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Abstract 

The tunneling probability and Hawking temperature of the fermion particles 

and the scalar particles from the rotating and accelerating black holes are discussed 

in this dissertation. We divide our scheme in four chapters. In Chapter 1 we provide 

some basic concepts of black hole physics while in Chapter 2 we briefly discuss the 

Einstein Field Equations and its some well known solutions like Schwarzschild black 

hole, the Riessner-Nordstrom black hole, the kerr and the Kerr-Newman black 

holes. Chapter 3 constitutes the Hawking radiations and the review work of two 

papers in which Kerner and Mann [16] discussed the tunneling probability and 

Hawking temperature of the fermion particles for Riessner-Nordstrom black hole 

and Kerr black hole. In the fourth chapter we extend this work to the rotating and 

accelerating black holes. We a/so calculate tunneling probability and Hawking 

temperature of scalar particles in this chapter. We observe that tunneling 

probability and Hawking temperature of fermions and scalar particles are same for 

the rotating and accelerating black holes. Finally we provide conclusion at the end 

of this chapter. 
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Chapter 1 

Black Holes 

1.1 Our Universe 

Our understanding of the universe on the largest scale of space and time has increased dramat­

ically in the recent years. This thesis does not have enough space to describe the observational 

details about the universe, and it does not assume the breadth of physics necessary to analyze 

all the processes that are important for the structure of the universe. We therefore concentrate 

on the role of relativistic gravity, introducing only the most basic three observational facts 

about our universe on the largest distance scales [1] . 

The universe consists of stars and gases in gravitationally bound collections of matter called 

galaxies, diffused radiations, dark matter of unknown character and vacuum energy. Some hun­

dred of thousands of years after the big band the temperature dropped enough that previously 

free electrons combined with nuclei to make neutral, transparent matter, mostly hydrogen and 

helium. As the universe expanded, both matter and radiation cooled. Light emitted at that 

time when the temperature was approximately 3000 K has been traveling to us ever since and 

form a cosmic background radiation. The intervening expansion has cooled the radiation to a 

temperature of 2.73 K above absolute zero. A map of the temperature of this radiation on the 

sky is as close as we can come to the picture of the universe at the big bang. 

How is the detectable matter and radiation in the universe organized on the large scales? 

How did this organization change over time? To answer such questions, the location and 

distribution of the matter and radiations in the universe must be mapped. This is not easy. 
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The distances are vast, the time is long. We have a few maps of this very large place. These 

maps provided compelling evidence that on the largest scales the universe is isotropic (the same 

in one direction as in any other) and homogeneous (the same in one place as in any other). 

1.2 Star 

A star is a massive, luminous ball of plasma which is held together by gravity. In most cases the 

density of the accumulated mass is small, hence the gravitational force is described by Newton's 

law of gravitation [1,2] . Such stars are classified as normal stars. For most of its life, a star 

shines due to thermonuclear fusion in its core releasing energy that traverses the star's interior 

and then radiates into the outer space. The nearest star to Earth is the Sun, which is the source 

of most of the energy on Earth. 

Most of the things you can see in the night sky are stars. A star is a hot ball of mostly 

hydrogen gas; the Sun is an example of a typical ordinary star. Gravity keeps the gas from 

evaporating into space, and pressure due to the star's high temperature and density keep the 

ball from shrinking. In the core of the star, the temperature and densities are high enough to 

sustain nuclear fusion reactions, and the energy produced by these reactions works its way to 

the surface and radiates into space as heat and light. When the fuel for the fusion reactions is 

depleted, the structure of the star changes. The process of building up heavier elements from 

lighter ones by nuclear reactions, and adjusting the internal structure to balance gravity and 

pressure, is called stellar evolution. 

Looking at a star through a telescope can tell us many of its important properties. The 

colour of a star tells us its temperature, and the temperature depends on some combination of 

the star's mass and evolutionary phase. Stars are not static objects. As a star consumes fuel in 

its nuclear reactions, its structure and composition changes, affecting its colour and luminosity. 

Thus it shows that it has different stages in its evolutionary history. 

1.3 Gravitational Collapse 

The life of a star is the interplay between the contracting force of gravity and the expanding 

forces (outward pressure) of gases heated by reactions which combine the nuclei and release 
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energy. This process is called thermonuclear burning. A star begins its life when a cloud 

of interstellar gas consisting mostly of hydrogen and helium collapses gravitationally. This 

interstellar gas is momentarily cooler, denser, or lower in kinetic energy than its surroundings. 

Compressional heating increases the core temperature high enough to ignite the thermonuclear 

reactions, in which hydrogen is burnt to make helium, and energy is released. Then the star 

reaches a steady state in which the energy lost to radiation is balanced by that produced by 

thermonuclear burning of hydrogen. This is the present state of our Sun [1). 

Eventually, a significant amount of the hydrogen in the star's core is exhausted and there 

remains no longer enough thermonuclear fuel to provide the energy lost to radiation. Then 

gravitational contraction starts. Again the compressional heating raises the core temperature 

unless the reactions which burn helium to make other elements ignite. The star gets brighter 

and its surface temperature changes. Eventually, a significant amount of the helium will be 

exhausted, the core will again contract further more and a new stage of thermonuclear burning 

will be initiated. When a star runs out of thermonuclear fuel then there are two possibilities: 

Either the end state is an equilibrium star, in which nonthermal source of pressure is balanced 

by the force of gravity, or the end state is ongoing gravitational collapse. There are several 

possible nonthermal sources of pressure. One of them is the pressure due to the Pauli exclusion 

principle. The Pauli exclusion principle does not allow two electrons (fermions) to have the same 

quantum state. This pressure is called the electron Fermi pressure. There are similar Fermi 

pressures for neutron and protons as well. There are also the nonthermal pressures arising from 

repulsive nuclear forces. The stars supported against the forces of gravitational collapse by 

the Fermi pressure of electrons are called white-dwarf stars or simply white dwarfs. The stars 

supported against the forces of gravitational collapse by the Fermi pressure of neutrons and by 

nuclear forces are called Neutron stars. These two equilibrium end states of stellar evolution 

are much smaller and denser than the ordinary stars. A white dwarf might have a mass of the 

same order as that of the Sun but with a radius of only a few thousand Kms. A neutron star 

of the same mass might have a radius of 10K m only. 

When the star runs out of thermonuclear fuel and a significant amount of the fuel in the 

core is exhausted so that it does not support the nonthermal source of pressure to balance the 

gravity, then the inward gravitational force overcomes the outward pressure and the volume 
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of the core decreases eventually so that motion of the interstellar gas molecules appears to be 

vibrations. In such a way, end state of the star is ongoing gravitational collapse which leads 

the star to a black hol~. 

1.4 Black hole 

A black hole is a region of space in which the gravitational field is so powerful that nothing, not 

even light, can escape. The black hole has a one-way surface, called an event horizon, into which 

objects can fall, but out of which nothing can come. It is called "black" because it absorbs all 

the light that hits it, reflecting nothing, just like a perfect black-body in thermodynamics [2]. 

Although black holes are created in nature through gravitational collapse but general rel­

ativity predicts that black holes are remarkably simple objects characterized by just a few 

number of parameters like mass, charge and the angular momentum. 

There are different conditions of mass for a star to become a black hole, proposed by different 

scientists. One of them is the Chandrasekhar limit. According to this, a star can become a 

black hole by gravitational collapse if it possesses at least 1.4 solar masses. So our Sun does 

not have sufficient mass to become a black hole. 

Figure 1,1 Black hole (Taken from Wikipedia) 

6 



1.4.1 Singularity 

According to general relativity, under certain extreme conditions some regions of space-time 

develop infinitely large curvatures, thus becoming singularities where the normal laws of physics 

break down. Black holes, for example, should contain singularities hidden inside the event 

horizon. 

1.4.2 Horizon 

Horizons are the boundaries surrounded by a black hole through which matter, informations 

and light etc. can fall into the black hole and can never get back. 

An event horizon is a boundary in space-time, most often an area surrounded by a black 

hole, beyond which events cannot affect an outside observer. Light emitted from beyond the 

horizon can never reach the observer, and any object that approaches the horizon from the 

observer's side appears to slow down and never quite pass through the horizon. In other words 

we can say that the event horizon is a region of no escape. 

1.4.3 Ergosphere 

The ergosphere is a region located outside a rotating black hole. Its name is derived from 

the Greek word ergon, which means ''work''. It received this name because it is theoretically 

possible to extract energy and mass from the black hole in this region [2). 

The ergosphere is ellipsoidal in shape and is situated so that at the poles of a rotating black 

hole it touches the event horizon and stretches out to a distance that is equal to the radius of 

the event horizon. Within the ergosphere, space-time is dragged along in the direction of the 

rotation of the black hole at a speed greater than the speed of light in relation to the rest of 

the universe. This process is known as the lense-thirring effect or frame-dragging. Because of 

this dragging effect, objects within the ergosphere are not stationary with respect to the rest of 

the universe unless they travel faster than the speed of light, which is impossible based on the 

laws of physics. But in truth, particles are not moving with that speed, it is the space-time of 

the ergosphere that moves with a speed higher than the speed of light. Another result of this 
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dragging of space is the existence of negative energies within the ergosphere [2]. 

Figure 1,2 Egrosphere of the black hole (Taken from 

Wikipedia) 

The outer limit of the ergo sphere is called the stationary limit or static limit. At the 

stationary limit, objects moving at the speed of light are stationary with respect to the rest 

of the universe. This is because the space here is being dragged at exactly the speed of light 

relative to the rest of space. Outside this limit space is still dragged, but at a rate less than 

the speed of light. Since the ergosphere is outside the event horizon, it is still possible for 

objects to escape from the gravitational pull of the black hole. An object can gain energy by 

entering the black hole's rotation and then escaping from it, thus taking some of the black hole's 

energy with it. This process of removing energy from a rotating black hole was proposed by the 

mathematician Roger Penrose in 1969, and is called the Penrose process [4]. The theoretical 

maximum of possible energy extraction is 29% of the total energy of a rotating black hole. 

When this energy is removed, the black hole loses its spin and the ergosphere no longer exists. 
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Chapter 2 

Black Holes in General Reletivity 

2.1 Introduction 

Einstein presented his field equations in 1915. These are the basic equations which play the 

central role in general relativity, relativistic astrophysics and cosmology. These equations are 

as follows (2J 

where R/-LlJ is the Ricci tensor, g/-LlJ metric tensor, R Ricci scalar, A the cosmological constant, G 

Newtonian coupling constant, c the speed of light and T/-LlJ is the energy-momentum tensor. The 

cosmological constant was first introduced by Einstein in his field equations. He introduced this 

constant to study the static behavior of the universe assuming that the universe was neither 

expanding nor contracting. But later on, he put this to zero assuming this introduction a big 

blunder by him. However, many scientists have been using this constant taking small values 

of it. In this chapter we discuss some of the solutions of these field equations thats represent 

black hola'l. 

2.2 The Schwarz schild Black Hole 

The simplest case to consider, after the flat Minkowski space, was the case of the simple point 

gravitational source at the origin, which is clearly spherically symmetric and static. The line 
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element of the Schwarzschild solution is given as [1-3) 

Here 

M is the mass of the black hole and r is the radial coordinate. It is clear that the Schwarzschild 

metric exhibits unusual behavior at the Schwarzscild radius rs = 2M. For r > 2M, gtt > 0 

and grr < O. This means that a world line along the t axis has ds2 < 0 and so describes the 

spacelike curve. Whereas when the world line along the r axis has ds 2 > 0 it describes a timelike 

curve. This means that the massive particle inside the Schwarzschild radius could not remain 

stationary at the constant value of r. Now we consider the first term of the metric which is gtt. 

We see that at r = r., 
2M 

gtt = 1 - 2M = O. 

While this is well behaved mathematically, the term gtt vanished means that the surface r 8 = 2M 

is a surface of infinite redshift. While nothing unusual happens to goo and g",</>, we see that grr 

behaves very badly 
1 

as r ~ 2M. grr = - (1 _ 2~) ~ 00 

Its mathematical expression goes to infinity at some point, which is called a singularity. The 

question is whether the singularity is physically real or it is due to the bad choice of the 

coordinates we have made. While the surface r 8 = 2M has some unusual properties, the 

singularity is due to the choice of coordinates, and so is a coordinate singularity or in other word 

we can say that it is removable coordinate which can be removed by some suitable coordinates. 

However, we will see that the point r s = 0 is due to infinite curvature and cannot be removed 
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by a change in coordinates. This type of singularity is called essential singularity. 

I 
S1l1gl,l!o:U'lty 

Schwarzsduld radIus 

Figure 2.1 Schwarz child radius (Taken from 

Wikipedia) 

We discuss the following transformations in which we see how we can remove the singularity. 

The first attempt to get rid of the problem was made by Eddington-Finkelstein. 

Eddington-Finkelstein Coordinates 

First we will introduce a new coordinate r* called the tortoise coordinate [3] given by 

* r 
r = r + 2Mln(2M)' (2.1) 

along with two null coordinates 

u = t - r* and v = t + r*. (2.2) 

From Eq. (2.1) we find 

* dr 
dr = 2M' 

1--
r 
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Now we use Eq. (2.2) to write 

dt = dv - dr*, 

dt 
dr 

dv - (1- 2~)' 
2 dv dr dr2 

dv -2(1_ 2~) + (1- 2~)2· 

Substitution of this result into the Schwarzschild metric gives the Eddington-Finkelstein form 

of the metric 

There is still a singularity at r = 0, the essential singularity which cannot be removed but in 

these new coordinates the metric has no longer a singularity at r s = 2M. Let us consider the 

radial path of the light rays by putting dO = d¢ = ° and ds2 = 0, 

2M 
(1- -)dv2 - 2dvdr = 0. 

r 

If we check at rs = 2M, we have ~ = 0, that is the radial coordinate velocity of light has 

vanished. We intergrate to find that r( v) = constant, which shows that light rays are neither 

outgoing nor ingoing. Rearranging the terms we have 

dr 2 
dv - (1 - 2~)· 

So 

vCr) = 2(r + 2MlnJr - 2M!) + constant. 

This equation gives us the path that the radial light rays will follow using (v, r) coordinates. If 

we discussed the case at r 8 > 2M then if r 8 increases v increases. This shows that the radial 

light rays are outgoing while on the other hand, if rs < 2M, as rs decreases, v increases so the 

light rays are ingoing [3]. 
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Kruskal-Szekeres Coordinates 

The Kruskal-Szekeres coordinates allow us to extend the Schwarzschild geometry into the region 

r s < 2M. Two new coordinates u and v are introduced. They are related to the Schwarzschild 

metric t ~ r in the following way, depending on the two cases rs < 2M and rs > 2M [3]. For 

rs> 2M 

u 
t r ~ 

cosh 4M exp 4MV 2M -1, 

v . t Til ~ 
sinh 4M exp 4M V 2M - 1. 

For rs < 2M 

'h t T r:-Tl T 
u = sm 4M exp 4M V .L - 2M' 

u = cosh 4~ exp 4~Jl- 2~' 

The coordinate singularity at rs = 2M corresponds to u2 -v2 = O. The real curvature singularity 

r = 0 is a hyperbola that maps to 

Once again we can examine the path of light rays by setting ds2 = O. For the new metric we 

have [3] 

This immediately leads to 

In these coordinates massive bodies move inside light cones and have slope 

du 2 
(d) > 1, 

which tells us that the velocity of light is 1 everywhere. Therefore there is no boundary of light 

propagation in these coordinate. 
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The new form of the metric is given by [3] 

2.3 The Reissner-Nordstrom Black Hole 

The Reissner-Nordstrom metric is a static solution to the Einstein's Field Equation (EFEs) in 

empty space, which correspond to the gravitational field of a charged, non-rotating, spherically 

symmetric body of mass M. The mathematical form is [3] 

t is the time coordinate, r is the radial coordinate, n is the solid angle, r s is the Schwarzschild 

radius of the massive body, which is related to its mass M by 

rs = 2M, 

where r e is a length-scale corresponding to the electric charge Q of the mass 

where 1/471"Eo is Coulomb's force constant. H the charge e goes to zero, one recovers the 

Schwarzschlld metric. The classical Newtonian theory of gravity may then be recovered in the 

limit as the ratio rs/r goes to zero. In that limit, the metric returns to the Minkowski metric 

for special relativity 

Although charged black holes with r e < < r s are similar to the Schwarzschild black hole, they 

have two horizons. The horizon can be calculated as [3] 

14 



This second factor r2 - rr 8 + r; is a quadratic in r and we find its zeroes by using the quadratic 

formula 

2.4 The Kerr Black Hole 

Observations show that astronomical objects like the Earth, Sun or a neutron star are rotating. 

While the Schwarzschild solution still describes the spacetime around a slowly rotating object, 

to accurately describe a spinning black hole we need a solution. Such a solution is given by the 

Kerr metric. 

The Kerr metric gives some interesting new results that are unexpected. We take an example 

to understand the observation. An object that is placed near a spinning black hole cannot avoid 

rotation along the black hole, there is no matter what kind of motion we give to the object. 

Put the rocket ship there, fire the most powerful engines that can be constructed so that the 

rocket ship will move in a direction opposite to that in which the black hole is rotating. But the 

engines cannot help, no matter, what we do, the rocket ship will be carried along the direction 

of the rotation. Such black holes have different surfaces where the metric appears to have a 

singularity, the size and shape of these surfaces depend on the black hole's mass and angular 

momentum. The outer surface encloses the ergosphere and has a shape similar to a flattened 

sphere. The inner surface marks the "radius of no return" or the "event horizon", objects 

passing through this radius can never again communicate with the world outside that radius 

classically. 

As we know a spinning object is characterized by its angular momentum. When we describe 

the Kerr black hole, we give the angular momentum the label J and are usually concerned with 

angular momentum per unit mass. This is given by a = JIM, where M is the mass of the 

gravitational object then the unit of a is given in meters. 

The mathematical form of the Kerr metric describing the geometry of space-time in the 
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vicinity of a mass M rotating with angular momentum J is [1,4] 

where the coordinates T, (), <P are standard spherical coordinate system, and Ta is the Schwarz­

schild radius T s = 2M, and where the length-scales a, p and ~ have been introduced for brevity 

J 
O! 

M' 
p2 T2 + a 2 cos2 (), 

~ T2 - T~T + a 2• 

Figure 2.2 The Kerr black hole (Taken from 

Wikipedia) 
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2.5 The Kerr-Newman Black Hole 

The Kerr- Newman metric [1,4] is a solution of the Einstein-Maxwell equations in general 

relativity, describing the spacetime geometry in the region surrounding a charged, rotating 

mass. It is assumed that the cosmological constant is equals to zero. In 1965, Ezra "Ted" 

Newman found the axisymetric solution of EFEs for a black hole which is both rotating and 

electrically charged. This formula for the metric tensor glljJ. is called the Kerr-Newman metric. 

It is a generalization of the Kerr metric for an uncharged spinning point-mass, which had been 

discovered by Roy Kerr. Its metric is given by 

ds2 = (1 - 2mr E- e
2 

)dt2 _ 2a sin2 () (2mr;- e
2

) dtd¢ 

_ ~ dr2 + Ed(P _ [r2 + a2 + 2mr
E
- e

2 
a2 sin2 ()] sin2 ()d¢2, 

where 

also a = JIM is the rotation parameter with angular frequency J. Event horizons are 

where r + is called the outer horizon and r _ is called the inner horizon. 

In the limit a --t 0 this metric reduces to the Reissner-Nordstorm metric and in the limit 

e --t 0 to the Kerr metric. FUrther the Reissner-Nordstorm metric reduces to the usual 

Schwarzschild metric as e --t 0 and so does the Kerr metric in the limit a --t O. The Kerr 

and charged Kerr metrics are axially symmetric and stationary, the term involving a destroying 

spherical symmetry. (A metric is said to be stationary if it is time independent i.e has a time 

-like Killing vector but there is no space-like hypersurface globally orthogonal to it. If there is 

such a hypersurface then the metric is said to be static.) 
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2.6 The Plebanski-Demianski Family of Black Holes 

The Plebaitski-Demianski family is a collection of solution of EFEs. With the cosmological 

constant zero, the most general form of the Plebaitski-Demiaitski metric is given as [5] 

= 1 [ Q (d- -2..J~)2 'P (d- + -2 ..J~)2 
( 

--)2--2 ~ T-puo +-2 ..<:2 T Tau 
I-pr r +r r +r 

(2.3) 

where 

and m, n, e, g, E, and Ie are arbitrary real parameters. It is usually assumed that m and n are 

the mass and NUT parameters, the parameters e and § represent electric and magnetic charges. 

In the metric (2.3) the sources of acceleration and rotation are not clearly represented, so we 

introduce such parameters for which the metric is transformed in acceleration and rotation 

parmeters. Such parameters are 

p= ../aWp, - fa r = V"CT, (2.4) 

with the relabeling of parameters 

3 

m + tn = (~)"2 (m + tn), e + tg = ~(e + tg), E = ~€, Ie = a 2k. 

This introduces two additional parameters a and w. With these changes, the metric becomes 

ds2 = 1 [ Q (d 2..1_)2 P (d 2..1_)2 
(1 )2 - 2 2..2 T - wp au + 2 2..2 W T + r au 

- apr r + W IF T + W IF 

2 2-2 2 2....2 
T + W P d....2 r + W P d 2] + P p+ Q r, (2.5) 
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where PCp) and Q(r) are quartic functions 

(2.6) 

(2.7) 

and m, n, e, g, f, k, a and ware arbitrary real parameters. n is the Plebailski-Demiailski 

parameter and w is the twist [5,6]. The component in (2.6) and (2.7) indicate the presence of 

a curvature singularity at r = 0, p = O. This singularity may be considered as the source of the 

gravitational field. They also show the line element (2.5) is flat if m = n = 0 and e = 9 = o. 
(The remaining parameters E, k, a, w, may be non zero in this flat limit.) 

In Eq. (2.5), it is necessary that P > o. Thus, the coordinate p must be restricted to a 

particular range between appropriate roots of P. If it is required that a singularity should 

appear in the boundary of the spacetime, then this range must include p = O. This would 

require that k > O. However, important non-singular solutions also exist for which the chosen 

range of p does not include p = O. In such a case it is convenient to express the parameters E, n 

and k which occur in the metric functions (2.6) and (2.8) in terms of new parameters a, l as [5] 

(2.8) 

(2.9) 

(2.10) 

In the above, there are six physical parameters, m, e, g, a, l, a. Performing the simple trans­

formations [5] 
l a 

p = - + -cosO 
w w 

T = t _ (l +a)2 ¢ 
a ' 

19 



we get 

where 

1 Q [ (. 2 . 2 () ]2 p2 d 2 p2 ()2 -=-{--dt- asm ()+4lsm - dcj> +- r +-d 
0 2 p2 2 Q P 

- a o = 1 - - (l + a cos ()r , 
w 

(2.11) 

It is also assumed [5] that! a3! and ! a4! are sufficiently small so that P has no roots within the 

considered range () = [O,7r]. When a = 0 i.e. acceleration vanishes, the general metric reduces 

to the Kerr-Newman-NUT-de Sitter solution. Further if 1 = 0 then it reduces to familiar forms 

of the Kerr-Newman-de Sitter black hole spacetimes. If a = 0 and the Kerr-like rotation 

vanishes i.e. a = 0 then general metric reduces to the charged NUT-de Sitter spacetime. When 

a = 0 = l = g then the Kerr-Newman metric is deduced. Further Schwarz schild metric is 

directly obtained if electric charge and rotation parameter vanish i.e. e = 0 = a. Therefore, 

the line element (2.11) is a very convenient metric representation of the complete class of 

accelerating, rotating and charged black holes of the Pleba.nski-Demiailski class. In Chapter 4 

we will discuss the uncharged case of this metric, that is we will take e = 0 = g. 
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2.6.1 A New Form of the Metric 

If we put P = P sin2 B and also substitute for £ and n from Eqs. (2.8) and (2.9) in the general 

metric (2.11), then it reduces to the form [6] 

(2.12) 

where 

P = sin2 B(l - a3 cos B - a4 cos2 B) , 

Q= [(w2k+e2+g2)(1+2~r)-2mr+ a:~kl2r2] [1+ a(aw-l)r] [1- a(:+l)r] , 

and 
aa a2al 2 2 2 

a3 = 2-m - 4-2-(w k + e + g ) , 
w w 

a 2a2 

a4 = --2-(w2k + e2 + g2) , 
w 

Note that here Q is in the factorized form. The above line element contains seven arbitrary 

parameters m, l, e, g, a, a and w. Except w all the remaining parameters can be varied 

independently and can be used to set w to any convenient value if at least one of the parameters a 

or l is non-zero [6]. This can be seen that if III ~ lal the metric (2.12) has a curvature singularity 

when p2 = 0, i.e. at r = 0, cosB = - lja. Whereas if Ill > lal, it is singularity-free. In this case, 

the outer and inner horizons occur at r = r ± from the form of Q, where r ± are the roots of the 
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quartic equation [6,18] 

There are also acceleration horizons at aT = w(l ± a)-I. 

If 0'. i- 0, this solution represents a black hole which accelerates along the axis of symmetry 

in the direction e = O. However, it is far from obvious that the complete analytical extension of 

this spacetime represents a pair of causally separated black holes which accelerate away from 

each other in opposite directions [7]. 

2.6.2 The Non-Accelerating Case 

It can be seen that, when 0'. = 0, we have w2k = a2 -l2 and hence E = 1, n = l and P = sin2 e. 
Then Eq. (2.12) reduces to [6,181 

(2.13) 

where 

(2.14) 

which is exactly the Kerr-Newman-NUT solution [61 which is regular on the half-axis e = o. 
This solution represents a single black hole with mass m, electric charge e, magnetic charge 

g, Kerr-like rotation a and NUT parameter l. If l = 0 = g then the Kerr-Newman solution is 

obtained. 

It can be seen that if III ~ lal, then the metric (2.13) has a curvature singularity at p2 = OJ 

i.e., at r = 0, cose = -lla. However, if Ill> lal, it is non-singular. Here Q = 0 is a coordinate 

singularity and gives the expression for locations of inner and outer horizons of the black hole 

as [6,18] 

(2.15) 
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Here we discuss the formation of the ergospheres in these black holes. Since we have the 

formula for ergosphere as 

gtt = 0 . 

So from Eqs. (2.13) and (2.14) 

Its solution is [18,19] 

which is the relation for the ergosphere for the black hole represented by the metric (2.13). Now 

we are going to see its relation with the outer horizon (2.15). A.B we know that [19] 

m+ J m2 + l2 - e2 - g2 - a2 ~ m+ J m2 + l2 - e2 - g2 - a2 cos2 () ~ m+ J m 2 + l2 - e2 _ g2 , 

T + ~ Tn(O) ~ m + Jm2 + l2 - e2 _ g2 , 

where Ta is the outer horizon of the corresponding Reissner-Nordstrom black hole with magnetic 

and NUT charges 9 and l respectively. The above relation has a beautiful information to 

interpret. Since the ergosphere is dependent on 0 so it will coincide the outer horizon at 0 = 0 

and stretches out for other values of O. However, it cannot stretch beyond the outer horizon 

of the corresponding Reissner-Nordstrom black hole with magnetic and NUT charge 9 and l 

respectively, and will coincide it at () = 7T /2. 

23 



2.6.3 Accelerating and Rotating Charged Black Holes 

The Plebanski-Demianski metric covers a large family of solutions which includes that of a 

rotating and accelerating charged black hole. Now we present a new form of the metric which 

is free of NUT-like behavior i.e. we take l = o. If we put l = 0, k = 1, in Eq. (2.11) then 

w = a, a3 = 20m, a4 = -02(a2 + e2 + g2) and substituting for € and n, the line element (2.11) 

with will take the form [8,18,19] 

where 

(2.17) 

(2.18) 

The above metric contains five arbitrary parameters m, e, g, 0 amd a which can be varied 

independently and physical interpretation of which has already been described. 

Here r? = 0 indicates the presence of a Kerr-like ring singularity at r = 0 and () = 7r /2. 

Q = 0 gives the expression for the locations of the inner and outer horizons, which is identical 

to the inner and outer horizons of the non-accelerating Kerr-Newman black hole and is [8] 

where a2 + e2 + g2 ~ m 2 . However, there are also acceleration horizons at r = 1/0 and 

r = l/ocos(), coming from Q = 0 and n = 0 respectively, and are coincident with each other 

at () = 0 
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Chapter 3 

Hawking Radiation From Black 

Holes 

3.1 Introduction 

In this chapter we shall briefly describe the background of the Hawking radiation and the 

tunnelling method. We describe the tunnelling of fermions emission from black holes. In order 

to do this we follow the Hamilton-Jacobi method [11,16,17]. In this method we apply a WKB 

approximation to the Dirac Equation. We shall first consider Riessner-Nordstorm black hole 

and confirm that the correct temperature is recovered. Then we extend this technique to the 

rotating black holes and find the Hawking temperature are well. From these calculations we 

confirm that the spin ! fermions particle are also emitted at the Hawking radiation. This final 

result, while not surprising, validates this important approach. This is one of the methods that 

can actually calculate the spin ! fermion radiation. This shows the strength of the tunnelling 

method as well. 

A black hole is an object for which the gravity is so strong that even light cannot be 

passed through it. If only a classical system is considered, it would be impossible to define a 

temperature for the black hole because it would be impossible for anything to be in thermal 

equilibrium with a black hole. Hence it is proved that every thing would go into the black hole 

but nothing will come out. 

Hawking radiation (sometimes also called Bekenstein-Hawking radiation) is a theoretical 
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prediction from the British physicist Stephen Hawking, which explains thermal properties re­

lating to black hole [221. Normally, a black hole is considered to draw all matter and energy in 

the surrounding region into it, as a result of the intense gravitational fields. However, in 1972 

the Israeli physicist Jacob Bekenstein suggested that black holes should have a well-defined 

entropy, and initiated the development of black hole thermodynamics, including the emission 

of energy [211. 

3.2 Black Hole Radiation 

Black hole radiation was an importance discovery because classically nothing could escape from 

the black hole. Basically black hole radiation depends upon the quantum gravity calculations 

and this emphasizes the importance of trying to find a full quantum theory of gravity. This is 

because a new physics should be found once a complete quantum theory of gravity is formulated 

and any discoveries could be as important as the black hole radiation. 

The discovery of black hole radiation also opened up new mysteries such as the information 

loss problem. The information loss problem is about whether the black hole radiation should 

be purely thermal or not. If the radiation is purely that of the black hole then it should not 

contain any information with it and after the black hole evaporates the information of what 

made up the black hole will be gone forever. It is controversial whether the information actually 

is lost or if the radiation should have a modified emission that is not truly thermal. 

3.3 Stephen Hawking on Quantum Black Holes 

The quantum theory of black holes seems to lead to a new level of unpredictability in physics 

over and above the usual uncertainty associated with quantum mechanics. This is because black 

holes appear to have intrinsic entropy and to lose information from our region of the universe. 

Hawking says that these claims are controversial: many people working or quantum gravity, 

including almost all those who entered it from particle physics, would instinctively reject the 

idea that information about the quantum state of a system could be lost. However, they have 

had very little success in showing how information can get out of a black hole. He believes 

they will be forced to accept his suggestion that it is lost, just as they were forced to agree 
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that black holes radiate, which went against all their preconceptions. The fact that gravity is 

attractive means that it will tend to draw the matter in the universe together to form objects 

like stars and galaxies. These can support themselves for a time against further contraction 

by thermal pressure, in the case of stars, or by rotation and internal motions, in the case of 

galaxies. However, eventually the heat or the angular momentum will be carried away and the 

object will begin to shrink. If the mass is less than about one and a half times that of the Sun, 

the contraction can be stopped by the degeneracy pressure of electrons or neutrons. The object 

will settle down to be a white dwarf or a neutron star, respectively. However, if the mass is 

greater than this limit there is nothing that can hold it up and stop it continuing to contract. 

No two electrons or neutrons can occupy the same quantum state. Thus, when any collection 

of these particles is squeezed into a small volume, those in the highest quantum states become 

very energetic. The system then resists further compression, exerting an outward push called 

degeneracy pressure. Once it has shrunk to a certain critical size the gravitational field of its 

surface will be so strong that the light will be bent inward. You can see that even the outgoing 

light rays are bent toward each other and so are converging rather than diverging. This means 

that there is a closed trapped surface. Thus there must be a region of space-time from which 

it is not possible to escape to infinity. 

3.4 Thnnelling from Black Holes 

In 1974, Hawking worked out the exact theoretical model for how a black hole could emit 

black body radiation [22]. With the emission of Hawking radiation black hole lose their energy, 

shrink and eventually evaporate completely. How does this happen? When the object that 

is classically stable becomes quantum-mechanically unstable. The idea is that when a pair 

of virtual particle is created just inside the horizon, the positive energy virtual particle can 

tunnel out, no classical escape route exist, where it materializes as a real particle. On the other 

hand, from a pair created just outside the horizon the negative energy virtual particle, which 

is forbidden outside, can tunnel inward. In either case the negative energy particle is absorbed 

by a black hole, as the result the mass of the black hole decreases, while the positive energy 

particle escapes to infinity [20]. 
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3.5 Hawking Temperature 

For a black hole, temperature T is analogous to its surface gravity,K, from the zeroth laws of 

black hole thermodynamics [19]. According to the zeroth law of thermodynamics, the temper­

ature is constant throughout a body in thermal equilibrium, and the zeroth law of black hole 

thermodynamics suggests that the surface gravity for a stationary black hole is constant at the 

horizon. So T constant for thermal equilibrium for a normal system is analogous to surface 

gravity constant over the horizon of a stationary black hole. 

It was Bekenstein who first claimed that these similarities were more an analogy [21]. He 

claimed that Tds = :1TdA, so that the temperature of the black hole is proportional to the 

surface gravity and the entropy was proportional to the area. This was later shown by Hawking 

[22] who calculated the temperature of the black hole 

3.6 Derivation of Hawking Radiation 

There are some useful methods use for deriving Hawking temperature and calculating the black 

hole temperature. Recently, there has been a great interest in the method used for calculating 

the black hole temperature known as the tunnelling method. 

The tunnelling method is a very interesting method for calculating the black hole tempera­

ture since it provides a dynamical model of the black hole radiation. The black hole tunnelling 

method has a lot of strength when compared to the other methods for calculating the temper­

ature. The calculation is relatively simple. The tunnelling method can even be applied at the 

horizon that is not the black hole horizon, such as Rindler space-time, and calculate the tem­

perature as well. The application to de Sitter space-time demonstrates a particular advantage 

of the tunnelling method. In this chapter we discuss the tunnelling method in detail and show 

how this method can be applied to a broad range of space-times and can be extended to model 

fermion emission. In the original calculation the tunnelling method was only applied to the 

Schwarzschild black hole [23,24]. 

This method involves calculating the imaginary part of the action for the (classically for-
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bidden) process of emission across the horizon (first considered by Kraus and Wilczek [23,24]' 

which in turn is related to the Boltzmann factor for emission at the Hawking Temperature. Us­

ing the WKB approximation the tunnelling probability for the classically forbidden trajectory 

coming from inside to outside the horizon is given as 

r '" exp( -21) ~ exp( -[3E) , (2) 

where [3 is the inverse temperature of the horizon. For calculating the temperature of the black 

hole, expansion of linear order is required. There are further two different approaches that 

are useful for calculating the imaginary part of the action for the emitted particle. At first 

the black hole tunnelling method was developed by Parikh and Wilczek [26] which is found in 

Kraus and Wilczek [23,24] work as well. The other appraoch to black hole tunnelling method 

is the Hamilton-Jacobi method used by Anghaben et al, which is an extension of the complex 

path method. 

3.7 Hawking Radiation of Dirac Particles via Thnneling from 

the Reissner-Nordstorm Black Hole 

In this section we discuss the tunneling radiation of fermion from the Reissner Nordstorm black 

hole. Here the electromagnetic field would couple with the matter field and gravity field, so in 

this case the Dirac equation of charged particles is introduced and the pure thermal spectrum 

of fermions from Reissner-Nordstorm black hole is derived. The line element of the Reissner­

Nordstorm black hole is given by [9] 

(3.1) 

where 

(
2M e

2
) f(r) = 1 - -;:- + r2 = o. 

At horizon 
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Here r ± show the inner and outer horizons, M, e are the mass and charge of the black hole. 

The non vanishing component of the electromagnetic vector potential is given as [9] 

AI-' = (~e, 0, 0, 0) . 

3.7.1 Calculation of the Thnneling Probability and Hawking Temperature 

There are two methods to find the tunneling probability. Firstly Hamilton-Jacobi method and 

secondly the null geodesics method. Here we discuss the Hamilton-Jacobi method. For this 

method we use Dirac equation and calculate the tunneling probability and Hawking temperature 

(3.2) 

which in expanded form becomes 

where 

so n = -1 ra,8 [",a ",,8] 
I-' 8 I-' '" , 

and 'YI-' matrices satisfy hI-', 'YII] = 2gl-'1I xl, (I is the identity matrix); m, q are the mass and 

charge of the fermion particles, respectively. To deal with the fermion tunneling radiation, it is 

important to choose 'YI-' matrices: 

(3.3) 

<P 1 (0 
'Y = TSinO a2 (3.4) 
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Here, (7i are the Pauli sigma matrices given by 

2 _ (0 -i) 3 _ (1 0) (7 - , (7 - • 

i 0 0 - 1 

For a fermion with spin ~, the wave function has two spin states namely spin up (i) and spin 

down (1) so we can take the following ansatz for this wave function 

A (t, r, 0, ¢) 

1/JT = 
0 

exp (~IT (t,r,e,¢)), 
B (t, r, 0, ¢) 

0 

0 

C (t, r, £I, ¢) 
exp (~Il (t,r,e,¢)), (3.5) 

0 

D (t, r, £I, ¢) 

where 1/JT denotes the wave function of the spin up particle and 1/J 1 is for the spin down case. 

Here A, B, C, D are arbitrary functions of the coordinates. We will only show the spin up 

case since the spin down case is similar to this other than some changes in the sign. Inserting 

Eq. (3.5) in Eq. (3.2), after dividing by the exponential. term and multiplying by ti, and taking 

leading order term in ti we obtain 

iA( OtIT - qAt) + B Jf (r)8. I - mA 
Jf(r) r T 

0, (3.6) 

iB(Otlr - qAt) _ A r::r::\(r)8. I + mB 
Jf(r) V9p) r T 0, (3.7) 

(3.8) 

(3.9) 
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Now it is difficult to solve the above equations. So we can carry out the following standard 

solution [9] 

then we find 

Ii = -Et + W (r) + J (0, ¢), 

- iA(E + qAt) + BJ f (r )W' (r ) - Am 
.JT(T) 

iBj;(hAt) + AJ f (r)W' (r) - Bm 
f (r) 

(3.10) 

0, (3.11) 

0, (3.12) 

(3.13) 

(3.14) 

We neglect the equation which depends upon "0", because these equations do not contribute 

to the imaginary part of the action. Eqs. (3.11) and (3.12) become 

- iA(E + qAt) + BJ f (r)W' (r) - Am 
Jf(r) 

iB(E + qAt) _ AJ f (r)W' (r) - Bm 
J f (r) , 

3.7.2 The Massless Case 

In the massless case (m = 0) Eq. (3.15) and (3.16) become 

These equations give two possible solutions 

0, 

o. 

0, 

o. 

I I E+qAt 
A = -£B and W (r) = W+(r) = fer) , 

A = £B and W' (r ) = W~(r) = (E ;:tt) 
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(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 



where W + corresponds to the outgoing solution and W _ corresponds to the incoming solution. 

For simplification we used Taylor's series at outer horizon and neglect the higher powers to get 

(3.21) 

At the horizon 

Eq. (3.21) becomes 

(3.22) 

Using Eq. (3.22) in Eq. (3.19) and (3.20) we get 

After intergrating around the pole (and dropping the + subscript) and putting the value of 

J' (r +) as well, we get 

W(r) = 

ImW(r) = 

m(E - wo) (M2 + M...jM2 _ Q2 _ !Q2) 

...jW- Q2 

'/f(E - wo) (M2 + M...jM2 _ Q2 _ !Q2) 

...jM2 _ Q2 

Here Wo = qVo = qQ/r +. So the tunneling probabilities of fermion charge particles is 

Prob[out] <X exp[-21mI] = exp[-2(lm W+ + Ime)], 

Prob[in] <X exp[-2ImI] = exp[-2(lm W_ +lm8)]. 

Since Im W+ = -1m W_ 

r = exp[-41m W+], 
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and the resulting tunneling probability is 

471" (E - wo) (M2 + M JM2 _ Q2 _ ~Q2) 
r = exp[- ]. 

JW-Q2 
(3.24) 

comparing this with r = exp (-(3E) where (3 = liT, this gives the expected Hawking temper­

ature as [10] 
JM2_Q2 

TH = 471" (W + MJW _ Q2 _ ~Q2)· (3.25) 

3.7.3 The Massive Case 

In the massive case (m #- 0) solving Eqs. (3.6) and (3.7) for A and B lead to the result 

(A)2 = -L(E + qAt) + Vf{i5m. 
B L(E + qAt) + J f(r)m 

Near the horizon it can be seen that 

the other steps are same as in the massless case. We shall obtain the same result for the 

Hawking temperature as in the massless case. 

The spin down case is very similar to the spin up case and just the sign is different. For the 

massive and massless spin down the same Hawking temperature as in Eq. (3.25) is recovered. 

3.8 Hawking Radiation of Dirac Particles via Tunneling from 

the Kerr Black Hole 

The Pleban.Ski-Demianski metric covers a large family of solutions of Einstein's field equation 

and it also includes rotating black holes with cosmological constant A = O. Among the various 

subfamilies identified in the metric, Kerr metric in spherical polar coordinates (t, r, e, ¢) is given 
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as [11,16] 

dr2 

ds2 = - fer, 0)dt2 + g(r,O) + E(r, 0)d02 + K(r, O)d¢2 - 2H(r, O)dtd<jJ, (3 .26) 

where fer, B), g(r, B), E(r, B), K(r, B), H(r, B) are defined below 

f( r,B) ~ (Q - a
2
Psin

2
O) 

0 2 rJl ' 
(3.27) 

g(r, 0) 
Qn2 

(3.28) = 7' 
E(r, B) 

p2 
(3.29) 

P02' 

K(r,O) (Sin2 0[P(r2 + a2? - Qa2 sin2 0]) 
p202 ' 

(3.30) 

H(r,B) 
( 2a,",,' 9 [P(r' + a') - Q] ) 

p202 ' 
(3.31) 

with 

0 1, (3.32) 

p2 r2 + a2 cos2 0, (3.33) 

P 1, (3.34) 

Q (a2 - 2Mr + r2). (3.35) 

The event horizon of the accelerating and rotating black hole can be calculated by putting 

~-o - , 
g11 

(3.36) 

which implies that 

(3.37) 

Here r ± represent the outer horizon and inner horizon corresponding to the Kerr black hole. 

Now we define the function 
H2(r,O) 

F(r, B) = fer, 0) + K(r, B) . 
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Putting the values of fer, 0), K (r,O), H(r, 0) in Eq. (3.38) we get 

(3.39) 

The angular velocity for the metric (3.26) takes the form [13] 

(3.40) 

Putting the values of H(r +,0), K(r +,0), we get 

a(P(r! + a2 ) - Q(r+) 
nH = Q(r +)a2 sin2 0 + per! + a2 )2· 

(3.41) 

Here we have used Q(r +) = 0 [12] 
a 

nH = 2 2· 
r++a 

(3.42) 

We shall only show the calculations for the spin up case because the final result is the same for 

the spin down case apart from the change in the sign. 

S.8.1 Calculation of the Thnneling Probability and Hawking Temperature 

The Dirac equation is introduced for the uncharged fermions particles as 

Here the Greek indices J.L = (0,1,2,3) and m is the mass of the fermion particles, and 

1 [0 f3] ~of3 = 4 t, " , 

(3.43) 

(3.44) 

and ,I-' matrices satisfy bO
, .. yf3] = 2gl-'V I, (1 is the identity matrix). For fermion tunneling 

radiation, it is important to choose ,I-' matrices. The ,I-' matrices can be taken as 

(P(r2 + a2 )2 - Qa2 sin2 0)(n2) 0 

PQ'; " 
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Here 

o _ (0 1) 1 _ (0 0-

1
) , - " - , 

-1 0 0-1 0 

2 _ (0 0-

2
) 3 _ (0 0-

3
) , - " - . 

0-2 0 0-3 0 
(3.46) 

Here o-i(i = 1,2,3) are the Pauli sigma matrices given as 

2 _ (0 -~ ) 0- - , 

~ 0 

0-3 = (1 0). 
o -1 

(3.47) 

The spin up and spin down solutions for the Dirac equation is 

( 
A(t,r,(},cp)~t ) Llr(t,r,(},cp) 

exp{ fi ' 
B(t, r, (), CP)~T 

(3.48) 

( 
C(t,r,(},cp)~!) {~.h(t,r,(},cp) 

exp fi . 
D(t, r, (), cp)~! 

(3.49) 

where her, ,p] satisfies the commutative relations 

(3.50) 

By using Eq. (3.50) all the terms cancelled out and the reduced form of Eq. (3.43) is 

(3.51) 
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Using Eqs. (3.45) to (3.48) in Eq. (3.51) . Finally we obtain four equations. 

1 .jfl2Q 
o -B( JF(r, 0) Otl1 + 7 8rI1 

a(P(r2 + a2) - Q) !) I) A + ~T + ~ 
JF(r, O)(P(r2 + a2)2 - Qa2 sin2 0) 

(3.52) 

o B(.jfl
2
P {} I ,pn i1 1) - 7 8 1 + sinO( JP(r2 + a2)2 _ Qa2 sin2 0 <P 1 , 

(3.53) 

o 1 .jf!2Q 
+A( JF(r, 0) Otl1 - 7 8rI1 

a(P(r2 + a2) - Q) !) I) B + u", T + m, 
J F( r, B) (P( r2 + a2)2) - Qa2 sin2 B) 

(3.54) 

.jfl2P ,pn o = -A( -881T + 8",11). 
rJl. sin O( J P( r2 + a2 )2) - Qa2 sin2 0 

(3.55) 

It is difficult to solve the above equations. So, we assume that [11,16] 

11 = -Et + J¢ + W(r, B). (3.56) 

So the above four equations become 

o ~ -B( 1 (-E)+.jfl:Qw'(r,9) 
JF(r,fJ) p 

a(P(r
2 + a2

) - Q) J) A + 2 + m, v' F( r, B) (P( r2 + a2)2) - Qa2 sin B) 
(3.57) 

o = _B(.jo.
2
P W8(r B) + "po. J), 

rJl. ' sinO( JP(r2 + a2)2) - Qa2 sin2 B 
(3.58) 

o +A( v'F;r,9) (-E) - .jo;,QW'(r,9) 

+ a(P(r
2 + a2

) - Q) J) + Bm, 
JF(r, O)(P(r2 + a2)2) - Qa2 sin2 B) 

(3.59) 

o -A( .jfl
2
P W.(r,9) + "pn J). 

rJl. sin B( J P(r2 + a2)2) - Qa2 sin2 B 
(3.60) 
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Using Taylor's series in Eq. (3.28) and neglecting the second order powers we get [11,16] 

g(r, B) = g(r +, B) + (r - r +)gr(r +, B). (3.61 ) 

At the horizon 

(3.62) 

Rest of the equation becomes 

(3.63) 

Taking the partial derivative of Eq. (3.28) with respect to r and evaluating at the outer horizon, 

we get 

(3.64) 

Using Eqs. (3.64) and (3.62) in (3.61) we get 

(3.65) 

Using the same procedure Eq. (3.39) becomes 

F( B) =( _ )((r~+a2cog2()(2r+-2M» 
r, r r + ((r~ + a2)2)n2 . (3.66) 
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Now expanding Eqs. (3.52) to (3 .55) near the black hole horizon and using Eqs. (3.65) and 

(3 .66) we get 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

We neglect the equation which depends upon "e", because these equation do not contribution 

to the imaginary part of the action. Using Eq. (3.41) in Eqs. (3.52) and (3.54) we get 

o -B( -E+f!HJ + V(r-r+ )g,.(r+,lJ)W'(r,e» 
J(r - r +)Fr(r +,8) 

+ Am, (3.71) 

o +A( -E+f!HJ - v(r-r+)gr(r+,()W'(r,e» 
J(r - r +)Fr(r +,8) 

+ Bm. (3.72) 

At the horizon we can further separate W(r, e) as 

W(r, e) = WeT) + ace) (3.73) 

The Massless Case 

If m = 0, there exist two possible solutions 

B =0, or 
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A=O, 

W~(r) 

(E - nHJ)(rt + a2) 
(r - r+)(2r+ - 2M)' 

-(E - nHJ)(rt + a2) 
(r-r+)(2r+ -2M) . 

(3.74) 

(3.75) 

Here the prime denotes the derivative with respect to rand + / - corresponds to outgo­

ing/incoming solutions. For finding the value of W(r) we integrate the above result. Here 

r - r + is the simple pole. Integrating arolmd the pole ,ve get 

Dropping the + subscript we obtain 

WeT) 

ImW 

So the tunneling probabilities of fermion charged particles is 

Prob[out) oc exp[-2ImI) = exp[-2(Im W+ + 1m e)), 

Prob[in) oc exp[-2ImI] = exp[-2(Im W_ + Ime)]. 

Since Im W+ - -1m W_ so 

r = exp[-4Im W+]. 

The resulting tunneling probability is 
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(3.76) 

(3.77) 

(3.78) 

(3.79) 

(3.80) 



·. 1. :.-1. 

(3.81) 

(171 \ "nrl (17')\ n() l ()na= rl"''''()llnl p "nrl "n<lh ,,,i,, ()f th'" tllnn",lina i" 
\ I \ I ....... ....... ....... 

Tn()"", ""htl ,,, 11l1", "h<l111,)pain h" pliTni""tino' th", flln,..t;()n Tif1'(". {J\ fl'f"ITn th",,,p t,,,() ",,,",,t i()n "nrl 
................. .... 

",ill fi nrl "n "'rlll"ti()n l'",l "tina A "nrl n in tP"Tn" ()f thp lrnf"l"TTl """ntiti",,, l\iI'111tinh,inO' 'P" ('), 7')\ 
........... .......... 

A 
B 

-(E - JnH) ± J(E - JnH)2 + m 2 Fr(r +, B)(r - r +) 
mJFr(r +, B)(r - r +) 

lim (A) = lim ( - (E - JnH) ± J(E - JnH)2 + m 2Fr(r +,B)(r - r +)). 
r-->r+ B r-->r+ mJFr(r +, B)(r - r +) 

o 
-00 

f"r th A llnnAl·/1rnUA1· c:;rrn 1'Ac::nAr'th'Ah, , .......... ... 

(3.82) 

(3.83) 

I"f"In"prlllPnth, "t thl" h()l'i'7()n pithl"r A / R -4 n ()r A / R -4 -rv" i '" I"ithPr A -4 n ()r R -4 n 
.&. ... I I J 

'Pm' A -4 n wp fi nrl thl" "" l 11P ()f m fr()Tn Ti'n (~7,)\ . , 

A E - JnH ,------
m = B(y"Fr(r+,B)(r-r+) +V9r(r+ ,B)(r - r+)W'(r)). 



Here r = r + is the simple pole. Integrating around the pole we get 

Using the values of functions Fr(r +,(J) and 9r(r +, B) and simplifying we obtain 

Dropping the + subscript we obtain 

W(r) 
(E - nHJ)(r~ + a2) 

1r1- (2r+ - 2M) , 

~ (E - nHJ)(r~ + a2) 
2 (r+-M) 

(3.84) ImW 

For B --t 0, we can simply rewrite the expression in term of B I A to get 

(3.85) 

Here the final result is the same as in the massless case. 

The spin down case is very similar to the spin up case and just the sign is different. The 

equations are of the same form as in the spin up case. For the massive and massless spin down 

case the Hawking Temperature (3.81) is recovered. 
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Chapter 4 

Hawking Radiation from 

Accelerating and Rotating Black 

Holes 

4.1 Introduction 

The Plebanski-Demianski metric [14] covers a large family of solutions of EFEs and it also 

includes accelerating and rotating black holes with cosmological constant A = O. In spherical 

polar coordinates (t, r, e, </» this metric can be written as [15] 

2 -l{Q[ .2 J2 p2 2 p2 2 Psin2
() 2 2 J2 

ds = 0 2 ril dt-aslll Od</> - Qdr - pdO - p2 [adt- (r +a )d</> }, (4.1) 

which in expanded form becomes 

(4.2) 
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Another convenient form of this metric is 

where 

0 = 1- arcosO, (4.4) 

p2 = r2 + a2 cos2 (), (4.5) 

p = 1 - 2aM cos 0 + a2a2 cos2 0, (4.6) 

Q (a2 - 2Mr + r2)(1 - a 2r2). (4.7) 

Here M, a and a are the arbitrary parameters. M is the mass of the black hole, a is rotation 

and a is the acceleration of the black hole. Now using the notation of [161, the above metric 

defined by Eq. (4.1) can be written as 

dr2 

ds2 = - f er, O)dt2 + g(r, ()) + E(r, ())d()2 + K(r, ())d</} - 2H(r, O)dtdcjJ, (4.8) 

where fer, ()), g(r, ()), E(r, ()), K(r, ()) and H(r, ()) are defined below 

f(r,()) -.!:...(Q - a2Psin2()) 
0 2 rJl ' 

(4.9) 

g(r,()) 
Q02 

(4.10) = 7' 
E(r, ()) 

p2 
(4.11) P02 ' 

K(r,()) ( ,ro' 8 [P(r' + a')' - Qa',ro' 8] ) 
rJl02 ' 

(4.12) 

H(r,()) = 
( 2a,ro' 8 [per' + a') - Q] ) 

(4.13) rJln2 . 
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The event horizons can be calculated by putting 

~ = O, 
gll 

which implies that 
Qo.2 

g(T, 8) = 7 = o. 

Thus we get 

0.2 =0, Q=O. 

Putting Eq. (4.16) in Eqs. (4.4) and (4.7) this becomes 

Finally, we obtain 

o 

o 

1 
T± = ±-, 

a 

1 
T=--, 

a cos 8 

(1 - aT cos 8)2 = 0, 

and T ± = M ± J M2 - a2 , 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

( 4.18) 

where r± represent the outer and inner horizons corresponding to the Kerr-Newman black holes. 

Here the other two horizons are acceleration horizons. Now we define the function as shown 

in [16] 
H2(r, 8) 

F(r,8) = f{r, 8) + K{r,8). (4.19) 

Using the values of f(r,8), K(r, 8) and H{r,8) from Eqs. (4.9), (4.12) and (4.13) and after 

simplification we get 

F{r,8) = PQp2 . 
[P(r2 + a2 )2 - Qa2 sin2 8] {12 

The angular velocity, for the metric (4.1) takes the form (16) 

o.H = H(r +,8) 
K(r +,8)· 
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(4.21) 



Using the values of K(r+,O) and H(r+,O) from Eqs. (4.12) and (4.13) we get 

nH = a(P(rt + a2
) - Q(r+) . 

Q(r +)a2 sin2 0 + Pert + a2)2 
(4.22) 

If we use Q(r +) = O,this takes the form 

(4.23) 

We shall only show the calculations for the spin up case. The calculations for the spin down 

case are similar, apart from the change in the sign. 

4.1.1 Calculation of the Tunneling Probability and Hawking Temperature 

The Dirac equation [9,17] for the uncharged fermion particles is 

The quantities 'Y'8 are defined as 

"(<P = 

m 
t'Y"'(D,..)lJ! + /ilJ! = 0, ( 4.24) 

where the matrices and the Pauli sigma matrices is defined in Eqs. (3.46), (3.47). The solutions 

of the spin up and spin down particles respectively can be assumed to be [17]. 

_ ( A(t, r, 0, </»~r ) [L ] lJ!r(t,r,O,</» - exp fiIr(t,r,O,</» , 
B(t, r, 0, </»~t 

(4.26) 

and 

(4.27) 
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where Ii/! denote the action of the emitted spin up and spin down particles, respectively. We 

shall only show the spin up case since the spin down case is similar expect for some change in 

the sign. 

(4.28) 

where [,t", ,),.8] satisfies the commutative relations 

(4.29) 

Giving variation to a and f3 this becomes 

1 
DIJ. = oIJ. + 8£2[r~[')'0, ,),0] + r~lbO, ')'1] + r~[')'O, ')'2] + r~[')'O, ,),03] + r10[')'1, ,),0] 

+r11 [')'1, ')'1] + r12[')'1, ')'2] + r13[')'1, ,),3] + r!0[')'2, ,),0] + r!l [')'2, ')'1] (4.30) 

By using Eq. (4.29) all the terms in Eq. (4.30) cancelled out except Ow Thus the reduced form 

of Eq. (4.24) is 

(4.31) 

Now consider the first term of Eq. (4.31) 

t 1 (0 I) (A{t,r,fJ,q,)ei ) £ 
(£')' Ot)w = £ F{r, fJ) _/ 8t exp[fi I ]. 

o B(t, r, fJ, q,)el 

Taking derivative of the matrix with respect to t we get 

Now 
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therefore the above equation becomes 

t L 
(q Ot)W = F(r,() 

Now consider the second term of Eq. (4.31) 

(Bt+B*Ot1r) 

o 
-(At + A*8tlr) 

o 

Taking derivative of the matrix with respect to r we obtain 

Now 

therefore the above equation becomes 

The third term of Eq. (4.31) is 
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(4.33) 



Taking derivative of the matrix with respect to e we get 

Since 

thus the above equation takes the form 

o 

( 4.34) 

The last term of Eq. (4.31) is 

Taking derivative with respect to 1> we obtain 

As 
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the above equation becomes 

o 
L(B", + B*a",IT) 

o 
L(Aq, + A*a",IT) 

Bq,+B*aq,IT 

+ a(P(r2 + a2) - Q) ) 
.jF(r, Q)(P(r2 + a2 )2 - Qa2 8in2 0)) 

o 
-(Aq, + A*aq,Ir) 

o 

Using Eqs. (4.32) to (4.35) in (4.31) we obtain the following four equations. 

We apply the following anstaz [171 for solving the above system of equations 

IT = -Et + J¢ + W(r, 0). 
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(4.36) 

(4.37) 

(4.38) 

( 4.39) 

(4.40) 



The above four equations become 

o -B(~(-E)+ .jn:Qw'(r,o) 
F(r, 0) p 

a(P(r2 + a2
) - Q) J) A + 2 + m, 

y'F(r,0)(P(r2 + a2)2 - Qa2 sin 0» 
(4.41) 

o _B(.jn'p Weer 0) + ,pll J), 
p'2 , sinO( y'P(r2 + a2 )2 - Qa2 sin2 lJ) 

(4.42) 

o ~ +A( ~(-E)- .jn:Qw'(r,o) 
F(r, lJ) p 

a(P(r2 + a2
) - Q) J) B + 2 + m, 

y'F(r, lJ)(P(r2 + a2 )2 - Qa2 sin lJ» 
(4.43) 

o ~ - A(.j n' p Weer, 0) + ,pll J). 
p'2 sinO( y'P(r2 + a2 )2 - Qa2 sin2 lJ) 

(4.44) 

Using Taylor's theorem in Eq. (4.10) and neglecting square and higher powers we get [11,16,17] 

(4.45) 

At the horizon 

Thus Eq. (4.49) becomes 

(4.46) 

Taking partial derivative of Eq. (4.10) with respect to r and evaluating at the horizon, we get 

( lJ) 
_ (1 - ar + cos lJ)2(2r + - 2M)(1 - a2r!) 

gr r +, - ( 2 2 2 r+ + a cos lJ) 
(4.47) 

Using Eq. (4.47) in Eq. (4.46) we get 

(4.48) 

52 



Using the same procedure Eq. (4.20) becomes 

(4.49) 

Now expanding Eqs. (4.41) to (4.44) near the black hole horizon and using Eqs. (4.48) and 

(4.49) we get 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

We neglect the equation which depends upon "()". Although these equation could provided a 

contribution to the imaginary part of the action, but its total contribution to the tunneling rate 

are cancelled out. Using Eq. (4.22) in Eqs. (4.50) and (4.52) we get 

o 

+ Am, (4.54) 

o 

+ Bm. (4.55) 

At the horizon we can further separate W(r, ()) by using Eq. (3.73) and divide our solution into 

two parts, the massless and the massive case. 
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4.1.2 The Massless Case 

In t he massless case we put m = ° in Eqs. (4.54) - (4.55), then there exist two possible solutions 

B = O, 

Eq. (4.55) become 

A = O, 

Putting the values of Fr(r +,8) and gr(r +,8) in above equations we get 

W~(r) 

W~(r) 

(r - r +)(2r + - 2M)(1- a 2r!) , 

-(E - flHJ)(f{ + a2) 

(r - r +)(2r + - 2M)(1 - a 2r!)· 

(4.56) 

( 4.57) 

Here the prime denotes the derivative with respect to r and + / - corresponds to outgo­

ing/incoming solution. For finding the value of W(r) we integrate the above result 

W ( ) = f (E - nHJ)(r! + a2
) 

+ r 2 • (r - r +)(2r + - 2M)(1 - a 2r +) 

Here r = r + is the simple pole. Integrating around the pole we get 

Dropping the + subscript we obtain 

W(r) 

ImW 

(E - flHJ)(r! + a2) 
7r£ (2r + _ 2M)(1 _ a2r!) , 

7r (E - !lHJ)(r! + a2 ) 

2" (r+ - M)(l - a2r!)· 
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So the tunneling probabilities of fermion charge particles are 

Prob[out] ex exp[-21mI] = exp[-2(Im W+ + Ime)], 

Prob[in] ex exp[-2ImI] = exp[-2(Im W _ + Ime)]. 

Since Im W+ = -1m W_ 

r = exp[-4Im W+]. 

The resulting tunneling probability is 

Comparing this with r = exp( -(3E) where (3 = 11TH we get 

( 4.60) 

(4.61) 

(4.62) 

(4.63) 

( 4.64) 

which is the Hawking temperature for the accelerating and rotating black hole at the outer 

horizon. 

4.1.3 The Massive Case 

In the massive case we shall eliminate the function W'(r,O) from Eqs. (4.54) and (4.55). 

Multiplying Eq. (4.54) by A and Eq. (4.55) by B and subtracting yields 

(4.65) 

Multiplying the whole equation by JFr(r +, O)(r - r +) and dividing by B2 we get 

m JFr(r +, O)(r - r +)(AIB)2 + 2(E - J0.H)(AIB) - mJFr(r +, O)(r - r +) = 0 

AlB 
-(E - J0.H) ± J(E - J0.H)2 + m 2 Fr(r +, O)(r - r +) 

mJFr(r +, O)(r - r +) 
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where 

Now 

lim AlB = { 0 
r->r+ -00 

for the upper Ilower sign respectively. 

Consequently at the horizon either AI B ~ 0 or AI B ~ -00, i.e. either A ~ 0 or B ~ O. For 

A ~ 0 we find the value of m from Eq. (4.55), 

Puting in Eq. (4.54) and simplifying we get 

Integrating with respect to r we have 

Here r = r + is the simple pole. Integrating around the pole we get 

Using the values of functions Fr(r +,0) and gr(r +,0) and simplifying we get 
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Dropping the + subscript we obtain 

W(r) 

ImW 

(E - nHJ)(r! + a2) 
= 7r£ (2r + _ 2M)(1 - a2r!) , 

7r (E - nHJ)(r! + a2
) 

"2 (r+ - M)(l- a 2r!)· 

For B ~ 0 we can simply rewrite the expression in term of B I A to get 

W -(E - nHJ)(r! + a2) 
_(r) = 7r£ (2r + _ 2M)(1 _ a2r!)· 

The final result is the same as in the massless case. 

4.2 The Acceleration Horizon 

For the acceleration horizon, the function Fr(r, B) and gr(r, B) will be 

(r! + a2 cos2 8)(a2 - 2Mr + + r!)( -2r +a2
) 

« r~ + a2)2)(1 - ar + cos 0)2 

(1 - ar + cosO)2(a2a2 - 2Ma + 1)( -2r +a2 ) 

(r! + a2 cos2 8) 

Eqs. (4.54) and (4.55) take the form 

o 

+ Am, 

o 

+ Bm. 
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(4.71) 

(4.72) 

(4.73) 

(4.74) 



4.2.1 The Massless Case 

In the massless case we put m = 0 in Eqs. (4.73) - (4.74), then there exist two possible solutions 

Similarly from Eq. (4.74) we get 

Putting the values of functions Fr(r +,(}) and 9r(r +,0) in the above equations we get 

W~(r) 

W~(r) 

2a(r - r +) (a2a2 - 2Ma + 1)' 
(E - nHJ)(l + a 2a2) 

2a(r - r +) (a2a2 - 2Ma + 1)' 

(4.75) 

(4.76) 

Here the prime denotes the derivative with respect to r and + / - corresponds to outdo­

ing/incoming solution. For finding the value of W(r,) we integrate the above result 

Here r = r + is the simple pole. Integrating around the pole we get 

Dropping the + subscript we obtain 

W(r ) = 

ImW 

Similarly we get 

1ft (E - nHJ)(l + a2a2) 
2" a(a2a2 -2Ma+1) , 

1f (E - nHJ)(l + a2a2) 
"2 a (a2a2 - 2M a + 1) . 
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The resulting tunneling probability is 

r = exp[-41m w+l. 
r [ 2 (E - nHJ)(l + a2a2)] 

exp - 1f a (a2a2 _ 2M a + 1) . 

Comparing this with r = exp( -{3E) where {3 = 11TH we get 

4.2.2 The Massive Case 

(4.80) 

(4.81) 

In the massive case we shall eliminate the function W'(r,O) from Eqs. (4.73) and (4.74). 

Multiplying Eq. (4.73) by A and Eq. (4.74) by B and subtracting yields we get 

Multiplying the whole equation by JFr(r +, O)(r - r +) and dividing by B2 

where 

A 
B 

M JFr(r +, O)(r - r +)(~? + 2(E - JnH)(~) - mJFr(r +, O)(r - r +) = 0 

= - (E - JnH) ± J(E - JnH)2 + m 2Fr(r +, O)(r - r +) (4.82) 

m J Fr (r+, O)(r - r+ ) 

lim (A) = lim (-(E - JflH) ± J(E - JflH)2 + m 2Fr(r+, O)(r - r +)), 
r--+r+ B r--+r+ mJFr(r +, O)(r - r +) 

for the upper Ilower sign respectively. 

Consequently at the horizon either AlB ---+ 0 or AlB ---+ -00, i.e. either A ---+ 0 or B ---+ O. For 

A ---+ 0 we find the value of m from Eq. (4.74), 
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Puting in Eq. (4.73) and simplifying we get 

Here r = r + is the simple pole. Integrating around the pole we obtain 

Using the values of Fr(r +, B) and gr(r +, B) and simplifying we get 

Dropping the + subscript we obtain 

W(r) 
7rL (E - nHJ)(l + a2a2) 

= "2 a(r - r+) (a2a2 - 2Ma + 1)' 
7r (E - nHJ)(l + a 2a2) 
2" a (a2a2 - 2M a + 1) . 

(4.84) ImW 

For B ---7 0 we can simply rewrite the expression in term of B I A to get 

The final result is the same as in the massless case. So the resulting tunneling probability is 

r = exp[-4Im W+l, 

r = exp[-27r (E - nHJ)(l + a2
a

2
\ 

a (a2a2 - 2M a + 1) 

Comparing this with r = exp( -f3E) where f3 = 11TH we get 
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4.3 Calculation of the Action 

We use the seperation of variables 

W (r, ()) = R(r) + 9(e), 

in Eqs. (4.54) and (4.55) to get 

o -B( -E+nHJ +J(r-r+)gr(r+,O)R'(r)) 
v(r - r +)Fr(r +, ()) 

+ Am, (4.86) 

o +A( -E+nHJ - J(r- r+ )gr(r+,())R'(r)) 
J(r - r +)Fr(r +,0) 

+ Bm. (4.87) 

If m = 0, from Eq. (4.86) we get two possible solutions 

Similarly from Eq. (4.87) we get 

Putting the values of functions Fr(r +, e) and gr(r +, e) in the above equation we get 

- (E - nHJ)(r~ + a2
) 

= (r - r +)(2r + - 2M)(1 - a2r~)' 
(4.88) 

(E - nHJ)(r~ + a2
) 

(r - r +)(2r + - 2M)(1- a2r~)' 
(4.89) 

where the prime denotes the derivative with respect to r and + / - corresponds to outgo­

ing/incoming solution. For finding the value of R(r) we integrating the Eqs. (4.88) and (4.89) 

we get 

(4.90) 
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(4.91) 

Now we come to the massive case. 

R(r) = mA _ (-E+nHJ) 
B.jOrg (r +, 0) (r - r +) .jOrF (r +,0) Org (r +,0) (r - r +)' 

where A and B are functions of (r, 0, ¢). Integrating with respect to r we get 

which corresponds to the outgoing particles. Similarly from Eq. (4.87) we get 

R(r)=R_(r)=j mE dr+ (-E+nHJ) In(r-r+). (4.93) 
A.jorg (r +,0) (r - r +) .jorF (r +,0) org (r +,0) 

The rest of Eqs. (4.51) and (4.53) become 

o (4.94) 

o (4.95) 

We can see that Eqs. (4.94) and (4.95) are similar. So we get the same equation from both the 

equations regardless of the values of A or B. 

Thus B = 0 and 
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At horizon Q(r +) = 0 

(4.96) 

Putting the values of p2(r +, e) and P 

8(e) = 
(r~ + a2) sin e[l - 2aM cos e + a 2a2) cos2 e] ' 

Integrating the above equation we get 

6(e) = 

_ J (r~ + a2 cos2 O)dO 1- . 
sin 0[1 - 2aM cos e + a 2a2 cos2 e] 

We put z = cos 0 and use the partial fraction method to solve the integral. Finally we get 

J. J [ L1 d Lz L3Z + L4 ] 
2 = - -1 ---z Z + -1 -+-z + -1---2-a-M.:....,...z-+--=a~2a-;2'z~2 ' 

- iJ 
2 [1 - 2aM + a 2a2] , 

+iJ 
2 [1 + 2aM + a 2a2] , 

-2a3a2MiJ 

[1 - 2aM + a 2a2] [1 + 2aM + a 2a2] , 

2iJa2a2 [1 + a 2a 2J - 8iJa2 M2 
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(4.98) 

(4.99) 

(4.100) 

(4.101) 



After simplification we obtain 

e = +iJa2 (a2a cos fJ - M - VM2 - a2) 
- 2 (r~ + a2) oVM2 - a2In a2acosfJ - M + VM2 - a2 

-iJ +iJ 
+ [ 22jln(l-cosfJ)+ [ 22jln(l+cosfJ) 

2 1 - 20M + a a 2 1 + 2aM + a a 

aMiJ [ 2 2 2] + [ 2 2] [ 2 2] x In 1 - 2aM cos fJ + a a cos fJ 1 - 2aM + a a 1 + 2aM + a a 

a2 [-2iJa2 - 2iJa4a2] + 4iJa2 M2 

4aVM2 - a2 [(I + a2a2)2 - 4a2 M2 ] 

[
aa2cosfJ - M - v'M2 - a2] 

xIn aa2cosO-M+VM2-a2 . 

4.4 Quantum Tunneling of Scalar Particles 

4.4.1 Tunneling Probability at the Rotation Horizon 

( 4.102) 

In this section we shall find the quantum tunneling of scalar particles from the accelerating and 

rotating black hole with metric given by Eq. (4.1) 

dr2 

ds2 = - f (r, fJ) dt2 + 9 (r, fJ) + E (r, fJ) dfJ2 + K (r, fJ) dqJ2 - 2H (r, 0) dtd¢>, (4.103) 

where values of f (r, 0), 9 (r, 0), E (r, 0), K (r, 0) and H (r, 0) are given in Eqs. (4.9) to (4.13). 

The Klein-Gordon equation will be solved for this purpose which is given as 

2 
1J"!l !l m_ 9 uIJ.UI/¢> - fi2¢> - o. (4.104) 

The wave function ¢>(t, r, 0, ¢» is defined as 

(4.105) 

Using Eq. (4.105) in Eq. (4.104) we get 

(4.106) 
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where m is the mass of scalar particles, gJ1.V is the inverse of metric, and I is the action. 

Expanding Eq. (4.106) and simplifying we get 

(8t1)2 2 2H (r, e) f (r, e) 2 (o(J1) 2 
2 

-F (r,B)+g(r, O)(or1) F(r,B)K(r,B) (8t1)(o",1)+F(r,8)K(r,0) (&",1) + p2(r,e)+m =0, 

(4.107) 

where value of F (r, e) is given by Eq. (4.20). We shall chose the following ansatz for the 

calculation of tunneling probability 

1=-Et+W(r)+J<jJ. (4.108) 

Using Eq. (4.108) in Eq. (4.107) we get 

E2 ~ 2H(r,e) f(r,e) 2 2 
F (r, e) +g(r,O)W (r)+ F(r,O)K(r,O) (E)(J) + F(r,O)K(r,e)J +m =0. (4.109) 

After some calculation this takes the form 

1 [ H (r, 0) ]2 [H2 (r,O) f(r,O)] J2 2 2 
-P(r,O) E- K(r,O)J + P(r,e)K(r,O) + P(r,8) K(r,O) +g(r,O)W (r)+m =0. 

( 4.110) 

Here we have added and subtracted F(r~i~(t(J) (J - qA<I»2 to make first term a completing 

square. Simplifying, so Eq. (4.110) becomes 

1 [ H(r,O)]2 J2 ~ 2 
-P(r,e) E- K(r,O)J + K (r, 0) +g(r,O)W (r)+m =0. (4.111) 

Near the horizon r = r+ expanding Eq. (4.111) similar as in the case of Dirac particles we get 

o = 
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Solving this equation for W (r) we get 

or 

W±(r) 

Here r = r + is the singularity so using residue theory integrating Eq. (4.114) we get 

( 4.115) 

or 

(4.116) 

So tunneling of outgoing scalar particles is 

r = exp [-4Im W+l. 

Using value of Im W+ in the above equation we get 

(4.117) 

Note that the tunneling probability of scalar particles Eq. (4.117) is same as in the case of 

Dirac particles. Thus we recover the Hawking temperature at the outer horizon. 
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4.4.2 Tunneling Probability at Acceleration Horizon 

In this section we shall find the tunneling probability at the acceleration horizon r + = ~. The 

calculations for the probability at the acceleration horizon proceeds in the same way as in the 

case of outer horizon r = r +- At the acceleration horizon r + = ~,and Eq. (4.112) takes the 

form 

( 4.118) 

Solving this equation for W (r) we get 

or 

Here r = r + is the singularity. So integrating the above equation using residue the theory we 

get 

or 
11" (r! + a2

) 
1m W± (r) = ± [2 2] (E - nHJ). 

20 r+ - 2Mr+ +a 

Now the tunneling probability of outgoing scalar particles is found by the following farmula 

r = exp [-4Im W+l. 
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Using value of 1m W + in the above equation we get the resulting tunneling probability of scalar 

particles as 

Note that the tunneling probility of scalar particles is the same as that of the Dirac particles at 

the acceleration horizon. Thus we recover the Hawking temperature at the acceleration horizon. 

4.5 Conclusion 

In this dissertation we have studied the tunneling probability and Hawking temperature of 

fermion and scalar particles from different black holes. In Chapter 1, we have briefly discussed 

some basics of the black holes physics. In Chapters 2 we have worked out to explain the 

EFEs and its some well known solutions including the Schwarzschild black hole, the Riessner­

Nordstrom black hole, the kerr and the Kerr-Newman black holes. Also we have explained the 

correspondence of Plebanski-Demianski metric to accelerating and rotating black holes in this 

chapter. 

Hawking radiations which are the quantum mechianlly aspects of black holes have been 

discussed in Chapter 3. According to Stephen Hawking when a pair of particle is created just 

outside or inside the horizon the negative energy particle is absorbed by the black hole and 

the positive energy particle escaped to infinity appearing as Hawking radiation. Parikh and 

Wilczek observed that outgoing particles create barrier. Later on by using Hamilton-Jacobi 

method Kerner and Mann discussed the tunneling probability of fermion particles. 

Here in Chapter 3, we have reviewed two papers. In the first paper we have calculated 

the tunneling probability of fermions from the Riessner-Nordstrom black hole using Hamilton­

Jacobi method. The solution of Dirac equation leads to four complicated equations. First we 

have made these equation simple with the WKP approximation method and then more simpler 

with ansatz solution which have been given by Kerner and Mann. Then we have calculated the 

tunneling probility of fermions for both massive and massless cases and have concluded that 

the tunnelling probility of fermions is same for both the cases. Also Hawking temperature has 

been worked out in this chapter. Similarly in the second paper we have calculated the tunneling 

probability and Hawking temperature from the Kerr black hole. 
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In the last chapter we have extended this approach to find the tunneling probability of the 

fermion particles from the rotating and accelerating black holes. We have followed the method 

of Kerner and Mann and observed an extra term in the tunnelling probability and Hawking 

temperature in Eqs. (4.68) and (4.70) due to acceleration of black holes. When this extra term 

appraoches to zero we get the tunnelling probability and Hawking temperature observed by 

Kerner and Mann. Further we have worked out to investigate the tunnelling probability and 

Hawking temperature of the scalar particles for the same black holes. For the scalar particle we 

have used the Klein-Gordon equation and noticed that tunneling probability of fermions and 

the scalar particles are same in both the massless and the massive cases which indicates that 

both the particles emit from the black hole at the same rate. 
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