'Y (a) VJ+2 (a) = 27r G I (a) - 27r G3 (a) 

T ( a) cosh x ( - k) a Td a) sinh x ( - k) C 
- 2 I + 2-12k 2 

(5.105) 

and adding Eqs. (5.102) and (5.104) will yield 

where 

- - A2 Al 
-'Y (a) sinh x (a) VJ+l (a) + cosh x (01) VJ+2 (a) = 27r GI (a) - 27r G5 (a) 

T (a) cosh x (-k) C T2 (a) -12k sinh x (-k) a (5.106) 
- 2 2 + 2 I, 

a1 = F~ (k) I>'=1 - F~ (k) I>.=_1 ' 

a2 = F! (k)I>'=1 - F! (k)I>.=_1 . (5.107) 
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Eliminating ~+2 (a) from Eqs. (5 .105) and (5.106) will yield 

- (AI A2sinhx(a)) A2 
'!f;+I(a)= 2rrcoshx(a)+2rr ,(a) Gl (a)-2rrG3 (a)coshx(a) 

AIG ( ) sinhx(a) T(a)coshx(-k) (c h () C sinhx(a)) 
- - s a () - 2 1 cos x a + 2 () 2rr , a , a 

TI (a) sinh x ( - k) cosh x (a) C2 T2 (a) V2k sinh x ( - k) sinh x (a) /, (a) Cl + ~ + . 
2y2k 2 

(5.108) 

Now in order to calculate the function ~-I (a), it is required to replace G l (a) by 

G2 (a) (and G2 (a) by Gl (a)), G3 (a) by G4 (a) (and G4 (a) by G3 (a)) and Gs (a) 

by G6 (a) (and G6 (a) by Gs (a)) and also changing a to - a in the Eq. (5.108), will 

result into 

- (AI A2Sinhx(-a) ) A2 '!f;_I(a)= -coshx(-a)+- ( ) Gd-a) --G4 (-a)coshx(-a) 
2rr 27T' ,-a 27T' 

AIG ( ) sinhx(-a) T( - a)coshx(-k) (c- h ( ) c- sinhx(-a) ) 
-- 6 -a - 1 cos x -a + 2---:-----:---'-

27T' ,(-a) 2 ,(-a) 

Tl (-a) sinh x (-k) cosh x( -a) O2 T2 (- a) V2ksinh x (-k) sinh x (-a) h (-a) 01 

+ 2V2k + 2 ' 

(5.109) 

- -where Cl and C2 are given as follows: 

Cl = F~ (k)!>.=1 - F~ (k) !>.=_I' 

C2 - F~ (k)!>.=1 - F~ (k)!>.=_1 ' (5.110) 

where F~ (k) and F~ (k) denote the functions in which Gl by G2 and G2 by Gl , G3 by 

G4 and G4 by G3 and Gs by G6 and G6 by Gs have also been interchanged and then 
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evaluated for A = 1 and A = -1 respectively. Substituting Eqs. (5 .24), (5.108) and 

(5.109) into Eq. (5.25) and simplifying, the unknown coefficient A (a) is determined 

to be: 

-4; cosh x (a) cosh x (k cos eo) -1; sin~(:;a) cosh x (k cos eo) } 

+~~ cosh x (a) sin~(;~~~~:fo) + * si~(:;a)1' (k cos eo) sinh x (k cos eo) 

ei(a-k cos lio)q 
x----

a - kcoseo 

+ { -4; cosh x(a) Rl (a) - 4; si~(:;a)Rl (a) 

+4; cosh x (a) R3 (a) + 4; si~(:~a)R5 (a) 

{ 

_ T(a) co~h >« -k) (C1 cosh x (a) + C2 sin~(:;a) ) 
+ + T1(a) sinh >« -k) cosh >«a)C2 + T2(a)V2ksinh >« -k) sinh >«a)h(a)C1 

2V2k 2 

+{ 

+{ 
_T(-a)cosh>«-k) (C- h (_) + C- sinh>«-a)) } 

2 1 COS X a 2 (_) . 
, a etap 

+ T1 (-a) sinh >« -k) cosh >« -a)G2 + T2( -a)Y2k sinh >« -k) sinh >« -a)/1( -a)G1 
2Y2k 2 

{ 

4; cosh x (-a) cosh x (-k cos eo) + 1; sin~(:~)a) cosh x (-k cos eo) } 

+ ~ h ( ) sinh>«-kcoslio) fu sinh >«-a) (k e ) . h (k e ) 
- 271" cos x -a ,(-k cos lio) - 271" ,(-a) I' - COS 0 sm x - COS 0 

ei(a-k cos IiO)P ] 
X . 

a - kcoseo 
(5.111) 

Since A(a) has been determined, the scattered field 'I/J (x, y) can now be determined 

by substituting A(a) into Eq. (5.19) and taking the inverse Fourier transform as 
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follows: 
00 

'l/J (x, y) = / A(a)eiI«a)y-iaxda, (5.112) 

-00 

where A(a) is defined in Eq. (5 .111). The scattered field 'l/J (x, y) can be split up into 

two components as follows: 

'l/J (x, y) = 'l/Jsep (x , y) + 'l/Jint (x, y) , (5.113) 

where 

/

00 [{ Al A2 sinh x (a) 'l/Jsep(x,y ) = --coshx(a)coshx(kcos80) - - () coshx(kcos80) 
27r 27r ,a 

-00 

A2 sinhx(kcos80) Alsinhx(a) . . } 
+-coshx(a) (k 8) + - () ,(kcos80)smhx(kcos80) 27r , cos 0 27r, a 

ei(a-kcosOo)q {A 
x k 8 + -2Icosh x (-a)cosh x( - kcos80) 

a - cos 0 7r 

A2 sinhx(- a) h (k 8) A2 h ( ) sinhx(-kcos80) 
+ - ( ) cos x - cos 0 - -2 cos x - a (k 8 ) 27r ,-a 7r, - cos 0 

-- ,( -k cos 80) sinh x (-k cos 80) etI«a)y-taxda 
Alsinh x(-a) } ei(a-kCOSOO)P ] . . 

27f ,(-a) a-kcos80 

(5.114) 
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and 

(5.115) 

where 'l/Jsep (x, y) gives the diffracted field produced by the edges at x = p and at 

x = q respectively and 'l/Jint (x, y) gives the interaction of one edge upon the other 

edge. 

5.3 Determination of the diffracted field 

The calculations carried out for the three part boundary value problem formulated 

in terms of matrix W-H equations are quite laborious and delicate at the same time, 

so the far field is reported only for the case of y > O. The far field for the case of 

y < 0 can be calculated in a similar manner. 

In order to solve the integral appearing in Eq. (5 .112) the following substitutions 

x = p cos e, y = p sin e and Q = - k cos (e + it 1) , (5.116) 
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have been introduced into Eq. (5.112). When the length of soft-hard strip is large 

the main contribution to the integral in Eq. (5.112) comes from the saddle point 

h = 0 with A( - k (cos e + it l )) is slowly varying around tl = 0 and also the quantity 

(cos eo + cos e) is different from zero as kp --t 00 and thus using the method of steepest 

descent [69], the field at the large distance from a soft-hard finite plate is given as 

fIi 'k +." '1f;(x,y ) ~ yrpisine A(-kcose)e"P ''4, (5.117) 

where A( -k cos e) can be evaluated from Eq. (5.111). The effect of surface waves can 

also be neglected since the far field approximation has been used in determining the 

diffracted field [130, 138]. 

5.4 Graphical results 

In this section, some graphs showing the effects of sundry dimensionless parame-

ters such as kp and kd, where kp is the observer distance from origin and kd is the 

strip width on the diffracted field produced by the two edges of the finite soft-hard 

plate are presented. 
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Fig_ 5_2 Variation of sep. field 1/Jsep Vs 8 at 80 = ~ and kd = 10. 
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Fig. 5.3 Variation of sep. field 1/Jsep Vs 8 at 80 = ~ and kd = 20. 
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• Figs. 5.2 and 5.3 show the variation of separated field '1f; sep with observation 

angle e at eo = 1r /3 and kd = 10, 20 for kp = 1, 2 and 3 respectively. It can be 

seen that increasing the parameter kp causes more oscillations and the overall 

amplitude of the separated field '1f;sep decreases . 

125 

100 -- kd = 5 
- - kd = 10 
- - - - kd = 15 

75 

i 50 
~. 
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a 

-25 

-50 
a 2 3 4 5 6 

e 

Fig. 5.4 Variation of sep. field '1f;sep Vs e at eo = ~ and kp = 2. 
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Fig. 5.5 Variation of sep. field 1/Jsep Vs e at eo = ~ and kp = 4 . 

• Figs. 5.4 and 5.5 depict the separated far-field patterns 1/Jsep with observation 

angle e at eo = 1l' /3 and kp = 2, 4 for kd = 5, 10 and 15 respectively. It is 

observed that increasing strip width parameter kd the diffraction patterns are 

approximately overlapped throughout most of the graph and the middle lobe 

in Fig. 5.5 is more steep than the middle lobe in Fig. 5.4. 

5.5 Concluding remarks 

In this chapter, the diffraction of a plane acoustic wave by a soft hard strip is 

investigated rigorously with the help of integral transform, W-H technique and the 

method of steepest descent. The main findings are summarized as below: 

• The coupled W-H equations lead to a matrix W-H equation which is solved 
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after using the factorization of the kernel matrix. The kernel matrix has been 

factorized by using the Daniele-Kharapkov methods [20, 21J. 

• The two edges of the soft-hard strip give rise to two diffracted fields (one from 

each edge), i.e., the separated field and the interaction of one edge upon the 

other edge, i.e., the interaction field. 

• The diffracted field is presented for the far-field situation and some graphs 

showing the effects of various parameters on the separated diffracted field are 

presented and discussed. 

• The soft-hard strip gives better attenuation results for the separated and inter­

active diffracted fields as compared to a completely rigid strip as Rawlins [34J 

also observed and pointed out this fact that the half plane soft on one side and 

hard on the other side gives better attenuation results than a completely rigid 

semi-infinite plane for singly diffracted fields. 

• It is believed that results presented in this chapter have not been reported so far 

based on the W-H technique and avoids the relatively cumbersome apparatus of 

integral equations. This route of solution of diffraction problem is more rigorous 

and involves tedious mathematical calculations. 

• FUrther the consideration of soft-hard strip will help understand acoustic dif­

fraction and will go a step further to complete the discussion for the soft-hard 

half plane. 
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Chapter 6 

Diffract ion Of Plane Waves By A 

Slit In An Infinite Soft-Hard Plane 

Diffraction of plane acoustic/ electromagnetic waves by a slit configuration has 

received wide attention because of its importance in microwave and optical instru­

mentation. Also guiding structures containing thick slits or slots e.g., microwave 

passive filters, coupling structures have interesting reflection and transmission prop­

erties [166] . The investigations pursued in the present chapter are based on an integral 

transform, the W-H technique and an asymptotic method. AB mentioned in chapters 

1 and 5 that a large number of analytical, numerical and combination of both ana­

lytical and numerical methods are available for the solution of diffraction problems 

corresponding to strip/slit geometry. To name a few only e.g., Bowman et al. [76] 

reviewed and summarized much of the work done on slit geometry. Clemmow [115] 
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addressed the problem of diffraction of H-polarized plane wave by a wide slit and 

a normally incident E-polarized plane wave by a narrow slit by using the method 

of plane wave spectrum representation and Achenbach [167] investigated diffraction 

of a plane horizontally polarized shear wave and a plane longitudinal wave by a 

semi-infinite slit by employing integral transforms with the W-H technique and the 

Cagniard de-Hoop method. 

The problem of diffraction of acoustic waves by a slit in an infinite soft-hard plane 

has been analyzed by the elegant analytical W-H technique which impresses all those 

who use it and have applications in almost all branches of modern sciences [15]. To 

the best of authors' knowledge the problem of diffraction of acoustic waves by a slit 

in an infinite soft-hard plane has not been discussed previously, so it seems to be first 

and worthwhile attempt to address the above said boundary value problem. By using 

the Fourier transform technique the problem is reduced to a matrix W-H functional 

equation. Noble [14J and Jones [35J addressed the problems of diffraction of waves by 

a slit using the W-H method. Their approach has been followed very closely. This 

boundary value problem resulted in a peculiar W-H functional equation of the form 

where the various quantities appearing in the above equation will be defined as the 

analysis is pursued further and when the slit width is larger than the incident wave 

length then the physical concept of the geometrical theory of diffraction (GTD) [78, 

163J can be used to obtain a high frequency approximate solution of the corresponding 
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boundary value problem. Also in working out solution of the problem of diffraction 

of plane acoustic waves from a slit aperture in an infinite soft-hard expanse, several 

integrals in the analysis have been approximated under the assumption of GTD. The 

approach followed in the present chapter has been used by many researchers in the 

literature, e.g., Birbir and Btiytikaksoy [120], Kashyap and Hamid [166], Asghar et al 

[121, 122], Hayat et al [124, 125], Ayub et al [126, 127] and more recently by Cinar 

and Btiytikaksoy [128]. 

The diffracted field obtained is shown to be the sum of the wave-fields produced 

by the two edges of the slit (separated field) and by the interaction of one edge upon 

the other edge (interaction field) . Several graphs illustrating the effects of various 

parameters on the separated diffracted field are also plotted and discussed. 

6.1 Mathematical formulation of the problem 

Let (x, y , z) define the cartesian coordinate system with respect to the origin O. 

Consider the diffraction of a plane acoustic wave by a slit occupying the position 

{p ::; x ::; q, y = 0, Z E (-00, oo)}. The positions of the soft-hard planes located 

on both sides of the slit are given by {-oo < x ::; p, y = 0, Z E (-oo,oo)} and 

{q ::; x < 00, y = 0, Z E (-00, oo)}, respectively and these are assumed to have 

vanishing thicknesses. A time factor of the type e-iwt is assumed and suppressed 

throughout the calculations. The geometry of the problem is shown in Figure 6.1. 
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-00 hard p q hard +00 

Fig. 6.1 Geometry of the slit problem 

For harmonic acoustic vibrations of time dependence e-iwt , the following Helmholtz's 

equation has to be solved 

(6.1) 

where 'ljJt is the total velocity potential and the boundary and continuity conditions 

are given by 

'ljJt (x, 0+) = 0, 
{ -00 <x ~p (6.2) on 

q:::; x < 00, 

(Nt (x , 0-) { 
-00 < x:::; P 

By 
= 0, on (6.3) 

q:::; x < 00, 

and 

'ljJt (x, 0+) ='ljJt (x,O- ) , on P < x < q, (6.4) 

B'ljJt (x , 0+) B'ljJt (x , 0- ) 
on p < x < q. (6 .5) 

By By 
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In Eqs. (6.2 - 6.5), the quantity o± refers to the situation that y ---t 0 through positive 

or negative y-axis. 

Let a plane acoustic wave 

n/ •. = e-ik(xcos(lo+ysin(lo) 
'fI~ , (6.6) 

be incident upon the slit occupying the position p::; x ::; q, y = O. In Eq. (6.6) , 80 

is the angle of incidence and for the analytic convenience it is assumed that the wave 

number k has positive imaginary part. For the analysis purpose it is convenient to 

express the total field 1/Jt as 

y>O 
(6.7) 

y < 0, 

where 1/J is the diffracted field and 1/Jr is the reflected field from the soft surface and 

is given by 

n/. = _e-ik(xcos(lo-ysin(lo) 
'fir , 

[14J. For a unique solution of the problem, the edge conditions require that 1/Jt and 

its normal derivative must be bounded and satisfy [33, 34J 

{ 

-1+0 (x - p)~ 
1/Jt (x, 0) = 

1 

- 1 + 0 (x - q)'4 

81/Jt (x , 0) = { 0 (x - pt~ 
8y 3 o (x - qt'4 

as x ---t q+ , 

as x ---t q+, 

(6.8) 

(6.9) 
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where a negative sign indicates a limit taken from left and a positive sign indicates 

that a limit taken from right of the points p and q on the x - axis [121, 125J. Thus, 

the scattered field satisfies the Helmholtz equation 

subject to the boundary conditions 

and 

8'1j; (x, 0-) = 0 
8y 

and the continuity conditions 

and 

-00 < x < p 

q < x < 00, 

-00 < x < p 

q < x < 00, 

8'1j; (x, 0+) _ 8'1j; (x , 0-) _ 2'k . e -ikxcos80 
8y 8y - 2 sm oe on p ~ x ~ q. 

The Fourier transform pair is defined as follows 

00 

'Ij; (a, y) = 2~ J 'Ij; (x, y) eiQXdx, 
-00 

and its inverse as 
00 

'Ij; (x, y) = J -:;P (a , y) e-iQXda, 

- 00 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 
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where 

p 

~- (a, y) = 2~ J 'ljJ (x, y) eia(x- p)dx, 

-00 

q 

Q (a, y) = 2~ J'ljJ (x, y) eiaxdx, 

p 

00 

~+ (a, y) = 2~ J'ljJ (x, y) eia(x-q)dx. (6.17) 

q 

The function ~ _ (a, y) is regular in the lower half plane 1m a < 1m k, ~ + (a, y) is 

regular in the upper half plane 1m a > 1m k cos eo and Q (a, y) is an analytic function 

and therefore regular in the common region 1m k cos eo < 1m a < 1m k and the strip 

of analyticity is same as shown in Fig. 3.2. 

The Fourier transform of the Eq. (6.10) will give 

(6.18) 

where K(a) = v'k2 - a 2 . 

Defining K(a), the square root function to be that branch which reduces to +k 

when a = 0 and when the complex a - plane is cut either from a = k to a = koo 

or from a = -k to a = -koo. The solution of Eq. (6.18), representing the outgoing 

waves at infinity, can formally be written as 

_ { A(a)eiK(a)y 'ljJ(a, y) = 

B(a)e-iK(a)y 

y>O 
(6.19) 

y < 0, 

where A(a) and B(a) are the unknown coefficients which are to be determined. The 
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Fourier transform of the boundary conditions (6.11 - 6.14) yields 

'lj;-1 (a, 0+) = 0, (6.20) 

'lj;+1 (a, 0+) = 0, (6.21) 

'lj;-2 (a ,O- ) = 0, (6.22) 

'lj;+2 (a ,O-) = 0, (6.23) 

Q1 (a , 0+) - Q1 (a,O-) = 0, (6.24) 

Q2 (a, 0+) - Q2 (a,O- ) = ksineoG(a), (6.25) 

where 
p 

~-1 (a, O-) = 2~ J 'lj; (x, 0- ) eia(x-p)dx, (6.26) 

-00 

00 

~+1 (a,O- ) = 2~ J 'lj; (x, 0-) eia(x-q)dx, (6.27) 

q 

1f ( 0+) = _1 ] a,p (x, 0+) ;o(.-p)d 
-2 a, 2 . 8 e x, 

7l'~ y 
(6.28) 

-00 

00 

~ ( 0+) = _1 J 8'lj; (x, 0+) ia(x-q)d 
+2 a, 2 ' 8 e x, 

7l'~ y 
(6.29) 

q 
q 

Q1 (a, 0+) .= 2~ J'lj; (x, 0+) eiaxdx, (6.30) 

p 

q 

Q ( 0- ) = _1 J 8'lj; (x, 0-) iaxd 
2 a, 2 . 8 e x, m y 

(6.31) 

p 

and 

G(a) = 
ei(a-k cos 90)q _ ei(a-k cos 90)p 

(6.32) 
71' (a - kcoseo) 
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Using Eqs. (6 .20 - 6.25) in Eq. (6 .19), will give 

A(a) = Ql (a, 0+) , (6.33) 

B( ) = _ Q2 (a, 0- ) (6.34) 
a K(a) , 

A(a) - B(a) = -eiap1fi_l (a,O- ) - eiaq1fi+1 (a, 0-) , (6.35) 

- K(a) [A(a) + B(a)] = -eiap'I/J_2 (a, 0+) - eiaq1fi+2 (a , 0+) + ik sin eoG(a). (6.36) 

The elimination of the coefficients A(a) and B(a) among the Eqs. (6.33 - 6.36) will 

lead to the following matrix Wiener-Hopf equation valid in the strip of analyticity 

Imkcoseo < Ima < Imk, 

. [1fi+l(a)] [ 1 
e

taq + 
1fi+2 (a) -K(a) 

]«a) ] [Ql(a)] . ['I/J_l (a) ] _() [ 0 ] +ewp = Ga. 

1 Q2(a) 1fi-2 (a) ik sin eo 

(6.37) 

In compact form Eq. (6.37) can further be arranged as 

(6.38) 

where bold letters are used to denote the matrices. Eq. (6 .38) is an equation analogous 

to the Eq. (5.60) available in [14] . In Eq. (6.38), H (a) is the kernel matrix and in 

order to solve it, we have to factorize the matrix H (a) as the product of two non-

singular factor matrices such that one factor matrix being regular in the lower half 

plane and the other factor matrix being regular in the upper half plane with the 

additional requirements that both the factor matrices as well as their inverses contain 
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elements of algebraic growth at infinity and both of these factor matrices should 

commute with each other. The factorization of H (a), satisfying these conditions, 

has been done in [33] by using the Daniele-Kharapkov methods [20, 21] and the result 

is as follows: 

with 

where 

and 

1 [ cosh X (a) 
H+ (a) = 24 

r (a) sinh X (a) 

sinh X (a) Ir (a) 1 ' 
cosh X (a) 

X ( - a) = - ~ [1f - arccos I] 

Also as lal - 00, it is noted that 

(6.39) 

(6.40) 

(6 .41) 

(6.42) 

(6.43) 

After accomplishing the factorization of the matrix H (a) ,Eq. (6.38) can be re-

arranged as 

Pre-multiplying Eq. (6.44) by e-iaq [H+ (a)r\ substituting the value of G(a) from 
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Eq. (6 .32) and simplifying will give 

e -ik cos ()Oq eicr(p-q)-ik cos ()op 

= [H+ (a)] -1 A - [H+ (a)]-1 A. (6.45) 
7r(a-kcosBo) 7r(a-kcosBo) 

According to the procedure defined in [14] different terms occurring in Eq. (6.45) can 

be decomposed as follows, 

(6.46) 

(6 .47) 

The pole contribution of the first term on right hand side of Eq. (6.45) can be 

expressed as 

Using Eqs. (6.46 - 6.48) in Eq. (6.45) and separating it into positive and negative 

terms, one obtains 

e-ikcos()oq 

[H+ (a)r1 W +(a) + U+(a) - ( k B ) 
7r a - cos 0 

x [{H+ (a)} -1 - {H + (kcos Bo)} -1] A + V +(a) 

(6 .49) 

where 

(6.50) 
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and 
oo+ic 

1 J ei((p-q)-ikcos90p [H+ (~)rl A 
V±(a ) = ±- d~. 

27l'i 7l'(~ - a) (~ - k cos eo) 
(6.51) 

-oo+ic 

Now pre-multiplying Eq. (6.44) by e-ic<p [H_ (a)rl, substituting the value of G(a) 

from Eq. (6.32) and simplifying will give: 

eic«q-p)-ik cos 90q e-ikcos90p 

( ) [H_ (a)]-l A - ( ) [H_ (a)] -l A. 
71' a - kcoseo 71' a - kcos80 

(6.52) 

Decomposing different terms in Eq. (6 .52) by following [14], as: 

(6.53) 

(6.54) 

so that 

(6.55) 

and 
oo+id 

1 J ei((q-p)-ikcos90q [H_ (~)rl A 
S±(a) = ±27l'i 7l'(~ _ a) (~ - k cos 8

0
) d~, (6.56) 

-oo+id 

where - Ima < c < Imkcoseo and -Ima < d < 1m k cos 80 , also 1m a > c in Eqs. 

(6.50) and (6 .51) and 1ma < d in Eqs. (6.55) and (6.56) as given in [14] . 

Using Eqs. (6.55) and (6.56) in Eq. (6 .52) and separating it into positive and 

negative portions will lead to 

e-ikcos90p 

R_(a) + [H_ (a)rl 'l1 _(a) - S_(a) + ( k 8) [H_ (a)rl A 
71' a - cos 0 

= _e-iaPH+ (a) Q(a) - R+(a) + S+(a). (6.57) 



176 

The left hand side of Eq. (6.49) and right hand side of Eq. (6.57) are regular in 

1m a > 1m k cos eo and right hand side of Eq. (6.49) and left hand side of Eq. (6.57) 

are regular in 1m a < 1m k. Hence using the extended form of the Liouville's theorem 

each side of Eqs. (6 .49) and (6.57) is equal to zero, i.e., 

and 

Using Eqs. (6.50) and (6.51) in Eq. (6.58), and Eqs. (6.55) and (6.56) in Eq. (6.59) 

and simplifying will give 

(6.60) 

and 

where 

'l1~(a) 
e-ikcos IiOq A 

(6.62) = 'l1+(a) -
7r (a - k cos eo) , 

'l1_(a) 
e-ik cos lioP A 

(6.63) = 'l1_(a) + ( k e)' 
7r a - cos 0 
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From the assumption that 0 < eo < ~, a can be chosen such that -k2 cos eo < a < 

k2 cos eo and d = -c = a, [14]. In Eq.(6.60) replacing ~ by -~ and in Eq. (6.61) a by 

-a and also noting that H_ (-a) = H+ (a) will yield 

[H+ (a)rl \[1* (a) + e-ikcoslJoq [H+ (kcoseo)r
1 

A 
+ 1r(a-kcoseo) 

oo+ia 
__ 1 J ei~(q-p)[H_ (~)]-l\[l _ ( -~)dt = O 

21ri (~ + a) <" (6.64) 
-oo+ia 

and 

Addition and subtraction of Eqs. (6.64) and (6.65), will result into 

[H+ (a)rl S* (a) + e-ikcoslJoq [H+ (kcoseo)r
1 

A 
+ 1r(a-kcoseo) 

oo+ia 
__ 1 J ei~(q-p) [H_ (Or1 S~(O d

C 
= 0 

21ri (~ + a) <" (6.66) 
-oo+ia 

and 

[H+ (a)rl D* (a) + e-ikcoslJoq [H+ (k cos eo)r
1 

A 
+ 1r(a-kcoseo) 

oo+ia 
1 J ei~(q-p) [H_ (Or1 D~(O _ 

+ 21ri (~ + a) d~ - 0, (6.67) 

-oo+ia 

where 

S~(a) = \[I~(a) + \[1_( -a), (6.68) 

D~(a) = 'l1 ~(a) - 'l1 _( -a). (6.69) 
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The Eqs. (6.66) and (6.67) are of the same type and an approximate solution can be 

obtained by a method due to Jones [164]. Setting 

S~(a) = D~(a) = F~ (a) , 

the Eqs. (6 .66) and (6.67) will take the form 

where 

e-ikcosOoq [H+ (k cos eo)r l A 
1f (a - k cos eo) 

(6.70) 

(6.71) 

e-ik cos OOqA Ae-ikcosOop A 
F * (a) = F+ (a) - + , (6.72) 

+ 1f(a-kcoseo) 1f(a+kcoseo) 

and A = ±l. 

A more elaborative form of Eq. (6.71) is as follows: 

[

cosh x (a) F~* (a) - sinh x (a) F;* (a) II (a) ] 

-, (a) sinh x (a) F~* (a) + cosh x (a) F;* (a) 

A ooJ+ia ei~(q-p) [ cosh x (-~) F~* (~) - sinh x (-~) F~* (~) /, (-~) 1 
+21fi (~+a) d~ 

-oo+ia -, (-~) sinh x (-~) F~* (~) + cosh x ( -~) F;* (~) 

+ e-ikcosOoq [ Al cosh x (k cos eo) - A2 sinh x (k cos eo) / , (k cos eo) 1 = O. 

1f (a - k cos eo) 
-Al/ (k cos eo) sinh x (k cos eo) + A2 cosh x (k cos eo) 

(6.74) 
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Eq. (6.72) in matrix form can be written as: 

[ 

F~* (a) 1 = [ F~ (a) 1 ~e-ikCOSIJOq [ Al 1 + )..e-ikcoslJop 

7r (a - k cos eo) 7r (a + k cos eo) 
F~* (a) F~(a) A2 [ :: 1 

(6.75) 

Considering the first row of Eq. (6.74) and using the values of F~" (a) and F~* (a) in 

it, will obtain 

(6.76) 

Writing 'Y(~) = 'Y+(~h-(~) = v'~ + k~ and considering the integrals arising in 

Eq. (6.76), one arrives at 

e-ik cos IJOqAI )..e-ik cos IJop Al 
1 = h - h + h - 14 

7r 7r 

e-ik cos IJOq A2 e- i k cos IJop A2 

+ Is + Ie, 
7r 7r 

(6.77) 

where 
oo+ia 

J 
ei~(q-p) cosh x (-0 F~ (~) 

h = (~+ a) dC (6.78a) 

-oo+ia 
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oo+ia 

J 
ei{(q-p) cosh x ( - 0 

h = d~, 
(~+ a) (~- kcoseo) 

(6.78b) 

-oo+ia 

oo+ia 

J 
ei~(q-p) cosh x ( -~) 

h = d~, 
(~+ a)(~ + k cos eo) 

(6.78c) 

-oo+ia 

oo+ia 

J ei~(q-p) F~ (0 sinh x ( -~) / J[+kd 
h = (~+ a) vr,:::k ~, (6.78d) 

-oo+ia 

oo+ia 

J 
ei~(q-p) sinh x ( -0 / J[+k 

Is = d~, 
(~ - k cos eo) (~ + a) vr,:::k 

-oo+ia 

(6.78e) 

oo+ia 

J ei~(q-p) sinh x (-~) /...;~ + k 
h = d~. 

(~ + k cos eo) (~ + a) vr,:::k 
(6.78f) 

-oo+ia 

Integrals (6.78 a - 1) are solved by a method described in [14] and are substituted in 

Eq. (6 .76) to get 

(6.79) 
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where l = q - p and 

T(a) 

R l ,2 (a) -

-2
1 

.E_! vV_d -i (k + a) l}, 
7H 2 2 

-21 .E_IW_I{-i(k+a)l}, . 
7r2 

cosh x (-k) E_! [W_! {-i (k ± k cos 80 ) l} - W_! { - i (k + a) l} ] 
2 2 2 

27ri (a =f k cos 80 ) 

E-I [VV_l {-i (k ± k cos 80 ) l} - W- I {-i (k + a) l}] sinh x (-k) /V2k 
27ri(a =f kcos80 ) 

(6.80) 

Eq. (6 .79) can further be simplified according to the procedure described in [14] and 

the result is 

sinh x(a) 
cosh x (a) F'; (a) - ,(a) F'; (a) = -AT(a)F'; (k) + ATl (a)F'; (k) 

e-ikcos90q e-ik cos 90p e-ik cos 90q e-ikcos90p 

+AI Plea) - AAI P2(a) - A2 P3(a) + AA2 P4 (a) 
7r 7r 7r 7r 

e-ikcos90q e-ikcos90p e-ik cos 90q e-ikcos90p 

+AAl R2(a) - Al RI(a) - AA2 R4 (a) + A2 R3(a), 
7r 7r 7r 7r 

(6.81) 

where 

Plea) = 
1 

( k 8) [coshx(a) - coshx(kcos80)], 
a - cos 0 

P2(a) = 
1 

( k e) [coshx(a) - coshx(-kcos80)], 
a + cos 0 

P3(a) = 
1 [sinhx(a) Sinhx(kCOS80)] 

(a-kcos80 ) ,(a) ,(kcos80)' 

P4 (a) = 
1 [sinh x (a) sinhx(-kcOS80)] 

,_(-kcos80 ) (a+kcos8o) ,(a) ,+ (kcos8o)' 

(6.82) 



Further simplification of Eq. (6 .81) will lead to 

sinh x (a ) 
cosh x ( a) F~ (a ) - ')' ( a) F~ (a) 

= -AT(a)F~ (k) cosh x( - k) + ATI(a)F~ (k) sinh~-k) 
2k 
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+ Al {e - ikcos(loq PI (a) - e - ikcos(lop RI (a)} - AAI {e - ikcos (lop P2 (a) - e-ikcosliOq R2( a)} 
~ ~ 

_ A2 {e-ikcosIiOq P3(a) _ e - ik cos (lop R3(a)} + AA2 {e-ik cos (lop P4(a) _ e-ikcuslioq R4(a)} . 
~ ~ 

(6.83) 

Letting 

(6 .84) 

in Eq. (6.83), the solution of the first W-H equation, obtained by considering the 

first row of matrices in Eq. (6.74), is given as follows: 

h () 
1 () sinh x ( a) F~ (a) 

cos x a F + a - l' (a) 

= -AT (a) coshx(-k) F~ (k) + ATI (a)sin~-k) F~ (k) 

Al A2 +- [GI (a) - AG2 (a)]- - [G3 (a) - AG4 (a)]. (6 .85) 
~ ~ 

The second W-H equation corresponds to the second row of the matrix Eq. (6 .74) 

and its solution can be obtained in a similar manner as for the first row of Eq. (6 .74). 
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Omitting all the similar steps and quantities arose in the solution, will lead to the 

following form 

-, (a) sinh x (a) F~ (a) + cosh x (a) F; (a) 

= )"'T2 (a) V2ksinh x (-k) F~ (k) - )"'T (a) cosh x (-k) F; (k) 

A2 Al +- [GI (a) - )"'G2 (a )] - - [G5 (a) - )"'G6 (a)] , (6.86) 
~ ~ 

where 

1 
T2 (a) = -2 . EoWo{ -i (k + a) l}, 

~2 

P5 (a) = ' (a) sinh x ( a) - , (k cos eo) sinh x (k cos eo) , 
a - k cos eo 

P6(a) = ,(a)sinhx(a) -,(-kcoseo)sinhx(-kcoseo), 
a + kcos eo 

R () 
_ Do [Wo{ -i (k ± k cos eo) l} - vVo{ -i (k + a) l}] 

56 a -
, 2~i(a=t=kcoseo) · ' 

Do = EoV2k sinh x (-k) . 

In Eqs. (6.80) and (6.87), 

(6.87) 

(6.88) 

where z = - i (k + a) land n = -~, O,~ . Wm ,ll is known as a Whittaker function 

[164, 165] . The values of the functions F~ (k) and F; (k) can be calculated by putting 
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a = k in Eqs. (6.85) and (6 .86) and solving these equations simultaneously. Now as 

F+(a) = [F:(e>l] = [ ~+1(a) ] _), [ ~_1(a) ]) (6.89) 

F+ (a) 'I/J+2 (a) '1fJ-2 (a) 

Eq. (6.89) is considered for the cases), = 1 and), = - 1 and when the values of 

Fi (a) and FJ (a) are substituted in Eqs. (6.85) and (6.86) the results are as follows: 

For)' = 1 

- sinhx(a) -
cosh x (a) ~+1 (a) - 'I/J-1 (a)] - I (a) [iij+2 (a) - 'I/J-2 (a)] 

_ - T (a) coshx(-k) F~ (k) I >.=1 + T1 (a)s~(-k) F! (k)I>'=1 

A1 A2 +- [G1 (a) - G2 (a)] - - [G3 (a) - G4 (a)] ) (6.90) 
~ ~ 

and 

- "1 (a) sinh x ( a) ~ + 1 (a) - 'I/J - 1 (a)] + cosh x ( a) [iij + 2 (a) - 1[; _ 2 (a)] 

- - T (a) cosh x (- k) F! (k)I>'=1 + hlT2 (a) sinh x (-k) F~ (k)I>.=l 

A2 A1 +- [G1 (a) - G2 (a)]- - [G5 (a) - G6 (a)] , (6.91) 
~ ~ 

and for), = -1 

- sinh x(a) -
coshx(a) ~+1 (a) + 'I/J-1 (a)] - "1 (a) ~+2 (a) + 'I/J-2 (a)] 

= +T(a)coshx(-k) F~(k)I>'=_1 - Tda)s~x(-k) F!(k)I>.=_1 

A1 A2 +- [G1 (a) + G2 (a)]- - [G3 (a) + G4 (a)], (6.92) 
~ ~ 



and 

-, (a) sinh x (a) l'¢+1 (a) + 7p-l (a)] + cosh x (a) l'¢+2 (a) + 7p-2 (a)] 

= T (a) cosh x (-k) F~ (k) !>.=-1 - Tda) v'2k sinh x (-k) Fl (k)!>.=_1 
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A2 Al +- [GI (a) + G2 (a)] - - [G5 (a) + G6 (a)]. (6.93) 
~ ~ 

Addition of Eqs. (6.90) and (6.92), will give 

- sinhx(a) - Al A2 
coshx(a) 1/J+1 (a) - () 1/J+2 (a) = -G1 (a) - -G3 (a) , a ~ ~ 

T ( a) cosh x ( - k) C Tl (a) sinh x ( - k) C 
- 2 1 + 2V2k 2, 

(6.94) 

and Eqs. (6.91) and (6.93) will yield 

- - A2 Al 
- , (a) sinh x (a) 1/J+1 (a) + cosh x (a) 1/J+2 (a) = - G1 (a) - - G5 (a) 

~ ~ 

T (a) cosh x (- k) C T2 (a) V2k sinh x (- k) C (6.95) 
- 2 2 + 2 1, 

where 

C1 = Fl (k) !>.=1 - Fl (k) !>.=_I' 

C2 = F~ (k)!>.=l - F~ (k)!>.=_I· 

Eliminating 7p+2 (a) from Eqs. (6 .94) and (6.95) will lead to 

(6.96) 
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- (AI A2 sinh x (a)) A2 '1f;+1 (a) = - coshx(a) + - () G1 (a) - -G3 (a) cosh x (a) 
1r 1r ,a 1r 

A1G ( ) sinhx(a) T(a)coshx(-k) (c h () C sinhx(a) ) 
- - s a () - 1 cos x a + 2 () 

1r ,a 2 ,a 
Tl (a) sinh x( -k) coshx(a) C2 T2 (a) V2k sinh x (-k) sinh x (a) I, (a) C1 + 2 V2k + ----''--'--------'---2'--------'--'-----'----'-

(6.97) 

and eliminating '1f;+1 (a) between Eqs. (6.94) and (6.95) will yield 

1f +2 (a) = ( AI, (a) sinh x (a) + A2 cosh x (a)) G1 (a) - A2 G3 (a) , (a) sinh x (a) 
1r 1r 1r 

Al T (a) cosh x ( - k ) . 
- - Gs (a) cosh x ( a) - ( Clf ( a) smh x ( a) + C2 cosh x ( a) ) 

1r 2 
Tl (a) sinh x ( - k) , (a) sinh x (a) C2 T2 (a) V2k sinh x ( - k) cosh x (a) C1 

+ tnT. + . 
2v2k 2 

(6.98) 

Now in order to calculate the function 1f-l (a) and 1f-2 (a), replacing G1 (a) by 

G2 (a) and G2 (a) by G1 (a) , G3 (a) by G4 (a) and G4 (a) by G3 (a) and Gs (a) by 

G6 (a) and G6 (a) by Gs (a) and also changing a to - a in Eqs. (6 .97) and (6.98), 

respectively will give 1f-l (a) as: 

- ( AI A2Sinhx(-a) ) A2 '1f;-I(a)= -coshx( - a)+ - ( ) G2(-a)--G4 (-a)coshx(-a) 
1r 1r ,-a 1r 

Al G ( ) sinh x ( - a) T ( - a) cosh x ( - k) (c- h ( ) c- sinh x ( - a) ) 
-- 6 -a - 1 cos x -a + 2-~---'-

1r ,(-a) 2 ,),(-a) 

Tl (-a) sinh x (-k) cosh x (-a) O2 T2 (-a) V2k sinh x (-k) sinh x (-a) II' (-a) 01 

+ 2V2k + 2 

(6 .99) 
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and 

7/;-2 (a) = ( AI, (-a) sinh x (-a) + A2 cosh x (-a) ) G2 (-a) - A2 G4 (-a), (-a) 
~ ~ ~ 

. Al T(-a)coshx( - k) 
x smh x (- a) - -~ Gd - a) cosh x (- a) - ----'--'----2---'----'-

(0- ( ). h ( ) 0- h ( )) T1 (- a)sinhx( - k),(- a)sinhx(- a)C2 
X l, - a sm x - a + 2 cos X - a + Mi': 

2v2k 

T2 (- a) V2ksinhx( - k) cosh x( -a) C1 + 2' (6.100) 

- -where 0 1 and O2 are given by 

01 = F~ (k)IA=1 - F~ (k)IA=_1 ' 

O2 = F~ (k)IA=1 - F~ (k)I A=_1 ' (6.101) 

and F~ (k) and F~ (k) denote the functions in which GI by G2 and G2 by GI , G3 

by G4 and G4 by G3 and G5 by G6 and G6 by G5 have also been interchanged and 

then evaluated for >. = 1 and >. = -1 respectively. Since the functions 1f ± 1 (a) and 

7iJ±2 (a) have been calculated, therefore now manipulating Eqs. (6.35) and (6 .36) , the 

unknown coefficient A( a) is determined to be 

(6.102) 

Substituting the values of1f±1 (a) and 1f±2 (a) in Eq. (6 .102) and simplifying one has 



A(a) = [{ 1 ik sin eo coshx(-a) cosh x(-kcOSeO) ei(Q-kCOSlJo)p 
27rK(a) a - k cos eo 

- ik sin eOR2 (-a) cosh x (- a) eiQP-kcos!Joq 

_ ik sin eo sinh x (- a) , (- a) sinh x ( -k cos eo) e i (Q-kcos !Jo)p 
(a - kcoseo),( - kcoseo) 

+ik sin eOR4 (-a), (-a) sinh x( -a) eiQP-kcoslJoq 

( 
T ( - a) cosh x ( - k) ( - - ) + 2 -,(-a)sinhx(-a) 0 1 +coshx(- a) O2 

T1 ( - a) , ( - a) sinh x ( - a) sinh x ( - k) O2 
+--~~~~--2v'2k~2=k~----~~-

T2 (-a) sinh x( -k) cosh x (-a) v'2k(1) iQP } 
+ 2 e 

+ 1 { -iksin eo cosh x (a) cosh x(k cos eo) ei(Q-kcos!Jo)q 
27r K(a) a - k cos eo 

- ik sin eOR1 (a) cosh x (a) eiQq-ik cos lJap 

+ ik sin eo sinh x(a), (a) sinh x (k cos eo) ei(Q-kcoslJo)q 
(a - kcoseo),(kcoseo) 

+ik sin eOR3 (a), (d) sinh x (a) eiaq- kcoslJopq 

(
T (a) cosh x( - k) + 2 (-,(a)sinhx(a) 0 1 - coshx(a) O2) 

T1 (a) , (a) sinh x ( a) sinh x ( - k) C2 + MT. . 
2y2k 

T2 (a) sinh x (- k) cosh x (a) v'2kC1) iQq } 
+ 2 e 

+~ { -ik sin eo sinh x (- a) cosh x (- k cos eo) ei(Q- kcoslJo)p 

27r , (- a) (a - k cos eo) 
+ ik sin eo cosh x (- a) sinh x (-k cos eo) e i (Q- kcoslJo)p 

(a - kcoseo),(-kcoseo) 
ik sin eOR2 (-a) sinh x (-a) eiQP-kcos!Joq 

+------~~,~(--a~)~~-----
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-ik sin eoR4 (-a) cosh x (-a) eiop- kcoslioq 

(
-T(-a)COshx (- k) ( - sinhx(-a) - ) 

+ 2 coshx(- a)Cl + ,(-a) C2 

Tl (-a) sinh x( -k) cosh x( -a) O2 

+ 2V2k 

T2 (- a) sinh x ( - k) sinh x( -a) V2kOl) iOP } 
+ 2 e 

+~ {ik sin eo sinh x(a) cosh x (k cos eo) ei(o-kcoslio)q 

2rr , (a) (a - k cos eo) 
ik sin eo cosh x (a) sinh x (k cos eo) i(c. - kcos lio)q 

e 
(a - kcoseo),(-kcoseo) 

-ik sin eoR3 (a) cosh x (a) eiaq-kcosliop 

+ ik sin eoRl (a) sinh x (a) eiaq-kcos liop 

I (a) 

( 
- T ( - a) cosh x ( - k) ( h () C sinh x ( a) C ) 

- 2 cos x a 1 + I (a) 2 

Tl (a) sinh x ( - k) cosh x ( a) C2 

+ 2V2k 

T2 (a)sinhx(-k)sinhx(a) V2kCl) iOq }] 

+ ~(~ e. 
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(6.103) 

Since A(a) has been determined, the scattered field 'ljJ (x, y) can now be determined 

by substituting A(a) into Eq. (6 .19) and taking the inverse Fourier transform as: 

00 

'ljJ (x, y) = J A(a)eiJ«a)y-iaxda, (6.104) 

-00 

where A(a) is defined in Eq. (6.103). The scattered field 'ljJ (x, y) can be split up into 

two components as follows: 

'ljJ (x, y) = 'ljJ sep (x, y) + 'ljJ int (x, y) , (6.105) 



where 

00 

1/Jsep(X,y) = J [ 27f;(a) {(iksineocoshx( - a)coshx( - k cos eo) 
-00 

_ ik sin eo sinh x (-a), (- a) sinh x (-k cos eo)) 
, ( - k cos eo) 

1 ( - ik sin eo sinh x (- a) cosh x (-k cos eo) +-
27f ,(-a) 

+ ik sin eo cosh x (-a) sinh x ( -k cos eo)) } ei(c<-kcos 6o)p 

, (-kcoseo) a - kcoseo 

+ 27f; (a) {( -ik sin eo cosh x (a) cosh x (k cos eo) 

+ ik sin eo sinh x (a), (a) sinh x (k cos eo)) 
, (k cos eo) 

1 (ik sin eo sinh x (a) cosh x (k cos eo) +-
27f , (a) 

_ ik sin eo cosh x (a) sinh x (k cos eo)) } ei(c<-k cos ( 0 )Q] 

,(kcoseo) a - kcoseo 
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(6.106) 



and 
00 

'ljJint(X,y) = J 27r:(a) [{(-iksineocoshx(a)R1 (a) 
-00 

+ik sin eo sinh x (a) , (a) R3 (a)) eiO!q-ik cos 90p 

(
T (a) cosh x (-k) . + 2 (-, (a )smh x (a) C1 -coshx(-a)C2) 

T1 (a), (a) sinhx(a) sinhx(-k) C2 

+ 2V2k 
T2 (a) v'2k sinh x (- k) cosh x (a) C1) iO!q} 

+ 2 e 

+ 27r:(a) {( - ik sin eo coshx( -a) R2 (-a) 

+ik sin eo sinh x (-a) , (-a) R4 (- a ) eiO!p-ikcos 90q 

+ (T (-a) c~sh x ( -k) ( _, (-a) sinh x (-a) 01 _ cosh x (-a) ( 2 ) 

T1 ( -a) , ( - a) sinh x ( -a) sinh x ( - k) O2 
+--~~~~--2-V2k=2k=-~--~~--

T2 ( - a) V2k sinh x ( - k) cosh x ( - a) (1) io!P} 
+ 2 e 

+ 2~ { ( -ik sin eo cosh x (a) R3 (a) + ik sin eo sin~ (:~ a) R1 (a) ) 

iO!q-ik cos (J p ( - T (a ) cosh x ( - k) (c h () 0 sinh x ( a ) ) 
x e 0 - 2 1 cos x a + 2 , ( a) 

T1 (a) sinh x ( - k) cosh x ( a) C2 

+ 2V2k 
T2 (a) v'2k sinh x (a) sinh x (- k) 01) iO!q } 

+ 2 e 

1 {(ikSineoSinhX(-a)Rd-a) ·k· e h ( )R ( )) +- - ~ sm 0 cos x -a 4-a 
27r ,(- a) 

(
T( -a)COshx(- k) (c~ h ( ) C~ Sinhx(-a)) 

- - 1 cos x -a - 2 
2 ,( -a) 

T1 (-a) sinh x( -k) cosh x (-a) 82 
+~~~--~2~V2k~2=k--~~~ 
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T2 (a) V2ksinhx(-a)sinhx(- k) (1) io!P } iK(O!)y-iO!xd + 2 e e a, (6 .107) 
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where 'l/J sep (x , y) gives the diffracted field produced by the edges at x = p and at 

x = q respectively and 'l/Jint (x, y) gives the interaction of one edge upon the other 

edge. 

6.2 Determination of the far-field 

The calculations carried out for the three part boundary value problem formulated 

in terms of matrix W-H equations are quite laborious and delicate at the same time, 

so the reported far field will correspond to the case of y > 0 only, (i.e. we determine 

the unknown coefficient A(a) only), the far field for the case of y < 0 can be calculated 

in a similar manner. Therefore, in order to solve the integral appearing in Eq. (6.104) 

the following substitutions 

x = p cos e, y = psine and a = -kcos (e + it!), (6.108) 

have been introduced in Eq. (6.104), omitting the computational details and using 

the method of steepest descent, the field at the large distance from a slit in an infinite 

soft-hard plane is given as 

f2i 'k ." 'I/J (x, y) ~ V rpi sin e A( - k cos e)e' 'P+'"4, (6 .109) 

where A(- k cos e) can be evaluated from Eq. (6 .103). 
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6.3 Graphical results 

In this section, some graphs showirig the effects of various parameters on the 

diffracted field produced by the two edges of the slit in an infinite soft-hard plane are 

presented. 

~
= 1 

- - p-' 
100 - - - - p=3 

o 2 3 4 

8 

'~ 
'~ 

'~ , 

5 

,'\ /. 

'0; 't' -
" ' 

6 

Fig. 6.2 Variation of the 'if;sep with 8 at 80 = ~, k = 1 and l = 1. 
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150 
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100 ---- p =3 
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-100 
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8 

Fig. 6.3 Variation of the 'l/;sep with e at eo = ~, k = 1 and l = 5 . 

• Figs. 6.2 and 6.3 show the variation of separated field 'l/;sep with observation 

angle e at eo = 7f /4, k = 1 and p = 1, 2, 3 for l = 1 and 5, respectively. 

It is observed that by increasing the parameter p the overall amplitude of the 

separated field decreases. 
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Fig. 6.4 Variation of the '0sep with 0 at 00 = ~, k = 1 and p = 1. 
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Fig. 6.5 Variation of the '0sep with 0 at 00 = ~, k = 1 and p = 5. 
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• The effect of slit width parameter l is observed through the figures 6.4 and 6.5 

in which eo = 1["/4, k = 1 and l = 1, 3, 5 for p = 1 and 5. It is noted that by 

keeping the other parameters fixed and increasing the parameter l causes more 

oscillations in the separated field and its amplitude decreases. 

U]=1 
100 - - k = 2 

-- --k=3 

50 

o "':--=- .. 

·50 

o 2 4 5 6 

8 

Fig. 6.6 Variation of the 'l/Jsep with e at eo = ~, p = 1 and l = 1. 
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Fig. 6.7 Variation of the 'l/Jsep with e at eo = i, p = 1 and l = 5 . 

• Finally in order to see the effects of wave number parameter k Figures 5.6 and 

5.7 are plotted for eo = 7r / 4, p = 1 and k = 1, 2, 3 for l = 1 and 5. These graphs 

depict that increa.sing the parameter k results in increa.sing oscillations in the 

separated field and the amplitude of the separated field decrea.ses. 
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6.4 Concluding remarks 

In this chapter, the diffraction of a plane acoustic wave by a slit in an infinite 

soft hard plane has been investigated rigorously with the help of Fourier integral 

transform, W-H technique and the method of steepest descent. The salient features 

of the presented analysis can be summarized as follows: 

• The · mathematical importance of the work on a slit in an infinite soft-hard 

expanse lies in the fact that in order to determine the unknown coefficient A ( a) 

we have to determine four unknown functions 'l/;±1 (a) and 1f;±2 (a), unlike for 

the strip geometry where we have to determine two unknown functions 'l/;±1 (a). 

• It is emphasized that the boundary value problem under consideration is a 

very special and substantial problem in the existing diffraction theory since 

it involves tedious mathematical calculations, it resulted into a matrix W-H 

equation which are usually considered difficult to handle and as pointed out by 

Rawlins [34] that two unusual features arose in the solution of the problem of 

a soft-hard half plane which is a comparatively Basy problem as compared to 

the problem presented in this chapter (which is a three part boundary value 

problem). 

• The two edges of the slit give rise to two diffracted fields (one from each edge) 

and the interaction of one edge upon the other edge. 

• The consideration of a slit in an infinite soft-hard plane will help understand 
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acoustic diffraction and will go a step further to complete the discussion for the 

soft-hard half plane . 

• The diffracted field is presented for the far-field situation and some graphs 

showing the effects of various parameters on the separated field are also plotted 

and discussed . 

• To the author's knowledge the problem presented in this chapter has not been 

solved previously. 
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Chapter 7 

Conel usions 

The aim of this thesis is the study of scattering of acoustic waves by a barrier 

(or on a part of barrier) which satisfies soft-hard boundary conditions on it (or on a 

part of it). The soft-hard boundary conditions result into a canonical and substantial 

problem of the scattering theory. The imposition of soft-hard boundary conditions 

yield coupled W-H equations which cannot be decoupled trivially and one has to resort 

on matrix W-H approach in order to obtain the analytical solution of these equations. 

Since kernel factorization is one of the major steps in the successful application of 

the W-H technique which becomes more difficult in case of matrix kernel arose due 

to the application of soft-hard boundary conditions. For the problems considered in 

this thesis the kernel remained the same as in the previous works of Btiytikaksoy [33] 

and Btiytikaksoy et al [70] but for the sake of completeness and convenience, sufficient 

details have been incorporated in the factorization of kernel matrices and have been 
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presented in appendices A and B of the thesis. 

Some of the important conclusions which can be drawn from the chapters 3 - 6 

are as follows: 

(1) The attempted problems involving soft-hard boundary conditions have not 

been solved previously, constitutes a new contribution and in this way help and com­

plete the discussion for the soft-hard half plane to some extent. 

(2) The attempted problems have been presented both mathematically and graph­

ically and the checks of correctness have also been applied where ever possible. 

(3) The solutions of attempted problems required complex analytic treatment 

based on the application of W-H technique and involve the use of generalized func­

tions, e.g., Dirac delta function, Fresnel function, Green's function, Hankel function, 

Heaviside unit step function, Maliuzhinetz function, Signum function, Whittaker func­

tion, etc. which requires a lot of mathematical skill and competence. 

(4) For all the presented problems a far-zone solution is obtained and a good 

comparison is observed between the obtained and already known results. 

(5) Several graphs for noting the effects of various parameters of interest are 

plotted and discussed. 

Now a gist of chapter wise discussion is as follows: 

Chapters 3 and 4 

(i) The solutions of line source problems modified the results of plane wave situa­

tion by a multiplicative factor of the form (1.2) which is a well known and established 
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fact in the literature [35, 46]. 

(ii) The solutions of point source excitations are based on line source excitations 

by following [46, 60, 61] . 

Chapters 5 and 6 

(i) The strip/slit problems are solved under the physical assumption of the GTD 

i.e., the strip/slit length is large as compared to the incident wavelength and hence the 

integrals appearing in the analysis are approximated in terms of Whittaker functions. 

(ii) The separated (singly diffracted field) and interacted (multiply diffracted 

fields) fields radiated by the strip/slit edges are calculated under the far zone ap-

proximation. 

Future prospects in chapters 3 and 4 

(i) The line source and point source excitations can further be extended to the 

cases of line and point impulses that is to include the effect of 8(t) also. 

(ii) Chapters 3 and 4 can also be studied for the case of Gaussian pulse case. 

(iii) In chapter 4, partially transmissive half plane can be replaced by partially 

conductive or modified absorbent half plane which results into other problems of 

practical interest and application. 

Future prospects in chapters 5 and 6 

(i) Soft-hard strip and slit in an infinite soft-hard expanse can be further extended 

to the case of line and point sources, line and point impulses and Gaussian impulse. 

(ii) Presently strip/slit problems are considered for the fixed edges. One or both 
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of these edges can be considered random and hence the said problems become more 

general having random edges. 

(iii) The author is also planning to solve the strip/slit problems by a newly intro­

duced technique SIT (Spectral Interaction Technique) and then to observe comparison 

between SIT and Noble's approach. 
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Chapter 8 

Appendices 

Appendix A 

In this appendix sufficient details of the factorization of matrix H(a) 

H(a) = 
[ 

1 K(c<) 1 
-K (a) 1 ' 

(A.l) 

appeared in [33] are presented. In order to apply the Daniele-Kharapkov methods 

[20,21] it is necessary to write the matrix H(a) in the form 

H(a) = 1+ P,Q, (A.2) 



205 

where I , jJ,and Q have been defined in Section 2.7. Writing 

[ 

1 K(a)] [ 1 + 0 H(a) = = 
-K(a) 1 -K(a)+O 

0+ K(a) ] . 
1+0 

(A.3) 

Equation (A. 3) can be simplified to 

[10] 1 [ 0 1] H(a) = +x- . 
01 (a) _(k2 _a2) 0 

(A.4) 

Comparing Eqs. (A.2) and (A.4) implies jJ, = K(a) and 

The matrix H( a) belong to the class of matrices which can be represented in the form 

[ 
1 0] [ h (a) m (a) ] H(a) = a1 (a) + a2 (a) , 
o 1 n ( a ) l2 (a) 

(A.5) 

where a1,2 (a) are scqlar functions and h,2 (a) , m (a) and n (a) are polynomials and 

can be factorized by the Kharapkov's method [21] in the form 

0] 1 [z(a) 
+ gVl sinh JiF ± (a) 

1 n (a) 

m(a) ]} 
- z (a) , 

(A.6) 

with 

1 
l (a) = 2 [ll (a) - l2 (a)] , (A.7) 

and 

l2 (a) + m (a) n (a) = g2 (a) f (a) . (A.8) 
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Here f (a) and 9 ( a) are polynomials and set of zeros of f (a) is formed by the zeros 

of odd multiplicity of the polynomial (l2 + mn) each taken once and h±(o<) and F ± (a) 

are the functions formed by multiplicative and addit ive split of 

h (a) = det H (a) (A.g) 

and 

(A.I0) 

In the forms 

(A.11) 

and 

F (a) = F + (a) + F _ (a) . (A.12) 

Comparing Eqs. (A.4) and (A.5) we have 

122 ada) = 1, a2(a) = K(a)' lda) =0, m(a)=I, n(a)=-(k -a), l2(a)=0. 

Now 

1 1 
l (a) = "2 [ll (a) - l2 (a)] = "2 [0 - 0] = 0, 

also (l 2 + mn) = 02 + (1) (_ (k2 - a2)) = g2 (a) f (a) . This implies that 

also 

det H (a) = 
1 1 

K( o<) 

-K (a) 1 

= 1 + 1 = 2 =1= O. 

(A.13) 

(A.14) 

(A. 15) 

(A.16) 
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Now consider (A.10) and substitute various values from (A.13) and (A.15) into (A.10) 

and simplifying will yield 

1 [1 + _1_-/a2 - k2] F ( ) = 1 ~_K-T( O!....:....) ---r==;;;==:;=;;: 
a 2-/0.2 _ k2 n 1 _ _ 1_-/0.2 _ k2 ) 

. K(O!) 

which simplifies to 

F (a) = 1 In [ K (a.) ] . 
2-/a2 - k2 -/0.2 - k2 

(A. 17) 

N ow for addi ti ve split of (A.17) we consider 

(A.l8) 

where 

F_(a)= __ l ( 1 In{ K(T1) } dT1 . 

4rriJL vhf - k2 /Tf - k2 T1 - a. 
(A.19) 

The path of integration £ _ can be deformed into a contour Cupper enclosing the branch 

point at a. = k (see Fig 3.2). The contributions from a large semicircle CHou in the 

upper half plane and from a small circle Cpo around the branch point at a = k tend 

to zero while the radii CRo and Cpo tend to infinity and zero) respectively. Since the 

integral does not have any pole singularities in the upper half plane) the integral on 

£_ can be written as follows: 

(A.20) 

Mter some mathematical manipulation Eq. (A.20) can be simplified to 

F - a = -- n T1 - + n . ( ) 1 1 [ 1 {I V k 1 ( i-/T1 + k)}] dT1 
4rri Cupper /Tf - k2 VTf - k2 T1 - a. 

(A.21) 
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The second term in expression (A.21) when evaluated on both sides of the branch cut 

C~~Jer and Ct~;Jer vanishes and hence expression (A. 21) is further simplified to 

(A.22) 

Expression (A.22) when evaluated along both sides of the branch cut C~:tf,er and 

C~;Jer resulted into the fact that first term within {} bracket vanishes and therefore 

it implies 

(A.23) 

Now substituting 11 - a = x in (A.23), the integral will take the form 

1100 

dx F - (a) = -4 . 
k-OtxV(x + a)2 - k2 

(A. 24) 

The above integral in (A.24) can be easily solved and the result is as follows 

1 [a+~l F - (a) = - 4va2 _ k2 In -1 k , (A.25) 

which can be further simplified to 

F _ (a) = 1 [iarccos (::k) - i7r] . 
4va2 - k2 

(A.26) 

Using F _ (-a) = F + (a) so 

(A.27) 

Using the property arccos (-x) = 7r - arccos (x) in expression (A.27) will result in, 

(A.28) 
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Now as x(a) = VJF + (a). Therefore 

(A.29) 

and 

x ( - a) = - ~ [1f - cos -1 (~)] . (A.30) 

The explicit factor H+ (a) can be obtained by substituting the values of h+ (a) , l (a), 

m (a) , n (a) and x (a) into (A.6) which gives 

Expression (A. 31) is finally simplified to 

1 [ cosh x (a) 
H+(a)=24 

I' ( a) sinh x ( a) 

which is the required factor. 

sinh x ( a) /1' ( a) 1 ' 
cosh x(a) 

(A.32) 
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Appendix B 

This appendix is devoted to present sufficient details of the matrix W ( a) which 

arose in [70] , 

W(a) = [1 -K(Ci) ] 

]( (a) 1):~Ci) + 1 

(B .1) 

In order to apply the Daniele-Kharapkov methods [20,21] it is necessary to write the 

matrix W ( a) in the form 

W(a) = 1 + P,Q . (B.2) 

Eq. (B. 1) can be written in the form 

W(a) = -1] 
2: 

(B.3) 

Comparing Eqs. (B.2) and (B .3) implies p, = K(Ci) and Q = [ 0 - 1 ] 
(k2 _ a2) 2: 

The matrix W ( a) belongs to the class of matrices which can be represented in the 

form 

[ 
1 0] [ l1 (a) m (a) ] W(a) = al (a) + a2 (a) . 
o 1 n (a) lda) 

(BA) 
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Where a1,2 (0') are scalar functions and Zl,2 (a) , m (a) and n (0') are polynomials and 

can be factorized by the Kharapkov's method [21J in the form 

+ n sinh Vl F ± (a) 
0]1 lz(a) 
1 gyf n(a) 

m(a) ] } 
- Z (a) , 

(B .5) 

with 

1 
Z (a) = 2 [Zl (0') - Z2 (a)J , (B.6) 

and 

Z2 (a) + m ( a) n ( a) = g2 (a) f (a) . (B.7) 

Here f (a) and 9 ( 0') are polynomials and set of zeros of f (0') is formed by the zeros of 

odd multiplicity of the polynomial (Z2 + mn) each taken once and W±(a) and F ± (a) 

are the functions formed by multiplicative and additive split of 

W (a) = det W (a) (B.8) 

F (a) = _I_In [a1 + a2gJ]] 
2VJ a1 - a2gJ] , 

(B.9) 

W (a) = W+ (a) w_ (a) , (B.I0) 

F (a) = F+(a)+F_ (a). (B.ll) 

Comparing Eqs. (B.3) and (B.4) will give 

1 ) 2 2 2k ada) = 1, a2 (a) = K (a) ida) = 0, m (a) = - 1, n (a = (k - a ), Zda) = --:ry' 

(B.12) 



Now 

k 
l (a) = --, 

T) 

also (l2 + mn) = ~ - (k 2 - ( 2 ) = 92 (a) f (a) or a2 
- O"f = 92 (a) f (a) . 

'7) 

This implies 

Also 

det W (a) = 
1 

K(a) 

1 
- K(a) 2 

T)K,(a) ' 
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(B.13) 

(B.14) 

(B.15) 

where K, (a) = k+~~la) ' Now consider (B.9) and substitute various values from (B .12) 

and (B .14) into (B .9) will yield 

(B .16) 

For additive split of (B .16) , consider 

(B.17) 

where 

(B.18) 

The path of integration £ _ can be deformed into a contour Cupper enclosing the branch 

point at a = k (Fig 3.2). The contributions from a large semicircle CRu in the upper 

half plane and from a small circle Cpo around the branch point at a = k tend to zero 
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while the radii CRo and Cpo tend to infinity and zero, respectively. Since the integral 

does not have any pole singularities in the upper half plane, the integral on £ _ can 

be written as follows: 

(B.19) 

The second term in expression (B.19) when evaluated on both sides of the branch 

cut C~~Jer and C~;Jer vanishes and hence expression (B .19) is further simplified to 

After some mathematical manipulation in Eq (B. 20) , it can be simplified to 

(B .21) 

Now substituting II - a = x in (B.21), the integral will take the form 

1100 

dx F - (a) =-4 
k-e< xJ(x + a )2 - O"f 

(B.22) 

The above integral in (B .22) can be easily solved and the result is as follows 

(B.23) 

as F _ ( - a) = F + (a) so 

(B.24) 

Defining 

(B.25) 
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and the explicit factor W + (a) can be obtained by substituting the values of w+ (a) , 

l(a), m(a), n(a) and x(a) into (B .5) which gives 

(2) ~ 1 { [1 0 1 1 [ - k W + (a ) = - cosh x ( a ) + 2 2 sinh x ( a ) n 

'T] J K+ (a ) 0 1 J a - (J 1 k2 _ a2 

(B .26) 

Simplification of (B .26) will finally result into 

- sinh(x (a)) 1 
y'a2- ai 

cosh(x ( a )) + .!£ sinh(x (a )) , 
n y'a2-a~ 

(B.27) 

with 

(B.28) 
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Appendix C 

In this appendix, the following integral has been evaluated. 

(G1) 

Substitute 
M: e - eo 

f.Ll = V 2pcos - 2-' 
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and 

The Eq. (0.1) will take the form 

00 

1 - k Jf ( ):r ((kJ 2)~) exp[ik'T}l(P + Po) - ikJ-i(Z - ZO)]d 
1 - -2 1 J-i.l J-i1 1 - J-i rnn: J-i. 

w v~ 
-00 

(G.2) 
Making use of the result 

(G.3) 

expression (C.2) will take the form [60, 61] 

(C.4) 
1 

JI(Jl.)(kFiJ) 2" 
Let gl (J-i) = ~ and consider the integral PPo 

00 

I~ = J 91 (f-i) e-ik[Jl.(z-zo)-"\h-Jl.2(P+P6+tt-Jl.2)ldJ-i. (G.5) 

-00 



In order to solve the integral (C.5) the following substitutions have to be 
used 

I.L = cos 8, Til = J1-1.L2 =sin 8 (C.6a) 

and 
z - Zo = Rl cos 1/, P = Rl sin 1/. (C.6b) 

I~ takes the form 

00 

I~ = J 91 (8) e-ikRl cos(8+v) (- sin 8) d8. (C.7) 
-00 

By applying the method of steepest descent, the integral I~ can be solved. 
For this, deforming the contour of integration so as to pass through the 
point of steepest descent 8 = -1/, so that the major part of integrand 
is given by integration over the part of deformed contour near -1/ with 
91 (8) is slowly varying around it. Therefore, 

I~ ~ 7r91 (- 1/) sin I/Ha1) (kR1) , 

~ 7r91 (D) Ha1)[k{(z - ZO)2 + P2}~JD, (C.8) 

where D = Pl. 
[(z-zo)2+p2J'1 

Using (C.8), expression (C.4) will take the form 

00 

II = ~J 91 (D) Ha1)[k{(z - ZO)2 + (p + Po + t~ -I.LD2}~j 
J.Ll 

(C.9) 

Introducing the following substitutions 

ti = -a1 + vat + Rt1 sinh2 u, al = P + Po -l.Lf and Rf1 = (z - zO )2 + ai, 
(C.1O) 

in (c. 9), will yield 

00 1 

h = ~J[91(n)Ha1) (kRu cosh u) ( y' at + Rtl sinh2 u + a1) 2 jdu , 

E:l 

(C.11) 
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where 

...j 2 R2 ' h2 n = a1 + 11 sm u 
R11 cosh U 

and 

The integral in expression (C. 11) can be solved asymptotically for kRn cosh u » 
1. Therefore the Hankel function Hci 1

) can be replaced by the first term of 
its asymptotic expansion to give 

(0.12) 
By substituting T = J2kRn sinh u in the integral appearing in expression 
(C.12) , it will take the form 

(0.13) 

where 

(0. 14) 

(0.15) 

and 
(0.16) 

An asymptotic expansion of II then follows by putting T equal to its 
lower limit value in the non exponential part of the integrand plus the 
contribution from T = 0 if zero lies in the interval of integration. Hence 
in our case, for II it is given in Eq. (4.94). 
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IN THIS PAPER, firstly, the far field due to a line source scattering of acoustic waves 
by a soft/hard half-plane is investigated. It is observed that if the line source is 
shifted to a large distance, the results differ from those of [1 61 by a multiplicative 
factor. Subsequently, the scattering due to a point source is also examined using the 
results of line source excitation. Both the problems are solved using the Wiener­
Hopf technique and the steepest descent method. Some graphs showing the effects of 
various parameters on the diffracted field produced by the line source incidence are 
also plotted. 

Key words: diffraction, Wiener-Hopf technique, line source diffraction, point source 
diffraction, steepest descent method. 
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1. Introduction 

NUMEROUS FORMER INVESTIGATIONS have been devoted to the study of classi­
cal problems of line source and point source diffractions of electromagnetic and 
acoustic waves by various types of half-planes. To name a few only, e.g. the line 
source diffraction of electromagnetic waves by a perfectly conducting half-plane 
was investigated by JONES [1] . Later on, JONES [2] considered the problem of 
line source diffraction of acoustic waves by a hard half-plane attached to a wake 
in still air as well as when the medium is convective. RAWLINS [3] studied the 
diffraction of cylinderical waves from a line source by an absorbing half-plane in 
the presence of subsonic flow. AHMAD [4] considered the line source diffraction of 
acoustic waves by an absorbing half-plane using Myre's condition. HUSSAIN [5] 
analyzed the line source diffraction of electromagnetic waves by a perfectly con­
ducting half-plane in a bi-isotropic medium. Recently AYUB et al. [6] studied the 
magnetic line source difffraction of electromagnetic waves by an impedance step. 
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1. Introduction 

ABSTRACT 

Firstly. the analysis of IA. Biiyiikaksoy, G. Cinar. A.H. Serbest. Scattering of plane waves 
by the junction of transmissive and soft-hard half planes. ZAMP 55 (2004) 483-499) for 
the scattering of plane waves by the junction of transmiss ive and soft-hard half planes 
is extended to the case of a line source. The introduction of the line source changes the 
incident field and the method of solution requires a careful ana lysis in calculating the 
scattered field. The graphical results are presented using MATHEMATICA. We observe that 
the graphs of the plane wave situation IA. Biiyiikaksoy. G. Cinar. A.H. Serbest, Scattering 
of plane waves by the junction of transmissive and soft- hard half planes, ZAMP 55 (2004) 
483-499) can be recovered by shifting the line source to a large distance. Subsequently, 
the problem is further extended to the case of scattering due to a point source using 
the results obtained for a line source excitation. The introduction of a point source (three 
dimensions) involves another variable which then requires the calculation of an add ition al 
integral appearing in the inverse transform. 

© 2008 Elsevier Inc. All rights reserved. 

The Wiener-Hopf (WH) technique provides a significant extension of the large class of problems that can be solved by 
Fourier, Laplace and Mellin integral transform [1]. The WH technique provides us an approach for considering the diffraction 
of waves by a single half plane [1]. However there are problems in dealing with other configurations which are first attacked 
by using matrix version of WH equations. A comprehensive procedure for tackling the matrix version of these equations is 
not yet available because it is not normally easy to split the matrix into the appropriate half planes. The noncommutativity 
of the factor matrices and the requirement of the radiation conditions also present further problems. Nevertheless the 
development and improvement of this technique is progressing steadily [2]. For example the Wiener- Hopf Hilbert method 
introduced by Hurd [3], Rawlins [4] and Rawlins and Williams [5] is a powerful tool in the case when kernel matrix has only 
branch point singularities, while the Daniele-Kharapkov method proposed by Daniele [6] and Kharapkov [7] is effective for 
the class of matrices having only pole singularities and branch-cut singularities besides pole singularities [8- 12]. 

Diffraction from a two part surface is an important topic in diffraction theory and constitute a canonical problem for 
diffraction due to abrupt changes in material properties. Recently, Biiyiikaksoy et al. [13] considered the scattering of plane 
waves by a two part surface. They developed a high frequency solution for the diffraction of plane waves by the junction of 
two half planes. One half plane is characterized by partially transmissive boundary conditions and the other is soft at the 

* Correspond ing author. 
E-mail address:mayub59@yahoo.com (M. Ayub). 

0022-247X/S - see front matter © 2008 Elsevier Inc. All rights reserved. 
doi: 10.1016/j.jmaa.2008.04.069 
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Keywords: 

In this paper we have studied the problem of diffraction of a plane wave by a finite soft-hard strip. By 
using the Fourier transform the boundary value problem is reduced to a matrix Wiener-Hopf equation. 
Using the matrix factorization of the kernel matrix. the problem is solved for two coupled equations using 
the Wiener-Hopf technique and the method of steepest descent. It is observed that the diffracted field is 
the sum of the fi elds produced by the two edges of the strip and an interaction field. Some graphs show­
ing the effects of various parameters on the field produced by two edges of the strip are also plotted. 

Diffraction 
Wiener-Hopf technique 
I<harapkov method 
So ft-hard strip 
Steepest descent method 

1. Introduction 

Scattering of waves by strips/slits is an important topic both in 
acoustics and electromagnetics. It has attracted the attention of 
many researchers [1 - 15]. A variety of analytical and numerical 
techniques have been used to study scattering from strips/slits. 
To name a few only e.g .. Morse and Rubenstein [1] studied the 
diffraction of acoustic waves by a strip using method of separa­
tion of variables. Bowman et al. [2] summarized and reviewed 
much of the work done on strip. Another important detail of 
works. using the Wiener- Hopf (WH) technique, consists of Jones 
(3). Kobayashi [4], Noble (5). Faulkner [6). Cinar and Bliylikaksoy 
(7). Serbest and Bliylikaksoy [8]. BUyUkaksoy and Alkumru [9). 
Asghar [10] . Asghar et al. (11) and Ayub et al. [12.13]. Recently 
Ahmad and Naqvi [14] and Imran et al. [15] studied the electro­
magnetic scattering from a two dimensional perfect electromag­
netic conductor (PEMC) strip and PEMC strip grating and by an 
infinitely long conducting strip on dielectric slab by using numer­
ical simulation and Kobayashi potential method. When the strip 
length is la rge as compared to the incident wavelength a high fre­
quency approximate solution can be obtained by using the con­
cept of the geometrical theory of diffraction GTD [16). (Also we 
have asymptotically evaluated the integrals 11 to 16 in the Appen­
di x under the assumption that strip length is large [5 , pp. 201] 
with respect to the wavelength.). 

• Corresponding auth or. 
E-mail address:mayub59@yahoo.com (M. Ayub). 

0030-4018/S - see front matter iC) 2009 Elsevier B.V. All rights reserved. 
doi : 1 0.1 016/j .optcom.2009.08.009 

© 2009 Elsevier B.V. All rights reserved. 

In this paper we have studied the diffraction of a plane wave by 
a soft-hard strip. The continued interest in the problem is due to 
the fact that it constitutes the simplest half plane problem which 
can be formu lated as a system of coupled WH equations that can­
not be decoupled trivially. Rawlins [1 7] took the lead in th e discus­
sion of diffraction of a plane acoustic waves by a semi-infinite 
barrier satisfying the soft (pressure release) boundary condition 
on its upper surface while the hard (rigid) boundary condition on 
its lower surface. The author (18) reconsidered the problem solved 
by [17] and factorized the kernel matrix appearing in the problem 
by Daniele-Kharapkov methods [19.20] to give the solution of the 
matrix WH problem. 

The WH technique [5) proves to be a powerful tool to tackle. not 
only. the problems of diffraction by a single half plane but it may 
further be extended to the case of parallel half planes. In the pres­
ent work. we examine a more general problem of plane-wave dif­
fraction by a finite soft- hard strip. By using the Fourier transform 
technique, three-part boundary value problem is reduced to a ma­
trix WH equation. The solution of this matrix WH problem requi res 
the factorization of the kernel matrix appearing in the problem. 
This matrix factorization has been done by [18) . With the matrix 
factorization known. we then follow Noble's approach (5) closely 
to calculate the diffracted field produced by the finite soft- hard 
strip. It is observed that the two edges of the strip give rise to 
two diffracted fields (one from each edge) and the interaction of 
one edge upon the other edge. Finally the diffracted field is calcu­
lated using the method of steepest descent. Some graphs, showing 
the effect of different parameters on the diffracted field produced 
by the two edges of the soft- hard strip. are also plotted and 
discussed. 
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Abstract-We have studied the problem of diffraction of plane waves 
by a finite slit in an infinitely long soft-hard plane. Analysis is based 
on the Fourier transform, the Wiener-Hopf technique and the method 
of steepest descent. The boundary value problem is reduced to a 
matrix Wiener-Hopf equation which is solved by using the factorization 
of the kernel matrix. The diffracted field , calculated in the far­
field approximation, is shown to be the sum of the fields (separated 
and interaction fields) produced by the two edges of the slit. Some 
graphs showing the effects of various parameters on the diffracted field 
produced by two edges of the slit are also plotted. 

1. INTRODUCTION 

The problem of plane wave diffraction by a half plane which is soft at 
the top and hard at the bottom was first solved by Rawlins [1] who 
adopted an ad-hoc method for the solution of this problem. Later on 
Bliyukaksoy [2] reconsidered the problem solved by [1] and proposed an 
appropriate method for the factorization of the kernel matrix appearing 
in it. The continued interest in the problem is due to the fact that it 
constitutes the simplest half plane problem which can be formulated 
as a system of coupled Wiener-Hopf (WH) equations that cannot be 
decoupled trivially [2]. 

In this paper we have studied the problem of diffraction of plane 
waves by a slit in an infinite soft-hard plane. From the existing 
literature it is evident that numerous past investigations have been 
devoted to the study of diffraction of acoustic/electromagnetic waves 

t The third author is also with Department of Computer and Engineering Sciences, Bahria 
University, Islamabad 44000, Pakistan 


