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Preface 
In recent years, considerable attention has been given to the non-Newtonian fluids regarding their 
importance in industrial applications. Moreover great amount of interest has been shown in the study of 
stagnation-point flow because of their worth in numerous engineering problems. For example, the 
extrusion of plastic sheets, fabrication of adhesive tapes and application of coating layers onto rigid 
substrates. Polymer sheets are manufactured by continuous extrusion of the polymer from a die to a 
windup roller. H.S. Takhar [1] shldied that thin polymer sheet constitutes a continuously moving surface 
with a non-uniform velocity through the ambient fluid. Crane [2] investigated the steady two-dimensional 
flow of an incompressible fluid over a stretching sheet which moves in its own plane with a ve locity 
varying linearly with the distance from a fixed point. Chiam [4] studied the steady two-dimensional and 
the axisymmetric stagnation-point flow of a viscous Newtonian incompressible fluid towards a stretching 
surface. Mahapatra and Gupta [5] studied the heat transfer in a stagnation-poitlt flow towards a stretching 
sheet. Lok et al. [6] investigated the non-orthogonal stagnation-point flow towards a stretching sheet. 
Reza and Gupta [7] shldied the steady two-dimensional oblique stagnation-point flow of a Newtonian 
fluid towards a stretching surface. Rajagopal et al. [8] studied steady flow of a second-order fluid past a 
stretching sheet. The temperature distribution of a steady flow of a second-order fluid was investigated by 
Bhartacharyya et al. [9]. Issues concerning the status of second grade fluids can be found in the paper by 
Dunn and Rajagopal [13] . Nazar and Amin [20] discussed the stagnation point flow of a micro polar fluid 
towards a stretching sheet. Rees and Bassom [24] examined the Blasius boundary-layer flow of a micro 
polar fluid. Free convection boundary-layer flow of a micro polar fluid from a vertical flat plate was 
studied by Rees and 1. Pop [25]. 

In the present thesis study, we divide our work in three chapters. Chapter 1 contains some basic 
definitions and relevant Governing equations which are quite substantial for the subsequent chapters. 

In chapter 2 we consider the steady two-dimensional non-orthogonal stagnation-point flow of a 
viscoelastic second-grade fluid towards a stretching surface with heat transfer. An analytical technique 
known as Homotopy analysis method is used to find the solutions of the governing non-linear ordinary 
differential equations. 

In chapter 3 we consider the steady two-dimensional non-orthogonal stagnation-point flow of a 
micropolar fluid towards a stretching surface with heat transfer. An analytical technique known as 
Homotopy analysis method is used to find the solutions of the governing non-linear ordinary differential 
equations. 
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Chapter 1 

Relevant definitions and equations 

The main purpose of this chapter is to provide some relevant definitions and equations for the 

subsequent chapters. One can find these definitions in the books of "F.M White" and "Fox and 

Mc donald". 

1.1 Basic definitions 

"Fluid" is defined as a substance that deforms continuously under the action of applied shear 

stresses of any magnitude. The basic difference between solids and fluids is that in case of solids, 

the deformation generated by applied shear stresses is not continuous. "Fluid mechanics" is 

the branch of engineering which is associated with the study of fluids at rest or in motion. The 

branch of engineering dealing with the fluids in motion is known as "fiuid dynamics". The 

branch of engineering that deals with the study of fluids at rest is known as "fiuid statics". 

"Density" of any substance (fluid) is defined as the mass of unit volume of the substance (fluid) 

at a given temperature and pressure. However (in case of fluids) if the density of the fluid 

varies throughout the system, then the density at a point is defined as the limiting value in t he 

following way 

. (om) p = hm r- . 
ov--+O uV 

(1.1) 

In above equation om denotes the mass element, ov is the volume element enclosing the point 

under consideration and p indicates the fluid density. 

" Viscosity" is defined as the ability of a fluid to resist the flow, or it is the internal resistance 
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of a fluid. In a more scientific and more compact way, the ratio of shear stress to the rate of 

shear strain is known as viscosity. The mathematical relationship for viscosity is 

shear stress 
Viscosity ({L) = ------­

r ate of shear st rain 
(1.2) 

Depending upon certain conditions in the several cases, viscosity is also termed as absolute, 

kinematic or dynamic viscosity. It is an important property of a fluid which plays obvious role 

in experimental and mathematical analysis regarding flow. Classification of fluids is also made 

on the basis of viscosity. Kinematic viscosity is defined as the ratio of dynamic viscosity to the 

density of the fluid. In mathematical form one can write 

Kinematic viscosity (v) __ _ {L. 

p 
(1.3) 

II Pressure" is known as the magnitude of the applied force to the object (in the perpendicular 

direction to the smface) per unit area. Mathematically one can write 

Magnitude of applied force F 
pressme = = A 

area 
(1.4) 

We know that the fluid goes lmder deformation when different forces act upon it. If the 

deformation increases continuously or indefinitely then this is known as llfiow". The flow in 

which the physical properties of the fluid (i.e. velocity, pressme, density etc.) at each point 

of the flow field remain invariant with respect to time is named as II steady fiow II . For any 

fluid property ( we then write~~ = O. The flow in which the fluid property changes with time 

is called the lIunsteady fiow" . In mathematical notation we have~ ::/= O. Flow of constant 

density fluid is known as II incompressible fiow II. In general all liquids are considered to have an 

incompressible flow. The flow for which density varies is known as 11 compressible fiow ll . Flow 

of all the gases have been treated as the compressible flows. A flow is classified as one-, two-, or 

three dimensional depending upon the number of space coordinates appearing in the velocity 

field. The imaginary line in the fluid drawn in such a way that the tangent to it at any point 

gives the direction of flow at that point, is called II stream line II . Thus the stream line shows the 

direction of motion of a numbl:)r of particles at the same time. A flllction, which describes the 
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form of pattern of flow, or in other words the discharge per unit thickness is called the" stream 

function ". It describes flow fields in term of either mass flow rate, for compressible fluids, or 

volume flow rate, for incompressible fluids. Mathematically for a steady state two dimensional 

flow field, we may write 

V=Vx'IjJ, (1.5) 

where V = (u, v, 0) , therefore 'ljJ = (0, 0, 'IjJ). In Cartesian coordinate system, the velocity 

components in terms of stream function may be defined as 

(1.6) 

The stream function can be used to plot the stream lines ('IjJ = constant) to analyze the flow 

behavior graphically. Fluids of negligible viscosity are known as "Ideal fluids" . These fluids do 

not offer any resistance to the shear forces and thus do not practically exist in nature. However , 

from engineering point of view, gasses are considered as the ideal fluids. On the other hand, 

fluids of finite viscosity are known as "real fluids ". These fluids offer considerable resistance 

against the shear forces. Such fluids are further classified in to two sub classes namely the 

Newtonian and non-Newtonian fluids. The fluid for which shear stress is directly proportional 

to the linear rate of strain is termed as "Newtonian fluid". For such fluids, the graph between 

shear stress and deformation rate is a straight line. Mathematical expression satisfied by such 

fluid is given below 

or 

du 
Tyx ex dy' 

du 
Tyx = f.l dy' 

(1. 7) 

(1.8) 

where Tyx is the shear stress, f.l is the dynamic viscosity (a constant of proportionality) and 

du/dy is the rate of strain (velocity gradient perpendicular to the direction of shear) for a 

unidirectional and one-dimensional flow. 

For a "Newtonian fluid", the viscosity, by definition, dep ends only on temperature and 

pressure, not on the forces acting upon it . In common terms, this means that the fluid continues 

to flow, regardless of the forces acting on it. If the fluid is incompressible and viscosity is 
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constant across the fluid , the above equation governing the shear stress can be generalized in 

the Cartesian coordinate system as follows 

In above expression 

Tij is the shear stress on the ith face of a fluid element in the ph direction 

Ui is the velocity in the ith direction 

Yj is the ph direction coordinate 

(1.9) 

The most common examples of such fluids are water and gasoline. II Non-Newtonian fluids II 

are fluids in which shear stress is not directly proportional to deformation rate. For one­

dimensional flows 

( du)n 
Tyx = k dy , (1.10) 

where the exponent n, is called the flow behavior index and the coefficient k, the consistency 

index. This equation reduces to Newton,s law of viscosity for n = 1 with k = f-L.To ensure that 

T yx has the same sign as duj dy , above equation is rewritten in the form 

(1.11) 

The term 7] = k(dujdy)n-l is referred to as the apparent viscosity. 

Fluids in which the apparent viscosity decreases with increasing deformation rate, this type 

of fluids are known as IIpseudoplastic ll or shear thinning fluids. Examples include polymer 

solution, colloidal susp ension etc. If the apparent viscosity increases by increasing deformation 

rate , this type of fluids are named as II dilatant fluids II. Suspensions of stratch and of sand are 

examples of dilatant fluids. A fluid that behaves as a solid until a minimum yield stress T xy, 

is exceeded and subsequently exhibits a linear relation between stress and rate of deformation 

are called II Bingham plastic II . Mathematically 

(1.12) 

Clay suspensions, drilling muds and toothpaste are examples of substances exhibiting this 
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behavior. Fluids for which apparent viscosity 'rJ decrease with time under a constant applied 

shear stress are termed as II Thixotropic fluids ". Paints are examples of thixotropic fluids. 

Fluids that show an increase in 'rJ with time are termed as II rheopectic fluids ". Some fluids 

after deformation partially return to their original shape when the applied stress is released 

are known as II viscoelastic fluids ". II Stagnation point II is a point in a field of flow about a 

body where the fluid particles have zero velocity with respect to the body. Such forces which 

act on the surface of any medium through direct contact with the surface are called"Sur:face 

forces ". Examples of such forc:es include pressure and stress. Such forces which act throughout 

the volume of the fluid and are independent of any type of physical contact are called II body 

forces ". Gravity and magnetic forces are examples of two body forces. 

II Volume flow rate II is the volume of fluid which passes through a section of pipe or channel 

in unit time. It is usually represented by the symbol Q. Given an area A, and a fluid flowing 

through it with uniform velocity V with an angle e away from the perpendicular to A, then the 

volume flow rate is 

Q = AV cose. (1.13) 

For flow perpendicular to the area A we have e = 0 and thus the volume flow rate is 

Q=AV. (1.14) 

When a fluid flows, the outer most molecules of the fluid near the solid boundary stick with the 

boundary and the fluid velocity at the boundary is equal to that of the solid boundary. This 

is known as the II no-slip condition ". Although no-slip condition is extensively used in flows of 

Newtonian and non-Newtonian fluids but in most engineering applications, the no-slip condition 

does not always hold in reality. For example a large class of polymeric materials slip or stick­

slip on the solid boundaries. To counter this situation Navier proposed a general boundary 

condition that incorporate the possibility of fluid slip at the solid boundary. According to 

Navier, the relative velocity between the fluid and the solid boundary in the x-direction (at a 

solid boundary) is directly proportional to the shear stress at that boundary, i.e. 

'Uf - 'Uw ex Txy, (1.15 ) 
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or 
(3 

UJ - Uw = ±-Txy , 
J.L 

(1.16) 

where (3 (constant of proportionality) is t he slip parameter having dimension of length, the plus 

and the minus signs are due to direction of the normal on the wall, U J is the velocity of the 

fluid and U w is the velocity of t he wall. This is known as II slip condition II at solid boundary. 

For (3 = 0 we recover the case of no-slip condition. We know that the total kinetic energy of the 

system is known as II heat ll
• Heat is one of the most common form of energy that plays a vital 

role in transfer of energy from one place to another due to difference in temperature (average 

kinetic energy of the system). II Heat transfer" is the process that deals with the flow of heat 

within the system. It is different from thermodynamics in the sense that thermodynamics only 

deals with the flow of heat across the boundary and it is inadequate to explain the flow of heat 

within the system. As all of the transfer phenomenon are triggered by some gradient, in case of 

heat transfer the cause is difference in temperature. Heat flows from hotter to cooler side, and 

it keeps on flowing unless the temperature gradient is zero (or the heat is uniformly distributed 

throughout the system). Following are the modes through which heat can be transferred from 

one place to another. The transfer of heat, when it takes place from more energetic particles 

to the less energetic ones due to particle to particle collusions, is known as II conduction'! . Most 

of the heat transfer taking place in solids is due to conduction, it also tal(es place in liquids 

and gases but not as a major mode of heat transfer. Common example of conduction is rise 

of temperature of one end of an iron rod, when the other end is heated by any source. Heat 

transfer when it takes place between a solid boundary and the fluid moving adjacent to the 

boundary, is termed as "convection ". It involves the combined effects of conduction and fluid 

motion. Conduction is the mode of heat transfer that is responsible for the transfer of heat 

in fluids. Example of convection can be taken as heating up of water when it is boiled in any 

container. 

If no external force or agent is involved in the process, or the fluid motion occurs purely due 

to density difference induced by the temperature difference, then the process is called II natural 

or free convection". The temperature changes in the whole control volume produces a difference 

in density that in turn induces body forces, these body forces are responsible for generation of 

flow in case of free convection. These body forces are actually generated by pressure gradients 
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imposed on the whole fluid. Gravity is the most common source of t his imposed pressure 

fields. The body forces in thir? case are in common termed as buoyancy forces. In general we 

can say that natural convection would not be possible without thermal expansion and gr~~ity. 

11 Forced convection 11 is t he type of convection that involves the fluid flow due to some external 

agent or source e.g. due to a fan or a pump. Buoyancy forces are negligible is this case. 

Matter in all its forms emit, absorb and transmit II radiations II . These r adiations are in form 

of electromagnetic waves. The transfer of heat by this mode has the speciality that it does not 

require any medium of propagation, and radiations can travel through vacuum. Heat transfer 

by this mode is explained by modified Stephan-Boltzmann law. Specific heat The amount of 

heat energy required to increase the temperature of one kg of any substance by one degree, is 

know as "specific heat ll of that substance. The ability to transmit or to conduct heat energy 

for different materials is different . It is the measure of this ability of a material to conduct 

heat that is known as IIthermal conductivity". It is denoted by k. A substance with a large k 

is a good conductor of heat e.g. iron, whereas a material with low k is a poor conductor but 

a good insulator e.g. air and wood. The ratio of amount of heat conducted to the amount 

of heat stored per unit volume is known as 11 thermal diffusivity ". II Viscous dissipation II is the 

transformation of kinetic energy to the internal energy of the fluid due to viscous effects, in 

other words it is the heating up of fluid. 

1.2 Governing Equations 

11 Continuity equation II represents the conservation of mass of the system (the transfer rate of 

the mass at entering and leaving the system is same). 

Mathematically it can be written as for incompressible flow 

ap . 
at + V.(pV) = 0, 

where p is the density of the fluid, V is the velocity and \1 is the gradient operator. 

For incompressible flow 

V.V=O. 
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The equation of motion is given by 

P [:t + (V.V)] V =pb + V.T, (1.19) 

where T is the Cauchy stress tensor, b is the body force, V is the velocity field and p is the 

fluid density. 

The Eq of motion in another form is given by 

av 
Pdt = pb+ V.T (1.20) 

where 
d 8 
dt = 8t + V.V (1.21) 

is the material derivative. 

For Navier-Stokes equations 

(1.22) 

(1.23) 

where p the pressure, p, the dynamic viscosity, Al the Rivlin Erickson tensor and T represent 

the transpose. 

The Cauchy stress tensor in matrix form 

T = [ ::: 

T zx 

Uyy 
T xz 1 
Tyz , 

U zz 

(1.24) 

T zy 

where IT xx, U yy and u yy are the normal stresses and T xy, T xz, T yx, T yz , T zx and T zy are shear 

stresses. 

Eq. (1.20) can be written in scalar form as the following 

du = ! 8(uxx ) +! 8(Txy) +! 8(Txz ) + b
x 

dt p 8x p 8y p 8z ' 
(1.25) 
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(1.26) 

(1.27) 

where bx , by and bz represents the body forces in x, y and z directions respectively. 

The conservation law of energy states that the increase in the internal energy of a thermo­

dynamical system is equal to the amount of heat energy added to the system plus (minus) the 

amount of energy gained (lost) by the system as a result of the work done on (by) the system 

by the surroundings. The general form of " energy equation " is 

dT -
p( di = T.(VV) + V .(kVT) (1.28) 

in which ( is the specific heat at const ant volume and k is the thermal conductivity. In case of 

const ant thermal conductivity, Eq. (1.28) becomes 

dT - 2 
p(di = T.(VV) + kV T) . (1.29) 

1.3 Method of Solution 

In topology two functions are said to be "homotopic 1/ if one function can be transformed con­

tinuously in to the other. A "homotopy" between two continuous ftmctions f and 9 from a 

topological space X to a topological space Y is defined to be continuous function 

H : X * [0, 1]- > Y, (1.30) 

from the product of the space X with the unit interval [0, 1] to Y such t hat for all t he point x 

in X and 

H(x, O) = f( x ) H(x, l) = g(x) (1.31) 

The map H is called a homotopy between f and g. Any function f which is homotopic to 9 

can be written as 

f ':::: g. (1.32) 
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We think of a homotopy as a continuous one parameter family of maps from X to Y . If we 

consider the parameter t as representing time, at time t = 0, we have the map f and as t varies 

the map H varies continuously so that at t = 1 we have the map g. For example consider two 

continuous functions defined on JR 

f, g: JR ~ JR, (1.33) 

such that 

f =x, g= l -x (1.34) 

One may develop the homotopy 

H: X * [0 , 1J ~ Y. ( 1.35) 

In above expression X = Y = JR and we define 

H (x, t) = (1 - t) f (x) + tg (x ) (1.36) 

Invoking values of f and 9 in Eq. (1.36) we arrive at 

H (x, t) = (1 - t) x + t (1 - x). (1.37) 

Since f (x) and 9 (x) are continuous functions so as H (x, t). Also 

H(x,O)=x, H (x, 1) = 1- x (1.38) 

The variation of t from zero to one deforms f (x) to 9 (x). So we say that f (x) and 9 (x) are 

homotopic to each other . 

Consider a non-linear equation governed by 

A(u) + f(r) = 0, (1.39) 

where A is a non-linear operator,f(r) is a known function and u is a unknown function. By 
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means of II HAM" one can construct a family of equations 

(1 - p).c [v(r,p) - Uo (r)] = pli{A[v(r,p)]- f(r)} , (1.40) 

where .c is the linear operator, uo (r) is an init ial guess/i is an auxiliary parameter p E [0, 1] is 

the embedding parameter. We expand v (r, p )in Taylor series about the embedding parameter 

00 

v(r,p) = Uo (r) + L Um (r)pm (1.41 ) 
m=l 

where 

( ) _ ~ amv(r,p) I 
U m x -

m! apm p=o 
(1.42) 

the convergence of the series (1.41) depends on the auxiliary parameter n. If it is convergent 

at p = l ,one has 
00 

U (r) = Uo (r) + L Um (r) (1.43) 
m=l 

Differentiating the zeroth order deformation Eq. (l.40) m-times with respect to p and then 

dividing them by m! and finally setting p = 0 we obtain the following mth-order deformation 

problem 

.c [um (r) - XmUm- l (r)] = nRm (r) , (1.44) 

in which 

{ 

0, 
Xm= 

I, 

m::; I, 
(1.45) 

m>l. 

(1.46) 

There are many different ways to get the higher order deformation equations . However, accord­

ing to the fundamental. theorems in calculus, the terms U m (r) in the series is unique. Note that 

the HAM contains an auxiliary parameter Ii, which provides us with a simple way to control 

and adjust the convergence of.the series solution. 
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Chapter 2 

Non-orthogonal stagnation-point 

flow towards a stretching surface in 

a non-Newtonian fluid with heat 

transfer 

This chapter describe the two-dimensional oblique stagnation point flow of a second grade fluid 

over a stretching surface with heat transfer. The problem is formulated and then transformed 

into a system of non-linear ordinary differential equations with the help of suitable similarity 

transformations which are then solved analytically by means of homotopy analysis method 

(HAM). The results for velocity, temperature and skin friction coefficients are also computed, 

and discussed for various emerging physical parameters. The problem was solved numerically 

by "F. labropulu, D. Li, LPopll [15], and a suitable comparison is made with the numerical and 

HAM solutions. 

2.1 Mathematical Formulation 

Consider a steady two-dimensional non-orthogonal stagnation point flow of a second grade 

fluid towards a stretching surface. In addition heat transfer effects are considered. The flow is 
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governed by the following equations 

divV" = 0, (2.1) 

dV* 
p& = divT" + p B ", (2.2) 

where p is the fluid density and T * is the Cauchy stress tensor. For second grade fluid Cauchy 

stress tensor is defined by 

(2 .3) 

where Al and A 2 are the first and second Rivlin Erickson tensors given by 

Al = (grad V *) + (grad v*f, (2.4) 

(2.5) 

The velocity profile for present flow is taken as 

V * = [t~*(x*,y*),v* ( x*, y* ) , O], (2.6) 

For the given velocity profile we have 

[ 

8u' 
8x' 

(grad V *) = g~: (2.7) 

o 

and its transpose is given by, 

(grad v*f = [ !:: !:: O~ 1 8y' 8y· 

o 0 

(2.8) 
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Making use of Eqs. (2.7) and (2.8) in Eq. (2.4), we have 

[ 2~· 8u' 8v' 

:r 
8x' 8y' + 8x' 

Al = 8u' + 8v' 2 8v' 
8y' 8x' 8y' 

0 0 

(2.9) 

for the given velocity profile 

f)* A f)* A 
A2 = u*~ + v*~ + Al (grad V*) + (grad V *)T AI, 

ux* uy* 
(2.10) 

Making use of Eqs. (2.6) to (2.9) in Eq. (2.10), we have 

4(g~:)2+2g~: {g~: + g~:) 

2 *(8
2
u' ) *( 82u' ) 

+ U 8x*2 + 2v 8y*8x* 

2(8u' )(8u' ) + 2(8v')(8v") 
8x' 8y' 8x" 8x' 0 

+( * 8 + * 8 ) (8u" + 8v') 
u 8x' v 8y' 8y' 8x' 

2(g~: )(g~: ) + 2(g~: )(g~:) 

+( * 8 + " 8 )( 8u' + 8v' ) 
u 8x' v 8y' 8y' 8x' 

4(8v')2 + 28u' (8u' + 8v') 
8y' 8y' 8y' 8x' 0 

* ( 82
v' ) * ( 8

2
v' ) +2v 8y*2 + 2u 8x*8y* 

(2.11) 

o o o 

Also we have 

o 
4(8v')2 + (8u ' + 8v' )2 

By' 8y ' 8x" 

o [ 

( 8u" )2 (8u' 8v" )2 
4 8x' + 8y' + 8x' 

A2-1 - 0 

o 
(2.12) 

Using Eqs. (2 .6) to (2.12) in Eq. (2.3), we have 

o 
~ j. 

-p* 

(2.13) 
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where 

4(Bu')2 + 2Bv' Bx" Bx" 

2(Bu' )(Bu') Bx' By' 

au* av* +2( g~: ) (g~: ) 
Txy = Tyx = f.L( a * + 8*) + (Xl 

y X +(u*B~.+v*B~' ) 

(Bu· BV') 
By' + Bx" 

4(Bv" )2 By" 
2 Bu' (Bu' BV' ) 

+ By· By· + Bx' 
+2v*(B2v")+ By*2 
2 * ( B

2
v " ) u By*ox* 

In component form Eq. (2.2) is written as 

av* av* a a 
p[u*~ +v*~] = ~(Tyx) + ~(Tyy) . 

ux* uy* ux* uy* 

Making use of Eq. (2.13) in Eqs. (2.14) and (2.15), we obtain 

au* au* 1 ap* 
u*-+v*-+--

ax* ay* p ax* 
n*2 * (XI{ a [4(aU* )2 2av*(au* avo) 

l/v U +- - - + - -+-
P ax* ax* ax* ay* ax* 

a2u* a2u* a au* au* 
+2u*(-) + 2v*( )] + -[2(-)(-) 

ax*2 ay * ax* ay* ax* ay* 
av* av* a a au* av* 

+2(ax* )(ay* ) + (u* ax* +v*ay*)(ay* + ax* )}] 

(2.14) 

(2.15) 

(X2 a au* 2 au* av* 2 
+-~[4(~) + (~+~) ], (2.16) 

p ux ux uy ux 

16 



av* av* 1 ap* 
u*-+v*-+--

ax* ay* pay* 

where p*(x*,y*) is the fluid pressure function, 1/ =11,jP is t he kinematic viscosity, p is the 

constant fluid density and f.J, is the constant coefficient of viscosity. 

Law of conservation of energy is given by 

de • 
p dt = cr .L - divq+pr , (2.18) 

where e = CpIJ·, q = - kdivcr· is the heat flux vector, cr· is the fluid temperature, k is the 

thermal conductivity, Cp is the specific heat and r is the internal heat generation. In the 

absence of viscous dissipation effect and the radiant heating, the energy Eq. can be written as 

C [ 
* acr· * acr* 1 *2. 

P p U -a +V -a =kV cr, x· y* 
(2.19) 

or 
* acr· • acr· ..2. 

U -- + v --= a V cr 
ax· ay· 

(2.20) 

Where a* = kj pCp is the thermal diffusivity of the fluid . 

The corresponding boundary conditions are given by 

. 
u * = ex·, v· = 0, cr = cr w on y. = 0, (2.21 ) 

u· = ax· + by*, • • IJ = croo as y --t 00. (2 .22) 

Where a, b, and e are positive constants with dimensions of inverse time, cr w is the constant 
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temperature of the plate while the uniform temperature of the ambient fluid is a oo. Introducing 

x 

p = 1 * -p, a= (2 .23) pvc 

Using Eq. (2.23) in Eqs. (2.1), (2.16), (2.17) and (2.20) , we have 

au au 1 ap 
u-+v-+--

ax ay pax 

av av lap 
u-+v-+--

ax ay pay 

au av _ 0 
ax + ay - , (2.24) 

2 a au au av av a a au av 
\1 v + We{ - [2(-)(-) + 2(-)(-) + (u- + v-)(- + -)] 

ax ax ay ax ay ax ay ay ax 
a av 2 AU au ov 02v o2v 

+~[4(~) ) + 2~(~ +~) + 2v():l 2) + 2u(~)]} uy uy uy uy ux ux uyux 

)"~[4(OV)2 (au OV)2] 
+ oy oy + ay + ox ' 

00- aa 2 

Pr[u ax + v ay] = V a, 

(2.26) 

(2.27) 

where We = Ci.1C/pv is the Weissenberg number and)" = Ci.2C/pv, and Pr = j.LCp/k is the 

prandtl number. 

Introducing the stream function relation 

(2.28) 

Substitution of Eq. (2.28) in Eqs. (2.25) to (2.27), and elimination of pressure from the resulting 
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equations using P xy = Pyx yields 

(2.29) 

Pr[8W80' _ 8W80'j = V 2 0'. 
8y 8x 8x 8y 

(2.30) 

The corresponding non-dimensional boundary conditions in terms of the stream function W (x, y) 

are given by 
8w 

W = 0, 8y = x, 0' = 1 at y = 0, (2.31) 

a 1 2 
W = ~xy + 2'y , ()' = 0 at y -> 00. (2.32) 

where, = blc represents the shear in the stream. 

we seek solutions of Eqs. (2.29) and (2.30) of the form 

W(x, y) = x f(y) + g(y), 0' = e(y) , (2.33) 

where the functions f(y) and g(y) are referring to as the normal and tangential component 

of the flow respectively and prime denotes differentiation with respect to y. substituting Eq. 

(2.33) in Eqs. (2.29) and (2.30), we obtain the following ordinary differential equations after 

one integration 

fill + ff" - /2 - We(f/v - 2/1''' + /2) + C1 = 0, (2.34) 

g'" + fg" - fig' - We(f /v - /g''' + f"g" - ('g') + C2 = 0, (2.35 ) 

e" + Pr f e' = o. (2.36) 

where prime denotes differentiation with respect to y and C1 , C2 are constants of integration. 

Using Eq. (2.33) the boundary conditions (2.31) and (2.32) give 

. f(O) = 0, 1'(0) = 0, 1'(00) = ::, 
c 

(2.37) 

g(O) = 0, g' (0) = 0, gl/(oo) =" (2.38) 
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B(O) = I, B(oo) = O. (2.39) 

Taking the limit y -t 00 in Eq. (2.34) and using the boundary condition / (00) = a/ c, we 

get C1 = (ajc) 2. An analysis of the boundary layer Eq. (2.34) implies that f(y) behaves as 

f(y) = (~) y+A as y -t 00, where A = A(We, a/c) is a constant that accounts for the boundary 

layer displacement. Taking the limit as y -t 00 in Eq. (2.35) and using the infinity boundary 

condition gil (00) = 'Y we get that C2 = -AT Thus Eqs. (2.34) and (2.35) become 

gill + fg" _ !' g' - We(f / v - / gill + f"g" - /" g') - ky = 0, (2 .41) 

B" + PI' f B' = O. (2.42) 

Introducing a new variable, 

g'(y) = 'Y h(y). (2.43) 

Using Eq. (2.43) in Eqs. (2.38) and (2.41) we have 

h" + f h' - / h - We(f hili - / h" + /' h' - /"h) - A = 0, (2.44) 

h(O) = 0, hi (00) = 1. (2.45) 

2.2 Homotopy Analysis Solution 

We express f (rJ) , h( rJ) and B (rJ) by a set of base functions 

(2.46) 

in the form 
00 00 

f(rJ) = ag,o + :L:L a~.nrJk exp(-nry) , (2.47) 
n=Ok=O 

00 00 

B(ry) = bg,o + :L:L b~.nrJk exp( -nrJ) , (2.48) 
n=Ok=O 
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00 00 

in which a;;' n' b;;' nand c;;' n are the coefficients. 
" , 

For the HAM solutions, t he initial guesses are given by 

The corresponding linear operators are given by 

which have the following property 

d2e de 
£0 = drp + d'T/' 

d3h d2h 
£ h = d'T/3 + d'T/2' 

where Ci (i = 1 - 8) are arbitrary constants. 
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(2 .49) 

(2.50) 

(2 .51) 

(2 .52) 

(2.53) 

(2.54) 

(2 .55 ) 

(2.56) 

(2.57) 

(2.58) 



2.3 Zerot h-order d eformat ion equation 

If p E [0,1] is an embedding parameter and nf, nh, ne, indicate the non zero auxiliary parameters 

respectively then the zeroth order deformation problems are 

(1 - p) £ h[h(1] ;p) - ho (77)] = pnhNh[}(ry ;P), h(ry ;p)], (2. 60) 

(1 - p) £e[e(ry;p) - 80 (7])J = pneNe[}(ry;p), e(ry;p)], (2.61) 

.... "..I .... .... 
f(O;p) = 0, f (O ;p) = 1, h(O;p) = 0, 8(0; p) = 1, (2.62) 

~ a "/ " 
f (oo;p) = - , h (oo;p) = 1, 8(oo;p) = 0, (2.63) 

c 

in which the non linear operators Nf , Nh , Ne are 

" " 82(}( ry ;p) " 8e(ry;p) 
Ne[J(p;ry),8(p;ry)]= 87]2 +Prf(ry;p) 87] , 

Ndi(p;ry) , h(p; ry)] 

w (j( . ) 83h(p; 7]) _ 8j(ry;p) 82h(p;ry) 
e 7],P 8ry3 8ry 8ry2 

Obviously, 

j(ry; 0) = fO(7]) j(ry; 1) = f(ry), 

. 8(7]; 0) = 80(77) e(ry; 1) = 8(ry) , 

h(7]; 0) = ho(ry) h(ry ; 1) = h(ry). 
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(2.65) 

(2.67) 

(2.68) 

(2 .69) 



As p goes from 0 to 1, j(ry; p), h(ry; p), fJ(ry; p) vary from initial guesses fo(ry ), ho( ry) , eo (ry) to final 

solutions f (ry), h( ry) , e (ry) respectively. Making the assumption that the auxiliary parameters 

tif , tih tie are so properly chosen that the Taylor series of f(ry;p), h(77;P), e(ry;p) expanded with 

respect to embedding parameters converges at p = 1. Thus we can write 

00 

j(ry;p) = fo (ry) + L fm(ry)pm, 
m=l 

00 

h(ry;p) = ho (ry) + L hm(ry)pm, 
m=l 

00 

fJ(ry;p) = Bo (ry) + L Bm(ry)pm, 
m=l 

where 

fm(ry) ~ f)fflf(77;P) I h ( ) = ~ amh(ry;p) I 
I am ' m7] I am ' m. ry p=o m. ry p=o 

Bm(ry) ~ amB(ry;p) I . 
m! arym p=o 

With the help of Eq. (2.73) Eqs. (2 .70) to (2.72) can be written as 

00 

f(ry) = fo (ry) + L fm(ry), 
m=l 

00 

h(ry) = ho (ry) + L hm(ry) , 
m=l 

00 

B(ry) = Bo (77) + L Bm(ry). 
m=l 

The mth-order deformation equations are defined as 

Lh[hm(ry) - Xmhm-1(ry)] = tihR!:n(7]) , 

Le[Bm(ry) - XmBm-1(ry)] = tieRr:n(ry), 
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(2.70) 

(2.71) 

(2 .72) 

(2.73) 

(2.74) 

(2.75) 

(2.76) 

(2.77) 

(2.78) 

(2.79) 



The corresponding boundary conditions for mth deformation problems are 

fm(O) = f:n(O) = 1, hm(O) = 0, Bm(O) = 1, (2 .80) 

(2.81 ) 

where 

m - l m-l m-l m-l 

/II """' /I """' I I """' I V """' I 1/1 f m- 1 + 6 fkfm- 1- k - 6 hfm- 1- k - We(6 fkfm- 1- k - 26 fdm-l-k 

in which 

k=O k=O k=O k=O 
m-l 
"""' /I /I a2 + 6 fkfm-1-k) + (-) , 

c 
k=O 

m-l m-l 
"""' " I ~ /11 + 6 h hm- 1- k - 6 h hm-1-k) - A, 
k=O k=O 

{ 

0, m ::; 1 
X = 

m I,m> 1. 

The general solutions of Eqs.(2.82) to (2.84) can be written as 

where Ci (i = 1 - 8) are constants. 
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(2.82) 

(2 .83) 

(2 .84) 

(2.85) 

(2.86) 

(2.87) 

(2.88) 



2.4 Convergence of the HAM Solutions 

Obviously the series solutions depend upon the non-zero auxiliary parameters fif, fih , fie which 

can adjust and control the convergence of the HAM solutions. In order to see the range of 

admissible values of fif, fih, fie and the fi - curve of the functions /' (0), hi (0), e' (0) and are 

sketched for 15-order of approximations in Fig 2.1a. It is found that the range of admissible 

values of fit, fih, fie are -1 :::; fif :::; -0.3, - 1.1:::; fih :::; - 0.6, -1.3:::; fie :::; -0.5, 
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§' 0.25 

'" ~ 2-
~ 
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C - 0.25 
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- 2 

i 
i 
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..... 
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\ 
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..... .... 1. ._._._. __ ._._._._._._._. __ ._._._._ ....... 

- 1.5 -0.5 

\ 1 
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" 

Fig: 2.1(a) fi- Curves for f, hand e 
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Table 2.1 : Convergence of HAM solution for different order of approximations 

ordero j approximations jl/ (0) -0' (0) hl/(O) 

1 -0.64200 0.78400 0.09411 

10 -0.66888 0.55924 0.33182 

15 -0.66888 0.55875 0.33194 

17 -0.66888 0.55874 0.33192 

19 -0.66888 0.55874 0.33192 

21 -0.66888 0.55874 0.33192 

23 -0.66888 0.55874 0.33192 

25 -0.66888 0.55874 0.33192 

27 -0.66888 0.55874 0.33192 

29 -0.66888 0.55874 0.33192 

31 -0.66888 0.55874 0.33192 

2.5 Results and discussion 

In this section the influence of emerging parameters on the velocity components / , h' ,temperature 

profile e and stream line patterns are discussed. For this purpose Figs. (2.2) to (2.13) are plot­

ted to see the variation of velocity a/ c, Weissenberg number We, and Prandtl number Pr on 

the /, h' and O. Fig. (2.2) is plotted to see the effects of a/con velocity component /. Fig. 

(2.2) describe that velocity / is an increasing function of a/c. From Fig. (2.3) we see that 

velocity / increases with an increase in We. The boundary layer thickness also increase with 

We. Fig. (2.4) gives the variation of a/con h' . This Fig. shows that initiaUy h' increases and 

after y = I, h' decrease with an increase in a/c. The effect of We on h' is qualitatively opposite 

to that of a/c (seeFig.(2.5)).Fig. (2.6) and (2.7) are plotted to see the effects of We and Pr 

on O. As expected 0 is a decreasing function of Pro Thermal boundary layer thickness also 

decreases with Pr see (Fig.2 .7). Fig. (2.8) depicts that 0 is also a decreasing function of a/c. 

Numerical values of /' (0), h' (0), and -0' (0) for different values of We and a/care shown 

in Tables 1 to 4 to predict the behavior of skin friction and local heat flux. From these tables 

one can see that HAM solution has an exceUent agreement with numerical solution. Figs. (2.9) 
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to (2.13) are streamline patterns for the oblique flow for various values of the parameters We, 

'Y, and a/c. It can be clearly seen from these figures that for fixed values of ltVe and a/ c, the 

streamlines are oblique towards the left of the stagnation-point with increase in 'Y (positive). On 

the other hand, the stream lines are more and more oblique towards the right of the stagnation 

point see Figs. (2.11) and (2.13). 
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I parameteTs I HAM [NU MJ I HAM [NUMJ I HAM [NUMJ I HAM [NUMJ 

~l,We -t 0 0.2 0.5 1 

0.1 -0.96939 [-0.96938J -0.87660 [-0.87659J -0.77542 [-0.77541 J -0.66327[-0.66328J 

0.3 -0.84942 [-0.84942J -0.75115 [-0.75114J -0.64992 [-0.64992J -0.54442[-0.54434J 

0.8 -0.29938 [-0.29938 J -0.24972 [-0 .24971J -0.20647 [-0.20647J -0.16689[-0.16689J 

1 o [OJ 0[0] o [OJ o [OJ 

2 2.0087 [2.0175J 1.4889 [1.4890J 1.1518 [1.1518J 0.8925[0.8925J 

3 4.7291 [4.7292J 3.2130 [3.2132J 2.4055 [2.4056J 1.8305[1.8307J 

Table 1 : Comparison of HAM and numerical solutions [15J of /' (0) for various values of We 

and alc 
TABLE 2 (h' (0)) 

parameters HAM [NUMJ HAM [NUMJ HAM [NUM] HAM [NUM] 

~ 1, We -t 0 0.2 0.5 1 

0.1 0.26275 [0.26278] 0.36382 [0.36384] 0.48622 [0.48624] 0.60812 [0.60812J 

0.3 0.60571 [0.60573] 0.67905 [0.67908] 0.75114 [0.75116] 0.82137 [0.82139] 

0.8 0.93430 [0.93430J 0.95291 [0.95292] 0.97101 [0.97102] 0.97785 [0 .97787J 

1 1 [1] 1 [1] 1 [1] 1 [1] 

Table 2: Comparison of HAM and numerical solutions [15J of h' (0) for various values of We 

and alc 
TABLE 3 (-e'(O)), Pr = 1 

parameters HAM [NUM] HAM [NUMJ HAM [NUMJ HAM [NUMJ 

~l,We-t 0 0.2 0.5 1 

0.1 0.60276 [0.60281J 0.61942 [0.61941] 0.63866 [0.63866] 0.66051 [0.66052] 

0.3 0.64728 [0 .64732] 0.66190 [0.66189J 0.67751 [0.67751] 0.69456 [0 .69456J 

0.8 0.75710 [0.75709] 0.76197 [0.76193] 0.76651 [0.76650] 0.77109 [0.77109] 

1 0.79790 [0.79788J 0.79790 [0.79788] 0.79790 [0.79788] 0.79790 [0.79788J 

2 0.97876 [0.97872] 0.95059 [0.95031] 0.92810 [0.92878] 0.90943 [0.90940] 
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Table 3 : Comparison of HAM and numerical solutions [15J of (-0' (0)) for various values of W e 

and ale, when Pr =1 

TABLE 4 (-(/ (0)), Pr = 1.5 

parameters HAM [NUMJ HAM [NUMJ HAM [NUMJ HAM [NUMJ 

~ !,We-t 0 0.2 0.5 1 

0.1 0.77680 [0.77681J 0.79531 [0.79529J 0.81580 [0.81564J 0.83890 [0.83842J 

0.3 0.81910 [0.81911J 0.83545 [0.83545J 0.85263 [0.85262J 0.87103 [0.87104J 

0.8 0.93274 [0.93306J 0.93835 [0.93869J 0.94356 [0.94390J 0.94847 [0.94904J 

1 0.97689 [0.97720J 0.97683 [0.97720J 0.97683 [0.97720J 0.97683 [0.97720J 

2 1.1719 [1.1780J 1.1399 [1. 1443J 1.1059 [1.1191J 1.0969 [1.09697J 

Table 4: Comparison of HAM and numerical solutions [15J of (- 0' (0)) for various values of We 

and ale when Pr =1.5 
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Chapter 3 

Non-orthogonal stagnation-point 

flow ofa micropolar fluid towards a 

stretching surface with heat transfer 

This chapter emphasizes on the heat transfer analysis for stagnation point flow of a micropolar 

fluid, over a stretching surface. The governing equations of motion for two dimensional flow are 

modelled and then simplified with the help of suitable similarity transformations. The reduced 

nonlinear coupled equ~tions are then solved analytically with the help of homotopy analysis 

method (HAM). The effects of several flow parameters are examined on the velocity, temperature 

and micro-rotation profile. The stream lines for the problem are also made. 

3.1 Mathematical Formulation 

Consider a steady two-dimensional non-orthogonal stagnation point flow towards a stretching 

surface of a micro polar fluid. In addition heat transfer effects are considered. The flow is 

governed by the following equations 

divV* = 0, (3.1) 

DV* 
PDt =divT*+kV*xN, (3.2) 
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DN* 
pj Dt = ,'\7* (\7* .N*) - "'1\7* x (\7* x N *) + k\7* x V* - 2kN*, (3.3) 

where 

V* = [u*(x*,y*),v*(x*,y*),O], 

N * = [O ,O,N*(x*,y*)]. 

For the given velocity profile 

or 

and 

also 

or 

\7* xV* = (0 0 ov*(x*,y*) _ OU*(X*,y*)) 
"ox* oy*' 

( 

i 

\7* x N* = 8 
8x' 

o 

j 

8 
8y' 

o 

k 

N*(x*, y*) 

\7* x N * = ( ON* _ oN* 0) 
oy* ' OX*' , 

v' x (V' x N ' ) ~ ( 

i 

8 
8x' 
8N' 
8y' 

j 

8 
8y' 

8N' 
- 8x' 

\7* x (\7* x N *) = (0,0, - \7*2N*) , 

\7*.N*= [J:)0 'J:)0 'J:)0 ].[O,O ,N*(x*,y*)], 
ux* uy* uz* 

\7*.N* = 0, 

(3.4) 

(3.5) 

(3 .6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

where D /Dt is the material derivative, V* and N * represent the velocity and micro rotation 

vectors, p*(x*,y*) is the fluid pressure function , v =fJ-/p is the kinematic viscosity, p and j 

= v /e are the density and gyrartion parameters of the fluid, "'I = (fJ- + k/2) j [24] and k are the 

spin gradient viscosity and the vortex viscosity respectively. 
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Law of conservation of energy is given by 

de • 
p dt = (T .L - divq+pr, (3.13) 

where e = Cp(T·, q = -kdiv(T· is the heat flux vector, (T . is the fluid temperature , k is the 

thermal conductivity, Cp is the specific heat and r is the internal heat generation. In the absence 

of viscous dissipation effect and the radiant heating, the energy equation can be written as 

(3. 14) 

or 

(3.15) 

where a * = kj pCp is the thermal diffusivity of the fluid . Using Eqs. (3 .4) to (3.12) in Eqs. 

(3.1) to (3 .3), we get 

(3.16) 

au* au* 1 ap* 
u*-+v*-+--. 

ax* ay* p ax* 

ov* ov* lop* 
u*-+v*-+--

ox* oy* p oy* 
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j 

u* oN* + v* oN* =:l V *2 N * _ ~[2N* + ou* _ ov* J 
ox" oy* pj pj oy* ox*' 

[ ,,0(/ * OCT « 1 _ * *2 • 
U.Q +V.Q -aVCT. 

ux* uy* 

The corresponding boundary conditions are given by 

* * * o · N * ( * *) ou* * U = cx , v = , CT = CTw X , y = -mo~ on y = 0, , uy* 

. 
u* = ax* + by*, CT = CT oo , N*(x* ,y* ) -7 constant as y* -700, ( . 

where a, b, and c are positive constants with dimensions of inverse time, CT w is the com 

temperature of the plate while the uniform temperature of the ambient fluid is CT 00. Introdt: 

x "If */f 1 " 1 * x -, y = y -, u = r;-;;.u, v = r;-;;.v, 
v v V vc v vc 

1 a · - aoo 1 
-p*, CT = , N = - N*. p 
pvc CTw - CT oo C 

Eqs. (3.16) to (3.20) take the form 

ou OU lop 
u-. +V-+--

ax oy pox 

ou ov _ 0 
ox + oy - , 
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8v 8v 18p 
u-+v-+--

8x 8y p 8y 
2 8 8u 8u ov 8v 

(1+K)Vv+We{-8 [2(-8 )(-8 )+2(~)(-) 
x x y u X 8y 

a 8 01£ 8v 8 ov 2 
+(u- + v-)(- + -)] + -[4(-) 

8x oy oy 8x 8y oy 

&& ~ &v &v 
+2 8y (8y + 8x) + 2v (8x2) + 2u(8y8x)]} 

+>'~[4(8v)2 + (8u + OV)2]_ K 8N , 
8y 8y 8y ax ax 

(3.26) 

8N aN K 2 8u ov 
u- +v- = (l +-)V N-K[2N+ - --], 

ax . 8y 2 8y 8 x 
(3.27) 

aCT 8CT 2 

Pr[u ox + v 8y] = V CT, (3.28) 

where We = ell C I pL! is the Weissenberg number, >. = el2C I pL!, K = kip, is the material 

parameter and Pr = p,Cpl k is the prandtl number. 

Introducing the stream function relations 

(3.29) 

Substitution of Eq. (3.29) into Eqs. (3.25) to (3.28) and elimination of pressure from the 

resulting equations using P xy = Pyx yield 

(3.30) 

8iJ! 8N 8iJ! 8N K 2 2 

8y 8x - 8x 8y = (1 + 2)V N - K[2N + V iJ!(x, y)], (3.31) 

Pr[8iJ! 8CT _ 8iJ! 8(J] = V 2 CT, 
8y 8x 8x 8y 

(3.32) 

The corresponding non-dimensional boundary conditions in terms of the stream function iJ!(x, y) 

are given by 
8iJ! 2 

iJ! = 0, 8y = x, N = -moV iJ!, (J = 1 at y = 0, (3.33) 

a 1 2 
iJ! = -;xy + 2'1Y , N(x, y) --t constant, CT = 0 at y --t 00, (3 .34) 

where 1 1 = blc represents the shear in the stream. 
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We seek solutions of Eqs. (3.30) to (3.32) of the form 

w(x, y) = x f(y) + g(y), N(x, y) = x J(y) + S(y), (J = e(y), (3.35) 

where the functions f(y) and g(y) are referring to as the normal and tangential component of the 

flow, while J(y) and S(y) are the normal and tangential components of the micro rotation profile 

respectively and prime denotes differentiation with respect to y. Substituting Eq. (3.35) in Eqs . 

(3.30) to (3.32), we obtain the following ordinary differential equations after one integration for 

f , 9 with the corresponding boundary conditions 

(1 + K)g'" + fg" - I'g' :..- We(t /v - / gill + f" gl/ - t'" g') + KS' + G2 = 0, (3 .37) 

(1 + ~)i' - I' J + f J' - K(t" + 2J) = 0, (3 .38) 

K ", , II 

(1 + 2)S - 9 J + fS - K(g + 2S) = 0, (3.39) 

e" + Pr f e' = 0, (3.40) 

f(O) = 0, / (0) = 0, /(00) =!::, J(O) = - mofl/(O), S(O) = -mogl/(O), (3.41) 
c 

'" 'Yl g(O) = 0, 9 (0) = 0, 9 (00) = 'Y1, J(oo) = 0, S(oo) = -2' (3.42) 

e(O) = 1, e( (0) = 0, (3.43) 

where prime denotes differentiation with respect to y and G1, G2 are constants of integration. 

Taking the limit y --t 00 in Eq. (3.36) and using the boundary condition / (00) = a/ c, 

we get G1 = a2/c2 . An analysis of the boundary layer Eq. (3.36) implies that f(y) behaves 

as f(y) = (a/c) y + A as y --t 00, where A = A(We,a/c) is a constant that accounts for the 

boundary layer displacement . Taking the limit as y --t 00 in Eq. (3.37) and using the infinity 

boundary condition gil (00) = 'Y1 we get that G2 = -A'y!' Thus Eqs . (3.36) to (3.40) become 

. 2 

(1 + K)/" + ft" - (t')2 - W e(t /v - 2/ /" + (til )2) + Ki + a2 = 0, (3.44) 
c 
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(1 + K)glll + fg" - f'g' - W e(f /v - / g'1! + f" g" - ( 'g' ) + KS' - A'YI = 0, (3.45) 

K " , , " (1 + 2)J - f J + f J - K(f + 2J) = 0, (3 .46) 

K" , , II 
(1 +

2
)S -g J +f8 -K(g +28) = 0, (3 .47) 

e" + Pr f e' = 0. (3.48) 

Introducing 

g' (y) = 'Y lh(y) , 8(y) = 'Y18(Y). (3.49) 

Using Eq.(3.49) in Eqs. (3.45) and (3.47) , we have 

(l+K)h" +fh' -/h-We(fh'" -/h" + (h' -/"h) + K8' -A=O, (3 .50) 

K II " (1+
2

)8 -hJ +f8 -K(h +28)=0, (3.51) 

with the boundary conditions 

h(O) =0, h'(oo ) = 1, (3. 52) 

8(0) = - mo h'(O) , 8(00) = - ~. (3.53) 

The Eqs. (3.44) to (3.48) are coupled nonlinear differential equations , to find the analytic 

solutions we use Homotopy analysis method (HAM) ,which is described in next section. 

3 .2 H omotopy analysis solution 

We express f(fJ) , h(fJ) , e(77) , J(fJ) , and 8(fJ) by a set of base functions 

(3.54) 

in the forms 
00 00 

f(fJ) = a~,o + L L a~,nfJk exp( -nfJ) , (3.55) 
n=Ok=O 

00 00 

h(fJ) = c~,o + L L c~,nfJk exp( - nfJ) , (3.56) 
n=Ok=O 
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00 00 

B(ry) = bg,o + L L b':n,nryk exp( -nry) , (3.57) 
n=Ok=O 

00 00 

J(ry) = dg,o + L L d':n ,nryk exp( -nry) , (3 .58) 
n=Ok=O 

00 00 

S(ry) = eg,o + L L e':n,nryk exp( -nry), (3.59) 
n=Ok=O 

in which a':n n' b':n n' c':n n d':n n' and e':n n are the coefficients. For the HAM solutions, the initial 
I , , I I 

guesses fO(77) , ho(ry), Bo(ry), Jo(ry) and so(ry) are given by 

a a 
fO(77) = (1 - -) * (1- exp(-ry)) + - 17, 

c c 

JO(77) = -mof~' (0), 

so(ry) = -moh~(O), 

with the auxiliary linear operators of the form 

and the following properties 

d3h d2h 
£h = dry3 + dry 2 , 

d2B de 
£9 = dry2 + dry' 

d2J dJ 
£ J = dry2 + dry' 

d2s ds 
£ s = dry2 + dry' 
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(3.60) 

(3 .61) 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

(3.70) 



(3.71) 

(3.72) 

£J[Cg + CIO exp( -7])] = 0, (3.73) 

£s[Cll + C12exp(-7])] = 0, (3.74) 

Where Ci (i = 1 - 12) are arbitrary constants. 

3.3 Zero order deformation equation 

If P E [0,1] is an embedding parameter and hf, hh, he, hJ and hs indicate the non zero 

parameters respectively, then the zeroth order deformation of problem are 

(1 - p)£ f [j(77i p) - jO(7] )] = phfNf [j(Pi 7]), h(Pi 7]), 8(Pi 77), J(77i p), S(Pi 7])], (3.75) 

(1- p)£h [h(7]iP) - hO(7])] = phhNh [j(Pi 7]), h(Pi 7]), 8(Pi 77), J(77iP), S(Pi 7])], (3.76) 

(1 - p)£e[B(7]i p) - BO(7])] = pheNe [j(Pi 7]) , h(Pi 7]) , B(Pi 7]), J(7]i p), S(Pi 7])], (3.77) 

(1 - p)£J[J(7]jp) - JO(7])] = phJNJ [j(pj 7]), h(pj 7]), B(pj 7]), J(7]jp), s(p; 7])], (3.78) 

(1 - p)£S[S(7]i p) - So (7] )] = phsNs [j(Pi 7]) , h(Pi 7]), B(p; 7]), J(7]i p), S(Pi 7])], (3.79) 

with following conditions 

j(OiP) = 0, f'(OiP) = 1, B(OiP) = 0, h(OiP) = 0, J(OiP) = -mof~' (0), S(OiP) = -moh~(O) , 

(3.80) 
AI a A A I A 1 
f (OOiP) = ~, e(OOiP) = 1, h (OO iP) = 1,J(oojp) = 0, S(OOiP) = -2' (3 .81) 
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in which non linear operators Nf, Nit, Ne, NJ and Ns are 

(3.82) 

(3.83) 

(3.84) 

(1 + ~) 82~~~;p) _ 8j~; 'T/) J(p; 'T/) + j(p; 'T/) 

8J~; 'T/) _ K(8
2 ~(~;p) + 2J(p; 'T/)), (3.85) 

77 'T/ 

Ns[j(p; 'T/), e(p; 'T/), h(p; 'T/), ](p; 'T/), §(p; 'T/)] 
K 82§('T/;p) ~ ~ " 

(1 + 2") 8'T/2 - h(p; 'T/)J(p; 'T/) + !(p; 'T/) 

Obviously 

8S~ 'T/) _ K(8h1~p) + 2§(p; 'T/)), (3.86) 

h('T/; 0) = ho('T/) , h('T/; 1) = h(77) , 

e('T/; 0) = eo (7]) , e(7]; 1) = e(7]), 

](7];0) = JO(7]) , ](7]; 1) = J(7]) , 
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(3.87) 

(3.88) 

(3.89) 

(3.90) 



(3.91) 

As p changes from 0 to 1, f("1;p), h("1;p), B("1;p), J("1;p) and s("1;p) vary from the initial 

guesses fo("1), ho("1), Bo("1), Jo("1),and so(ry), to final solutions f("1) , h("1) , B("1), J("1) , and s(ry) 

respectively. Making the assumption that the auxiliary parameters hf , hh, ho, hJ, and hs are 

chosen so properly that the Taylor series of f(ry; p), h(ry; p), B("1; p), J(ry; p),and 8("1; p) expanded 

with respect to embedding parameters converges at p = l.Thus we can write as 

00 

](ry;p) = 10(71) + L 1m(ry)pm, (3.92) 
m=l 

00 

h(77 ;P) = ho("1) + L hm(ry)pm, (3 .93) 
m=l 

00 

e(ry;p) = BO(77) + L Bm(ry)pm, (3.94) 
m=l 

00 

J("1;p) = Jo("1) + L Jm("1)pm, (3.95) 
m=l 

00 

s(77;P) = sO(77) + L sm(ry)pm, (3.96) 
m=l 

where 

f ( ) - ~ a
m

1("1;p) I 
m 71 - , a m P=O, 

7n . "1 
(3.97) 

h ( ) _ ~ amh("1;p) I 
m "1 - , a m P=O, 

7n. "1 
(3.98) 

B ()_~amB("1;p)1 
m 71 - , a m P=O, 

7n. "1 
(3.99) 

J ( ) _ ~ amJ("1;p) I 
m "1 - , a m P=O, 

7n. "1 
(3.100) 

( ) _ ~ ams("1;p) I 
Sm "1 - , a m P=O, 

7n. "1 
(3.101) 

By substituting the Eqs. (3.97) to (3.101) in Eqs .(3.92) to (3.96) , we get 

00 

f("1) = 10(71) + L 1m("1), (3.102) 
m=l 
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00 

h(ry) = ho(ry) + L hm(ry), (3.103) 
m=l 

00 

B(ry) = Bo(ry) + L Bm(ry), (3.104) 
m=l 

00 

J(ry) = JO(ry) + L Jm(rJ), (3.105) 
m=l 

00 

S(ry) = SO(ry) + L sm(rJ) , (3.106) 
m=l 

mth order deformation Eqs. are written as 

(3.107) 

(3 .108) 

(3.109) 

(3.110) 

(3.111) 

The Corresponding boundary conditions for mth deformation problems are 

fm(O) = 0, f:n(O) = I, Bm(O) = 0, hm(O) = 0, Jm(O) = -mol~(O), sm(O) = -moh~(O), 

(3.112) 

(3.113) 

where 

m-l m-l m-l m-l 
f /II ~" ~II ~IV ~"/I 

Rm(rJ) = (1 + K)fm-l + ~ fkfm- 1- k - ~ fkfm- 1- k - We(~ fkfm- 1- k - 2 ~ fdm-l-k 
k=O k=O k=O k=O 

m-l 
~ II /I I a 2 

+~hfm-l-k)+KJm-l+(-) , 
c 

k=O 
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m-l m - l m- l m-l 
/I "\"' "\"' I "\"' /I I "\"' I I 

(1 + K)hm _ 1 + 6 ikh'm- l -k - 6 fkhm - 1-k - We( 6 ikhm-l-k - 6 fkh~-l-k + 
k=O k=O k=O k=O 

m - l m - l 
"\"' " , "\"' III I 

6 fk h m - 1- k - 6 fk h m - 1- k ) + K s m -l - A , (3 .115) 
k=O k=O 

(3.116) 

(3.117) 

(3.118) 

in which 

{ 

0, m ::; 1 
X = 

m l,m>l. 
(3.119) 

The general solutions of Eqs. (3 .107) to (3.111) can be written as 

(3.120) 

(3.121) 

(3.122) 

(3.123) 

(3.124) 

Where Ci (i = 1 - 12) are constants. 

3.4 Convergence of the HAM solution 

Convergence of series solutions depend upon the non-zero auxiliary parameters nf, nh, no ,nJ, 

and ns which can adjust and control the convergence of the HAM solutions. In order to see the 
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" range of admissible values of nf, nh, ne, nJ, and ns and the n - curve of the functions f (D), 

h" (D), e' (D), ]' (D), and s' (0) are sketched for 10th-order of approximations in Fig. (3.1) below. 

It is found that the range of admissible values of nf, nh, ne, nJ and l'is are -1 ::; nf ::; -0.3, 

-1.1 :S nh :S -0.4, -1.3 :S ne :S - 0.5 , -1.1 :S nJ :S - 0.3, -0.9 :S ns :S -0.4, 

§: 
it) 

o 

0.25 

o 

~ - 0.25 

S 
"""" - 0.5 
"" 
~ -0.75 
:t: 

-1.25 

-2 

K = 0.5, A = 0.2, mo = 0.5. Pr= 0.7, We = 0.2, 81c = 0.4, 

I 

- t"(O) /"'~~- -----'-----~- ~"''''\ ! 
....... /7"(0) " \ i 
..... 8'(0) / \ I 

---· J'CO) f \i 
-- $'(0) : X .... / 

.................... ; ;->'~"-'='~"=.-="=~':~=~~ .. ~~ 
/ .. , 7 /'" "" ... \ 

./ ':.1 \. 
:' f I I f" 

,: , r i \:' 
,/ f; i 1 \. 
; I \ 

- 1.5 -1 
11 

-0.5 

Fig:3.1 n- Curves for f, h, e, J, s 

o 

3.5 Results and discussion 

This section highlights the variations of arising physical parameters on the fluid flow. Figs. (3.2) 

to (3.16) . are plotted for the velocity field, temperature field, micro-rotation and the stream 

lines.Fig. (3.2) and (3.3) are plotted to show the effects of material parameter K on velocity j' 

when mo = 0 (strong concentration)and mo = 1/2 (weak concentration) respectively . we notice 

from these Figmes that as the value of K increases, values of j' near the wall are increasing. 

consequently the velocity gradient at the wall increases as K increases. Figs. (3.4) and (3.5) 

gives the variation of K on h' for mo = 0 and mo = 1/2 respectively. These Figures shows that 

initially h' decreases and after y = 1, h' increase with an increase in K. The variation of K on 

the temperature is discussed in Figs. (3 .6) and (3.7). It is found that e is a decreasing function 

of K for mo = 0, where as it is an increasing function of K when mo = 1/2. The effect of K on 

the micro- rotation profile J is shown in Fig. (3 .8) . This Fig. suggests that the micro-rotation 
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J increases as J{ increases for the case mo = 0, the peak value of micro-rotation occurs near 

the wall then decrease monotonically to zero as y increases. However for mo = 1/2 (Fig.(3.9)), 

the micro-rotation J decrease continuously from its maximum value at the wall to zero far from 

the wall. Figs. (3.10) and (3.11) are sketched for micro-rotation profile -so Fig. (3.10) express 

that the magnitude of the micro-rotation component s increases as y increases and reaches its 

maximum value that is 1/2 far away from the wall. where as for ma = 1/2 (Fig.(3.11)), the 

micro-rotation s decrease continuously from its maximum value at the wall to zero far from the 

wall.The stream line patterns for the oblique flows are shown in Figs. (3.12) to (3.16) . The 

stream line \Ii = 0 meets the wall y = 0, at x = Xa , where Xo is the point of stagnation and 

zero skin friction. It can be seen from these Figures that the stagnation point is at the left of 

the origin for all values of J{ .; 0 (micropolar fluid), and the magnitude of Xo increases as J{ 

increases. The shifting of Xo depends upon the magnitude of J{ and mo. 

------

1 

0.9 

0.8 

9 0.7 
"-

0.6 

0.5 

mo=O 

K =0.0 
K=0.5 
K=1 .0 
K =2.0 

0.4 L........~~--=::::~~~~~~::::.J 
o 2 4 6 8 10 

y 

Fig: 3.2 Velocity profile j' for various values of J{ when ma ~ 0 
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Fig: 3.3 Velocity profile J' for various values of K when 

rna = 0.5 
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Fig: 3.4Velocity profile h' for various values of K when rna = 0 
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ma = 1/2 
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K=O.2 
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