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L

G

MIt(L)
Inn(L)
N(L)
NA(L)
Nu(L)

Ny(L)

Loop
Quasigroup
Group

Identity element of L

Left inverse of «

Right inverse of x

H is a subloop of L

H is a normal subloop of L
Normal subloop

Factor loop

Left translation

Right translation
Multiplication group of L
Inner-mapping group of L

Nucleus of L

Left nucleus of L

Middle nucleus of L

Right nucleus of L
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Z(L) Center of L

(5 Commutant of L

[z, y] Commutator of @ and y

[z, 9, 2| Associator of z,y and =

(x,y) Order pair of x and y

Lx K Direet product of loops L and I

Idy, Identity element of Inn(L)

Ly y Generator of Inn(L) and L, , = JLJ._-LHL;__,_l

Ray Generator of Inn(L) and R, , = R, R, R,

% Generator of Inn(L) and T, = RxL_;l

Ci=tz Element of Inn(L) and Cp—1 , = L, .’i‘,,,:L,_:__llR;l'
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Preface

It is well-known that a loop is a one-operational non-associative generalization of a group.
The pioneer work of Moufang [17] and Bol [4] provided a motivation to the theory of loops,
which provided a base to develop the research areas of algebra, geometry, topology and com-
binatorics. The development of loop theory remained hidden under the fast moving research
horizon of the theory of groups. After the completion of the list of simple groups, the research
environment is more appropriate for the structures of non-associative models like those of a
loop and quasigronps. In the literature of loop theory, the groups are being used to derive
new families of loops. For instant, construction of C-loops in [20]. In her famous article [17],
Moufang derived that the alternative rule in algebra implies the well-known four Moufang iden-
tities. Afterwards, she considered loops satisfying these identities, which are called Moufang
loops. In the present research environment it is called a Bol loop with left Bol property. The
theory of Moufang loops has been developed by Bruck [7].

This thesis concerns one of the property of groups that is, existence of conjugate of each
element. This property does not hold in the case of loops but we identify a class of loops having
this property called conjugate loops. This is defined to be a class of loops satisfying the identity
x(yr ") = (xy)az .

Although these are the generalization of the groups, but conjugate loops fail to satisfy
major properties of groups regarding conjugate of elements and conjugacy. It is observed, for
example, that the conjugate of a subloop is not a subloop. Also unlike groups conjugacy is not
an equivalence relation. Homomorphic image of a conjugate loop is again a conjugate loop and
direct product of conjugate loops also defines a conjugate loop. Inverses are unique in conjugate
loops. Smallest conjugate loop is of order 5 which is also a flexible loop.

An important part of this thesis is the relation of conjugate loops with other types of loops.
Every Moufang loop is a conjugate loop. Also Steiner, C, LC and RC-loops define conjugate
loops. It is also discussed in this dissertation, that CIP loops are conjugate loops and for the
converse, every element of a conjugate loop must be self-conjugate. An IP loop is a conjugate
loop if and only if it is Hexible.

This dissertation consists of three chapters.



In chapter 1 we discussed the origin and history of the loop theory. It also contains basic
definitions and introduction of quasigroups and loops, including a table of non-isomorphic
quasigroups, groups and loops of different orders.

Chapter 2 deals with different types of loops and their relation. Identities of different loops
are listed in the first section of this chapter. Second section consists of some results on Moufang,
C, LC, RC-loops taken from [8], [10], [12] and [21]. In the last section of this chapter, a detailed
picture of the relation of loops with each other is given.

The last chapter of this dissertation provides main theme and idea of the work. The layout
of the chapter consists of three sections. Definition and counting of conjugate loops are the
parts of first section. It also includes the properties of conjugate loops. Second section specifies
the relation of conjugate loops with other loops. In this section we also look for the counter
examples of the results which were recorded in the second chapter. In the third section, we
construet the family of conjugate loops using two groups such that one is multiplicative group
and other is additive abelian group.

AFSHAN BATOOL
June, 2011
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Chapter 1

Introduction

We began with some historical notes on loop theory, summarizing the period from 1920s through
the 1960s. Also we give basic concepts of quasigroups and loops included the counting of
guasigroups and loops of different orders. Although the whole subject could not be reviewed,
nonetheless important and necessary topics, being helpful in the forthcoming literature are

included. We follow the terminology used by Ales Drépal in [9)].
1.1 Origins and early history of loop theory

In his paper [19] H.O.Pflugfelder attempted to map, to fit together not only in a geographical
and a chronological sense but also conceptually, the varions areas where loop theory originated
and through which it moved during the early part of its 70 years of history. 70 years is not very
much compared to, say, over 300 years of differential calculus. But it is precisely because loop
theory is a relatively young subject that it is often misinterpreted. Therefore, it is extremely
important for us to acknowledge its distinctive origins.

When somebody asks, “What is a loop?”, the simplest way to explain is to say, “It is a
group without Associativity”. This is true, but it is not the whole truth. It is essential to
emphasize that loop theory is not just a generalization of group theory but a discipline of its
own, originating from and still moving within four basic research areas algebra, geometry,

topology, and combinatorics.



One aim of his paper was to shed light on the original motivations for the first publications
on quasigroups by Moufang and Bol. The events of those years aretoo far in the past for many
people to know first-hand or to have heard about from witnesses. But they are also too recent
to be found in math-history books or even on any of the new math-historical web-sites. Let us

begin with period I, or rather with the prehistory of non-associativity.

I. 1920s — the first glimmering of non-associativity.

The oldest non-associative operation used by mankind was plain subtraction of natural
numbers. But the first example of an abstract non-associative system was Cayley numbers,
constructed by Arthur Cayley in 1845. Later they were generalized by Dickson to what we
know as Cayley-Dickson algebras. They became the subject of vigorous study in the 1920s
because of their prominent role in the structure theory of alternative rings.

Another class of non-associative structures was systems with one binary operation. One of
the earliest publications dealing with binary systems that explicitly mentioned non-associativity
was the paper On a Generalization of the Associative Law (1929) by Anton IK. Suschkewitsch,
who was a Russian professor ol mathematics in Voronezh. In his paper, Suschkewitsch observes
that, in the prool of the Lagrange theorem for groups, one does not make any use of the
associative law. So lie rightly conjectures that it could be possible to have non-associative
binary systems which satisfy the Lagrange property. He construets two types of such so-called
“general groups”, satisfying his Postulate A or Postulate B. In Suschkewitsch’s approach, one
can detect some early attempts in the direction of modern loop theory as a generalization
of group-theoretical notions. His “general groups” seem to be the predecessors of modern
quasigroups as isotopes of groups.

Binary systems with left and right division, which we now call quasigroups, were mentioned
by Ernst Schroeder in his book Lehrbuch der Arithmethik und Algebra (1873), and in his Vor-

lesungenueber die Algebra der Logik (1890).

I1. 1930s — the defining period.
On the algebraic scene, brilliant algebraists happened to be in Hamburg at the time, such

as Erich Hecke, a student of Hilbert; Emil Artin; and Artin’s students,Max Zorn and Hans



Zassenhaus. Algebraic interest in non-associativity first came not from binary systems, as was
the case with Suschkevitsch, but from alternative algebras. It was around this time that Artin
proved a theorem that Moufang would later use in her famous paper on quasigroups.

Artin's theorem: "In an alternative algebra, if any three elements multiply associatively,
they generate a subalgebra".

From the point of view of loop theory, all these developments culminated in the appearance
of two papers that defined the two most important classes of loops as we know them now, Mo-
ufang loops and Bol loops: Zur Struktur von Alternativk oerpern by Ruth Moufang (1935)(17],
and Gewebe und Gruppen by Gerrit Bol (1937)[4]. Together, these papers marked the formal
beginning of loop theory.

Let us first look at Moufang’s paper, which was motivated by a publication by Max Zorn
on alternative rings in which Zorn used Artin’s theorem. Moufang starts with an alternative
field and endeavors to prove Artin’s theorem using the multiplicative system only. She defines
a structure, which she calls a Quasigroup Q¥, satisfying the following postulates:

(1), (2) closure, existence of an identity element and unique inverses

(3) a(a’b) = (aa’)b and (ba')a = b(a'a)

(4) [a(ca)]b = alc(ab)]

She also defines a system Q**, believing it to be different from Q*. Q** satisfies an addi-
tional identity:

(5) (ab)(ca) = a[(bc)al

Bol soon showed that (4) implies (5), and Bruck later proved that they both are equivalent
to two other identities:

(6) [(ab)c|b = a[b(cb)]

One can see that system Q is what is now known as a Moufang loop, which can be defined
by any one of the Moufang identities (4) through (6).

Moufang proves that Q* is diassociative—the subquasigroup generated by any two elements
is associative — and satisfies a theorem that echoes Artin’s theorem and is now known as
Moufang’s theorem.

Bol practically split the Moufang identity in two, showing that, in our language, a loop is

Moufang if and only if it is both right and left Bol.



I11. 1940s-60s — building the basic algebraic frame.

After the demise of quasigronps in Germany, it was the United States that became the new
center of research on this subject.

In addition to alternative algebra research, there were already several American publications
o1 (quasigroups:

1937 Theory of Quasi-Groups, by Hausmann and Ore [13];

1939 Quasi-Groups Which Satisfy Certain Generalized Associative Laws, by Murdoch [18];

1940 Quasi-Groups, by Garrison [11].

The terminology of quasigroup theory then underwent a historic change. It became apparent
that it was necessary to distinguish between two classes of quasigroups: those with and those
without an identity element. A new name was needed to designate the system with identity.
This occurred around 1942, among people of Albert’s circle in Chicago. who coined the word
“loop” after the Chicago Loop.

It was a brilliant choice in several senses. First, the word “loop” rhymes with“group”.
Second, it expresses a sense of closure. And third, it is short and simple, so that it could be
casily adopted in other langnages. Today, it is used in many langunages, with slight variations:
for example, DIE LOOP in German (first used by Pickert) and LUPA in Russian. The French
are, of course, an original and non-conforming people, so in French it is LA BOUCLE.

The first publications introducing the term “loop” were the two very important papers that
Albert wrote in 1943: Quasigroups I and Quasigroups [l In addition to introduction of the new
term “loop™, a highly significant aspect of the Quasigroups I paper, was the introduction of the
concept of isotopy for quasigroups. Albert’s papers were soon followed by two very important
publications by Richard Hubert Bruck: Some Results in the Theory of Quasigroups (1944) [6]
and Contributions to the Theory of Loops (1946) [7]. Without a doubt, in this American period
of loop theory, stretching from the 1940s through the 1960s, the most important role has to be
ascribed to Albert and Bruck and their schools.

Bruck’s book [5], A Survey of Binary Systems appeared in 1958 and remains even today
the most referred-to text on loops.

One can see that during this period, from the 1940s through the 1960s, the basic algebraic

frame of loop theory was erected. Loop theory had gained a firm ground that would allow it to

o



move in new directions and flourish in other places.

Belousov’s role in the success of quasigroup and loop theory, and his book Foundations of
the Theory of Quasigroups and Loops (1967) [3]. can rightly be compared with the role that
Bruck and his Binary Systems. Leter on, new aspects and new approaches emerged in this field.
Among them were the following:

New approaches to quasigroups — derivative operations,

New properties of known quasigroups —— distributive being isotopic to commutative Moufang
loops, left-distributive that are isotopic to groups, isotopes of totally symmetric quasigroups:,

Functional equations to express general laws of quasigroups (binary as well as n-ary),

Algebraic webs and their use in questions of isotopy of quasigroups and loops,

Generalized Moufang and Bol loops.

So, the theory of loops has its origins in geometry, combinatorics and nonassociative algebra.
In geometry, the coordinatization of a projective plane leads to various loop structures on the
set of labels from which coordinates are chosen. Any Latin square with first row and column
in standard position is the multiplication table of a loop. In rings with identity for which there
is a well defined notion of inverses, it is often the case that subsets closed under product and

inverses are loops.

1.2 Quasigroups and loops

Quasigroups: A set of elements Q and a binary operation "." form a quasigroup if and only
if the following are satisfied:

(1) If a,b € @, then there exists a unique x,y € @ such that a.x = b or y.a = b.

(2) If @, z,y € @, then either a.x = a.y or x.a = y.a implies © = y.

Examples of quasigroups are:
(7) Set of integers Z under the binary operation of subtraction (—).
(21) Set of non-zero rationals @ under the binary operation of division ().

Loop: A loop L is a quasigroup with an identity element e such that x#e = x = exa for
all @ € L. It follows that the identity element e is unique, and that all elements of L have a

unique left and right inverse which are need not to be same.



Examples of loops are:
(i) The set {41,434, 47, +k} where éi = jj = kk = 1 and with all other products as in the
quaternion group forms a nonassociative loop of order 8.

(72) Smallest nonassociative loop which is of order 5.

01 2 3 4
()_' 0_ r_2 3 4
1j1 0 3 4 2
212 3 4 0 1
3/3 4 1 2 0
414 2 0 1 3

Every group is a loop but every loop is not a group i.e. loop is the generalization of group.

Every loop is a quasigroup but following example shows that the converse is not true.

0 1 2 3
0f2 0 3 1
113 1 2 0
210 3 1 2
3(1 2 0 3




The following table shows non-isomorphic quasigroups, groups and loops of different order.

order | quasigroups groups | loops

1 1 T o

2 1 I I ]
3 5 1 1

1 35 2 2

5 1,411 | 6

6 1,13,051 2 109

7 12,19, 84,55,835 | 1 23, 746

8 2.70 x 10'5 5 1.60 x 108
9 1.52:% 10% 2 9.37 x 1012
10 2.75% 10% 2 2.09 x 10%9

1.2.1 Definitions

Now we list some definition which we need in proving main results in coming chapters.

Subloop : A subloop H of a loop L is a subset of L which, under the inherited binary
operation, is also a loop.

Normal subloop: A subloop H of a loop L is Normal subloop if and only if 2(yH) = (2y)H,
(Hz)y = H(xy) and xH = Ha, for all z,y € L.

Factor loop: The factor loop of a loop L to its normal subloop N is denoted by L/N and
define as L/N = {zN :V xz € L}.

Binary operation defined on factor loop is "." such that

aNyN =ayN Vo,yec L

Homomorphism: Let K, H be two loops. Then a map [ : A — H is a homomorphism if

f(x).f(y) = f(z.y) for every z,y € K.



Isomorphism: If [ is also a bijection, we speak of an isomorphism, and the two loops are
called isomorphic.

Automorphism: Let L be a loop. Then a map f: L — L is a automorphism if f(z).[(y) =
[la.y) for every @,y € L and [ is a bijection.

Pseudo-automorphism: A (right) psuedo-automorphism of a loop L is a bijection # of L

with the property that, for some fixed ¢ € L.

(x0)(yb.c) = (xy)l.c

Homotopism: The ordered triple (o, #,7) of maps o, 3,7 : K — H is a homotopism if
alx)-B(y) = v(x-y) for every x,y € K.

Autotopism: If the three maps are bijections, (a, 3,7) is an autotopism.

Left and Right translations: When z is an element of a loop L, the left translation L,
is a permutation of L such that L,(a) = za. Similarly right translation R, is a permutation of
L such that R,(a) = azx.

Left and right multiplication group: The subgroups generated by Ly = (L, : a € L)
and Ry = (R, :a € L) are called left and right multiplication groups respectively.

Multiplication group: The permutation group generated by left and right translations is
called multiplication group and denoted by MIt(L).

Inner mapping group: Let L be a loop and Mlt(L) be the multiplication group of L,
then the subset of MIt(L) consisting of all maps that fix the identity element of L is called the
inner mapping group of L, denoted by I'nn(Q).

Left nucleus: The left nucleus of a loop L is Ny = {l € L : l(xy) = (lz)y for every
x,y € L}.

Rightnucleus: The right nucleus of a loop L is the set N, = {r € L : (zy)r = x(yr) for
every 2,y € L}.

Middle nucleus: The middle nucleus of L is N, = {m € L : (ym)x = y(max) for every
z,y € L}.

Nucleus: The nucleus of L is the set N = N, M Ny M N,. All nuclei are subloops.

Commutant: The commutant of a loop L is the set C(L) = {c € L:ecx = xec;V x € L}.

9



It is also known as Moufang center or centrum.
Commutator: The commutator of two elements z,y of a loop L is a unique element |z, y|

of L. such that
(wy) = (yx)|2. y
Associator: The associator of three elements 2, y, z of a loop L is a unique element [z, y, 2|
of L,such that

(zy)z = z(y2)[=,y. 2]

Center: The center of a loop L is the set Z(L) = N(L)n1 C(L).
Antiautomorphic inverse property: Let z,y € Lif 2%, #” and y*,4” be the left and

right inverses of x, y respectively. Then Loop L is said to have antiautomorphic property if

A

(wy)* = y*a? or (ay)f = yPa?

If loop L. has unique inverses then this property becomes

(wy) ' =yl

o]

Automorphic inverse property: Let @,y € L,if 2*. 2” and 3, y” be the left and right

inverses of x.y respectively. Then Loop L is said to have antiautomorphic property if
(zy)* = 2™y or (zy)? = 2”y”

If loop L has unique inverses then this property becomes

(my) b =a"Ty

Left inverse property: A loop L has the left inverse property if x*(zy) = y for every
x,y € L.

Right inverse property: A loop L. has Right inverse property if (yxz)z” = y for every

x,y € L.

10



Weak inverse property: A loop has the weak inverse property if

z(yz)* =y or x(yz)? = y°

If loop has unique inverses then this property becomes

;r:('y:r:)_l =gy}

Cross inverse property: A loop has the Cross inverse property if
Tt s Ly YA = i il ==l A —
x(ya”) = (zy)z” = y or x(yz”) = (ay)a” =y

If loop has unique inverses then this property becomes

T R s & R O Y (et
z(ye ) = (ay)xr " =y
1.2.2  Properties of Quasigroups

Semisymmetric quasigroups: A quasigronp @ is semisymmetric quasigroup if (xy)e =
x(yr) =y for every x,y € (.

Totally symmetric quasigroups:A semisymmetric commutative quasigroup is known as
totally symmetric qu;.l:;ig]'mlp.

Idempotent quasigroups: A quasigroup Q is idempotent quasigroup if 2% = & for every
€ Q. Idempotent totally symmetric quasigroups are known as Steiner quasigroups.

Unipotent quasigroups: A quasigroup () is unipotent quasigroup if % = y? for every
T,y € Q.

Left distributive quasigroups: A quasigroup () is left distributive quasigronp if it sat-
isfies 2:(yz) = (wy)(xz) for all w,y, z € Q.

Right distributive quasigroups:Similarly, Q) is right distributive quasigroup if it satisfies
(xy)z = (xz2)(y=2).

Distributive gquasigroups: A distributive quasigroup is a quasigroup that is both left and

right distributive.

11



Entropic quasigroups: A quasigroup @ is called entropic quasigroup or medial quasigroup

il it satisfies (wy)(zw) = (x2)(yw) for all a,y, 2z, w € Q.

Remark 1 All these properties also hold in loops.



Chapter 2

Different types of loops and Relation

between their identities

As we discussed earlier that Loop Theory is not only the generalization of the group theory
but a discipline in its own. Since Loops do not have associativity we classify the loops into
different types, on the basis of weak associativity. In this chapter , we identify and discuss some
identities of class of loops included a detailed picture of their relation with each other. For the

collection of material we followed [2] and [7].

2.1 Types of loops

Extra loop:
Extra loop L satisfies x(y(zx)) = ((zy)z)z ¥ z,y,z € L.
Moufang loop:
Any loop L satisfying (xy)(zz) = (x(yz))z ¥ x,y, z € L, is called Moufang loop.
Left Alternative loop:
A loop L satisfying z(xy) = (zx)y V z,y € L, is called left alternative loop.
Right Alternative loop:
A loop L satisfying x(yy) = (zy)y V x,y € L is called right alternative loop.
Flexible loop:

If a loop L satisfying x(yz) = (2y)z V o,y € L, then L is called flexible loop.

13



Left Bol loop:

A loop satisfying w(y(xz)) = (x(yz))x ¥V x,y.z € L, is called left Bol loop.
Right Bol loop:

Right Bol loop L satisfies x((yz)y) = ((xy)z)y ¥V x,y,z € L.

LC-Loop:

Any loop L satisfying (zx)(yz) = (w(ay))z ¥V z,y, z € L, is called LC-loop.

RC-Loop:

If a loop L satisfying w((yz)z) = (zy)(zz) V x,y, 2 € L then is called RC-loop.
C-Loop:

A C-loop L satisfies x(y(yz)) = ((zy)y)z ¥ a,y,z € L.

Left Nuclear square loop:

Loop L satisfying (xx)(yz) = ((xx)y)z ¥V @, y,z € L, is called left nuclear square loop.

Middle Nuclear square loop:
Middle Nuclear square loop L satisfies x((yy)z) = (e(yy))z V x.y.z € L.
Right Nuclear square loop:

A loop L is called right nuclear square loop if it satisfies (y(zz)) = (2y)(z2) V z.y,z € L.

3-power associative loop;
If a loop L satisfies (xax)x = x(zx), ¥V o € L then, L is a 3-power associative loop.
Power associative loop:

A loop is said to be power associative loop if every element in it generates a group.



There is an example of a loop which is 3-power associative but not a power associative loop.

0 1 2 3 4 5

ponid
-
b
o
=
o
(oL

212 0 3 5 1 4

since (1.1)(1.1) # 1(1(1.1)).

Diassociative loop:

A loop is said to be diassociative lop if every two elements in it generate a group.

Antiautomorphic inverse property loop:

A loop having antiantomorphic inverse property is called antiautomorphic inverse loop.

Automorphic inverse property loop:

These loops satisly the automorphic inverse property loop.

Two-sided inverse loop:

A loop L in having unique inverses i.c 2t = 2P Vo € L is called two-sided inverse loop.

Right inverse property loop:

A loop having right inverse property is called right inverse property loop.

Left inverse property loop:

A loop having right inverse property is called left inverse property loop.

Inverse property loop(IP Loop):

A loop having both left and right inverse property is called inverse property loop or it
satisfies v~ (zy) = (yx)a™ 1 =y

Steiner loop:

An Inverse property loop of exponent 2 is called a Steiner loop.

Weak inverse property loop:

A loop satisfying weak inverse propety is called weak inverse property loop.



Cross inverse property loop(CIP loop):
[ a loop satisfies cross inverse property then it is called CIP loop.
Jordan Loop:
A loop L satisfying «?(yz) = (2%y)x Ya,y € L, is called Jordan loop.
Automorphic loop (A-loop):
An automorphic loop is a loop whose inner mappings are automorphisms.
2.2 Main results
The aim of this section is to record some results which will be needed in sequel.
Theorem 2 [8, lemma 2.1] Every inner-mapping of a Moufang loop is a pseudo-automorphism.

Theorem 3 /8, Theorem 2] The nucleus of a Moufang loop ts a normal subloop.

Theorem 4 [12, Lagrange’s theorem| The order of any subloop of a finite Moufang loop M

divide the order of M.

16



In [10], F. Fenyves listed all the 60 identities of Bol-Moufang types.We consider here, the

identities for LC and RC loops.

Remark 5 List for LC and RC identities is the following

rryz = (wv.azy)z LC-identities

azxyz = (xxy)z

zryz = a(wy.z)
(zzy)z = z(zyz)
(z.ay)z = w(ay.z)
(vay)z = z(xyz)

(zz.y)z = z(x.y2)

(ey)s = a(wy.2)
z(x.yz) = =z(zy.2)

yz.axw = (yz.x)x

yz.xx = (y.za)a

yz.xx = y(zx.x) RC-identities
yz.2x = ylz.xz)
(yz.x)z = (y.2a)x
(yz.x)r = y(za.x)
(yz.x)x = y(z.za)
(yzx)e = y(zz.x)
(y.zx)x = y(z.zz)
ylza.x) = y(z.ax)

Theorem. 6 [10, Theorem 4[A loop is a C-loop if and only if it 1s both LC- and RC-loop.

Remark 7 [10, Table 1] The multiplication table given below defines an LC-loop but not a

17



C-loop.

01 2 3 4 5
0j]0 1 2 3 4 5
1y1 0 5 4 3 2
212 4 0 5 1 3
313 2 1 0 5 4
414 5 3 2 0 1
515 3 4 1 2 0

Theorem 8 [10, Corollary 3] Every LC loop is power-associative.

Theorem 9 [10, Theorem 2] If L is an LC-loop, then
(i) L has left inverse property.
(i) L is left alternative,
(iii) * is in the left nucleus of L for all x in L.

(Analogous results holds for RC-loops)

Theorem 10 [21, Lemma 5]/The Following properties are true in any right central loop L.
(i) If s is the square of some element of L and x s any element of L, then (zs)~! = s~ 1g71,

(11) The order of any element is a divisor of the order of L.
Theorem 11 [21, Proposition 6[Any RC of odd order is a group.
Theorem 12 [14, Theorem 4.5] If L is an IP loop then N(L) = Nx(L) = N,(L) = Ny(L).

Theorem 13 [20, Lemma 3.3] Let pn: G x G — A be a factor set. Then (G, A, p) is a C-loop
of and only if

plhy k) + p(h, hke) + (g, by hk) = plg, h) + p(gh, h) + p(gh.h, k)

for every g, h, k € G.

Theorem 14 [20. Proposition 5.4 Let n > 2 be an integer. Let A be an abelian group of order

noand o € A, an element of order bigger then 2. Let G = {1,u,v,w} be a Klein group with

18



neutral element 1.Then (G, A, i) is a non-flexible C-loop with N = {(1,a) : a € A}, where p

is a factor set.

Exercise 15 [20, Example 3.7] The smallest non commuiative, non associalive C-laop. which

satisfied above condition is given by

o 1 2 3 4 5 6 7 8 9 10 1
ojo 1 2 3 4 5 6 7 8 9 10 11
| 12 0 4 5 3 7 8 6 10 11 9
212 o 1 5 3 4 8 6 7 11 9 10
3 !3 4 5 0 1 2 9 10 11 6 7 8
114 5 3 1 2 0 10 1 9 7 8 6
55 3 4 2 0 1 11 9 10 8 6 7
6 (6 7 8 10 1 9 0 1 2 5 3 4
717 8 6 1 9 10 1 2 0 3 4 5
|8 6 7 9 10 11 2 0 1 4 5 3
9 19 10 11 8 6 7 3 4 5 2 0 1
wiw m 9 6 7 8 4 5 3 0 1 2
myimn 9 w7 8 6 5H 3 4 1 2 0
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In [15] Kinyon, Kunen and Phillips, proved that If A is, say, the 10-element Steiner loop,
then it is not a group and hence not Moufang. Fig. 1 depicts the sub-varieties of diassociative
loops discussed in that

paper.

Diaassociative

/ Mounfang

Flexibie C

Fig.1

2.3 Implications

1) Diassociative loop = Power alternative loop.
2) Diassociative loop = Flexible loop.

3) Extra loop = Moufang loop.

4) C-loop = RC-loop.

5) C-loop = LC-loop.

6) C-loop and Flexible loop = Diassociative loop.
7) RC-loop and LC-loop — C-loop.

8) LC-loop = Left nuclear square loop.
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9) LC-loop = Middle nuclear square loop.

10) RC-loop = Right nuclear square loop.

11) RC-loop = Middle nuclear square loop.

12) NMoufangloop =+ Left Bol loop.

13) Moufang loop = Right Bol loop.

14) Left Bol loop = Left Power alternative loop.

15) Right Bol loop = Right Power alternative loop.
16) Power alternative loop = Alternative loop.

I7) Left Bol loop and Right Bol loop = Moufang loop.
18) Left Power alternative loop and commutative loop = Right Power alternative loop.
19) LC-loop and commutative loop = C-loop.

20) Commutative loop = Flexible loop.

21) Moufang loop =+ Flexible loop.

22) Moufang loop = IP loop.

23) Moufang loop =+ Stiener loop.

24) C-loop = IP loop.
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Figure 2 shows all varieties of loops of Bol-Moufang type and all inclusions among them,

discussed by Kinyon, Phillips and Vojtechovsky in [16].

Group

Extra Loop

Moufang Loop

C-Loop

Left Bol Loop

Right Bol loop

Flexible Loop

LC-Loop RC-Loop

——

Left Alternative Loap

Right Alternative Loop

L eft Nuclear square loog

Middle Nuclear sa. Ip

Right Nuclear sg.loop

Fig.2
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Chapter 3

A study of Conjugate loops

This chapter consists of three sections. In sectionl, the introduction and basic definition of
conjugate loop is given. It also includes the counting of conjugate loops up to the order 8
and the properties of conjugate loops which distinguish this class of loops with other classes.
Section 2 consists of the relation of conjugate loops with other loops. Here we define the exact
location of conjugate loops among different types of loops. In the last section, we construct a
family of conjugate loops using two groups such that one is multiplicative group and other is

additive abelian group.

3.1 Conjugate loops

Definition 16 A Loop L is said to be a conjugate loop if it satisfies the following identity

x (y;r:_') = (zy)z' Va,yel



3.1.1  Counting of conjugate loops

Smallest conjugate loop is of order 5 given below.

01 2 3 4
0 1 2 3 4
1f1 0 3 4 2
212 4 0 1 3
313 2 4 0 1
4(4 3 1 2 0

Above loop is non-diaassociative, non-alternative and does not satisfy inverse property. Also it
does not satisfy the identity (zy) ' = 2~ 'y~ (Automorphic Inverse Property) but it satisfies
(xy) ' = y'a Y Antiautomorphic Inverse Property).This loop is also a flexible loop and

power-associative,

order | conjugate loops | flexible
5 1 1

6 4 4

(i 4 1

8 53 5l

Clearly smallest conjugate loop which is not flexible is of order 8. Also smallest non power-
associative conjugate loop is of order 8.

Smallest non flexible, non power-associative conjugate loop is



0 1 2 3 4 56 6 7
0j0 1 2 :3_ 5 5 6 7
1(1 0 4 5 6 7 3 2
212 7T 5 0 3 1 4 6
3|3 6 0 4 1 2 7 5
414 2 3 6 7 0 5 1
505 3 7 2 0 6 1 4
6|6 4 1 7 5 3 2 0
77 5 6 1 2 4 0 3

3.1.2 Properties of conjugate loops
Conjugate of an element

Let L be a conjugate loop then y is said to be the conjugate of z, where x,y € L if there exists
some g € L such that g(zg™') = y.

Conjugate of every element exists in conjugate loops.

Since x(e.x™ ') = x.a™ ' = e V 2 € L where ¢ is the identity element of L. So, conjugate of
identity is identity itself.

Also, if 27" = y then y(zy™') = x. So for all & € L. there exists x=' € L such that

s Hz(fe )y D) = (@ ) (z ) T =ex =2

Conjugacy is not an equivalence relation

Unlike groups, conjugacy is not an equivalence relation in conjugate loops.
Reflexive:
Let L be a conjugate loop.

Since (zz)z~' = x(xa~') = z(e) = & V x € L, where ¢ is the identity of L. So L is reflexive.



Symmetric:

Following example shows that symmetric property does not hold in conjugate loops.

IExample 17

o1 2 3 4 5 6 7
0f0 1 2 3 5 b5 6 7
1({2 0 3 2 B 6 7 4
212 31 0 6 7 4 5
3(3 2 01 7 4 5 6
414 5 6 7 3 0 1 2
515 6 7 4 0 1 2 3
616 7 4 5 1 2 3 0
717 4 5 6 2 3 0 1

In this loop 4 is the conjugate of 7, because there exists 2 € L such that 2( 727') = 4. But
we cannot find any g € L such that g( 4g7') = 7. So, 7 is not a conjugate of 4 hence symmetric
property does not hold in conjuagte loops.

Transitive:

Above loop also shows that the transitive property does not hold in conjugate loops.

here 7 is the conjugate of 5 and 5 is the conjugate of 4 but clearly 7 is not a conjugate of 4.

hence conjugacy is not an equivalence relation in conjugate loops.



Conjugate of a subloop is not a subloop

We know that in groups, conjugate of a subgroup is again a subgroup. But following example

shows that it is not true in the case of conjugate loops.

Example 18 Consider the following conjugate loop of order 20.
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Theorem 19 In a Conjugate loop L, if H < L then x (H.?:_]] = .H;

Proof. Let L. be a conjugate loop and H < L, then by the defination of normal subloop

aH = Ha (3.1)
a(bH) = (ab)H (3.2)
Now
@ (H:::_l) = :r:(:r._lH} from equation (3.1)
= (azz Y)H from equation (3.2)
= H
]

Theorem 20 Quotient loop of a conjugate loop is again a conjugate loop.

Proof. Let L be a conjugate loop and N be its normal subloop. we have to show that L/N
is a conjugate loop.
Now let x=N,yN € L/N

also, we know that (xN) ! =2~ 1N

zN(yN.a"'N) = aN(yz"'N)
= zNyz !N
= z(yz )N
= (zy)z”'N
= ayN.x “In

= (zNyN)z"'N

so L/N is a conjugate loop.
Theorem 21 Homomorphic image of conjugate loop is again a conjugate loop. «
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Proof. Let L be a conjugate loop and f be a homomorphism from L to Kie [:L — K.
We have to show that f(L) is also a conjugate loop.

Now let 2,y € L and L is a conjugate loop so (2~ 1y)z = 2~ (yx)

(x 'y)e = 2 '(yx)
= [z 'y)x) = f((= (y))
= fla"'y)f(x) = flz™") f(yz)
= (fl@ )W) f(x) = fla)([f(y)[f(x)
= (f(@) W) f () = f2) (f(y)f ()

since f(z™') = fla™h)
hence f(L) is a conjugate loop. m
Theorem 22 Direct product of conjugate loop is a conjugate loop.

Proof. Let Ly and Ly be two conjugate loops. We have to prove that L; x Ly is again a

conjugate loop i.e (z1,22) " (41, y2)(21, 22)) = ((x1, 22) " (y1,y2)) (21, 22)

LHS (x1,22) ' ((y1,42) (21, 22)) (a7 "2y ') (w122, y222)
= (21 (1122), %3 (y222))
= ((x7'y1)22), (x5 'y2)22)) since L is conjugate loop

RHS  3(ay.x2)  (y1.92)) (21, 22) (27" 23 ) (w1, y2)) (21, 22)

= (271,25 'ye)(21, 22)

= ((=7 y1)z1, (x5 y2)22)

So, (w1, 22) (1, 42)(21, 22)) (21, 22) " (1. 12)) (21, 22)

So, Direct product of conjugate loop is again a conjugate loop. =
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Corollary 23 Let L. Ly, Ly, ...L, be n conjugate loops, then Ly x Ly % Lg...x L, is also a

conjugate loop.

Corollary 24 Let L be a conjugate loop then L x L x L...x L (n-times) is again a conjugate

loop.

Theorem 25 In Conjugate Loop L, L,R,—1 = R,—1 Ly, .Similarly R,L,— = L1 R,.
Proof. Let y e L

yLeReoy = (ay) Ry
= (ay)a
= (ye)
= a(yR,—)
= YR, L,

S0, LyRy- e sF

Theorem 26 Ify € N(L) where L is a commutative conjugate loop then L, 1,L, = LyLyL, 1.

30



Proof. Let z € L then

sLe-iyls = (@ 4)2)Es
— (@ y)z)
= (2 Yy2)) since y € N(L)
= (2 Yyz))z commutativity
= 2 Y((yz)z) conjugate property
= a Yy(zx)) sincey € N(L)
= y(zz)Lly—
= zalyl;
= zLgLyL,

So. L?-‘"IIILI = L:rL-yL:r'l

Theorem 27 In Conjugate loop L,
(2) Lys Bz L,
(id) Ly -1 fix .
Proof. Let L be a conjugate loop and x,y € L.

t)

=1 == =
& My = o ybdy

(yw_l ) L:ELJJ

a(yx ! )JD..;M1

identity of conjugate loops

I
R
&
S
8

|
)
g |
<
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(ii)
zLyg- = abyLe-1L7
= (y2)Lo—1L 1y,
— ;rr_'(y:f:).ﬂ;,!;y
= (:.!:_ly}:r:L;_I,y wdentity of conjugate loops

= =1
= 'T'L.'r‘IFIL:L‘_Iy

=

Theorem 28 In any two sided inverse loop L, if L, . fix every elements of L then L is a
conjugate loop.

Proof. Let L, fizes every element of L then

zlhyr = z VzeL

put z = z!

g Ly = 77

Ll = &
5 gl = @ Lay
(ya )L = (ay)a
r(yz™') = (zy)a!

Hence, L 15 a conjugate loop.

Theorem 29 Lel L be a conjugate loop then L, .- and Ry, fiv N(L).
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Proof. Let a € N(L)

(@)L, . (@)LyoLp L2,

= (z'z)a wusing conjugate property

= iti
u
Also,
(@)Rpp1 = (a)ReR,—1R.L,
= (a)R;R.—
= (az)z™?
= a(zz™'  since a € N(L)
= a
B

3.1.3 Conjugate loops and Autotopisms

Theorem 30 Let L be a two sided inverse loop and (L,, L1, R,-1L,) s an autotopism for
all w,y € L then L is a conjugate loop.

Proof. Let L be a two sided inverse loop and (L,, L1, R,-1L,) is an autotopism for all
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x,y € L.Then by definition

(w) Ly (v) Lo = (wv)Ry-1Ly Yu,ve L

(zu)(z™w) = 2 ({m:).;:"l)

put w = yandv=e
(zy)(z~te) = x((ye)z")
zya™") = (ay)a!

Theorem 31 Let L be a two sided inverse loop and (L, Idp, L,) is an autotopism for all

x,y € L then L is a conjugate loop.

|
Proof. Let L be a two sided inverse loop and (L, Idy, L, ) is an autotopism for all z,y € L.
Then by definition

(u) Ly (v)Idp, = (uwv)l, VuvelL
(zu)(v) = x(uv)
put u = yandv=ux

(:f?;f;)::"l = B {y:r—l)

1

so L 1s a conjugate loop. m

Theorem 32 Let L be a two sided inverse loop and (L., Idy,, L,.—1) ts an autotopism for all

x,y € L then L is a conjugate loop.

Proof. Let L be a two sided inverse loop and (L, ,Id;, L,-1) is an autotopism for all

z.y € L. Then by definition
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(w) L1 (v)1dy, = (wo)l,— Vu,vel
(z 'u)(v) = 271 (w)

put u yandv=ux

™ (ya)

(x 'y
so L is a conjugate loop. m

Theorem 33 Let L be a two sided inverse loop and (Ly, Ry—1, Ly R~ ) s an autotopism for

all x,y € L then L 1s a conjugate loop.

Proof. Let L be a two sided inverse loop and (L, R,-1, Ly R,-1) is an autotopism for all

a,y € L.Then by definition.

(@) Ly (v) Rp—y = (ww)Ll R,-1 Yu,v €L
(zu)(ve™) = (x(wv))z™!
put u = eandv =1y

(we)(yz™t) = (x(ey))a™"!

wlyz™) = (xy)z™!

so L is a conjugate loop.

Theorem 34 Let L be a two sided inverse loop and (Ly, Ly, Lyy,) is  an autotopism for all

x,y € L then L is a conjugate loop.
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Proof. Let L be a two sided inverse loop and (L,.L,. L,,) is an autotopism for all

z,y € L.Then by definition

(u) Le (v) Ly = (wv)Lygy Vu,v €L

(zu)(yv) = xy(w)
put u = eandv=xz
(ze)(ya™') = aylex™')
wlye™) = (ay)a!

so L is a conjugate loop. m
Theorem 35 In conjugate loop L, C,—1 , = LI—IRxL;E, R;Vis an automorphism.

Proof. Let a.be L.

(@)Co1 2 (0)Com1p = (a)Lg—1ReL Ry (b) Ly Ro LY R

= ((@ 'a)x)L L Ry (27 'b)a)L L R,
— (;If—l(fﬁ;l!))L;_ll R ((a! (b:f:)}L;f, R " using conjugate property
= (ex)L LR (b2)L L7, RT!
= (ax)R;'(bz)R,"
— aR,R;'OR.R;'
= ab

(ab)Cra, = (ab}LJ;—lRwL;_l;R;l
= (27! .m’;r):f:))ﬂ.;_l1 R
= (z (ab‘:ar))L;_l, R;'  using conjugate property
= (aba)y-2EYRE
= (abax)R;!
= abR.R,"

= ab
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So,
(G)C’TJ‘_I.;L‘((")C:r_l,:r = (ab)cl:r'_l‘.r

hence, C,-1 , is an antomorphism. =
Corollary 36 In conjugate loop L, (Cp-1,) ' = R;,,.L_.,‘.—IL;_I. R, is an automorphism.

Theorem 37 Let L be a conjugate loop and @ € N(L) then following are the autotopisms in
L.

(1)(Cy1 2y Ray Ra)

(#2)(La; Cyp1 2y L)

(#41)(LaCo1 3 Idy,, L)

(10)((Cy-1,4) ", Ray Ra)

(v)(La, (Com1 )", La)

Proof. Let y,z € L
(%)

#)Ca10(2)Re = (W) Lp1RaL li Ry (2)Rs
= ((:Ir_lyJJ:]L;_l., H;,__.i 2T
= {.'r:_l(y.':r))L;_',R;l.:.:: using conjugate property
= (yx)Ly~ L LR .2z
= (yz)R;l.zz
= yRaR] Lsa
~ yl=a)
= (yz)x since z € N(L)

= (y2)Ra

so, (C,—1 .. By, R,) is an autotopism.
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(i)

(¥)La(2)Cp-1 0

$0, (Ly, Cy-1 4, L) is an

(iii)

(:')')LJ:CJ;—I';r-(S)I(fL

(y)La-(2) L Re LY R
;r::t;.{(:c"'lz}J:JL;_,R,_.'
:::y.(;‘::_l(::L'))L;_', R, using conjugate property
ay.(za) L, L;_l, R

ay.(zx) R,
xy. 2R R}
(xy)z
x(yz) since x € N(L)

(yz)La

attotopismi.

(9) Lzl RzLY RS2

((z! ..;t?'_tj).'!:)L"____ll R*:

(5]

(z~! (:L'y.;::}}L;fl R;l.s
(zy.w) Ly L;_], R .z

(xy.2)R; .

18]

:::y.R,.;R;l.

L]

(xy)z
x(yz) since . € N(L)

(yz)La

$0, (LyCp1 4, 1dy, L) is an autotopism.
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(zv)

WNCe=1.2) " (z)Re = (WL BRI R (2)Re
= (WIBeLu R ez
= (= V(yx))R;'L )\ 22

= ((m"'y]x)R;lL;_jl.zm using conjugate property

= (J:_'y)Rﬂ:R_.:lL;_ll.

(o]

x
= (YL

= gLy L;_ll (zx)

= y(zx)

= (yz)x since x € N(L)

= (y2)Rs

s0, ((Cyp=1,) "1 Ry, R;) is an autotopism.

(v)

W) La2)(Cr1 )™ = (W)La(2)(Le1RL L RSY)™
= ay.(z)RsL~R7ILL,.
= ay. (a7 (20)) R L
= ay.((x'2)a)R;LY, using conjugate property
= ay.(a'2)R:R; 'L,
= ;ry.(x'l:-:)L;_l,
= gzl
= (ay)z

= a(yz) since x € N(L)

$0, (Ly, (Cyp1 )7t Ly) is an autotopism. m
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3.2 Relation of conjugate loops with other types of loop
In this section we investigate connections between conjugate loops and other branches of loops.
Theorem 38 [very Stemer loop s a conjugate loop.

Proof. As we know that commutative IP loop of exponent 2 is a Steiner loop

so it satisfies

a Nay) =y

and
(ya)z ' =y
Now
(') = x(zy)
=y
1 = 7 7y
v (yx) = a (xy)
= Y
50, every Steiner loop is a conjugate loop. =
Theorem 39 Fvery Moufang loop is a conjugate loop.
Proof. Counsider a Moufang loop identity
(zy)(zz) = (2(yz))z
putting = = 2!
zy = (x(ya )z
(xy)z™ = ((x(yz!))z)a?

—~ a(yx') by inverse property

so, every Moufang loop is a conjugate loop. =
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Remark 40 Following loop 1s a conjugate loop but not a Steiner neither Moufang. Seo, con-

verses of above theorems are not true.

0 1 2 3 4
010 1 2 3 4
111 0 3 4 2
212 3 4 0 1
3(3 4 1 2 0
414 2 0 1 3

Theorem 41 FEvery LC-loop is a conjugate loop.

Proof. The identity of LC-loop, given in the remark(5) is

v(xyz) = a(zy.z)
replacing z = 27!
z(zyz™l) = z(zy.z?)
e Va(eyz™) = a Ya(zy.x ') pre-multiplying by 2!
wyE—t = aga

Hence, every LC-loop is a conjugate loop. =
Theorem 42 Every RC-loop 1s a conjugate loop.

Proof. The identity of RC-loop, given in the remark (5) is

(ryz)z = (2y.2)z
replacing 2 = 27!
(zyz DNzl = (zyzHa?
(zyz e Nz = ((zya Yz Na  post-multiplying by =
rayr 1 = @y !

Hence every RC-loop is a conjugate loop. m
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Corollary 43 According to Theorem(6), A loop L 1s a C-loop if and only 1f it is both LC- and

RC-loop. so,

C-loop = LC-loop = Conjugate loop

C-loop =  RC-loop = Conjugate loop

ar

C-loop = Conjugale loop

Therefore, every C-loop 1s a conjugate loop.

Exercise 44 Consider the followind loop.

0 1 2 3 4 5
010 1 2 3 4 5
11 0 4 5 3 2
212 5 0 4 1 3
313 4 5 0 2 1
1|4 2 3 1 85 0
515 3 1 2 0 4

This conjugate loop 1s not a C-loop neither LC nor RC.
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Now it can be seen that conjugate loops find their place in Fig.l of chapter 2, as shown

below in Fig.3

Conjugate

Mounfang

Flexible C

Fig. 3

Theorem 45 Let L be a loop of exponent 2 then L is a conjugate loop iff it is flexible.

Proof. Suppose L is a conjugate loop then

z(yz™!) = (ay)a~! Va,y € L (3.3)
since L is of exponent 2 so,
?=e
or
vl =g (3.4)
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so, above equation(3.3) becomes

Z(yz) = (zy)z Vo, € L

which proves that L is a flexible loop.

Now conversely suppose that L is a flexible loop. Then it satislies

x(yx) = (zy)a Vo,y € L

From equation(3.4),we have
| .

so, L is a conjugate loop.

Counter Examples:

Example 46 L, , 15 not a

conjugate loop of order 7.

consider

z(yr ™) = (zy)z ' Va,y € L

pseudo-automorphism in conjugate loops. Consuder the following

0 1 2 3 4 5 6
00 1 2 3 4 5 6
11 2 0 5 6 4 3
212 0 1 6 5 3 4
313 6 6 4 0 1 2
414 5 6 0 3 2 1
5(5 3 4 2 1 6 0
6[6 4 3 1 2 0 b

Lz = (16)
(L2)Ly3 = (0)L13=0
(M) L13.(2)L13 = 62=3
(1.2) L1z # (1)L13(2)L13
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And we cannot find any companion ¢ € L such that

(1.2) Ly g.c = (1) L13(2.¢) L1 s

By Theorem(2),in moufang loops every immnermapping is a pseudo-automorphism, shows that

this resull 1s not true for conjugate loops.

Example 47 According to Theorem (3), in Moufang loops Nucleus s a normal subloop but it

15 not true in the case of conjugate loops. Consider following conjugate loop L of order 8.

01 2 3 4 5 6 7
0fjo 1 2 3 4 5 6 7
{1 0 4 5 2 3 7 6
2(2 5 0 6 7 1 3 4
313 4 6 01 7 2 5
414 3 1 7 6 0 5 2
55 2 7 1 0 6 4 3
6|6 7 3 2 5 4 1 0
717 6 5 4 3 2 01

here N(L)={0,1} which is not normal in L.

Example 48 Following conjugate loop contradicts Theorem(4).

01 2 3 4
010 1 2 3 4
111 0 3 4 2
2(2 4 0 1 3
313 2 4 0 1
414 3 1 2 0

Example 49 Following conjugate loop is not a power-associative, hence a counter example of



Theorem(8) .

01 2 3 4 5 6 7
0jo 1 2 3 4 5 6 7
1{1 0 3 2 56 6 7 4
212 3 1 0 6 7 4 5
313 2 01 7 4 5 6
414 5 6 7 3 0 1 2
5|5 6 7 4 0 1 2 3
6(6 7 4 5 1 2 3 0
7|7 4 5 6 2 3 0 1

Ezample 50 Following non associative conjugate loop is of order 5 so Theorem(11) fails for

conjugate loops. This loop also contradicts Theorem(10) (ii).

0 1 2 3 4
0o 1 2 3 4
1{1 0 3 4 2
212 4 0 1 3
313 2 4 0 1
414 3 1 20

Example 51 Conjugate loop given below contradicts Theorem(10) (1).

01 2 3 4 5
010 1 2 3 4 5
1{1 0 3 4 5 2
2(2 4 0 5 3 1
3(3 5 1 0 2 4
414 2 5 1 0 3
505 3 4 2 1 0

Theorem 52 [Every CIP(cross inverse property) loop is a conjugate loop.
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Following example shows that the converse of above theorem does not hold.

Example 53

01 2 3 4 5
01001 2 3 4 6
1{1 0 4 5 3 2
212 5 0 4 1 3
3({3 4 5 0 2 1
414 2 3 1 56 0
515 3 1 2 0 4

This conjugate loop of order 6 is not a CIP loop.

Theorem 54 A conjugate loop L is a CIP loop iff every element in L 1s self conjugate.
Theorem 55 Every loop of exponent 3 is Jordan iff it is conjugate loop.

Proof. Let L. be a loop of exponent 3 and suppose that it is Jordan.Then

ayx) = (aPy)z

& I{y;z:) = (2" ]y):z: since L is of exponent 3

So L is a conjugate loop.

Conversely suppose that L is a conjugate loop of exponent 3.

g Hyz) = (27 )z

a*(yz) = (2®y)z since L is of exponent 3

So, L is a Jordan loop. m

Theorem 56 Let L be an 1P loop then L is a conjugate iff it is flexible.

Proof. Suppose L is a conjugate loop, we have to show that it is flexible
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((yx.a™)  since L is a conjugate loop

(x(yx))az!

= axy by inverse property
(a( ;r,t.'x.'}..r_l).'r: = (ay)x post multiplying by x
(x(yax) = (ay)x by inverse property

so L s flexible loop

now, conversely suppose that L s flexible loop

(z(ya"))x = a(ya ') by flexibility
= gy by wmverse property
(z(yz Vx)z™' = (ay)a! post multiplying by =~

a(ya") (zy)z !

So L is a conjugate loop. =
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Fig 4 describe these results diagrammatically.

Extra Loop

Maoufang loop

LC-loop | I RC-loop

Conjuagte loop

Inverse property loop |

Fig.4
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3.2.1 Inverse property Conjugate Flexible loop(IPCF loop)

Theorem (56) shows that an IP loop is conjugate loop iff it is flexible. Here we now define a
class of loop which has all these three properties together called IPCF loops.

Counting of IPCF loops

Smallest non associative IPCF loop is of order 7, given below

01 2 3 4 5 6
0jo 1 2 3 4 5 6
rjr 2 0 5 6 4 3
212 01 6 5 3 4
3(]3 6 5 4 0 1 2
414 5 6 0 3 2 1
515 3 4 2 1 6 0
6|6 4 3 1 2 0 5

This loop is not a dia-associative loop.

Since every Moufang is an IP, conjugate and flexible loop so, every moufang loop is a IPCF
loop.Also steiner loops are IPCF loops.

In [1] J. Slaney and A. Ali listed the IP loops upto the order 13. Here we added to that list,

IPCF loops of the respective orders.

size | IP loops | IPCF loops

7 1 1
8 3 0
9 ] 0
10 | 45 7
11 |48 2

12| 2679 1
13 ] 10341 5




Properties of IPCF loops

In commutative conjugate loop L,
Jug 1

glag™') #£aV ga€L

but in commutative IPCEF loops

glag™) = glg 'a) by commutativity

= % by inverse property
so we have a following resuli

Theorem 57 An IPCF loop L is commutative iff every element in L is self conjugate.

Proof. Suppose L is commutative and g,a € L then

g(u,y_l) = g(g_]u} by commutativity

= by inverse property

which implies that every element in L is self-conjugate.

Now, conversely suppose that in L every element is self-conjugate then

glag™") = a
((9a)g ')g = ag post multiplying by g
ga = ag by inverse property

So, L is commutative. Hence the result follows. m



Theorem 58 Let L be a IPCF loop then x € Z(L) iff following conditions hold.
(2) € C(L)

(i1) (Re. L Ry, Ry) is an autoiopism.

Proof. Suppose first that the (z) and (i) holds.

sinee (Ry, Ly lﬂm R;) is an autotopism

= (§)Re(2) L7 Ra = (y2)Re

4

() Rz (2) L1 Rz = (y2) Rz

= yz.(z '2)z = (y2)x

= yr.x '(zx) = (yz)z using conjugate property
= gyx.z (zz) = (yz)z since x € C(L)

= yax.z = yz.r using inverse property

= xy.z = x.yz since ¢ € C(L)

= z€Nx(L)

we know that in TP loops

N(L) = Nx(L)= Nu(L)= N,(L) using theorem (12)
= T E N(L)
= zeN(L)NC(L)asx € C(L)

= z € Z(L)as Z(L)=N(LYNnC(L)

Conversely, let

x € Z(L)
= zeN(L)NC(L)

= x € N(L) and z € C(L)
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N(L) = Nx(L)= Nu(L)= N,(L) using Theorem (12)
= x € Ny(L)

= oYz =TyzY Y,z €L

= wyx.z=yz.z since x € C(L)

= y:r:‘:a:(.;:"';:} = yz.r using inverse property
= yx.(z712)z = yz.z since z € C(L)

= (y)Re(2)L7'Re = (y2)Re

= (R, L;lRm, R,) is an autotopism

Corollary 59 Let I, be a IPCF loop and a: € C(L) then following are the autotopisms in L.
(68 (152 Ry sy Tic)-



3.3 Construction of conjugate loops
Let & be a multiplicative group with neutral element 1, and A be an abelian group written
additively with neutral element (0. Any map
piGxG— A
satisfying
w(l,g) = p(g,1) =0 for every g € G

is called a factor set. When p : G x G — A is a factor set, we can define multiplication on
G > A by
(g.a)(h.b) = (gh,a + b+ u(g, h)). (3.5)

The resulting groupoid is clearly a loop with neutral element (1,0). It will be denoted by
(G. A, p). Additional properties of (G, A, ;i) can be enforced by additional requirements on .
We construct conjugate loop with the help of two groups such that one is multiplicative

group and other is additive abelian group.

Theorem 60 Let p: G x G — A be a factor set then (G, A, ;1) is a conjugate loop if and only
if
plg. h) + plgh.g™") = p(h.g™") + plg. hg ™) (3.6)

Proof. By definition the loop (G, A, it) is conjugate if and only if
{(g.a)(h.b)}g,a) ™" = (9,a){(h,b)(g.a) "}
consider L.H.S

{(g.a)(h.D)}(g,0)™" = (ghyatb+u(g. ) (g™ ~a— (g, g7

((gh)g " a+b+ p(g.h) —a—pulg.g~") + mlgh,g™"))

= ((gh)g " b+ plg, 1) — g, 97") + ulgh,g"))
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Now consider R.H.S

(g.a){(h.b)(g.a) I} = (g.a){(h.b)g i ;.t{_q._{;_]}}

(g,a)(hg™ " b—a—plg,g7 ") + p(h,g7 "))

Il

Il

(gthg™"),a+b—a—pu(g, g ")+ pu(h,g ™)+ ulg, hg™"))

((gh)g " b— (g, g7") + p(h, g™ ") + (g . hg ™))

Il

Comparing both sides we get
(g, h)) + p(gh,g™") = plh.g™") + ulg hg ")

Theorem 61 Let n > 2 be an integer and let A be an abelian group of order n, and o € A
an element of order bigger than 2. Let G = {1,u,v,w} be the multiplicative group with neutral

element 1. We define pp: G x G — A by

o if (a,y) = (u,w), (w,w)
Wz, y) = a if (@,9) = (w,v), (v,u)

0 otherunse
Then (G, A, ) is a conjugate loop with N(L) = {(1,a) :a € A}.

Proof. Let L = (G, A, j1). The map p is conjugate factor set. It can be depicted as follows:

nwll wu v w
0 0 0 0
w [0 0 -

w| 0 a 0 0

o
&)



where we know that the group & has the following multiplication table.

To show that L = (G. A, i) is conjugate loop, we verify equation (3.6) as follows.

Take h = 1 in equation (3.6) we have

wg, 1)+ p(g,97") = (97" +plg,97Y)

wg. ) = p(lgh)

which is true for all g € G.

Take h = u in equation (3.6) we have
p(g,u) + p(gu, g~ ') = plu, g ") + plg,ug™)
Now, putting g = L, u, v, w

p(l,w) + p(u, 1) = plu, 1)+ p(l,u) =0

plu,w) +p(low) = plu,w) + p(u, 1) =0

v u) + plw,v) = plu,v)+ p(v,w)
—a+0 = —-a4+0=0
plw,w) + plv,w) = plu,w) + plw, v)

a+0 = a+0=0
Now, we put h = v in equation (3.6) we have

(g, v) + plgr. g™ ") = p(v,g™ ") + p(g.vg™")
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putting ¢ = 1, u, v, w

w(lv) +p(v, 1) = plv,1)+p(l,v)=0
jilw,v) + plw,u) = plo,v)+ (o, 1)
—a+a = 040=0

plw,v) + plu,w) = plv,w)+ plw,w)

O+a = 04+a=0
We put now h = w in equation (3.6) we have
wlg,w) + plgw, g~ ") = plw, g~ ") + (g, wg™")
putting ¢ = 1, u. v, w

w(lyw) + plw, 1) = plw, 1)+ p(l,w)=0

lu,w) + p(v,u) = plw,u) + plu,v)
a=a = a—it=0
u(g.w) + plgw.g™t) = plw,g™)+ g wg™?)
(v, w) + p(wv) = plw,v) + plv,u)

0—a = 0-a=0

pw,w)+ p(l,w) = plw,w) + p(w,1) =0

hence equation (3.6) is true for all values of G. Now we will show that associative law does

not hold in L = (G, A, p). For this consider

(u,a)((v,a)(v,a) = (u,a)(1,2a) = (u, 3a)

and

((w,a)(v,a))(v,a) = (w,2a — a)(v,a) = (u,3a — a)
= (u,a)((v,a)(v.a) # ((w,a)(v,a))(v, a)
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Now it remains to show that N(L) = {(1,a) : @ € A|}. For this consider

((g.6)(1.a)) (h.¢) = (g.b+a+ pu(g.1))(h.c)
= (g.b+a+0)(hc)
= (gh,b+a+c+p(g.h))

(9:0) (1) (h€) = (g:b) (hya+ e+ p(1,h))
= (g.b)(h,a+c+0)

= (gh.b+a+c+ pu(g.h))

50,

= ((9:0) (1,0)) (he) = (g,b) ((1.) (k)
= (1,e) €N, (L)

Similarly we can show that

(L.a) € Ny (L) and (1,a) € N, (L)

hence

(l,a) € N(L)

= N(L)={(l,a):a € A}

Which is the required result. m

Corollary 62 For any abelian group A of order n > 2 there exists a conjugate L such that

order (A) = order (N (L)).
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Example 63 Let G = {1g,u,v,w} and A = {0,1,2}, then (G, A, p) is the conjugate loop

whose multiplication table is quwen by

o 1 2 3 L5 6 7 8 9 10 11
0 __U 12 3 4 5 6 ?_ 8 9 10 11
1 1 2 0 4 5 3 7 & 6 10 11 9
212 o0 1 5 3 4 8 6 7 11 9 10
3 /3 4 5 0 1 2 10 11 9 8 6 7
414 5 3 1 2 0 11 9 10 6 7 8
5|5 3 4 2 0 1 9 10 11 7 8 6
6 |6 7 8 10 11 9 0 1 2 3 4 5
7|7 8 6 119 w1 2 0 4 5 3
8§ |8 6 7 9 1011 2 0 1 5 3 4
919 10 11 8 6 7 3 4 5 0 1 2
wjpw 119 6 7 8 4 5 3 1 2 0
Imj1m 9 1w 7 8 6 5 3 4 2 0 1

where

((7‘ '4'“] =GxA= {(J(-"[]} 1 (1(-'5 ]) s {l(,‘._?) H {”10) 3 (?F., ]) ) ('”'32) ' {'“' 0) 1 ('”'. I)' ('f."g) i ('ib‘,“),('{u. ]) ' (”J! 2)}

and

(1¢,0)

(v,0) = 6,(v,1)=7,(v,2)=8,(w,0)=9,(w,1) =10, (w,2) = 11

0,(1g, 1) =1,(1¢.2) = 2, (1, 0) = 3, (u, 1) = 4, (1. 2) = 5,

Also
N ((G, A, 1) ={(1¢,0),(1g,1),(1¢,2)}

This is the smallest non-associative non alternative commutative conjugate loop constracted
through this process.By changing the order of additive abelian group A, we can constract the

conjugate loops of high orders.



Remark 64 Conjugate loop formed by taking G = {1, u,u?} and A = {0,1}, is associative

loop(group) of order 6.

Lemma 65 Lel p: G x G — A s a factor set, then the loop (G, A, ) 1s commutative if and
only of

gh = hg and p(g,h) = plh,q) for all g, h € G.

Proof. Let (g,a), (h,b) € (G, A, p), then,(G, A, 1) is commutative

= (9‘1 u’)(h'! b) - (h*a b)(g, “)
& (ghoa+b+ plg, h)) = (hg. b+ a+ plh, g)) using equation (3.5)

> gh = hg and p(g, h) = p(h, g)

Next we will prove that the loop constructed by Theorem(60) is also an IP loop.

Theorem 66 Let jn: G x G — A be a factor set defined in the same way as in  Theorem(60),
where G 1s a Klein group and A is any abelian group of order n > 2.then (G. A, i) is a conju-

gate, flewable and 1P loop.

Proof. Conjugate property of (G, A, p) follows from Theorem(60),
As G is kelien group, so g = ¢~ and by lemma(65) hg=gh for all g.h € G.Using these

values in equation (3.6) we have

p(g. h) + p(gh,g) = plh.g)+ plg. hg)

b+ 2a+ p(g, h)+ p(gh,g) = b+ 2a+ p(h,g)+ (g, hg) where a,b € A
b+a-+a+p(g,h)+plgh,g) = b+a+a+plh,g)+ (g, hg) A is a group
a+b+pu(g, k) +a+ plgh,g) = a+b+a+ ph,g)+ (g, hg)

((gh)g.a+b+ plg,h) +a+p(gh,g)) = ((gh)g,a+b+a+ ulh,g) + 1(g, hg))
((gh)g,a+b+ (g, h) +a+ p(gh,g) = (9(hg),a+b+a+ u(h,g) + plg, hg)) G is a group
(gh,a + b+ plg, h)(g.a) = (g.a)(hg,b+a+ p(h,g)

((g,a)(h,b))(g,a) = (g,a)((h,b)(g,a))
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This implies that (G, A. p) is a flexible loop.

Now, w.Il show that it is also an 1P loop.For this again considering equation (3.6).

= pulg.h) + plgh.g™ )
= plhog™") + plg,hg™")
= (g, h) + (g™, gh)
= pu(h.g)+ p(hg,g~")

= —a—(g.g7") +a+b+pgh)+plg™

gh)

= bta+pthg) —a—plg.g")+puthg.g")

= (h,—a—pu(g,g7") +a+b+plg,h)+ (g™ gh))

= (hb+a+ulhg)—a—plg,g7") +pulhe )

= (Lhy,—a—pu(g,g7") +a+b+pu(g, h)+ pu(g™", gh))

= (hlb+a+p(h.g)—a—pulg.g ")+ plhg,g7"))

= (97" (gh), —a —plg,g~ ")+ a+ b+ pulg.h) + plg~". gh))
= ((hg)g™' b+ a+ pu(h,g) —a—plg,g7") + plhg,g™"))

~1

= (97" —a—plg.g7"))(gh.a+b+ (g, h)

= (hg,b+a+pu(h,g)g™ " —a—n(g.g7"))
by using lemma(65) we can write

= (g.a) Ygh,a+b+ (g, h) = (hg,b+a+ u(h,g))(g.a)™*

= (9,a)"'((g,a)(h,b)) = ((h,b)(g.a))(g,a) "

This implies that (G, A, pt) is an IP loop. hence the result follows.
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Theorem 67 Let pi: G x G — A be a factor set defined i the same way as in Theorem(60),
where G s a klean group and A is any abelian group of order n > 2,then (G, A, 1) s a conjugate
Jordan loop.

Proof. Conjugaie property of (G, A, ) follows from Theorem(60) and from the definition

of p: G x G — A we can write

ulh,g) = plh,g) forall h,g € G
= plh, g) + p(L, hg) = p(1, k) + p(1.h, g)
= p(h.g) + p(g*, hg) = p(g®. h) + 1(gh, g)
= a+a+plg,g)+b+a+ ph g)+ ulg* hg)
= a+a+p(g.g)+b+ p(g* h)+ pg*h,g)
= (9°(hg),a+a+ plg,9) +b+a+ p(h, g) + u(g*, hg))
= (9°(hg),a+a+ p(g.g) + b+ plg* h) + p(g* . g))
= (9°(hg),a+a+ plg,g) +b+a+ p(h,g) + p(g?, hg))
= (*h)g.a+a+ p(g.g) + b+ pg? h) + u(g*h. g)) since G is a group
5 (Pa+a+ulg,9)(ha,b+a+u(hg))
= (¢®h,a+a+ p(g,g)+b-+ u(g? b)) (g,a)
= [(9.a)(g,)][(h, b)(g,0)] = (6% a+a+ ulg, ) (h, b)) (g, a)
S (9,0)%(h,b)(g, @)] = [{(g, @)(g: @)}(h, B)](g, @)
= (9,0)*|(h.b)(g,a)] = [(g,a)*(h,b)|(g.a)

which is a Jordan identity also (G, A, pt) 1s commutative. Hence (G, A, jt) is a Jordan loop.
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