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Preface

Peristalsis pumping is a form of fluid transport which is generated by a progressive wave
of area contraction or expansion along the walls of a distensible duct containing liquid.
This kind of fluid transport appears in many biological organs such as urine transport
from kidney to bladder through the ureter, movement of chyme in the gastrointestinal
tract, the movements of spermatozoa in the ducts efferentes of the male reproductive tract
and the ovum in the female fallopian tube, the locomotion of some warms, transport of
lymph in the lymphatic vessels and vasomotion of small blood vessels such as arterioles,
veins, and capillaries involve the peristaltic motion. In addition, peristaltic phenomena is
used in industrial engineering, and biomechanical applications like sanitary fluid
transport, blood pumps in heart lungs machine, roller and finger pumps and transport of
corrosive fluids where the contact of the fluid with the machinery parts is prohibited. In
view of these interesting applications, the peristaltic flows with different flow geometries
for both Newtonian and non-Newtonian fluids have been reported analytically,
numerically and experimentally by number of researchers. Most of these studies have
been made under certain simplifying assumptions regarding the magnitudes of the wave
amplitude, the wave length, the Reynolds number and the time mean flow. Analytically,
these studies are investigated either in a fixed frame of reference or in a wave frame of
reference moving with a constant velocity of the wave simplifying the study to a case
with stationary wavy walls.

The study of motion of non-Newtonian fluids has applications in many areas. Due to
complexity of fluids there are many models of non-Newtonian fluids each exhibits
different properties. Only a limited attention has been focused to the study of non-
Newtonian fluids in asymmetric channel. Physiologists observed that the intrauterine
fluid flow due to myometrial contraction is peristaltic type motion and myomaterial
contraction may occur in both symmetric and asymmetric directions. Motivated from the
applications and importance’s highlighted above, the purpose of the present thesis is to
discuss the peristaltic flows of Newtonian and non-Newtonian fluids in an asymmetric

channel. It is worth mentioning that few new models have been modeled and presented in



this thesis which has not reported for peristaltic flow problems. The thesis has been
organized in the following manner:

The literature survey and introduction on the subject is given in chapter zero. Chapter one
is devoted to the study of heat transfer in a peristaltic flow of MHD fluid with partial slip.
The peristaltic flow of a couple stress fluid under the effect of induced magnetic field in
an asymmetric channel has been discussed in chapter two. In chapter three, we have
examined the influence of heat transfer and magnetic field on a peristaltic transport of a
Jeffrey fluid in an asymmetric channel with partial slip. Chapter four is devoted to the
study of influence of induced magnetic field on the peristaltic motion of Jeffrey fluid in
an asymmetric channel. The study of slip effects on the peristaltic flow of a Jeffrey fluid
in an asymmetric channel under the effects of induced magnetic field is carried out in
chapter five. The study of peristaltic flows of some new models such as six constant
Jeffrey fluid, Walter’s B fluid, hyperbolic tangent fluid and Williamson fluids are

presented in chapter six to ten.
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Chapter 0

Introduction

The word "Peristalsis" is derived from the Greek word "Peristalikos" which means clasping and
compressing. Peristalsis is basically a mechanism of pumping fluids in tubes when a progressive
wave of area contraction or expansion progates along the length of a distensible tube containing
fluid. In general terms it includes propulsive and mixing movements and pumps the fluids
against pressure rise. Physiologically, peristalsis is an inherent property of smooth muscle
contraction. Applications of peristalsis occur in swallowing food through the esophagus, urine
transport from kidney to bladder through the ureter, transport of the spermatozoa in the ducts
efferentes of the male reproductive tract, movement of the ovum in the fallopian tube, movement
of the chyme in the gastrointestinal tract, the transport of lymph in the lymphatic vessels and
the vasomotion in small blood vessels such as arterioles, veins and capillaries. The mechanism of
peristaltic transport has been exploited for industrial applications like sanitary fluid transport,
blood pumps in heart lung machine, transport of sensitive or corrosive fluids and transport of
noxious fluids where the contact of the fluid with the machinery parts is prohibited.

The study of peristalsis in the context of fluid mechanics has received considerable attention
in the recent times because of its relevance to biological systems and industrial applications.
Peristalsis existed very well in physiology. Its relevance came about mainly through the works of
Kill 1] and Boyarsky [2]. Later, several investigators studied the phenomenon both mathemat-
ically and experimentally to understand its mechanical aspects, in mechanical and physiological
situations under various approximations. Latham [3] was probably the first to investigate the

mechanism of peristalsis in relation to mechanical pumping. Burns and Parkes (4] studied the



peristaltic motion of a viscous fluid through a pipe and a channel by considering sinusoidal
variation at the walls. Barton and Raynor [5] studied peristaltic flow in tubes using long wave
approximation. Barton and Raynor also analyzed the case of low Reynolds number, Shapiro
et al [6] studied the peristaltic transport of Newtonian fluid with long wave length and low
Reynolds number approximation. They discussed the pressure mechanical efficiency, reflux
limit and trapping limit in both two dimensional and axisymmetric cases by assuming infinite
length of vessels. An elaborate review of the earlier literature regarding peristalsis is provided
by Jaffrin and Shapiro [7]. Bohme and Friedrich [8] have investigated the peristaltic flow of
viscoelastic liquids and have assumed that the relevant Reynolds number is small enough to
neglect inertia forces and that the ratio of the wavelength and the channel height is large, which
implies that the pressure rise is constant over the cross-section. Srivastava and Srivastava [9]
have investigated the effects of power-law fluid in uniform and non-uniform tubes under zero
Reynolds number and long wave length approximations. Takabatake et al. [10] have studied nu-
merically the influence of finite wavelength and Reynolds number on the efficiency of peristaltic
pumping,

Physiologists observed that the intra-uterine fluid flow due to myometrial contractions in
peristaltic type motion and the myometrial contractions may occur in both symmetric and asym-
metric directions. Several works have considered the peristaltic flows in asymmetric channel
for the viscous fluid. Eytan et al. [11] have observed that the characterization of non-pregnant
women uterine contractions is very complicated as they are composed of variable amplitude,
frequencies and wave-lengths. It was observed that the width of the sagittal cross-section of the
uterine cavity increases towards the fundus and the cavity is not fully occluded during the con-
tractions. Recently, Eytan and Elad [12] have developed a mathematical model of wall-induced
peristaltic fluid flow in a two dimensional channel with wave trains having a phase difference
moving independently on the upper and lower walls to stimulate intra-uterine fluid motion in
a sagital cross-section of the uterus. They have obtained a time-dependent flow solution in a
fixed frame by using lubrication theory. These results have been used to evaluate fluid flow
pattern in a non-pregnant uterus. They have also calculated the possible particle trajectories to
understand the transport of embryo before it gets implanted at the uterine wall. On the other

hand, numerical technique using boundary integral method has been developed by Pozrikidis



[13] to investigate peristaltic transport in an asymmetric channel under Stokes flow conditions
to understand the fluid dynamics involved. He has studied the stream line patterns and mean
flow rate due to different amplitudes and phases of the wall deformation. Very few investigations
dealing with the peristaltic flow in an asymmetric channel are available for viscous fluids. Very
recently, Mishra and Rao [14] have discussed the peristalsis of a viscous fluid in an asymmetric
channel under long wave length and low Reynolds number approximations. In another paper,
Rao aud Mishra [15] examined the effects of curvature on the peristaltic transport of a viscous
fluid in an asymmetric channel by using wave number as the perturbation parameter. Haroun
[16] has studied the effect of wall compliance on peristaltic transport of a Newtonian fluid in an
asymmetric channel. A number of studies containing peristaltic flow in an asymmetric channel
for viscous fluid have been investigated in Refs [17 — 18].

The study of non-Newtonian fluids has been an important subject in the field of chemi-
cal, biomedical and environmental engineering science. Undoubtedly, the mechanics of non-
Newtonian fluids presents special challenges to engineers, physicists, modelers and mathemati-
cians. This is due to the fact that non-linearity manifests itself in a variety of ways. The flows
of non-Newtonian fluids are not only important because of their technological significance but
also in the interesting mathematical features presented by the equations governing the flow.
It is well known that such fluids cannot be described by the classical Navier-Stokes equations.
Numerous models have been proposed to describe response characteristics of non-Newtonian
fluids. These models can be classified as fluid of differential, rate and integral type. The con-
stitutive equations in these fluid models are very complex due to a number of parameters. It
has now been accepted that most of the physiological fluids behave like a non-Newtonian fluids.
However, only a few recent studies have considered this aspect of the problem since the initial
investigation by Raju and Devanathan [19]. Siddiqui and Schwarz [20] analyzed the mechanics
of peristaltic pumping for non-Newtonian fluid through an axi-symmetric conduit. Quite a
good number of studies pertaining to peristaltic flow of the non-Newtonian fluids have been
carried out in the past [21 — 31] to analyze the rheological effects on the flow characteristics. In
most of the mentioned studies, at least one of the parameters, namely the amplitude ratio, the
ratio of the channel width to the wave length and the Reynolds number is assumed to be small.

In all of the above studies the effects of an asymmetric channel have been neglected. There



is hardly an attempt available in the literature which deals with the peristaltic mechanism of
non-Newtonian fluid in an asymmetric channel [32 — 41],

It is known that research of MHD flows has important applications in metallurgical indus-
try, such as the cooling of continuous strips and filaments drawn through a quiescent fluid and
the purification of molten metals from non-metallic inclusions. The MHD flows have numerous
applications in bioengineering and medical sciences. Magnetic wound or cancer tumor treat-
ment causing hyperthermia, bleeding reducing during surgeries and targeted transport of drugs
using magnetic particles as drug carriers are few such examples. In living creature, blood is a
biomagnetic fluid because of complex interaction of the intra cellular protein, cell membrane
and the hemoglobin. The magnetohydrodynamic (MHD) flow of a fluid in a channel with
elastic, rhythmically contracting walls is of interest in connection with certain problems of the
movement of conductive physiological fluids e.g. the blood and with the need for theoretical
research on the operation of a peristaltic MHD compressor. The effect of a moving magnetic
field on blood flow was studied by stud et al. [42] .They observed that the effects of a suitable
moving magnetic field accelerate the speed of blood. Srivastava and Agrawal [43] consider the
blood as an electrically conducting fluid that constitutes a suspension of red cells in plasma.
Agrawal and Anwaruddin [44] studied the effect of magnetic field on blood flow by taking a
simple mathematical model for blood through an equally branched channel with flexible walls
executing peristaltic waves using long wave length approximation method and observed for the
flow of blood in arteries with arterial disease like arterial stenosis or arterio sclerosis, that the
influence of magnetic field may be utilized as a blood pump in carrying out cardiac operations.
Mekheimer [45] analyzed the MHD flow of a conducting couple stress fluid in a slit channel
with rhymically contracting walls. More recently, Kothandapani and Srinivas [46] have studied
the influence of wall properties in the MHD peristaltic transport with heat transfer and porous
medium. In all of these studies the effect of the induced magnetic field has been neglected.

The first investigation of the effect of the induced magnetic field on peristaltic flow was
studied by Vishnyakov and Pavlov [47] where they considered the peristaltic MHD flow of a
conductive Newtonian fluid by using the asymptotic narrow-band method to solve the prob-
lem. But they only obtained the velocity profiles in certain channel cross-sections for definite

parameters values, and little attention was given to the induced magnetic field. Mention may



be made to the works of [48 — 50].

Heat transfer analysis can be used to obtain information about the properties of tissues.
There are complicated temperature sensing ysstems in each organism. Heat stimulation influ-
ence life system greatly, and heat transfer in biological tissues involves complicated processes
such as heat conduction in tissues, heat convection due to blood flow through the pores of
tissues, and radiation heat transfer between surface sand its environment and there is also
mass transfer in these processes. Research on bioheat transfer studies heat and mass transfer
in organisms. Research interest on flow and heat transfer phenomena in a channel/ tube has
increased substantially in resent years due to developments in the electronic industry, micro-
fabrication technologies, biomedical engineering etc. Moreover, with the investigative studies of
the interaction between peristalsis and heat transfer where the thermodynamic aspects of blood
have become significant in processes like oxygenation and hemodialysis. Radhakrishnamurthy
at al. [51] and Varjravelu at al. [52] have investigated flow through vertical porous tube with
peristalsis and heat transfer. Some interesting investigations related to this topic are given in
Refs. [53 —57]. Again, the available study eschews the effect of heat transfer on peristaltic flow
in an asymmetric channel, Only limited attention is given to this type of flows [68 — 61].

Motivated by the extensive literature regarding the peristaltic flows of Newtonian and non-
Newtonian fluids with different geometries, the aim of the present thesis is to analyze peristaltic
flows of Newtonian and non-Newtonian fluids in an asymmetric channels. This thesis consists
of eleven chapters, Chapter zero deals with basic literature survey and the other ten chapters
are arranged as follows:

In chapter one, the effects of heat transfer and magnetic field on the peristaltic flow of a
viscous fluid in an asymmetric channel under the assumptions of long wave length and low
Reynolds number have been discussed. The problem is solved analytically and closed form
solutions are computed with the help of Adomian decomposition method. The contents of this
chapter have been published in Communications in Nonlinear Science and Numerical
Simulation 15(2010)312-321.

Chapter two is devoted to the study of peristaltic flow of a couple stress fluid under the
effects of induced magnetic field in an asymmetric channel. Making the assumptions of long

wave length and low Reynolds number, the exact solution of the problem has been computed



and discussed. The contents of this chapter have been published in Archive of Applied
Mechanies.

The influence of heat transfer and magnetic field on a peristaltic transport of a Jeffrey fluid
in an asymmetric channel with partial slip condition has been examined in chapter three. The
contents of this chapter have been accepted for publication in Zeitschrift fiir Naturforschung
A.

In chapter four, we have examined the peristaltic motion of a two dimensional Jeffrey fluid
in an asymmetric channel in the presence of induced magnetic field. An exact and closed form
Adomian solution have been computed and discussed for different wave shapes. The work of
this chapter is submitted for publication in Zeitschrift fiir Naturforschung A.

Chapter five described the slip and induced magnetic field effects on the peristaltic flow of
a Jeffrey fluid in an asymmetric channel for different wave shapes. The closed form Adomian
solution and exact solution have been found and discussed. The contents of this chapter have
been published in International journal for numerical methods in fluids.

In chapter six, we have presented the peristaltic flow of a six constant Jeffrey fluid in an
asymmetric channel. The governing equation of six constant Jeffrey fluid for two dimensional
flow are modeled and then solved numerically and analytically. The work of this chapter is
submitted in Zeitschrift fiir Naturforschung A for publication.

Chapter seven described the peristaltic motion of Walter's fluid model in an asymmetric
channel. An analytical solution has been presented using regular perturbation method. The
contents of this chapter have been submitted to Chinese Physics Letter for publication.

The peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel has
been given in chapter eight. The governing equations of hyperbolic tangent fluid model are
first modeled and then solved analytically. The contents of this chapter have been published in
Zeitschrift fiir Naturforschung A 64a (2009)559-567.

In chapter nine, we have extended the idea of pervious chapter for partial slip boundary
conditions. The contents of this chapter have been submitted to Chinese physics Letter for
publication,

Chapter ten is devoted to the study of peristaltic flow of a Williamson fluid in an asymmetric

channel. The modeling of Williamson fluid is given and the problem is solved analytically. This
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chapter has been published in Communications in Nonlinear Science and Numerical

Simulation 15(2010)1705-1716,

11



Chapter 1

Heat Transfer in a peristaltic flow of

MHD fluid with partial slip

1.1 Introduction

In this chapter the effects of heat transfer and MHD on the peristaltic flow of a Newtonian fuid
in an asymmetric channel is presented. The governing two dimensional equations are simplified
using the assumption of long wave length and low Reynolds number. The reduced equations
of motion and energy are solved analytically by Adomian decomposition method and found a
closed form solution. The expression for pressure rise is computed using numerical integration
recipe. At the end, the behavior of velocity, pressure rise, temperature and stream function are

shown pictorially for different physical parameters of interest.

1.2 Mathematical formulation

We consider MHD flow of an electrically conducting viscous fluid in an asymmetric channel
through porous medium in a two dimensional channel of width dy + ds. The flow is generated
by a sinusoidal wave trains propagating with constant speed ¢ along the channel walls. We
choose the rectangular coordinate system for the channel with X along the centerline of the
channel and Y is transverse to it. The lower wall of the channel is maintained at temperature

Ty while the upper wall has temperature Tj.
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We assume that the fluid is subject to a constant transverse magnetic field By. A very small
magnetic Reynold number is assumed and hence the induced magnetic field can be neglected.
When the fluid moves into magnetic field two major physical effects arise. The first one is that
an electric field E is induced in the flow., We shall assume that there is no excess charge density
and therefore, V - B = 0. Neglecting the induced magnetic field implies that V x E = 0 and
therefore, the induced electric field is negligible. The second effect is dynamically in nature,
i.e., a Lorentz force (J x B), where J is the current density, this force acts on the fluid and
modifies its motion. This results in the transfer of energy from the electromagnetic field to the
fluid. In present study, the relativistic effects are neglected and the current density J is given
by the Ohm's law as

J=0(V xB).

Since we are considering asymmetric channel therefore, the channel flow is produced due to
different amplitudes and phases of the peristaltic waves on the channel. It is also assumed
that the fluid particles near the walls are not same it means we are considering the partial slip
conditions instead of usual no slip boundary conditions. A schematic diagram of the geometry

of the problem under consideration is shown in Fig. (1.1).

YJL

T=T,
ra; ) /_
+ (p > d]
r > X
d,
e T,
< x | Z

Fig.(1.1) : Schematic diagram of a two-dimensional asymmetric channel.
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The geometry of the wall surface is defined as

Y

Y

Il

Hy(X,t) =d; +aycos F;- (X - ct)] ,

Hy(X,t) = —dy — by cos [%{E(X—ct)+¢] i (1.1)

where a; and by are the amplitudes of the waves, A is the wave length, d; + do is the width

of the channel, ¢ is the velocity of propagation, t is the time and X is the direction of wave

propagation, The phase difference ¢ varies in the range 0 < ¢ < 7, in which ¢ = 0 corresponds

to symmetrie channel with waves out of phase and ¢ = 7 the waves are in phase; further more,

ai, by, di, ds and ¢ satisfies the condition

a? + b? + 2a;b; cos ¢ < (dy +dg)*.

The equations governing the flow of a are given by

(i) The continuity equation

V.- V=0, (1.2)

(ii) The equation of motion

v
p(%—k(VV)V):dl\'T'l'JXB"'R! (13)

where 7 for Newtonian fluid is defined as

7=—PI+pA;, (1.4)

(iii) The energy equation

d
£=T'L1—d.iVQ1+PI" (15)

In the above equation V is the velocity vector, u is the viscosity of the fluid, P is the pressure,

J is the current density, L is the velocity gradient, A, is the first Rivlin-Ericksen tensor, Q;

= (-K'divT, K' being the thermal conductivity) is the heat flux vector, r is the internal heat

generation (radial heating) taken here to be zero, and e = (C'T, C' being specific heat) is the
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specific internal energy.

We seek the velocity field for the two dimensional and two directional flow of the form
=(U(X,Y,t),V(X,Y,t),U) (16)

For the two dimensional incompressible flow, the governing equations of motion (including MHD

and Darcy term) and energy are

ﬁ Ug}[i-i-vav . —%g—§+u(%+$)—%v-w§u, (1.8)
%’«a-ug—;wg—;i o -%g—;‘;w(g%Jrgfy—Z)—%v, (1.9)
C = aT Ug;‘z+v8T] = I:V2T+v¢1, (1.10)

where
& 2 au av au | av\*
V2= = et Al £
ax: Ty h {2 (ax) +2(6X) ¥ (ay+ax) ’
U,V are the velocities in X and Y directions in fixed frame, p is constant density, v is the
kinematic viscosity, o is the electrical conductivity, K is the permeability parameter, €' is the
specific heat and T is the temperature.

Introducing a wave frame (z,y) moving with velocity ¢ away from the fixed frame (X,Y)

by the transformation

z=X—-ct, y=Y, u=U~-c, v=V, p(z) = P(X,t). (1.11)
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Define the following non-dimensional quantities

A U _ _dy dip -_ct
r = ‘\e y—dl, u_cs J_Cl J— ,\| d—dls #C 1 f-‘—/\|
- H] - .Hg [#5] o b] Cd} - W = f_(
o= g ey Aeg gy WSS Ve St
T-Ty ¢ prC' I
0 = — e =— =,/ —Bod;. 1.12
T] N Tol EC C’ (Tl —Tg), Pf Kf 1 M }L 0t] ( )

Using the transformation (1.11) and non-dimensional quantities (1.12), Eqs. (1.7) to (1.10) in

terms of stream function W(u = %%, v=-—0 %% after dropping bars) can be written as

Red (¥, ¥y — U 0y,) = ..% + (W + W) = (M2 + %) (U, +1), (1L13)
3 9 _ (54 2 5
52 1 2 2 2 2
Red (0x ¥y —O,¥s) = 5bas+ 5y + Ee (467 (0n)* + (Tyy - 6°02)") (1.15)

Under the assumptions of long wave length and low Reynolds number, Eqs. (1.13) to (1.15)

become

op 1 2
5 = llrm-K(llly+I)—M (By +1), (1.16)
op
L = @ 1.17
5 (1.17)

1

—Prﬂw+E¢'~I’3y = 0 (1.18)

Elimination of pressure between Egs. (1.16) and (1.17) leads to the following governing equa-

tions

1
Yyuww — 7% — MY, =0, (1.19)

(1.20)

]
e

1

Since we are considering the partial slip on the wall, therefore, the corresponding non-dimensional
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boundary conditions for the present problem can be written as
W= % at y = hy = 1 4 acos2rz,

U = _% at y = hs = —d — beos(2nz + ¢),

av o\

s — — h .

oy + L 02 laty 1

o 9%V

el Y - = 1.21
By L a2 1aty= hg, (1.21)

8 = 0aty=hy,
8 = laty=hs, (1.22)

where g is the flux in the wave frame, L is the slipparameter, a, b, ¢ and d satisfy the relation

a? + b + 2abcos ¢ < (1-+-d)2.

1.3 Volume flow rate

The instantaneous volume flow rate in the fixed frame is given by

Ha
Fr=[ UxYta, (1.23)
Hy

where Hy and Hy are function of X and ¢.

The rate of volume flow in the wave frame is given by

ha ”
f=/;n u(z,y)dy, (1.24)

where h; and hy are function of = alone. With the help of Egs. (1.11), (1.23) and (1.24), we

find that the two rates of volume flow are related through

F* = f + chy — chy: (1.25)
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The time mean flow over a period T* at a fixed position X is defined as
N 2
= — *dt- L.
P fo F*dt (1.26)
Substituting Eq. (1.25) into Eq. (1.26), and integrating, we get
F = [+ cdy + cdy- (1.27)

Defining the dimensionless time-mean flows @ and g in the fixed and wave frame respectively
as
F f

. — 1.28
o and ¢ o (1.28)

Using Eq. (1.28) in Eq. (1.27), we get

Q=q+1+d (1.29)

1.4 Solution of the problem

1.4.1 Adomian decomposition method

According to Adomian decomposition method [62 — 65], we write Eq. (1.19) in the operator

form as

: 1
Ly ¥ = (5 + M), (1.30)

Applying the inverse operator L} = [ [ [ [[]dydydydy, we can write Eq. (1.30) as

¥ ¥ 1.,
U= Cﬁ+C'1!f+02§+03§+]aﬂ;m(‘9yy). (1.31)

where

1 1.4
A= E %

Cu, C4, Cy, C3 are functions of z. Now we decompose ¥ as
(= =]
=3V, (1.32)
n=0
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Substituting ¥ into Eq. (1.31), we obtain

2 3
¥y = Cu+C'1y+022 'i-Ca

lI"ﬂ+1

Therefore,

1
¥y = 2(02—+03 )

1 IS 7
Uy = F(Cz—+03 ),
B 1 y2n+2 1"2n+3
W = & (02 Cnra) Cs (2n+3)!) v 20, U:54)

According to (1.32), the closed form of ¥ can be written as

¥ . Y Y
- h_——... — h_ —— — ¥y
V==C+ Cy+ AC, (cos 7 1) + AV ACs (sln /i \/._)

The above equation can be put in the simplest form as

V= F +F1y+F2cosh——-— + F3sinh — (1.35)

VA »/_'
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where Fp, Fy, F5, F3 are functions of z. These constants are calculated using the boundary

conditions (1.21) and are defined as

(b + ha) o+ (S£724) anh [ 1588

7 2 (R o ]
oo ot (4) e [tok]
7 o (e ]
e ~VA(q+ by — ha)sech |14 ] sinh [ﬁ;ﬁz]
o (he — hy) + (H@%’ﬁé) tanh [&,5%1] '
VA (g + hy — hg) sec h cosh [—531]
= (hg — hy) + (é%y*‘—m) tanh [Q‘Vﬁl] ' Gl
A 2vA
Substituting Eq. (1.35) in Eq. (1.16), we get the axial pressure gradient as
ip__ (a-m-q) [1 + - tanh [ﬁ]] | -
4z 4 (hy — hy - (Ll2zha)224) gap [laha])
Integrating (1.37) over one wavelength, we get
Ap = ./: j—idz. (1.38)

The axial velocity component in the fixed frame is given as

UX,Y,t) = 1+,
2 (hy = hg + g) sinh [%] sinh ["2 I] J“%ﬂs"‘h [h } (1.39)
(L[hz-hj}+2A) atiih [ﬁﬁf_‘;] — hg) cosh [%7:‘-‘3] -

where
hy=14acos2r (X —t)] and hg=—d— bcos2n (X —t)+ ¢].
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It is noticed here that when M = 0, the solution of Hayat el al [18] is recovered and when
M = L = 0, the solution of Elshehawey et al [17] is recovered.
Making use of Eq. (1.35), the solution of Eq. (1.20) satisfying the boundary conditions

(1.22) can be written as

F ¥ Y? 2
f = —Ecpr (2;2},2 (F§+F32)608h2(ﬁ) 4A2 (F +F3)
() s+ a0
where
o EF, ([ Fj oy _ (ki —h3) 2
g = (h;—h2)+(h1 )(2}12( — h3) - Ve (F?+ F})

(Fz +F2) [cosh2 (j%) — cosh?2 ("_;)]
L fﬁ-’i [sinh2 (%) — sinh?2 (5%)]) ,

F K2
¢ = E,P (2;2h1 T 8A th +F3)COSh2 (\/Z) — ﬁ (F22+F32)
2y a hy
P 1A th?(\/z)) —eyhy. (1.41)

1.5 Results and discussion

In this section results are presented and discussed for different physical quantities of interest.
Pressure rise is important physical measures in peristaltic mechanism. Therefore, Figs. 1.2
to 1.4 are plotted to see the effects of partial slip L, magnetic field M, amplitude ratio ¢ on
pressure rise. Fig. 1.2a represents the average pressure rise Ap against @ (the time average
mean flow rate) for different values of slip parameter L. It is observed that pressure rise Ap
increases (Ap > 0) for @ < 1 and for @ > 1, Ap has an opposite behavior (Ap < 0). The
maximum pressure rise occur at @ = —1 and Ap = 21 for K = 0.1. Similar behavior of
pressure rise is shown in Fig. 1.2b for K = 1000. But we observe here that for very large value

of K the maximum pressure is Ap = 6. Thus we conclude that as we increase the value of K
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the maximum pressure rise decreases. The effects of magnetic parameter M on Ap are shown
in Figs. 1.3(a,b) for small and large K. It is seen that Ap increases for () < 0.6 and after that
Ap decreases. Figs. 1.4(a,b) show that Ap decreases when () < 2.4 with an increase in ¢ and
it is increases when () > 2.4. Figs. 1.5 and 1.6 are prepared to discuss the pressure gradient for
different values of M and L. It is observed that pressure is maximum at 2 = 0.5 for M = 1.5
and L = 0.04. The velocity field for various values of i and M are plotted in Figs. 1.7 and 1.8.
It is depicted from the Fig. 1.7 that for small value of K, the velocity represents a rectangular
shape but as we increased the value of K its amplitude increases and finally it seems to be like a
parabola. It is observed from Fig. 1.8 that with an increase in M, the amplitude of the velocity
decreases in the center and near the channel wall the velocity increases. The temperature field
for different values of L, P,, M and E. are shown in Figs. 1.9 to 1.12. It is observed from the
figures that the increase in L and M the temperature field decreases while with an increase
in P and E;, the temperature field increases, Trapping is another interesting phenomena in
peristaltic motion. It is basically the formation of an internally circulating bolus of fluid by
closed streamlines. This trapped bolus pushed a head along with the peristaltic wave. Fig. 1.13
illustrate the streamline graphs for different values of L. It is observed that with an increase
in slip parameter L the size of trapped bolus decreases. The streamlines for different values of
mean flow rate @ are shown in Fig. 1.14. It is evident from the figures that the size of the
trapped bolus increases by increasing @. It is also observed that the number of trapped bolus
decreases. The streamlines for different values of amplitude ratio ¢ are shown in Fig. 1.15. It

is observed that with an increase in ¢, the size and number of trapped bolus decreases.

1.6 Conclusion

This chapter presents the influence of heat transfer and magnetic field on the peristaltic flow
of a Newtonian fluid with partial slip. The governing two dimensional equations have been
modeled and then simplified using long wave length approximation. The results are discussed

through graphs. The main finding can be summarized as follows:

1. In the peristaltic pumping region the pressure rise increases with an increase in L and M,

and decreases with an increase in ¢.
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. The pressure gradient decreases with an increase in both M and L.
. The velocity field increases with an increase in K and decreases with an increase in M.

. The temperature field decreases with an increase in L and magnetic field M, while with

an increase in P, and E,, the temperature field increases.
. The size of the trapping bolus decreases by increasing L.

. The size of the trapping bolus increases and number of the trapping bolus decreases by

increasing Q.
. The size and number of the trapping bolus decreases by increasing ¢.

. If M = 0 the solution of Hayat el al [18] is recovered and when M = L = 0, the solution

of Elshehawey et al [17] are recovered as a special case of our analysis.
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Fig.(1.2) : Variation of @ with Ap for different values of L at a = 0.7, b = 1.2, d = 2,
M=0.1,¢=7% and (a) K = 0.1 (b)) K = 1000.
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K =1000, M = 0.1, @ =0, ¢ = 0.001.
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Fig. (1.7) : Velocity profile for different values of K at a = 0.7, b= 0.7, d = 1.7, M = 0.1,
X=1t=1,L=0001,Q=17¢=%.

Fig. (1.8) : Velocity profile for different values of M at a = 0.7, b= 0.7, d = 1.7, L = 0.02,
X=1t=1,L=0001,Q=17¢=3.
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Fig. (1.9) : Temperature profile 6 for different values of L at a = 0.5, b = 1.2, @ = —0.5,
¢=3,X=4Lt=1,d=15M=1,K=1000, E.=1, P, =1.
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Fig. (1.10) : Temperature profile @ for different values of P, at a = 0.5, b= 1.2, Q = —0.5,
¢=5,X=14Lt=1,d=15M=1 K=1000, E.=1, L=05.
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Fig. (1.11) : Temperature profile # for different values of M at a = 0.5, b = 1.2, Q@ = —0.5,
$p=35,X=11t=1,d=15,F =1, K=1000, E.=1, L=0..
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Fig. (1.12) : Temperature profile 8 for different values of E, at a = 0.5, b= 1.2, @ = —0.5,
$=2%, X=1,t=1,d=15 P =1, K =1000, L =0.5
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Fig.(1.15) : Stream lines for four different values of ¢. (a) for ¢ = 0, (b) for ¢ = . The
other physical parameters are @ =1.4,a=0.5,6=0.5,d=1.0, M =2, K = 0.2.

32



Chapter 2

Peristaltic flow of a couple stress
fluid under the effect of induced
magnetic field in an asymmetric

channel

2.1 Introduction

This chapter deals with the peristaltic flow of a couple stress fluid under the effects of induced
magnetic field in an asymmetric channel. The governing coupled nonlinear partial differential
equations are simplified by using long wave length and low Reynolds number assumptions. The
exact solutions of reduced equations are found for velocity, stream function, pressure gradient,
current density distribution and magnetic potential ®. The expression for pressure rise is

computed using numerical integration. The physical features of various parameters are discussed

through graphs.
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2.2 Mathematical formulation

Let us consider the peristaltic flow of an incompressible, electrically conducting couple stress
fluid in a two dimensional channel of width dy + dy. The flow is generated by sinusoidal
wave trains propagating with constant speed ¢ along the channel walls. We choose rectan-
gular coordinate system for the channel with X along the centerline of the channel and Y
is transverse to it. An external transverse uniform constant magnetic field Hyg, induced mag-
netic field H(hy (X,Y,t), Ho+hy(X,Y,1),0) and the total magnetic field H* (hx (X,Y,t), Ho+
hy(X,Y,t),0) are taken into account. Finally, the channel walls are considered to be non-
conductive and the geometry of the wall surface is defined in previous chapter but for the sake

of simplicity we define it again

Vs H UK 8= 4 dy 6oe (%’-’(x - ct)) , Y = Hy(X,t) = —dy — by 08 (2;(){ —ct)+ ¢) .

(2.1)
Equation of continuity is defined in Eq. (1.2) and the other equations which governs the MHD
flow of a couple stress fluid are given as

(1) Maxwell's equation

V-H = 0,V-E=0, (2.2)
VAH = J, with J=o{E+u(VAH)), (2.3)
dH
(ii) The equations of motion
av 1 +12 2 4 + +
p(Zp +(V-V)V) ==V (p+ zp (HY)? ) + uV2V-V'V -, (HF W) HF.  (25)

In the above equation E is an induced electric field, J is the current density, u, is the magnetic
permeability and o is the electric conductivity.

Combining Eqgs. (2.2) to (2.4), we obtain the induction equation as follows

+
T = VA(VAHY) + -;—VEH‘*, (2.6)




where £ = # is the magnetic diffusively.

Defining the scales

z = 3, ﬁ=-§1—, a==, 7=2, a_fil, =%, ;‘::%, E=%t,

b = ‘;f‘, 5 :’-:-23, —{‘:, b_%. R:“‘j‘, @=c%, ‘E’=F§E§'

u = g:f, gw,h,—%?, hv.:—ng), R,, =op.ac, = :—;dl,

Pm = p+lRe6%§-ﬁ, S_Ii"\/? V2= azg 3‘5; (2.7)

With the help of Eq. (1.6), the transformations (1.11) and the non-dimensional quantities (2.7),
Eqs. (1.7), (2.5) and (2.6) for a couple stress fluid in wave frame (after dropping bars) take the

following form

Ju  Ov
iy = O B
9,0y, = _%m o, 1o 2 O(h)
Re&(uam-i-vay}u ol + Vu Vu+ReSl By
+Re SJJ(h‘ -ty 3y )hz, (2.9)
a a Opm 52 d(hy)
Pyl = = SR 2g2, Y o2 2529\ W)
Red (u6z+v6y)v 3y + 6V ,ﬁv v+ Re S{6 By
a a
+Re S?Jsfhra -+ hpa)hy, (2.10)
- 9(ha) _ 28(1:1,)
u+ §(uhy — vhy) + Rm( By o | (2.11)

The corresponding dimensionless boundary conditions are

u = -1, Uz%,
6211 dhl av 3211'.

‘(‘54w”523 5%y ap ~ 0wV S

dhg

u = -1 V==

2 dz '
Hté“ 362“)@_}_ 2.8_23...6_2_1_‘ = 0 aty=he (213)

832 Oz0y’ dz dzdy Oy WS .
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Using the assumption of long wave length and low but finite Reynolds number consideration,

Eqgs. (2.8) to (2.13) reduce to

ap 9%u 1 8 0 0(hy)
S s e 2.14
Oz oy oyt T dy ' S
dp
X = g (2.15)
oy
1 9(hs)
e TN 2.16
¥+ 5y E, (2.16)
dhy &*u
w = =1, piae, @=0 at y=h; =1+ acos2nz, (2.17)
dhy  O%u
y = -1, goieps, W=U at y=hy=—d— bcos (2rz + ¢)- (2.18)
With the help of Eqs. (2.14) and (2.16), we obtain
2
% v Lou +Re SH(E — u) R (2.19)

oz~ 9P oy

The dimensionless mean flow () is defined in chapter one and is straight forward written as
Q=qg+1+d,

where
ha
q=/ udy: (2.20)
}

2.3 Solution of the problem

2.3.1 Exact solution

Eq. (2.19) is linear, non-homogeneous fourth order differential equation whose exact solution

can be written as

u = Ay cosh (myy) + Agsinh (myy) + A4 cosh (may) + Ag sinh (mgy) + E — % %, (2.21)
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1
where A, to A are constants, M? = Re S?R,,, and m; = % (1 =2V S %;3) :

Invoking the boundary conditions we get

o = s oo (M2 (mh (- 2+ 48) com (5E) )

1 = gt [peen (TR0 (1 (a2 - 92y a2 s (Tl ) )]
M= g e (P2 (m (02~ 2 008 o (P2E) ),
4 = =g e (P205) (mt (-0t + 2 - 0] o (2 h’”z)))]

.22)

The corresponding stream function is defined as

A . As Ay As 1 dp
Y= — sinh (m;y) L5 m cosh (mly) + ;L—z-smh(mgy) T ;2 cosh (mzy) + (E = FE
(2.23)
where constants Ap to As are defined in Eq. (2.22).
From Eqgs. (2.20) to (2.22), the expression for pressure gradient is defined as
dp  M*mymy (m?
dp _ MOmuma (M~ T8) (0 _ By~ ) 4 dov+dua +don +daa), (228)

dx dm

where

do ('m§ (1 4 E)cosh (MW) sech (m—‘(h—%—"—hﬂ) (sinh (hym,) — sinh (hgml}))
1 = = ) ;

my (mf —mj

(3 (1 + E)sinh (22(byha)) sec (maly=tad) (cosh (hyma) — cosh (hgmy))

doz = my (mf — m3) ’
do (mf (l + E) cosh (ﬂ(’gﬂl) sech (ﬂ(ﬁiﬂ!) (sinh (hlmg) — sinh (thQ)))
3 = 3

mg (m} — m3)
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(m? (14 E)sinh (M) sec h (ﬂhz’;h’!) (cosh (hymy) — cosh (h2ﬂ12)J)
doq - — 7 ]

™3 (mf = ’“2)

dos = mimgy (ha — hy) +m3my (hy — ha),

(ml(h1 h?)) (sinh (hzml — sinh (hym,)),

dog = m3cosh (ml(hl + ha)

s
dor = s: nh (m1 (ha + hz)) sech (ml(hl J) (cosh (hymy) — cosh (hgmy)) ,
dos = i cosh (2R o, (T2 (i g — s (hama)),
dog = m? sinh ( (hl s ha)) sech ( (hl ) (cosh (hgma) — cosh (hymsz)),

dip = dos +dog + do7 + dog + doy- (2.25)
The non-dimensional expression for the pressure rise per wavelength Ap, is defined as

1 /dp
= ok ; 2.9
Ap j; ( ) dz (2.26)

With the help of Eq. (2.16), we get the magnetic force function of the form

5*®

57 = (B = 0)Rn, (2.27)

with the corresponding boundary conditions are
®=0 at y=h; and y=hy (2.28)

Using Eq. (2.21), the exact solution of Eq. (2.27) satisfying the boundary conditions (2.28) can



be written as

¢ = —-R. (A; cosh (myy) + A—smh (miy) + 4 cosh (may) +14—-smh [mgy))
mi m3

Rmdpy?®

L1 3ot i/ 2.29

where

= —Fm EE 2 2.2
oo 2(ha — hy)M2m3m3 (d;,; (h3 = hi) mim3 +bo ) ,

= —BRm dp (1o 2
¢y = 2(h1 - hz)M",mlmz ( (h hy — flzh )m1m2+b1

bo = 2A;M*m3 (cosh (hym;) — cosh (hgmy))+2AzM>m3 (sinh (hymy) — sinh (hgm;))
+ 244 M?*m? (cosh (hymg) — cosh (hgmg)) + 2A5 M*m? (sinh (hymg) — sinh (hgmy)),
by = 2AaM*m3 (hg cosh (hymy) — hy cosh (hymy))+2A3 M?m (hg sinh (hymy) — hy sinh (ham;))
+2A44M?m3 (ha cosh (hyma) — hy cosh (hamg))+2As M?m? (hgsinh (hymg) — hy sinh (hamz)),

Az to Ay are defined in Eq. (2.22).

The expression of axial induced magnetic field is calculated from Eq. (2.29) by using (he: =

% ), we have

h:(z,y) = —Rmnm (— sinh (myy) + A— cosh (myy) + dy sinh (may) +i cosh (mgy})
My
R, dp
+E Ey + c3- (2.30)

Also the current density distribution takes the following form

— Ry (Ag cosh (mqy) + Ag sinh (myy) + A4 cosh (may) + As sinh (may)) -
(2.31)
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2.4 Results and discussion

In this section, the graphical results of the problem under consideration is discussed. The
expression for pressure rise is calculated numerically using a mathematics software. The pressure
rise Ap for different values of couple stress parameter v and Hartmann number M are plotted
in Figs. 2.1 to 2.2. It is observed from Fig. 2.1, that the pressure rise increases for small values
of @ (~1 < @ < 1) with an increase in + and for large @ (1 < @ < 3) the pressure rise decreases.
From Fig. 2.2 it is observed that with an increase in M, the pressure rise increase for small
values of (), and at the end the behavior is reversed. The pressure gradient for different values
of v and @ against x are plotted in Figs. 2.3 and 2.4. It is depicted from the figures that for
z € [0,0.15] and « € [0.8, 1], the pressure rise is small i.e. the flow can easily pass without the
imposition of large pressure gradient, while in the narrow part of the channel z € [0.15,0.8],
to retain the same flux large pressure gradient is required. This phenomena is physically valid.
Moreover, in the narrow part of the channel, the pressure gradient increases with an increase in
couple stress parameter v and decreases with an increase in @ (flow rate). The velocity u for
different values of E and M are shown in Figs. 2.5 and 2.6. We observed that the magnitude
value of velocity profile decreases with an increase in E (see Fig. 2.5). The effect of M on the
velocity is almost opposite as compared to the case of E. Here the velocity profile increases with
an increase of M. The magnetic force function ® for different values of R, M and @ (volume
flow rate) are shown in Figs. 2.7 to 2.9. It is observed from Fig. 2.7 that the magnitude value
of the magnetic force function increases with an increase in magnetic Reynolds number R,,.
The effect of Hartmann number M and volume flow rate @ is opposite as compared to the
case of Ry,. In this case the magnetic force function decreases with an increase in Hartmann
number M and volume flow rate Q. The induced magnetic field h; against y for different values
of magnetic Reynold number R,, is plotted in Fig. 2.10. It is observed that with an increase in
R, hx increases in upper half of the channel while in the lower half the behavior is opposite.
The current density distribution J, for different values of volume flow rate () and Hartmann
number M are plotted in Figs. 2.11 and 2.12. It is illustrated in Fig. 2.11 that the current
density distribution J. decreases with an increase in flow rate Q. The effects of M on the J.
are shown in Fig. 2.12. It is observed that the behavior of J. is monotonically increasing and

decreasing,
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Trapping phenomena

Another interesting phenomena in peristaltic motion is trapping. It is basically the forma-
tion of an internally circulating bolus of fluid by closed stream lines. This trapped bolus pushed
a head along a peristaltic waves. Figs. 2.13 and 2.14 illustrate the stream lines for different
values of 4, M and Q. The effect of the couple stress parameter v and Hartmann number M
on the trapping are illustrated in Fig. 2.13. It is observed that with an increase in vy and M,
the size of the trapping bolus decreases. It is concluded from Fig. 2.14 that with an increase

in @ the size of the trapped bolus decreases.
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Fig.(2.1) : Variation of Ap with @ for different values of y at a = 0.7, b= 1.2,d =2, ¢ = A
M=1,E=6.
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Fig.(2.2) : Variation of Ap with @ for different values of M at a =0.7,b=1.2,d=2,¢ =3,
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Fig. (2.4) : Variation of ﬁf with z for different values of Q at a = 0.7, b= 1.2, d = 2, ¢ = 7,
M=1E=5,v=3.
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Fig.(2.5) : Velocity profile for different values of E at a = 0.7, b=1.2,d=2,¢= 5, M =1,
Rn]zg,Q=21’y=6.
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Fig.(2.6) : Velocity profile for different values of M at a = 0.7, b =12,d=2,¢ = §, E =4,
T=2,Rmn=2,Q=2,v7=6.

-2 -1.5 -1 0.6 0 0.5 1 1.6

Fig.(2.7) : Profile of magnetic force function @ for different values of magnetic Reynolds number

Rmata=07b=12d=2¢=3 M=4,2=0, E=4,Q=2,7=3..

44



Fig.(2.8) : Profile of magnetic force function ® for different values of M at a = 0.7, b = 1.2,
d=2l¢=%}Rﬂ1=2!Q=2l‘T=3
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Fig.(2.9) : Profile of magnetic force function ® for different values of @ at a = 0.7, b = 1.2,
d=2,¢=5, Rm=2, M=2,7=3.
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Fig.(2.10) : Variation of axial induced magnetic field h, for different values of R,, at a = 0.7,
b=12,d=2,¢=35,M=3,E=6,Q=3,v=6.
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Fig.(2.11) : Profile of current density distribution J, for different values of volume flow rate @
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(c)
Fig.(2.13) : Stream lines for different values of M and 7. (a) for v = 3.5, M = 1, (b) for v = 5,

M =2, (c) for v =8, M = 3. The other parameters are Q =1.6,0=0.5,d =1, E =4, a = 0.5,
¢ = 0.02.
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Fig.(2.14) : Stream lines for different values of Q. (a) for Q = 1.6, (b) for Q = 1.7, (c) for
(@ = 1.8 The other parameters are y = 3.5, b=05,d=1, E=4,a =05, ¢ = 0.02, E = 4,
M=1.
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2.5 Conclusion

This chapter presents the peristaltic flow of a couple stress fluid under the effect of induced
magnetic field in an asymmetric channel. The governing two dimensional equations are sim-
plified using long wave length approximation. The exact solution of simplified equations are
calculated. The results are discussed through graphs. The main finding can be summarized as

follows:

1. It is observed that in the peristaltic pumping region, the pressure rise increases with an

increase in couple stress parameter 4 and Hartmann number M.

2. The pressure gradient increases with an increase in couple stress parameter -y and decreases

with an increase in Q (flow rate).
3. The velocity field decreases with an increase in E and increases with an increase in M.

4. The magnetic force function increases with an increase in magnetic Reynolds number R,

and decreases with an increase in Hartmann number M and volume flow rate Q.

5. The axial induced magnetic field increases in the upper half of the channel while in the

lower half the behavior is opposite with an increase in magnetic Reynolds number R,.

6. The current density distribution J, decreases with an increase in flow rate . It is also
observed that the behavior of J. is monotonically increasing and decreasing with an

increase in M.

7. The size of the trapping bolus decreases with an increase in couple stress parameter 7,

Hartmann number M and volume flow rate Q.
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Chapter 3

Influence of heat transfer and
magnetic field on a peristaltic
transport of a Jeffrey fluid in an

asymmetric channel with partial slip

3.1 Introduction

This chapter deals with the influence of heat transfer and magnetic field on a peristaltic trans-
port of a Jeffrey fluid in an asymmetric channel with partial slip. The complicated Jefirey fluid
equations are simplified using the long wave length and low Reynolds number assumptions.
In the wave frame of reference, an exact and closed form Adomian solution is presented. The
expressions for pressure drop, pressure rise, stream function and temperature field have been
calculated. The behavior of different physical parameters have been discussed graphically. The
pumping and trapping phenomena of various wave forms (sinusoidal, multisinusoidal, square,

triangular and trapezoidal) are also studied.
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3.2 Mathematical formulation

We consider MHD flow of an electrically conducting Jeffrey fluid in an asymmetric channel. The
lower wall of the channel is maintained at temperature T} while the upper wall has temperature
To. We assume that the fluid is subject to a constant transverse magnetic field By. A very small
magnetic Reynolds number is assumed and hence the induced magnetic field can be neglected.
When the fluid moves into magnetic field two major physical effects arise. The first one is that
an electric field B is induced in the flow, We shall assume that there is no excess charge density
and therefore, ¥V - B = 0. Neglecting the induced magnetic field implies that V x E = 0 and
therefore, the induced electric field is negligible. The second effect is dynamically in nature,
i.e., a Lorentz force (J x B), where J is the current density, this force acts on the fluid and
modifies its motion. This results in the transfer of energy from the electromagnetic field to the
fluid. In present study, the relativistic effects are neglected and the current density J is given
by the Ohm's law as
J=o(V % B).

Since we are considering asymmetric channel therefore, the channel flow is produced due to
different amplitudes and phases of the peristaltic waves on the channel. The geometry of the
wall surface is defined in Eq. (2.1), The continuity and energy equations are defined in Egs.

(1.2) and (1.5), however the momentum equation is defined as

p(aa—‘:-i-(V-V)V)zdivr—ierB, (3.1)

where

T=—PI+8, (3.2)

in which the extra stress tensor S for Jeffrey fluid is defined as [35]

B . 3
8 =1E 7+ o), (3.3)

where A} is the ratio of relaxation to retardation times, ¥ is the shear rate, Ay the retardation

time and dots denote differentiation with respect to time.
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With the help of Eq. (1.6), Egs. (1.2), (1.5) and (3.1) to (3.3) take the following form

ou  av
ax Tay = O o
ou  0U U\ _ 6P 8 ,. 0 e
P(F+Uax *Var) = ~5x *ox S0+ g Sxn) —oBU, 69
aVv av av ar d ad
"(EJrUa_xJ’VW) = ~ay *ax rx) + 5y Gl (28)

c [%T +U§§+V§§] = %V2T+u¢2, (3.7

where
Sex = o (100 (5 + Wz + V) ) 5
B = g (el g+ vl )(Te 55 )
Gy = 1{2:\; (1+A2 (g”vaix“’ai)))a‘;'
e A R R R OR SO
Defining

E = -;,i:%,ﬁz%,f,v:%,6=%—,d=d—f,ﬁ=%,f=%‘, ,—%‘,

g = -‘?-23 a=3 b=;—i, Re= 1, ®=%, e=§;:5’;£;, '=%.

E. = C,(sz_m, Pr“%?:, M= %Bgd- (3.9)

Using the transformation defined in Eqs. (1.11) and (3.9) into Eqgs. (3.4) to (3.8), the resulting

equations in terms of stream function ¥ (dropping the bars, u = %’-, y= —6%) can be written
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as

%
Red (¥ Way — Ualyy] = o2 4 60 (Sux) + 5 - (Su) = M (% +1),
s
Re 63 [\Pxﬁ’;y - ‘I’y‘p;:c] == Sg 6266 (Sy::) 3 6ay ( W)F
Red [‘I’yﬁz - ‘1’391,] = % [ow + 6 9::::]
" E Mcb (0 8 D )]
) [1 d (“’P% V= 5y

[mswg, + (T — 200)°]

where
2 Agcd 8 i@
S22 = Tom [” a4 (‘P”am ‘I”‘av)]m"”
1 Agcd 0 2] 2
= e Wee ||| [ Wi ~ 8% Wa]
Sy 1+ M [1+ dy (q'”az 'P”ay)][ = )
B 26 Agcd 8 . 8 '
Sw = Ty [” & (‘I’”a:c ""ay)] S

(3.10)

(3.11)

(3.12)

(3.13)

Under the assumption of long wave length §<<1 and low Reynolds number, Eqgs. (3.10) to (3.13)

become

3}7 d [ 1 3\1’] M2(‘I,y+1) . 0'

6m+6‘y 1+ A 9y?
dp
= : — 0]
Ay
1 E. 2
— = 0.
Rowt ) w

Elimination of pressure from Eqgs. (3.14) and (3.16), yield

9 [ 1 0w "

ay? {1+A W] e = B
1 E: 2
Bowt Ty = O
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The corresponding non dimensional boundary conditions are

v = gaty=h;=l+acos'2:rr:r,

¥ = _% at y = hg = —d — beos(27z + ¢),

gy (1+XN) 0y?
v L o
dy (14 X;) ay?

8 = 0aty=h,

= —laty=h,

= —1laty=hs,

9 1 at y = ha,

where g is the flux in the wave frame, L represents the partial slip parameter.

3.3 Solution of the problem
3.3.1 Exact solution

The exact solution of Eq. (3.17) can be written as

. Y ; ¥
v = Fy + Fsy + Fgcosh —= + Fysinh ——=,
4 Y 6 V"F 7 \/E

(3.19)

(3.20)

(3.21)

where Fy, Fy, Fg, F; are functions of z and can be calculated using boundary conditions (3.19)

~ (hy + hg) {q + (17__(_1,-»;.3::31]) tanh [%’5;-;2“

Fy ‘
2 (y — hg) — 2 (HE2AHBBUN) ) oy [la=ta ]
L+2B(1+A --h
B = Q+( 715‘(1+4't1)l )“mh [ 2VB | : ]
L{ha=hy)+2B(1+X) T L
(hy — hg) — ( 2= B(‘li.+.\1]+ 1 )tanh st
I —VB (g + hy — hy)sech [—17_3] sinh '%15%1'
& = y !
(ha = i) + (Hla=pdt2B04h) ) o [asha|
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VB (q+ hy — hy)sech [—21751] cosh [-‘f}-‘] (3.22)

(hg — hy) + (L”" J%)(';jff;“‘)) tanh {_‘T}; _g"]

3.3.2 Solution by Adomian decomposition method

Frp =

In this section, the Adomian solutions will be determined for the velocity field [62 — 65]. Ac-

cording to Adomian decomposition method, we write Eq. (3.17) in the operator form as
Lyyyy® = M2 (14 Ay) ¥y, (3.23)

Applying the inverse operator L. v = | [ ] [ || dydydydy, we can write Eq. (3.23) as

2
v =Cy +05y+052| +C73, +o= L_ (Tyy) s (3.24)
where
1 . 2
E_M (1+’\1):

Cy, Cs, Cg, Cy are functions of z. Now we decompose ¥ as
o0
V=" ¥, (3.25)

Substituting ¥ into Eq. (3.24), we obtain

ya ys
w Cq+05y+Cs§+C7§’-,

1
Tapy = 3 f / / / (n)y, dydydydy,n > 0. (3.26)
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Therefore,

N 1 y‘i yﬁ
¥, = B (CSZ!H’-CTST i
- 1 yﬁ yT
¥ = B2 (Caa'i'c?ﬁ )
1 y2n+2 y2n+3 8 3.97
. ﬁ(oﬁ(zmz)!*c’(?nwﬂ)' = e

Using Eq. (3.25), the closed form of ¥ can be written as

- ht 1 -nh_y__L),
v C4+Csy+BG'5(cosv/§ )+B\/§cy(m 575

The above equation in simplest form can be written as

.

=+ Fysinh sl (3.28)

U = Fy + Fsy + Fg cosh
4 54 6 \/§

Now the Adomian solution (3.28) and exact solution (3.21) are exactly same in which Fi(i =4
to 7) are calculated using boundary conditions which are defined in Eq. (3.22).
The pressure gradient is obtained from the dimensionless momentum equation for the axial
velocity as
dp 1

1 1
it — =y~ =] 2
dz — (1+M) [‘I’m B B] (559

Substituting the values of ¥ into (3.29),we obtain

dp _ = (h1 = h2 +q) [1 + F(%m tanh [%\7_%‘]] _ (3.30)
® BaR (h; ™ (L(ha:;é.;'ll'ii(;+h}) tanh [%ﬁ])

Integrating (3.30) over one wavelength, we get

Ap= '/0 1 (g) di. (3.31)
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The axial velocity component in the fixed frame (non-dimensional form) is given by

UX,Y,t) = 1+
. = i 12 A1 e i :—7*
2 (hy — hg + g) sinh [%7@‘:] sinh [Lzbax] o %m_:-:}lﬁnh [hQ ; ] (3.32)

(Altampl2B0t0) ) ginp (Bisha| — (hy — hy) cosh [ B4

where

hy=1+acos[2r (X —t)] and hy= —d~—bcos2m (X —1)+ 4]

Using solution (3.21) into Eq. (3.16), the exact solution of the energy equation in fixed frame

satisfying the boundary conditions can be written as

- __EFR (Fg oo, 2, 2 4 Y4 2y , FoFr ¥ ))
0 = T+) (2321’ 3B (F§ + F7) cosh 2 7B) 1 (FE+Ff) + - 1B sinh 2 7B
+esY + ¢, (3.33)
where
_ —1 E.F, F§ oo .o (B-H) o g
Cy = (."i‘.!_ = 1'12} + {1 T ,\1) (hl = hﬁ) (232 (hl h?) 482 (Fﬁ = Fy)

SB (F2 + F?) [cosh2 (%) — cosh2 (\:}%)] +F:§7 [ nh2 (\/—‘_) — sinh 2 (%)D

P EcPr Fﬁ FﬁF’{ . ﬂ . 5 (ﬁ))
e (1+/\)(232h1+ 4B smh2(\/§) 432 (P8 +F7) + (F5+F-;)cosh2 75
B (3.34)

It is noticed that in the absence of heat transfer and slip parameter L the results of Kothanda-
pani and Srinivas [35] can be recovered as a special case of our problem. Morzover the results of
Mishra and Rao [14] can be recovered if A\ — 0, L — 0 and in the absence of heat transfer.
3.4 Expressions for wave shape

The non-dimensional expressions for the five considered wave forms are defined as follow
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. Sinusoidal wave

hi(z) = 1+ asin27xz, hy(z) = —d — bsin(27z + ¢):

. Multisinusoidal wave

hi(z) =1+ asin2mxzn, hy(x) = —d — bsin(27zn + ¢)-

. Square wave

Z ((;T]f% cos[2(2m — 1)':1'3:]:| :

( 1)m+1

hi(z) = 1+a[§r-
ha(z) = —-d—b [%i——l) [2(2m—-1)1rz+¢]]

. Triangular wave

hi(z) = [r?’ Z (- il 2sm [2(2m - l)rra:]}
ha(z) = —d—b [«3 Z Um:)lz in [2(2m — 1)ma + qb]]
m= l

. Trapezoidal wave

hi(z) = 14a { Z sz—ﬂ’1—~.~sm [2(2m — 1)?(:!‘.‘:[]

m=1

sin ‘—E (2m — .
—-d—-b [? Z e 1)2 sm [2(2m — )7z + t;b]] -

ha(z)

3.5 Results and discussion

In this section, the graphical results are displayed. The integration which appears to compute

pressure rise Ap is calculated numerically using a mathematics software. The pressure rise

Ap for different values of slip parameter L, magnetic parameter M and amplitude ratio ¢ are
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plotted in Figs. 3.1 to 3.3. Fig. 3.1 illustrate the pressure rise for different values of L. It is
shown that Ap decreases for small values of Q) with an increase in L, however, Ap increases for
large values of @ with an increase in L. Thus we say that Ap and @ has inversely linear relation
between each other. Fig. 3.2 represents the variation of Ap with @ for different values of M. It
is observed that the pressure rise increases with an increase in M for small @ whereas for large
@, Ap decreases with an increase in M. The effects of the amplitude ratio ¢ on the pressure
rise are shown in Fig. 3.3. It is observed that for Q € [—1, 2|, the pressure rise decreases with
an increase in ¢, whereas for @ € [2, 3|, the pressure rise increases. The pressure gradient for
different value of M and L against z is plotted in Figs. 3.4 and 3.5. It is depicted that for
z € [0,0.2] and = € [0.8, 1], the pressure gradient is small i.e., the flow can easily pass, while
in the region = € [0.2,0.8], pressure gradient increases with an increase in M and decreases
with an increase in L and much pressure gradient is required to maintain the flux to pass. The
velocity field for several values of M, A\; and @ are shown in Figs. 3.6 to 3.8. It is seen from
Figs. 3.6 and 3.7 that for Y € [-1.65,—1] and [1, 1.65], the velocity field show slight increase
with an increase in M, while Y € [—1, 1] with an increase in M and ), the velocity decreases
and the maximum value of velocity is at the center of the channel. Velocity profile for different
values of Q is shown in Fig. 3.8. It is observed that the velocity profile increases with an
increase in (). The temperature profile for several values of L, P, M, and A; are shown in Figs.
3.9 to 3.12. It is observed that temperature field decreases with an increase of L, M and Aq,
while it is increases with an increase in P.. The pressure rise Ap for different types of waves
are presented in Fig. 3.13. It is observed that Ap in trapezoidal wave is greater than sinusoidal
wave which is greater than triangular wave. The temperature field for different waves form are
presented in Fig. 3.14. It is observed that temperature field for sinusoidal wave is greater than
trapezoidal wave and the temperature field for triangular wave is greater than sinusoidal wave.

Trapping phenomena

Another interesting phenomena in peristaltic motion is trapping. It is basically the for-
mation of an internally circulating bolus of fluid by closed stream lines. This trapped bolus
pushed a head along a peristaltic waves. Figs. 3.15 to 3.17, illustrate the stream lines for differ-
ent values of L, @, and M for both symmetric and asymmetric channel. It is observed that for

a symmetric channel the trapping bolus is symmetric about the centre line of the channel (see
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panels (a) and (c)), while in case of asymmetric channel the bolus tends to shift towards left
side of the channel due to phase angle (see panels (b) and (d)). Fig. 3.15 shows the stream lines
for different values of slip parameter L. [t is observed that with an increase in L, the size of the
trapping bolus decreases. Moreover, it is also observed that the size of the trapping bolus is
small in asymmetric channel as compared with the symmetric channel. It is also observed from
Fig. 3.16 that with an increase in ), the size and the number of the trapped bolus increases.
The size of the trapped bolus increases with an increase in M (see Fig. 3.17). Stream lines for
different waves forms are presented in Fiz. 3.18. It is observed that the size of the trapped bolus
is smaller in case of triangular wave when compared with other wave forms.

Table 3.1 and 3.2 show the comparison of present solution with those available in the

literature when some of parameters are replaced to be zero in our problem.
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Fig.(3.1) : Variation of Ap with @ for different values of Lat a = 0.7, b=1.2,d =2, M = 0.1,
p=% M =04
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Fig.(3.2) : Variation of Ap with @ for different values of M at a =0.7,d = 2, b = 1.2, L = 0.02,
¢=1 A =04
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Fig.(3.3) : Variation of Ap with @ for different values of ¢ at a = 0.7, d =2, b= 1.2, M = 0.1,
L =0.02, \y =04.
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Fig.(3.4) : Variation of g_% with z for different values of M at a = 0.7, b= 1.2, d = 2, L = 0.02,

Q:*1,¢=%,A1=U.4.
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Fig.(3.5) : Variation of 55 with z for different values of L at a = 0.7, b=12,d =2, M =0.1,

Q= —1.¢3=%,/\1 = (0.4,
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Fig.(3.6) : Velocity profile for different values of M at a = 0.7, b = 0.7, d = 1.7, Q = 1.7,

- - M=2_0

| #erennes M = 3.0

L=0001, X =1,t=1,¢=5.

Fig.(3.7) : Velocity profile for different values of A\; at a = 0.7, b = 0.7, d = 1.7, L = 0.001,
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Fig.(3.8) : Velocity profile for different values of @ of at a = 0.7, b = 0.7,

X=1t=1,¢=3%.
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Fig.(3.9) : Temperature profile @ for different values of L at a = 0.5, b=1.2, d = 1.5, Q = —2,
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Fig.(3.10) : Temperature profile # for different values of P, ata=0.5,b=1.2,d=1.5,Q = -1,
M=01,\=04E=1,L=002,X=1t=1,¢=3.
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Fig.(3.11) :Temperature profile 8 for different values of M at a = 0.5, b= 1.2,d = 1.5, Q = -2,
L=002 )\ =04,E=1,P=1,X=11t=1,4=§.
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Fig.(3.12) : Temperature profile # for different values of \y at a =0.5,b=1.2,d = 1.5, Q = -2,
M=01,L=002E=1,F=1,X=1t=1,¢=73.
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Fig.(3.13): Variation of Ap with @ for different wave form at a = 0.7, b =1.2,d = 2, M = 3,
L=0.02 A=2¢=F.
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(c) (d)

Fig.(3.15) : Stream lines for two different values of L. (a) and (b) for L = 0.01, (¢) and (d) for
L = 0.03. The other parameters are chosen as a = 0.5, b = 0.5, d = 1.0, @ = 1.45, A\; = 0.1,
M =1,
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Fig.(3.16) : Stream lines for two different values of Q. (a) and (b) for Q@ = 1.8, (¢) and (d) for
@ = 2.0. The other parameters are chosen as a = 0.5, b = 0.5, d = 1.0, L = 0.02, \; = 0.2,
M=1.
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Fig.(3.17) : Stream lines for two different values of M. (a) and (b) for M = 1.0, (¢) and (d) for
M = 1.1. The other parameters are chosen as a = 0.5, b = 0.5, d = 1.0, L = 0.02, \; = 0.2,
Q = 1.45.

=-J
—



2 0 02 04 06 Y04 0 0.1 0.2 03 0.4

72



15

0>>>

Fig.(3.18): Stream lines for different wave shape for fixed a = 0.5, b = 0.5, d = 1.0, M = 1,
L =002 )\ =02, Q=18 ¢ =0: (a) sinusoidal wave (b) multisinusoidal wave (c) square

wave (d) trapezoidal wave (e) triangular wave,
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Table 3.1: Pressure rise with volume flow rate for fixed @ = 0.7, b=1.2,d = 2, M = 0.1,

¢=1I ) =04

) M. Kothandapani et al [35] when L = 0 | Present work when L = 0.02
-1 2.98239 2.80332

-0.5 | 2.36653 2.22225

0 1.75066 1.64118

0.5 | 1.13479 1.06011

1 0.518927 0.479047

1.5 | -0.09694 -0.10202

2 -0.712807 -0.683087

2.5 | -1.32867 -1.26415

3 -1.94454 -1.84522

Table 3.2: Velocity profile for fixed a=0.7, b=0.7,d=1, X =1,t=1, ¢ = 0.

Y | M. Kothandapani et al [35] when L = 0 | Present work when L = 0.02
1.7 (0 0

-1.3 | 0.5619 0.574951
-0.9 | 0.794255 0.786245
-0.5 | 0.887231 0.870794
-0.1 | 0.916923 0.897794
0.1 | 0.916923 0.897794
0.5 | 0.887231 0.870794
0.9 | 0.794255 0.786245
1.3 | 0.5619 0.574951
1.7 |0 0
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3.6 Conclusion

This chapter presents the effects of heat transfer and magnetic field on a peristaltic transport
of a Jeffrey fluid in an asymmetric channel with partial slip. The governing two dimensional
equations are simplified using long wave length approximation. In the wave frame of reference,
an exact and closed form Adomian solution is presented. The results are discussed through

graphs. The main finding can be summarized as follows:

1. It is observed that the pressure rise Ap and volume flow rate @ has inversely linear relation

between each other.

2, The pressure gradient increases with an increase in Hartmann number M and decreases

with an increase in slip parameter L.

3. The velocity field show slight increase with an increase in M and A\; when Y € [-1.65, -1},
while it decreases with an increase in M and Ay when Y € [—1, 1] and the maximum value

of the velocity is at the center of the channel.

4. The temperature field decreases with an increase in L, M and )y, while it is increases

with an increase in F,.

5. The pressure rise in trapezoidal wave is greater than sinusoidal wave which is greater than

triangular wave.

6. The temperature field for sinuscidal wave is grater than trapezoidal wave and the tem-

perature field for triangular wave is greater than sinusoidal wave.
7. The size of the trapping bolus decreases with an increase in L.
8. The number of the trapping bolus increases with an increase in Q.

9. The size of the trapping bolus increases with an increase in M.
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Chapter 4

Influence of induced magnetic field
on the peristaltic motion of a Jeffrey
fluid in an asymmetric channel:

Closed form solutions

4,1 Introduction

This chapter deals with the peristaltic motion of a two dimensional Jeffrey fluid in an asymmet-
ric channel under the effects of induced magnetic field. The problem is simplified by using long
wave length and low Reynolds number approximations. An exact and closed form Adomian
solutions have been presented. The expressions for velocity, stream function, magnetic force
function, temperature, pressure gradient and pressure rise have been computed. The results
of pertinent parameters have been discussed graphically. Finally, the trapping phenomena for
different wave shape have also been discussed. It is observed that the pressure rise for sinusoidal

wave is less than trapezoidal wave and greater than triangular in a Jeffrey fluid.
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4.2 Mathematical formulation

Let us consider the peristaltic flow of an incompressible, electrically conducting non-Newtonian
fluid (Jeffrey fluid) in a two dimensional channel of width d; + dg. The lower wall of the
channel is maintained at temperature 7} while the upper wall has temperature 7. The flow
is generated by sinusoidal wave trains propagating with constant speed ¢ along the channel
walls. We choose a rectangular coordinate system for the channel with X along the centerline
of the channel and Y is transverse to it. An external transverse uniform constant magnetic
field Hy, induced magnetic field H(hx(X,Y, 1), Ho+ hy (X, Y, t),0) and the total magnetic field
H*Y(hx(X,Y,t),Hy + hy(X,Y,t),0) are taken into account. The geometry of the asymmetric
channel is defined in Eq. (1.1), the continuity, energy, Maxwell and induction equations are
defined in Egs. (1.2), (1.5), (2.2) to (2.4) and (2.6), however the momentum equation in the
presence of induced magnetic field is defined as

p (%—Y +(V- v)v) =divr -V (%u (H+)2) —p, (HV)HY, (4.1)
where the extra stress tensor S for Jeffrey fluid is defined in Eq. (3.3).
Defining
F = ;, g=%, ﬁ=%, a:E,ﬁ:%’—, d:%,p:%?, E:‘:\t, hlz%‘,
i = %2 a=;—i, b=z—:. Re=%, @:%, §)=H:’dl
Pm = p+ %Red%}c?——f, Ry =opdie, Sy = % %, b= ;:__I:;%,
E = (sz_ B = WT? 3= %- (4.2)

With the help of Egs. (1.6), (1.11) and (4.2), Eqs. (1.2), (1.5), (2.6) and (4.1) in terms of
the stream function ¥ (z,y) and magnetic-force function ® (z,y) (dropping the bars and using
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%= %,v-—— —éa‘i’,hx = a"’ 5y =05 x) take the form
apﬂl a
Red (Uy Wy — Uallyy) = -2+ éa (Sz2) + 5 (Szy)
+Re S7®,, + Re 576 (D, @y — 0, Dy,) (4.3)
dpm a a
Red® (q’x‘pz:p = ‘I’v'l’z::) = _'W + 625; (sz) + Ja'_y (Sw)
—Re 4282, — Re §16° (@) Py — D2Dsy), (4.4)
Red (¥,0. — V.0,) = —I} (Byy + 6%022) +
E. Aol d ) ))
- DYy e v e
W (1+ 7 (anw ] B
(45%@” + (Wyy — aﬂw,z)z) , (4.5)
U, — 8 (0@, — ¥.8,) + i (®yy + 6°®.;) = E, (4.6)
where

2 doch [ 8 0
See = 1+ A (1+ dy (”8 ay))ww”’
1 A2l ) 2
) - 6" xzz )
14X\ (1+ dy ( Yoz xay)) )
a

28 Aged s )
= 4.7
S T+h (” a (“’”6 ‘I"ay)) (4.7

Under the assumption of long wave length § << 1 and low Reynold number neglecting the
terms of order § and higher, Egs. (4.3) to (4.7) take the form

g
]

op @ 1 %Y 2 B
55 (H,\ 82)+Res¢w = 0, (4.8)
op
2 = 0, 4.9
2 49)
1 _EBe g2 _
ov
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Elimination of pressure from Eqs. (4.8) and (4.9) yields

o? 1 8%V
7 (T a7 *Restom =0 e
Combining Eq. (4.11) and (4.12) yields
¥ v
e (8- 90) = Fu, (413)

where Fy; is a constant, M? = R,,ReS?, Re is the Reynolds number, S; is the Strommer’s
number (magnetic force number) and R, is the magnetic Reynolds number.

The corresponding dimensionless boundary conditions are

= -g, at y=hy =1+ acos2nz,
v = —g-, at y=hy = —d— bcos(2rz + ¢),
% = -1, at y=h and y=hy, (4.14)
g = 0, at y=h,
§ = 1, at y = hg, (4.15)
® =0, s y=Fk andy=hg (4.16)

4.3 Solution of the problem

4.3.1 Exact Solution

The exact solution of Eq. (4.13) can be written as

U = Fy+ Fy cosh (mgy) + Figsinh (may) + By — ~2y, (417)
3
where
m3=M\/(1+A1 %
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and Fy, Fg, Fyo and Fyy are functions of z only which has been calculated with the help of

boundary conditions (4.14) as

gmg (k1 + h2) + 2 (ha + hy) tanh [Tﬂa (g;_._;_h,l)}

Fg = '
2 (hz — h1) mg + 4 tanh [mﬂ (m’?‘h})]
_— (g+ hy — ha)sech [ma (Lu%!u) sinh :ma (m'-;';_hz) ’
(hy — hg) ma — 2tanh ™3 (ﬂx'"rz)
G s [ () o o ()
1w = (hg — hy) mg + 2 tanh :ma (@) 1
oy m3 (¢ — h1 E + Ehg) + 2mj (E + 1) tanh [ma (%)] (4.18)

(h2 = h1)m3 + 2 tanh [m3 (m;_hz)]

4.3.2 Solution by Adomian decomposition method

In this section, the Adomian solutions will be determined for the stream function. According

to Adomian decomposition method, we rewrite Eq. (4.13) in the operator form as
Ly ¥ = (F1y — m3E) +m¥,. (4.19)
Applying the inverse operator L1 = [ [ [[.] dydydy, we can write Eq. (4.19) as

2 3
¥ = Cs + Coy + cw;g-!- (% ~ ng)% +miL-L (T,), (4.20)

where

m3=M2(1+1X),

and Cg, Cy, Cg, F11 are functions of z. Now we decompose V¥ as

=) "Wy (4.21)
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Substituting ¥ into Eq. (4.20), we obtain

i
Vo = Cs+C'9y+C'10 +(Fn maE)

3!’
Vo = m3//f )y dydydy,n > 0. (4.22)
Therefore,
y’ y
‘111 = mg (C +CJD 41 +(F11 m;E)-5—|)
4 5 5 yT
Up = my (ngl- + Cm 5l + (Fly - msE)ﬁ)

1’,2:'1+1 2n+2 2-n+3
Gni )i T OOy + (P ~m3E) (2 3!

v, = md (Cg ) n>0. (4.23)

With the help of Eq. (4.21), the closed form of ¥ can be written as

C 1
U = Cg + sinh (may) (— g (= %E)) + 22 (cosh (mgy) 1) = — (Fuy —m3E) y-
3 3

m3

The simplest form of above equation can be written as

F
¥ = Fg + Fycosh (may) + Fyo sinh (m3y) + Ey — ;‘g-y. (4.24)
3

Now the Adomian solution (4.24) and exact solution (4.17) are exactly same in which Fi(i =8
to 11) are calculated using boundary conditions which are defined in Eq. (4.18).
Making use of Eq. (4.17), the exact solution of Eq. (4.10) in fixed frame satisfying the
boundary condition can be written as
EcPr
(1 + A1)
-3 (B + ) miy?) 4 er¥ + (4.25)

( B miY? + % (F§ + Fy) mj cosh2 (mgY') + %Fgmeg sinh 2 (mgY")
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where

=i E.P, , S P R T
@ = % ) + T (b —Fa) (Estmé (k3 — h3) — i (F§ + F) m3 (A — h3)
17 2
+% (F§ + Fi) m3 (cosh 2 (mghy) — cosh 2 (mshs))

+~i—Fgme§ (sinh 2 (m;:,hl) —sinh 2 (m3h2))) v

E P, 1 1 2 . 1 /02 2 2
g = a :_ ;1) (éFgm‘gh? + EFQmeS sinh 2 (mghy) + g (F§ + Ffy) m5 cosh 2 (mghy)
-1 % + F) min?) - e (4.26)
With the help of Eq. (4.17) the solution of Eq. (4.11) can be straightforward written as
b = coy + €10 + %-y—z Sy B sinh (may) + Fio cosh (mgy)) , (4.27)
= A m§ 2 mga ms3

where cg and e;p are calculated using boundary condition (4.16), which are as follow

m3 (g — i E + heE) + 2 (E + 1) tanh {m3 (Lu_gﬂz)])

B 1—hg
cg B (b1 + hg) ( (hy — hg) mg — 2 tanh [m3 (h Eh )]

2 + hihom?) (hy — ho +
cip = & hiho (14 B) + ( + g 2m3)( 1 2 i)“h,, _ (4.28)
2 ma ((hz — hy)mg + 2 tanh [ms (4.2_.-)])

The expression for axial induced magnetic field can be obtained with the help of h, = %Tf!
which are as follows
R, 2(g+ hy — hyg)sech [m3 (ﬂlgél)] ginh [ma (h thy _ y)] )
+(2y — b1 = ha) (ma (g— M E + haE) + 2 (E + 1) tanh |mg (—1—-" Eh")D .
2 (hg — hy) mg + 4 tanh [m;; (ﬁl‘z‘—"i)]

he(z,y) =
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Also the current density distribution takes the following form

( 2mis (g + hy — hg)sech [mg (’—’Lg—f'ﬂﬂ cosh [Tﬂ.g (ﬁuﬂ_ﬁ; . y)] )

=2 (”13 (g—MmE+hE)+2(F +1)tanh [mg (}ﬂ;—hi)D

2 (hy — hg)mg — 4tanh [ms (f‘_!._%_"_i)] (4.30)

Y=
The pressure gradient is obtained from the dimensionless momentum equation for the axial

velocity as

d 1
ﬁ = oy b M?(E - ¥,)- (4.31)

Substituting the value of ¥ given in Eq. (4.17), Eq. (4.31) takes the form

dp ™3 (a—mE+ hyE) + 2m} (E + 1) tanh [ms (Q‘E—"‘)}

dr - (4.32)
e (1+f\1)((f12-—h1)m3 + 2tanh [ma (ﬁl;—"z)])
For one wavelength, the integration of Eq. (4.32), yields
1m3 (¢ — M E) + 2m3 (B + 1) tanh [mg (ﬁlg—"i)]
A= f —Ldda. (4.33)
0 (14 X1) ((ho — ) mg + 2 tanh [mq (21522)])
The axial velocity component in fixed frame is calculated as
UX,Y,t) = 1+,
mg (hy — ha +q) (=1 +sech |mg (21522 ) | cosh [mg (2th2 — v
= ( [ ( 2 )] [ ( 2 )D . (4.34)

(hg — hy) ma + 2 tanh [ma (m'ﬂ_fhzﬂ

4.4 Expressions for different wave shape

The non- dimensional expressions for three considered wave form for the present case are given

as

1. Sinusoidal wave

hy(z) =1+ asin27z, hy(z) = —d — bsin(2rz + ¢).
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2. Triangular wave

hiz) = 1+a 2 i ﬁsin(?r@mu 1)z)
ﬂa m=1 (2??1. . 1)2 ,
ho(z) = —d—b l% = E%“;l)j_:;isin(2ﬂ(2m—l)x+¢}J .
m=1

3. Trapezoidal wave

hl(a:)

|
-
5]

[32 ® sinZ (2m — 1)

p 2m - 1) sin (27 (2m — 1) m)] ;

m=1

ha(z) = —d—b [:—ﬁ > %%Qsin(gn(zm— 1)z+¢)] :
m=1

4.5 Results and discussion

The exact and closed form Adomian solutions of the Eq. (4.13) subject to the boundary
conditions (4.14) have been computed. The graphical results of pressure rise, velocity, magnetic
force function, axial induced magnetic field, current density and temperature are displayed in
Figs. 4.1 to 4.16. Figs. 4.1 and 4.2 are prepared for pressure rise Ap against volume flow rate @
for different values of Jeffrey parameter A\; and amplitude ratio ¢. It is observed from both the
figures that the relation between pressure rise and volume flow rate are inversely proportional
to each other. It means that pressure rise give larger values for small volume flow rate and
it gives smaller values for large Q. Moreover, the peristaltic pumping occurs in the region
-1 <@ < 1.6 for Ay and -1 < @ < 1.8 for ¢, other wise augmented pumping occurs. The
velocity U for different values of Ay and M are shown in Figs. 4.3 and 4.4 which describe the
effects of A} and M on the velocity field. We observed that near the channel walls the velocity
increases but in the middle of the channel the velocity decreases with an increases in A;(see
Fig. 4.3). It is observed from Fig. 4.4 that the velocity field increases near the channel walls
but in the middle of the channel the velocity decreases and is maximum for small values of
M at the center. The magnetic force function @ for different values of E, Ay, M, R, and @
are shown in Figs. 4.5 to 4.9. It is observed from Figs. 4.5 to 4.8 that the magnitude of the

magnetic force function increases with an increase in E, Ay M and R,,. It is observed from
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Fig. 4.9 that with an increase in @, the magnitude of the magnetic force function decreases.
The expression for axial induced magnetic field h. against space variable y for different values
of magnetic Reynold number R, and E are shown in Figs. 4.10 and 4.11. It is observed that
the relation between h, and y are inversely proportional to each other, with an increase in R,
and E in the region —2 < y <0, h, decreases, while in the region 0 < y < 2, h; increases with
an increase in R,, and E. The current density distribution function J, with space variable y
for different values of M and )\, are shown in Figs. 4.12 and 4.13. It is observed from both
the figures that the current density decreases in the middle of the channel. The temperature
field for different values of Ay, P, and E, against space variable ¥ in fixed frame are displayed
in Figs. 4.14 to 4.16. It is depicted that with an increases in A; the temperature field decreases
while the temperature field increases with an increases in P, and E..

The pressure rise for different kinds of wave shape are presented in Fig. 4.17. It is observed
that the pressure rise for sinusoidal wave is less than trapezoidal wave and greater than trian-
gular wave. The temperature field # for different wave shape are shown in Fig. 4.18. It is seen
that the temperature field for triangular wave is greater than sinusoidal wave and sinusoidal
wave is greater than trapezoidal wave. The magnetic force function @ for different wave shape
are shown in Fig. 4.19. It is observed that the magnitude value of the magnetic force function
& for trapezoidal wave is greater than sinusoidal and triangular waves.

The trapping phenomena for different values of A, E and @ are shown in Figs. 4.20 to 4.23.
It is observed from Fig. 4.20 that the volume of the trapped bolus in the lower half channel is
smaller as compared to the upper half of the channel, moreover, the size of the trapped bolus
decreases with an increase in A, and finally the number of trapped bolus reduces. It is depicted
from Fig. 4.21 that with an increase in E the size of the trapped bolus decreases. The stream
lines for different values of ) are plotted in Figs. 4.22. It is observed that the number and size
of the trapped bolus increases with an increases in Q. The stream lines for different wave shape

such as sinusoidal wave, triangular wave and trapezoidal wave are shown in Figs. 4.23.
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Fig. (4.6) : Profile of magnetic force function ® for different values of A\; at a = 0.7, b = 1.2,
d=2,5‘3=0,Rm=3,Q=2,M=2,E=1,¢=%-
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Fig. (4.7) : Profile of magnetic force function ® for different values of M at a = 0.7, b = 1.2,
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Fig. (4.8) : Profile of magnetic force function ¢ for different values of R,, at a = 0.7, b = 1.2,
d=2,2=0,M=2,Q=2, =2 E=4,¢=13.
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Fig. (4.12) : Profile of current density distribution J, for different values of M at a = 0.7,
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Fig.(4.13) : Profile of current density distribution J; for different values of A\, at a = 0.7,
b=12,Q=-1.0,¢=%,d=24, Ry =4, M=2,2=0,E=2.
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Fig. (4.20) : Stream lines for different values of A;. (a) for A; = 0.5, (b) for A\y = 1.0, (¢) for
A1 = 1.5. The other parameters are a = 0.5, b = 0.5, E = 1.5, M = 0.1,d = 1.0, ¢ = 0.02,
Q=9
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Fig. (4.21) : Stream lines for different values of E. (a) for E = 0.5, (b) for E = 0.7, (¢) for
E = 0.9. The other parameters are a = 0.5, b = 0.5, M = 0.1, A\; = 0.9, d = 1.0, ¢ = 0.02,
Q=18.
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Fig.(4.22) : Stream lines for different values of Q. (a) for @ = 1.6, (b) for Q = 1.7, (¢) for
? = 1.8. The other parameters are a = 0.5, b = 0.5, E = 1.5, A\ = 0.9, d = 1.0, ¢ = 0.02,
M=0.1.
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Fig. (4.23) : Stream lines for different wave forms. (a) for sinusoidal wave, (b) for triangular
wave, (c) for trapezoidal wave, The parameters are a = 0.5, b= 0.5, E = 1.5, \; = 0.9, d = 1.0,
¢ =002 M=01,0Q =18,
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4.6 Conclusion

This chapter presents the peristaltic flow of a Jeffrey fluid in an asymmetric channel under the
effects of induced magnetic field. The problem is simplified under long wave length and low
Reynolds number assumptions. An exact and closed form solution of the problem have been
presented. The results are discussed through graphs. The main finding can be summarized as

follows:

1. It is observed that pressure rise give larger values for small volume flow rate and it
gives smaller values for large (). Moreover, the peristaltic pumping occurs in the region

-1 <@ < 1.6 for \j and —1 < @ < 1.8 for ¢, other wise augmented pumping occurs.

2. It is observed that the magnitude of the magnetic force function increases with an increase

in E, \y M and R,,, but the behavior is quite opposite with an increase in Q.

3. The axial induced magnetic field h, decreases with an increase in R,, and E in the region

~2 < y <0, while in the region 0 < y < 2, h, increases with an increase in R,, and E.

4. The temperature field decreases with an increase in A, while the temperature field in-

creases with an increases in P- and E..

5. It is observed that the pressure rise for sinusoidal wave is less than trapezoidal wave and

greater than triangular wave.

6. The temperature field @ in triangular wave is greater than sinusoidal wave and sinusoidal

wave is greater than trapezoidal wave.

7. The magnitude value of magnetic force function ® for trapezoidal wave is greater than

sinusoidal and triangular waves.

8. The size of the trapped bolus decreases with an increase in Ay and E, but the number

and size of the trapped bolus increases with an increases in @.
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Chapter 5

Slip effects on the peristaltic flow of
a Jeffrey fluid in an asymmetric
channel under the effects of induced

magnetic field

5.1 Introduction

This chapter deals with the effects of slip and induced magnetic field on the peristaltic flow of
a Jeffrey fluid in an asymmetric channel. The governing two dimensional equations for momen-
tum, magnetic force function and energy are simplified by using the assumptions of long wave
length and low but finite Reynolds number. The reduced problem has been solved by Adomian
decomposition method (ADM) and a closed form solutions have been presented. Further, the
exact solution of the proposed problem has also been computed and the mathematical com-
parison show that both solutions are almost same. The effects of pertinent parameters on the
pressure rise per wave length are investigated using numerical integration. The expressions for
pressure rise, friction force, velocity, temperature, magnetic force funetion and the stream lines
against various physical parameters of interest are shown graphically. Moreover, the behavior

of different kind of wave shape are also discussed.
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5.2 Mathematical formulation

Let us consider the peristaltic flow of an incompressible, electrically conducting non-Newtonian
fluid (Jeffrey fluid) in a two dimensional channel of width dy +dg. The lower wall of the channel
is maintained at temperature 7} while the upper wall has temperature 73, The flow is generated
by sinusoidal wave trains propagating with constant speed c along the channel walls. We are
considering a rectangular coordinate system for the channel in which X — azis is taken along
the centerline of the channel and Y — azis is transverse to it. An external transverse uniform
constant magnetic field Hp, induced magnetic field H(hx(X,Y,t), Hy + hy(X,Y,t),0) and the
total magnetic field H*(hy(X,Y,t), Hy+ hy(X,Y,t),0) are taken into account. The geometry
of wall surface is defined in Eq. (1.1). The governing equations are defined in previous chapter
(Egs. (4.8) to (4.13)) however, in the presence of slip parameter, the boundary conditions in

non-dimension form are defined as

v = %, at y = hy =1+ acos2nz,
= —= & y = hg = —d — beos (27 + ¢),

o, L o

Ay (1+ X)) dy?

ov L &%V

o O+M) 0P = -1, at y = ha, (6.1)
8 = 0 at y=hy,

= -1, at y=h,

9 = 1! at y = h21 (5‘2)
o = 0, at y=hy and y = ha. (5.3)

5.3 Solution of the problem

5.3.1 Exact Solution

The exact solution of Eq. (4.13) can be written as

¥ = Fyg + Fy3 cosh (mgy) + Fyq sinh (mgy) + Ey — %gy, (5.4)
3
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where

mg =M1+ \),

and Fyg, [, Fi4 and Fy5 are functions of o only and can be calculated using boundary condi-

tions (5.1)

2(hg+ hy) + iy
gmg (ha + hy) + (L ' tanh [mg (A1522)]
QTH%W (."12 + h]) )
h

Fip = 2(h2—hl)M3+2(2+m§ﬁ;‘[‘Tl-j(h2—h1))tanh [m3 (_%hz)]!

B e (g + h1 — hg)sech [mg (’115—"‘2)] sinh :ma (ng-hl)
18 = (hy — h2)‘m3 = (2_+_ m%zﬁm (hg — hl)) tanh [mg Q—E&) )
e (g+ hy — hg)sech [mg (ﬁ‘%"l)] cosh ma (’h—'{ﬁz) ,
(he — h1)ms + (2 + mam (ha — hl)) tanh [mg mz_hz
m3 (g — hiE + Ehg) + ( e ) tanh m3 h")]
m3 {q h]E—I-Eh'z) (1+A )
Mg = (5.5)
(hg—hl)m3+(2+m3(I+A}(h2 hl)tanh[ I_h

5.3.2 Solution by Adomian decomposition method

According to Adomian decomposition method, we rewrite Eq.(4.13) in the operator form as
Lyyy¥ = (Fis — miE) + m3y,, (5.6)
Applying the inverse operator Lyw J [ [ ] dydydy, we can write Eq. (5.6) as
¥ =Cy + Cray + Cis % o + (F15 — m3E) + m3Lyw( ¥y), (5.7)

where

mg = M? (1+X),
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and Cy1, Cq2, Cy3, Fi5 are functions of z. Now we decompose ¥ as

U= i v, (5.8)

n=0

Substituting ¥ into Eq.(5.7), we obtain

y? 2 ¥
Vo = Cn+Cuy+ Cugy + (Fis - m3E) 7y,
Upp1 = mi f f / (W), dydydy,n > 0. (5.9)
Therefore,
3 4 6
Y Y Y
U, = md (Cmg +Cisy + (Fis — ng)"{!) ,
5 6 7
Y Y Y
U, = mj (0123'!- + Cragy + (Fis — ng)?!‘) g
5 y2n+1 2n+2 ” y2n+3 3
= i — —_— ) . il
S (Cm Gt O3y P - meBl g 3)!) y Wesle (i)
Using (5.8), the closed form of ¥ can be written as
U= C;] + sinh (may) % -+ —L (F15 = sz)) + *C—'JE (COSh (mgy) - 1) - —1— (F15 - m.gE) T
mg  mj $ m3 mi
which can be put in the simplest form as
" B
¥ = Fig + Fi3 cosh (mgy) + Fi4 sinh (mgy) + By — ;lrf'y— (5.11)
3

Now the Adomian solution (5.11) and exact solution (5.4) are exactly same in which Fj(i = 12
to 15) are calculated using boundary conditions which are defined in Eq. (5.5).
Making use of Eq .(5.4), the exact solution of Eq. (4.10) satisfying the boundary conditions
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(5.2) can be written as

+enY+eiz,

E.P, ( —éim"}’g + 3 (F% + F4) mdcosh 2 (mgY) — § (Fis + Ffy) m3Y?

(1+ A1) +3F13Fym§ sinh 2 (m3Y)
. (5.12)

where
o = i
1T (h-hg)
3Fiymd (b3 — h3) — § (Ffs + Ffy) m3 (hf — i)
+1 (FZ + FZ) mi (cosh 2 (mghy ) — cosh 2 (mghy)) |
+;11—F13F14m§ (sinh 2 (mghy) — sinh 2 (mghs))

E P,
(1 + )tl) (hl - hg)

E.P, 3Flsm3h3 - 1 Fi3Fyym3 sinh 2 (mghy) e 548
Cu=(1+,\) ; 0wy | —Cuthe (5.13)
U\ +3 (F+FY)m3 msh?(msh,) ~ § (Ff + Fly) mih3

The exact solution of Eq. (4.11) is defined as

b =cigy + c1y + —5— lsRm y - R (@ sinh (may) + —@— cosh (may)) ; (5.14)
mﬁx 2 ma mg

where c;3 and ¢4 are calculated using boundary condition (5.3) and are defined as

2(E+1)+
mg (g — hiE+ Ehy) + ( ) tanh [ms (;115—"2)]
L_m? (g — hiE + Ehy)
Il+'\1)m3 q 1 2

(hy — hg) ma - (2 + mgzﬁ (h2 — hl)) tanh [mg (!!1%’-‘3)]

€3 = ‘SRQ—n (h1 + ha)

2(g+ hy — ha) + mihihg (¢ — M E + Ehy)
+mghihy (2 (E+1)+ gigmi (¢ - mE + Ehz)) tanh [‘m,3 (—1-2—2" = )]
ey = —

mg 2(hg — hy)m3z +2 (2+ "‘31'115'.5 (hg - h1)) tanh [ms (ﬁtim)] (5.15)

The expression for axial induced magnetic field can be obtained with the help of h, = -53'1
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which are as follows

2(q+ hy — hg) sech [?‘?13 (m_aﬁz)] sinh [ma (QJ-%"—W - y)} +
B ( malg— hE + hE)+

(2 (E+1)+ n—_f'xﬁmg (g— hE+ th)) tanh [ms (Ln;_flz)] (2y — hy — ha)

he(z,y) = 2 (hg — hy) mg +2 (2 + iy (ha — hl)) tanh [m; (bxgiz)]

(5.16)
In the above solution when A; — 0 and M — 0, the solutions of Mishra and Rao [14] can
be recovered as a special case of our problem. Moreover, the Jeffrey problem with induced
magnetic field has not been discussed so far,

The pressure gradient is obtained from the dimensionless momentum equation for the axial

velocity
dp 1
dz ~ (1+A)

Substituting the value of ¥ given in (5.4), Eq. (5.17) takes the form

Uy + M2 (E-T,). (5.17)

dp _™}a—mE+hE)+ (ng (E+1)+ rrymd (g = mME + th)) tanh [m3 (m_;_hg)] |
dz (14 A1) (k2 = ha)mg + (2 -+ mi sy (ha = ha)) tanh [mg (2252) )
(5.18)
For one wavelength, the integration of Eq. (5.18), yields
1 dp
e L AP 1
Ap /ﬂ ( dz) dz (5.19)
The expression for frictional force is defined as
1 dp
F=- /o (a) dz, (5.20)

where the expression for dp/dz is defined in Eq. (5.18).
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The axial velocity component in fixed frame is calculated as

UX,Y,t) = 149,

—1+sech [ma (’l%"z
mg (hy = hg +q) %
cosh [?‘?13 (f'-ﬂz'—l - Y)]

+m§ﬁ {hz —hy — q) tanh [m3 (m;—h'z)]

= ) (521)
(hg— hy) rog + [24. m by (ha — h.;)) tanh [ma (m;_fu)]
where
hi=1+acos2m(X —t)] and hy=—d—bcos[2m (X —1t)+ 4]
The expression for the Nusselt number for the upper wall is defined as
a0
Nu= =2 ly=ts, (5.22)

where @ is defined in Eq. (5.12).

5.4 Expressions for different wave shapes

The non- dimensional expressions for three considered wave form are defined in previous chapter,
which will be helpful for finding the solutions of these wave shapes which are discussed and

shown graphically proceeding in the sections.

5.5 Results and discussion

In this section, the graphical results are displayed to see the effects of various physical para-
meters on the pressure rise, frictional force, velocity, temperature, magnetic force function and
stream lines. The expression for pressure rise and frictional force are calculated numerically
using a mathematics software. The graphical results of pressure rise, frictional force, velocity,
magnetic force function and temperature are displayed in I'igs. 5.1 to 5.15. Pigs. 5.1 to 5.3 are
prepared for pressure rise Ap against volume flow rate @ for different values of Jeffrey parame-

ter Ay, amplitude ratio ¢ and slip parameter L. It is observed that the relation between pressure
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rise and volume flow rate is inversely proportional to each other. It means that pressure rise
gives larger values for small volume flow rate and it gives smaller values for large Q. Moreover,
the peristaltic pumping occurs in the region —1 < @ < 1.5 for Ay, =1 < @ < 1.7 for ¢, and
-1 < @ < 1.5 for L, other wise augmented pumping occurs. The frictional forces F' against
flow rate Q for different values of Ay, ¢, and L are shown in Figs. 5.4 to 5.6. It is observed from
the figures that frictional forces have opposite behavior as compare to the pressure rise. The
velocity IJ for different values of A\; and M are shown in Figs. 5.7 and 5.8. We observed that
the velocity profile decreases with the decrease in Ay(see Fig. 5.7). The effect of M on the
velocity is almost opposite as compared to the case of \;. Here the velocity profile increases
with an increase of M. The temperature field for different values of Ay, P. and L against space
variable Y are displayed in Figs. 5.9 to 5.11. It is depicted that with an increase in A; and
L the temperature field decreases while the temperature field increases with an increase in P;.
The expression for axial induced magnetic field h. against space variable y for different values
of magnetic Reynold number R,, and slip parameter L are shown in Fig. 5.12 to 5.13. It is
observed that with an increases in R, and slip parameter L, h, increases in the upper half of
the channel while in the lower half the behavior is opposite.

The pressure rise for different kinds of wave shape are presented in Fig. 5.14. It is observed
that the pressure rise for sinusoidal wave is less than trapezoidal wave and greater than trian-
gular wave. The temperature field 8 for different wave shape are shown in Fig. 5.15. It is seen
that the temperature field for triangular wave is greater than sinusoidal wave and sinusoidal
wave is greater than trapezoidal wave.

The trapping phenomena for different values of A;, M and L are shown in Figs. 5.16 to 5.18.
It is observed from Fig. 5.16 that the volume of the trapped bolus in the lower half channel
is smaller as compared to the upper half of the channel, Moreover, the size of the trapped
bolus decreases in the lower half of the channel with an increase in A;. It is depicted from
Fig. 5.17 that with an increase in M the size of the trapped bolus increases. The stream lines
for different values of L are plotted in Fig. 5.18. It is observed that the number and size of
the trapped bolus decreases in the lower half of the channel and increases in the upper half of
the channel with an increase in L. The stream lines for different wave shape such as sinusoidal

wave, triangular wave and trapezoidal wave are shown in Fig. 5.19. Table 5.1 is prepared to
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see the behavior of Nusselt number for different values of physical parameters. The table shows
that with an increase in L, Ay, and d the Nusselt number decreases while with an increase in

Prandtl number P,, the Nusselt number increases.

% 0 1
Q

Fig. (5.1) : Variation of Ap with @ for different values of A\j at a = 0.7, b=1.2,d =14, F =4,
M=05¢= 7, L = 0.04. (Sinusoidal wave).
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Fig.(5.2) : Variation of Ap with @ for different values of ¢ at a =0.7, b=12,d = 1.5, E =4,
M = 1.5, Ay = 0.5, L = 0.04. (Sinusoidal wave).
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Fig.(5.3) : Variation of Ap with @ for different values of L at a = 0.7, b=12,d = 14, E = 4,
M = 0.5, \; = 0.5, ¢ = %. (Sinusoidal wave).
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Fig.(5.4) : Variation of F' with @ for different values of \; at a =0.7, b=1.2,d =14, E = 4,
M =0., ¢ = %, L =0.04. (Sinusoidal wave).
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Fig.(5.5) : Variation of F' with @ for different values of ¢ at a = 0.7, b=12,d= 1.5, E = 4,
M =1.5, \; = 0.5, L = 0.04. (Sinusoidal wave).
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Fig. (5.6) : Variation of F' with @ for different values of L at a = 0.7, b=1.2,d = 1.4, E = 4,
M=0.5 =05 ¢= - (Sinusoidal wave).
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Fig.(5.7) : Velocity profile for different values of Ay at a = 0.7, b = 1.2,d=15, X =1t=1,
Q=05 E=4,M=1,¢=F, L=0.04. (Sinusoidal wave).
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Fig. (5.8) : Velocity profile for different values of M at a = 0.7, 6=12,d =15, X =1,t =1,
R =05, E=4, A\ =05, ¢ = §, L = 0.04. (Sinusoidal wave).
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Fig.(5.9) : Temperature profile @ for different values of A; at a = 0.5, b =1.2,d = 1.5, E = 4,
M=1F=1E=1,Q=24, ¢ =7, L=0.04. (Sinusoidal wave).
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Fig.(5.10) : Temperature profile 8 for different values of P at a = 0.5, b=1.2, d = 1.5, E = 4,
M=1,A=04Q=24,1t=1,X=1,E =1, ¢ =3 L=0.04. (Sinusoidal wave).
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Fig.(5.11) : Temperature profile 6 for different values of L at a = 0.5, b= 1.2, d = 1.5, E = 4,
M=1,1=04,Q=24,t=1,X=1, E.=1, ¢ =3, P, =1. (Sinusoidal wave).
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Fig.(5.12) : Variation of axial induced magnetic field h, for different values of R,, at a = 0.7,
b=07,Q=-09,L=004,p=m,d=23, E=4, M =3, \y = 4, z = 0. (Sinusoidal wave).
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Fig.(5.13) : Variation of axial induced magnetic field h, for different values of R,, and L at
a=07,b6=07Q=-09,¢=7d=23, E=4, M =3, \; =4, =0, (Sinusoidal wave),
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Fig.(5.14) : Variation of Ap with Q for different wave forms at a = 0.7, b=1.2,d = 14, ¢ = 7,
E=4 M=2 A\ =08.
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Fig.(5.15) : Temperature profile 6 for different wave forms at o = 0.5, b= 1.2, d = 1.5, ¢ = ¥,
E=4,8.=1,F=1 M=1,% =1, L =004
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Fig.(5.16) : Stream lines for different values of A\;. (a) for Ay = 0.7, (b) for A; = 0.8, (c) for
A1 = 0.9. The other parameters are a = 0.5, b = 0.5, E = 1.5, M = 0.06, L = 0.01, d = 1.0,
d=0.02, Q = 1.6.
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Fig. (5.17) : Stream lines for different values of M. (a) for M = 0.06, (b) for M = 0.07, (c) for
M = 0.08. The other parameters are a = 0.5, b = 0.5, E = 1.5, A\ = 0.8, L = 0.01, d = 1.0,
¢ = 0.02, Q = 1.6.
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Fig.(5.18) : Stream lines for different values of L. (a) for L = 0.01, (b) for L = 0.02. The other
parameters are a = 0.5, b = 0.5, E =15, \; = 0.8, d = 1.0, ¢ = 0.02, Q = 1.6.
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Fig.(5.19) : Stream lines for different wave forms. (a) for sinusoidal wave, (b) for triangular
wave, (c) for trapezoidal wave. The parameters are a = 0.5, b= 0.5, E =1, A; = 0.8, d = 1.0,
¢ =002 Q =16, L=0.01.

120



Table 5.1: Values of Nusselt number for different values of L (slip parameter), A; (ratio
of relaxation to retardation times), d (width of the channel), and P, (Prandtl number). The

other parameters area=05,b=12 E,=l,z=1,t=1, M=1,¢= -’25

L |Nu At | Nu d | Nu P | Nu
0.0 | 3.04216 | 0.0 | 3.77918 | 0.0 | 6.29996 | 0.0 | 0.333333
0.01 | 2.95211 | 0.2 | 3.25119 | 0.2 | 3.44381 | 0.4 | 0.839961
0.02 | 2.86647 | 0.4 | 2.86647 | 0.4 | 2.86647 | 0.8 | 1.34659
0.03 | 2.78497 | 0.6 | 2.57392 | 0.6 | 2.49755 | 1.2 | 1.85322
0.04 | 2.70733 | 0.8 | 2.34411 | 0.8 | 2.17929 | 1.6 | 2.35984
0.05 | 2.6333 | 1.0 | 215892 | 1.0 | 1.9118 | 2.0 | 2.86647

5.6 Conclusion

This chapter presents the slip effects on the peristaltic flow of a Jeffrey fluid in an asymmetric
channel under the effects of induced magnetic field. The governing two dimensional equations
are simplified under long wave length and low Reynolds number approximation. An exact and
closed form solution of the problem has been presented. The results are discussed through

graphs. The main finding can be summarized as follows:

1. It is observed that with an increase in Jeffrey parameter )\;, amplitude ratio ¢ and slip
parameter L pressure rise decreases in the peristaltic pumping and retrograde pumping
regions, while in augmented pumping region the pressure rise increases with an increase

in Jeffrey parameter )\;, amplitude ratio ¢ and slip parameter L.

&

The frictional forces have opposite behavior as compare to the pressure rise.

3. The magnitude value of the velocity decreases with the decrease in Jeffrey parameter Ay,

while it increases with an increase in Hartmann number M.

4. The temperature decreases with an increase in Jeffrey parameter \; and slip parameter

L, while it increases with an increase in Prandtl number P,.
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10.

11.

With an increase in magnetic Reynolds number R, and slip parameter L the axial induced
magnetic field increases in the upper half of the channel while in the lower half, the

behavior is opposite.

The pressure rise for sinusoidal wave is less than trapezoidal wave and greater than tri-

angular wave.

The temperature field for triangular wave is greater than sinusoidal wave and sinusoidal

wave is greater than trapezoidal wave.

The volume of the trapped bolus in the lower half channel is smaller as compared to the

upper half of the channel with an increase in Jeffrey parameter A;.

. The size of the trapped bolus increases with an increase in Hartmann number M.

The number and size of the trapped bolus decreases in the lower half of the channel and

increases in the upper half of the channel with an increase in slip parameter L.

The Nusselt number decreases with an increase in slip parameter L, Jeffrey parameter
A1 and width of the channel d, while with an increase in Prandtl number P, the Nusselt

number increases.
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Chapter 6

Numerical and analytical solutions
of peristaltic transport of a six
constant Jeffreys model of fluid in a

symmetric or asymmetric channel

6.1 Introduction

This chapter deals with the peristaltic flow of an incompressible six constant Jeffreys model of
fluid in an asymmetric channel. The flow is investigated in a wave frame of reference moving
with the velocity of the wave. We have modeled the governing equations of a two dimensional six
constant Jeffreys model of fluid. The analytical and numerical solutions of the proposed problem
are discussed. The expression for the pressure rise is calculated using numerical integration.

The graphical results are presented to interpret various physical parameters of interest.

6.2 Mathematical formulation

Let us consider the peristaltic transport of an incompressible six constant Jeffreys model of fluid

in a two dimensional channel of width d; + dy. The flow is generated by sinusoidal wave trains
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propagating with constant speed ¢ along the channel walls. The geometry of the problem is
same as discussed in chapter one. For the sake of simplicity the momentum equation is defined

as

(%’ (V- v)v) = divT, (6.1)

where
7=—PI+8, (6.2)

The constitutive equation for the extra stress tensor S is [66]

S+ M [ﬁ ~ WS +SW +&(SD + DS) + 1S : DI+thrSJ

= 2% [D+A2 (%? —WD+DW+2&DD+5D:DI)]- (6.3)

In above equations A, is the relaxation time, D = (Vv + Vv) /2 is the symmetric part of Vv,
W = (Vv — Vv!) /2 is the antisymmetric part of Vv, &,b,& are arbitrary material constants
and Ay is the delay time, V is the velocity vector, u is the viscosity of the fluid and P is the
pressure.

With the help of Eq. (1.6), Egs. (1.2) and (6.3) take the following form

U oV
ou oV _ 4
ox oy = O e
au aUu au aP 0
(at Ua + V()‘Y) = o 8X (Sxx) + 7 (Sxy), (6.5)
oV 8V . 8V oP 9 a
(E U+ Vﬁ) = ~ay *ax Brx) + gy (Bvv). (84)
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The extra stress components are defined as follow

4 9 . 0 a av _au\ . [ o av  au

.bx.\'+/\1{(6£+UaX, 53;)-5'.\3 + Sxy (6.«\’ 3Y)+a{26){5 S‘Y(BX-"B)")}
at av U av U

+b {ﬁS\\ + Sxy (GX +6Y) + Syy BY} + &(Sxx + Syy + Szz) é}_X]

au ) ) 8\ au av\? ([au\?
- 2P[ax“ [(a‘*”a—'x”?ﬁ)ﬁ*"((ﬁ) ‘(ﬁ))
au 170U av\? U av? 178v  aU\? .
+2ﬁ{(ax) +Z(-3?+ﬁ) }+b{(6X) +(3_Y) +§(-(3_X-+W) }]], (6.7)
8 o d au oV
Sxy + A\ [(6t+U6 a},)sxy (OY BX)(SXX Syy)
U  av au  av av  au
+— (S;‘x-l-SYY-I"SZZ)( — X)+5{§Sxx(w+-ﬂ-)+3xy(w+ﬁ)
1 au oV
+§SW(W+ﬁ)}]
1/8U &V 1/8 ) o\ (U a8v\ 1[8U @&V\[OU 8V
i 2*‘[5(3?*&) "2[ (aﬁUa Vay) (b?*ﬁ)*ﬁ(ﬁ‘ﬁ)(a—x“a?)

onfy (35 50) (G- M)

o a8 .o oU  av ou oU oV
S“‘"‘“*[(a’“ya_ Vay)s"z (ay ax)s"z”{s*'zax* S”(ay ax)}] .

(6.9)

Yy gy o0x ay  ox oYy

au oUu av av
+b {Saxax + Syx (8}’ BX) SYYay} +&(Sxx + Syy +Szz)ﬁ]

(@) s (&) - ()
an{(a) 3 (e 50 o{ G+ G 3G )] oo
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d d %] ou  av av 1 au
S A - -
¥ty [(Bt U Vay) Srzty (ay ax) Sxz +d {S"zay +35xz (ay X
(6.11)
7] d 0 auv au oV oV
Szz+/\1[(at+Ua +V3Y)SZZ+b {Sxan+Syx (BY-'-BX) Syyay}:[
ou av av  oUu
= 2ulob e = =+ = g ;
HAe [(ax) i (ay) *3 (ax +ay) } 022}
Define the following non dimensional quantities
g o= gl gt pol s G o, d o dp o
2ER mar T YT 6—/\1 d-dl' p_‘uc/\’ S
H, Hg aj bl Cdl = ' = /\18
I = —_— hog = —= = — = — = — e —_— —_——
?‘1 dl ) 2 dz 1 dl’ b dll Rﬂ b ] ‘I" Cd]l Al dl !
= )\25 = S;_rz = S dl & S dl
Ap = — o = ;o e S )
2 d]_ 1 TT e L] Y e ] vy e (6'13)

Using the transformation (1.11) and (6.13) Egs. (6.5) and (6.6) in terms of stream function ¥

(droping the bars, u = %%, v= —5%) take the form

'3_4’ g ovo\aov| _Op 23-9:::; a,S'W
s K dy 0z Bz 33;) ] oz +4é F o By ' (6.14)
—63 @E — @E 8_@' 6}) QaSzy 6Syy_

s [(59’ Oz Oz dy) Oz T oy +0 3 +6 By (6.15)

Under the assumption of long wave length and low Reynolds number Eq. (6.14) and (6.15) take

the form
8Syy ap
By 3_2:, (616)
op
& = 0, (6.17)
Wy (1 - 2224 (0,,)?
- — (1= 252 ) (6.18)
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where
a=EB+(—1+ﬁ+E)(1+a+5)-

Eliminating pressure from Egs. (6.16) and (6.17), we get

0?Say _

Oy? .

Making use of Eq. (6.18), Eqs, (6.20) and (6.16) become

i"'_ Vyy (1 i hf&:“’(‘pyy)g) =0
| (1-Yaw?) |

dp _ i Yy (1 i h%za(q’w)z)
R (1 = .‘5;.0(@“)2)
Applying the binomial expansion with a small, Eqs. (6.21) and (6.22) reduce to

&
a?

' d*

5
W’ + G‘CEy—z (V)" D =0,

() +a?

dp a
dz ~ dy (‘I’W +aC (¥y)® + o (Iy,)° D) ’

where

(A A __Ah
C“‘(?'T)' i

The dimensionless boundary conditions are defined as

o

v = 'g. E=_] for y=hy(z),
UG

Vo= - =1 for y=h)

The dimensionless mean flow () is defined in Eq. (1.29).
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6.3 Solution of the problem

6.3.1

Perturbation solution

Since, Eq. (6.23) is a highly non linear equation, we employ the well known regular perturbation

method to determine the solution. For the perturbation solution, we expand ¥, g and p as

v

q

P

iI!g+a‘Ifl-|—o:2‘Dg+O( 3),

qo +

03
aqy + a’gs + O (o®),

po + apy + a’py + 0 (a3) -

(6.27)
(6.28)
(6.29)

Substituting above expressions in Eqgs. (6.23), (6.24) and boundary conditions (6.26), we get

the following system
System of order o

PR\
E‘)‘y“

om
Oz

Ty

Uy

System of order a!

84,

Op1
or

U,

3%y
ag0 !
q0
5
_D
2!

owv
8—;=‘“1 on y=hi(z),
ow
—a;:—] on y= hy(z).

o2 (P’
ay? \ oy? !

Gl o 0 (B
ays dy \ oy )’
o oY _ _
a1 0¥ B
—E, Fy‘—ﬂ on y—h.g(:::).
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System of order a?

@', 9% [(5%0\° ¢ [ %, alxpu
B ‘Db}ﬁ(ayﬂ) ~3Csp ay? 6y= )
dps Yy 8 (8w, (8%, (2 )
= = 30—( 572 ( Da 57 (6.39)
- » 0¥ _ N
W = 5 % =0 on y=M(2), (6.40)
oW
U, = —923, ﬁ:o on y=hy(z). (6.41)

Solution for system of order a?

The solution of Eq. (6.30) satisfying the boundary conditions (6.32) and (6.33) can be written

as

qﬂ'i”h]_ha 3 2
Vg = 122 (2 — 3(hy + ho)y® + 6hyhoy) —
0 (ha = Fn)® (24° = 3(h1 + ha)y* + 6hyhoy)

+(ha+hl) ((% + 1) (83 - 3hah) = (he — 2) (b - 3hahd)) - (6.42)

The axial pressure gradient for this order is

dpy _ 12(go + hy —ha)

= A4
dz (ha — hy)? &)
For one wavelength the integration of Eq. (6.43), yields
Ap-_—f o 4, (6.44)
o dz '

Solution for system of order a!

Substituting the zeroth-order solution (6.42) into Eq. (6.34), the solution of the resulting
problem satisfying the boundary conditions takes the following form

{ —((ha + ko — 25)(432C (hy — ha + a0)® (1 — )2 (ha —9)? + }

5 (h — h2)® qu(h3 — dhyha + h3 + 2 (hy + ha)y — 2%)))

‘I’] = IO(hl = hg)g 3 (645}
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The axial pressure gradient for this order is

dpy _ —~12(108C (hy — ha + q0)* + 5 (hs — ha)* 1) (6.46)
du 5(hy — hg)’

Integrating Eq. (6.46) over one wavelength we obtain
y - f tp (6.47)
P 0 dzx g l

Solution for system of order a?

Substituting Eqs. (6.42) and (6.45) into Eq. (6.38), the solution of the resulting problem

satisfying the boundary conditions takes the following form

—1 _
Wg = ——— ((hy+ ha— 2)(4 hy — h2)® (hy — h 21 (hy - v)? (hg — v)°
2 350(!11“’!2)15(( 1 + ha — 2y)(45360C (hy — h2)” (hy — ha +go)" @1 (M1 — ¥)” (R2 — ¥)
~15552C? (hy — hg + q0)° (b1 — v)? (ha — y)? (8Th? + 26hyhy + 8Th3 — 200 (hy + ha)y
+200)y” + 25(7 (hy — ha)'® ga(h} — dhyhy + h3 + 2 (hy + ha)y — 2%) + 10868D (hy — y)*

(h1 = ha +q0)° (ha — y)? (3h] — 2hyhg + 3h3 — 4 (h1 + ha) y + 49%)))): (6.48)
The axial pressure gradient for this order is

d -1
= = m(12(-4665602 (h1 — ha + go)° + 11340C (hy — ha)* (hy — ha + q0)* @1

+25(3888D (hy — hg + g0)° + T (h1 — ha)® g2))). (6.49)
Integrating Eq. (6.49) over one wavelength we obtain

1
T (6.50)

Summarizing the perturbation results up to second order for ¥, dp/dz, and Ap

U = U+ aly + a?ly, (6.51)
dp _ dpo  dpr | ,dp

il ki (6.52)
Ap = Ap,+alp, +°‘2&ps: (6.53)
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Defining
q=q + aq + a®g. (6.54)

Insert gy = ¢ — aqy — a*qa and then neglecting the terms greater than O (a?) , the results given

by Eq. (6.51) to Eq. (6.53) are expressed up to a?.

v o= —11-,,((h1 + hg — 2y)(350h14hy — 4550h13h3 + 27300h1%h3 — 100100k} hS

350 (h

+25{(}2;0h}°h2 — 450450h3hS + 600600h5h] — 600600h]hS + 450450h$hy — 175hi%g
~250250h5h3° + 100100hh3Y — 27300h3 K32 + 4550R2R33 — 350k h3t + 2800h;3hag
—20125h3h1%g + 86800A1 hdq — 252175h1hdq + 523600k h3g — 8027250 hlq
+924000h]hig — 802725h$hSq + 523600h5h3q — 252175k hi% + 86800h3h3'q
—20125h2 h3%q + 2800h, hi®q — 175h3%q — 350h]%y + 4200h13hay — 22750A1%h3y
+72800h}' hiy — 150150h1%hdy + 2002004 h3y — 150150h5hSy + 150150hT Ay
—200200h$h3y + 15015004 hi%y — 72800h3hily + 22750h%h3%y + 3850hi2haqy
—4200h, hi%y350h3y — 350h13qy — 1890043 h3qy + 53900hi°hdqy — 96250k hiqy
+10395048h3qy — 46200nT h§qy — 46200hShlqy + 103950h5h3qy — 962501 hiqy
+53900h3 hi%qy — 18900h2h1 gy + 3850k, hi%qy — 350h13qy + 250250h% hiy?
+350h]%y* — 4550h1%hoy® + 27300h} h3y? — 100100h1%h3y* - 450450h3h5y2
—350h3%y? + 600600ATh§y? — 600600h5hly? + 450450h5hSy? — 250250h1 hly
+100100h3h1%y? — 27300h2R3% 2 + 4550h; hi%y? + 350h}%qy® — 4200h}  hagy?
+23100h1°h3qy® — 77000hTh3qy” + 173250h5hdqy® — 277200h] hiqy?
+3234000h5hSqy® — 2772003 hjqy* + 173250k hiqy® — T7000h3h3qy?
+23100h2h3%y? — 15120Ca (hy — ho)® (hy — ha + ¢)° (k1 — v)? (ha — v)?

+5184 (hy — ha + q)° (hy — v)? (ha — y)? (50D(—3h? + 2hyhg — 3h3 + 4 (hy + h2)y
—4y?) + 350h3%qy® — 4200, hilqy® + 3C?*(87h? + 26h1ho + 87h3

—200 (hy + h2) ¥ + 200y2))a?)). (6.55)

131



1) = 2
P _ Tl (12(hy - ha+q) (175 (hy — ha)® + 3780Ca (hy — ha)®* (hy — ha + )2

dz 175 (hy — ho)*?
—~3888a? (12C? — 26D) (hy — ha + q)")). (6.56)

6.3.2 Numerical solution

The present problem consisting of equations (6.23) and (6.24) are also solved numerically by
employing shooting method. The numerical results are also compared with the perturbation
results.

Case.1: (a = 0.3)

Table 6.1: The comparison of Numerical and perturbation solutions.

y Numerical sol | Perturbation sol | Error

1.0 | -1.00000 -1.00000 0.00000
0.6 | -1.48100 -1.48076 0.00016
0.2 |-1.72114 -1.72151 0.00021
0.0 |-1.75115 -1.76159 0.00014
-0.2 | -1.72114 -1.72151 0.00021
-0.6 | -1.48100 -1.48076 0.00016
-1.0 | -1.00000 -1.00000 0.00000
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——— Numerical solution
=+====0+ Parturbation solution

u(x,y)
>

"1 -0.5 0 0.5 1
y
Fig.(6.a) : Comparison of velocity field for @ = 0.1, b = 0.1, d = 1.1, dp/dz = 1.5, ¢ = 3,
AM=02 A=0.3,a=03, z=0.25.
Case.2: (a=0.9)

Table 6.2: The comparison of Numerical and perturbation solutions.

y Numerical sol | Perturbation sol | Error

1.0 | -1.00000 -1.00000 0.00000
0.6 |-1.48881 -1.48248 0.00426
0.4 | -1.64174 -1.63358 0.00499
0.2 |-1.73365 -1.72151 0.00705
0.0 |[-1.76432 -1.75159 0.00726
-0.2 | -1.73365 -1.72151 0.00705
-0.4 | -1.64174 -1.63126 0.00642
-0.6 | -1.48881 -1.48076 0.00543
-1.0 | -1.00000 -1.00000 0.00000
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Fig.(6.b) : Comparison of velocity field for a = 0.1, b = 0.1, d = 1.1, dp/dz = 1.5, ¢ = 7,
X = 0.2, Ag = 0.8, a =09, 2=0.25,

6.4 Results and discussion

In this section we have present the graphical results of the solution. The expression for the
pressure rise is calculated numerically using a mathematics software Mathematica. The pressure
rise Ap for different values of the width of the channel d, parameter a, relaxation time Ay and
delay time Az are plotted in Fig. 6.1 to 6.5. It is observed from Fig. 6.1, that the pressure rise
decreases for small values of @ (0 € @ < 1.4) with an increase in width of the channel d and for
large ) the pressure rise increases. From Fig. 6.2, it is observed that with an increase in o, the
pressure rise decreases for small values of @, and for large values of 2, the behavior is almost
same. It is observed from Figs. 6.3 to 6.5 that the pressure rise decreases with an increase in Aj,
Az and ¢. Figs. 6.6 to 6.10 are prepared to discuss the pressure gradient for different values of
¢, a, d, Ay and Ap. It is seen from the figures that for = € [0,0.2] and z € [0.8,1], the pressure
rise is small i.e. the flow can easily pass without the imposition of large pressure gradient, while
in the narrow part of the channel z € [0.2,0.8], to retain the same flux large pressure gradient

is required. Moreover, in the narrow part of the channel, the pressure gradient decreases with
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an increase in o, d, A\; and As. The velocity profile for different values of o, relaxation time A,
delay time Ay and volume flow rate @ are plotted in Figs. 6.11 to 6.14. It is depicted from the
Figs. 6.11 to 6.13 that with an increase in a, Ay and Ay the amplitude of the velocity decreases
in the center and near the channel wall the velocity increases. From Fig. 6.14 it is observed
that with an increase in volume flow rate Q the velocity profile decreases. Fig. 6.15 shows the
comparison of Newtonian and six constant Jeffreys model of fluid. The comparison shows that
the velocity profile for Newtonian fluid are smaller when compared with six constant Jeffreys
model of fluid.

Trapping phenomena

The trapping phenomena for different values of volume flow rate (), width of the channel d,
relaxation time A; and redartation time Ay are shown in Figs. 6.16 to 6.19. It is observed from
Fig. 6.16 that the size of the trapped bolus increases in both lower and lower half of the channel
with an increase in volume flow rate Q. It is seen from Fig. 6.17 that with an increase in the
width of the channel d the size of the trapped bolus decreases in the lower half of the hannel
while in the upper half the size increases. Fig. 6.18 illustrate the stream lines for different
values of relaxation time A,. It is observed from the figure that with an increase in relaxation
time A; the number and size of the trapping bolus increases. Fig. 6.19 illustrate the stream
lines for different values of Ag. It is observed from the figure that with an increase in Ay the size
of the trapping bolus decreases.

In order to show the comparison between Newtonian and six constant Jeffreys model of
fluid table 6.3 is presented. It is observed from the table 3 that with an increase in volume
flow rate @ the magnitude value of the velocity profile decreases. The comparison shows that
the velocity profile for Newtonian fluid are smaller when compared with six constant Jeffreys

model of fluid.
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Fig.(6.1) : Variation of Ap with @ for different values of d at a = 0.5, b =1.2, ¢ = T a=0.04,

A1 =04, X =0.9.
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Fig. (6.2) : Variation of Ap with @ for different values of a at a = 0.5, b = 1.2, ¢ =

A1 =04, A =0.9.
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Fig. (6.3) : Variation of Ap with @ for different values of \; at a = 0.5, b=12,¢=§,d =2,
a = 0.09, As = 0.9.
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Fig. (6.4) : Variation of Ap with @ for different values of Az at a = 0.6, b= 1.2, ¢ = §,d =2,
a=10.09, A\; =0.9.
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Fig. (6.5) : Variation of Ap with @ for different values of ¢ at a = 0.5, b=1.2, Ay = 0.9, d = 2,

a=0.09, A; = 0.5.
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Fig. (6.6) : Variation of 54—.2 with z for different values of ¢ at @ = 0.5, b= 1.2, a = 0.09, d = 2,

M =05 0Q=1, )\ =09.
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Fig.(6.7) : Variation of gf with z for different values of a at a = 0.5, b =12, ¢ = §,d = 2,
’\l = 03: Q =1, A'Z = 0.9.
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Fig.(6.8) : Variation of 5{’; with z for different values of d at a = 0.5, b= 1.2, ¢ = §, o = 0.04,
AM=040=1 A=009.
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Fig. (6.9) : Variation of 4 with z for different values of \; at a = 0.5, b =12, ¢ = I, d = 2,
a=04,Q=1,A =09
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Fig.(6.10) : Variation of gﬁ with 2 for different values of Ay at a = 0.5,b=12, ¢ = §,d =2,
a=04, Q@=0.5 2 =07
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Fig.(6.11) : Velocity profile for different values of a at a = 0.7, b =12, ¢ = §,d =2, \; = 0.5,
Q=45 z=0, Az =0.9.
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Fig. (6.12) : Velocity profile for different values of \; at a = 0.7, b=12,¢=%,d = 2,a=0.9,
Q=3,2=0, X3=0.8.
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Fig.(6.13) : Velocity profile for different values of Ay at a = 0.7, b= 1.2, ¢ = 5:d=2,a=09,

Q@=3,z=0 2=05.

Fig. (6.14) : Velocity profile for different values of Q at a = 0.7, b= 1.2, ¢ = 5 d=2,a=0.02
A1=05,z=0 X2=0.9.
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Fig. (6.15) : Velocity profile at a = 0.5, b=1.2, ¢ = -’25. d=2 a=0.02 ) =1.0, A2 = 1.3,

z =0,
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(a) (b)

Fig.(G.16) : Stream lines for different values of Q). (a) for Q@ = 1.8, (b) for @ = 2.0. The other
parameters are a = 0.5, b= 0.5, p=0.1,d =1, a = 0.9, Ay = 0.5, A2 = 0.45.
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Fig.(6.17) : Stream lines for different values of d. (a) for d = 1.1, (b) for d = 1.3. The other
parameters are a = 0.5, b=05,0=0.1, @ = 2, a = 0.9, A; = 0.1, Az = 0.45.
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(b)

Fig.(6.18) : Stream lines for different values of A;. (a) for A; = 0.0, (b) for A; = 0.3. The other
parameters are a = 0.5, b= 0.5, ¢ = 0.1, d=1, a = 0.9, @ = 2, Ay = (.45,
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Fig.(6.19) : Stream lines for different values of Ay. (a) for A2 = 0.0, (b) for A2 = 0.6. The other
parameters are a = 0.5, =05, 0=0.1,d=15,a=09,Q =2, \; =04.
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Table 6.3: Values of volume flow rate @ for Newtonian and six constant Jeffreys model
of fluid for fixed a =0.5,b=12,d=2,2=1,y=0.5,¢ =3, A\; =0.5, A2 = 0.8, a = 0.02.

volume flow rate @ | |u(z,y)| for Newtonian fluid | |u(z,y)| for six constant Jeffreys model
0.0 —0.825142 —2.61906

1.0 -0.475277 —1.67261

1.5 -0.300299 —1.19937

2 —-0.125352 -0.726091

6.5 Conclusion

This chapter present the peristaltic flow of a six constant Jefferys model of fluid in an asymmetric
channel. The governing two dimensional equations are simplified using long wave length and
low Reynolds number approximation. The analytical and numerical solutions of simplified
equations are calculated. The results are discussed through graphs. The main finding can be

summarized as follows:

1. It is observed that in the peristaltic pumping region the pressure rise decreases with an

increase in d, a, and Mg, while it increases with an increase in A;.

2. The pressure gradient increases with an increase in a and Ay, while it decreases with an

increase in d (width of the channel) and As.

3. The velocity field decreases with an increase in a and @ (volume flow rate), while with
an increase in Ay and Ay the amplitude of the velocity decreases in the center and near

the channel wall the velocity increases.
4. The size of the trapped bolus increases with an increase in volume flow rate Q.

5. The number of the trapped bolus decreases with an increase in the width of the channel

d.
6. With an increase in relaxation time A; the number and size of the trapped bolus increases.
7. When A;— > 0 and Az— > 0 the results of Mishra and Rao [14] can be recovered.
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Chapter 7

Peristaltic motion of a Walter’s B
fluid in a symmetric or asymmetric

channel

7.1 Introduction

This chapter deals with the modelling of Walter’s B fluid for two dimensional incompressible
flow. An analytical solution of Walter’s B fluid in an asymmetric channel with sinusoidal wave
variation have been calculated. The expressions for stream function and pressure gradient have
been computed. The expression for pressure rise has been computed performing numerical
integration. The pumping characteristics and axial pressure gradient have been discussed to

highlight the physical features of emerging parameters of Walter’s B fluid.

7.2 Mathematical formulation

Let us consider the peristaltic transport of an incompressible Walter’s B’ fluid in a two-
dimensional channel of width d; + d. The geometry of the symmetric or asymmetric channel
is defined in Chapter one. However, for Walter’s B fluid the Cauchy stress tensor is different
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which is defined as [67].

where
2 = VV+(VV)T,
% o [2ivv)e-avnv- (VV) e (7.2)
5t ot

With the help of Eq. (1.6), Eqs. (1.2), (6.1) and (7.1) for Walter’s B fluid take the following

form
ou ov
.8?-'“5?- = 0, (73)
au au Uy _ _”?2 dSxx 0Sxy
(E“LU?)?*VW) = “axtox av (74)
av av av B ﬂ_a._P dSxy OSyy
(E*Uﬁ“”ﬁ) = “avtox tay (78}

where

au a d 8\ au au\?* _av fov oU
Sxx = Znogx —ko [2(6t+U6 Vay)ﬁ“"(a_x) ~25% (BT““W)J'

Sy = (BU ‘W) L[(6+Ua va)(@ﬁuﬁ)-zﬂa—u
¥ Yy " ax l1\at ""ax T "oy ) \ay T ax X oY
_QE(?.E+.‘9_‘1)_§_‘{(.3_U+£K)_25_VQY_]
Y " 8x oy T ox oxay |’

av 9 ) 9\ av ov\? 86U fev oU
Syy = g - A0[2(&+U +V6Y) 4(6—},) =l (ax ay)l,('ra)

Defining the scales

- _ oz __ Yy _ u _ v - c < h + h 5 A
£ = A,y—dl,u—c, U_c’t_A' hy = 2 2—dl, ii—qucszm

= dl dl d1 pcd; koc o= d2

Sz = —8ay, Sgy=—5,,, 6=—, Re= oy = —— . 7.7
s 5,2 v re e A 3 4 di1, e, 70
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Using Egs. (1.11) and (7.7), Egs. (7.3) to (7.6) in terms of a stream function ¥(u = %;.

— 0-3— after dropping bars), can be written as

By BughEM) | Db i
ok [(ay 3z Bmay) ay] S R T (7.8)
av g ov 9\ ov ap 6.5' as.

_ A3 pETn e, e S N . 2-Yxy vy 79
JRE[(Byax 5:1:31,)83:] BT Ty (7:9)

where

9 9 2 2

Sey = (Vyy —0%0s) -y [6 (tpya% - ‘I”’a%) (Tyy — 02W,) — 200, Wy, — 2534:,,@“] "
Sy = —200g —a [~252 (m,a% - \1:,%) Uy — 46202, — 20, (U, — 5%,,)] , (7.10)

in which §, Re represent the wave and Reynolds numbers, respectively. Elimination of pressure

from Eqgs. (7.8) and (7.9) yields

5 Re ore ovo 32_‘1" + 5262_‘3 = §2 0% S - Sy " Sy - 582‘5'1'5'
dy 8z dx Gy ) \ 9y oz? dzdy dz? oy? dydz’
(7.11)
The boundary conditions in terms of stream function ¥ are defined in Eq. (6.26)

The average volume flow rate @ over one period of the peristaltic wave is defined in chapter

one.

7.3 Solution of the problem

Since Eq. (7.11) is highly non-linear, therefore, we seek the perturbation solution in small &
(0 << 1). We expand ¥, F and P as follow

v = 'I-’u -+ 6‘1’1 + 0(62), (712)
g = q+0q +0(5), (7.13)
p = po+0p1+0(6%). (7.14)
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Substituting the above expressions in Eqs.(7.11), and (6.26) collecting the like powers of 4, we

obtain the following systems
7.3.1 System of order 4° :

o',

5a 0 (7.15)
I %‘iﬂ, (7.16)
%—’;—” = @G (7.17)
Uy, = E29_, %%‘1:—1 on y=hi(z), (7.18)
Ty = —%", a;;"z—l on y=ho(z). (7.19)

7.3.2 System of order ¢ :

gy _ o [(9% 6 0% Q) (62%
yt By 9z Oz Oy oy?

5"1’0 Foa oL Al 1) 232‘11{}32@’0) 9 o2 (32‘1'0)1 (7.20)

[ Ay 0zdy?  dz Oy3 Ozdy Oy? oz \ 92
o oWy & 0¥g 8 (9Y,
O dy 6z Oz Oy Ay
82, b a
o0 [ - ((@w = %:a—y) Wi — zwgmy%w” ; (7.21)
opp 82‘1’(]
By = gy ( ay? ) (7.42)
- @ @ _
n o= 7, = 0 on y=hi(z), (7.23)
= @ 9% _
U, 2 oy - 0 on y=ho(z). (7.24)

Higher order solutions are not soughed.
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7.3.3 Solution for system of order ¢°

Solution of Eq. (7.15) satisfying the boundary conditions (7.18) and (7.19) can be written as

+hy—h
Yo %2—_171732 (2% — 8(hy + ho)y® + 6hahoy) — y
1
+ (hg — hy)3 [(% + hl) (h3 — 3h1hg) — (he — %—q) (h} - 3hzh?)] . (7.25)

The axial pressure gradient at this order is

dpo _ 12(go +h1 — ha)
de ~  (hg—h1)3 (r-28)

For one wavelength the integration of Eq. (7.26), yields
Ap, = /1 -dﬂdm— (7.27)
¢ 0 dx -

7.3.4 Solution for system of order §'

Substituting the zeroth-order solution (7.25) into (7.20), the solution of the resulting problem

satisfying the boundary conditions take the following form

3 2
Uy = Oy’ + Ot + Cast® + Coay* + Gi% + Goigy + Gay +Goy, (1.28)
where the coefficients appearing in Eq. (7.28) are defined as
12(go + ha + ha) (h1 + h) hihg
fop = ; A=t = MW
Ay = (2ha=a0)(ha = h)® + 2hF (hp = 3h1) (s = ha + o)
2 (hg — hy)* ’
B — 8(a0+ M+ ho) (b + hy) _ 6(go + hy + ho)hihg
00 = 3 , Bi= 3 ;
(hg — hy) (he = h1)
B, = 2@o+mh+ h)? (hy + hs) (12(9*0 + hy + hz))2
2 = [ y Ba= 3 d
(h2 — k1) (h2 — hy)
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12(go + hy + ha) 12(go + hy + ha)

B = AF f By = B' "
: 07 (hg — ha)? PO (hy — )
By = .B; 12(go + hy + hg) By Aal 12(qo + hy + ha)
(hy — h1)* (hy —h1)®
-C
G = (@1 T "3), G2 =Cs4 +q1Cs5, G3 = Csz2 + q1Cs3,
6 (hy + hg) Cys
Gy = Cs5 +qC Css = —————, Cs4=0Ca9+ Ay —,
4 51 T qilso, Uss (hs — h1)3 54 39 01 Cao
6 (hyhg) CuaCuys Ca7Cus
G = ——= (Ch=~0C45—- y Cap=—F—~ Cas,
53 (ha — hy)? 52 43 Ca 51 O 46
_ -1 Cg _ (ha—h)®
Cso = 7 Cus’ Cao = TR

h2
Cig = Cs;h} + Cazh? + Caah? + Caghi + ?1039 + h1Cyz — Cys,
h2 (3hy — h 2
Co = Lll'z‘—g). Cis = Cys + %Can + hoCys,
2

Css = Cah]+ Csh§ + Cashi + Cashd, Cus = haAnr — -’;3,
Ciss = C39+Cyo+ Cay+ Cqz, Cyz = —h3Cy,
Cyy = -—bCagh}—4Cssh3, Cyo = —TCsh§ — 6Csh3,
4C54 (h% - h?)

(hy —ha)
6Csz (h3 — h3)

Ci9 = Cis+Cs+ Car+Cag, Cag=

5Cs3 (flg - h'})

Cyy = —————=—— (= ,
& (h1 — ha) 7 T~ ha)
- TCu(h3-h) , _Cn . _ O
35 (hl—hQ) ) 34 24 ) 33 = 120:
C C
Cp = —Eza. Ca = 8723‘ C30 = Cag + Cop, Cag = C2s + Cay,

Cas = (2B4An —4Bj) ey, Cyp = (—2B4+4Bj) o,
Cos = (—BsAoz — By — Br)Re, Cys = (BsAoz — Ay + BsAm — Bs) Re,
1
Cy = ByjAnRe, Cyp= 3BiRe: (7.29)

The axial pressure gradient at this order is obtained from Eqs. (7.21) and (7.22) using Eq.
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(7.25)

d
ﬁ = Doy + Dyy* + Day + D3 + Dyy*,
dp1 1440, ((}‘o + hy — h2)2
— = 2y — hy — ha). 7.30
dy o=y V=M= h) e
where
Dy = —a3Re+210C3, Ds=—Reay+ G;—aja;, D= —agRe+24Cs4 — ajay,
Dy = —agRe+6C33 — ajayg, Dy= —aqRe+120Cy, ap= —240AE|U,
!
a = 3Ano.860 -+ AnnBug, a2 = ABOBl - Afm — 3:4003; - Bgo, ag = Ang#.
-1 ; -1, Ag 1 . By  Ap
ag = BBooAan. as = 2311'100— 5 +§Bou3m+ 5 5
ag = Boo— BB + Byg — Asy Ao, a7 = B1B| — By — B} + 1 + A3 Bup. (7.31)
The firss order non dimensional pressure rise per wavelength is
g [ B0 — 7.32
Py = ng;ly:tlda-— (7.32)
Define
q = qo + 0q1. (7.33)

Summarizing the perturbation results up to first order for ¥, dp/dz, and Ap as

dp d d
U = Tg + 60, ﬁ= d%l + %, Ap = Ap, + 64p,- (7.34)

Using gp = q@ — dg; and then neglecting the terms greater than O (§) the results given by Eq.
(7.34) can be explicitly computed.

7.4 Results and discussion

In this section graphical results are displayed to see the effects of various physical parameters on

pressure rise and pressure gradient. The expression for pressure rise is calculated numerically
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using the mathematics software Mathematica. Figs. 7.1 to 7.4 are prepared to see the effects of
pressure rise for different values of amplitude ratio ¢, wave number d, Walter's B fluid parameter
oy and width of the channel d. In Fig. 7.1 it is observed that the pressure rise decreases with
an increase of the amplitude ratio ¢. Further, the peristaltic pumping occurs in the region
0 < © < 1.2, and augmented pumping occurs in the region 1.2 < © < 1.5 for different values
of ¢. It is observed from Figs. 7.2 and 7.3 that for peristaltic pumping (Ap > 0,© > 0), free
pumping (Ap = 0) and the copumping region (Ap < 0,© > 0), pumping increases when the
wave number § and Walter’s B fluid parameter o increases. The effects of the width of the
channel d, on the pumping characteristic is plotted in Fig. 7.4. It is observed that for peristaltic
pumping (Ap > 0,0 > 0) and for free pumping (Ap = 0) , pumping decreases as the width of the
channel d increases, while the behavior is opposite in the copumping region (Ap < 0,0 > 0);
here pumping increases as d increases. Figs. 7.5 to 7.8 are displayed to see the effects of
various physical parameters on the pressure gradient (dp/dz). The pressure gradient against
a for different values of aj, d, § and ¢ are presented in Figs. 7.5 to 7.8. It is observed that
the pressure gradient increases with increase in o (see Fig. 7.5). It is seen that the minimum
value of the pressure gradient is at about x = (.45 and the maximum occurs at z = 0.62. The
pressure gradient for different values of d are shown in Fig. 7.6. It is observed that with an
increase in d, the pressure gradient increases in the regions z € [0,0.5] and [0.7, 1] and decreases
in the region z € [0.5,0.7]. The pressure gradient for different values of § are seen in Fig. 7.7.
It is observed that the pressure increases with an increases in § in the whole region and the
maximum occurs at the center. The pressure gradient for various values of ¢ are shown in Fig.
7.8. The pressure gradient decreases in the center of the channel with an increase in ¢ and the
maximum value occurs at the center for small ¢.

Figs. 7.9 to 7.11 illustrate the trapping phenomena for different values of volume flow rate
@, width of the channel d and amplitude ratio ¢. It is observed from Fig. 7.9 that the size of
the trapping bolus increases with an increase of volume flow rate @ in both upper and lower
half of the channel. It is also observed from Fig. 7.10 that with an increase in width of the
channel d the size of the trapped bolus decreases. Fig, 7.11 shows the stream lines for different
values of the amplitude ratio ¢. It is observed from Fig. 7.11 that the size of the trapping bolus

decreases with an increase in amplitude ratio ¢.
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Table 7.1 shows the comparison of present solution with those available in the literature

when some of parameters are replaced to be zero in our problem.

4 T
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Fig.(7.1) : Variation of Ap with @ for different values of ¢ at a = 0.5, b = 0.5, d = 1, Re = 10,
§=0.01, a; = 4.
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Fig.(7.2) : Variation of Ap with @ for different values of 6 at a = 0.5, b= 0.5, d = 1, Re = 10,
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Fig.(7.3) : Variation of Ap with @ for different values of @y at a = 0.5, b= 0.5, d = 1, Re = 10,
§=001,¢=E.
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Fig.(7.4) : Variation of Ap with @ for different values of d at a = 0.5, b = 0.5, a; = 4, Re = 10,

5=001,¢=Z.
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Fig.(7.5) : Variation of dp/dz with z for different values of a; at a
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Fig.(7.6) : Variation of dp/dz with z for different values of d at a = 0.5, b = 0.5, Re = 10,
§=001,Q=1 a1 =4,¢p=%.
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Fig.(7.7) : Variation of dp/dz with z for different values of § at a = 0.5, b = 0.5, d = 1, Re = 10,
Q=l:al=4l¢=%'
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dp/dx

Fig.(7.8) : Variation of dp/dz with z for different values of ¢ at @ = 0.5, b = 0.5, d = 1, Re = 10,

Q:l!azﬂ-[]l,a'l—_—‘l-.
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(c)

Fig.(7.9) : Stream lines for different values of volume flow rate . (a) for @ = 2.0, (b) for
Q =22, (c) for @ = 2.4. The other parameters are a = 0.5, =05, 0 =0.1,d =1, a1 = 4,
d = 0.07.
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(c)

Fig.(7.10) : Stream lines for different values of width of the channel d. (a) for d = 1.1, () for
d = 1.2, (¢) for d = 1.3. The other parameters are a = 0.5, b= 0.5, ¢ = 0.1, Q = 2.0, a1 = 4,
4=0.07.
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(b)

Fig.(7.11) : Stream lines for different values of volume flow rate ¢. (a) for ¢ = 7, (b) for 6 = 3.
The other parameters area = 0.5, 6=0.5, Q@ = 2.0, d=1.0, ay = 4. = 0.07.
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Table 7.1: Pressure rise with volume flow rate for fixeda = 0.5, b=0.5,d=1, ¢ =

@ | Mishra et al [14] Present work
AP foray=Re=6=0| AP for &y =1,Re =10,6 = 0.04

0 | 2.03888 2.30219

0.1 |1.71353 1.91822

0.2 | 1.38817 1.63906

0.3 | 1.06282 1.16472

0.4 | 0.737464 0.795195

0.5 | 0.41211 0.430483

0.6 | 0.0867558 0.0705845

0.7 | —0.238599 —0.2845

0.8 | —0.563953 -0.634769

0.9 | —0.889307 —0.980225

1 | —1.21466 —1.32087

1.1 | —1.54002 —1.65669

1.2 | —1.86537 —1.9877

1.3 | —2.19072 —2.3139

1.4 [ —2.51608 —2.63529

1.5 | —2.84143 —2.95185

7.5 Conclusion

m

G

This chapter presents the modelling of Walter’s B fluid for two dimensional incompressible flow.

An analytical solution of Walter's B fluid in an asymmetric channel have been calculated. The

expression for pressure rise has been computed performing numerical integration. The pumping

characteristics and axial pressure gradient have been discussed to highlight the physical features

of emerging parameters of Walter's B fluic. The main finding can be summarized as follows:

1. The pressure rise decreases with an increase of the amplitude ratio ¢ for small values of

volume flow rate and for large values the behavior is quite opposite.
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For peristaltic pumping, free pumping and the copumping regions, pumping rate increases

with an increase in wave number ¢ and Walter's B fluid parameter ay.

The pumping rate decreases in peristaltic pumping, free pumping regions with an increase

in width of the channel d, while the behavior is opposite in the copumping region.
The pressure gradient increases with an increase in o.

The pressure gradient increases in the regions z € [0,0.5] and z € [0.7,1] and decreases

in the region « € [0.5,0.7] with an increase in d.

The pressure gradient increases with an increase in d in the whole region and the maximum

occurs at the center.

The pressure gradient decreases in the center of the channel with the increase in ¢ and

the maximum value occurs at the center for small ¢.
The size of the trapped bolus increases with an increase of volume flow rate @,

The size of the trapped bolus decreases with an increase in width of the channel d and

amplitude ratio ¢.
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Chapter 8

Peristaltic transport of a hyperbolic
tangent fluid model in an

asymmetric channel

8.1 Introduction

This chapter presents the modeling of the two dimensional hyperbolic tangent fuid model.
Using the assumption of long wavelength and low Reynold number, the governing equations of
hyperbolic tangent fluid for an asymmetric channel have been solved using regular perturbation
method. The expression for pressure rise has been calculated using numerical integrations. At
the end, various physical parameters have been shown pictorially. It is found that the narrow
part of the channel required large pressure gradient, also in the narrow part the pressure gradient

decreases with an increase in Weissenberg number We and channel width d.

8.2 Mathematical formulation

The constitutive equation for hyperbolic tangent fluid is given by Ai and Vafai [68]

T==PI+8, (8.1)
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8 = — [[ptee + (g + 1) tanh (T'4)"] 4], (8.2)

in which -P1I is the spherical part of the stress due to constraint of incompressibility, S is the
extra stress tensor, p, is the infinite shear rate viscosity, yq is the zero shear rate viscosity, I’

is the time constant, n is the power law index and + is defined as

% Z Z‘?ij"rji - \/';‘T-I (8.3)
A

2
where I = Jtrac (graclV + (grad V)T) .
Here IT is the second invariant strain tensor. We consider the constitutive Eq. (8.2), the
case for which g, = 0 and I'Y < 1. The component of extra stress tensor therefore, can be

written as

S = —ulTN"7=-nlQ+Ty-1)"%
= —poll+n(Ty—1)}4. (8.4

Invoking Eq. (1.6) into Eqs. (6.1) and (8.4), we get

oU . 8U OU\ _ _OP 8Sxx OSxy
”(az +U§R‘+V3_Y) = “BX ox oy (8:3)
av QE ovy _@_3Sxy_33yy
"(aa +Uax+vﬁ) = Ty ex oy (8.6)
where
. ou
Sxx = —2H0(1+ﬂ(1"7—1))a—x'|
. ou oV
Sxy = —p(1+n(Ty-1)) (3—1,'*'3—}[:).
i v
Syy = —-21.:0(1-1-1’1(1"7—1))3—},,
/2
. AN A AR Y
i A (2(67) +(‘6—);+8—X) +2(-6—Y-) ) (8.7)
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— g - A . o= ek hy - ha A dy
= - = — = - e = = = = ——--S y S' = —S 3
T ) Yy d}’ u = i N’ hy I’ ha dl‘ gfi foc rx Zjj P Ty
= d] d] pcd; I'e - d‘f - ")’dl
Sop = LG =22 Re=22 we=22, p=Slp F=IT1 (8.8)
T . vy X o d; p CA%P %

Using Eqgs. (1.11) and (8.8) the Egs. (8.5) to (8.7) in terms of stream function ¥ (u = %‘%,u =
—5%% after dropping bars), can be written as

_@i_a_mﬁ QE. = _@_ Qaszzw-aizg
_5 @i_,‘?ﬂi) @] _ _Op 208, .0S,
JRE[(Bsz oz By = T irepes 63‘_{; (8.10)
where
Sex = -2(1+n(Wey-1) 2L
Moy T n 8')f a ay
: a*v 82
Sy = —(I+n(We7—1))(ay2 623:::2)
9*v

g
If

26 (1+n(Wey — 1) 5o,

1/2
02w v 0% 82w \*
y = (2% S A4 ) 2 ( ) . 8.11
¥ ( (o) + (& -22) (&5 =
in which 4, Re, We represent the wave, Reynolds and Weissenberg numbers, respectively. Under

the assumptions of long wavelength é << 1 and low Reynolds number, neglecting the terms of
order § and higher, Egs. (8.9) and (8.10) take the form

ap _ 98 &*v 9w
ap
5 = 0. (8.13)

Elimination of pressure from Egs. (8.12) and (8.13) yield

f; ([1+ (We 1}} ) (8.14)
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The relevant boundary conditions for asymmetric channel in stream function W are already

defined in Eq. (6.26).

The dimensionless mean flow @ is defined in Eq. (1.29).

8.3 Solution of the problem

8.3.1 Perturbation solution

For perturbation solution, we expand ¥, ¢ and p as

v

q
P

= Wo+ Wel; + O(We?),
= gp+ Weq + O(Wez),

= po+ Wepy + O(Weé?).

(8.15)
(8.16)
(8.17)

Substituting above expressions in Egs. (8.12), (8.14) and (6.26), collecting the powers of We,

we obtain the following systems
8.3.2 System of order We°

v,
e
9P
Oz

¥y =

Ty =

0,
BV
(1 _n)E.SE’
v
'q2£r _b"vtg'z_l on y:hl(z):
—%, aai"z——l on y=hs(z).
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8.3.3 System of order We'

2
i 5_2(3_2‘1’“ (8.22)
ay! n—10y% \ 0y*
op1 8, a(aﬂ%)z
o _ 9 (% 8.23
52 (1 "')ayS g\ ) (8.23)
v
b= Zloo m y=h), (8.24)
v
_ @ 0% _ _
v, = 3 By =0 on y=hoz) (8.25)

8.3.4 Solution for system of order We’

Solution of Eq. (8.18) satisfying the boundary conditions (8.20) and (8.21) can be written as

Uy = ———= (2% - 3(hy + h2)y® + 6hihay) —
g (ha — hy)® (2v (h1 + ha)y 1hay) —
1 _[(% g0, (43 2
TP [(-2- - h:) (h3 = 3hah3) = (ha — 2) (h - 3h2h1)] . (8.26)

The axial pressure gradient at this order is

dpo _ 12(1 —n)(go + hy — hg)
@ Gah =

For one wavelength the integration of Eq. (8.27), yields
Ap= / tp (8.28)
o dzr

8.3.5 Solution for system of order We!

Substituting the zeroth-order solution (8.26) into (8.22), the solution of the resulting problem

satisfying the boundary conditions take the following form

2 3 288n (qo+hi—ho\? ¢!
¥y = Dy + Doy + Dol + Dalf + 20 (BEI =) o (8.29)
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where

_ 6 Dy 5 mh3 3
.DS = —(;12 - h1)3 (q1 4] (h (2!1.2 h.]) = h2(2h1 hg))) (—2 6
Dy hih3 & hl_hg B fvé a
3! 2 2 4 2
6hihagy | Dohahg ( (b1 + ha) 1 " § )
= - — ha) = K32k — ha)) ),
Dy = gt Doptha ((uth) oo (b — ) — 2 — )
—6g1(ly + ha) (h1 + ha) 3 3 (h'l + hiho + .-‘I. ))
= DA B e 2hg — — hy(2hy —
D'.’ (hQ = h1)3 e DQ (4(h2 = hl)s (hl( h2 h]) hz( 151 2)) 3|
= 12 B Dg , 4 B 3 B )
P = Gty (q‘ 7 (P2 =) = ho(2hy = ha)) ),
e o 90+h1—h2)2 -
Dy = n_1288( TER R (8.30)

The axial pressure gradient at this order is

2
{;pl (1 = n)Cs — 144n(hy + hs) [%J ; (8.31)
1

For one wavelength the integration of Eq. (8.31), yields
Ap= / . (8.32)

Summarizing the perturbation results for small parameter We, the expression for stream func-

tions and pressure gradient can be written as

+h—h
¥ q(hz—._]hl)_éz_ ( y3 - 3“"1 = hE)'yz + Shlhgy) -y
1 q q
= (5 +m) (8 = 8h13) = (ho = 3) (4} — 3hahd)]

2 3 4
+We [DIO + Dy +D12 + D13 3] - D14y ] (8.33)

S = ]1( =14 . = 2 =
dx (ha — hy)3 A )3 41 (h1(2hg — hy) — h3(2hy ’12))

~144n(hy + he) (%) ) , (8.34)
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where

= .8 ___(Dwps — K32k, — )(hl_h%_’i%)

Dy = (ha — hl) ( (h3(2h2 = hy) = h5(2hy — ha)) 2 6
"R E T F Ay

_ Diuahiha ((h+ha) 1 3 _ )
bun = = ( T~ Ty =) (P(Zhe = h) = h3(2hy —ha)) ),

B (ha+ha) [, h1+h;h2+h))
Dua = Dua (it (hs(2ha = hy) — A2k — o) — L0 ,

- —12 Dys 3  13(0h. _ )
- —‘“(nz-h.,;a( (h3(2ha — ha) = h3(2hs — h2)) ),

o B ghhy —hy 8.35
Dy = _1288[(h2_h1)3J \ (8.35)

In the above solution when ¥ — 0 then p — pg, (or n = 0) the solutions of Mishra and Rao
[14] are special case of our problem.
The non-dimensional pressure rise over one wavelength Ap for the axial velocity are

1
Aps= / g’idz, (8.36)
0

b

where dp/dx is defined in Eq. (8.34).

8.4 Results and discussion

The analytical solution of the hyperbolic tangent model is presented. The expression for pres-
sure rise Ap is calculated numerically using mathematics software. The effects of various para-
meters on the pressure rise Ap are shown in Figs. 8.1 to 8.6 for various values of Weissenberg
number We, amplitude ratio ¢, tangent hyperbolic power law index n, channel width d and
wave amplitudes a, b. It is observed from Fig. 8.1 that pressure rise decreases for small values
of @ (0 € Q < 1.45) with an increase in We and for large @ (1.45 < Q < 2), the pressure rise
increases, We also observe that for different values of We, there is a linear relation between
Ap and @, i.e, the pressure rise decreases for small @ and increases for large (). The pressure
rise Ap for different values of ¢ are illustrated in Fig. 8.2. It is shown that Ap decreases with

an increase in ¢ for @ € [0,1.9] and after that Ap increases. The graphs of Ap for different
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values of power law index n are presented in Fig. 8.3. It is seen that with an increase in n, Ap
decreases for @ € (0, 1.6] and for @ € [1.6,2], it is increases. It is observed that the pressure
rise decreases with an increase in d and increases with an increase in a and b for small @ and
for large @, the results are opposite (see Figs. 8.4 to 8.6). Figs. 8.7 and 8.8 represent that for
z € [0,0.2] and [0.6, 1] the pressure gradient is small, we say that the flow can easily pass with-
out imposition of large pressure gradient, while in the narrow part of the channel z € [0.2,0.6],
to retain same flux, large pressure gradient is required. Moreover, in the narrow part of the
channel, the pressure gradient decreases with an increase in We and d.

Trapping phenomena

Another interesting phenomena in peristaltic motion is trapping. It is basically the forma-
tion of an internally circulating bolus of fluid by closed stream lines. This trapped bolus pushed
a head along a peristaltic waves. Figs. 8.9 to 8.11 illustrate the stream lines for different values
of @, We and a. The stream lines for different values of volume flow rate @ are shown in Figs.
8.9 a to ¢. It is found that with an increase in volume flow rate @, the size and the number of
trapping bolus increases. In Figs. 8.10 a to ¢. the stream line are prepared for different value
of Weissenberg number We. It is depicted that the size of the trapped bolus increases with
an increase in We. It is observed from Figs. 8.11 a to ¢ that the size and the number of the

trapping bolus increases with an increase in amplitude of the wave a.
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Fig.(8.1) : Variation of Ap with @ for different values
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Fig.(8.2) : Variation of Ap with @ for different values of ¢ at a = 0.5, d = 0.5, We = 0.03,

n = (.04 and b = 0.7.
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Fig.(8.3) : Variation of Ap with @ for different values of n at a = 0.5,d = 0.5, We = 0.03,b = 0.7

and ¢ = %.
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Fig.(8.4) : Variation of Ap with @ for different values of d at a = 0.5,b = 0.5, We = 0.03,n =

0.04 and ¢ = %.
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Fig.(8.5) : Variation of Ap with @ for different values of a at b = 0.7,d = 0.7, We = 0.03,n =

0.04 and ¢ = Z.
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Fig.(8.6) : Variation of Ap with @ for different values of b at a = 0.5, d = 0.5, We = 0.03,n =
0.04 and ¢ = %.
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Fig.(8.7) : Variation of 55 with z for different values of We at a = 0.5, b = 0.5, d = 0.2,
n=004, Q=04and ¢ = 3.
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Fig.(8.8) : Variation of gg with z for different values of d at « = 0.5, b = 0.5, We = 0.03,
n=0.04,Q =04 and ¢ = 5.
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(b) (b)

-02 o1 0 04 02

Fig. (8.9) : Stream lines for three different values of Q. (a) for Q = 0.24, (b) for @ = 0.25, (¢) for
@ = 0.26. The other parameters are chosen as a = 0.5, b = 0.5, d = 1.0, n = 0.09, We = 0.04,
¢ = 0.01.
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(b)

Fig.(8.10) : Stream lines for two different values of We. (a) for We = 0.4, (b) for We = 0.04.
The other parameter are chosen as a = 0.54, b= 0.5, d = 1.0, n = 0.09, Q = 0.25, ¢ = 0.01.
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Fig. (8.11) : Stream lines for three different values of a. (a) for a = 0.52, (b) for a = 0.54, (c) for
a = (0.56. The other parameters are chosen as b = 0.5, d = 1.0, @ = 0.3, ¢ = 0.01, We = 0.04,

n = 0.09,
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8.5 Conclusion

This chapter presents the peristaltic flow of tangent hyperbolic fluid in an asymmetric channel.
The governing two dimensional equations have been modeled and then simplified using long
wave length approximation. The simplified equations are solved analytically using regular
perturbation method. The results are discussed through graphs. The main finding can be

summarized as follows:

1. Tt is observed that in the peristaltic pumping region the pressure rise decreases with an

increase in We, ¢, n and d, and increases with an increases in a and b.
2, The pressure gradient decreases with an increases in both We and d.

3. The size of the trapping bolus increases with an increases in @, We and decreases with

an increase in a.
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Chapter 9

Effects of partial slip on the
peristaltic transport of a hyperbolic
tangent fluid model in an

asymmetric channel

9.1 Introduction

This chapter presents the effects of partial slip on the peristaltic transport of a hyperbolic
tangent fluid model in an asymmetric channel. The governing equations of two dimensional
hyperbolic tangent fluid model are simplified under the assumptions of long wavelength and low
Reynolds number. The flow is investigated in a wave frame of reference moving with the velocity
of the wave. The governing equations of hyperbolic tangent fluid have been solved using regular
perturbation method. The expression for pressure rise has been calculated using numerical

integrations. The behavior of different physical parameters have been discussed graphically.
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9.2 Mathematical formulation

The governing equations for the present case are same as discussed in previous chapter, however,

due to partial slip condition the boundary conditions are different which are defined as

g OV
v = = —_— = — =
2 By LSz —1 for y= hi(z),
av
Vo= - SISy -1 for y=ha(a) (01)

The dimensionless mean flow @ is defined as in Eq. (1.29)-

9.3 Solution of the problem

To avoid the repetition, the solution of Eqs. (8.14) subject to the boundary conditions (9.1)

using the similar procedure as discussed in chapter eight can be directly written as

—¥
= —BgDy5 (h% — h2 he + h3
2(}11 LN h2)2 (—GA +h,1 ‘_‘hﬂ) ( q 15( 1 !'2) +q( 1 2)

—3ghiha (h1 + ha) — 2hiha (A2 - h3)) +

6 (q+ hy — hg) (hy + hg) gf

(hy — hg)? (—6Ds5 + hy — ha) 2!

-1 7 4
+ —6gD5 (hy — h h3 — h3) — 6Dy5gh1hg — 3hyho (hy — h
(1 — ha) (6Dra — a1 1) (=6gDys (hy — hg) + (h3 — hy) 15qh1ho 1ho (hy — ha)) y
12 (g + hy — hg) ¥ ( y? y* y“) :
— 4+ We | Dos + Doy + Dog= + Dyg=— + BDig=— | - 9.2
(hy — ha)? (6D15 — hy + ha) 3! e| D22 +Dny+ Do 193] 187 (9.2)
The axial pressure is defined as
dp _ _12(1 —n)(g+ h - hy) e —72(1 —n) D1g (g + h1 — ha)® (hy + ho)
da (hy — hg)® (6Dy5 — hy + ha) (hy — ho)* (6Dy5 — hy + ho)?
144n (g + hy — hg)* (b + ho) (©.3)
(h1 = ha)* (6D15 — hy + ho) (~6D15 + hy — hs) ) '
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where

Dag

Doy

Dy,

2n

7 Dyy = Ln.

L(1- =
( ﬂ), Dlﬁ 5

12(q + hy — hg)
(h1 — h2)* (6Dy5 — hy + ha)’
12

(hl — hg)d (6D15 —h + h2)2
1

(h1 — h2)* (6D15 — hy + ha)* (=2Ds5 + hy — ha) (
+12D16 (g + hy — ha)? (A3 + 3h2hy — h3 — Bhyhy (4Dy5 + hg))) ,

1 2 2
—12Dy7 (hy = h2)* (g + hy — ha)* (hy + ha)
(hy — ha)* (6Dy5 — hy + hg)? (=2D15 + hy — hg) ( (

—12Dy6 (g + hy = h2)* (h + ha) (haha (hy = ho) + (hf — 4hyha + hg))) ,

(—5915 (g+ hy — h2)? (hy + hz)) .

72Dh7 (hy — h2)? (¢ + hy — ha)?

1 2
12hyhs (hy — ha) (g + hy — hg)
2 (hy — ha)* (6D15 — hy + ha)? (—2Dss + hy — ha) (12
(6D17hy — 6Dy7hg + Dighihg) +24D15Dighiha (g + hy — ha)? (A3 — Bhyhy + hg)) 2 (9.4)

The non-dimensional pressure rise over one wavelength Ap for the axial velocity are

1 dp
Ap—/o ﬁd&'. (95)

where dp/dz is defined in Eq. (9.3).
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9.4 Results and discussion

In this section, the graphical results are displayed to see the effects of various physical para-
meters on pressure rise, pressure gradient, velocity profile and streamlines. The expression for
the pressure rise over one wave length is calculated numerically using a Mathematics software.
Figs. 9.1 to 9.6 are plotted for pressure rise against volume flow rate . It is observed that
the relation between pressure rise and volume flow rate is inversely proportional to each other.
In Fig, 9.1 it is observed that in pumping region (Ap > 0), the pressure rise increases with
an increase in Weissenberg number We. It is also observed from Figs. 9.2 and 9.3, that the
pressure rise decreases with an increase of power law index n and width of the channel d in the
pumping (Ap > 0) and free pumping (Ap = 0) region while in copumping (Ap < 0) region the
pressure rise increases with an increase in n and d. It is also depicted from Figs. 9.4 to 9.6 that
in the pumping (Ap > 0) and free pumping (Ap = 0) regions the pressure rise increases with
an increase in slip parameter L, and amplitudes of wave a and b, while the behavior is opposite
in copumping (Ap < 0) region. The pressure gradient for different values of L, n and a are
prepared in Figs. 9.7 to 9.9. It is observed that magnitude of pressure gradient increases with
an increase in L and decreases with an increase in n (see Figs. 9.7 and 9.8). However, with an
increase in a the magnitude of pressure gradient decreases in the region ze [0,0.2] and (0.8, 1],
where as in the region ze[0.2,0.8] it is increases. The velocity profiles for different values of
Weissenberg number We, volume flow rate @, and slip parameter L are shown in Figs. 9.10
to 9,12, It is observed from Fig. 9.10 that the magnitude value of the velocity field increases
with an increase in Weissenberg number We. From Fig. 9.11 it is shown that the magnitude
value of the velocity field decreases with an increase in volume flow rate Q. It is depicted from
Fig. 9.12 that due to slip parameter L the velocity near the channel walls are not same but it
is slipping and also the velocity increases with an increase in L.

The trapping phenomena for different values of Weissenberg number We, power law index
n, slip parameter L and volume flow rate @ are shown in Figs. 9.13 to 9.16. It is seen from
Figs. 9.13 and 9.14 that the size of the trapping bolus increases with an increase of Weissenberg
number We and power law index n in the upper half of the channel, while in the lower half the
size of the bolus decreases. From Figs. 9.15 a to c, it is observed that with an increase of slip

parameter L the size of the trapping bolus increases in lower and upper half of the channel. It is
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also observed from Fig, 9.16 that with an increase in (), the size of the trapped bolus decreases

in the upper half of the channel, while in the lower half the behavior is opposite as compared

to the upper half, here size of the trapping bolus increases.

10 T T T
R, ——We =0.0
~ ::..'..
5 L N \..'t. - - WQ = 0.04 -
\\.-':!'- ceesnns We = 0.09
a'e,

0 0.5 1 1.5 2
Q

Fig.(9.1) : Variation of Ap with @ for different values of We. The other parameters are a = 0.7,
b=05,d=09, ¢ =F, n=0.06, L=004.
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Fig.(9.2) : Variation of Ap with @ for different values of n. The other parameters are a = 0.6,
b=10.5,d=009, ¢=F, We=0.06, L =0.02.
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Fig.(9.3) : Variation of Ap with @ for different values of d. The other parameters are a = 0.5,
b=0.5 We=0.04, ¢ = §, n=0.06, L = 0.02.
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Fig.(9.4) : Variation of Ap with @ for different values of L. The other parameters are a = 0.7,
b=05,d=1,¢=%F, n=006 We=0.04.
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Fig.(9.5) : Variation of Ap with @ for different values of b. The other parameters are a = 0.5,
We=004,d=009, ¢= 5§, n=0.04, L =002
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Fig.(9.6) : Variation of Ap with @ for different values of a. The other parameters are We = 0.04,

b=05d=1,¢=%, n=006 L=002
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Fig.(9.7) : Variation of dp/dz with z for different values of L. The other parameters are a = 0.5,

b=05,d4=2,¢=12 Q=2 n=0.04 We=004,
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Fig.(9.8) : Variation of dp/dz with z for different values of n. The other parameters are a = 0.5,

b=05d=2,¢=3%, Q=2 We=0.04, L=0.04.
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Fig.(9.9) : Variation of dp/dz with = for different values of a. The other parameters are

We=004,b=05d=2¢=1% Q=2n=006L =004
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Fig.(9.10) : Velocity profile for different values of We. The other parameters are a

b=12,d=2,¢=3,Q=1n=0.3, L =0.06.
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Fig.(9.11) : Velocity profile for different values of Q. The other parameters are a = 0.7, b = 1.2,

d=2,¢=% We=006,n=04, L =0.06.
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Fig.(9.13) : Stream lines for different values of We. (a) for We = 0.01, (b) for We = 0.05, (¢)
for We = 0.07. The other parameters are ¢ = 0.01, Q@ = 1.5,a = 0.5, n =0.04, d = 0.9, b = 1.0,
L=D.02;
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(c)

Fig.(9.14) : Stream lines for different values of n. (a) for n = 0.01, (b) for n = 0.09, (c) for
n = 0.3. The other parameters are ¢ = 0.01, @ = 1.5, a = 0.5, We = 0.06, d = 0.9, b = 1.0,
L = 0.06.
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Fig.(9.15) : Stream lines for different values of L. (a) for L = 0.02, (b) for L = 0.04, (¢) for
L = 0.06. The other parameters are ¢ = 0.01, Q = 1.5, a = 0.5, We = 0.09, d = 0.9, b = 1.0,
n = 0.04,

195



Fig.(9.16) : Stream lines for different values of Q. () for Q@ = 1.4, (b) for Q@ = 1.5, (c) for
@ = 1.6. The other parameters are ¢ = 0.01, L = 0.04, a = 0.5, We = 0.06, d = 0.9, b = 1.0,
n = 0.02.
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9.5 Conclusion

This chapter presents the slip effects on the peristaltic flow of tangent hyperbolic fluid in an
asymmetric channel. The governing two dimensional equations have been modeled and then
simplified under long wave length and low Reynolds number approximation. The simplified
equations are solved analytically using regular perturbation method. The results are discussed

through graphs. The main finding can be summarized as follows:

1. It is observed that in the peristaltic pumping region (Ap > 0), the pressure rise increases

with an increase in We, L, a and b.

2. It is also observed that the pressure rise decreases with an increase of power law index n
and width of the channel d in the pumping (Ap > 0) and free pumping (Ap = 0) region,
while in copumping (Ap < 0) region the pressure rise increases with an increase in n and

d.

3. The pressure gradient increases with an increase in both L and a, while it decreases with

an increase in 7.

4, It is observed that the velocity field increases with an increase in Weissenberg number

We and decreases with an increase in volume flow rate Q).

5. It is also observed that due to slip parameter L the velocity near the channel walls are

not same but it is slipping and also the velocity increases with an increase in L.

6. The size of the trapping bolus increases in the upper half of the channel and decreases in
the lower half of the channel with an increase of We and n, while the behavior is opposite

in the case when volume flow rate @) increases.

7. With an increase of slip parameter L the size of the trapping bolus increases.
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Chapter 10

Peristaltic flow of a Williamson fluid

in an asymmetric channel

10.1 Introduction

This chapter presents a peristaltic flow of a Williamson model in an asymmetric channel. The
governing equations of Williamson model in two dimensional peristaltic flow phenomena are
constructed under long wave length and low Reynolds number approximations. A regular
perturbation expansion method is used to obtain the analytical solution of the non linear
problem. The expressions for stream function, pressure gradient and pressure rise have been
computed. The pertinent feature of various physical parameters have been discussed graphically.
It is observed that, (the non dimensional Williamson parameter) for large We, the curves of

the pressure rise are not linear but for very small We it behave like a Newtonian fluid.

10.2 Mathematical formulation

Let us consider the peristaltic transport of an incompressible Williamson fluid in a two dimen-
sional channel of width d; + d». The constitutive equation for Williamson fluid is given by
(69]

T=—PI+48, (10.1)
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S = = [leo + (ko + t1e0) (1 =) Y] 4, (10.2)

in which -PI is the spherical part of the stress due to constraint of incompressibility, S is the
extra stress tensor, ., is the infinite shear rate viscosity, j is the zero shear rate viscosity, I'

is the time constant and « is defined as

(10.3)

2

where IT = 3trac (gradV + (grad V)T) y
Here II is the second invariant strain tensor. We consider the constitution Eq. (10.2), the
case for which p,, = 0 and I'y < 1. The component of extra stress tensor therefore, can be

written as

S = —uo [(1=TH)™] 4 = —4o [(1 +T4)) (10.4)

Invoking Eq. (1.11) in Egs. (6.1) and (10.1) to (10.4), we get

P(%+U§%+V%) = “%_%_6;\;}” e:3)
(%+U%+V%) = ‘g_i‘%gj;_y_ag;y’ (10.6)
where
Syxy = —-2;40(1-!-1"')’)2—){;,
Sxy = —po{l-i—f"}')(%-l-g—;)s
Syy = ‘2#0(1"'["5‘)%1;:
1/2
- (@G @)
av

Using Eqgs. (1.11) and (8.8), Eqgs. (10.5) to (10.7) in terms of stream function ¥(u = V=
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-6 %E'— after dropping bars), can be written as

ar g av g\ ov Op 208z 0S: 1
ke D PR P S o PR e e 0.8
e [( Oy Ox Oz By) By] Oz % oz Oy’ e
av @ av a\ ov dp 08 a5,
_53 oL TRNEL .05 PR Vol (N, VLo (O st ) 10.9
ore| (G5 m) %) ~ e .

where

-2(1+Wey) — i

SIZ‘ = 6 6y
. [ O°F o* v
Sey = —(14+Wey) (ﬁ 62332)
v

Spy = 26(1+We'y)aay

i o (w(Z0) (G3-0) van (Z2)) " o

in which 4, Re, We represent the wave, Reynolds and Weissenberg numbers, respectively. Under

the assumptions of long wavelength § << 1 and low Reynolds number, neglecting the terms of

order 6 and higher, Eqs. (10.8) and (10.9) take the form

o _ 8¢ Y] 2%
o = \[1 +Wegr| 5 (10.11)
9p
e = 1 10.12
By 0 (10.12)
Elimination of pressure from Eqs. (10.11) and (10.12) yield
9% 9*v] 9*v
== ([ We ] ; 2) =0, (10.13)

The boundary conditions in terms of stream function ¥ are defined in Eq. (6.26). The dimen-
sionless mean flow Q is defined in Eq. (1.29).
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10.3 Solution of the problem

10.3.1 Perturbation solution

Since, Eq.(10.13) is non linear equation, its exact solution may be not possible, therefore, we
employ the regular perturbation to find the solution.

For perturbation solution, we expand ¥, g and p as

U = W+ Wel¥; +0(We?), (10.14)
g = qo+ Weaq +O(We?), (10.15)
p = po+ Wep, +O(We?). (10.16)

With the help of Egs. (10.14) to (10.16), the solution of Eqs. (10.13) and (10.11) with the

corresponding boundary conditions (6.26) can be directly written as

g+hy —hy

1
(hg — hy)?

(20 — 3(hy + ha)y? + 6lyhoy) — y

———'-'1 q 3 2 q 3 - 2
+(hz — hy)3 ((§ * hl) (hy — 8hah3) = (he — 5) (hi 3h2h1))
3

v Y v
+We | Dag + Dagy + Dzsa + DZE? Na 9275 ) (10.17)

dp 12 (g + hy — ha)

12 D
R WL Sl IR ) (—( 2T (h$(2hg — h1) — h3(2h1 — hg))

dz (he — hy)® hy — h1)? 41

By —ha 1
—144(hy + ha) [ﬁ} ) (10.18)
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where

= _G__ 2?_?_ 30 3 B }llhg N :’li
_Dor (hih3 b3 k3
3! 2 2 4 "
Dazhihg [ (hi + ha) 1 g 5
Pt = 2 ( 3 2k - ) (h3(2hg — hy) = h3(2hy — ha)) ) ,
- (b +ha) (5 sis. e (O +h1h2+h§))
-12  [Dx ;s .
D26 = --—-—--—012 = h1)3 (-E (hl (2h2 —_ h‘l) — ;'12(211] - h2)) ;
= g+ hy—hy .
B & A5 (W) ' (10.19)

The non-dimensional pressure rise over one wavelength Ap for the axial velocity are

Ap= /01 (%) dz, (10.20)

where dp/dz is defined in Eq. (10.18).

10.4 Results and discussion

The analytical solution of the Williamson fluid model is presented. The expression for pressure
rise Ap is calculated numerically using mathematics software, The effects of various parameters
on the pressure rise Ap are shown in Figs. 10.1 to 10.4 for various values of Weissenberg number
We, channel width d and wave amplitudes a, b. It is observed from Fig. 10.1 that pressure
rise decreases for small values of @ (-1 < @ < 1.3) with an increase in We and for large @
(1.3 £ @Q £ 2), the pressure rise increases. For Ap > 7 increasing We gives a better pumping
performance and for Ap = 7 there is no difference between Newtonian and Williamson fluid
as the pumping curves coincide with each other. It is depicted that the pressure rise decreases
with an increase in d and increases with an increase in a and b for small @ and for large @, the
results are opposite (see Figs. 10.2 to 10.4). Here we also see that the better pumping regions
are Ap > 5 and almost Ap = 0, there is no difference between Newtonian and non- Newtonian

fluids. Figs. 10.5 and 10.6 represent that for = € [0,0.1] and [0.75, 1], the pressure gradient is
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small, we can say that the flow can easily pass without imposition of large pressure gradient,
while in the narrow part of the channel z € [0.1,0.75), to retain same flux large pressure gradient
is required. Moreover in the narrow part of the channel, the pressure gradient decreases with
an increase in We and d. It is also observed that the behavior of We and d on the pressure
gradient are similar. The pressure rise Ap for different values of b are shown in Fig. 10.7. Tt
is seen that the curves for the pressure rise are not linear and in the region @ € [—1,0.4], the
pressure rise decreases with an increase in b while in the region @ € [0.41, 1], the pressure rise
increases with an increase in b.

Trapping phenomena

Another interesting phenomena in peristaltic motion is trapping. It is basically the forma-
tion of an internally circulating bolus of fluid by closed stream lines. This trapped bolus pushed
a head along a peristaltic waves, Figs. 10.8 to 10.10 illustrate the stream lines for different
values of We, (@ and a. The stream lines for different values of We are shown in Fig. 10.8. It is
found that with an increase in Weissenberg number We the size of the trapping bolus decreases
in the upper half of the channel and increases in the lower half of the channel. In Fig. 10.9
the stream lines are prepared for differert values of volume flow rate Q. It is depicted that the
size of the trapped bolus increases in the upper half of the channel with an increase in @, while
the size and the number of the trapped bolus increases in the lower half of the channel. It is
observed from Fig. 10.10 that the size of the trapping bolus increases in the lower and upper

half of the channel with an increase in amplitude of the wave a.
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Fig.(10.1) : Variation of Ap with @ for different values of We at a = 0.1,6 = 0.2,d = 0.2 and
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Fig.(10.2): Variation of Ap with @ for different values of a at We = 0.001,b=0.1,d = 0.4 and

¢ =m.
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Fig.(10.5): Variation of dp/dz with z for different values of We at a = 0.1,b = 0.3,d = 0.4,¢ =
% and Q = 0.5.
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Fig.(10.8) : Stream lines for three different values of We. (a) for We = 0.01, (b) for We = 0.03,
(¢) for We = 0.05. The other parameters are chosen as a = 0.5, b = 0.5, d = 1.0, Q = 0.3, and
¢ = 0.01.
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Fig.(10.9) : Stream lines for three different values of Q. (a) for @ = 0.31, (b) for @ = 0.32, (¢)
for @ = 0.33. The other parameters are chosen as a = 0.5, b = 0.5, d = 1.0, We = 0.06, and
¢ = 0.01.
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Fig.(10.10) ; Stream lines for three different values of a. (a) for a = 0.53, (b) for a = 0.54. The
other parameters are chosen as b= 0.5, d = 1.0, We = 0.05, @ = 0.3 and ¢ = 0.01.
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10.5 Conclusion

This chapter presents the peristaltic low of Williamson fluid in an asymmetric channel. The
governing two dimensional equations have been modeled and then simplified using long wave
length approximation, The simplified equations are solved analytically using regular perturba-
tion method. The results are discussed through graphs. The main finding can be summarized

as follows:

1. It is observed that for large We, the curves of the pressure rise are not linear but for small

We it behave like a Newtonian fluid.

2. It is observed that in the peristaltic pumping region the pressure rise decreases with an

increase in We and d and increases with an increase in a and b.
3. The pressure gradient decreases with an increase in both We and d.

4. The size of the trapping bolus decreases in the upper half of the channel and increases in

the lower half of the channel with an increase in We.

5. The size of the trapping bolus increases in the upper and lower half of the channel with

an increase in @ and a.
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T s wrip i F

Adomian decomposition method

1. Introduction

Recently, Elshehawey et al. [1] discussed the problem of peristaltic transport of an incompressible viscous fluid in an asym-
metric channel through a porous medium. They found an explicit form of stream function using Adomian decomposition meth-
od. More recently, Hayat et al. [2] extended the idea of Elshehawey et al. [1] for partial slip condition. According to [2] for large
values of slip parameter the size of trapped bolus decreases and symmetry disappears. Number of researchers have discussed
the peristaltic flow problems in different flow geometries, like [3-14], But a limited attention has been focused to the study of
peristaltic flow in the presence of heat transfer analysis. Mention may be made to the interesting works by Radhakrishnamach-
aryaand co-workers [15-18]. The aim of the present note is to highlight the importance of MHD and heat transfer analysis inan
asymmetric channel under the influence of slip condition. The governing equations of momentum and energy are simplified
using long wave length approximation. The simplified momentum equation is solved by Adomian decomposition method
and a closed form solution subject to partial slip boundary conditions have been calculated. An impressive bibliography on
the Adomian decompositior method is presented in the works by Eldabe and co-workers [19-25]. With the closed form solution
obtained from momentum equation, the exact solution of the energy equation is obtained in the presence of viscous dissipation
terms. Itis found thatwhen M = 0in the momentum equation, the results of Hayat et al. [2] has been recovered as a special case
of our problem. Moreover when L = M = 0, the solution of Elshehawey et al. [ 1] are recovered as a special case of our problem. At
the end, the results of flow characteristics are analyzed by plotting graphs.

2. Mathematical formulation and solution of the problem

We consider MHD flow of an electrically conducting viscous fluid in an asymmetric channel through porous medium. The
lower wall of the channel is maintained at temperature T, while the upper wall has temperature Tp. We assume that the fluid

* Corresponding author.
E-mail address: snqau@hotmail.com (5. Nadeem).
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Abstract The present paper investigates the peristaltic transport of a couple stress fluid in an asynimnei

channel with the effect of the induced magnetic field. The exact solutions of momentum and the magnetic field
equations have been calculated under the assumptions of long wave length and low but finite Reynolds number.
The expression for pressure rise has been computed numerically using mathematics software Mathematica.
The graphical results have been presented to discuss the physical behavior of various physical parameters of
interest. Finally, the trapping phenomena have been discussed for various physical parameters.

Keywords PLyitaltic flow - Conple stress fluid - Induced magnetic field . Asvmmetric channel

1 Introduction

Numerous applications of non-Newtonian fluids in enginecring and industry have led to renewed interest among
the researchers. Such applications include extraction of crude oil from petroleum products, food mixing and
chyme movement in the intestine, flow of plasma, flow of blood, flow of nuclear fuel slurries, flow of liquid
metals and alloys, and flow of mercury amalgams. In non-Newtonian fluid models, couple stress fluid model
has distinct features, such as polar effects in addition to possessing large viscosity. The theory of couple stress
was first developed by Stokes [1] and represents the simplest generalization of classical theory which allows
for polar effects such as presence of couple strzss and body couples. A number of studies containing couple
stress have been investigated in Refs. [2-4].

Recently, Peristaltic problems have gained a considerable importance because of it applications in physiol-
ogy, engineering, and industry. Such applications include urine transport from kidney to bladder, swallowing
food through the esophagus, movement of chyme in the gastrointestinal tract, transport of spermatozoa in the
ducts efferentes of the male reproductive tract, movement of ovum in the female fallopian tubes, vasomotion
of small blood vessels, transport of slurries, corrosive fluids, sanitary fluids, and noxious fluids in nuclear
industry. In view of these applications, a number of researchers have discussed the peristaltic flows involving
Newtonian and non-Newtonian fluids with different kinds of geometries [5-24]. Very recently, Mekheimer
[25] has discussed the effects of the induced magnetic ficld on peristaltic flow of a couple stress fluid in a slit
channel, According (- him, the magnetohydrodynamic flow of a fluid in channel in connection with peristaltic
flow has applications in physiological fluids, e.g., the blood, blood pump machines and with the need for the-
oretical research on the operation of peristaltic MHD compressor. Srivastava and Agrawal [26] and Agrawal
and Anwaruddin [27] discussed the effects of MHD on blood flow. Further, the application of magnetic field
occurs in the form of a device Magnetic Resonance Imaging (MRI) [28], which is used for diagnosis of brain,
vascular diseases, and all the human body.
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Department of Mathematics, Quaid-i-Azam University, Islamabad 45320, Pakistan
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[n the present paper, we have studied the influence of heat transfer and magnetic field on a peri-
staltic transport of a Jeffrey fluid in an asymmetric channel with partial slip. The complicated Jeffrey
fluid equations are simplified using the long wave length and low Reynolds number assumptions.
In the wave frame of reference, an exact and closed form of Adomian solution is presented. The
expressions for pressure drop, pressure rise, stream function, and temperature field have been calcu-
lated. The behaviour of different physical parameters has been discussed graphically. The pumping
and trapping phenomena of various wave forms (sinusoidal, multisinusoidal, square, triangular, and

trapezoidal) are also studied.

Key words: Exact Solution: Adomian Solution; Partial Slip; Peristaltic Flow; Asymmetric Channel;

Heat Transfer Analysis.

1. Introduction

Recently, Kothandapani and Srinivas [1] have dis-
cussed the peristaltic flow of a Jeffrey fluid in an asym-
metric channel in the presence of a transverse magnetic
field. They employ for the Jeffrey fluid a relatively sim-
ple linear model using time derivatives instead of con-
vective derivatives. Their observation was that the size
of trapped bolus in the Jeffrey fluid is much smaller
thaa in the Newtoniaa fluid. Duc to the large number
of applications, the peristaltic flows for different fln-
ids and different geometries have been discussed by
a number of researchers [1—15]. Only a limited at-
tention has been focused on the study of peristaltic
flows in the presence of heat wansfer analysis. Men-
tion may be made to the works of [16-23]. No at-
tempt has been made to discuss the slip effects on the
peristaltic transport of a Jeffrey fluid in an asymmet-
ric channel in the presence of heat transfer analysis.
Therefore the aim of the present paper is to discuss
the influence of heat transfer and magnetic field on a
peristaltic transport of a Jeffrey fluid (non-Newtonian)
with partial slip in an asymmetric channel. The exact
and closed form of Adomian solutions are obtained
under the assumptions of long wave length and low
Reynolds number. Many existing solutions in the lit-
erature are found to be subcases of our problem. The
influence of physical parameters on the pressure rise,

temperature, and stream function have been studied for
five types of wave forms, namely sinusoidal, multisinu-
soidal, square, trapezoidal, and triangular.

2. Mathematical Formulation

We consider magnotohydrodynamic (MHD) flow of
an electrically conducting Jeffrey fluid in an asymmet-
ric channel. The lower wall of the channel is main-
tained at temperature 7} while the upper wall has tem-
perature Tp. We assume that the fluid is subject to
a constant transverse magnetic field B. A very small
magnetic Reynolds number is assumed and hence the
induced magnetic field can be neglected. When the
fluid moves into the magnetic field two major physical
effects arise. The first one is that an electric field E is
induced in the flow. We shall assume that there is no ex-
cess charge density and therefore, V-E = 0. Neglect-
ing the induced magnetic field implies that VxE = 0
and therefore, the induced electric field is negligible.
The second effect is dynamically in nature, i.e., a
Lorentz force (J x B), where J is the current density.
This force acts on the fluid and modifies its motion re-
sulting in the transfer of energy from the electromag-
netic field to the fluid. In the present study, the rela-
tivistic effects are neglected and the current density J
is given by Ohm’s law as

J=06(VxB).

0932-0784 / 10/ 0600-0483 § 06,00 © 2010 Verlag der Zeitschrift fiir Naturforschung, Tiibingen - hitp:/znaturforsch.com
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Slip effects on the peristaltic flow of a Jeffrey fluid in an
asymmetric channel under the effect of induced magnetic field
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SUMMARY

In the present study, we investigated the effects of slip and induced magnetic field on the peristaltic flow
of a Jeffrey fluid in an asymmetric channel. The governing two-dimensional equations for momentum,
magnetic force function and energy are simplified by using the assumptions of long wavelength and low
but finite Reynolds number. The reduced problem has been solved by Adomian decomposition method
(ADM) and closed form solutions have been presented. Further, the exact solution of the proposed problem
has also been computed and the mathematical comparison shows that both solutions are almost similar.
The effects of pertinent parameters on the pressure rise per wavelength are investigated using numerical
integration. The expressions for pressure rise, friction force, velocity, temperature, magnetic force function
and the stream lines against various physical parameters of interest are shown graphically. Moreover, the
behavior of different kinds of wave shape are also discussed. Copyright © 2009 John Wiley & Sons, Ltd.

Received 20 November 2008; Revised 19 March 2009; Accepted 6 April 2009

KEY WORDS: Adomian decomposition metnod; exact souuon; oilicy nuw, heat transfer, paidai ship,
. induced magnetic field; peristaltic motion

1. INTRODUCTION

A flow phenomena in which the fluid velocity indirectly contacts with a solid boundary having the
same velocity as the boundary itself is known as no slip condition. However, in some situations,
such as fluid flow past a permeable walls [1], slotted plates [2], rough and coated surfaces [3],
emulsion, suspensions, foam, polymer solutions, gas and liquid flow in microdevices (4], the
traditional no slip condition does not hold valid and should be replaced by a partial slip boundary
condition. The slip boundary condition was first discussed by Navier [5], in which the velocity
is proportional to the shear stress at the boundary. After the initiation of Navier, a number of
researchers have discussed the partial slip boundary condition for different kinds of fluids with
different geometries [6-9].

*Correspondence to: S. Nadeem, Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000,
Pakistan.
YE-mail: snqau@hotmail.com
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In the present analysis, we have modeled the governing equations of a two dimensional hyperbolic
tangent fluid model. Using the assumption of long wavelength and low Reynolds number, the gov-
erning equations of hyperbolic tangent fluid for an asymmetric channel have been solved using the
regular perturbation method. The expression for pressure rise has been calculated using numerical
integrations. At the end, various physical parameters have been shown pictorially. It is found that the
narrow part of the channel requires a large pressure gradient, also in the narrow part the pressure
eradient decreases with the incrcase in Weissenberg number We and channel width d.

Key words: Modeling of Hyperbolic Tangent Fluid Model; Asymmetric Channel; Analytical Solutions,

1. Introduction

Peristaltic transport is a well known process of a
fluid transport which is induced by a progressive wave
of area contraction or expansion along the length of
distensible tube containing the fluid. It is used by many
systems in the living body to propel or to mix the con-
tents of a tube. The peristalsis mechanism usually oc-
cur in urine transport from Kidney to bladder, swal-
lewing food through the esophagus, chyme motion in
tic gastrointestinal tract, vasomotion of sinaii viovu
vessels and movement of spermatozoa in the human
reproductive tract. There are many engineering pro-
cesses as well in which peristaltic pumps are used to
handle a wide range of fluids particularly in chemical
and pharmaceutical industries. It is also used in san-
itary fluid transport, blood pumps in heart lung ma-
chine, and transport of corrosive fluids, where the con-
tact of the fluid with the machinery parts is prohibited.
Because most of the physiological fluids behave like a
non-Newtonian fluid, therefore, some interesting stud-
ies dealing with the flows of non-Newtonian fluids are
given in [1-15].

Motivated by possible applications in industry and
physiology and previous studies regarding the peri-
staltic flows of Non-Newtonian fluid models, we dis-
cussed the tangent hyperbolic fluid model. The gov-
erning equations of hyperbolic tangent fluid model for
peristaltic fluid flow in a two dimensional asymmet-

ric channel has been modeled in the present paper. To
the best of the authors knowledge no attempt has been
made to study the hyperbolic tangent fluid model for
peristaltic problems. The governing equations are re-
duced using long wave length approximation and then
the reduced problem has been solved by the regular
perturbation method. The expression for pressure rise
is computed numerically using mathematics software
Mathematica. At the end, the graphical results are pre-
sented to discuss the physical behaviour of various pa-
rameters of interest.

2. Fluid Model

For an incompressible fluid the balance of mass and
momentum are given by

divV =0, (h

pd—d? = divS +pf, )

where p is the density, V is the velocity vector, S is
the Cauchy stress tensor, f represents the specific body
force and d/dr represents the material time derivative.
The constitutive equation for hyperbolic tangent fluid
is given by [10-11]

S=—Pl+1, )
©=— 1+ (M0 + 1) tanh(T7)"] 7, )
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Article history: In this work, we have presented a peristaltic flow of a Williamson model in an asymmetric
Received 26 August 2008 channel. The governing equations of Williamson model in two dimensional peristaltic flow
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phenomena are constructed under long wave length and low Reynolds number approxima-

tions. A regular perturbation expansion method is used to obtain the analytical solution of

the non-linear problem. The expressions for stream function, pressure gradient and pres-

sure rise have been computed. The pertinent features of various physical parameters have
X been discussed graphically. It is observed that, (the non-dimensional Williamson parame-

Williamson fluid model :

Asymmetsic channel ter) for large We , the curves of the pressure rise are not linear but for very small We it

Peristaltic Now behave like a Newtonian fluid. )

Analytical solution © 2009 Elsevier B.V. All rights reserved,

Keywords:

1. Introduction

Since, the pioneer work done by Latham [1] , numerous researchers have discussed the peristaltic flows due its
increasing importance's, specially in physiology, biological systems and engineering [2-6]. These includes urine transport
from kidney to bladder, movement of chyme in the gastrointestinal tract, transport of spermatozoa, in the ducts efferent
of the male reproductive tracts and in the cervical canal, in movement of ovum in the female fallopian tube, in the vaso-
motion of small blood vessels and in biomedical systems including roller and finger pumps etc. In realistic prospective
number of phenomenons such as food mixing and chyme movement in the intestine, flow of plasma, flow of blood, a
Bingham fluid, flow of nuclear fuel slurries, flow of liquid metals and alloys, flow of mercury amalgams and lubrication
with heavy oil and greases would not follow the Newtonian laws of viscosity. Therefore, for such kind of applications it
would be more appropriate if the non-Newtonian behaviors of the fluids are taken into account. Due to complexity of
non-Newtonian fluids vario: s researchers have taken different kinds of fluids. Some interesting studies dealing different
kinds of non-Newtonian fluid models are given in Refs. [7-21]. Keeping in mind the applications of non-Newtonian fluid
model and the non-linear nature of the governing equation, the aim of the present paper is to consider the constitutive
equation of a fluid model known as Williamson model. To the best of the author’s knowledge, the peristaltic flow of a
Williamson model has not been discussed by anyone, In the Williamson model, the apparent viscosity varies gradually
between i, at zero shear rate, and i as the shear rate tends to infinity [22]. The governing equations for two dimen-
sion flow are modeled and have been solved using regular perturbation for an asymmetric channel. It is found that the
solutions of the viscous fluid can be recovered from our analysis. The pertinent parameters have been discussed
pictorially.
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