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Notations 

L Loop 

Q Quasigroup 

G Group 

e Identity element of L 

x>' Left inverse of x 

x p Right inverse of x 

H S L H is a subloop of L 

H <!l L H is a normal subloop of L 

N Tormal subloop 

L/ Factor loop 

Lx Left transla tion 

Rx Right translation 

Mlt(L) Multiplication group of L 

Inn(L) Inner-mapping group of L 

N(L) Nucleus of L 

N>.(L) Left nucleus of L 

lV,,(L) Middle nucleus of L 

Np(L) Right nucleus of L 
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Z( L) 

C(L) 

[x, y] 

[x,y, z] 

(x ,y) 

L x I( 

Center of L 

Commutant of L 

Commutator of x and y 

Associator of x , y and z 

Order pair of x and y 

Direct pro luct of loops L and I( 

Identity element of 171,71,(L) 

Generator of 171,71,(L) and Lx,y = LxLyL);l 

Generator of 171,71,(L) and Rx,y = RxRyR:;~ 

Generator of 171,71,(L) and Tx = RxL:;l 
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Preface 

It is well-known that a loop is a one-operational non-associative generalization of a group. 

The pioneer work of Moufang [17] and Bol [4] provided a motivation to the theory of loops, 

which provided a base to develop the research areas of algebra, geometry, topology and com­

binatorics. The development of loop theory remained hidden LUlder the fast moving research 

horizon of the theory of groups. After the completion of the list of simple groups, the research 

environment is more appropriate for the structures of non-associative models like those of a 

loop and quasigroups. In the literature of loop theory, the groups are being used to derive 

new families of loops. For instant, construction of C-loops in [20]. In her famous ar ticle [17], 

Ivloufang derived that the alternative rule in algebra implies the well-known four Moufang iden­

tities . Afterwards, she considered loops satisfying these identities, which are called Moufang 

loops. In the present research environment it is called a Bol loop with left Bol property. The 

theory of Moufang loops has been developed by Bruck [7]. 

This thesis concerns one of the property of groups that is, existence of conjugate of each 

element. This property does not hold in the case of loops but we identify a class of loops h aving 

thi. property called conjugate loops. T his is defined to be a class of loops sati sfying the identity 

x(Y:I;- l) = (xy)x - 1 

Although these are the generalization of the groups, but conjugate loops fail to satisfy 

major properties of groups regarding conjugate of elements and conjugacy. It is observed, for 

example, that the conjugate of a subloop is not a subloop. Also unlike groups conjugacy is not 

an equivalence relation. Homomorphic image of a conjugate loop is again a conjugate loop and 

direct product of conjugate loops also defines a conjugate loop. Inverses are unique in conjugate 

loops. Smallest conjugate loop is of order 5 which is also a flexible loop. 

An impor tant part of this thesis is the relation of conjugate loops with other types of loops. 

Every Ivloufang loop is a conjugate loop . Also Steiner , C, LC and RC-loops define conjugate 

loops. It is also discussed in this di ssertation, that CIP loops are conjugate loops and for the 

converse, every element of a conjugate loop must be self-conjugate. An IP loop is a conjugate 

loop if and only if it is flexible. 

This dissertation consists of three chapters. 
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In chapter 1 we discussed the origin and history of the loop theory. It also contains basic 

definitions and introduction of quasi groups and loops, including a table of non-isomorphic 

quasigroups, groups and loops of different orders. 

Chapter 2 deals with different types of loops and their relation. Identities of differen t loops 

are listed in the first section of this chapter. Second section consists of some results on Moufang, 

C, LC, RC-loops taken from [8], [10], [12] and [21]. In the last section of this ch apter , a detailed 

picture of the relation of loops with each other is given . 

The last ch apter of this disser tation provides main theme and idea of the work. The layout 

of the ch apter consists of three sections. Definition and counting of conjugat e loops are the 

par ts of first section. It also includes the proper ties of conjugate loops. Second section specifies 

the relation of conjugate loops with other loops. In this section we also look for the counter 

examples of the results which were recorded in the second ch apter. In the third section, we 

construct the falnily of conjugate loops using two groups such that one is multiplicative group 

and other is addit ive ab elian group. 
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Chapter 1 

Introduction 

vVe began with some historical notes on loop th ory, summarizing the period fTom 1920s through 

the 1960s. Also we give basic concepts of quasigroups and loops included the counting of 

quasi groups and loops of differen t orders. Although the whole subject could not be reviewed, 

nonetheless important and necessary topics, being helpful in the forthcoming li terature are 

included . We follow the terminology used by Ales Dnipal in [9]. 

1.1 Origins and early history of loop theory 

In his paper [19] H.O.Pflugfclder attempted to map , to fit together not only in a geographical 

and a chronological sense but also conceptually, the various areas where loop theory originated 

and t11l'0ugh which it moved during the early par t of its 70 years of history. 70 years is not very 

much compared to, say, over 300 years of different ial calculus. But it is precisely because loop 

theory is a relatively young subject that it is often misinterpreted. Therefore, it is extremely 

important for us to acknowledge i ts distinctive origins. 

IiVhen somebody asks, " liVhat is a loop?", the simplest way to explain is to say, "It is a 

gmup without Associativity" . Tllis is true, but it is not the whole truth . It is essential to 

emphasize that loop theory is not just a generalizat ion of group theory but a discipline of its 

own , originating from and still moving within four basic research areas - algebra, geometry, 

topology, and combinatorics . 
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One aim of his paper was to shed light on the original motivations for the first publications 

on quasigroups by Moufang and Bol. The events of those years aretoo far in the past for many 

people to know first-hand or to have heard about from witnesses. But they are also too recent 

to be found in math-history books or even on any of the new math-histori cal web-sites. Let us 

begin with period I , or rather with the prehistory of non-associativity. 

1. 1920s - the first g limmering of non-associativity. 

The oldest non-associative operation used by m ankind was plain subtraction of natural 

numbers. But the first example of an abstract non-associative system was Cayley numbers , 

constructed by Arthur Cayley in 1845. Later they were generalized by Dickson to what we 

know as Cayley-Dickson algebras . They became the subject of vigorous study in the 1920s 

because of their prominent role in the structure theory of alternative rings. 

Another class of non-associat ive structm es was systems with one binary operation. One of 

the earliest publications dealing with binary systems that explicitly mentioned non-associativity 

was the paper On a Generalization of the Associative Law (1929) by Anton K . Suschkewitsch , 

who was a Russian professor of mathematics in Voronezh. In his paper, Suschkewitsch observes 

that, in the proof of the Lagrange theorem for groups, one does not make any use of the 

associative law. So he rightly conjectures that it could be possible to have non-associative 

binary systems which satisfy the Lagrange property. He constructs two types of such so-called 

"general groups" , satisfying his Postulate A or Postulate B. In Suschkewitsch's approach, one 

can detect some early attempts in the direction of modern loop theory as a generalization 

of group-theoretical notions. His "general groups" seem to be the predecessors of modern 

quasigroups as isotopes of groups. 

Binary systems with left and right division, which we now call quasigroups, were mentioned 

by Ernst Schroeder in his book Lehrbuch del' Arithmethik und Algebra (1873), and in his Vor­

lesungenueb er die Algebra del' Logik (1890). 

II. 1930s - the defining p eriod. 

On the algebraic scene, brilliant algebraists happened to be in Hamburg at the time, such 

as Erich Hecke, a student of I-Iilber t; Emil Artin ; and Artin 's students,Max Zorn and Hans 
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Zassenhaus. Algebraic interest in non-associativity first came not from binary systems, as was 

the case with Suschkevitsch, but from alternative algebras . It was around this time that Artin 

proved a theorem that Moufang would later use in her famous paper on quasigroups . 

Artin's theorem: "I'll an alteTnative algebm, if any thTee elements multiply associatively , 

they genemte a subalgebm". 

From the point of view of loop theory, all these developments culminated in the appearance 

of two papers that defined the two most important classes of loops as we know t hem now, Mo­

ufang loops and Bolloops: ZUT StTuktUT von AlteTnativk oerpeTn by Ruth Moufang (1935) [17], 

and Gewebe und GTuppen by Gerri t Bol (1937)[4]. Together , these papers marked the formal 

beginning of loop theory. 

Let us fir st look at Moufang's paper , which was motivated by a publication by Max Zorn 

on alternative rings in which Zorn used Artin 's theorem. Moufang star ts with an alternative 

field and endeavors to prove Artin 's theorem using the multiplicative system only. She defines 

a structure, which she calls a Quasigroup Q*, sa tisfying the following postulates : 

(I ), (2) closure, existence of an identity element and unique inverses 

(3) a( a'b) = (aa') b and (ba')a = b( a'a) 

(4) [a(ca)] b = a[c(ab)] 

She also defines a system Q**, believing it to be diffcrent from Q*. Q** satisfies an addi­

tional identity: 

(5) (ab)(ca) = a[( bc)a] 

Bol soon showed that (4) implies (5) , and Bruck later proved that they both are equivalent 

to two other identities: 

(6) [(ab)c]b = a[b(cb )] 

One can see that systcm Q* is what is now known as a NIoufang loop, which can be defined 

by anyone of the Mou£ang identities (4) through (6) . 

Moufang proves that Q* is diassociative-the subquasigroup generated by any two elements 

IS associative - and satisfies a theorem that echoes Artin 's theorem and is now known as 

Moufang 's theorem. 

Bol practically split the Moufang identity in two , showing that , in our language, a loop is 

Moufang if and only if it is both right and left BoL 
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III. 1940s-60s - building the basic algebraic frame. 

After the demise of quasigroups in Germany, it was the United States that became the new 

center of research on this subject. 

In addition to alternat.ive algebra research, there were already several American publications 

on quasigroups: 

1937 TheoTY of Quasi-GmtLpS, by Hausmann and Ore [13]; 

1939 Quasi- Groups 'Which Satisfy Certain GenemLized A ssociative Laws, by Murdoch [18]; 

1940 Quasi-Gmups, by Garrison [11J. 

The terminology of quasigroup theory then l.mderwent a h istoric change. It became apparent 

that it was necessary to distinguish between two classes of quasigroups: those with and those 

without an identity element. A new name was needed to designate the sys tem with identity. 

This occurred around 1942, among people of Albert 's circle in Chicago, who coined the word 

"loop" aft er the Chicago Loop. 

It was a brilliant choice in several senses. First , the word "loop" rhymes with "group" . 

Second, it expresses a sense of closure. And third , it is short and simple, so that it could be 

easily adopted in other languages. Today, it is used in many languages, with slight vari ations: 

for example, DIE LOOP in German (first used by Pickert) and LUPA in Russian. The French 

are, of course, an original and non-conforming people, so in French it is LA BOUCLE. 

The first publications introducing the term "loop" were the two very important papers that 

Albert wrote in 1943: Quasigmups I and Quasigmups II. In addition to introduction of the new 

term "Loop", a highly significan t aspect of the Quasigroups I paper , was the introduction of the 

concept of isotopy for quasigroups. Albert 's papers were soon followed by two very important 

publications by Richard Hubert Bruck: Some Results in the Theory of QtLasigmups (1944) [6J 

and ContTibutions to the Theory of Loops (1946) [7J. vVithout a doubt , in this American per iod 

of loop theory, stretching from the 1940s through the 1960s, the most important role has to be 

ascribed to Albert and Bruck and their schools. 

Bruck 's book [5], A SUTvey of Binary Systems appeared in 1958 and remains even today 

the most referred-to text on loops . 

One can see that during this period, from the 1940s through the 1960s, the basic algebraic 

frame of loop theory was erected. Loop theory had gained a firm ground that would allow it to 
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move in new directions and flourish in other places . 

Belousov's role in the success of quasigroup and loop theory, and his book Foundations of 

the The01'Y of Quasigmups and Loops {1967} i3}, can rightly be compared with the role that 

Bruck and his Binary Systems. Leter on, new aspects and new approaches emerged ill this field. 

Among them were the following: 

i\Tew approaches to quasigroups - derivative operat ions, 

New properties of known quasigroups - distributive being isotopi c to commutative Moufang 

loops, left-distribut ive that are isotopic to groups, isotopes of totally sY111111etric quasigroups;, 

F\mctional equations to express general laws of quasigroups (binary as well as n-ary), 

Algebraic webs and their use in questions of isotopy of quasi groups and loops, 

Generalized IVloufang and Bol loops. 

So, the theory of loops h as its origins in geometry, combinatorics and nonassociative algebra. 

In geometry, the coordinatization of a projective plane leads to various loop structures on the 

set of labels from which coordinates are chosen. Any Latin square with first row and column 

in standard p osition is the multiplication table of a loop. In rings with identity for which there 

is a well defined notion of inverses, it is often the case that subsets closed \.U1der product and 

inverses are loops. 

1.2 Quasigroups and loops 

Quasigroups : A set of elements Q and a binary operation "." form a quasigroup if and only 

if the following are satisfied: 

(1) If a, b E Q, then there exists a unique x, y E Q such that a. x = b or y .a = b. 

(2) If a, x, y E Q, then either a.x = a.y or x .a = y.a implies x = y . 

Examples of quasigroups a re: 

(i) Set of integers .z under the binary operation of subtraction (- ) . 

(ii) Set of non-zero rationals Q under the binary operation of division (-;-) . 

Loop: A loop L is a quasigroup with an identity element e such that x * e = x = e * x for 

all x E L. It follows that the identity element e is unique, and that all elements of L have a 

unique left and right inverse which are need not to be same. 
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Exam_pIes of loops are: 

(i)The set {±l, ±i, ±j, ±k} where ii = jj = kk = 1 and with all other products as in the 

quaternion group forms a nonassociative loop of order 8. 

(ii) Smallest nonassociative loop which is of order 5. 

0 1 2 3 4 

0 0 1 2 3 4 

1 1 0 3 4 2 

2 2 3 4 0 1 

3 3 4 1 2 0 

4 4 2 0 1 3 

Every group is a loop but ever), loop is not a group i. e. loop is the generalization of group. 

Every loop is a quasigroup but following example shows that the converse is not true . 

o 1 23 

02031 

1 3 1 2 0 

2 0 3 1 2 

3 120 3 
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The following t able shows non-isomorphic quasigroups, groups and loops of different order. 

orde7' quasigT01ips groups loops 

1 1 1 1 

2 1 1 1 

3 5 1 1 

4 35 2 2 

5 1, 411 1 6 

6 1, 13, 051 2 109 

7 12, 19, 84, 55,835 1 23 , 746 

8 2.70 x 1015 5 1.60 X 108 

9 1.52 X 1022 2 9.37 X 1012 

10 2.75 x 1030 2 2.09 x 1019 

1.2.1 Definitions 

~ow we list some definition which we need in proving main results in coming chapters. 

Subloop : A subloop H of a loop L is a subset of L which, under the inherited binary 

operation, is also a loop. 

Normal subloop: A subloop H of a loop L is Normal subloop if and only if x(yH) = (xy)H, 

(Hx)y = H(xy) and xH = Hx , for all x , y E L. 

Factor loop: The factor loop of a loop L to its normal subloop N is denoted by LIN and 

define as L IN = {xN : \:I x E L}. 

Binary operation defined on factor loop is "." such that 

xN.yN = xyN \:Ix, y E L 

Homomorphism: Let K , H be two loops. Then a m ap f : J( ---> H is a homomorphism if 

f(x)·f(y) = f(x .y) for every x , y E IC 
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Isomorphism: If f is also a bijection , we speak of an isomorphism, and the two loops are 

called isomorphic . 

Automorphism: Let L be a loop. Then a map f : L --) L is a automorphism if f( x). f(y ) = 

f(x .y) for every x, y E Land f is a b ijection. 

Pseudo-automorphism: A (right) psuedo-automorphism of a loop L is a bijection B of L 

with the property that, for some fixed c E L. 

(xB)( yB.c) = (xy)B .c 

Homotopism: The ordered triple (a , (3,,) of maps a , (3" : J( --) H is a homotopism if 

O'.(x) ·(3 (y ) = , (x ·y) for every x, y E 1(. 

Autotopism: If the three m aps are bijections, (a, (3,,) is an autotopism. 

Left and Right translations: vVhen x is an element of a loop L , the left translation Lx 

is a permuta tion of L such that Lx (a) = xa. Similarly right transla tion Rx is a permutation of 

L such that Rx( a) = ax. 

Left and right multiplication group: The subgroups generated by L l = (La : a E L ) 

and Rl = (R a : a E L ) are called left and right multiplication groups respectively. 

Multiplication group: T he permutation group generated by left and r igh t transla tions is 

called multiplication group and denoted by Mlt(L). 

Inner mapping grou p : Let L be a loop and Mlt(L) be the multiplication group of L , 

then the subset of Mlt(L) consisting of all maps that fix the identity element of L is called the 

inner mapping group of L , denoted by I nn (Q) . 

Left nucleus: The left nucleus of a loop L is N).. 

x , y E L}. 

{l E L l(xy ) (lx)y for every 

Rightnucleus: The right nucleus of a loop L is the set Np = {7' E L : (XY)T = X(YT) for 

every x, y E L} . 

Middle nucle us: The middle nucleus of Lis NI-' = {m E L (Y7n) x = y(mx) for every 

x , y E L}. 

Nucleus : The nucleus of L is the set N = Np n N).. n NI-" All nuclei are subloops. 

Commutant: The COlmnutant of a loop L is the set C(L ) = {c E L : cx = xc ; V x E L }. 
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It is also known as NI01~fang centeT or centTum. 

C ommutator : T he commu tator of two elements x, y of a loop L is a unique element [x, y] 

of L. such that 

(xy) = (yx )[x , y] 

Asso cia tor: T he associator of th ree elements x, y , z of a loop L is a unique element [x, y , z] 

of L ,SllCh that 

(xy )z = x(yz)[x, y , z] 

Center: The center of a loop L is the set Z(L ) = N(L ) n C(L ). 

Antia u tomor phic inverse p r operty : Let x, y E L ,if xA, xP and y A, yP be the left and 

right inverses of x, y respectively. Then Loop L is said to have an tiautomorphic property if 

If loop L has unique inverses then this proper ty becomes 

A utomorphic inve r se property : Let ,0 , y E L ,if xA, xP and yA, yP be the left and right 

inverses of x, y respectively. T hen Loop L is said to have antiau tomorphi c property if 

If loop L has unique inverses then this proper ty becomes 

Left inve r se property : A loop L has the left inverse proper ty if x A (xy ) = y for every 

x, y E L . 

Right ll1ver se property : A loop L has Right inverse property if (yx )xP = y for every 

X, y E L . 
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Weak inverse property: A loop has the weak inverse property if 

If loop has unique inverses then this property becomes 

Cross inverse property: A loop h as the Cross inverse property if 

x(yx A) = (xY)XA = Y or X(yxP) = (xY)XP = Y 

If loop h as unique inverses then this property becomes 

1.2.2 Properties of Quasigroups 

Semisymmetric quasigroups: A quasigroup Q is semisymmetric quasigroup if (xy)x 

x( yx) = y for every x, y E Q. 

Totally symmetric quasigroups:A semisymmetric commutative quasigroup is known as 

totally symmetric quasigroup. 

Idempotent quasigroups : A quasigroup Q is idempotent quasigroup if x 2 = x for every 

x E Q. Idempotent totally symmetric quasi groups are known as Steiner quasig'rOups. 

Unipotent quasigroups : A quasi group Q is unipotent quasi group if x 2 = y2 for every 

X, y E Q. 

Left distributive quasigroups: A quasi group Q is left distributi ve quasigroup if it sat­

isfies x(yz ) = (xy)(x z) for all x , y , z E Q. 

Right distributive quas igroups:Similarly, Q is right distributive quasigroup if it satisfies 

(xy) z = (xz )(yz ) . 

Distributive quasigroups: A distributive quasi group is a qu asigroup that is both left and 

right distributive. 
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Entropic quasigroups: A quasigroup Q is called entropic quasigroup or medial quasi group 

if it satisfies (xy)(zw) = (xz)(yw) for all x, y, z, wE Q. 

Remark 1 All these pTOpeTiies also hold in loops. 
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Chapter 2 

Different types of loops and Relation 

between their identities 

As we discussed earlier tha t Loop Theory is not only the generalization of the group theory 

but a discipline in its own. Since Loops do not have associa tivity we classify the loops into 

different types, on the basis of weak associativity. In this chapter , we identify and discuss some 

identit ies of class of loops included a det ailed picture of their relation with each other. For the 

collection of material we followed [2] and [7] . 

2.1 Types o f loop s 

Extra loop: 

Extra loop L satisfies x(y (zx )) = ((xy)z)x V x, y, z E L. 

Moufang loop: 

Any loop L satisfying (xy)( zx) = (x(yz))x V x, y, z E L , is called Moufang loop. 

Left A lternative loop: 

A loop L satisfying x(xy) = (xx) y V X, y E L , is called left alternative loop. 

Right Alternative loop: 

A loop L satisfying x(yy) = (xy)y V x, Y E L is called r ight alternative loop. 

F lexible loop: 

If a loop L satisfying x(yx) = (xy)x V x, Y E L , then L is called flexible loop. 
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Left Bol loop: 

A loop satisfying x(y(xz)) = (x(yz))x 't:j x, y, z E L , is called left Bolloop. 

Right Bol loop: 

Right Bolloop L satisfies x((yz)y) = ((xy) z)y 't:j x, y, z E L. 

LC-Loop: 

Any loop L satisfying (xx)(yz) = (x(xy)) z 't:j x, y, z E L , is called LC-loop. 

RC-Loop: 

If a loop L satisfying x( (yz)z) = (xy)(zz) 't:j x, y, z E L then is called RC-loop. 

C-Loop: 

A C-loop L satisfies x(y(yz)) = ((xy)y)z 't:j x, y, z E L. 

Left Nuclear square loop: 

Loop L satisfying (xx)(yz) = ((xx)y) z 't:j x, y, z E L , is called left nuclear square loop. 

Middle Nuclear square loop: 

Middle Nuclear square loop L satisfies :r((yy) z) = (x(yy)) z 't:j x, y, z E L. 

Right Nuclear square loop: 

A loop L is called right nuclear square loop if it satisfies (y( zz )) = (xy) (zz ) 't:j x, y, z E L. 

3-power associative loop; 

If a loop L satisfies (xx)x = x(xx) , 't:j x E L then, L is a 3-power associative loop. 

Power associative loop: 

A loop is said to be power associa tive loop if every element in it generates a group . 
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There is an example of a loop which is 3-power associative but not a power associative loop. 

0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 0 4 5 3 

2 2 0 3 5 1 4 

3 3 4 5 0 2 1 

4 <1 5 1 2 3 0 

5 5 3 4 1 0 2 

since (1.1) (1.1 ) I=- 1 (1 (1.1 )) . 

Diassociative loop: 

A loop is said to be diassociative lop if every two elements in it generate a group. 

Antiautomorphic inverse property loop: 

A loop h aving anti automorphic inverse property is called antiautomorphic inverse loop. 

Automorphic inver se property loop: 

These loops satisfy the automorphic inverse property loop. 

Two-sided inverse loop : 

A loop L in having unique inverses i.e x A = x P I;Jx E L is called two-sided inverse loop. 

Right inverse property loop: 

A loop having right inverse property is called right inverse property loop. 

Left inverse property loop: 

A loop having right inverse property is called left inverse property loop. 

Inverse property loop(IP Loop): 

A loop having both left and right inverse property is called inverse property loop or it 

satisfies x-1(xy) = (yx)x - 1 = y 

Steiner loop: 

An Inverse property loop of exponent 2 is called a Steiner loop . 

Weak inverse property loop: 

A loop satisfying weak ill verse propety is called weak inverse property loop. 
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Cross inverse property loop( ClP loop): 

If a loop satisfies cross inverse property then it is called e lP loop. 

Jordan Loop: 

A loop L satisfying x 2 (yx) = (x 2y) x "Ix, y E L , is called Jordan loop . 

Automorphic loop (A-loop): 

An automorphic loop is a loop whose inner mappings are automorphisms. 

2.2 Main results 

The aim of this section is to record some results which will be needed in sequel. 

Theorem 2 (8, lemma 2.1J Every inner-mapping of a .Moufang loop is a pseudo-automorphism. 

Theorem 3 (8, Theor-em 2J The n'ucleus of a Moufang loop is a norrnal subloop. 

Theorem 4 (12, Lagmnge's theoTemJ The order- of any subloop of a .finite M oufang loop M 

divide the or-der of M . 
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In [10], F. Fenyves listed all the 60 identities of Bol-Moufang types. "\iVe consider here, the 

identi t ies for LC and RC loops. 

Remark 5 List for LC and RC identities is the following 

xx.yz (x .xy)z LC-identities 

xx.y z (xx.y) z 

xx .y z x(xy.z) 

(x.xy) z x(x.y z ) 

(x.xy) z x(xy .z ) 

(x.xy) z x(x .yz ) 

(xx .y )z x(x.yz ) 

(xx .y )z x(xy. z) 

x(x.yz ) x(xy. z ) 

y z .xx (y z .x)x 

y z .xx (y. z x)x 

y z .xx y( zx .x) R C-identities 

yz .xx y( z .xx) 

(yz.x)x (y. zx)x 

(y z .x)x y(zx .x) 

(y z .x)x y( z .xx) 

(y .zx )x y( zx .x) 

(y .z x)x y( z .xx) 

y( zx .x) y( z .xx) 

T heorem 6 [10, Th eorem 4JA loop 'is a C-loop ~f and only ~f it is both LC- and RC-loop . 

Remark 7 [10, Table lJ The multiplication table given below defines an L C-loop but not a 
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C-loop. 

0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 0 5 4 3 2 

2 2 4 0 5 1 3 

3 3 2 1 0 5 4 

4 4 5 3 2 0 1 

5 5 3 4 1 2 0 

Theorem 8 /10, Corollary 3} EveTY LC loop is poweT- associat'ive. 

Theorem 9 /10, TheoTem 2} If L is an LC-loop, then 

(i) L has left inveTse pTopeTty. 

(ii) L is left altemative, 

(iii) x? is in the left nucleus of L fOT all x in L. 

(Analogous Teszdts holds fOT RC-loops) 

Theorem 10 /21, Lemma 5}The Following pTOpeTties aTe tTue in any Tight centml loop L. 

(i) If s is the square of some elernent of L and x is any element of L, then (xs) - l = s-lx - 1 

(i'i) The onleT of any elem ent is a divisOT of the olyleT of L. 

Theorem 11 /21, PTOposition 6}Any RC of odd oTdeT is a gTOUp. 

Theorem 12 /14, T heoTem, 4.5} If L is an IP loop then N(L) = N,\(L) = Nf.L(L) = Np(L). 

Theorem 13 /20, Lemma 3.3} Let fJ, : G x G ---t A be a f actoT set. Then (G , A, fJ,) is a C-loop 

~f and only ~f 

fJ,(h , k) + fJ,(h , hk) + ~i(.q , h , hk ) = fJ,(g , h ) + fJ,(gh , h ) + fJ,(gh .h, k) 

fO T eveTY g , h , k E G. 

Theorem 14 /20, PTOposition 3.4} Let n > 2 be an integeT. Let A be an abelian gmup of onleT 

17" and a E A, an element of oTdeT bigg eT then 2. Let G = {I , ti , v , 'W} be a Klein gTOup with 
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nwtml element 1. Then (G,A , ~L) is a non-fle;r;ible C-loop with N = {(l ,a) : a E A}, wheTe ~L 

is a factoT set. 

Exercise 15 {2O, Example 3.7J The smallest non commutative, non associative C-loop, which 

satisfied abovp condition, is given by 

0 1 2 3 4 5 6 7 8 9 10 11 

0 0 1 2 3 4 5 6 7 8 9 10 11 

1 1 2 0 4 5 3 7 8 6 10 11 9 

2 2 0 1 5 3 4 8 6 7 11 9 10 

3 3 4 5 0 1 2 9 10 11 6 7 8 

4 4 5 3 1 2 0 10 11 9 7 8 6 

5 5 3 4 2 0 1 11 9 10 8 6 7 

6 6 7 8 10 11 9 0 1 2 5 3 4 

7 7 8 6 11 9 10 1 2 0 3 4 5 

8 8 6 7 9 10 11 2 0 1 4 5 3 

9 9 10 11 8 6 7 3 Ll 5 2 0 1 

10 10 11 9 6 7 8 4 5 3 0 1 2 

11 11 9 10 7 8 6 5 3 4 1 2 0 
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In [15] Kinyon, Kunen and Plilllips, proved that If A is, say, the 10-element Steiner loop , 

then it is not a group and hence not Mou£ang. Fig. 1 depicts the sub-varieties of diassQciative 

loops discllssed ill that 

paper. 

Diaassociative 

Mounfang 

Fig. 1 

2.3 Implications 

1) Diassociative loop =} Power alternative loop. 

2) Diassociative loop =} Flexible loop. 

3) Extra loop =} Moufang loop. 

4) C-Ioop =} RC-loop. 

5) C-Ioop =} LC-Ioop. 

6) C-Ioop and Flexible loop =} Diassociative loop. 

7) RC-loop and LC-Ioop -} C-Ioop. 

8) LC-Ioop =} Left nuclear square loop . 
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9) LC-loop => Middle nuclear square loop . 

10) RC-loop => Right nuclear square loop. 

11) RC-loop => Middle nuclear square loop. 

12) Moufangloop => Left Bol loop. 

13) Moufang loop => Right Bol loop. 

14) Left Bol loop => Left Power alt ernative loop . 

15) Right Bol loop => Right Power alternative loop . 

16) Power alternative loop => Alternative loop. 

17) Left Bol loop and R ight Bol loop => Moufang loop. 

18) Left Power alternative loop and commutative loop => Right Power alternative loop. 

19) LC-loop and commutative loop => C-loop. 

20) Commutative loop => F lexible loop. 

21) Nloufang loop => F lexible loop. 

22) Moufang loop => IP loop . 

23) Moufang loop => Stiener loop. 

24) C-loop => IP loop. 

21 



Figmc 2 shows all varieties of loops of Bol-Moufang type and all inclusions among them, 

discussed by Kinyon, Phillips and Vojtechovsky in [16J . 

tI'loufang Loop (-Loop 

//'/ 

./ -....... .................. 

~~ 
Left 801 Loop .--Ri-gh-t-S.LOI-IO-O-P----. I FleXi~l e Loop 

-----------------.-----'--'='-----, / 
r----'-------, 

Left Alternative Loop luclear square 100 Middle Nuclear sq.lp Right Nuclear sq,loop 

Fig.2 
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Chapt er 3 

A study o f Conjugate loops 

This chapter consist s of t hree sections. In sectionl , the introduction and basic definition of 

conjugate loop is given. It also includes the counting of conjugat e loops up to the order 8 

and the properties of conjugate loops which distinguish this class of loops with other classes. 

Section 2 consist s of the relation of conjugate loops with other loops. Here we define the exact 

location of conjugate loops among different types of loops. In the last section, we construct a 

family of conjugate loops using two groups such that one is multiplicative group and other is 

additive ab elian group. 

3.1 Conjugate loops 

D efinition 16 A Loop L is said to be a conjugate loop ~f it satisfies the fo llowing identity 

23 



3.1.1 Counting of conjugate loops 

Smallest conjugate loop is of order 5 given below. 

o 1 234 

o 0 1 234 

1 1 0 342 

2 24 0 1 3 

3 3 240 1 

443 1 2 0 

Above loop is non-diaassociative, non-alternative and does not satisfy inverse property. Also it 

does not satisfy the identity (xy) - l = x-1 y- l(AutomoTphic InveTse PTopeTty) but it satisfies 

(xy) - l = y- 1x-1(AnticmtomoTphic Inv eTs e PTopeT'ty) .This loop is also a flexible loop and 

pO\.ver-associa tive . 

order conjugate loops flexible 

5 1 1 

6 4 4 

7 4 4 

8 53 51 

Clearly smallest conjugate loop which is not flexible is of order 8. Also smallest non power­

associative conjugate loop is of order 8. 

Smallest non flexible, non power-associative conjugate loop is 
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0 1 2 3 4 5 6 7 

0 0 1 2 3 5 5 6 7 

1 1 0 4 5 6 7 3 2 

2 2 7 5 0 3 1 4 6 

3 3 6 0 4 1 2 7 5 

4 4 2 3 6 7 0 5 1 

5 5 3 7 2 0 6 1 4 

6 6 4 1 7 5 3 2 0 

7 7 5 6 1 2 4 0 3 

3.1.2 Properties of conj ugate loops 

Conjugate of an e lement 

Let L be a conjugate loop then y is said to be the conjugate of x, where x, y E L if thcre exists 

some g E L such that g(xg- I ) = y. 

Conjugat e of every element exists in conjugate loops. 

Since x( e.x- I ) = x.x- I = e If x E L where e is thc identity element of L. So, conjugate of 

ident ity is identity itself. 

Also , if x- I = y then y(xy- l ) = X. SO for all x E L, there exists x - I E L such that 

x- I(x.(x- I) - I) = (x- Ix) .(x - I) - I = e.x = x 

Conjugacy is not an equivalence relation 

Unlike groups, conjugacy is not an equivalence relation in conjugate loops. 

Reflexive: 

Let L be a conjugate loop . 

Since (xx)x- 1 = x(xx - I ) = x(e) = x If x E L , where e is the identity ofL. So L is reflexive. 
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Symmetric: 

Following example shows that symm etric property does not hold in conjugate loops. 

Example 17 

0 1 2 3 4 5 6 7 

0 0 1 2 3 5 5 6 7 

1 1 0 3 2 5 6 7 4 

2 2 3 1 0 6 7 4 5 

3 3 2 0 1 7 4 5 6 

4 4 5 6 7 3 0 1 2 

5 5 6 7 4 0 1 2 3 

6 6 7 4 5 1 2 3 0 

7 7 4 5 6 2 3 0 1 

In this loop 4 is the conj ugate of 7, because there exists 2 E L such that 2( 72- 1) = 4. But 

we cannot find any g E L such that g( 4g- 1) = 7. So, 7 is not a conjugate of 4 hence symmetric 

property does not hold in conjuagte loops. 

Transitive: 

Above loop also shows that the transitive proper ty does not hold in conjugate loops. 

here 7 is the conj ugate of 5 and 5 is the conjugate of 4 but clearly 7 is not a conjugate of 4. 

hence conjugacy is not an equivalence relation in conjugate loops . 
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C onjugat e of a s ubloop is not a sublo op 

We know that in groups, conjugate of a subgroup is again a subgroup. But following example 

shows that it is not true in the case of conjugate loops. 

Example 18 ConsideT the following conjugate loop of oTdeT 20. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

2 2 1 4 3 6 5 8 7 10 9 12 11 20 19 18 17 16 15 14 13 

3 3 10 5 2 7 4 9 6 1 8 13 14 15 16 17 18 19 20 11 12 

4 4 9 6 1 8 3 10 5 2 7 14 13 12 11 20 19 18 17 16 15 

5 5 8 7 10 9 2 1 4 3 6 15 16 17 18 19 20 11 12 13 14 

6 6 7 8 9 10 1 2 3 4 5 16 15 14 13 12 11 20 19 18 17 

7 7 6 9 8 1 10 3 2 5 4 17 18 19 20 11 12 13 14 15 16 

8 8 5 10 7 2 9 4 1 6 3 18 17 16 15 14 13 12 11 20 19 

9 9 4 1 6 3 8 5 10 7 2 19 20 11 12 13 14 15 16 17 18 

10 10 3 2 5 4 7 6 9 8 1 20 19 18 17 16 15 14 13 12 11 

11 11 12 19 14 17 16 15 18 13 20 1 2 9 4 7 6 5 8 3 10 

12 12 11 20 13 18 15 16 17 14 19 2 1 4 9 6 7 8 5 10 3 

13 13 20 11 12 19 14 17 16 15 18 3 4 1 6 9 8 7 10 5 2 

14 14 19 12 11 20 13 18 15 16 17 4 3 6 1 8 9 10 7 2 5 

15 15 18 13 20 11 12 19 14 17 16 5 6 3 8 1 10 9 2 7 4 

16 16 17 14 19 12 11 20 13 18 15 6 5 8 3 10 1 2 9 4 7 

17 17 16 15 18 13 20 11 12 19 14 7 8 5 10 3 2 1 4 9 6 

18 18 15 16 17 14 19 12 11 20 13 8 7 10 5 2 3 4 1 6 9 

19 19 14 17 16 15 18 13 20 11 12 9 10 7 2 5 4 3 6 1 8 

20 20 13 18 15 16 17 14 19 12 11 10 9 2 7 4 5 6 3 8 1 

Here consider the subloop H= {I , 2, 16, 17} , 

9H9- 1= {1 ,6,12,13} i~ HoL a subloop of the above loop. 
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Theorem 19 In a Conjugate loop L , if H :::! L then x (Hx - I) = H. 

Proof. Let L be a conjugate loop and I-I :::! L , then by the defination of normal subloop 

aH Ha (3.1) 

a(bH ) (ab) H (3.2) 

::'low 

x (I-Ix - I) x(x- I H ) from equation (3 .1) 

(xx - I)H from equation (3.2) 

H 

• 
Theorem 20 Quotient loop of a conjllgate loop is again a conjugate loop. 

Proof. Let L be a conjugate loop and N be its normal subloop. we h ave to show that L IN 

is a conjugate loop . 

~o\v let xN, yN E L I N 

also , we know that (xN) - l = x- I N 

xN(yNx-1 N) 

so L IN is a conjugate loop. 

xN(yx-1 N) 

xNyx-IN 

x(yx-I)N 

(xy)x- I N 

xyNx- IN 

(xNyN)x - IN 

Theorem 21 Homomorphic image of conjugate loop is again a conjugate loop . , 
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• 
Proof. Let L be a conjugate loop and f b e a homomorphism from L to K i.e f: L ---> 1(. 

We have to shmv that f(L) is also a conjugate loop. 

Now let x , Y E L and L is a conjugate loop so (x-1y)x = x - 1(yx) 

(x - 1y)x x - 1(yx) 

=> f((x - 1y)x) = f((x - 1(yx)) 

=> f(x - 1y)f(x) = f(x - 1 )f(yx) 

=> (f(x - 1)f(y))f(x) = f(x - 1)(f(y)f(x) 

=> (f(x) - lf(y))f(x) = f(x) - l(f(y)f(x)) 

f(x - 1) 

hence f(L) is a conjugate loop . • 

Theorem 22 Direct prOcitlct of conjugate loop is a conjugate loop. 

Proof. Let Ll and L2 be two conjugate loops. We have to prove that L l x L2 is again a 

conjugat e loop i. e (X l , X2)- 1((Yl , Y2) (Zl , Z2)) = ((Xl , X2) - I(Yl , Y2))( ZI . Z2) 

(x II , x2
1 )(YI Z2, Y2Z2 ) 

(xII (YI Z2) , X2 1 (Y2 Z2)) 

((x l
lYI) Z2) , (x2

IY2) Z2)) since L is conjugate loop 

((xII , X2 1 )(Yl, Y2)) (Zl , Z2) 

(Xl lYI , x2
IY2)( Zl , Z2 ) 

((xllyd zl , (x2
IY2) Z2) 

((Xl , X2) - I(YI , Y2))( ZI , Z2) 

So, Direct product of conjugate loop is again a conjugate loop. • 
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Corollary 23 Let L 1 , L 2, L 3, ... Ln be n conjugate loops, then Ll x L 2 x L 3 ... x Ln is also a 

conjugate loop . 

Corollary 24 Let L be a conjugate loop then L x L x L ... x L (n-times) is again a conjugate 

loop. 

T heorem 25 In Conjugate Loop L , L xR x-1 = R x-l L x .Sim ilaTiy R xL x- 1 = L x-l R x. 

P Tuof. Let y E L 

• 

(xy) R x- l 

(x y )x-1 

x (yx- 1
) 

x (y R x- l ) 

y R x- IL x 

R x-I L x 

The ore nl 26 Ify E N( L ) where L is a c01nmutative conjugate loop then L x- LyL," = L xLy L X-I. 
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Proof. Let z E L then 

• 

((x - 1y )z) L x 

x((x - 1y) z ) 

x(x- 1(y z )) since y E N(L) 

(x - 1 (y z ))x commutativity 

x-1 ((y z )x) conjugate property 

x-1(y(zx)) since y E N(L) 

Y( ZX) L X- l 

Theorem 27 In Conjugate loop L , 

(i) Ly ,x fix x-I 

(ii) L y,x - 1 fix x . 

Proof. Let L be a conjugate loop and x, y E L. 

i) 

- 1 
X Ly ,x - 1L L L - 1 

x y x xy 

( - 1)L-1 X yx xy 

(xy)x - 1 L -:;; 'identity of conj1tgate loops 

- 1L L - 1 
x xy X'v 
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(ii) 

x Ly ,x I L L L -l 
X Y X I x-1y 

(x - 1y)x L - 1 identity of confugate loops x-1y 

x 

• 
T heorem 28 In any two sided 'inveTse loop L , ~f Ly ,x fix eveTY elements of L then L is a 

conjugate loop. 

Proof. Let L y,x .fixes eveTY elem ent of L then 

z Ly ,x 

put z 

- II x Jy ,x 

- 1L L L - 1 
x y x xy 

H en ce, L is a conjugate loop. 

(y x - 1
) L x 

X (yx- 1 ) 

z V z E L 

- 1 
X 

- IL x xy 

(x y) x-I 

(x y) x- I 

Theorem 29 Let L be a conjugate loop then L x,x- I and R x,x-I .fix N(L ). 
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Proof. Let a E N (L) 

• 
Also, 

• 

1 (a)LxLx - lL -;;_lx 

(a)LxLx - 1 

(x - 1 x)a 'using conj1Lgate pTOperty 

a 

(a)RxRx - l 

(ax )x- I 

a 

since a E N(L) 

3.1.3 Conjugate loops and Autotopisms 

Theorem 30 Let L be a two sided inverse loop and (L x, L x-l, R x-l L x ) is an autotopism fOT 

all x, y E L then L is a conjugate loop. 

Proof. Let L be a two sided inveTse loop and (L x, L x-l, R x-1Lx) is an autotopism, fOT all 

33 



x, Y E L. Then by defindion 

(1£) L x (v) L X -l 

( xu) ( x - I v) 

put 1£ 

(xy) ( x- I e) 

x(yx - 1 ) 

(1£V)RX -1Lx "i1£, vEL 

X ((uv ) X - I) 

y and v = e 

x ((ye) x-I) 

(xy)x - I 

T heorem 31 L et L be a two sided inveTse loop and (L x,!dL, L x) zs an CL1ltotopism faT all 

x, y E L then L is a conjugate loop . 

• 
Proof. L et L be a two sided inveTse loop and (L x, I dL , L x) is an autotopism faT all x, y E L. 

Then by definition 

(1£) L x (v) IdL 

(X1£) (v) 

]Jut 1£ 

(xy)x- I 

so L is a conj1£gate loop . • 

('uv)Lx "i u , vEL 

x (1£v) 

y and v = X- I 

T heorem 32 Let L be a two sided inveTse loop and (L x-I,! dL , L",-I) is an autotopism faT all 

x, y E L then L is a conj1tgate loop. 

Proo f . L et L be a two sided inveTse loop and ( L x-J, I dL, L x-I) is an autotopism faT all 

x, y E L. Then by definit'ion 
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(u)Lx-1 (v)IdL 

(X - 1U)(V) 

so L is a conjz.gate loop. • 

(-uv)Lx-1 If u, vE L 

X- I (uv) 

y and v = X 

x-I (yx) 

T heorem 33 Let L be a two sided inverse loop and (Lx, Rx-I , LxRx-l) is an autotopism fOT 

all x, y E L then L is a conjugate loop. 

Proof. Let L be a two sided inverse loop and (Lx , R x-I, L xR x-l) is an autotopism for all 

x, y E L.Then by definition. 

(u) L x (v) Rx-I 

(xu)(vx- I ) 

so L is a conjugate loop. 

put u 

(xe)(yx - I ) 

x(yx- I ) 

(uv)LxRx - 1 Ifu, vE L 

(x (uv))x - I 

e and v = y 

(x (ey) )x- I 

(xy)x - 1 

Theorem 34 Let L be a two sided inveTse loop and (Lx , L y , Lxy) is an azdotopism faT all 

x, y E L then L is a conjz.gate loop . 

• 
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Proof. Let L be a two sided inverse loop and (Lx , Ly, Lxy) IS an autotopism for all 

x, y E L.Then by definition 

(-u) Lx (v) Ly 

(x-u)(yv) 

put li 

(x e)(yx- l) 

x(yx-1 ) 

(-uv)Lxy \f-u, vE L 

xy (uv) 

e and v = x- I 

xy(ex - 1 ) 

(xy)x - 1 

so L is a conjugate loop . • 

Proof. Let a, b E L. 

(a)Lx - 1 RxL~21 R ;;; l (b)Lx- 1 RxL~2IR;;;1 

((x - 1a)x )L~2 1 R;;;l( (x -1 b) x )L~21 R;;;l 

(x - 1 (ax) )L~21 R;;; l (( x-1 (bx )) L~!I R ;;; l using conjugate properLy 

(ax) Lx-I L~2I R;;; I(bx)Lx-l L~21 R;;;l 

(ax)R;;;l(bx )R;;;l 

ab 

(ab)Lx-1 RxL~2 1 R ;;; l 

( - 1 b) )L- 1 R - 1 x .a x x- I x 

(x - 1 (ab.x ))L~! I R ;;; l 

(ab.x )Lx- I L~21 R;;; I 

(ab.x)R;;; 1 

ab 
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So, 

hence, Cx- l,x is an automorphism. _ 

Theorem 37 Let L be a conjugate loop and x E N(L) then following are the autotopisms in 

L. 

(i)(CX- I,X' Rx , Rx) 

(ii)( Lx, CX-I,X' Lx ) 

(iii)(LxCx- 1 ,Xl I dL , Lx) 

(iV)((Cx- l,x)-l, Rx, Rx) 

(v)(Lx, (Cx- l,x)- l , Lx) 

Proof. Let y , z E L 

(i) 

(y)Lx - J RxL-;;~ 1 R;l .(z) Rx 

((x - Iy)x )L-;;~ l R;I .zx 

(x - 1 (yx) )L-;;~l R; l. zx using conjugate property 

(yx)Lx- J L-;;~ IR;I . zx 

(y x) R; l. zx 

y( zx) 

(y z )x 

(y z )Rx 

since x E N( L ) 

so, (Cx - l ,x, Rx, Rx) is an au tot opism. 
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(ii) 

(iii) 

(y)L.E.( z )Lx lRxL;;;2IR; l 

xy. ((X - 1 z )X )L;;~J R;;;l 

xy . (x- l( zx)) L;;~ IR;;; l using conjugate property 

xy .(zx )Lx-1L;;~1 R ;;; l 

xy.(ZX )R;;; l 

(xy) z 

x(yz ) 

(y z)Lx 

since x E N(L) 

(y )LxLx-1 RxL;;!J R;;;l.z 

((x - 1.xy)x )L;'!J R;;;l.z 

(x - 1(xy .x))L;;!IR;;;1 .z using conj ugate property 

(xy.x)Lx - 1 L;;!l R ;;; l z 

(xy.x )R;;;l.z 

(xy) z 

x(yz ) since x E N(L) 

(y z )Lx 
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(iv) 

(v) 

(y) (L ,;- 1 R."L;;21 R ;;; l )-1 .(z) Rx 

(y )RxLx-1 R;; l L;;~1 .ZX 

(X - 1 (yX) )R;;l L;;~1 .ZX 

(( - 1 ) )R- 1L- 1 
X Y X x x - 1 ' ZX 

( - 1 )R R - 1L- 1 
X Y x x x- 1'ZX 

(x - 1y)L;;21.zx 

yLx- lL;;21 (ZX) 

y(ZX) 

using conjugate property 

(YZ)X since X E N(L ) 

(yz) Rx 

(y )Lx. (z )( LX- I Rx L;;2 1 R;;l) - l 

xy.( z )RxLx- IR;; l L;;21 ' 

xy. (x-1 (ZX) )R;;1 L;;21 

xy .((x - 1 z )x )R;;1 L;;21 using conj ugate property 

( - 1 )R R - 1L- 1 xy . X Z x x x - I 

( - 1 )L- 1 xy . X Z x- I 

(xy) z 

x( yz ) since X E N( L ) 

(yz) Lx 
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3.2 Relation of conjugate loops with other types of loop 

In this section we investigate connections between conjugate loops and other branches of loops. 

Theorem 38 Every SteineT loop is a conjugate loop. 

Proof. As we know that commutative IP loop of exponent 2 is a Steiner loop 

so it satisfies 

Jo w 

and 

(yx)x - I = Y 

x(x - 1y) 

Y 

x-I (xy) 

Y 

so, every Steiner loop is a conjugate loop. • 

Theorem 39 Every Nloufang loop is a conj1£gate loop. 

Proof. Consider a Moufang loop identity 

(xy)( zx) 

putting z 

xy 

(xy)x - 1 

(x(yz))x 

x- I 

(x(yx - I))x 

((x(yx - I))x)x - I 

x(yx- I ) by inverse property 

so, every Moufang loop is a conjugate loop. • 
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Remark 40 Following loop is a conjugate loop but not a SteineT neitheT Nloufang . So, con-

veTses of above theoTems aTe not tTue. 

o 1 23 4 

o 0 1 234 

1 1 0 34 2 

22340 1 

334 1 2 0 

442 0 1 3 

Theorem 41 EveTY LC-loop is a conjugate loop. 

Proof. T he identity of LC-loop , given in the remal'k(5) is 

x(x ·YZ) 

replacing z 

x(x.yx- 1 ) 

x-1(x(x .yx-1)) 

x(xy .z ) 

x(xy. x-1 ) 

x- 1(x(xy .x-1)) pre-mult iplying by x-I 

Hence, every LC-loop is a conjugate loop. • 

Theorem 42 EveTY RC-loop is a conjugate loop. 

Proof. The identity of RC-loop, given in the remark (5) is 

(x .yz )z 

replacing z 

(x.yx - 1 )x- 1 

((x .yx-1)x-1)x 

- 1 ce.yx 

(xy .z)z 

( - 1) - 1 x y. x X 

((xY .X- 1)X- 1)X post-multiplying by x 

- 1 xy.x 

Hence every RC-loop is a conjugate loop . • 
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Corollary 43 According to Theorem,(6) , A loop L is a C-loop if and only ~f it is both LC- and 

RC-loop . so, 

C-loop =} LC-loop =} Conjugate loop 

C -loop =} RC -loop =} Conjugate loop 

or 

C-loop =} Conj'ugate loop 

Therefore , every C-loop is a conjugate loop. 

Exercise 4-4- Consider the followind loop. 

0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 0 4 5 3 2 

2 2 5 0 4 1 3 

3 3 4 5 0 2 1 

4 4 2 3 1 5 0 

5 5 3 1 2 0 4 

This conjugate loop is not a C-loop neither LC nor RC. 
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I\'ow i t can be seen tha t conjugate loops find their p lace in Fig.l of chapter 2, as shown 

below in Fig.3 

Conjugate 

Mounfang 

<=Iexlble C 

Fig. 3 

Theorem 4 5 Let L be a loop of exponent 2 then L is a conjugate loop iff it is .flexi ble. 

Proof. Suppose L is a conjugate loop then 

x(yx- 1
) = (x y )x-1 Vx, y E L (3.3 ) 

since L is of exponent 2 so, 

01' 

(3.4) 
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so, above equation(3 .3) becomes 

x(yx) = (xy)x 'v'x, y E L 

which proves that L is a flexible loop . 

Now conversely suppose that L is a flexible loop . Then it satisfies 

From equation(3.4) ,we h ave 

so, L is a conjugate loop. • 

Counter Examples: 

x(yx ) = (xy)x 'v'x, y E L 

x(yx - 1
) = (xy)x - 1 'v'x, y E L 

Example 46 Lx,y is not a pset.do-autorrwTphism in conjugate loops. ConsideT the follo wing 

conjugate loop of onteT 1. 

consideT 

o 1 

001 

112 

220 

336 

445 

553 

664 

2 3 4 5 

2 3 4 5 

o 5 6 4 

1 653 

540 1 

6 0 3 2 

42 1 6 

3 1 2 0 

6 

6 

3 

4 

2 

1 

o 
5 

(1 6) 

(O)L1,3 = 0 

(1)L1,3(2)L1,3 6. 2 = 3 

(1.2)L1 ,3 -=J- (1)L1,3(2) L 1,3 
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A nd we cannot .find any companion c E L s'uch that 

By Theorem(2) ,in l1wufang loops every innermapping is a pseudo-automorphism, shows that 

this result is not tnLe for conjzigate loops. 

Example 47 A ccording to TheoTem (3) , in Mou,fang loops Nucleus is a normal subloop but it 

is not true in the case of conjugate loops. ConsideT following conjugate loop L of order 8. 

0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 

1 1 0 4 5 2 3 7 6 

2 2 5 0 6 7 1 3 4 

3 3 4 6 0 1 7 2 5 

4 4 3 1 7 6 0 5 2 

5 5 2 7 1 0 6 4 3 

6 6 7 3 2 5 4 1 0 

7 7 6 5 4 3 2 0 1 

here N(L)= {O,l} which is not normal in L. 

Example 48 Following conjugate loop contmdicts Theorem( 4) . 

0 1 2 3 4 

0 0 1 2 3 4 

1 1 0 3 4 2 

2 2 4 0 1 3 

3 3 2 4 0 1 

4 4 3 1 2 0 

Example 49 Following conjzigate loop is not a power-associative, hence a counter example of 
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TheoTem(8) . 

0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 

1 1 0 3 2 5 6 7 4 

2 2 3 1 0 6 7 4 5 

3 3 2 0 1 7 4 5 6 

4 4 5 6 7 3 0 1 2 

5 5 6 7 4 0 1 2 3 

6 6 7 4 5 1 2 3 0 

7 7 4 5 6 2 3 0 1 

Example 50 Following non associative conjugate loop is of oTdeT 5 so TheoTem( ll ) fails faT 

conjugate loops. This loop also contmdicts TheoTem( lO ) (ii). 

0 1 2 3 4 

0 0 1 2 3 4 

1 1 0 3 4 2 

2 2 4 0 1 3 

3 3 2 4 0 1 

4 4 3 1 2 0 

Example 51 Conjugate loop g'iven below contmdicts TheoTem( lO ) (i). 

0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 0 3 4 5 2 

2 2 4 0 5 3 1 

3 3 5 1 0 2 4 

4 4 2 5 1 0 3 

5 5 3 4 2 1 0 

Theorem 52 EveTY CIP( cmss inveTse pmpedy) loop is a conjugate loop. 
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Following example shows that the converse of above theorem does not hold. 

Example 53 

0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 0 4 5 3 2 

2 2 5 0 4 1 3 

3 3 4 5 0 2 1 

4 4 2 3 1 5 0 

5 5 3 1 2 0 4 

This conjugate loop of onleT 6 is not a CIP loop. 

Theorem 54 A conjugate loop L is a CIP loop iff eveTY element in L is self conjugate. 

Theorem 55 EveTY loop of exponent 3 is JOTdan iff it is cort,Jugate loop. 

Proof. Let L be a loop of exponent 3 and suppose that it is Jordan.Then 

x2 (yx) 

x- 1(yx ) 

So L is a conjugate loop. 

(x 2y)x 

(x - Iy)x since L is of exponent 3 

Conversely suppose that L is a conjugate loop of exponent 3. 

x - 1(y x) 

x 2 (y x) 

So, L is a Jordan loop. • 

(x - 1y )x 

(x 2y) x since L is of exponent 3 

Theorem 56 Let L be an IP loop then L is a confugate iff it is .fi exible. 

Proof. Suppose L is a conjugate loop, we have to show that it is .fi exible 
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(x(yx))x- 1 

(x(yx) .x - 1)x 

(X(yx) 

so L is .fl exible loop 

x((yx .x-1) since L is a conjugate loop 

xy 

(xy)x 

(xy)x 

by inveTse pmpeTty 

post multiplying by x 

by inveTse pmpeTty 

now, conveTsely suppose that L is .flexible loop 

((X(yx - 1) .X)X- 1 

x(y x - 1 ) 

So L is a conjugate loop . • 

xy 

(xy)x - 1 

(xy)x - 1 

48 

by .flexibility 

by inveT'se pmpeTty 

post multiplying by x - I 



Fig .4 describe these results diagrammatically. 

LC·loop RC·loop 

Fig.4 
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3.2.1 Inverse property Conjugate Flexible loop(IPCF loop) 

T heorem (56) shows that an IP loop is conjugate loop iff it is fl exibl e. Here we now define a 

class of loop whi ch has all these three properties together called IPCF loops. 

Counting of IPCF loops 

Smallest non associative IPCF loop is of order 7, given below 

0 1 2 3 4 5 6 

0 0 1 2 3 4 5 6 

1 1 2 0 5 6 4 3 

2 2 0 1 6 5 3 4 

3 3 6 5 4 0 1 2 

4 4 5 6 0 3 2 1 

5 5 3 4 2 1 6 0 

6 6 4 3 1 2 0 5 

This loop is not a dia-associa tive loop. 

Since every Moufang is an IP, conjugate and flexible loop so, every moufang loop is a IPCF 

100p.Also steiner loops are IPCF loops. 

In [1] J. Slaney and A. Ali listed the IP loops upto the order 13. Here \Ve added to that list , 

IPCF loops of the respective orders. 

size IP loops IPCF loops 

7 1 1 

8 3 0 

9 5 0 

10 45 7 

11 48 2 

12 2679 1 

13 10341 5 
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Properties of IPCF loops 

In commutative conjugate loop L, 

but in commutative IPCF loops 

g(g - la) by commutativity 

a by inverse property 

so we have a following result 

Theorem 57 An IPCF loop L is commutative iff every element in L is se~f conj1tgate. 

Proof. Suppose L is commutative and g, a E L then 

g(g - la) by commutativity 

a by inverse property 

which implies that every clement in L is self-conjugate. 

Now, conversely suppose that in L every element is self-conjugate then 

g(ag - 1) 

((ga)g - l )g 

ga 

a 

ag post multiplying by g 

ag by inverse property 

So, L is commutative . Hence the result follows. • 
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T heorem 58 Let L be a IPCF loop then x E Z(L) iff following conditions hold. 

(i) x E C(L) 

(ii) (Rx, L;/ Rx, R x) is an autotopism. 

Proof. Suppose first that the (i) and (ii) holds. 

=} (y) Rx.(z) L;;I Rx = (y z )Rx 

=} (y) Rx.(z )Lx-1 Rx = (y z )Rx 

=} yx .(x - 1 z )x = (y z )x 

=} yx .x- 1(zx) = (yz)x using conjugate prop erty 

=} yx .x - 1(xz) = (y z )x since x E C (L ) 

=} yx. z = yz .x using inverse prop er ty 

=} xy.z = x .yz since x E C( L ) 

we know that in IP loops 

N( L ) N)..(L) = Np.(L) = Np(L) using theorem (12) 

=} x E N(L) 

=} x E N(L) n C(L) as x E C(L) 

=} x E Z( L ) as Z( L ) = N( L ) n C( L ) 

Conversely, let 

x E Z( L ) 

=} x E N( L ) n C(L) 

=} x E N( L ) and x E C( L ) 
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As 

• 

N( L ) N)..( L ) = NJ.t( L ) = Np( L ) using Theorem (1 2) 

=? x E N).. (L ) 

=? xy. z = X.yz V y, z E L 

=? yx .z = yz .x since x E C(L ) 

=? yx.x(x- 1z ) = yz .x using inverse property 

=? yx .(x - 1z )x = yz .x since x E C(L) 

=? (y )Rx( z )L;;I Rx = (y z )Rx 

Corollary 59 Let L be a IPCF loop and x E C( L ) then following are the autotopisrns in L . 

(i) (Rx, L; l R x, Rx) 

(ii) (L; l Rx, Lx, Lx ). 
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3.3 Construction of conjugate loops 

Let G l,e a multipli cative group with neutral element 1, and A be an abelian group written 

additively wit h neutral element O. Any map 

/-i:G xG->A 

satisfying 

f-i(l , g) = /-i (09 , 1) = 0 for every 09 E G 

is called a factor set. vVhen f-i : G x G -> A is a factor set, we can define multiplication on 

G x A by 

(g , a)(h , b) = (gh ,a+b + f-i(g , h)). (3.5) 

The resulting groupoid is clearly a loop with neutral element (1, 0) . It will be denoted by 

(G, A, /-t). Additional properties of (G, A , /-i) can be enforced by additional requirements on /-i. 

, "'e construct conjugate loop with the help of two groups such th at one is mult iplicative 

group and other is additive abeli an group. 

Theorem 60 Let /1. : G x G -, A be a fa ctoT set then (G , A , 1-',) is a conjtio9ate loop if and only 

~f 

Proof· By definition the loop (G, A, f-i) is conjttgate ~f and only ~f 

{(g, a)(h, b)}(o9 , a) - l = (g, a){(h, b)(o9 , a) - I} 

co 71.8'ide'l, L.H.S 

{(g , a)( h, b)}(g ,a)-l (gh , a + b + /-t(g , h) )(g- 1, - a - /-t(09, 9 - 1) 

((g h)g- 1, a + b + f-i(g , h )) - a - f-i(g , g- l ) + f-i(gh , g-l)) 

((gh)g - 1, b + p,(09 , h )) - /-t (09, g- l) + /-i(gh , g- l)) 
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Now consideT R .H. S 

(g, a){ (h. b)(g, a) - 1} 

CompaTing both sides we get 

• 

(g. a){ (h, b)g- J, - a - p,(g, g- 1)} 

(g , a)(hg- 1, b - a - p,(g , g-l) + /-L(h , g- l)) 

(g(hg - 1), a + b - a - p,(g, g- l ) + p,(h , 9 - 1) + p,(g, hg- 1)) 

((gh)g -1, b - p,(g , g- l) + p,(h, g- l) + p,(g, hg- 1)) 

Theorem 61 Let n > 2 be an integeT and let A be an abelian gTOUp of oTdeT n , and a E A 

an element of onleT biggeT than 2. Let G = {I , u , v, w} be the multiplicative gTOUp with neutml 

element 1. We defin e p, : G x G --; A by 

{ 

a ~f (x, y) = (u, w), (w, u) 

/L( X, y) = - a ~f (x , y) = (u, v), (v, u) 

o otheTwise 

Then (G,A , p,) is a conjugate loop with N(L) = {(l , a) : a E A}. 

Proof. Let L = (G, A, p,). The map /-L is conjugate factor set. It can be depicted as follows: 

p, 1 1£ v w 

1 0 0 o o 
u 0 0 

v 0 -a 0 0 

w 0 a o o 
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where we know tha t the group G has the following multiplication table. 

1 u v w 

1 1 u v w 

u u 1 w v 

v v w 1 1.£ 

W W V u 1 

To show that L = (G , A, p,) is conjugate loop , we verify equation (3.6) as follows. 

Take h = 1 in equation (3.6) we have 

p,(g , 1) + p,(g , g- l) 

/-t(g , 1) 

which is true for all 9 E G. 

Take h = u in equation (3.6) we have 

Now, putting 9 = 1, 1.£ , v, W 

/-t(l ,u) + /-t(u , 1) 

p,(u , 1.£) + p,(l , 1.£) 

p,(v, 1.£) + f.t(w , v) 

- a + O 

f.t(w , u) + /-t(v , w) 

a+ O 

Now , we put h = v in equation (3.6) we have 
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p,(l , g- l) + p,(g , g- l) 

p,(l,g- l) 

p,('lL , 1) + /-L(l , 1.£) = 0 

p,('u, 1.£) + p,('u, 1) = 0 

/-L(U ,V) + f.L(V ,W) 

- a + 0 = 0 

/-L(U , w) + p,(w , v) 

a+ O= O 



putting 9 = 1, u , v , W 

/-1,(1, v) + {l(V , 1) 

/-I'('l.l , v) + /-I'(w , 'l.l) 

- a+a 

{l(W , v) + {l('l.l , w) 

O+a 

VYe put now h = W in equation (3 .6) we have 

putting 9 = 1, 'l.l , v, W 

{l(l , w) + {l(w , 1) 

{l('l.l , w) + {l(v , 'l.l) 

a - a 

{l(g. w) + {l(gW ,g- l) 

{l(v , w) + {l(u , v) 

O- a 

{l(W , w) + {l( I , w) 

{l(V , 1) + /-1,(1, v) --= 0 

{l(V , v) + {l(V, 1) 

0 + 0 = 0 

{l(V , w) + {l(w , 'l.l) 

O+a= O 

{l(W, 1) + {l (I , w) = 0 

{l(w , 'l.l) + {l('l.l , v) 

a - a = O 

{l(W ,g- l) + {l(g ,wg- 1 ) 

{l(W , v) + {l(V , u) 

O-a= O 

{l(w ,w) + {l(W , 1) = 0 

hence equation (3.6) is true for all values of G. Now we will show that associative law does 

not hold in L = (G ) A , {l). For this consider 

('l.l,a)((v ,a)(v ,a) = ('l.l,a)( 1,2a) = (1l ,3a) 

and 

((U, Cl)(V, a))(v, a) = (w, 2a - a)(v, a) - (1l, 3a - a) 

=} ('l.l , a)((v , a)(v , a) i= (('l.l , a)(v , a))(v , a) 
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Now it remains to show that N(L) = {(1 ,a): a E A]} . For this consider 

so, 

((g. b) (1, a)) (h, c) 

(09 , b) ((1, a) (h, c)) 

(g, b + a + JL (09,1)) (h, c) 

(g , b+a+O)(h,c) 

(o9h , b + a + c + JL (09, h)) 

(g , b) (h, a + c + { L (1, h)) 

(09 , b) (h, a + c + 0) 

(gh , b + a + c + JL (g, h) ) 

=? ((g, b) (1 , a)) (h, c) = (09 , b) ((1, a) (h, c)) 

=? (1, a) E Np (L) 

Similarly we can show that 

(1, a) E N), (L) and (1, a) E Np (L) 

hence 

(1 , a) E N(L) 

=? N( L )={(1, a) : a E A} 

Which is the required result . • 

Corollary 62 FaT any abelian gmup A of oTdeT n > 2 theTe exists a conjugate L such that 

07'deT (A) = ouieT (N (L )) . 
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Example 63 Let G = {le , 1£, v, w} and A = {O , 1, 2}, then (G, A , J-L ) is the conjugate loop 

whose multip lication table is given by 

0 1 2 3 4 5 6 7 8 9 10 11 

0 0 1 2 3 4 5 6 7 8 9 10 11 

1 1 2 0 4 5 3 7 8 6 10 11 9 

2 2 0 1 5 3 4 8 6 7 11 9 10 

3 3 4 5 0 1 2 10 11 9 8 6 7 

4 4 5 3 1 2 0 11 9 10 6 7 8 

5 5 3 4 2 0 1 9 10 11 7 8 6 

6 6 7 8 10 11 9 0 1 2 3 4 5 

7 7 8 6 11 9 10 1 2 0 4 5 3 

8 8 6 7 9 10 11 2 0 1 5 3 4 

9 9 10 11 8 6 7 3 4 5 0 1 2 

10 10 11 9 6 7 8 4 5 3 1 2 0 

11 11 9 10 7 8 6 5 3 4 2 0 1 

wheTe 

(G , A , ~L) = G xA = {( I e , 0) , (I e, 1) , (I e , 2) , (1£, 0) , (1£ , 1), (1£, 2) ,(v, 0) ,(v, 1) , (v, 2), (w, 0), (w , 1) , (w, 2)} 

and 

Also 

(l e, O) 

(v ,O) 

0, (I e, 1) = 1, (I e, 2) = 2, (1£, 0) = 3, (1£ , 1) = 4 , (1£ , 2) = 5, 

6, (v , 1) = 7, (v , 2) = 8, (w , 0) = 9, (w , 1) = 10 , (w , 2) = 11 

N ((G , A , J-L)) = {( I e, 0) , (I e, 1) , (Ie , 2)} 

This is the smallest non-associa tive non alternative commutative conjugate loop constracted 

through this process. By changing the order of additive abelian group A, we can constr act the 

conjugate loops of high orders . 
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Remark 64 Conjugate loop form ed by taking G = {l , u, u2 } and A = {O , I }, is associative 

loop {gTOttp} of onler 6. 

Lemma 65 Let {t : G x G -7 A is a factor set, then the loop (G, A, {t) is commutative ~f and 

only if 

gh = hg and {t(g , h ) = {t(h , 09) for all 09 , h E G. 

Proof. Let (g, a), (h , b) E (G , A, {t), then,(G , A, {t) is commutative 

{=} (09, a)(h , b) = (h , b)(o9 , a) 

{=} (gh,a + b + {t(g , h)) = (hg , b +a+ {t(h , 09)) using eqtwtion {3.5} 

{=} o9h = ho9 and {t (09, h ) = {t(h , g) 

• 
Next we will prove that the loop constructed by Theorem(60) is also an IP loop. 

Theorem 66 Let {L : G x G -7 A be a factor set defined in the same way as in Theorem(60) , 

wheTe G is a Klein gTOtLP and A is any abelian gTOUp of onler n > 2,then (G, A , p,) is a conju­

gateJiex'ible and IP loop . 

Proof. Conjugate property of (G, A , {t ) follows from Theorem(60), 

As G is kelien group , so 09 = 09- 1 and by lemma(65) hg=gh for all 09, h E G.Using these 

values in equation (3.6) we have 

{t (g, h ) + {t(gh ,09) 

b + 2a + {t(g , h ) + {t(09h , g) 

b + a + a + {t(09 , h) + {L(09h , g) 

a + b + {t(09 , h) + a + ~L(09h , g) 

((o9h)g , a + b + {t(09 , h) + a + {t(gh , g)) 

((gh)g , a + b + {t(09 , h) + a + {t(09h , g)) 

(o9h , a + b + {L (g, h )(g, a) 

((09 , a)(h , b))(o9 , a) 

{t(h , g) + {t(g , hg) 

b + 2a + {L(h , g) + {t(09 , ho9 ) where a,b E A 

b + a + a + {t(h , g) + {t(g, ho9 ) '.'A is a group 

a + b + a + !t(h , g) + {t(09 , hg) 

((gh)o9 , a + b + a + {t(h , g) + {t(09 , hg)) 

(o9(hg) , a + b + a + {t(h , g) + ~L(g , ho9)) ·.·G is a group 

(g, a)(ho9, b + a + {t(h , g) 

(09, a)((h , b)(o9 , a)) 
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This implies that (G , A , p,) is a flexible loop. 

Now, w,ll show tha t it is also an IP 100p.For this again considering equa tion (3.6). 

=? p,(g, h) + {L(gh,g- l ) 

p,(h, g- l ) + p,(g, hg- 1) 

=? p,(g , h) + p,(g- l ,gh) 

p,(h,g) + p,(hg ,g- l) 

=? - a - {L(g ,g- 1) + a + 6+ p,(g , h) + p,(g- \gh) 

6 + a + p,( h, g) - a - p,(g , 9 - 1) + p,( hg , 9 - 1 ) 

=? (h,-a - {L(g ,g- 1) + a + 6+ p,(g , h) + {L(g - \gh)) 

(h , 6 + a + p,( h, g) - a - p,(g , 9 - 1) + p,( hg , 9 - 1)) 

=? (1.h, - CL - {L (g ,g- l) + a + 6 + p,(g , h) + {L(g - \gh)) 

(h . 1, 6 + a + p,( h, g) - a - p,(g, 9 - 1) + p, ( hg, 9 - 1)) 

=? (g - l(gh) , - a - p,(g,g- l) + a + 6 + {L(g, h) + p,(g - \gh)) 

((hg)g - 1, 6 + a + p,(h, g)- a - {L(g , 9 - 1) + {L(hg , 9 - 1)) 

=? (g- 1. - a - {L(g,g- 1)) (gh ,a + 6+ p,(g , h) 

(hg, 6 + a + {L (h, g))(g-\ -a - {L (g, g-l)) 

by using lemma(65) we can write 

=? (g , a) - l(gh, a + 6 + p,(g , h) = (hg ,6 + a + {L(h , g))(g , a) - l 

=? (g , a) - l ((g , a)(h, 6)) = ((h , 6)(g , a) )(g , a) - l 

This implies that (G , A , p,) is an IP loop. hence the result follows. 

61 



Theorem 67 Let ~L : G x G --> A be a factoT set defined in the same way as in TheoTem(60) , 

wheTe G is a klein gTOUp and A is any abelian gTOUp of oTdeT n > 2, then (G, A , ~L) is a c01~jugate 

JOTdan loop. 

Proof. Confngate pTOpeTty of (G, A , ~L) follows fTOm TheoTem(60) and from the definition 

of ~ : G x G --> A we can wTite 

• 

• 

~L(h , g) ~(h , g) fOT all h , 9 E G 

=} ~(h , g) + ~(l , hg) = ~(l , h) + ~(l.h , g) 

=} {L(h , g) + {L(i , hg) = {L(i, h) + {L(ih , g) 

=} a + a + {L(g , g) + b + a + ~L(h , g) + ~L(g2 , hg) 

a + a + ~L (g,g) + b + ~(g2 , h ) + {L(i. h , g) 

=} (i( hg ), a + a + ~(g , g) + b + a + ~(h, g) + ~(i , hg )) 

(i(hg) , a + a + ~(g , g) + b + ~(i , h ) + ~(i.h, g)) 

=} (i(hg), a + a + ~(g , g) + b + a + ~(h, g) + {L (g2, hg)) 

(g2h)g , a + a + {L(g , g) + b + {L(i , h) + {L(g2h , g)) since G is a gTOUp 

=} (i , a + CL + {L(g , g))(hg , b + a + ~(h, g)) 

(g2h, a + a + ~(g , g) + b + ~(g2 , h))(g , a) 

=} [( g , a)(g, a)][(h, b)(g , a)] = [(i , a + a + ~(g , g))(h , b) ](g, a) 

=} (g, a)2[(h, b)(g , a) ] = [ { (g, a)(g , a) }(h, b) ] (g , a) 

=} (g , a)2[( h , b)(g , a)] = [(g , a)2(h , b)](g , a) 

which is a JOTdan identity also (G , A,~) is commutative . Hence (G , A , ~) is a JOTClan loop . 
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