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Preface 

Peristalsis pumping is a fonn of fluid transport which is generated by a progressive V'lave 

of area contraction or expansion along the walJs of a distensible duct containing liquid. 

This kind of fluid transport appears in many biological organs such as urine transport 

from kidney to bladder through the ureter, movement of chyme in the gastrointestinal 

tract, the movements of spermatozoa in the ducts efferentes of the male reproductive tract 

and the ovum in the female fallopian tube, the locomotion of some warms, transport of 

lymph in tJle lymphatic vessels and vasomotion of small blood vessels such as arterioles, 

veins, and capillaries involve the peristaltic motion. In add ition, peristaltic phenomena is 

used in industrial engineering, and biomechanical applications like sanitary fluid 

transport, blood pumps in heart lungs machine, roller and finger pumps and transpoI1 of 

con'osive fluids where the contact of the flu id with the machi nery parts is prohib ited. In 

view of these interesting appl ications, the peristaltic flows with different flow geometries 

for both Newtonian and non-Newtonian fluids have been reported analytically, 

numerically and experimentally by number of researchers. Most of these studies have 

been made under certain simplifying assumptions regarding the magnitudes of the wave 

amplitude, the wave length, the Reynolds number and the time mean flow. Analytically, 

these studies are investigated either in a fixed frame of reference or in a wave frame of 

reference moving with a constant velocity of the wave simplifying the study to a case 

with stationary wavy walls. 

The study of motion of non-Newtonian fluids has applications in many areas. Due to 

complexity of fluids there are many models of non-Newtonian fluids each exhibits 

different properties. Only a limited attention has been focused to the study of non­

Newtonian fluids in asymmetric channel. Physiologists observed that the intrauterine 

fluid flow due to myometrial contraction is peristaltic type motion and myomaterial 

contTaction may UCl:ur in both synunetric and asymmetric directions. Motivated from the 

applications and importance 's highlighted above, the purpose of the present thesis is to 

discuss the peristaltic flows of Newtonian and non-Newtonian fluids in an asymmetric 

channel. It is worth mentioning that few new models have been modeled and presented in 



this thesis which has not reported for peristaltic flow problems. The thesis has been 

organized in the following maimer: 

The li terature survey and introduction on the subject is given in chapter zero. Chapter one 

is devoted to the study of heat transfer in a peristaltic flow of MHD fluid with partial slip. 

The peristaltic flow of a couple stress fluid under the effect of induced magnetic field in 

an asymmetric channel has been discussed in chapter two. In chapter three, we have 

examined the influence of heat transfer and magnetic field on a peristaltic transport of a 

Jeffrey fluid in an asymmetric channel with partial slip. Chapler four is devoted to the 

study of influence of induced magnetic field on the peristaltic motion of Jeffrey fluid in 

an asymmetric channel. The study of slip effects on the peristaltic flow of a Jeffrey fluid 

in an asymmetric channel under the effects of induced magnetic fie ld is carried out in 

chapter five. The study of peristaltic flows of some new models such as six constant 

Jeffrey fluid, Walter's B fluid, hyperbolic tangent fluid and Willianlson fluids are 

presented in chapter six to ten. 
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Chapter 0 

Introduction 

The word ltperistalsis ll is derived fIOm the Greek word "Peristalikos" which means clasping and 

compressing. Peristalsis is basically a mechanism of pumping fluids in tubes when a progressive 

wave of area contraction or expansion progates along the length of a distensible tube containing 

fluid. In general terms it includes propulsive and mixing movements and pumps the fluids 

against pressure rise. Physiologically, peristalsis is an inherent property of smooth muscle 

contraction. Applications of peristalsis occur in swallowing food through the esophagus, urine 

transport from kidney to bladder ~hrough the ureter, transport of the spermatozoa in the ducts 

efferentes of the male reproductive tract, movement of the ovum in the fallopian tube, movement 

of the chyme in the gastrointestinal tract, the transport of lymph in the lymphatic vessels and 

the vasomotion in small blood vessels such as arterioles , veins and capillaries. The mechanism of 

peristaltic t ransport has been exploited for industrial applications like sanitary fluid transport, 

blood pumps in heart lung machine, transport of sensitive or corrosive flu ids and transport of 

noxious fluids where the contact of the fluid with the machinery parts is prohibited. 

The study of peristalsis in the context of fluid mechanics has received considerable attention 

in the recent times because of its relevance to biological systems and industrial applications. 

Peristalsis existed very well in physiology. Its relevance came about mainly through the works of 

Kill [I] and Boyarsky 12). Later, several investigators studied the phenomenon both mathemat­

ically and experimentally to understand its mechanical aspects, in mechanical and physiological 

situations under various approximations. Latham [3) was probably t he first to investigate the 

mechanism of peristalsis in relation to mechanical pumping. Burns and P arkes 14] studied the 
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peristaltic motion of a viscous fluid through a pipe and a channel by considering sinusoidal 

variat.ion at the walls. Barton and Raynor (5] studied peristaltic flow in tubes using long wave 

approximation. Barton and Raynor also analyzed the case of low Reynolds number. Shapiro 

et al (6] studied the peristaltic trnnsport of Newtonian fluid with long wave length and low 

Reynolds number approximation. They discussed the pressure mechanical efficiency, reflux 

limit and trapping limit in both two dimensional and axisymmetric cases by assuming infinite 

length of vessels. An elaborate review of the earlier literature regarding peristalsis is provided 

by Jaffrin and Shapiro (7J. Bohme and Friedrich [8] have investigated the peristaltic flow of 

viscoelastic liquids and have assumed that the relevant Reynolds number is small enough to 

neglect inertia forces and that the ratio of the wavelength and the channel height is large, which 

implies that the pressure rise is constant over the cross-section. Srivastava and Srivastava [9] 

have investigated the effects of power-law fluid in uniform and non-uniform tubes under zero 

Reynolds number and long wave length approximations. Takabatake et a1. [lOJ have studied nu­

merically the influence of finite wavelength and Reynolds number on the efficiency of peristaltic 

pumping. 

Physiologists observed that the intra-uterine fluid ftow due to myometrial contractions in 

peristaltic type motion and the myometrial contractions may occur in both symmetric and asym­

met.ric directions. Several works have considered the peristaltiC Bows m asymmetric channel 

for the viscous fluid. Eytan et a1. 1111 have observed that the characterization of non-pregnant 

women uterine contractions is very complicated as they are composed of variable amplitude, 

frequencies and wave-lengths. It was observed thnt the width of the sagittal cross-section of the 

uterine cavity increases towards the fundus and the cavity is not fully occluded during the con­

tractions. Recently, Eytan and Elad (12) have developed a mathematical model of wall-induced 

peristaltic fluid flow in a two dimensional channel with wave trains having a phase difference 

moving independently on the upper and lower walls to stimulate intra-uterine fluid motion in 

a sagital cross-section of the uterus. They have obtained a time-dependent flow solution in a 

fixed frame by using lubrication theory. These results have been used to evaluate fluid flow 

pattern in a non-pregnant uterus. They have also calculated the possible particle trajectories to 

understand the transport of embryo before it gets implanted at the uterine wall. On the other 

hand, numerical technique using boundary integral method has been developed by Pozrikidis 
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{I 3] to investigate peristaltic transport in an asymmetric channel under Stokes flow cond itions 

to understand the fluid dynamics involved. He has studied the stream line patterns and mean 

flow rate due to different amplitudes and phases of the wall deformation. Very few investigations 

dealing with the peristaltic flow in an asymmetric channel are available for viscous fluids. Very 

recently, Mishra and Roo !14] have discussed the peristalsis of a viscous fluid in an asymmetric 

channel under long wave length and low Reynolds number approximations. In another paper , 

Rao tlilU Mislln:l. (15J t!xtlmiut!d the effects of curvalW'e 011 the pt!ristalLic tntllsjJort of a viscous 

fl uid in an asymmetric channel by using wave number as the perturbation parameter. Haroun 

[16J has studied the effect of wall compliance on peristaltic transport of a Newtonian fluid in an 

asymmetric channel. A number of studies containing peristaltic flow in an asymmetric channel 

for viscous fluid have been investigated in Refs 117 - 18]. 

The study of non~Newtonian fluids has been an important subject in the field of chemi­

cal, biomedical and environmental engineering science. UndoubLed ly, the mechanics of non­

Newtonian fluids presents special challenges to engineers, physicists, modelers and mathemati­

cians. This is due to the fact that non-linearity manifests itself in a variety of ways. The flows 

of non-Newtonian fluids are not only important because of their technological significance but 

also in the interesting mathematical features presented by the equations governing the How. 

It is well known that such fluids cannot be described by the classical Navier-Stokes equations. 

Numerolls models have been proposed to describe response characteristics of non-Newtonian 

fluids. These models can be classified as fluid of differential, rate and integral type. The con­

stitutive equations in these fluid models are very complex due to a. number of pa.rameters. It 

has now been accepted that most of the physiological fluids behave like a non-Newtonian fluids. 

However, only a few recent studies have considered this aspect of the problem since the initial 

investigation by Raju and Devanathan /19]. Siddiqui and Schwarz (20) analyzed the mechanics 

of peristaltic pumping for non-Newtonian fluid through an axi-symmetric conduit. Quite a 

good number of studies pertaining to peristaltic flow of the non-Newtonian fluids have been 

carried out in the past 121 - 311 to analyze the rheological effects on the flow characteristics. In 

most of the mentioned studies, at least one of the parameters, namely the amplitude ratio, the 

ratio of the channel width to the wave length and the Reynolds number is asswned to be small . 

In all of the above studies the effects of an asymmetric channel have been neglected. There 
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is hardly an attempt available in the literature which deals with the peristaltic mechanism of 

non-Newtonian fluid in an asymmetric channel [32 - 41). 

It is known that research of MHO flows has important applications in metallurgical indus­

try, such as the cooling of continuous strips and filaments drawn through a quiescent fluid and 

the purification of molten metals from non-metallic inclusions. The MHO flows have numerous 

applications in bioengineering and medical sciences. Magnetic wound or cancer tumor treat­

ment causing hyperthermia, bleeding reducing during surgeries and targeted transport of drugs 

using magnetic parlicles as drug carriers are few such examples. In living creature, blood is a 

biomagnetic fl uid because of complex interaction of the intra cellular protein, cell membrane 

and the hemoglobin. The magnetohydrodynamic (MHO) flow of a fluid in a channel with 

elastic, rhythmically contracting walls is of interest in connection with certain problems of the 

movement of conductive physiological fluids e.g. the blood and with the need for theoretical 

research on the operation of a peristaltic MHO compressor. The effect of a moving magnetic 

field on blood flow was studied by stud et al. [421 .They observed lhat the effects of a suitable 

moving magnetic field accelerate the speed of blood. Srivastava and Agrawal [431 consider the 

blood as an electrically conducting fluid that constitutes a suspension of red cells in plasma. 

Agrawal and Anwaruddin [44J studied the effect of magnetic field on blood flow by taking a 

simple mathematical model for blood through an equally branched channel with flexible walls 

executing peristaltic waves using long wave length approximation method and observed for the 

flow of blood in arteries with arterial disease like arterial stenosis or arterio sclerosis, that the 

influence of magnetic field may be utilized as a blood pump in carrying out cardiac operations. 

Mekheimer [45J analyzed t.he MHO flow of a conducting couple stress fluid in a slit channel 

with rhymically contracting walls. More recently, I<othandapani and Srinivas [461 have studied. 

lhe influence of wall properties in the MHO peristaltic transport with heat transfer and porous 

medium. In all of these studies the effect of the induced magnetic field has been neglected. 

The first investigation of the effect of the induced magnetic field on peristaltic flow was 

studied by Vishnyakov and Pavlov [471 where they considered the peristaltic MHO flow of a 

conductive Newtonian tiuid by using the asymptotic nanow-band method to solve the prob­

lem. But they only obtained the velocity profiles in certain channel cross-sections for definite 

parameters values, and little attention was given to the induced magnetic fie ld. Mention may 
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be made to the works of [48 - 50J. 

Heat transfer analysis can be used to obtain information about the properties of tissues. 

There are complicated temperatl\l'e sensing ysstems in each organism. Heat stimulation influ­

ence life system great.ly, and heat transfer in biological tissues involves complicated processes 

such as heat conduction in tissues, heat convection due to blood flow through the pores of 

tissues, and radiation heat transfer between surface sand its environment and there is also 

lllasS transfer in these processes. Research on bioheat transfer studies heat and mass transfer 

in organisms. Research interest on flow and heat transfer phenomena in a channell tube has 

incrensed substantially in resent years due to developments in the electronic industry, micro­

fabrication technologies, biomedical engineering etc. Moreover, with the investigative studies of 

the interaction between peristalsis and heat transfer where the thermodynamic aspects of blood 

have become significant in processes like oxygenation and hemodialysis. Radhakrishnamurthy 

at a1. lSI) and Varjravelu at a1. 152] have investigated flow through vertical porous tube with 

peristalsis and heat transfer. Some interesting investigations related to this topic are given in 

Refs. 153 - 57]. Again, the available study eschews the effect of heat transfer on peristaltic flow 

in an asymmetric channel. Only limited attention is given to this type of flows [58 - 61]. 

Motivated by the extensive literature regarding the peristaltic flows of Newtonia.n and non­

Newtonian fluids with different geometries, the aim of the present thesis IS to analyze peristaltic 

flows of Newtonian and non· Newtonian fluids in an asymmetric channels. This thesis consists 

of eleven chapters, Chapter zero deals with basic literature survey and the other ten chapters 

are alTanged as follows: 

In chapter one , the effects of heat transfer and magnetic field on the peristaltic flow of 11 

viscous fluid in an asymmetric channel under the assumptions of long wave length and low 

Reynolds number have been discussed. The problem is solved analytically and closed Conn 

solutions are computed with the help of Adomian decomposition method. The contents of this 

chapter have been published in Communications in Nonlinear Science and Numerical 

Simulation 15(2010)312-321. 

Chapter two is devoted to the study of peristaltic flow of a couple stress fluid under the 

effects of induced magnetic field in an asymmetric channel. Making the assumptions of long 

wave length and low Reynolds n:umber, the exact solution of the problem has been computed 
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and discussed. The contents of this chapter have been published in Archive o f Applied 

Mechanics. 

The influence of heat transfer and magnetic field on a peristaltic transport of a Jeffrey fluid 

in an asymmetric channel with partial slip condition has been examined in chapter three. The 

contents of this chapter have been accepted for publication in Zeitsch rift fUr Naturforschung 

A. 

In chapter four, we have examined the peristaltic motion of a two dimensional Jeffrey fluid 

in an asymmetric channel in the presence of induced magnetic field. An exact and closed form 

Adomian solution have been computed and discussed for di fferent wave shapes. The work of 

this chapter is submi tted for publication in Zeitschr ift fill' N aturforschung A . 

Chapter five described the slip and induced magnetic fi eld effects on the peristaltic flow of 

a Jeffrey fluid in an asymmetric channel for different. wave shapes. T he closed form Adomian 

solution and exact solution have been found and discussed. The cont.ents of this chapter have 

been published in Int.e rnationa l journal for numeri cal m ethod s in fluids. 

In chapter six, we have presented the peristaltic flow of a six constant Jeffrey fluid in an 

asymmetric chalmel. The governing equation of six constant Jeffrey fluid for two dimensional 

flow are modeled and then solved numerically and analyticaUy. The work of this chapter is 

submitted in Zcitschr ift fUr Naturforschung A for publication. 

Chapter seven described the peristaltic motion of Walter's fluid model in an asymmetric 

channel. An analytical solution has been presented using regular perturbation method. The 

contents of this chapter have been submitted to Ch inese P hys ics L et ter for publication. 

The peristaltic t ransport of a hyperbolic tangent fluid model in nn asymmetric channel has 

been given in chapter eight. T he governing equations of hyperbolic tangent fl uid model are 

first modeled and then solved analytically. The contents of this chapter have been published in 

Zeit sclu ift fill' Naturforschung A 64a (2009)559M561. 

In chapter nine, we have extended the idea of pervious chapter for partial slip boundary 

conditions. The contents of this chapter have been submitted to Chinese physics Lette r for 

publication. 

Chapter ten is devoted to the study of peristaltic flow of a Williamson fluid in an asymmetric 

channel. The modeling of Williamson fluid is given and the problem is solved analytically. This 
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chapter has been published in Communications in Nonlinear Science a nd N umerica l 

Simulation 15(2010)1705-1716. 

11 



Chapter 1 

Heat Transfer in a peristaltic flow of 

MHD fluid with partial slip 

1.1 Introduction 

In this chapter t.he effects of heat transfer and MHD on the peristaltic flow of a Newtonian fluid 

in an asymmetric channel is presented. The governing two dimensional equations are simplified 

using the assumption of long wave length and low Reynolds number. The reduced equar.ions 

of motion and energy are solved analytically by Adomian decomposition method and found a 

closed form solution. The expression for pressure rise is computed using numerical integration 

recipe. At the end, the behavior of velocity, pressure rise, temperature and stream function are 

shown pictorially for different physical parameters of interest. 

1.2 Mathematical formulation 

We consider MHD flow of an electrically conducting viscous fluid in an asymmetric channel 

through porous medium in a two dimensional channel of width dl + d2• The flow is generated 

by a sinusoidal wave trains propagating with constant speed c along the channel walls. We 

choose the rectangular coordinate system for the channel with X along the centerline of the 

channel and Y is transverse to it. The lower wall of the channel is maintained at temperature 

TI while the upper wall has temperature To. 
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We assume that the fl uid is subject to a constant t ransverse magnetic fie ld Bo. A very small 

magnetic Reynold number is assumed and hence the induced magnetic field can be neglected. 

When the fluid moves into magnetic field two major physical effects arise. The fi rst one is that 

an electric fie ld E is induced in the flow. We shall assu me that there is no excess charge density 

and therefDre, V . B = O. Neglecting the induced magnetic field implies that V x E = 0 and 

therefore, the induced electric field is negligible. The second effect is dynamically in nature, 

Le. , a Lorentz force (J x B), where J is the CWTent density, this force acts on the fluid and 

modifies its motiDn. This results in the transfer Df energy from the electromagnetic fi eld to the 

fl uid. In present study, the relativistic effects are neglected and the current density J is given 

by the Ohm's law as 

Since we are considering asymmetric channel therefore, the channel flow is produced due to 

d ifferent amplitudes and phases of the peristaltic waves on the channel. It is also assumed 

t hat the fluid particles near the walls are not same it means we are considering the partial slip 

conditions instead of usual no slip boundary cDnditions. A schematic diagram of the geometry 

of the problem under considerat ion is shown in Fig. (1.1). 

y 

T=To 
'1 ---

d, 

x 

T =T, 

c 

Fig.(1. 1) : Schematic diagram of a two-dimensiDnal asymmetric channel. 
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The geometry of the wall surface is defined as 

Y = H1(X,t)=d l +a1cos[2; (X-ct)] , 

Y = H2(X,t)=-dZ-bICOS[2;(X-ct)+1I] , (1.1) 

where at and bt are the amplitudes of the waves, >. is the wave length, d J + d2 is the width 

of the channel, c is the veloc ity of propagation, t is the time and X is the direction of wave 

propagation. The phase difference ¢ varies in the range 0 :S ¢ :S 11" I in which ¢ = ° corresponds 

to symmetric channel with waves out of phase and ¢ = 11" the waves are in phase; further more, 

alo b1 , d1 , d2 and ¢ satisfies the condition 

The equations governing the flow of a are given by 

(i) The continuity equation 

v·v =o, 

(ii) The equation of motion 

(
8V ). P at + (V· V)V = dlvr + J x B + R, 

where 7" for Newtonian fluid is defined as 

(iii) The energy equation 

r = -PI + J.tA J, 

de 
p- =7" ·L1 - divQI +pr· 

dt 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

In the above equation V is the velocity vector, p. is the viscosity of the fluid, P is the pressure, 

J is the current density, L J is the velocity gradient, Al is the first Rivlin-Ericksen tensor, Q l 

= (-1(l divT, 1(1 being the thermal conductivity) is the heat flux vector, r is the internal heat 

generation (radial heating) taken here to be zero, and e = (CIT, G1 being specific heat) is the 
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specific internal energy. 

We seek the velocity field for the two dimensional and two directional flow of the form 

v ~ (U (X, Y,t), V(X, Y,t) ,0)- (\6) 

For the two dimensional incompressible flow, the governing equations of motion (including MHD 

and Darcy term) and energy are 

where 

[ (au)' (BV)' (au av)'] ¢! ~ 2 ax + 2 ax + ay + ax ' 

(\7) 

(\8) 

(\9) 

(1.10) 

v, V are the velocities in X and Y directions in fixed frame, p is constant density, 1/ is the 

kinematic viscosity, u is the electrical conductivity, K is the permeability parameter, (]I is the 

specific heat and T is t.he temperature. 

Introducing a wave frame (x,y) moving wit.h velocity c away from the fixed frame (X, Y) 

by the transformation 

x = X -ct, Y = Y, tl = V -c, 11 = V, p(x) = P(X,t). (\11 ) 
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Define Lhe following non-dimensional quantities 

_ ct 
t =-, 

A 
- ]( 
I<=d2 ' 

I 

(1.12) 

Using the transformation (1.11) and non-dimensional quantities (1.12), Eqs. (1.7) to (1.10) in 

terms of stream fUllction \l1(U = ~,v = -0* after dropping bars) can be written as 

Under t.he assumptions of long wave length and low Reynolds number, Eqs. (1.13) to (1.15) 

become 

Op 1 2 (1.16) = w," - J( ('II, + 1) - M ('II, + 1), O. 
op 

0, (1.17) = iJy 
1 2 

P
r 

(J1I1I + Ee. ~ 1111 = O· (1.18) 

Elimination of pressure between Eqs. (1.16) and (l.17) leads to the following governing equa­

tions 

(1.19) 

(1.20) 

Since we are considering the partial slip on the wall, therefore, the corresponding non-dimensional 
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boundary conditions for lhe present problem can be written as 

Ij! = ~ at y = hI = 1 + acos21Tx, 

JlI = -~ at y = h2 = -d - bcos{211"x + tfJ), 

8'1' 0''1' 
By + L [)y2 = -1 at y = hI> 

0'1' 0''1' 
- - L-- = -1 at y = h2 
fJy 8y2 ' 

8 = Oaty=h l , 

8 = 1 at y = ~, 

(1.21) 

(1.22) 

where q is the flux in the wave frame, L is the slipparameter, a, b, tfJ and d satisfy the relation 

1.3 Volume fl ow rat e 

The instantaneous volume flow rate in the fixed frame is given by 

l H' 
F*= U(X,Y,t)dY, 

H, 
(1.23) 

where HI and H2 are function of X and t, 

The rate of volume flow in the wave frame is given by 

1" f = u(x,y)dy, 

" 
(1.24) 

where hI and h2 are fWlction of x alone, With the help of Eqs, (1.l1), (1.23) and (1.24), we 

lind that the two rat.es of volume flow are related through 

F· = /+chl -ch2 , (1.25) 
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The time mean Row over a period T· at a fixed position X is defined as 

- 1 iT' F~- F'dt 
T" 0 

(1.26) 

Substituting Eq. (1.25) into Eq. (1.26), and integrating, we get 

P = f + cd l + Cd'l· (1.27) 

Defining the dimensionless time-mean Bows Q and q in the fixed and wave frame respectively 

" 
and (1.28) 

Using Eq. (1.28) in Eq. (1.27), we get 

(1.29) 

1.4 Solution of the problem 

1.4.1 Adomian decomposition method 

According to Adomian decomposition method [62 - 65], we write Eq. (1.19) in the operator 

form as 
• 1 2 
LvvVII~ = ( l( + M )1111111 • (1.30) 

Applying the inverse operator i;Jw = J J J [[.] dydydydy, we can write Eg. (1.30) as 

(1.31) 

where 

Co, Ct. C'l, Ca are functions of x. Now we decompose q, as 

(1,32) 
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Substituting IJ.! into Eq. {1.31}, we obtain 

Therefore, 

~ l = ~(C2~: +C3~~)' 
W2 = ~2(C2~~+C3~~)' 

According to (1.32), the closed form of iii can be written as 

"" = CO+CIY+ AC2 (COSh ~ - 1) +AVAC3 (sinh:fA -]-;.). 

The above equation can be put in the simplest form as 

\It = Fo +F1y+F',lcosh 1 + FJsinh 1, 

19 

(1.33) 

(1. 34) 

(1.35) 



where Fo, FI , F2, F3 are functions of x. These constants are calculated using the boundary 

conditions (1.21) and are defined as 

Fo = 
- (h) +~) {q + (9£,Jr) tanh [hJn] 

2(hl-~) -2 (L(h1 -n)+2A) tanh hJ,n'] , 
q+ (9L$:r) tanh {hD~] 

VA (q + hi - h2) seck {~] cosh {~] 
(h2 h i ) + (L(h2 J~)+2A) tanh [hJa] . 

Substituting Eq. (1.35) in Eq. (1.16), we get the axial pressure gradient as 

dp (h2 -h)- q) {l + 1Atanh {~]] 
dx = A (hi h2 ( L{h2J~ )+2A) tanh [hJJ'~2 )) . 

Integrating (1.37) over one wavelength, we get 

(' dp 
C1p = )0 dx ax. 

The axial velocity component in the fixed frame is given as 

U(X,Y,t) = 

= 
h, + q) sinh ~l sinh hl$ _ £'(h ! -h,+9) sinh ~ 

2v'A 2 A JA 2v'A 

where 

and h, = -d - bcos[2~ (X - t) + ¢[. 

20 

(1.36) 

(1.37) 

(1.38) 

(1.39) 



It is nOl iced here that. when M = 0, the solution of Hayat el a1 [lSJ is recovered and when 

M = L = 0, the solution of Elshehawey et al {I7J is recovered. 

Making use of Eq. (1.35), the solution of Eq. (1.20) satisfying the boundary conditions 

(1.22) can be written as 

o = 

(1.40) 

where 

1.5 Results and discussion 

In this section results are presented and discussed for different physical quantities of interest. 

Pressure rise is important physical measures in peristaltic mechanism. Therefore, Figs. 1.2 

to 1.4 are plotted to see the effects of partial slip L, magnetic field M, amplitude ratio ¢ on 

pressure rise. Fig. 1.2(1 represents the average pressure rise Ap against Q (the time average 

mean flow rate) for different values of slip parameter L. It is observed that pressure rise 6.p 

increases (Ap > 0) for Q < I and for Q > 1, Ap has an opposite behavior (Ap < 0). The 

maximum pressure rise occur at Q = - 1 and Ap = 21 for J( = 0.1. Similar behavior of 

pressure rise is shown in Fig. 1.2b for J( = 1000. But we observe here that for very large value 

of K the maximum pressure is Ap = 6. Thus we conclude that as we increase the value of K 
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the maximum pressure rise decreases. The effects of magnetic parameter M on 6.p are shown 

in Figs. 1.3(a,b) for small and large K . It is seen that f:!.p increases for Q < 0.6 and after that 

f:!.p decreases. Figs. 1.4(a, b) show that f:!.p decreases when Q < 2.4 with an increase in 1> and 

it is increases when Q > 2.4. Figs. 1.5 and 1.6 are prepared to discuss the pressure gradient for 

different values of M and L. It is observed that pressure is maximum at x = 0.5 for M = 1.5 

and L = 0.04. The velocity field for various values of K and M are plotted in Figs. 1.7 and 1.8. 

It is depi cted from the Fig. 1.7 that for small value of J(, the velocity represents a rectangular 

shape but as we increased the value of J( its amplit ude increases and finally it seems to be like a 

parabola. It is observed from Fig. 1.8 that with an increase in M, the amplitude of the velocity 

decreases in the center and near the channel wall the velocity increases. The temperature field 

for different values of L, Pr , M and Ee are shown in Figs. 1.9 to 1.12. It is observed from the 

figures that the increase in Land M the temperature field decreases while with an increase 

in Pr and Ee, the temperature field increases. napping is another interesting phenomena in 

peristaltic motion. It is basically the formation of an internally circulating bolus of fluid by 

closed streamlines. This trapped bolus pushed a head along with the peristaltic wave. Fig. 1.13 

illustrate the streamline graphs for different values of L. It is observed that with an increase 

in slip parameter L the size of t rapped bolus decreases. The streamlines for different val lies of 

mean flow raLe Q are shown in Fig. 1.14. It is evident from the figures that the size of the 

trapped bolus increases by increasing Q. It is also observed that the number of trapped bolus 

decreases. The streamlines for different values of amplitude ratio ¢ are shown in Fig. 1.15. It 

is observed that with an increase in 1>, the size and number of trapped bolus decreases. 

1.6 Conclusion 

This chapter presents the influence of heat transfer and magnetic fi eld on the peristaltic Bow 

of a Newtonian fluid with partial slip. The governing two dimensional equations have been 

modeled and then simplified using long wave length approximation. T he results are discussed 

through graphs. The main finding can be summarized as follows: 

1. In the peristaltic pumping region the pressure rise increases with an increase in Land M, 

and decreases with an increase in 1>. 
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2. The pressure gradient decreases with an increase in both M and L. 

3. The velocity field increases with an increase in K and decreases with an increase in M. 

4. The temperature field decreases with an increase in L and magnetic field M, while with 

an increase in Pr and Ee , the temperature field increases. 

5. The size of the trapping bolus decreases by increasing £. 

6. The size of the trapping bolus increases and number of the trapping bolus decreases by 

increasing Q. 

7. The size and number of the trapping bolus decreases by increasing rjJ. 

8. If M == 0 the solution of Hayat el al [18J is recovered and when M == L == 0, the solution 

of Elshehawey et al [17J are recovered as a special case of our analysis. 
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(a) (b) 

(c) (d) 

Fig.(1.13) : Stream lines for four different values of £. (a) for L = 0, (b) for L = 0.01, (c) 

for L = 0.02 and (d) for L = 0.03. The other physical parameters are Q = 1.4, a = 0.5, 

b = 0.5, d = 1.0, M = 2, J( = 0.2, ¢ = o. 
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other physical parameters are Q = 1.4, a = 0.5, b = 0.5, d = 1.0, M = 2, 1< = 0. 2. 
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Chapter 2 

Peristaltic flow of a couple stress 

fluid under the effect of induced 

magnetic field in an asymmetric 

channel 

2 .1 Introduction 

This chapter deals wit.h the peristaltic flow of a couple stress fluid under the effects of induced 

magnetic field in an asymmetric channel. The governing coupled nonlinear partial differential 

equations are simplified by using long wave length and low Reynolds number assumptions. T he 

exact solutions of reduced equations are fOWld for velocity, stream function , pressure gradient, 

current density distribution and magnetic potential cI>. The expression for pressure rise is 

computed using numerical integration. The physical features of various parameters are discussed 

through graphs. 
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2.2 Mathematical formulation 

Let. tiS consider the perist.aitic flow of an incompressible, elecLrically conduct.ing couple stress 

fluid in a two dimensional channel of width d, + d2. The flow is generated by sinusoidal 

wave trains propagating with constant speed c along the channel walls. We choose rectan· 

gular coordinate system for the channel with X along the centerline of the channel and Y 

is transverse to it. An external transverse uniform constant magnetic field Ho , induced mag­

netic field H(hx (X, Y, t),}fo + hy{X, Y, t), 0) and the total magnetic field H+(hx (X, Y, t), Ho+ 

hy(X, Y, t), 0) are taken into account . Finally, the channel walls are considered to be nOIl­

conductive and the geometry of the wall surface is defined in previous chapter but fol' the sake 

of simplicity we define it again 

Y = H,(X, t) = d, +0, cos C; (X - ct»), Y = H,(X,t) = -d, - b, cos C; (X - ct) + ¢). 
(2.1) 

Equation of continuity is defined in Eq. (1.2) and the other equations which governs the MHD 

flow of a couple stress fluid are given as 

(i) Ma."(well's equation 

V · H = 
V AH = 
VAE = 

(i i) The equations of motion 

O,V·E=O, 

J , with J = O'{E + I'.(V A H)) . 
oH 

-J.'eat . 

(2.2) 

(2.3) 

(2.4) 

In the above equation E is an induced electric field, J is the current density, J.L. is the magnetic 

permeability and u is the electric conductivity. 

('A'lmbining Eqs. (2.2) to (2.4), we obtain the induction cq\lation 03 follows 

(2.6) 
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where,; = if- is the magnetic diffusively. ". 
Defining the scales 

x - y " v 0= dl d = dz - cqp ct 

" A' y = d
1

' u= -, v= -, P-- t= I' c c )" dl ' - Il-c>.' 
HI H, al b= ~ Re = cd l , 

- ~ - <I> 
hI = , h2 = d;' a= d

l
' IJ! = cd

l
' cI> = Ho~' dl dl ' v 

8" a" 8<1> D<l> R... = (J fJ.eOC, i=~dh U = ay' v=-ax,h%= (}y' h" = -0 ax' 
'I 

1 R 6"" (H +)' s= Ho JfJ.e, 82 82 
Pm = P+2 e z' \72=02_+ _ . (2.7) 

pc c p 8x2 8y2 

Wi th the help of Eq. (1.6), the transformations (1.11) and the non-dimensional quantities (2. 7), 

Eqs. (1.7), (2 .5) and (2.6) for a couple stress Ruid in wave Crame (after dropping bars) take the 

following form 

0, 

u+6(uh, -vfl.) + _I (a~~) _ 6,a(h,)) = E. 
R", vy ax 

The corresponding dimensionless boundary conditions are 

u = - 1, 
dh l v=­
dx' 
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o at y = hI. 

dh, 
u = - 1, v=­

dx' 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2. 12) 

(2.13) 



Using the assumpt ion of long wave length and low but finite Reynolds number consideration, 

Eqs. (2.8) to (2 .13) reduce to 

• ~ 

" ~ 

ap 
ax 
ap 
01 

= 0, 

"+ _1_ 8(h.) ~ E, 
Rm ay 

dh1 a'. 
- 1, v = dx' f)y2 = 0 

dh2 a'. 
- 1, v~- -~O 

dx' 01' 

at 

at 

With the help or Eqs. (2.14) and (2.16), we obtain 

(2.14 ) 

(2.15) 

(2. 16) 

y = hi = 1 + acos2"1rx, (2.17) 

y= h2 = -d- bcos(2"1rX+ cPl· (2.18) 

(2.19) 

The dimensionless mean flow Q is defined in chapt.er one and is straighl forward written as 

Q~q+ I+d, 

where 

1', 
q = ud,,· 

I" 

(2 .20) 

2.3 Solution of the problem 

2.3.1 Exact solut ion 

Eq. (2.19) is linear, non-homogeneous fourth order differential equation whose exact solution 

can be written as 
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where A2 to As are constants, M2 = ReSrRm and m',2 = ~ (1 ± J':"l---';-;~"'C")!· 
Invoking the boundary conditions we get 

A, = _ 1 [,.,h (m1(h1- h,)) (m' (M' _ dp + M'E) ,;nh (m1(h1 + h2)))], 
M2(m1- m~) 2 2 dx 2 

A. _ J [h(m'(h1 -",))( '('i,_dP M'E) h(m,(h1 +",) ))] = '1'( 2 2) ,eo 2 m, ,, d + cos 2 ' 
i ,1 m] - m2 x 

As = '~"I"'(-;:m"''':--:m=~) [sech (m2(h~ - h2)) (m? (_M2 + :~ _ M2E) sinh (m2(h~ +h
z
)))]. 

(2.22) 

The corresponding stream function is defined as 

where constants A2 to As are defined in Eq. (2.22). 

From Eqs. (2.20) to (2.22), the expression for pressure gradient is defined as 

where 

do, = 

do, = 
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(m? (l + E) sinh (m~(h2+~2») sec h ('n2(hr h2») (cosh (hlm2) cosh (h2'/Jt2))) 

m2 (m? -mn 

.,-, 3 h(m,(hl+h,)) h(m,(hl - h'))('h[h I 'h(h )) uo = ml cos 2 sec 2 SIO 1m2 - SIO 2m2. 

dlO = lias + %6 + dar + do" + drnl" (2.25) 

The non-dimensional expression for the pressure rise per wavelength D.p, is defined as 

(2.26) 

\\lith the help of Eq. (2.16), we get the magnetic force function of the fonn 

B'iI< 
By' = (E - u)R"., (2.27) 

with the corresponding boundary conditions are 

ell = 0 at !I = hi and y = h2' (2.28) 

Using Eq. (2.21), I.ilt: t:xl:\cl. $Olution of Eq. (2.21) satisfying the boundary conditions (2.28) can 
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be written as 

where 

C3 = 

A2 to As are defined in Eq. (2.22). 

The expression of axial induced magnetic field is calculated from Eq. (2.29) by using (h~ = 

~), we have 

h.(x,y) ~ 

Also the current density distribution takes the following form 

J~(x,y) = !~ ~= -R,n (A2 cosh (m,y) + A3 si nh (m ,y) + A4 cosh (m2Y) + As sinh (m2Y»' 

(2.31) 
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2.4 Results and discussion 

In this section, the graphical results of the problem lUlder consideration is discussed. The 

expression for pressure rise is calculated nwnericaUy using a mathematics software. The pressure 

rise tJ.p for different values of couple stress parameter 'Y and Hartmann number M are plotted 

in Figs. 2.1 to 2.2 . It is observed from Fig. 2.1, that the pressure rise increases for small values 

of Q (-1 ~ Q S 1) with an increase in 'Y and for large Q (1 S Q S 3) the pressure rise decreases. 

From Fig. 2.2 it is observed that with an increase in M, the pressure rise increase for small 

values of Q, and at the end the behavior is reversed. The pressure gradient for different values 

of"f and Q against x are plotted in Figs. 2.3 and Vi. It is depicted from the figtll' es that for 

x E [0,0.15J and x E 10.8, I ], the pressure rise is small i.e. the flow can easily pass without the 

imposition of large pressure gradient, while in the narrow part of the channel x E [0.15,0.81. 

to retain t he same fiux large pressure gradient is required. Thls phenomena is physically valid. 

Moreover, in the narrow part of the channel, the pressure gradient increases with an increase in 

couple stress parameter 'Y and decreases with an increase in Q (flow rate) . The velocity u. for 

different values of E and M are shown in Figs. 2.5 and 2.6. We observed that the magnitude 

value of velocity profile decreases with an increase in E (see Fig. 2.5). The effect of M on the 

velocity is almost opposite as compared to the cese of E . Here the velocity profile increases with 

an increase of M. The magnetic force function ell for different values of R.n, M and Q (volume 

flow rate) are shown in Figs. 2.7 to 2.9. It is observed from Fig. 2.7 that the magnitude value 

of the magnetic force function increases with an increase in magnetic Reynolds number R,.,. 

The effect of Hartmann number M and volume Bow rate Q is opposite as compared to the 

case of J4n. In this case the magnetic force function decreases with an increase in Hartmann 

number M and volume flow rate Q. The induced magnetic field h", agai nst y for different values 

of magnetic Reynold number Rm is plotted in Fig. 2.10. It is observed that with an increase in 

R"., h;r increases in upper half of the channel while in the lower half the behavior is opposite. 

The CUlTent density distribution J~ for different values of volume flow rate Q and Hartmann 

number M are plotted in Figs. 2.11 and 2.12. It is illustrated in Fig. 2.11 that the current 

density distribution J~ decreases with an increase in fiow rate Q. The effects of M on the J~ 

are shown in Fig. 2.12. It is observed that the behavior of J~ is monotonically increasing and 

decreasing. 
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Trapping phenomena 

Another interestmg phenomena in peristaltic motion is trapping. It is basicaUy the forma­

tion of an internally circulating bolus of fluid by closed stream lines. This trapped bolus pushed 

a head along a peristaltic waves. Figs. 2.13 and 2.14 illustrate the stream lines for different 

values of I. M and Q. The effect of the couple stress parameter "'f and Hartmann number M 

on the trapping are illustrated in Fig. 2.13. It is observed that with an increase in "'f and M, 

the size of the trapping bolus decreases. It is concluded from Fig. 2.14 that with an increase 

in Q the size of the trapped bolus decreases. 
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(a) (b) 

(c) 

Fig.(2. 13): Stream lines for different values of M and /' (a) for 'Y = 3.5, M = 1, (b) for "'1 = 5, 

M = 2, (e) for "f = 8, M = 3. The other parameters are Q = 1.6, b = 0.5, d = 1, E = 4, a = 0.5, 

• = 0.02. 
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(a) (b) 

(0) 

Fig.(2.14) : Stream lines for different values of Q. (a) for Q = L6, (b) for Q = 1.7, (c) for 

Q = 1.8 The other parameters are'Y = 3.5, b = 0.5, d = I, E :::: 4, a = 0.5, ¢ = 0.02, E = 4, 

M-L 
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2.5 Conclusion 

This chapter presents the peristaltic flow of a couple stress fluid under the effect of induced 

magnetic field ill an asymmetric channel. The gO\'erning two dimensional equat.ions are sim­

plified lIsing \ollg wave length approximation. The exact solution of simplified equations are 

calculated. T he results are discussed through graphs. The main finding can be summarized as 

follows: 

1. It is observed that in the peristaltic pumping region, the pressure rise increases with an 

increase in couple stress parameter "'( and Hartmann number Iv!. 

2. The pressure gradient increases with an increase in couple stress parameter i and decreases 

with an increase in Q (flow rate). 

3. The velocity field decreases with an increase in E and increases with an increase in M. 

4. The magnetic force function increases with an increase in magnetic Reynolds number Rm 

and decreases with an increase in Hartmann number /If and volume flow rate Q. 

5. The axial induced magnetic field increases in the upper half of the channel while in the 

lower half the behavior is opposite with an inCl·ease in magnetic Reynolds number Rm.. 

6. The current density distribution J~ decreases with an increase in flow rate Q. It is also 

observed that. the behavior of /. is monotonically increasing and decreasing with an 

increase in M. 

7. The size of the trapping bolus decreases with an increase in couple stress parameter "(. 

Hartmann number M and volume Bow rate Q. 
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C h apter 3 

Influence of heat transfer and 

magnetic field on a peristaltic 

transport of a Jeffrey fluid in an 

asymmetric channel with partial slip 

3.1 Introduction 

This chapter deals with the influence of heat transfer and magnetic field on a peristaltic trans­

port of a Jeffrey fluid in an asymmetric channel with partial slip. T he complicated Jeffrey fluid 

equations are simplified using the long wave length and low Reynolds number assumptions. 

In the wave frame of reference, an exact and closed form Adomiall solution is presented. The 

expressions for pressure drop, pressure rise, stream function and temperature field have been 

calculated. The behavior of different physical parameters have been discussed graphically. The 

pumping and trapping phenomena of various wave forms (sinusoidal, multisinusoida1, square, 

triangular and trapezoidal) are also studied . 
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3.2 Mathematical formulation 

We consider MHD flow of an electrically conductmg Jeffrey fluid in an asymmetric channel. The 

lower wall of the channel is maintained at temperature Tl while the upper wall has temperature 

To. We assume that the fluld is subject to a constant transverse magnetic field Bo. A very small 

magnetic Reynolds number is assmned and hence the induced magnetic field can be neglected. 

When the fluid moves into magnetic field two major physical effects arise. The first one is that 

an eiectril: fidJ E it; illtlut:cd in the flow. We shall assume chat t here is no excess charge dtmsity 

and therefore, V · B = O. Neglecting the induced magnetic field implies that V x E = 0 and 

therefore, the induced electric field is negligible. The second effect is dynamically in nature, 

i.e. , a Lorentz force (J x B ), where J is the current density, this force acts on the fluid and 

modifies its motion. T llis results in the transfer of energy from the electromagnetic field to the 

fluid . In present study, the relativistic effects are neglected and the current density J is given 

by the Ohm's law as 

Since we are considering asymmetric channel therefore, the channel flow is produced d ue to 

different amplitudes and phases of the peristaltic waves on the channel. The geometry of the 

wall sUI"face is defined in Eq. (2.1). T he continuity and energy equations are defined in Eqs. 

(1.2) and (1.5), however the moment.um equation is defined as 

( av ) . p &+(V.V) V =dIVT+ JxB, (3 .1) 

where 

r=-PI +S, (3 .2) 

in which the extra stress tensor S for Jeffrey fluid is defined as [35[ 

(3.3) 

where Al is the ratio of relaxation to retardation times, l' is the shear rate, A2 the retardation 

time and dots denote differentiation with respect to time. 
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With the help of Eq. (1.6), Eqs. (l.2), (1.5) and (3.1) to (3.3) take the following form 

8U 8V 
ax + BY 

~ 0, (3.4) 

(8U 8U au) 
P at + U 8X + V 81' ~ 

ap 8 a , 
-ax + 8X(Sxx)+ 8y(Sxy)-oBoU, (3.5) 

(av av av) ap a a 
(3.6) P at + U ax + v ay ~ - BY + ax (Syx) + BY (Syy) , 

, [aT aT aT] K' 
(3.7) C at + U ax + v BY ~ _ <y2T + voP2, 

P 

where 

Sxx ~ 

SXY ~ 

Syy ~ 

., 
~ 

Defining 

i' ~ 

h, ~ 

E, ~ (3.9) 

Using the transformation defined in Eqs. (l.11) and (3.9) into Eqs. (3.4) to (3.8), the resulting 

equations in terms of stream function III (dropping the bars, U = ~, v = -o~) can be written 
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as 

where 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Under the assumption of long wave length 0< <1 and low Reynolds number, Eqs. (3.10) to (3.13) 

become 

Elimination of pressure from Eqs. (3.14) and (3.16), yield 
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(3.15) 

(3.16) 

(3.17) 

(3.18) 



The corresponding non dimensional boundary conditions are 

~ ~ ~ at y = hJ = 1 + acos211'x, 

W ~ -~ at y = h2 = -d - bcos(211'x + ¢), 

aw L o'w -+ -ay (1 + All ay' ~ -laty=h l , 

oW L a'w 
- l aty=h2, (3.19) 

(1 + A,) 8y' 
~ 

8y 

8 Oat y = hJ, 

8 ~ 1 at y = h2, (3.20) 

where q is the flux in the wave frame, L represents the partial slip parameter. 

3.3 Solution of the problem 

3.3.1 Exact solution 

The exact solution of Eq. (3.17) can be written as 

III = F4 + Fsy + Fs cosh Je + F7 sinh Je, (3.21) 

where F4 , Plio Fs, F7 are functions of x and can be calculated using boundary conditions (3.19) 

-(h + h) l'q+ (qL+2BCH).!1) tan h [h':!If]] 
1 2 \18(1+>',) 2 B 

F4 = 
2 (h - h) - 2 (L{h a-h!)+2B(l+).i!) tanh hlJ1j"l] , 

1 2 \I8(I+).d 2 B 

Fs = 
q + ('lL+2BC1+).1 1) tanh [h\j~l] 

JB{I+)..!) 2 B 

Fs = -JB(q + hl - h2}sech(Vs] Sinh[~] 
(h2 /) + (L(h1-=!W+2BO+)..,)) tanh [!=JI>.]' 

Li .,tB(1+)..I) 2.,tB 
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(3.22) 

3.3 .2 Solution by Adomian decomposition method 

In this section, the Adomian solu~ions will be determined for the velocity field [62 - 65J. Ac­

cording to Adomian decomposition method, we write Eq. (3.17) in the operator form as 

(3.23) 

Applying the inverse operator L;Jw = J J J J [.] dydydydy, we can write Eq. (3.23) as 

(3.24) 

where 

c4, Cs. C6, C7 are functions of x. Now we decompose 'II as 

(3.25) 

Substitl!ting q, into Eq. (3.24), we obtain 

(3.26) 

56 



Therefore, 

(3.27) 

Using Eq. (3.25), the closed form of ..p can be written as 

11/ = C4 +CSy+BC6 (COSh JB -1) +BVBC7 (Sinh Je -Je). 
The above equation in simplest form can be written as 

(3.28) 

Now the Adomian solution (3. 28) and exact solution (3.21) are exactly same in which Fj(i = 4 

to 7) are calculated using boundary conditions which are defined in Eq. (3.22). 

The pressure gradient is obtained from the dimensionless momentum equation for the axial 

velocity as 

dp 1 [ 1 1] 
dx = (1 + ).1) Ill""" - Bill'} - B . (3.29) 

Substituting the values of IJ! into (3.29),we obtain 

(3.30) 

Integrating (3.30) over one wavelength, we get 

(3.31) 
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The axial velocity component in the fixed frame (non-dimensional form) is given by 

U(X,Y,t) = 1 + 11'1/ 

2 (hi h ) . 1 [!uc;.!;:] . h [";;%] L h,-h,+ . h [,,-=,,>] 2 + q Sin 1 2';8 Sin 2 B B(1+l.ll Sin 2';8 

where 

hi = 1 + a cos 12. (X - t)J and h, = -d - bcosl2. (X - t) + ~J. 

Using solution (3.21) into Eq. (3.16), the exact solution of the energy equation in fixed frame 

satisfying the boundary conditions can be written as 

8 = EoP. (Fi, 1(",,) (Y) Y'(, ') F'F7'h2(l')) - (1 +).1) 282 Y + 88 1"6 + F7 cosh 2 .fB - 482 F6 + F7 + 4B Sill .Jij 

+c:;Y + £:6, (3.33) 

where 

cs = 

It is noticed that in the absence of heat transfer and slip parameter L the results of J<othanda­

paru and Srinivas [351 can be recovered as a special case of our problem. Moreover the results of 

Mishra and Rao [14J can be recovered if .AI --< 0, L --< 0 and in the absence of heat transfer. 

3.4 Expressions for wave shape 

The non-dimensional expressions for the five considered wave forms are defined as follow 
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1. Sinusoidal wave 

hdx) = 1 + asin 27rx, h2(X) = -d - bsin(21Tx + ¢} 

2. Multisinusoidal wave 

3. Sq uare wave 

4. n'inngular wave 

5. 'frape-zoidaJ wave 

hi (x) = 1 + asin 27rxn, h2(X) = -d - bsin(21rxn + ¢). 

[ 
8 ~ (_ I )m.' ] 

= 1 + a 3' L 2 sin [2(2m - l )lI'x] , 
7r m::: l (2m - 1) 

= -d-b 3' L 2 sin [2(2m-l)1l'x+¢1 . 
[ 

8 ~ (_J)m.' 1 
71' m:::1 (2m - 1) 

[
32 ~ sin [« 2m - I») ] 

= 1 +a 2' 0 8 
'2 sin[2(2m - l)1I'x), 

7r m=l (2m 1) 

~ -d - b [3; f: sin [i(2m - ,I)) sin [2(2m - I)n + 01]' . =. (2m-I) 

3.5 Results and discussion 

In this section, the graphical results are displa.yed. The integra.tion which appear.s t.o compute 

pressure rise 6.p is calculated numerically using a mathematics software. The pressure rise 

6.p for different values of slip parameter L, magnetic parameter III and amplitude ratio q, are 
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plotted in Figs. 3.1 to 3.3. Fig. 3.1 illustrate the pressure rise for different values of L. It is 

shown that 6p decreases for small values of Q with an increase in L, however, Ap increases for 

large values of Q with an increase in L. Thus we say that t1p and Q has inversely linear relation 

between each other. Fig. 3.2 represents the variation of Ap with Q for different values of M. It. 

is observed that the pressure rise increases with an increase in M for small Q whereas for large 

Q, Ap decreases with an increase in M. The effects of the amplitude ratio ¢ on the pressure 

rise are :.hnwn in Fig. 33. It is observed that for Q E 1-1,2]. tho pressure rise decreases with 

an increase in ¢, whereas for Q E 12,31. the pressure rise increases. The pressure gradient for 

different value of M and L against x is plotted in Figs. 3.4 and 3.5. It is depicted that for 

x E [0,0.2] and x E [0.8 , 1]' the pressure grad ient is small i.e., the flow can easily pass, while 

in the region x E /0.2 ,0.8], pressure gradient increases with an increase in II! and decreases 

with an increase in L and much pressure gradient is required to maintain the flux to pass. The 

velocity field for several values of M, )., and Q are shown in Figs. 3.6 to 3.8. It is seen from 

Figs. 3.G and 3.7 that for Y E [-1.65, -1] and p, 1.65], the velocity field show slight increase 

with an increase in M, while Y E 1-1,11 with an increase in M and >." the velocity decreases 

and the maximum value of velocity is at the center of the channel. Velocity profile for different 

values of Q is shown in Fig. 3.8. It is observed that the velocity profile increases with an 

increase in Q The temperature profile for severaJ values of &, Pr , 111, and ).1 arc shown in Figs. 

3.9 to 3.12. It is observed that temperature field decreases with an increase of L, M and >'1, 

while it is increases with an increase in Pro The pressure rise t1p for different types of waves 

are prE;Sented in Fig. 3.13. It is observed that Ap in trapezoidaJ wave is greater than sinusoidal 

wave which is greater than triangular wave. The temperature field for different waves form are 

presented in Fig. 3.14. It is observed that temperature field for si nusoidal wave is greater than 

trapezoidal wave and the temperature field for triangular wave is greater than sinusoidal wave. 

Trapping phenomena 

Another interesting phenomena in peristaltic motion is trapping. It is basically the for­

mation of an internally circulating bolus of flu id by closed st.ream lines. This trapped bolus 

push ed a head along a peristnltic wnvcs. Figs. 3. 15 to 3.17, illustrate t he stream linea for djffer­

ent values of L, Q, and M for both symmetric and asymmetric channel. It is observed that for 

a symmetric channel the trapping bolus is symmetric about the centre line of the channel (see 
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panels (a) and (c)), while in case of asymmetric channel t.he bolus tends to shift towards left 

side of the channel due to phase angle (sae panels (b) and (d». Fig. 3.15 shows the stream lines 

for different values of slip parameter L. [t is observed that with an increase in L, Lhe size of the 

trapping bolus decreases. Moreover, it is also observed that the size of the trapping bolus is 

small in asymmetric channel as compared with the symmetric channel. It is also observed from 

Fig. 3.16 that with an increase in Q, the size and the nuruber of the trapped bolus increases. 

The size of the trapped bolus increases with nn incrcnsc in M (sec Fig. 3.17). Stream lines for 

different waves forms are presented in Fig. 3.18. It is observed that the size of the trapped bolus 

is smaller in case of triangular wave when compared with other wave forms. 

Table 3.1 and 3.2 show the comparison of present solution with those available in the 

literature when some of parameters are replaced to be zero in our problem. 
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Fig.(3.1): Variation of !::J.p with Q for different values of L at a = 0.1, b = 1.2, d = 2, M = 0.1, 

¢ = i. )., = 0.4. 
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Fig. (3.12) ; Temperature profile 8 for different values of AI at a = 0.5 , b = 1.2, d = l.5, Q = - 2, 

M = 0.1, L = 0.02, E,. = I, Pr = I , X = I , t = 1, ¢ = ~. 

1 

5~ 
1 0 

5 

-5 o 0.2 0.4 

~Slnusoidal wave 
-'-Trapezoldal wave 
-----Triangular wave 
........ Multislnusoldal wave 
-Square wave ---

0.6 0 .8 1 
Q 

Fig.(3.13): Variation of t1p with Q for different wave form at a = 0.1, b = 1.2, d = 2, M = 3, 

L = 0.02, >'1 = 2, ¢ = i. 
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(0) (b) 

(c) (d) 

Fig.(3. 15) : Stream lines for two different values of L. (a) and (b) for L = 0.01, ee) and (d) for 

L = 0.03. The other parameters are chosen as a = 0.5, b = 0.5, d = 1.0, Q = 1.45, ).1 = 0.1, 

M = 1. 
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(a) (b) 

(e) (d) 

Fig.(3.16): Stream lines for two different values of Q. (a) and (b) for Q = L8, (c) and (d) for 

Q = 2.0. The other parameters are chosen as a = 0.5, b = 0.5, d = 1.0, L = 0.02, '\1 = 0.2, 

M = 1. 
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(e) (d) 

Fig.(3.11) : Stream lines for two different values of M. (a) and (b) for M = 1.0, (e) and (d) for 

M = 1.1. The other parameters are chosen as a = 0.5, b = 0.5, d = 1.0, L = 0.02, A\ = 0.2, 

Q = 1.45. 
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Fig.(3.18): Stream lines for different wave shape for fixed a = 0.5, b = 0.5, d = 1.0, M = I, 

L = 0.02, A1 = 0.2, Q = 1.8, 4> = 0: (a) sinusoidal wave (b) multisinusoidal wave (e) square 

wave (d) trapezoidal wave (e) triangular wave. 
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Table 3.1: Pressure rise with volume flow rate for fixed a = 0.7, b = 1.2, d = 2, M = 0.1, 

¢ = ~, >'1 = 0.4. 

Q M. Kothandapani et al [35J when L = 0 Present work when L = 0.02 

-1 2.98239 2.80332 

-0.5 2.36653 2.22225 

0 1.75066 1.6411 8 

0.5 1.13479 1.06011 

1 0 .518927 0.479047 

1.5 -0.09694 -0.10202 

2 -0.712807 -0.683087 

2.5 -1.32867 -1.26415 

3 -1.94454 -1.84522 

Table 3.2: Velocity profile for fixed a = 0.7, b = 0.7, d = 1, X = 1, t = 1, ¢ = o. 

y M. Kothandapani et al [35J when L = 0 Present work when L = 0.02 

-1.7 0 0 

-1.3 0.5619 0.574951 

-0 .9 0.794255 0.786245 

-0.5 0.887231 0.870794 

-0.1 0.916923 0.897794 

0.1 0.916923 0.897794 

0.5 0.887231 0.870794 

0.9 0.794255 0.786245 

1.3 0.5619 0.574951 

1.7 0 0 
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3.6 Conclusion 

This chapter presents the effects of heat transfer and magnetic field on a peristaltic t ransport 

of a Jeffrey fluid in an asymmetric channel with part.ial slip. The governing two dimensional 

equations are simplified using long wave length approximation. In the wave frame of reference, 

an exact and closed form Adomian solution is presented. The results are discussed through 

graphs. The main finding can be summarized as follows: 

1. It is observed that the pressure rise !J.p and volume flow rate Q ha.c; inversely linear relation 

between each other. 

2. The pressure gradient increases with an increase in Hartmann number A1 and decreases 

with an increase in slip parameter L. 

3. The velocity field show s light increase with an increase in M and A) when Y E [- 1.65, -11. 

while it decreases with an increase in AI and).1 when Y E 1-1,11 and the maximum value 

of the velocity is at the center of the channel. 

4. The temperature field decreases with an increase in L, M and ).1, while it is increases 

with an increase in Pr o 

5. The pressure rise in trapezoidal wave is greater than sinusoidal wave which is greater than 

triangular wave. 

6. The temperature field for sinusoidal wave is grater than trapezoidal wave and the tem­

perature fie ld for triangular wave is greater than sinusoidal wave. 

7. The size of the trapping bolus decreases with an increase in L. 

8. The number of the trapping bolus increases with an increase in Q. 

9. The size of the trapping bolus increases with an increase in M. 
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C h a p ter 4 

Influence of induced magnetic field 

on the peristaltic motion of a Jeffrey 

fluid in an asymmetric channel: 

Closed form solutions 

4.1 Introduction 

This chapter deals with the peristaltic motion of a two dimensional Jeffrey fluid in an asymmet­

fic channel under the effects of induced magnetic field. The problem is simplified by using long 

wave length and low Reynolds munber approximations. An exact and closed form Adomian 

solutions have been presented. The expressions for velocity, stream function, magnetic force 

fUllction, temperature, pressure gradient and pressure rise have been computed. The results 

of pertinent parameters have been discussed graphically. Finally, the trapping phenomena for 

different wave shape have also been discussed. It is observed that the pressure rise for sinusoidal 

wave is less than trapezoidal wave and great.er than triangular in a Jeffrey fluid. 
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4.2 l'vlathematical formulation 

Let. us consider the peristaltic flow of an incompressible, electrically conducting non-Newtonian 

fluid (Jeffrey fluid) in a two dimensional channel of width d) + d2. The lower wall of the 

channel is maintained at temperature T, while the upper wall has temperature To. The Row 

is generated by sinusoidal wave trams propagating with constant speed c along the channel 

walls. We choose a rectangular coordinate system for the channel with X along the centerline 

of the channel and Y is transverse to it. An external transverse uniform constant magnetic 

field Ho, induced magnetic field H{hx(X,)I, t), Ho +h},(X, Y, t), 0) and the total magnetic field 

H +(hx(X, Y, t),Ho + hy{X, Y, t), 0) are taken into account. The geometry of the asymmetric 

channel is defined in Eq. (1.1), the continuity, energy, Maxwell and induction equations are 

defined in Eqs. (1.2), (1.5), (2.2) to (2.4) and {2.6}, however the momentum equation in the 

presence of induced magnetic field is defined as 

(4.1) 

where the extra stress tensor S for Jeffrey fluid is defined in Eq. (3.3). 

Defining 

, = 

h, = 

Pm = 

" (4.2) 
C' (T\ - To)' 

W;th the help of 80'. (1.6), (1.11) and (4.2), 80'. (1.2), (1.5), (2.6) and (4.1) ;n teem, of 

the stream function \jJ (x, y) and magnetic-force function 4l (x, y) (dropping t he bars and using 
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, 

u = ~,v= -o~, h", = ~, /til = -o~) take the form 

where 

Rea (WyllJ",v - \{I:I:'lsVY) = - 0;;, + 6 :x (Sn) + ~ (8,,",,) 

+ Re 8f~lIv + Re sfo (~vcp:ry - 1li:z1fl1l1l) , 

Reo3 (lJIzw",v - IJivlJi:.::.: ) = - o~n + 62! (8v"') + 0 ~ (8Yl/) 

(4.3) 

- Reo28f~~ - ReSfo3(cpy4J:.::.: - 1fI",4>:l:1I) ' (4.4) 

Reo (1l'v8:1: - 1{I:l:811) = ;r (81111 + 628:.::.:) + 

(1 !'Al) (1 + A~~6 (W,;x - W.~)) 
(46'W;, + (w" - ;'Wn )') , (4.5) 

(4.6) 

S .. = 26 ( A,oO (8 8 ) ) 
1 + ).1 1 + dt IJivox -IJI:I: oy W:cy, 

S., = I(A'C6(B 8))( ') 1 + >'1 1 + dt IIJv ax - Wz 8y ll1yy - 6 iII:1:!E , 

S" = 26 ( A,C6( 8 8)) 
-1 + )'1 1 + dt Wl/8x - iJ/:z 8y Wrt/. (4.7) 

Under the assumption of long wave length 6 « 1 and low Reynold number neglecting the 

terms of order a and higher, Eqs. (4.3) to (4.7) take the form 

8p 8 ( 1 8
2
W) 2 

-8x+ay 1+).IOy2 + ReSl!llVV = 0, (4.8) 

op 
0, (4.9) = By 

1 Ec 2 
p,9vlI + (1 + Ad W'w = 0, (4.10) 

4>" = Rm(E-~:) (4.11) 
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Elimination or pressure rrom Eqs. (4.8) and (4.9) yields 

02 
( 1 02$) 2 _ 

8y2 1+>.,8y2 +ReS1<1'\,yy- O· (4.12) 

Combining Eq. (4 .11) and (4.12) yields 

(4.13) 

where Fll is a constant, 1112 == RmResr, Re is the Reynolds number, 8, is the Strommer's 

number (magnetic force number) and Rm is the magnetic Reynolds number. 

The corresponding dimensionless boundary condi tions are 

~ = ~ 
2' 

at y == h, == 1 + a cos 21TX, 

~ 
q 

at y = h2 = -d- bcos(2n +~), = -2' 
0'1< 

- I, y = hI and y = h2, = at 
By 

0 = 0, at y= hi, 

0 = I, at y = h2, 

<I> = 0, at 'II = hi and y""'" h2· 

4.3 Solution of the problem 

4.3.1 Exact Solution 

The exact solution of Eq. (4.13) can be written as 

where 

III = F8 +Fgcosb(m3Y) + FlO sinh (m3Y) + Ey _ Fl~'II' m, 
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(4.15) 

(4.l6) 

(4.17) 



and Fs! F9, FlO and Fll are functions of x only which has been calculated with the help of 

boundary conditions (4.14) as 

F, ~ 

qm3 (hi + h2) + 2(h2 + hi) tanh {rn3 (hlt')] 
2(h2 -hl)ma +41.aoh {rna (h l;"2 )) 

F, ~ 

(q+ hI - h2} sec h [rna (?)] sinh [rn3 (~)] 
(hi - h2)rn3 -2tanh (m3 (hl:;h2)] 

FlO ~ 

(q+l>,- h,),ecn [rn, (h"h')J oosh [rn, (1!!.¥')J 
(h2 - hI)rnJ+2tanh [rna el;"2 )] 

F" ~ 

m~ (q - hiE + E~) + 2m5(E+ 1) tanh [rnJ (hl;h1)] 
(4.18) 

(h2 -hJlrnJ +2t8nh [rnJ ("I;h2 )] 

4.3.2 Solution by Adomian decomposition method 

In this section, the Adomian solutions will be determined for t he st.ream function. According 

to Adomian decomposition method, we rewrite Eq. (4.13) in the operator form as 

(4.19) 

Applying the inverse operator i;'}11 = J J J[.]dydydy, we can write Eq. (4.19) as 

(4.20) 

where 

and Cs, Cg, CIO, FIl are functions of x. Now we decompose ~ as 

(4.21) 
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Substituting ill into Eq. (4.20), we obtain 

y2 y3 
ljIo == Cs + Cgy + CiO 21 + (Fll - fIt~E)3T' 

IJi n+1 == fIt~ J J J ("'n)~ dydydy, n 2: O. ( 4.22) 

Therefore, 

\fin == (
y2n+1 y2n+2 y2n+3 ) 

min C9(2n+ l )r+CiO(2n+ 2)!+(Fll-miE)(2n+3)! ' 1l> O. (4.23) 

With the help of Eq. (4.21), the closed form of ill can be written as 

., . (C, 1 ( 2 l) CID ) 1 ( 2 l "I == Cs + smh (m3Y) - + -3 Fll - fltJE + ~ (cosh (m3Y) - 1 - 2 Fll - mJE y. 
m3 m3 mJ m3 

The simplest form of above equation can be written as 

'l1 = F8 + Fg cosh (flt3Y) + Flo sinh (m3Y) + Ey _ FI~ y. m, (4.24) 

Now the Adomian solution (4.24) and exact solution (4.17) are exactly same in which Fj(i = 8 

to 11) are calculated using boundary conditions which are defined in Eq. (4.18). 

Making use of Eq. (4.17), the exact solution of Eq. (4.10) in fixed frame satisfying the 

boundary condition can be written as 

E,P, (F~ • 2 1 (2 2 l 2 1 2 . ) -(l +).Jl 2"m 3Y +8 Fg+FIo m3cosh2(mJY)+4'FgFiOm3sIDh2{m3Y 

- ~ (Fi + Ffo) m;y2) + C7Y + C8, (4.25) 
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where 

Cg (1E~;tl (~Fim~hr + ~F9FlOm~Sinh 2 (m3hl) + ~ (Fi + Fro) m~ cosh 2 (m3hl) 

- ~ (Fi + Fro) m~h?) - C7hl . (4.26) 

With the help of Eq. (4. 17) the solution of Eq. (4.11) can be straightforward written as 

FIIRm y2 (Fg . FlO ) <Ii = Cgy + CIQ + --,-- - R", - smh (m3Y) + - cosh (m3Y) , 
m32 m3 m3 

(4.27) 

where Cg and ClO are calculated using boundary condition (4.16), which are as follow 

(4.28) 

The expression for axial induced magnetic field can be obtained with the help of h:r; = ~, 

which are as follows 

(4 .29) 
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Also the current densit,y distribution takes the following form 

(4 .30) 

The pressure gradient is obtained from the dimensionless momentum equation for the axial 

velocity as 
dp 1 2 
dx ~ (1 + ~,) 'Ii", + M (E - 'Ii,). 

Substituting the value of 'JI given in Eq. (4.17), Eq. (4.31) takes the form 

dp m~ (q - hiE + h2E) + 2m~ (E + 1) tanh [m3 (¥) J 
dx = (1 + '>' 1) ({l~2- hdm3 +2tanh [m3 (~)]) . 

For one wavelength, the integration of Eq. (4.32), yields 

The axial velocity component in fixed frame is calculated as 

U(X,Y,t) ~ 1+'Ii, 

= 1713(hl- h2+q) (-1 +sech[m3 (?)Jcosh [m3 (~ -Y)]) 
(h2 - hl)mJ + 2 tanh (mJ (?)] 

4.4 Expressions for different wave shape 

(431) 

(4 .32) 

(4.33) 

(4.34) 

The 110n- dimensional expressions fOI" three considered wave form for the present case are given 

as 

1. Sinusoidal wave 

hi (x) = 1 + asin21l"x, h2{X) = -d - bsin(211"x + ¢). 
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2. Triangular wave 

[ 
8 ~ (_ I)m+1 1 

= 1 +a 3" L 2 sin(2l'1"(2m- l ):z:) , 
• (2m-I) tn_I 

[
8 ro (_1)m+1 1 

= -d-b 3" L 2sin(2l'1"(2m- l )x+¢) . 
• m~1 (2m - 1) 

3. Trapezoidal wave 

[ 32~Sin'(2m-l) 1 
= l +a 2" ~ 8 2 sin (271"(2m- l ):Z:) , 

71" m=:1 (2m - 1) 

[
32 ~ sin' (2m - 1) 1 = -d-b 2" ~ 8 2 sin(21f(2m- l ):z:+¢) . 
• =1 (2m-I) 

4.5 Results and discussion 

The exact and closed form Adomian solutions of the Eq. (4.13) subject to the boundary 

conditions (4 .14) have been computed. The graphical resu lts of pressure rise, velocity, magnetic 

force funcHon, axial induced magnetic field, current densit.y and temperattu"e are displayed in 

Figs. 4.1 to 4.16. Figs. 4.1 and 4.2 are prepared for pressure rise!J.p against volume flow rate Q 

fo r different values of Jeffrey parameter '>'1 and amplitude ratio ¢. It is observed from both the 

figures that the relation between pressure rise and volume flow rate are inversely proportional 

to each other. It means that pressure rise give larger values for small volume flow Tate and 

it gives smaller values for large Q. Moreover, the peristaltic pumping occurs in the region 

- 1 ~ Q < 1.6 for -'I and - l :$ Q .:;:; 1.8 for ¢, other wise augmented pumping occurs. The 

veloci ty U for different values of AI and M are shown in Figs. 4.3 and 4.4 which descri be the 

effects of '>'1 and M on the velocity field. We observed that near the channel walls the velocity 

increases but in the middle of the channel the velocity decreases with an increases in ).1 (see 

Fig. 4.3). It is observed from Fig. 4.4 that the velocity field increases near the channel walls 

but in the middle of the channel the velocity decreases and is maximum for small values of 

M at the center. The magnetic force function tl> for djfferent values of E, >'1, M, R..., and Q 

are shown in Figs. 4.5 1.0 4.9. It is observed from Figs. 4.5 to 4.8 t hat the magnitude of the 

magnetic force function increases with an increase in E, ..\1 M and Rm. It is observed from 
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Fig. 4.9 that with an increase in Q, the magnitude of the magnetic force function decreases. 

The expression for axial induced magnetic field hz against space variable 11 for different values 

of magnetic Reynold number Rm and E are shown in Figs. 4.10 and 4.11. It is observed that 

the relation between h:r and 11 are inversely proportional to each other, with an increase in Rm 

and E in the region - 2 ~ 11 ~ 0, h:r decreases, while in the region 0 ~ 11 ~ 2, hz increases with 

an increase in R.n and E. The current density distribution function J% with space variable y 

fnr different values of M and AI are shown in Figs. 4.12 and 4.13. It is observed from both 

the figures that the current density decreases in the middle of the channel. The temperature 

field for different values of A}, p~ and Ec against space variable Y in fixed frame are displayed 

in Figs. 4. 14 to 4.16. It is depicted that with an increases in AI the temperature field decreases 

while the temperature field increases with an increases in Pr and Ec. 

The pressure rise for different kinds of wave shape are presented in Fig. 4.17. It is observed 

that the pressure rise for sinusoidal wave is less than trapezoidal wave and great.er than trian­

gular wave. The temperature field 8 for different wave shape are shown in Fig. 4.18. It is seen 

that the temperature field for triangular wave is greater than sinusoidal wave and sinusoidal 

wave is greater than trapezoidal wave. The magnetic force function <l> for different wave shape 

are shown in Fig. 4.19. It is observed that the magnitude value of the magnetic force function 

~ for trapezoidal wave is greater than sinusoidal and triangular waves. 

The trapping phenomena for different values of A1> E and Q are shown in Figs. 4.20 to 4.23. 

It is observed from Fig. 4.20 that t he volume of the trapped bolus in the lower half channel is 

smaller as compared to the upper half of the channel, moreover, the size of the trapped bolus 

decreases with an increase in Al and finally the number of trapped bolus reduces. It. is depicted 

from Fig. 4.21 that with an increase in E the size of the trapped bolus decreases. The stream 

lines for different values of Q are plotted in Figs. 4.22. It is observed that the nwnber and size 

of the trapped bolus increases with an increases in Q. The stream lines for different wave shape 

such as sinusoidal wave, triangular wave and t rapezoidal wave are shown in Figs. 4.23. 
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4.6 Conclusion 

This chapter pres('nts the peristaltic flow of 1\ Jeffrey fluid in an asymmetric channel under the 

effects of induced magnetic field. The problem is simplified under long wave length and low 

Reynolds number assumptions. An exact and closed form solution of the problem have been 

presented. The results aTe discussed through graphs. The main finding can be summarized as 

follows: 

1. It is observed that pressure rise give larger values for small volume flow rate and it 

gives smaller values for large Q. Moreover> the peristaltic pumping occurs in the region 

- 1 :5 Q < 1.6 for ).1 and - 1 S Q ~ 1.8 for ,p, other wise augmented pumping occurs. 

2. It is observed that the magnitude of the magnetic force function increases with an increase 

in E, >.] M and Rm, but the behavior is quite opposite with an increase in Q. 

3. The axial induced magnetic field hx decreases with an increase in Rm and E in the region 

- 2 :s y $' 0, while in the region 0 :s y :s 2, h:r. increases with an increase in R.n and E. 

4. The temperature field decreases with an increase in A1. while the temperature field in­

creases with a n increases in Pr and K,. 

5. It is observed that the pressure rise for sinusoidal wave is less than trapezoidal wave and 

greater than triangular wave. 

6. The temperature field B in triangular wave is greater than sinusoidal wave and sinusoidal 

wave is greater than trapezoidal wave. 

7. The magn itude value of magnetic force function <ll for trapezoidal wave is greater than 

sinusoidal and triangular waves. 

8. The size of the trapped bolus decreases with an increase in AI and E, but the number 

and size of the trapped bolus increases with an increases in Q. 
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Chapter 5 

Slip effects on the peristaltic flow of 

a Jeffrey fluid in an asymmetric 

channel under the effects of induced 

magnetic field 

5.1 Introduction 

This chapter deals with the effects of slip and induced magnetic field on the peristaltic flow of 

a Jeffrey Auid in an asymmetric channel. The governing two dimensional equations for momen­

tum, magnetic force function and energy are simplified by using the assumptions of long wave 

length and low but finite Reynolds number. The reduced problem has been solved by Adomian 

decomposition method (ADM) and a closed form solutions have been presented. Further, the 

exact solution of the proposed problem has also been computed and the mathematical com­

parison show that both solutions are almost same. The effects of pertinent parameters on the 

pressure rise per wave length are investigated using numerical integration. The expressions for 

pressure rise, friction force, velocity, temperfltllrp., mA8'npt.ic force flmction and the stream lines 

agai nst various physical parameters of interest are shown graphically. Moreover, the behavior 

of different kind of wave shape are also discussed. 
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5.2 Mathematical formulation 

Let us consider the peristaltic flow of an incompressible, electrically conducting non-Newtonian 

fluid (Jeffrey fluid) in a two dimensional channel of width d l + d2. The lower wall of the chanuel 

is maintained at temperature T) while the upper wall has temperature To. The flow is generated 

by sinusoidal wave trains propagating with constant speed c along the channel walls. We are 

considering a rectangular coordinate system for the channel in which X - axis is taken along 

the centerline of the charmcl and Y-axis is transverse to it. An external transverse uniform 

constant magnetic field Ho, induced magnetic field H(hx(X, Y, t), Ho + hy(X, Y, t), 0) and the 

total magnetic field H+(hx(X, Y, t), E o + hy(X , Y, t), 0) are taken into account. The geometry 

of wall surface is defined in Eq. (1.1). The governing equations are defined in previous chapter 

(Eqs. (4.8) to (4.13)) however, in the presence of slip parameter, the boundary conditions in 

non~dimension form are defined as 

q 
at 2' y = hI = 1 + a cos 2'1l'X, 

q 
at -2' y = h2 = -d- bcos(2'1l'x+ ¢), 

- 1. at 
8>11 L 8'>11 -+ -
8y (1+),,)8y' 
8>11 L 8'>11 
8y (1 + ,Ill By' 

= -1, y=h'J" 

e ~ 0, at 

e ~ 1. at 

tD = 0, at 

5 .3 Solution of the problem 

5 .3.1 Exact Solut ion 

The exact solution of Eq. (4.13) can be written as 

w = Fl2 + F13 cosh (m3Y) + FH sinh (m3Y) + Ey _ F1;y, m, 
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where 

and F12, F 13 , F14 and F15 are functions of x only and can be calculated using boundary condi-

tions (5.l) 

F" ~ 

2 (h2 - hI) m3 + 2 (2 + m~ (1;:\1) (h2 - hd) tanh [m3 (¥-)]' 
(q + hI - h2)sech [1713 ( hl "t2)] sinh [m3 (~)] 

(hI - h2)m3 - (2+ 171~(If:Xd (h2 - hd) tanh [m3 (~)]' 

(q + hI - h2) sec h [m3 (h,;h1)] cosh [m3 (~)] 

5.3.2 Solution by Adomian decomposition method 

According to Adomian decomposition method, we rewrite Eq.(4.13) in the operator form as 

(5 .6) 

Applying the inverse operator t;J!/ = J J J [.] dydydy, we can write Eq. (5.6) as 

2 3 
Ili = Cll + C12Y + Cl3 ~! + (FIs - m~E) ~! + m~L;!/I!/ (Iliy) , (5.7) 

where 
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and Cll, CI2, G13, F I S are functions of x. Now we decompose \[I as 

(5.8) 

Substituting iJr into Eq.{5.7), we obtain 

y2 y3 
lito = Gil + C12y + G13 2T + (FIS - m5E ) 3! • 

W,,+1 = m5 J J J (IItn)1I dydydy, n 2 O. (5.9) 

Thererore, 

Ill n = n > O. (5.10) 

Using (5.8), the closed form of W can be written as 

which can be put in the simplest form as 

(5.11) 

Now the Adomian solution (5.Il) and exact solution (5.4) nre exactly same in which F;(i = 12 

to 15) are calculated using boundary conditions which are defined in Eq. (5.5). 

Making use of Eq .(5.4), the exact solution of Eq. (4 .10) satisfying the boundary conditions 
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, 

(5.2) can be written as 

where 

-1 
Ti( h:-, -'-;:h',) + 

(5.13) 

The exact solution of Eq. (4.11) is defined as 

(5.14) 

where Cl3 and Cl4 are calculated using boundary condition (5.3) and are defined as 

m3(q-h.IE+Eh2)+ tanh m3 h''2h2 
( 

2(E+I)+ ) [( )] 

~m~ (q - hIE + Eh2) 

C14 = 

2(q + hI - h2) +m~hIh2 (q - hIE+ Eh2) 

+m3hlh2 (2(E+ 1) + ~m~{q- h1E+ Eh2») tanh [m3 (?)] 
2(h2 -hdm3+2 (2+m~~ (h2 -hd) tanh [m3 (hl 't2)] 

The expression for axial induced magnetic field can be obtained with the help of hx = ~, 
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, 
which are as follows 

hr(x,y} = ( ) () 
2{//.2-hdm3+2 2+rn5~(h2-hl) tanh rn3 hl;I!, 

(5.16) 

In the above solution when ).1 --+ 0 and M --t 0, the solutions of Mishra and Rao [141 can 

be recovered as a special case of our problem. Moreover, the Jeffrey problem with induced 

magnetic field has not been discussed so fa r. 

The pressure gradient is obtained from the dimensionless momentum equation for the axial 

velocity 

(5.17) 

Substituting the value of qt given in (5.4), Eq. (5.17) takes the form 

dp m~ (9 - hlE+ h2E) + (211l~ (E + 1) + ~m3 (q - hlE+ h2E)) tanh [rn3 (¥ )] 
dx = (1+>'1 ) (h2 - hJ)m3 + (2+m~~{1~2- hi») tanh [rn3 (h'jll?))) . 

(5.18) 

For one wavelength, the integration of Eq. {5.IS}, yields 

(5.19) 

The expression for fri ctional force is defined as 

(5.20) 

where the expression for dp/dx is defined in Eq. (5.18). 
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The axial velocity component in fixed frame is calculated as 

U(X,Y, t) ~ 1 + IVy 

m3(hl -h2+q) 
( 

-l+",h [mJ (¥)] ) 
cosh [m3 (1I'!h2 - y)] 

+m~ (I;Xd (h2 - hI - q) tanh [m3 (hl;1I2)] 
(5.21) 

where 

The expression for t he Nusselt number for the upper wall is defined as 

(5.22) 

where 8 is defined in Eq. (5.12). 

5 .4 Expressions for different wave shapes 

The non· dimensional expressions for three considered wave form are defined in previous chapter, 

which will be helpful for finding the solutions of these wave shapes which are discussed and 

shown graphically proceeding in the sections. 

5.5 Results and discussion 

In this section, the graphical results are displayed to see the effects of various physical para· 

meters on the pressure rise, frictional force, velocity, temperature, magnetic force function and 

stream lines. The expression for pressure rise and frictional force are calculated numericaiJy 

using a mathematics software. The graphical results of pressure rise, frictional force, velocity, 

magnetic force function and temperature Me displayed in Figs. 5.1 to 5.15. Fig~. 5. 1 to 5.3 are 

prepared for pressure r ise t:::.p against volume flow rate Q for different values of Jeffrey parame· 

ter ),1, amplitude ratio ¢ and slip parameter L. It is observed that the relation between pressure 
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rise and volume flow rate is inversely p:-oportiona! to each other. It means that pressure rise 

gives larger values for small volume flow rate and it gives smaller values for large Q. Moreover, 

the peristaltic pumping occurs in the region - 1 ~ Q < 1.5 for A" - 1 ~ Q :$ 1.7 for ¢, and 

-1 $. Q < 1.5 for L, other wise augmented pumping occurs. The frictional forces F against 

flow rate Q for different values of ..\11 cp, and L Ilrc shown in Figs. 5.4 to 5.6. It is observed from 

the figures that frictional forces have opposite behavior as compare to the pressure rise. The 

velocity UfoI' diffPfpnl values of ).1 and M are shown in Figs. 5.7 and 5.8. We observed that 

the velocity profiJe decreases with the decrease in ).1(5ee Fig. 5.7). The effect of M on the 

velocity is almost opposite as compared to the case of ).1. Here the velocity profile increases 

with an increase of M. The temperature fi eld for different values of ).1, Pr and L against space 

variable Yare displayed in Figs. 5.9 to 5. 11. It is depicted that with an increase in ).\ and 

L the temperature field decreases while the temperature field increases with an increase in Pr' 

The expression for axial induced magnetic field h", against space variable y for different values 

of magnetic Reynold number R.n and slip parameter L are shown in Fig. 5.12 to 5. 13. It is 

observed that with an increases in Rm and slip parameter L, h", increases in the upper half of 

the channel while in the lower half the behavior is opposite. 

The pressure rise for different kinds of wave shape are presented in Fig. 5. 14. It is observed 

that i.he pressure rise for sinusoidal wave is less than trapezoidal wave and greater than trian­

gular wave. The temperature field () for different wave shape are shown in Fig. 5.15. It is seen 

that the temperature field for triangular wave is greater than sinusoidal wave and sinusoidal 

wave is greater than trapezoidal wave. 

The trapping phenomena for different values of ).1, M and L are shown in Figs. 5.16 to 5.18. 

It is observed from Fig. 5.16 that the volume of the trapped bolus in the lower half channel 

is smaller as compared to the upper half of the channel, Moreover, the size of the trapped 

bolus decreases in the lower half of the channel with an increase in ).1. It is depicted from 

Fig. 5.17 that with an increase in M the size of the trapped bolus i.ncreases. The stream lines 

for different values of L are plotted in Fig. 5.18. It is observed that the number and size of 

the trapped bolus decrea5es in the lower half of the channel o.nd increases in the upper half of 

the channel with an increase in L. The stream lines for different wave shape such lUi sinusoidal 

wave, triangular wave and trapezoidal wave are shown in Fig. 5.19. Table 5.1 is prepared to 
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see the behavior of Nusselt number for different values of physical parameters. The table shows 

that with an increase in L, AI> and d the Nusselt number decreases while with an increase In 

Prandtl number Pr , the Nusselt number increases. 
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Fig. (5.1): Variation of 6p with Q for d jfferent values of >., at a = 0.7, b = 1.2, d = 1.4, E = 4, 

M = 0.5, ¢ = i, L = 0.04 . (Sinusoidal wave). 
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Fig.{5.18) ; Stream lines for different values of L. (a) for L = 0.01, (b) for L = 0.02. The other 

parameters are a = 0.5, b = 0.5, E = 1.5, >'1 = 0.8, d = 1.0, ¢ = 0.02, Q = 1.6. 
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Fig.(5.19) : Stream lines for different wave forms. (a) for sinusoidal wave, (b) for triangular 

wave, (c) for trapezoidal wave. The parameters are a = 0.5, b = 0.5, E = 1, ),1 = 0.8, d = 1.0, 

" ~ 0.02, Q ~ 1.6, L ~ 0.01. 
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Table 5.1: Values of Nusselt number for different values of L (slip parameter),"\l (ratio 

of relaxation to retardation times), d (width of the channel), and Pr (PrandtJ number). The 

other parameters are a = 0.5, b::: 1.2, Ee::::: I , x::::: 1, t::: 1, !v!::: 1, ¢::: l 

L Nu A, Nu d Nu P, Nu 

0.0 3.04216 0.0 3.77918 0.0 6.29996 0.0 0.333333 

om 2.95211 0.2 3.25119 0.2 3.44381 0.4 0.839961 

0.02 2.86647 0.4 2.86647 0.4 2.86647 0.8 1.34659 

0.03 2.78497 0.6 2.57392 0.6 2.49755 1.2 1.85322 

0.04 2.70733 0.8 2.34411 0.8 2.17929 1.6 2.35984 

0.05 2.6333 1.0 2.15892 1.0 1.9118 2.0 2.86647 

5.6 Conclusion 

This chapter presents the slip effects on the peristaltic flow of a Jeffrey fluid in an asymmetric 

channel under the effects of induced magnetic field. The governing two dimensional equations 

are simplified under long wave length and low Reynolds number approximation. An exact and 

closed form solution of the problem has been presented. The results are discussed through 

graphs. T he main finding can be summarized as follows; 

1. It is observed that with an increase in Jeffrey parameter AI, amplitude ratio <p and slip 

parameter L pressure rise decrease.; in the peristaltic pumping and retrograde pumping 

regions, while in augmented pumping region the pressure rise increases with an increase 

in Jeffrey parameter >'1, amplitUde ratio ¢ and slip parameter L. 

2. T he frictional forces have opposite behavior as compare to the pressure rise. 

3. The magnitude value of the velocity decreases with the decrease in Jeffrey parameter Aj, 

while it increases with an increase in Hartmann munber M. 

4. The temperature decreases with an increase in Jcffrey parameter -'I and slip po.ramctcr 

L, while it increases with an increase in Prandtl number Pro 
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5. With an increase in magnetic Reynolds number Rm and slip parameter L the axial induced 

magnetic field increases in the upper half of the channel while in the lower half, the 

behavior is opposite. 

6. The pressure rise for sinusoidal wave is Jess than trapezoidal wave and greater than tri­

angular wave. 

7. The temperature field for triangular wave is great.er than sinusoidal wave and sinusoidal 

wave is greater than trapezoidal wave. 

8. The volume of the trapped bolus in the lower half channel is smaller as compared to the 

upper half of the channel with an increase in Jeffrey parameter ).1. 

9. The size of the trapped bolus increases with an increase in Hartmann number M. 

10. The number and size of the trapped bolus decreases in the lower half of the channel and 

increases in the upper half of the channel with an increase in slip parameter L. 

11. The Nusselt number decreases with an increase in slip parameter L, Jeffrey parameter 

)'1 and width of the channel d, while with an increase in Prandtl number Pr , the NllSselt 

number increa:;es. 
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Chapt er 6 

Numerical and analytical solutions 

of peristaltic transport of a six 

constant Jeffreys model of fluid • In a 

symmetric or asymmetric channel 

6.1 Introduction 

This chapter deals with the peristaltic flow of an incompressible six constant Jeffreys model of 

fluid in an asymmetric channel. The flow is investigated in a wave (rame of reference moving 

with the velocity of the wave. We have modeled the governing equations of a two dimensional six 

constant Jeffreys model of fluid. The analytical and numerical solutions of the proposed problem 

are discussed. The expression for the pressure rise is calculated using numerical integration. 

The graphical results are presented to interpret various physical parameters of interest. 

6 .2 Mathematical formulation 

Let us consider the peristalt ic transport of an incompressible six constant Jeffreys model of fluid 

in a two dimensional channel of width d1 +~. The flow is generated by sinusoidal wave t rains 
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propagating with constant speed c along the channel walls. The geometry of the problem is 

same as discussed in chapter one. For the sake of simplicity the momentum equation is defined 

(6.1) 

where 

T=-PI+S , (6.2) 

The constitutive equation for the extra stress tensor S is [66] 

5 +.\, [~~ - WS +SW + a(SD +DS) + is, D1+ W'TS] 

~ 2~ [D +.1, (~ - W D + DW + 2iiDD + bD, DI)]. (6.3) 

In above equations )'1 is the relaxation time, D = ('Vvt + Vv) /2 is the symmetric part of Vv, 

W = (Vv - 'i7vt) /2 is the antisymmetric part of 'i7v, ii, h, c are arbitrary material constants 

and ).2 is the delay time, V is the velocity vector, jJ- is the viscosity of the fluid and P is the 

pressure. 

With the help of Eq. (1.6), Eqs. (1.2) and (6.3) take the following forr;n 

ap a a 
- ax + ax (Sxx) + ay (SXy) , 

8P a 8 
- ay + ax (Syx) + ay (Sy y ). 
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The extra stress components are defined as follow 

, 

(6.7) 

8~y + Al [(~ + u~ + V~) SXY + ~ (au _ av) (8xx - Syy) . at ax IIY 2 ay IIX 
, (IIU av) {I (8U IIV) (av au) +'2 (8xx + Syy + 8zz) ay + ax + 11 '2 Sxx ay + ax + SXy ay + ax 

+~Syy (:~ + ;~) }] 
= [1 (IIU IIV) [1 (II II II) (au IIV) 1 (au av) (8U IIV) 

211 '2 ay + ax + A2 2" at + u ax + v ay ay + ax + 2" ay - ax ax - m! 

) +2d{H:~ + ~~)(~~ + ~~)}]] , (6.8) 

[( II a a) l( aU av) "{ au I (au av)}] 8XZ+Al at + u ax + v BY Sxz - 2" ay - ax 8 yz+ a Sxz ax + z8yz ay + ax = 0, 

(6 .9) 
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Define the following non dimensional quantities 

x_y_u_v 
X = >:' y='(4' U=c' V=c' 

h - Hz _ al b _ !2. 
2 - dz' a - d

j 
, - d1 ' 

s-- - Su>' s-- _ 87;J1d1 
%X-p.c' ZV-J1.C' 

Re :::: cdt , 
v 

s-- _ Syyd l 
lfY - J-lc 

(6.12) 

(6.13) 

Using the transformation (1.11) and (6.13) Eqs. (6.5) and (6 .6) in terms of stream function ID 

(draping the bars, 'U =!fiE-, v = -o~) take the form 

'R. [(8'1' ~ _ 8'1' ~) 8'1'] ~ 
By ax ax 8y 8y 

(6.14) 

-"R. [(8'1' ~ _ OW~) 8'1'] ~ 
8y ax ax 8],' ax 

(6.15) 

Under the assumption of long wave length and low Reynolds number Eq. (6.14) and (6.15) take 

the form 

8S" 8p 
(6.16) ~ 

8y ax' 
op 

0, (6.17) ~ 

8y 

S., 
Wyy (1 - )'1

2
),20. (Il1VV)2) 

(6.18) ~ 

(" ') 1 - Ta (tliyy) 
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, . 

where 

Eliminating pressure from Eqs. (6. 16) and (6. 17), we get 

a2
SXII = O· 

/}y2 

Making use of Eq. (6.18), Eqs. (6.20) and (6.16) become 

dp ~!... [~" (1 - ¥a(~,,)2)l 
dx By (1 - ~a (lJIy1.i) . 

Applying the binomial expansion with a small, Eqs. (6.21) and (6.22) reduce to 

where 

c ~ (,.\~ _ ,.\1,.\2) 
2 2 ' 

D = _ >.j>'2. 
4 

The dimensionless boundary conditions are defined as 

~ 
q ail> 

y ~ h\(x), ~ 

2' 
-~ - 1 fO' 
/}y 

q; q ail> 
y ~ h,(x )· ~ -2' - ~-1 for 

/}y 

The dimensionlef>S mean flow Q is defined in Eq. (1.29). 
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6.3 Solution of the problem 

6.3.1 Perturbation solution 

Since, Eg. (6.23) is a highly non linear equation, we employ the well known regular perturbation 

method to determine the solution. For the perturbation solution, we expand 111, q and p as 

'I' ~ \lIo + allil + a2\I1z + 0 (0'3), (6.27) 

q ~ 90 + O'Ql + cirn + 0 (al
) , (6.28) 

p ~ Po + apl + a,2P2 + 0 (0'3) . (6.29) 

Substituting above expressions in Egs. (6.23), (6 .24) and boundary conditions (6.26), we get 

the following system 

System of order oP 

a4 1J!o 
0, (6.30) ~ 

iJy' 
apo a3wo 

(6.31 ) ~ 

ay' ax 

'1'0 
qo a'l', 

y ~ hi (x), (6.32) ~ 

2' -=-1 on 
ay 

il'o 
qo [N!o =-1 y ~ h,(x). (6.33) ~ -"2' on 

ay 

System of order 0'1 

fJ'1]"/] _ 82 (82'110) 3 
(6.34) ay' 

~ 

C iJy' ay' 

api al WI a (82WO r (6.35) ~ --+C- --
ax By3 By 8y2 

"I ql a"l ~ ° y ~ hl(x), (6.36) ~ 

2' on 
ay 

'1'1 
ql a'lll = 0 y ~ h,(x). (6.37) ~ -"2' on 

ay 
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Sysiem of order a 2 

= -D!:.. (B'WO)' _ 3C!:.. (8'WI (8''1'0)') 
fJy2 fJy2 fJy2 fJy2 fJy2 ' 

(6.38) 

B", = &'1', 3C~ (B'WI (B'WO)') D~ (B'iI'o)' 
ax ay3 + fJy &y2 ay2 + fly &y2 ' (6.39) 

''', = '12 8w, = 0 on h ( ) • 2' 8y y = I", (6.40) 

'1', = lJ7. fJ1l12 = 0 on y = h2(")' - 2' 8y 
(6.41) 

Solution for system of order 0'0 

The solution of Eq. (6.30) satisfying the boundary conditions (6.32) and (6.33) can be written 

as 

(JO + h) - h2 ( , , ) 
Wo = (h2 _ hlP 2y - 3(h1 + h2)Y + 6hlh2Y - Y 

+ (h, 1 hd' ((~ + hi) (hi - 3hll~) - (Ii, - ~) (h1- 3h,h1)) . (6.42) 

The axial pressure gradient for this order is 

(6.43) 

For one wavelength the integra.tion of Eq. (6.43), yields 

rl d 
!J.p = 10 :: dx. (6.44) 

Solution for sys tem of m·der 0- 1 

Substituting the zeroth-order solution (6.42) into Eq. (6.34), the solution of the resulting 

problem satisfying the boundary conditions takes the following form 

-((hi + h, - 2y)(432C (h i - h, + .0)' (hi _ y)' (h, _ y)' + } . 
5(hl - h,)'QI(h1-4hl h, +hi +2(hl +h,)y - 2y'))) 
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The axial pressure gradient for this order is 

(6.46) 

Integrating Eq. (6.4G) over one wavelength we obtain 

(6.47) 

Solution for system of order (}'z 

Substituting Eqs. (6.42) and {6A5} into Eg. (6.38), the solution of the resulting problem 

satisfying the boundary conditions takes the following form 

- 1 15 Z Z Z 
=-;:---'--:-;-;1;<' ((hi + h, - 2y)(45360C (hi - h,) (h i - h, + 110) qdhl - y) (h, - y) 
350 (hi - h,) 

- 15552C' (hi - h, + 110)' (hi - y)' (h, - y)' (87hl + 26h l h, + 87/il- 200 (hi + h,) y 

+200}yZ + 25(7 (hI - hZ)lZ 9Z(hi - 4hJhz + h~ + 2 (hJ + hz) Y _ 2yZ} + 10368D (h i _ y)2 

(6.48) 

The a.xial pressure gradient for this order is 

dP2 
dx 

~ -1 II (l2( -46656Cz (hI - hz + flO)5 + 11340C (hJ - hz)' (hi - kz + qo)z ql 
175 (hi h,) 

+25(3888D (hi - h, + 110)' + 7(hl - h,)' <12)))' (6.49) 

Integrating Eq. (6.49) over one wavelength we obtain 

(6.50) 

Summarizing the perturbation results up to second order for 'It , dpjdx , and t::.p 

'" ~ 1110 + C\>1li 1 + o-21lt z , (6.51) 

dp dPo dPl 2 dP2 (6.52) ~ 

dx + °dX + 0' dx' dx 
c:,p ~ b..PO+ob..PI +a2t::.P2' (6.53) 

130 



) 

Defining 

(6.S4) 

lnsert c}o = q - o:ql - 0'212 and then neglecting the terms greater than 0 (02), the results given 

by Eq. (6.51) to Eq. (G.53) are expressed up to 0'2. 

I{I = 1 16 {{ hi + h'1 - 2y ){350h~4 It:! - 4SS0h~3 h~ + 213OOh~2 ~ - 100 IOOhP ~ 
3S0 (h, - h,) 
+250250hlo~ - 4S0450h1~ + 6OO600h1~ - 600600hI~ + 4S04S0h~~ - 175hl"q 

-250250hrhiO + 100100h1hii - 21300h~hi2 + 45S0h~hi3 - 350h1hj4 + 2800hPh'1Q 

-20125h~h~2q + 86800h~1 h~q - 2S2175h ~ Oh~q + 523600h~h~q - 802725hfh~q 

+924000hIh~q - 802725h~h~q + 523600hfh~q - 25217Sh1hiOq + 86800h~hilq 

-20125hrhi2q + 2800hl~3q - 175hi4q - 350hl 4y + 42oohl3h2Y - 22750hFh~y 

+72800hll~y - 150150hlO~y + 200200h~h~y - 150150hfh~y + 150150h~~y 

-200200hfh~y + IS0150h1hiOy - 72800h~hily + 22750hihi2y + 3850h~2h2qy 

-4200hlhi3y350h~4y - 350h~3qy - 18900h}l ~qy + 53900hlOh~qy - 96250h~ ~qy 

+ I03950h~h~qy - 46200hI h~qy - 46200hYh~qy + 1039S0hrh~qy - 96250h1h~qy 

+53900h~hiOqy - 18900hrhilqy + 3850hlhi'1qy - 3S0hi3qy + 250250h~h~y'1 

+350h:3y2 - 4550h12h'1y2 + 27300hPh~y'1- l00100hlO~y2 - 450450hf~y2 

-350hj3y'1 + 600600hIh~y'1 - 600600h~~y2 + 450450hf14y2 - 250250h1h~y2 

+ lOOIOOh?hiOy2 - 27300hrhi1y2 + 4550h1hi'1y2 + 350hFqy2 - 4200hP h2qy'1 

+23100hlOh~qy2 - 77000h~h~ml + 1732S0hfh~qy2 - 277200hIh~qy2 

+3234000hfhgqy'1 - 277200hrh~qy2 + 173250h1h~Qy2 - 77000h~h~qy2 

+23100hlhiOqy' - IS I20Ca(h, - h,)' (h, - II, + q)' (h, _ y)' ('" _ y)' 

+S184 (h , - h, + q)' (h, - y)' (II, - y)' (SOD(-3hl + 2h,1I, - 3h! + 4 (h, + h,)y 

_4y2) + 350hj'1qy2 - 4200h1hi1qy2 + 3C2(87hr + 26hlh2 + 87hi 

- 200 (h, + h,,. + 2oo.'))a')). (6.55) 
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dp 
dx 

-1 8 4)' ---,----'--_,", (12 (h, - h, + q) (175 (h, - h,) + 3780Co (h, - h,) (h, - h, + q 
175(h, - h,) 

-38880' (12C' - 25D) (h, - h, + q)4)). (6.56) 

6.3.2 N umerical solution 

The prC3cnt problem comlisting of equations (6.23) and (6.24) tl.l"e ubu :>olved lIwUt:rically by 

employing shooting method . The numerical results are also compared with the perturbation 

results. 

Case. 1 , (0 ~ 0.3) 

Table 6.1: The comparison of Numerical and perturbation solutions. 

y Numerical sol Perturbation sol Error 

1.0 -1.00000 -1.00000 0.00000 

0.6 -1.48100 -1.48076 0.00016 

0.2 -1.72114 -1.72151 0.00021 

0.0 -1.75115 -1.75159 0.00014 

-0.2 -1.72114 -1.72151 0.00021 

-0.6 -1.48100 -1.48076 0.00016 

-1.0 -1.00000 -1.00000 0.00000 
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-1r-----__ ------__ ------__ -----, 

-1.1 

-1,2 

>; 
~ -1 .4 , 

-1,5 

-1,6 

-1.7 

-- Numerical solution 
········Pe rturbatlon solution 

- 1 '~1L ____ "'O~,5---~O-----"O~,5----.J1 

Y 

Fig.(6.a) : Comparison of velocity field for a = 0.1, b = 0.1 , d = 1.1 , dp/dx = 1.5 , ¢ = ~, 

).1 = 0.2, '\2 = 0.3, a = 0.3, x = 0.25. 

Case,2 , (a = 0.9) 

Table 6.2: The comparison of Numerical and perturbation solutions. 

y Numerical sol Perturbation sol Error 

1.0 -1.00000 -1.00000 0,00000 

0.6 -1.48881 -1.48248 0,00426 

0.4 -1.64174 -1.63358 0.00499 

0.2 -1.73365 -1.72151 0.00705 

0,0 -1.76432 ·1.75159 0,00726 

-0,2 -1.73365 -1.72151 0,00705 

-0.4 -1.64174 -1.63126 0.00642 

-0 .6 -1.48881 -1.48076 0.00543 

-1.0 -1.00000 -1.00000 0.00000 
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·1.-----__ ----~----__ ----__. 

·1.1 
- Numer Ical $olutlon 

·1.2 
•••••••. Perturbation solution 

·1.3 
-;; 
.i -1.4 , 

·1,6 

·1.7 

. . ...• 
...•..... .' 

' " ...•.•.. .......... . , ,~ ,'L __ --::-~ __ ~:----:':;-----:, 
-0.5 0 0.5 

Y 

Fig.(6.b) Comparison of velocity field for a == 0. 1, b = 0.1 , d = 1.1, dpJdx 

),\ = 0.2, ),2 = 0.3, Ct = 0.9, x = 0.25. 

6.4 Results and discussion 

1.5, 1> = ~, 

In this section we have present the graphical results of the solution. The expression for the 

pressure rise is calculated numerically using a mathematics software Mathematica . .The pressure 

rise 6.p for different values of the width of the channel d, parameter 0', relaxation time )" and 

delay time ),2 are plotted in Fig. 6.1 to 6.5. It is observed from Fig. 6.1, that the pressure rise 

decreases for small values of Q (0 :s Q S 1.4) with an increase in width of the channel d and for 

large Q the pressure rise increases. From Fig. 6.2, it is observed that with an increase in 0:, the 

pressure rise decreases for small values of Q, and for large values of Q, the behavior is almost 

same. It is observed from Figs. 6.3 to 6.5 that the pressure rise decreases with an increase in "'\1, 

...\2 and ~ . Figs. 6.6 to 6.10 are prepared to discuss the pressure gradient for different values of 

1>, 0', d, >'1 and ...\2. It is seen from the figures that for x E [0,0.21 and x E [0.8 , 11 , the pressure 

rise is small i. e. the flow can easily pass without the imposit ion of large pressurc gradient, whilc 

in the narrow part of the channel x E [0.2,0.8], to retain the same flux large pressure gradient 

is required. Moreover, in the narrow part of the channel, the presstue gradient decreases with 
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an increase in 0', d, Al and A2. The velocity profile for different values of 0', relaxation time Al, 

delay time A2 and volume flow rate Q are plot ted in Figs. 8.11 to 6.14. It is depicted from the 

Figs . 6.11 to 6.13 that with an increase in Q, A, and A2 the amplitude of the velocity decreases 

in the center and near the channel waU the velocity increases. From Fig. 6.14 it is observed 

that with an increase in volume fiow rate Q the velocity profile decreases. Fig. 6.15 shows the 

comparison of Newtonian and six constant Jeffreys model of fluid. The comparison shows that 

t he velocity profile for Newtonian fluid are smaller when compared with six constant Jeffreys 

model of fluid. 

Trapping phenomena 

The trapping phenomena for different values of volume flow rate Q, width of the channel d, 

relaxation t ime A, and rcdartation time..\2 arc shown in Figs. 6.16 to 6.19. It is observed from 

Fig. 6.16 that the size of the t rapped bolus increases in both lower and lower half of the channel 

with an increase in volume flow rate Q. It is seen from Fig. 6.17 that with an increase in the 

width of the channel d the size of the t rapped bolus decreases in the lower half of the hannel 

while in the upper half the size increases. Fig. 6.18 illustrate the stream lines for different 

values of relaxation time A,. It is observed from the figu re that with an increase in relaxation 

ti me Al the number and size of the trapping bolus increases. Fig. 6.19 illustrate the stream 

lines for different values of A2. It is observed from the figure that with an increase in >'2 the size 

of the trapping bolus decreases. 

In order to show the comparison between Newtonian and six constant Jeffreys model of 

fluid table 6.3 is presented. It is observed from the table 3 that with an increase in volume 

flow rate Q the magnitude value of the velocity profile decl'eases. T he comparison shows that 

the velocity profile for Newtonian fluid are smaller when compared with six constant Jeffreys 

model of fluid. 

135 



C. 
<l 

'.5 r-:::----~---O_;::::==:::::;l 
-d=2.0 

, .:.~.""",- --
---d=2.1 

.... .... d = 2.2 

0.5 

.•............... ~ ~ ~ 
.................. 

-', ... 

o 

'. , .............. 
'" ... 

'" ... ........... .•... ~ ... 
"'~ .. " 

.0.5
0 
L-----

0
•.

5
-----·,------.J' .5 

a 

Fig.{6.1): Variation of t::..p with Q for different values of d at a::::: 0.5, b = 1.2, ¢::::: j, a = 0.04 , 

A] = 0.4, ),2 = 0.9. 
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•••••••• 0. = 0.2 
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. 0.5 L ____ ~ ___ ~~ ___ ___.J 

o 0.5 1 1.5 
a 

Fig. (6.2) : Variation of !::::..p with Q for different values of 0' at a = 0.5, b = 1.2, ¢ = ~, d = 2, 

Aj = 004, ),2 = 0.9. 
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Fig. (6.3) ; Variation of D.p with Q for different values of A) at a = 0.5 , b = 1.2, ¢ = i . d = 2, 

Ct = 0.09, '\2 = 0.9. 
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Fig. (6.4) : Variation of /:lp with Q for different values of '\2 at a = 0.5, b = 1.2, ¢ = i. d = 2, 

0' = 0.09, )<} = 0.9. 
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Fig. (6.5) : Variation of Ap with Q for different values of if> at a = 0.5, b:::: 1.2, A2 :::: 0.9, d = 2, 

Ol :::: 0.09, )'1 = 0.5. 
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Fig. (6.6) : Variation of * with x for different values of ¢ at a = 0.5, b = 1.2, a:::: 0.09, d = 2, 

),j :::: 0.5, Q = 1, ),2 = 0.9. 
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Fig. (6. 7) : Variation of ~ with x for different values of a at a = 0.5 , b = 1.2, ¢ = i, d = 2, 

).1 = 0.3, Q = 1, ).2 = 0.9. 
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Fig.(6.8); Variation of * with x for different values of d at a = 0.5, b = 1.2, if! = j, cr = 0.04, 

).\ = 0.4, Q = 1, ).2 = 0.9. 
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Fig. (6.9) : Variation of ~ with x for different values of '>'1 at a = 0.5, b = 1.2 , tjJ = i , d = 2, 

Q = OA , Q = 1, '>'2 = 0.9. 
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Fig.(6.1O) : Variation of * with x for different values of).2 at a = 0.5, b =;: 1.2 , 4> = i, d = 2, 

a ~ 0.4, Q ~ 0.5, ),1 ~ 0.7. 
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Fig.(6.1I): Velocity profile for different values of 0' at a = 0.7, b = 1.2, ¢ = i, d = 2, >.] = 0.5, 

Q = 4.5, :J: = 0, A2 = 0.9. 
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Fig. (6.12) : Velocity profile for different values of ),1 at a = 0.7, b = 1.2, ¢ = ~,d = 2, a = 0.9, 

Q ~ 3, x ~ 0, '\, ~ O.B. 
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Fig.(6.13) : Velocity profile for different values of "\2 at a = 0.7, b = 1.2, ¢ = ~, d = 2, a = 0.9, 

Q = 3, :z: = 0, Al = 0.5. 
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Fig. (6.14) : Velocity profile for different values of Q at a::::: 0.7, b = 1.2, ¢ = ~,d = 2, cr = 0.02, 

Al = 0.5, x:::: 0, ),2 = 0.9. 
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Fig. (6.15) : Velocity profile at a = 0.5 , b = 1.2, </J = !. d = 2, Q = 0.02, ..\1 = 1.0, ..\2 = 1.3, 

x = O. 
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(a) (b) 

Fig.{6.16) : Stream lines for different values of Q. (a) for Q = 1.B, (b) for Q =- 2.0. The other 

parameters are a = 0.5, b = 0.5, tfI = 0. 1, d = I , 0' = 0.9, A\ = 0.5, '\2 = 0,45. 

(a) (b) 

Fig.( 6.17) ; Stream lines for different \'alues of d. (a) for d = 1.1. (b) for d = 1.3. T he Ol her 

parameters are a = 0.5, b = 0.5, ¢ = 0. 1, Q = 2, CI = 0. 9, Al = 0.1. A2 = 0045. 
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(a) 

(b) 

Fig.(6.1B) : Stream Jines for different value~ of )'1' (a) for >.] = 0.0, (b) for Al = 0.3. The other 

parameters are a = 0.5, b = 0.5, ¢ = 0.1 , d = 1, C\' = 0.9, Q = 2, ..\2 = 0.45. 
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(a) 

(b) 

Fig.(6.19): Slream lines for different values of A2. (a) for..\2 = 0.0, (b) for >'2;: 0.6. The other 

parAmeters fire (l = 0.5, b = 0.5, tP = 0.1. d = 1.5, Cl' = 0.9, Q = 2, '\1 = 004. 
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Table 6.3: Values of volume flow rale Q for Newtonian and six constant Jeffreys model 

of fluid for fixed a = 0.5, b = 1.2, d = 2, x = 1, Y = 0.5, f/J = !, ..\1 = 0.5, ..\2 = 0.8, Q = 0.02. 

volume flow rate Q lu(x,y)1 for Newtonian fluid lu(x, y)1 for six constant Jeffreys model 

0.0 -0.825142 -2.61906 

1.0 -0.475277 - 1.67261 

1.5 -0.300299 -1.19937 

2 -0.125352 -0.726091 

6.5 Conclusion 

This chapter present the peristaltic flow of a six constant Jefferys model of fluid in an asymmetric 

channel. The governing two dimensional equations are simplified using long wave length and 

low Reynolds number approximation. The analytical and numerical solutions of simplified 

equations are calculated. The results are discussed through graphs. The main finding can be 

summarized as follows: 

1. It is observed that in the peristaltic pumping region the pressure rise decreases with an 

increase in d, a, and "\2, while it increases with an increase in ).1' 

2. The pressure gradient increases with an increase in a and "\1, while it de<:reases with an 

increase in d (width of the channel) and ..\2. 

3. The velocity field decreases with an increase in Q and Q (volume flow rate), while with 

an increase in ).1 and ..\2 the amplitude of the velocity decreases in the center and near 

the channel wall the velocity increases. 

4. The size of the trapped bolus increases with an increase in volume flow rate Q. 

5. The number of the trapped bolus decreases with an increase in the width of the channel 

d. 

6. With an increase in relaxation time..\1 the number and size of the trapped bolus increases. 

7. When ).1- > 0 and ..\2- > 0 the results of Mishra and Rao [141 can be recovered. 
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Chapt er 7 

P eristaltic motion of a Walter's B 

fluid in a symmetric or asymmetric 

channel 

7.1 Introduction 

This chapter deals with the modelling of Walter's B fluid for two dimensional incompressible 

flow. An analytical solution of Walter's B fluid in an asymmetric channel with sinusoidal wave 

variation have been calculated. The expressions for stream function and pressure gradient have 

been computed. The expression for pressure fise has been computed performing numerical 

integration. The pumping characteristics and axial pressure gradient have been discussed to 

highlight the physical features of emerging parameters of Walter's B 8uid. 

7 .2 Mathematical formulation 

Let us consider the peristaltic transport of an incompressible Walter's B' fluid in a two­

dimensional channel of width dl + d2. The geometry of the symmetric or asymmetric channel 

is defined in Chapter one. However, for Walter's B fluid the Cauchy st ress tensor is different 
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which is defined as {G7J. 

where 

6e 
S = -PI + 2'7oe - 2koat , 

2. = 'VV + ('VVr , 

!: = (%t + V . V) e - eVV- ('vvf e· 

(7.1 ) 

(7.2) 

V·lith the help of Eq. (1.6), Eqs. (1.2), (6.1) and (7.1) for Walter's B fluid take the following 

form 

au av 
0, (7.3) ax+ay = 

(au au au) 8P asxx aSXY 
(7.4) P a,+uax+Vay = -ax+ax+8Y' 

(av av av) ap aSXY asyy 
(7.5) P a, + u ax + v ay = - ay+ ax + BY , 

where 

sxx 

SXY 

Syy :: 

Defining the scales 
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Using Eqs. (1.11) and (7. 7) , Eqs. (7.3) to (7.6) in terms of a stream function lJ1 (u = ~, 

v = -6~ aftel" dropping bars), can be written as 

,Re [(aw !... _ aw !...) M] = _ ap + "as .. + as., (7.8) 
ayax axay ay ax ax ay I 

_,' Re [(aw !... _ a'l! !...) O'l!] = _ op + "as." + ,os" (7.9) 
i)y a. a. 8, 8. i)y 8. oy , 

where 

s,~:z: = 21l' :z:y - a1 [26 (\[111! - 1}I:z: gy) 1lI:E1/ - 46~~ + 26\[1%% (Willi - 62 11t%%)] , 

S." = (q,,, - "'I! .. ) - 01 [, ('I!,:. - 'I!.~) ('I!" - ,,'I! .. ) -2''I!.,'I!" - 2'3'1!.,'I! .. ], 
SIIY = - 26'it%1I - a1 [_202 ( IItIl :x - 111% ~) IItrtJ - 46211t~ - 211tllJl (Willi - 62I1tn )], (7.10) 

in which 6, Re represent the wave and Reynolds numbers, respectively. Elimination of pressure 

from Eqs. (7.8) and (7.9) yields 

'Re [(8'1!!... _ a'l! !...) (o''IJ + ,,0''')] =,' (8'S .. _ o'S.,) + 8'S., _ ,a's". ay ax ax ay 8y2 ax'). axay ax'). ay'}. ayax 
(7.11) 

The boundary conditions in terms of stream function'" are defined in Eq. (6.26) 

The average volume flow rate Q over one period of the peristaltic wave is defined in chapter 

one. 

7.3 Solution of the problem 

Since Eq. (7.11) is highly non-linear, therefore, we seek the perturbation solution in small 6 

(&« 1). We expand W, F and P as follow 

-Ii = "0 + '-IiI + 0(,'), 

q = qo + 'ql + 0(,'), 

P = Po + 'PI + 0(,'). 
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Substituting the above expressions in Eqs.(7.11), and (6.26) collecting the :ike powers of 0, we 

obtain the following systems 

7.3.1 System of order 6° : 

ax 
apo 
ay 

= 0, 

qo "0 ~ 2' 
Wo = 

qo 

7.3.2 System of order 61 
: 

a", - = - 1 on. 
ay 

Bwo = - 1 on. 
ay 

a< " I Re [ ( a"o ~ _ a"o ~ ) (a'"o)] ~ 

ay' 8y 8x 8x By By2 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

[ a' C"o 8' '''0 a",o a''''o a''''o a'"o) a' C''''o)'] +01 - --------2---- +2-- -- 720 8y2 8y 8x8y2 8x 8 y3 8x8y By2 8y8x 8y2 ,( .) 

apI - Re W"o ~ -a",o ~ ) (a",o)] ~ 

ax ay ax 8x By ay 

8 [8'>1'1 (( a 8) )] + 8y 8y2 - 0'1 WOy ax - wo. 8y wOyy - 2Wo.y I}IOyy , (7.21) 

apI 8 (a'",o), (7.22) ay 
~ 

20'1 By 8y2 

q'l 
ql aWl = 0 y ~ hI (x), (7.23) ~ 

2' on 
ay 

"'I 
ql a"'l ~ 0 y ~ h,(x). (7.24) ~ -"2' on 

ay 

Higher order solutions are not soughed. 
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7.3.3 Solution for syst em of order JO 

Solution of Eq. (7. 15) satisfying the boundary conditions (7.18) and (7.19) can be writ ten as 

® + hl-~( , I ) 
lVo = (h2 hI)3 2y - 3(hl + h2)Y + 6h1h2Y - Y 

+ (hi 1 h.)' [(~ +hI) (hi - 3hlhl) - (hi - ~) (hj - 3hlhl)]. (7.25) 

The axial pressure gradient at this order is 

(7.26) 

For one wavelength t he integration of Eq. (7.26) , yields 

(7.27) 

7.3.4 Solution for system of order 61 

Substituting the zeroth-order solution (7.25) into (7.20) , the solution of the resulting problem 

satisfying the boundary conditions take the following form 

where the coefficients appearing in Eq. (7.28) are defined as 

Aoo 

Boo 

~ 12(® + h.+ h,) A _ (hi + h,) A _ hlh, 
(h2 _ hd3 ' OJ - 2 > 02 - 2 > 

(2h, - ®) (h, - hi)' + 2hl (h, - 3h.) (hi - h, + qo) 
2 (h, - hi)' 

= 6(qo + hI + h2) (hI + h2) B _ 6(qo + hI + h2)hlh2 
(h2 - hl)3 1 - {h2 _ hI)3 ' 

B2 _ 72(qo + hI + h2)2 (hI + h2) B3 = (12(qO + hI +3h2»)' 
(h:;! - hIl6 (It:;! - hi ) 
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GS3 = 
6 (hlhz) C C C44 C48 

3' S2 = 43 - C ' 
(hz-hi ) 49 

Gso = 
- 1 C47 C _ (hz - hl)l 
2"" - C49' 49 - 12 ' 

C37 

C" 

C" 

= C31k! + C32hY + C33h~ + C34ht + ~TC39 + h1C43 - C46, 

h!(3h l - h,) ~ 
= 12 C46 = C45 + "'6C39 + h2C43, 

h' 
= C31hi + C32~ + C33h~ + C34~' C44 = hzAOi - 22

, 

= G39 + C40 + C41 + C 42, C 42 = -1I2C39, 

= -5C33h~ - 4C34h~> C40 = -7C31 11~ - 6C32h~, 
4C" (hl- hi) 

= C35 + C36 + C37 + C38. C38 = (hi _ hz) , 

= 5C33 (hl- hl) c,. = 6C" (hl- hI) 
(hi h,) (hi h,) 

1C31 (h~ - hn G30 c~ 
= (hi h,) C" = 24' C33 = 120' 

C" C'I = C23 C C C C C C = -360' 840' 30= 28+ 26, 29= 25+ 27, 

= (2B4AOI - 4B~) O'\, C27 = (-28. + 4B~) o}, 

= (-BsA02 - Boo - B7) Re, C25 = (B4A02 - Aoo + BsAol - B6) Re, 

(7.29) 

The axial pressure gradient at this order is obtained from Eqs. (7.21) and (7.22) using Eq. 
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(7.25) 

= Day3 + DIy2 + D2Y + D3 + D4y4, 

= 144<>dQo + h, - h,}' (2 _ h _ h ) 
(h2 hI) V I 2· 

(7.3O) 

where 

D4 = -a3Re+210C31. D3 = - Rea7 + OJ - 0:}£12, D2 = -a6Re+24C34 - O'lal, 

Dl -a~ Re+6C33 -olaO, Do = -a4Re+120Cg. ao = -240Aoo , 
AooAoo 

a3 = 12 ' 

- 1 , Aoo 1 , BI.'1OO AOO 
as = -B]Aoo - - + -BooBoo + ---

2 2 2 2 2' 

The firs; order non dimensional pressure rise per wavelength is 

(7.32) 

Define 

(7.33) 

Summarizing the perturbation results up to first order for w, dp/dx, and fip as 

(7.34) 

Using '10 = q - oq) and then neglecting the terms greater than 0 (0) the results given by Eq. 

(7.34) can be explicitly computed. 

7.4 Results and discussion 

In this section graphical results are displayed to see the effects of various physical parameters on 

pressure rise and pressure gradient. The expression for pressure rise is calculated numerically 
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using the mathematics software Mathematics. Figs. 1.1 to 7.4 are prepared to see the effects of 

pressure rise for different values of amplitude ratio,p, wave number 0, Walter's B fluid parameter 

OJ and width of the ch annel d. In Fig. 7.1 it is observed that the pressure rise decreases with 

an increase of the amplitude ratio ¢. Further, the peristaltic pumping occurs in the region 

0:5. e .5 1.2, and augmented pumping occurs in the region 1.2 :5. 8 :5. 1.5 for different values 

of q,. It is observed from Figs. 7.2 and 7.3 that for peristaltic pumping (.o.p > 0, e > 0), free 

pumping (6p = 0) and the copumping region (.6.p < 0, e > 0), pumping increases when the 

wave number 6 and Walter's B fluid parameter 0"1 increases. The effects of the width of the 

channel d, on the pumping characteristic is plotted in Fig. 7.4. It is observed that for peristaltic 

pumping (Clop> 0, e > 0) and for free pumping (6.p = 0), pumping decreases as the width of the 

channel d increases, while the behavior is opposite in the copumping region (Clop < 0, e > 0); 

here pumping increases as d increases. Figs. 7.5 to 7.8 are displayed to see the effects of 

various physical parameters on the pressure grad ient (dp/dx). The pressure gradient against 

x for different values of CIt, d, 6 and 4J are presented in Figs. 7.5 to 7.8. It is observed t.hat 

the pre~sure gradient increases with increase in al (see Fig. 7.5). It is seen that the minimum 

value of the pressure gradient is at about x = 0.45 and the maximum occurs at x = 0.62. The 

pressure gradient for different values of d are shown in Fig. 7.6. It is observed that with an 

increase in d, the pressure gradient increases in the regions x E [0,0.5} and [0.7, 1} and decreases 

in the region :z: E [0.5,0.7} . The pressure gradient for different values of 6 are seen in Fig. 7.7. 

It is observed that the pressure increases with an increases in 6 in the whole region and the 

maximum occurs at the center. The pressure gradient for various values of ¢J are shown in Fig. 

7.8. The pressure gradient decreases in the center of the channel with an inc:rease in ¢J and the 

maximum value occurs at the center for small ¢J. 

Figs. 7.9 to 7.11 illustrate the trapping phenomena for different values of volume flow rate 

Q, width of the channel d and amplitude ratio 4J. It is observed from Fig. 7.9 that the size of 

the trapping bolus increases with an increase of volume flow rate Q in both upper and lower 

half of the channel. It is also observed from Fig. 7.10 that with an increase in width of the 

channel d the size of the trapped bolus decreases. Fig. 7.11 shows the stream lines for different 

values of the amplitude ratio ¢. It is observed from Fig. 7.11 that the size of the trapping bolus 

decreases with an increase in amplitude ratio ¢. 

155 



) 

Table 7.1 shows the comparison of present solution wit.h those available in the literature 

when some of parameters are replaced to be zero in our problem. 

4r-------------r=====~ 
-j=O.O 

3 

2 .• ~.~.>""_'" 1 ... • .•••••••••• _ ........ .... ........ ....... ... 
o 

-1 

-2 

........ . ........ ... ..... .... ... ........ ..: .... ':" -.: ...... ~ .... 
'-:::~'.:,o .. 

--- 41 = n16 

········ , =1t13 
._._ .• , = n/2 

-3~------~------~--------7 o 0.5 1 1.5 
Q 

Fig.(7.1) : Variation of 6.p with Q for different values of if; at a = 0.5, b = 0.5, d =- 1, Re = 10, 

6 = 0.01, 0'1 = 4. 
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••••• :::::::::::...... ~.~.~.: : ~~~ 
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2 ...... ....... . ..... : ... : .... , '::":'" ... ,,', ..... :; .. 
"',':" o ~"'I ....... 

. , ':.:.:~:::::::::::::: ..... . 
~~ 

-2 

.3~------~------~------~ o 0.5 1 1.5 
a 

Fig.(7.2; : Variation of ~p with Q for different values of 6 at a = 0.5, b = 0.5 , d = 1, Re = 10, 

¢ = ~, Cil = 4. 

5r-----~------~====~ 
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o 
., 
-2 

--- Cl1 = 1.0 

•......• a
1

=2.0 

._._. (X1 ::: 3.0 

.3~------~------~------~ o 0.5 1 1.5 
a 

Fig.{7.3) : Variation of 6p with Q for different values of OJ at a = 0.5, b = 0.5, d = 1, Re = 10, 

0= 0.01, ¢ = i. 
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Fig.(7.4) : Variation of 6p with Q for different values of d at a = 0.5, b = 0.5, 0'1 = 4, Re = 10, 

'~0.01, ¢ ~ ii. 
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Fig.(7.5) : Variation of dp/dx with x for different values of 0'1 at a = 0.5, b = 0.5, d = 1, 

Re ~ 10, Q ~ 1, 0 ~ 0.01, ¢ ~ ii. 
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Fig.{7.6} : Variation of dp/dx with x for different values of d at a = 0.5, b = 0.5, Re = 10, 

0= 0.01, Q = 1, 01 = 4, rjJ = ~. 
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Fig.{7.7) : Variation of dp/dx with x for different values of 6 at a = 0.5, b = 0.5, d = 1, Re = 10, 

Q = 1, o} = 4, ¢ = i-
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Fig.(7.8) ; Variation of dpJdx with x for different values of ¢ at a = 0.5, b = 0.5, d = 1, Re = 10, 

Q = 1, 6 = 0.01, at = 4. 
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-..... .. L-:;;"7-' 

(a) (b) 

(e) 

Fig.f7.9) : Stream lines for different values of volume flow rate Q. (a) fOT Q = 2.0, (b) for 

Q = 2.2. (c) for Q = 2.4. The other parameters are a = 0.5, b = 0.5, tP = 0. 1, d = 1, 01 = 4, 

0=0.07 . 
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(,) (b) 

(e) 

Fig. (7.10) : Stream lines for different values of width of the channel d. (aJ for d = 1.1 , (b) fOT 

t1 = 1.2. (c) for d = 1.3. The other parameters are a = 0.5, II = 0.5, q, = 0.) , Q = 2.0, 01 = 4, 

6 ~ 0.07. 
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(aJ 

.. 

-"I~ 

-. 

(b) 

Fig.(7.1l ): Stream Hnes for different values of volume flow rate ¢' (a) for q, = I. (b) for ¢ = j. 

The other pfl.rallleters are a = 0.5 , b = 0.5, Q = 2.0, d = l.0, 0'1 = .1, 6 = 0.07. 
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Table 7.1: Pressure rise with volume flow rate for fixed a = 0.5, b = 0.5, d = 1, ¢ =~. 

Q Mishra et al j14 J Present work 

6P for 0'1 = Re = {j = a 6P for ctl = 1, Re= 10 ,0= 0.04 

0 2.03888 2.30219 

0.1 1.71353 1.91822 

0.2 1.38817 1.53906 

0.3 1.06282 1.16'72 

0.4 0.737464 0.795195 

0.5 0.41211 0.430483 

0.6 0.0867558 0.0705845 

0.7 - 0.238599 -0.2845 

0.8 - 0.563953 -0.63'769 

0.9 -0.889307 - 0.980225 

1 -1.21466 - 1.32087 

1.1 -1.5'002 - 1.65669 

1.2 -1.86537 - 1.9877 

1.3 -2. 19072 -2.3139 

1.4 -2.51608 -2.63529 

1.5 -2.8'143 -2.95185 

7.5 Conclusion 

This chapter presents the modelling of Walter's B fiuid for two dimensional incompressible fiow. 

An analytical solution of Walter's B fiuid in an asymmetric channel have been calculated. The 

expression for pressure rise has been computed performing numerical integration. The pumping 

characteristics and axial pressure gradient have been discussed to highlight the physical features 

of emerging parameters of Walter's B fiuie.. The main finding can be summarized as follows: 

1. The pressure rise decreases with an increase of the amplitude ratio ¢ for small values of 

volume fiow rate and for large values the behavior is quite opposite. 
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2. Fbr peristaltic pwnping, free pumping and the copumping regions, pumping rate increases 

with an increase in wave number 0 and Walter's B fluid parameter 1):1· 

3. The pumping rate decreases in peristaltic pumping, free pumping regiolls with an increase 

in width of the channel d, while the behavior is opposite in the copumping region. 

4. The pressure gradient increases with an increase in 01. 

5. The pressure gradient increases in the regions x E 10, 0.5] and x E 10.7, I] and decreases 

in the region x E 10.5, 0.7] with an increase in d. 

6. The pressure gradient increases with an increase in 0 in the whole region and the maximum 

occurs at the center. 

7. The pressure gradient decreases in the center of the channel with the increase in (/J and 

the maximum value occurs at the center for small ¢. 

8. The size of the trapped bolus increases with an increase of volume flow rate Q. 

9. Tle size of the trapped bolus decreases with an increase in width of the channel d and 

amplitude ratio ¢. 
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Chapter 8 

Peristaltic transport of a hyperbolic 

tangent fluid model in an 

asymmetric channel 

8.1 Introduction 

This chapter presents the modeling of the two dimensional hyperbolic tangent fluid modeL 

Using the assumption of long wavelength and low Reynold nwnber, the governing equations of 

hyperbolic tangent Auid for an asymmetric channel have been wIved using regular perturbation 

method. The expression for pressure rise has been calcu lated using numerical integrations. At 

the end, various physical parameters have been shown pictorially. It is found that the narrow 

part of the channel required large pressure gradient, also in the narrow part the pressure gradient 

decreases with an increase in Weissenberg number W e and channel width d. 

8.2 Mathematical formulation 

The constitutive equation for hyperbolic tangent fluid is given by Ai and Vafai [68] 

'T= -PI +S, (8.1) 
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(8.2) 

in which -PI is the spherical part of the stress due to constraint of incompressibility, S is t.he 

extra stress tensor, Jieo is the infinite shear fate viscosity, flo is the zero shear rate viscosity, r 
is the time constant, n is the power law index and i' is defined as 

(8.3) 

where n = ~trac (grad V + (grad V )T) 2. 

Here IT is the second invariant strain tensor. We consider the constitutive Eq. (8.2), the 

case for which Jl.OQ = 0 and r i' < 1. The component of extra stress tensor therefore, can be 

written as 

s = -Po l(rt)"]t = -1'01(1+ r t - I)"]t 

= -Po II + n(r t - I)]t. 

Invoking Eq. (1.6) into Eqs. (6.1) and (8.4), we get 

where 

Sxx = 

SXY = 

Syy = 

'i -

8P asxx aSXY 
-ax- ax -BY' 

8P aSXY DSyy 
-aY- ax -BY. 

- 2po (I + n (r 'i - I» ;~, 

-I'o(l+n(r ,- I» - +-. (OU BY) ay ax ' 
-21'0 (I + n (r 'i - I» :~, 

H au)' (au BY)' 2 (BY)'( ax + ay + ax + BY 
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Defining 

X
- x - y - u -, ct i: hi h- h, S !. S = >:, y = ~' u = c' = "I' I.) = d

1
' 2 = d}' ff = P-oC ;u, 

d} d} pcd1 rC ci?,.,... -yd1 Sii~ = -511Y , 6=\", Re=-, We=-d' p=-,-p, 'Y=-. 
J.loC ;'\ J.lo 1 c;'\J1.o c 

(8.8) 

Using Eqs. (1.11) and (8.8) the Eqs. (8.5) to (8.7) in terms of stream function iV{u = ~,1) = 

-6~ after dropping bars), can be written as 

oRe [(a~ ~ _ 8~~) 8~] ~ 
ay 8x ax ay ay 

_ 8p _52 8S:r.r. _ 8Sxy 
8x 8x 8y' 

(8.9) 

_0' Re [(a'll ~ _ a~ ~) a'll] ~ 
ay 8x ax ay 8x 

_ {Jp _528S~ _fJ8SI/1/ 
ay ax IJy , 

(8.10) 

where 

S .. 8' '11 
~ -2 (1 + n(We-j -1» axay' 

S .. ~ ( ( . ) (0''11 ,a''II) - l+n W~-l) 8y2 -6 8x 'l ' 

S" 
a''II 

~ 20 (1 + n(We-j - l) Bx8y' 

-j ~ ( ,(8''1')' (8''11_ ,8''11)' ,(8''1')')'" 
26 8x8y + 8y2 15 (Jx2 + 26 8x8y (8.11) 

in which 0, Re, We represent the wave, Reynolds and Weissenberg numbers, respectively. Under 

the assumpt.ions of long wavelength 6 « 1 and low Reynolds number, neglecting the terms of 

order 0 and higher, Eqs. (8.9) and (8.10) take the form 

/Jy a[ 0' '1' ]O'~ 
ax ~ 8y 1 +n(We ay' - 1) 1Jy" 

ap 
ay 

= O. 

Elimination of pressure from Eqs. (8. 12) tiliO (8.13) yield 

a' ([ 0''11] a''II) 1Jy' 1 + n(W,ay' - 1) ay' ~O. 
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The relevant boundary conditions for asymmetric channel in stream function,*, are already 

defined in Eq. (6,26). 

The dimensionless mean flow Q is defined in Eq. (1,29). 

8.3 Solution of the problem 

B.3.1 Perturbation solution 

For perturbation solution, we expand,*" q and p as 

" = "0 + W' '' i+ O( W ,' ), 

q = qo + Weqj + O(W e2), 

P = Po + Wepl + O( W e2
). 

(S.15) 

(S.16) 

(S.17) 

Substituting above expressions in Eqs. (8. 12), (8.14) and (6.26), collecting the powers of We, 

we obta;n the fo llowing systems 

8.3 .2 System o f order WeD 

/1'''0 0, (S.lS) 
8y' = 

8P<J &"0 (S.19) 
8x = (l-n) 8y3 ' 

"0 '0 = 2' 
8iJ1o = - 1 
8y 

on Y = h I (x), (S.20) 

Wo qo a". Y = h,(x). (8.21) = -2' -=-1 on 
8y 
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8.3.3 System of order WeI 

84Wl n Ej'l C;l2 1liO r (8.22) 
8y' 

~ 

n-18y2 8y2 

8p, a3Wl fj ({P'lJo) 2 (8.23) 
ax (l -n}8yJ +nay ay' 

~, 
q, 

~ 

2' 
a~, ~ 0 
8y 

on y ~ h,(x), (8.24) 

~, 
q, aWl = 0 on y ~ h,(x}. (8.25) ~ -"2' ay 

8.3.4 Solution for system of order W eD 

Solution of Eq. (8. 18) satisfying the boundary conditions (8. 20) and (8.21) can be written as 

The axial pressure gradient at this order is 

dPo 12(1 - n} (qo + h, - h,) 
~ 

dx (h, - hil' 

For one wavelength lhe inlegrat.ion of Eq. (8.27), yields 

/,
' dPo t:::.p= -dx. 

o dx 

8.3.5 Solution for system of order W ei 

(8.27) 

(8.28) 

Substituting the zeroth-order solution (8. 26) into (8. 22 ), the solution of the resulting problem 

satisfying the boundary conditions take the followi ng form 

(8.29) 
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where 

D6 

D, 

(8.30) 

The axial pressure gradient at this order is 

~ .+~-~ [ ]' dx = (1 - »)G3 - 144n(hl + ~) (h2 _ hJ)3 . (8.31) 

For one wavelength the integration of Eq. (8.31), yields 

" = 11 dP1 d P d x. o x 
(8.32) 

Summarizing the perturbation results for small parameter We, the expression for stream func­

tions and pressure gradient can be written as 

~ = q + h, - h, ( 3 2 ) 
(h2 hd3 2y - 3(h) + h2)Y + 6h1h2Y - Y 

+(h2 \,)3 [(~+hl)(hl-3h,hD-(h'-~)(hl-3h'hl)1 

+ We [DJO + Dlly +D12~~ + Dil ~~ + DI4 ~~ ] , (8.33) 

dp = 12(1 - n)(q + h, - h,) w (_ 12(1 - n) D" (h3(2h _ I ) _ h3(2h _ I )) 
dx (h2 hiP + e (h2 hJ)3 4! 1 2 ·1 2 1 ·2 

(
q + h, - h2)') 

- l 44n(hJ+ h,) (h, hi)' ' (8.34) 
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) 

where 

DIO = 

D" 

(8.35) 

In the above solution when i' --+ 0 then ~ --+ ~o' (or n = 0) the solutions of Mishra and Rao 

[14) are special case of our problem. 

The noo-dimensional pressure rise over one wavelength 6.p for the axial velocity are 

where dp/dx is defined in Eq. (8.34). 

/,
' dp 6.p= -dx, 

o dx 

8.4 Results and discussion 

(8.36) 

The analytical solution of the hyperbolic tangent model is presented. The expression for pres­

sUJ'e rise 6.p is calculated numerically using mathematics software. The effects of various para­

meters on the pressure rise 6.p are shown in Figs. 8.1 to 8.6 for various values of Weissenberg 

number We, amplitude ratio 41, tangent hyperbolic power law index n, channel width d and 

wave amplitudes a, b. It is observed from Fig. 8. 1 that pressure rise decreases for small values 

of Q (0 ~ Q ~ 1.45) with an increase in We and for large Q (1.45 ~ Q ~ 2), the pressure rise 

increases. We also observe that for different values of We, there is a linear relation between 

6p and Q, Le, the pressure rise decreases for small Q and increases for large Q. The pressure 

rise tl.p for different values of tP are illustrated in Fig. 8.2. It is shown that tl.p decreases with 

an increo.se in 41 for Q E 10, 1.91 and after that tl.p increases. The graphs of t:::.p for different 
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values of power law index n are presented in Fig. 8.3. It is seen that with an increase in n, t:::.p 

decreases for Q E [0, 1.61 and for Q E [1.6,21 , it is increases. It is observed that the pressure 

rise decreases with an increase in d and increases with an increase in a and b for small Q and 

for large Q, the results are opposite (see Figs. 8.4 to 8.6). Figs. 8.7 and 8.8 represent that for 

x E [D,D.2J and [D.6,IJ the pressure gradient is small, we say that the flow can easily pass with­

out imposition of large pressure gradient, while in the narrow part of the channel x E [0.2,0.6]. 

t.o retain same flux, large pressure gradient is required. Moreover, in the narrow part of the 

channel, the pressure gradient decreases wi th an increase in We and d. 

Trapping phenomena 

Another interesting phenomena in peristaltic motion is trapping. It is basically the forma­

tion of an internally circulating bolus of fluid by closed stream lines. This trapped bolus pushed 

a head along a peristaltic waves. Figs. 8.9 to 8.11 illustrate the stream lines for different values 

of Q, We and a. The stream lines for different values of volume flow rate Q are shown in Figs. 

8.9 a to c. It is found that with an increase in volume flow rate Q, the size and the number of 

trapping bolus increases. In Figs. 8.10 a to c. the stream line are prepared for different value 

of Weissenberg number We. It is depicted that the size of the trapped bolus increases with 

an increase in We. It is observed from Figs. 8.11 a to c that the size and the number of the 

trapping bolus increases with an increase in amplitude of the wave a. 
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Fig.(8. 1) : Variation of t:::.p wi th Q for different values of W e at a = 0.5, b = 0.5, d = 0.4, 

n = 0.04 and ¢ = ~. 
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Fig.(8.2) : Variation of !J.p with Q for different values of ¢ at a = 0.5, d = 0.5 , W e = 0.03, 

n = 0.04 and b = 0.7. 
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Fig.(8.3) : Variation of t:::.p with Q for different values of n at a = 0.5, d = 0.5, We = 0.03 , b = 0.7 

and¢= ~. 
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Fig.(8.4} : Variation of 6.p with Q for different values of d at a = O.S,b = 0.5, We = O.03,n = 

0.04 and 1> = i. 
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Fig.(8.7 ) : Variation of * with x for different values of W e at a = 0.5, b = 0.5, d = 0.2, 

n = 0.04, Q = 0.4 and ¢ = :;:. 
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(b) (b) 

(c) 

Fig. (8.9) ; Stream lines for three different values of Q. (a) for Q = 0.24, (b) for Q = 0.25, (e) for 

Q = 0.26. The other parameters are chosen as a = 0.5, b = 0.5, d = 1.0, n = 0.09, We = 0.04, 

¢ = 0.01. 
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Ca) 

Cb) 

Fig.(8.10) ; Stream lines for two different values of We. (a) for We::: OA, (b) for We ::: 0.04. 

The other parameter are chosen as a::: 0.54, b::: 0.5, d = 1.0, n = 0.09, Q::: 0.25, rp::: 0.01. 
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Fig. (8.11) : Stream lines for three different values of a. (a) for a = 0.52, (b) for a = 0.54, (c) for 

a = 0.56. The other parameters are chosen as b = 0.5, d = 1.0, Q = 0.3, ¢ = 0.01, We = 0.04 , 

n = 0.09. 
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8.5 Conclusion 

This chapter presents the peristaltic flow of tangent hyperbolic fluid in an asymmetric channel. 

The governing two dimensional equations have been modeled and then simplified llsing long 

wave length approximation. The simplified equations are solved analytically using regular 

perturbation method. The results are discussed through graphs. The main finding can be 

summarized as follows: 

1. It is observed that in the peristaltic pumping region the pressure rise decreases with an 

increase in IVe, 41, nand d, and increases with an increases in a and b. 

2. The pressure gradient decreases with an increases ill both We and d. 

3. The size of the trapping bolus increases with an increases in Q, We and decreases with 

an increase in a. 
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Chapter 9 

Effects of partial slip on the 

peristaltic transport of a hyperbolic 

tangent fluid model in an 

asymmetric channel 

9.1 Introduction 

This chapter presents the effects of partial slip on the peristaltic transport of a hyperbolic 

tangent fluid model in an asymmetric channel. The governing equations of two di mensional 

hyperbolic tangent fluid model are si mplified under the assumptions of long wavelength and low 

Reynolds number. The How is investigated in a wave frame of reference moving with the velocity 

of the wave. The governing equations of hyperbolic tangent fluid have been solved using regular 

perturbation method . The expression for pressure rise has been calculated using munerical 

integrations. The behavior of different physical parameters have been discussed graphically. 

182 



9.2 Math emat ical formulation 

The governing equations for the present case are same as discussed in previous chapter , however, 

due to partial slip condition the boundary conditions are different which are defined as 

'I< 
q 8'1< 

y ~ h,(x), ~ 

2' - = -LS%JI- 1 [0< 
8y 

" 
q 8"; 

[0< y = h2(X)' (9.1) -2' By =LSry - l 

The dimensionless mean flow Q is defined as in Eg. (1.29)· 

9.3 Solution of the problem 

To avoid the repetition, the solution of Eqs. (8.14) subject to the boundary conditions (9.1) 

using the similar procedure as discussed in chapter eight can be directly written as 

The axial pressure is defined as 

dp 
dx 

(9.3) 
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where 

~ L (I - n), 2n 
D I6=--I' n-

D18 = 
12 (q + h, - h,) 

D19 

Dzo = 

Dn = 

D17 = Ln. 

The non-dimensional pressure rise over one wavelength Ap for the axial velocity arc 

/.
' d 

Ap = 0 !xdx, 

where dp/dx is defined in Eq. (9.3). 
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9.4 Results and discussion 

In this section, the graphical results are displayed to see the effects of various physical para­

meters on pressure rise , pressure gradient, velocity profile and streamlines. The expression for 

the pressure rise over one wave length is calculated numerically using a Mathematics software. 

Figs. 9.1 to 9.6 are plotted for pressure rise against volume flow rate Q. It is observed that 

the relation between pressure rise and volume flow rate is inversely proportional to each other. 

In Fig. 9.1 it is observed that in pumping region (L\.p > 0), the pressure rise increases with 

an increase in Weissenberg number We. It is also observed from Pigs, 9.2 and 9.3, that the 

pressure rise decreases with an increase of power law index nand widl.h of the channel d in the 

pumping (.6.p > 0) and free pumping (.6.p = 0) region while in copumping (.6.p < 0) region the 

pressure rise increases with an increase in nand d. It is also depicted from Figs. 9.4 to 9.6 that 

in the pumping (.6.p > 0) and free pumping (.6.p = 0) regions the pressure rise increases with 

an increase in slip parameter L, and amplitudes of wave a and b, while the behavior is opposite 

in copumping (.6.p < 0) region. The pressure gradient for different values of L, n and a are 

prepared in Figs. 9.7 to 9.9. It is observed that magnitude of pressure gradient increases with 

an increase in L and decreases with an increase in n (see Figs. 9.7 and 9.8). However, with an 

increase in a the magnitude of pressure gradient decreases in the region :tt [0, 0.21 and [0.8,1], 

where as in the region Xf [0.2, 0.8] it is increases. The velocity profiles for different values of 

Weissenberg number We, volume flow rate Q, and slip parameter L are shown in Figs. 9.10 

to 9.12. h is observed from Fig. 9.10 that the magnitude value of the velocity field increases 

with nn increase in Weissenberg munber We. From Fig. 9.11 it is shown that the magnitude 

value of the velocity field decreases with an increase in volume How rate Q. It is depicted from 

Fig. 9.12 that due to slip parameter L the velocity near the channel walls are not same but it 

is slipping and also the velocity increases with an increase in L. 

The trapping phenomena for different values of Weissenberg number We, power law index 

n, slip parameter L and volume How rate Q are shown in Figs. 9.13 to 9.16. It is seen from 

Figs. 9.13 and 9.14 that the size of the trapping bolus increases with an increase of Weissenberg 

number We and power law index n in the upper half of the channel, while in the lower half the 

size of the bolus decreases. From Figs. 9. 15 a to c, it is observed that with an increase of slip 

parameter L the size of the trapping bolus increases in lower and upper half of the channel. [t is 
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also observed from F ig. 9.16 that with an increase in Q, the size of the trapped bolus decreases 

in the upper half of the channel, while in the lower half the behavior is opposite as compared 

to the upper half, here size of t he trapping bolus increases. 
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5 ---We =0.04 

••••.•. We = 0.09 
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·5 

·10 o:------::'":---~:---....,..:---~ 
0.5 1 1.5 2 

Q 

Fig.{9.1) : Variation of 6.p with Q for different values of We. The other parameters are a = 0.7, 

b = 0.5, d = 0.9, if! = ~, n = 0.06, L = 0.04. 
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Fig.(9.2) : Variation of !J.p with Q for different values of n. The other parameters are a = 0.6, 

b ~ 0.5. d ~ 0.9. ¢ ~ *' We ~ 0.06, L ~ 0.02. 
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Fig.(9.3) : Variation of Ap with Q for different values of d. The other parameters are a = 0.5, 

b= 0.5, W e = 0.04, ¢ = i, n = 0.06, L = 0.02. 
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Fig.(9,4) : Variation of 6.p with Q for different values of L. The other parameters are a == 0.7, 

b = 0.5, d == 1, 1> == ~,n == 0.06, We == 0.04 . 
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W e = 0.04, d = 0.9, ¢ = *' n = 0.04, L = 0.02. 
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Fig.(Q.6) : Variation of t::.p with Q for different values of a. The other parameters are We = 0.04, 

b = 0.5, d = 1, ¢ = i, n = 0.06, L = 0.02 . 
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Fig.(9.7); Variation of dp/dx with x for different values of L. The other parameters are a = 0.5, 

b = 0.5, d = 2, ¢ =~, Q = 2, n = 0.04, We = 0.04. 
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Fig.(9.11) : Velocity profile for different values of Q. The other parameters are a:= 0.7 , b:= 1.2, 
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Fig. (9.13): Stream lines for different values of We. (a) for W e = 0.01, (b) for We = 0.05, (c) 

for We = 0.07. The other parameters are ¢ = 0.01 , Q = 1.5, a = 0.5, n = 0.04, d = 0.9, b = 1.0, 

L ~ 0.02 . 
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Fig.(9.14) : Stream lines for different values of n. (a) for n = 0.01, (b) for n = 0.09, (c) for 

n = 0.3. The other parameters are ¢ = 0.01, Q = 1.5, a = 0.5, We = 0.06, d = 0.9, b = 1.0 , 

i..J = 0.06. 
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Fig.(9.15) : Stream lines for different values of L. (a) for L = 0.02, (b) for L = 0.04, (c) for 

L = 0.06. The other parameters are tP = 0.01 , Q = 1.5, a = 0.5, We = 0.09, d = 0,9, b = LO , 

n = 0.04. 
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(a) (b) 

(0) 

Fig. (9.1G) : Stream lines for different values of Q. (a) (or Q = lA , (b) for Q = 1.5, (e) for 

Q = 1.6 The other parameters are'" = 0.01, L = 0.04, a = 0.5, We = 0.06 , d = 0.9, b = l.0, 

n = 0.02. 
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9.5 Conclusion 

This chapter presents the slip effects on the peristaltic flow of tangent hyperbolic fluid in an 

asymmetric channeL The governing two dimensional equations have been modeled and t.hen 

simplified under long wave length and low Reynolds number approximation. The simplified 

equations are solved analytically using regular perturbation method. The results are discussed 

through graphs. The main finding can be summarized as follows: 

1. It is observed that in the peristaltic pumping region (Ap> 0), the pressure rise increases 

with an increase in W e, L, a and b. 

2. It is also observed that the pressure rise decreases with an increase of power law index n 

and width of the channel d in the pumping (Ap > 0) and free pumping (Ap = 0) region, 

while in copumping (Ap < 0) region the pressure rise increases with an increase in nand 

d. 

3. The pressure gradient increases with an increase in both L and a, while it decreases with 

an increase in n. 

4. It is observed that the velocity field increases with an increase in "Veissenberg number 

IVe and decreases with an increase in volume flow rate Q. 

5. It is also observed that due to slip parameter L the velocity near the channel walls are 

not same but it is slipping and also the velocity increases with an increase in L. 

6. The size of the trapping bolus increases in the upper half of the channel and decreases in 

the lower half of the channel with an increase of We and n, while the behavior is opposite 

in the case when volume flow rate Q increases. 

7. With an increase of slip parameter L the size of the trapping bolus increases. 
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Chapter 10 

Peristaltic flow of a Williamson fluid 

in an asymmetric channel 

10.1 Introduction 

This chapter presents 0. peristaltic flow of a Williamson model in an asymmetric channel. The 

governing equations of Williamson model in two dimensional peristaltic flow phenomena are 

constructed under long wave length and low Reynolds number approximations. A regular 

perturbation expansion method is used to obtain the analytical solution of the non linear 

problem. The expressions for stream function, pressure gradient and pressure rise have been 

computed. The pertinent featufe of various physical pnrameters have been discussed graphically. 

[ t is observed that, (the non dimensional Williamson parameter) for large We, the curves of 

the pressure rise are not linear but for very small W e it behave like a Newtonian fluid. 

10.2 Mathematical formulation 

Let. us consider the peristalt ic transport of an incompressible Williamson fluid in a two dimen­

sional channel of widt.h d1 + d'/.o The constitutive equation for WiJli amson fluid is given by 

[69[ 

T =-PI + S, (10.1) 
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(10.2) 

in which -PI is the spherical part of the stress due to constraint of incompressibility, S is the 

extra stress tensor, }lao is the infinite shear rate viscosity, /.to is the zero shear rate viscosity, r 
is the lime constant and '1 is defined as 

(10.3) 

where II = ~trac(gradV + (gradV)T)2. 

Here II is the second invariant strain tensor. We consider the constitution Eg. (10.2), the 

case for which lA-oo = 0 and r..y < 1. The component of extra stress tensor therefore, can be 

written as 

(IDA) 

Invoking Eg. (1.11) in Egs. (G.1) and (10.1) to (10.4), we get 

(10.5) 

(10.6) 

where 

Sxx ~ -21'0 (1+ r"t) ~~, 
SXY ~ . (8U av) -~o (1+ r7) ay + ax ' 
S)'Y ~ -2~o (1 + r "t) ~~, 

"t ~ Hau)' (au w)' 2(W)'( ax + ay + ax + {)y (10.7) 

Using Eqs. (loll) and (8.8), Egs. (10.5) to (10.7) in terms of s tream function w(u = ~,11 = 
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-o~ after dropping bars), can be written as 

;Re [(a'l' ~ _ a'l' ~) a'l'] ayax ax ay ay (10.8) 

-;'R. [(ail' ~ _ aiJi~) ail'] = 
By Bx ax By Ox 

(10.9) 

where 

s" 
. a'iI' = -2(1 + We,) axay' 

s., = . (a'iI' ,a'iI') 
- (1 + We,) ay' -; ax' ' 

a'iI' 
s" = 2; (1 + Weo;) axDy' 

0; = ( ,( ~)' e''l' - ,a'iJi)' ,( a'iI' ) r' 26 axay + Dy' ; ax' + 26 8xDy (10.10) 

in which 0, Re, We represent the wave, Reynolds and Weissenberg numbers, respectively. Under 

the assumptions of long wavelength 0"« 1 and low Reynolds number, neglecting the terms of 

order 6 and higher, Eqs. (10.8) nnd (10.9) take the form 

8 ([ 8'iJi] a'i!;) 
8y 1+We8y2 8y2 ' 

ap 
ax 
ap 

= O. ay 

Elimination of pressure from Eqs. (1O.l1) and (10.12) yield 

(10.11) 

(10.12) 

(10.13) 

The boundary conditions in terms of stream function IJt are defined in Eq. (6.26). The dimen­

sionless mean flow Q is defined in Eq. (1.29). 
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10.3 Solution of t he problem 

10.3.1 Pel'tu l'bation solution 

Since, Eq.(lO.13) is non linear equation, its exact solution may be not possible, therefore, we 

employ the regular perturbation to find the solution. 

For perturbation solution, we expand W, q and p as 

IJ.i = IVo + Weili 1 + O(We2
), 

q = qo + Weq\ + O(We2), 

P = Po + Wepl + O(We2), 

(10.14) 

(10.15) 

(10.16) 

With the help of Egs. (10.14) to (10.16), the solution of Egs. (10.1 3) and (10.11) with the 

corresponding boundary conditions (6.26) can be directly written as 

'li = 

(10.17) 

(10.18) 
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where 

(10.19) 

The non-dimensional pressure rise over one wavelength Ap for the axial velocity are 

(10.20) 

where dpj dx is defined in Eq. (10.18). 

10.4 Results and discussion 

The anaJytical solution of the Williamson fluid model is presented. The expression for pressure 

rise t:::.p is calculated numerically using mathemat.ics software. The effects of various parameters 

on the pressure rise t:J.p are shown in Figs. 10.1 to 10.4 for various values of Weissenberg number 

We, channel width d and wave amplitudes a, b. It is observed from Fig. 10.1 that pressure 

rise decreases for small values of Q (-1 ~ Q :5 1.3) with an increase in We and for large Q 

(1.3 ~ Q ~ 2), the pressure rise increases. For l:!.p > 7 increasing We gives a better pumping 

performance and for l:!.p = 7 there is no difference between Newtonian and Williamson fluid 

as the pumping curves coincide with each other. Tt is depicted that the pressure rise decreases 

with an increase in d and increases with an increase in a and b for small Q and for large Q, the 

results are opposite (see Figs. 10.2 to lOA). Here we also see that the better pumping regions 

are Ap> 5 and almost b,:p = 0, there is no difference between Newtonian and non- Newtonian 

fluids. Figs. 10.5 and 10.6 represent that for x E [0,0.1] and [0.75,11, the pressure gradient is 
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small, we can say that the flow can easily pass without imposition of large pressure gradient, 

while inlhe narrow part of the channel x E [0.1,0.751, to retain same fiux large pressure gradient 

is required. Moreover in the narrow part of the channel, the pressure gradient decreases with 

an increase in We and d. It is also observed that the behavior of We and d on the pressure 

gradient are similar. The pressure rise ap for different values of b are shown in Fig. 10.7. I t. 

is seen that the curves for the pressure rise are not linear and in t.he region Q E [-1,0.41, the 

pressure rise decreases with an increase in b while in the region Q C [0.41, IJ, the pressure rise 

increases with an increase in b. 

Trapping phenomena 

Another interesting phenomena in peristaltic motion is trapping. It is basically the forma­

t ion of an internally circulating bolus of Auid by closed stream lines. This trapped bolus pushed 

a head along a peristaltic waves. Figs. 10.8 to 10.10 illustrate the stream lines for different 

values of We, Q and a. The stream lines for different values of We are shown in Fig. 10.8. It is 

found that with an increase in Weissenberg number We t he size of the trapping bolus decreases 

in the upper half of the channel and increases in the lower half of the channel. In Fig. 10.9 

the strenm Jines are prepared for differer.t values of volume flow rate Q. It is depicted that the 

size of the trapped bolus increases in the upper half of the channel with an increase in Q, while 

the size and the number of the trapped bolus increases in the lower half of the channel. It is 

observed from Fig. 10.10 that the size of the trapping bolus increases in the lower and upper 

half of the channel with an increase in amplitude of the wave a. 
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Fig.( IO.l) : Variation of l:!.p with Q for different values of We at a = a.l,b = O.2,d = 0.2 and 

¢ ~ •. 
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Flg.(10.2): Variation of IIp with Q for difi"erent values of a at We = 0.001, b = 0.1, d = 0.4 and 

¢ = 71". 
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(a) (b) 

(0) 

Fig.( l O.8) : Stream lines for three different values of We. (a) for We = 0.01, (b) for We = 0.03, 

(c) for We = 0.05. T he other parameters are chosen as a = 0.5, b = 0.5, d = 1.0, Q = 0.3, and 

¢ ~ 0.01. 
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(a) (b) 

(c) 

Fig.(ID.9) : Stream lines for three different values of Q. (a) for Q = 0.31, (&) for Q = 0.32, (c) 

for Q = 0.33. The other parameters are chosen as a = 0.5, b = 0.5, d = 1.0, lVe = 0.06, and 

r/I = 0.01. 
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Fig.(ID.IO) : Stream lines for three different values of a. (a) for a = 0.53, (b) for a = 0.54. The 

other parameters are chosen as b = 0.5, d = 1.0, We = 0.05, Q = 0.3 and tP = 0.01. 
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10.5 Conclusion 

This chapter presents the peristalt.ic fl ow of Williamson fluid in an asytnr.lctric channeL The 

governing t.wo dimensional equations have been modeled and then simplified using long wave 

length approximat.ion. The simplified equations are solved analytically using regular perturba~ 

tion method. The results are discussed through graphs. The main finding can be summarized 

as follows: 

1. It is observed that for large i'Ve, the curves of the pressure rise are not linear but for small 

We it behave like a Newtonian fluid. 

2. It is observed that in the peristaltic pumping region the pressure rise decreases with an 

increase in IVe and d and increases with an increase in a and b. 

3. The pressure gradient decreases with an increase in both We and d. 

4. The size of the trapping bolus decreases in the upper half of the channel and increases in 

the lower half of the channel with an increase in We. 

5. The size of the trapping bolus increases in the upper and lower half of the channel with 

an increase in Q and a. 

211 



References 
1. F. Kill, The function of the ureter and the renal pelvis-Saunders: Philadelphia. (1957). 

2. S. Boyw:sky, Surgical physiology of the renal pelvis, Monogr. Surg. Sci. 1, 173{UI64 ). 

3. T. W. Latham, Fluid motion in a peristaltic pump, M.Sc. Thesis, MIT, Cambridge, MA. 

(1966). 

4. J. C. Burns, T. Parkes, Peristaltic motion, J. Fluid Mech. 29, 731 (1967). 

5. C. Barton, S. Raynor, Peristaltic flow in tubes, Bull. Math. Biopbys. 30,663 (1968). 

6. A. H. Shapiro, M. Y. Jaffrin, S. L. Weinberg, Peristlatic pumping with long wavelengths 

and low Reynolds number, J. Fluid Mech. 37, 799 (1969). 

7. M Y. Jaffrin, A. H. Shapiro, Peristaltic puming, Ann. Rev. Fluid Mech. 3, 13 (197l). 

8. C. Bohme, R. Friedrich, Peristaltic flow of a viscoelastic liquids, J. Fluid Mech. 128, 109 

(1983). 

9. L. M. Srivastava, V. P. Srivastava, Peristaltic transport. of a non~Newtonian fluid (Appli~ 

cation to the vas deferens at small intestine), Ann. BioMed. Eng. 13, 137 (1985). 

10. S. Takabatake, I<. Ayukawa, A. Mori, Peristaltic pumping in circular cylinderical tubes: 

a numerical study of fluid transport and its efficiency, J. Fluid Mech. 193,267 (1988). 

11 . O. Eytan, A. J. Jaffa, J. Har~Toov, E. DaJach, O. Elad, Dynamics of the intrauterine 

fluid~wall interface, Ann. BioMed. Eng. 21,372 (1999). 

12. O. Eytan, D. Elad, Analysis of intra~uterine fluid motion induced by uterine contractions, 

Bull. Math. BioI. 61 ,221 (1999). 

13. C. Pozrikidis, A study of peristaltic flow, J. Fluid. Mec.h. 180,5 15 (1987). 

14. M. Mishra, A. R. Rao, Peristaltic transport of a Newtonian fluid in an asymmetric channel, 

ZAMP. 54, 532 (2003). 

212 



15. A. R. Rao, M. Mishra. NonJinear and curvat,ure effects on peristaltic flow of a viscous 

fluid in an asymmetric channel, Acta Mech. 168,35 (2004). 

16. M. H. Haroun, Effect of wall compliance on peristaltic transport of a Newtonian fluid in 

an asymmetric channel, Math. Prob. Eng. 2006, 1 (2006). 

17. E. F, Elshehawey, N. T. Eldabe. E. M. Elghazy, A. Ebaid, Peristaltic transport in an 

asymmetric channel through a porous medium, App!. Math. Camp. 182, 140 (2006). 

18. T. Hayat., Q. Hussain, N. Ali, Influence of partial slip on the peristaltic flow in a porous 

medium, Physica A. 387,3399 (2008). 

19. I<. I<. Raju, R. Devanathan, Peristaltic motion of a non·Newtonian flu idjPart II, vis~ 

coelastic fluids, Rheo!. Acta. 13,944 (1974). 

20. A. M. Siddiqui, M. H. Schwarz, Peristalt.ic flow of a second order flu id in tubes, J. non~ 

Newtonian Fluid Mech. 53,257 (1994). 

21. F. M. Mahomed, S. Asgh[l.f, Peristal tic flow of magnetohydrodynamic Johnson·Segalman 

fluid, Nonlinear Dynam. 40 ,375 (2005). 

22. T. Hayat, Y. Wang, A.:r-.L Siddiqui, I<. Hutter, Peristaltic motion of a Johnson-Segalman 

fluid in a planar channel, Math Prob. Eng. 1, 1 (2003). 

23. T. Hayat, Y. Wang, K. Hutter, S. Asghar, A. M. Siddiqui , Perist.altic transport of an 

Oldroyd-B fluid in a planar channel, Math. Prob. Eng. 4,347 (2004). 

24. KIl. S. Mekheimer, E. F. El Shehawey, A. M. Elaw, Peristaltic motion of a parUcJe~fluid 

suspension in a planar channel, Int. J. TheeL Phy. 37,2895 (1998). 

25. T. Hayat , M. Khan, A. M. Siddjqui, S. Asghar, Non~linear peristaltic flow of a non~ 

Newtonian fluid under effect of a magnetic field in a planar channel, Commun. Nonlinear 

Sci. Numer. Simulation. 12, 910 (2007). 

26. Kh. S. Mekheimer, Non~linear peristaltic transport through a porous mediwn in an 

inclined planar channel, J. Porous Med. 6, 189 (2003). 

213 



27. J. C. Mishra, S. K. Pandey, Peristaltic transport of a non-Newtonian fluid with a periph­

erallayer, lnt. J. Engng Sci. 37, 1841 (1999). 

28. A. t-.'i. Siddiqui, W. H. Schwarz, Peristaltic pumping of a third order fluid in a planar 

channel, Rheol Acta. 32,47 (1993). 

29. D. Srinivasacharya, M. Mishra, A. R. Rao, Peristaltic pumping of a nicropolar fluid in a 

tube, Acta Mech. 161, 165 (2003). 

30. P. Hariharan, V. Seshadri, R. K. Banerjee, Peristaltic Lransport of non-Newtonian fluid 

in a diverging tube with different wave forms, Math. Compo ModeL 48, 998 (2008). 

31. T. Hayat, Y. Wang, A. M. Siddiqui, K. Hutter, S. Asghar, Peristaltic transport of a 

third-order fluid in a circular cylindrical tube, Math. Model Meth. App!. Sci. 12, 1691 

(2002) . 

32. M. H. Haroun, Non-linear peristaltic flow of a fourth grade fluid in an inclined asymmetric 

channel, Comput. Mater. Sci. 39,324 (2007). 

33. S. Srinivas, V. Pushparaj, Non-linear peristaltic transport in an inclined asymmetric 

chnnnel, Commull. Nonlinear. Sci. Numer. Simulat. 13, 1782 (2008). 

34. M. H. Haroun, Effect of Deborah number and phase difference on peristaltic transport of 

a third-order fluid in an asymmetric channel, Commun. Nonlinear. Sci. Numer. Simulat. 

12, 1464 (2007). 

35. M. l<othandapani, S. Srinivas, Peristaltic transport of a Jeffrey fluid under the effect of 

ma.gnetic field in an asymmetric channel, Inter. J. Non-linear Mech. 43,915 (2008). 

36. T. Hayat, M. Umar Qureshi, N. Ali, The influence of slip on the peristaltic motion of a 

tlurd order fluid in an asymmetric channel, Phys. Lett A. 372, 2653 (2008). 

37. T. Hayat, A. Afsar, N. Ali, Peristaltic transport of a Johnson-Segalman fluid in an asym­

metric channel, Math. Compt. Modell. 47 , ;jMU (ilUUM). 

38. T. Hayat, N. Alvi, N. Ali, Peristaltic mechanism of a Maxwell fluid in an asymmetric 

channel, Nonlinear. Anay!. Real world App!. 9, 1474 (2008). 

214 



39. Y. Wang, T. Hayat, N. Ali, M. Oberlack, Magnetohydrodynamic peristaltic motion of a 

Sisko fluid in a symmetric or asymmetric channel, Physica A. 387, 347 (2008). 

40. N. Ali , T. Hayat, Peristaltic Aow of a micropolar fluid in an asymmetric channel, Compt. 

Math. App!. 55, 5S9 (200S). 

41. N. Ali, T. Hayat, Peristaltic motion of a Carreau fluid in an asymmetric channel, AppL 

Math. Compt. 193, 535 (2007). 

42. V. K. Stud, G. S. Sephon, R. K. Mishra, P umping action on blood flow by a magnetic 

field, Bull. 1\'lath. BioI. 39,385 (1977). 

43. L. M. Srivastava, R. P. Agrawal, Oscillating flow of a conducting fluid with suspension of 

spherical particles, J. Appl. Mech. 47, (1980). 

44. H. L. Agrawal, B. Anwaruddin, Peristaltic flow of blood in a branch, Ranchi UnL Math. 

J. 15, 111 (1984). 

45. Kh. S. Mekheimer Peristaltic transport of a couple stress fluid in a uniform and non­

uniform channels, Biorheology. 39,755 (2009). 

46. M. Kothandapani, S. Srinivas, On the influence of wall properties in the MHD peristaltic 

transport with heat transfer and porous medium, Phys. Lett. A. 372, 4586 (200B). 

47. V. I. Vishnyakov, I<. B. Pavlov , Peristaltic flow of a conductive liquid in a transverse 

magnetic field, Magnetohydrodynamics. B, 174 (1972). 

4B. Kh.S. Mekheimer, Effect of induced magnetic field on peristaltic flow of a couple stress 

fluid, Phys . Lett. A. 372, 4271 (20oB). 

49. N. T. M. Eldabe. M. F. El-Sayed, A. Y. Galy, H. M. Sayed, Peristaltically induced 

transport of a MHD biviscosity fluid in a non-uniform tube, Physica A. 383, 253 (2007). 

50. Kh. S. Mekheimer, Peristaltic flow of a Magneto-Micropolar fluid: Effect of induced mag­

netic field , J . App\. Math. 2008,23 (2008). 

51. V. Radhalaishnamurty, G. Radhakrishnamacharya, P. Chandra, Advances in Physio. 

Fluid Dynamics, Narosa Publishing house, India. 1995. 

215 



52. K. Vajravelu, G. Radhakrishnamacharya, V. Radhakrishnamurty, Peristaltic flow and 

heat transfer in a vertical porous annulus, with long wave approximation , tnt. J. Non­

Linear Mech. 42, 754 (2007). 

53. S. Nadeem, Noreen Sher Akbar, Effects of heat transfer on the peristaltic transport of 

MHD Newtonian fluid with variable viscosity: Application of Adomian decomposiLion 

method, Commun. Nonlinear. Sci. Numer. Simulat. 14,3844 (2009). 

54. Kh. S. Mekheimer, Y. Abd. elmaboud, The influence of heat transfer and magnetic field 

on peristaltic transport of a Newtonian fluid in a vertical annulus: Application of an 

endoscope, Phys. Lett. A. 372, 1657 (2008). 

55. S. Nadeem, Noreen Sher Akbar, influence of heat transfer on a peristaltic transport of 

Herschel-Bulkley fluid in a non-uruform inclined tube, Commun. Nonlinear. Sci. Nume!". 

S;muiat. 14, 4100 (2009). 

56. S. Nadeem, T. Hayat, Noreen Sher Akbar , M.Y. Malik, On the influence of heat transfer 

in peristalsis with variable viscosity, Inter. J. Heat and Mass T1"ans. 52,4722 (2009). 

57. R.J, Goldstein, W.E. IbeJe, S.V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, 

KK. Tamma, J.V.R. Heberlein, J.H. Davidson, J. Bischof, F.A. Kulacki, U. Kortshagen, 

S. Garrick, V. Srinivasan, Heat transfer-A review of 2003 literature, toter. J. Heat and 

Mass Thans. 49, 451 (2006). 

58. Kh.S. Mekheimer, S. Z. A. Husseny, Y. Abd Elmaboud, Effects of heat transfer and 

space porosity on peristaltic flow in a vertical asymmetric charmel, Numer. Meth. POE. 

1 0.1002/num. 20451. 

59. S. Srinivas, M. Kothandapani, Peristaltic transport in an asymmetric channel with heat 

transfer-A note, Inter. Commun. Heat Mass Transf. 35,514 (2008). 

60. S. Nadeem, Noreen Sher Akbar, Influence of heat transfer on peristaltic transport of a 

Johnson-segalman fluid in an inclined asymmetric channel, Commun. Nonlinear. Sci. 

Numer. Simulat. Doi: lO.1016/j.cnsns.2009.10.030. 

216 



61. S. Srinivas, R. Cayathri, Peristaltic transport of a Newtonian fluid in a vertical asymmetric 

channel with heat transfer and porous medium, Appl. Math. Camp. 215, 185 (2009). 

62 . N. T. Eldabe, E. M. Elghazy, A. Ebaid, Closed form solution to a second order boundary 

value problem and its application in fluid mechanics, Phys. Lett. A. 363, 257 (2007). 

63. A. M. Wazwaz, Adomian decomposition method for a reliable treatment of the Emden­

Fowler equation, AppJ. Math. Comput. 61 , 543 (2005). 

64. C. Adomian, Non-linear Stochastic Operator Equations. Academic Press Orlando, FL. 

1986. 

65. A. M. Wazwaz, A new method for solving singular initial value problems in the second 

order ordinary differential equations, Appl. Math. Comput. 128,47 (2002). 

66. S. N. Aristov, O. I. Skul'skii, Exact solution of the problem on a six-constant Jeffrey 

Model of fluid in a plane channel, J. Appl. Mech. Tech. Phys. 44 , 817 (2002) . 

67. Serdar Baris, Steady Three- Dimensional flow of a Walter's B' fluid in a vertical channel, 

'l\ll"kish J. Eng. Eniv. Sci. 26,385 (2002). 

68. L. Ai, K. Vafai, An investigation of Stoke's second problem for non-Newtonian fluids, 

Numer. Heat Trans. part A. 41, 955 (2005). 

69. I. Dapra, G. Scarpi, Perturbation solution for pulsatile flow of a non-Newtonian Williamson 

fluid in a rock fraetUl"e, Inter. j. Rock Mech. Mining Sci. 44 , 271 (2007). 

217 



Commun Non:n~u Sci Num~r Simul~t IS (2010) 312-3~1 

Contents lists avai lable at ScienceOirect 

Commun Nonlinear Sci Numer Simulat 

journal hom epag e: www.elsevier.com/locetefcnsns 

Heat tra nsfer in a peristaltic flow of MHD fluid with partial Slip 

S. Nadee m ·, Safia Akram 

ART I CLE INFO 

Arnell' huro/)'; 
Reaiwd 26 June 2008 
Received In revised form 26 February 2009 
Acctplt d 31 Much 2009 
Av~lI~ble Gnllne 22 April 2009 

PACS: 
..... OS.·e 

KtywordJ,' 

Newtonlln fluid 
Hut transfer 
"-- " .. . .. __ . -.. ~ 
Adom;an decomposition method 

1. Introduction 

ABSTRACT 

In the pres~n t note. we h,1ve discussed the erfeas of p,1rti,11 slip on the perist,l ltic now of a 
MHO Newtonian nuid in ,1n ,lsymmetric channel. The governing equ,1tions of motion and 
~nerlY ,1re simplified using ,1 long wave length approximiltion. A closed form solut ion of 
the momentum equation is obtained by Adomian decomposit ion method and an ex.'c t 
solution of the energy equation is presented in the presence of viscous dissip.ation lerm. 
The expression for pressure rise Is ciliculaled u~ing numerical integration. The trapping 
phenomena is also discussed. The graphiC,11 resulls ,1re pr~sented to interpret various phys­
ical par,1 meter of in Ie rest. It Is found that the temperature field decreases with the Increase 
in slip parameter L. and m,1gnetic field M. while with the Increase in P, and E" the temper­
ature field Increases. 

Cl2QO<1 Published by Elsevier B.V. 

Recently. Elshehawey et at [1 J discussed the problem of peristaltic transport of an incompressible viscous fluid in an asym­
metric channel through a porous med ium. They found an exp(idtformof stream function using Adomian decomposition meth­
od. More recently, Hayat et 011. 12J extended the idea of Elshehawey et al. r 1 J for parcial slip condition. According to [2J for large 
va lues of slip parameter the size of trapped bolus decreases and symmetry diyppears. Number of researchers have discussed 
the peristaltic flow problem s in d ifferent flow geometries. like [3- 14/. But a limited attention has been focused to the study of 
perista ltic flow in tile presence of heat transfer analysis. Mention may be made to the interesting works by Radhakrishnamach­
arya and co-workers 11 5-18J. The aim of the present note is to highlight the importance ofMHD and heat transfer analysis in an 
asymmetric channel under the influence of slip condition. The governing equations of momentum and energy are Simplified 
using long wave length approximation. The simplified momentum equation is solved by Adomian decomposition method 
and a closed form solution subject to partial slip boundary conditions have been calculated. An impressive bibliography on 
the Adomian decompositior: method is presented in the works by Eldabe and co-workers 119- 25 I. With the closed form solution 
obtained from momentum equation, the exact solution of the energy equation is obtained in the presence of viscous dissipation 
terms. leis found th.l(when M .. 0 in the momentum equation. the results of Hay at et 011.121 has been recovered as a specia l case 
of our problem. Morcoverwhen l "" M = O. the solution ofElshehaweyet a t [1 J a re recovered as a special caseof our problem. At 
the end. the results of flow characte ristics .lIt: analyzed by plotting graphs. 

2. Mathematical formulation and solution of the problem 

We consider MHO fl ow oran electrically conducti ng viscous fluid in an asymmetric channel through porous medium. The 
lower wall of the channel is maintained at temperature T I while the upper wall has temperature To. We assume that the fluid 
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Abstract The presenl paper investigates the perislaltic transport of a couple stress fluid in UI1 aSYIl1Jllctrk 
channcl with the effect of the induced magnctic field. The exact solutions of momentum and the magnetic field 
equations have been calculated under the assumptions of long wave length and low hut finite Reynolds number. 
The expression for pressure rise has been computed numerically using mathematics software Mathernalica. 
The graphical results have been presented to discuss the physical behavior of various physical parameters of 
interest. Finally, the trapping phenomena have been discussed for various physical parameters. 

J(rywords P.I: ":1 ltic flow· r.nl1plr 5tress !1!lid . InduCI'(I m:18p l',ir: fi,.1rI • A.~vmmetric ('hannel 

1 I ntroduction 

Numerous applications of non-Newtonian fluids in engineering and mdustry have led to renewed intcrest among 
the researchers. Such 'l.pplications include extraction of crude oil from petroleum products, food mixing and 
chyme movement in the intestine, flow of plasma, Row of blood, flow of nuclear fucl slurri c.~, Row of liquid 
metals and alloys, and flow of mercury amalgams. In non-Ncwtonian fluid models, couple s tress flu id model 
has disti nct features, such as polar effects in addition to possessing large viscosity. The theory of couple stress 
was first developed by Stokes [I] and represents the si mplest generalization of c lassical theory which allows 
for polar effects such as presence of couple stress and body couples. A number of studies containing couple 
stress have been investigated in Refs. [2-4] . 

Recently, Peristaltic problems have gained a considerable importance because of it applications in physiol­
ogy, engineering, and industry. Such applicat iotls include urine transport from kidney to bladder, swallowing 
food lhrough the esophagus, movement of chyme in the gastrointestina l tract, transport of spermatozoa in the 
duels efferentes of the male reproductive tracl, movement of ovum in the female fallopian tubes, vasomotion 
of small blood vessels, transport of slmTies, corrosive nuids, sanitary nuids, and nox ious flu ids in nuclear 
industry. In view of thcse applications, a number of researchers have discussed the peristaltic flows involving 
Newtonian and non-Newtonian fluids with different kinds of geometries (5-24]. Very recelltly, Mekheimer 
1251 has discusscd thc cffect.~ of lhc induccd magnetic ficld on peristaltic Row of a couple SU'css fluid in a slit 
channel. According tr, him, the magnetohydrodynamic fl ow of a fluid in channel in connection with peristaltic 
flow has applications in physiological fluids, e.g., the blood, blood pump machines and with the need for the­
oretical research on the operation of peristaltic MHO compressor. Srivastava and Agrawal [26} and Agrawal 
and Anwarudd in (27) discussed the effects of MHO on blood flow. Further, the application of magnetic field 
occurs in the ronn of a device Magnetic Resonance Imaging (MRI) (281 , which is used for diagnosis of brain, 
vascular diseases, and all the human body. 
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In the present paper. we have studied the IIlHuence of heat trunsfer and magnetic field on a peri­
stnttic lrunsport of a Jeffrey fluid in an asymmetric channel with partial slip. The complicatcd Jeffrey 
fluid equations are simplified using the long wave length and low Reynolds nUIllbt'r assumptions. 
In the wave frume of reference. an exact and closed form of Adomian solutLOn is presented. The 
e1tpressions for pressure drop. pressure rise. stream func tion, and tempcmture field have been calcu­
lated. The behaviour of different physical parameters has been discussed graphically. The pumping 
and trapping phenomena of varioll~ wave fonll~ (sinusoidlll. muhisinll~vida1. square. triangular. lind 
trapezoidal) are 1I1so studied. 

Key words: Exact Solution: Adomian Solution: Partial Slip: Peristaltic Flow: Asymmetric Channel: 
Heat Transfer Analysis. 

1. Introduction 

Recently, Kothandapani and Srinivas [ I J have dis­
cussed the peristaltic flow of a Jeffrey Au id in an asym­
melric channel in the presence ofa transverse magnetic 
field. They employ for the Jeffrey Auid a relati vely sim­
ple linear model using time derivatives instead of con­
vective derivatives. Their observation was that the size 
of trapped bolus in the Jeffrey flu id is much smaller 

of applications. the peristaltic flows for different fIl'­
ids and different geometries have been discussed by 
a number of researchers (I - I 5]. Only a limited at­
tention has been focused on the study of peristaltic 
flows in lhe presence of heat tr.lI1sfcr analysis. Men­
lion may be made to the works of [ 16-23). No at­
tempt has been made to discuss the slip effects on the 
peristaltic transport of a Jeffrey fluid in an asymmet­
ric channel in the presence of heat transfer analysis. 
Therefore the aim of the present paper is to discuss 
the influence of heat transfer and magnetic fie ld on n 
peristaltic transport of a Jeffrey fluid (non-Newtonian) 
with partial slip in an asymmetric channel. The exact 
and closed form of Adomian solutions are obtained 
under the assumptions o f long wave length and low 
Reynolds number, Many existing solutions in the lit­
erature are found to be subcases of our problem. The 
influence of physical parametcrs on the pn.;ssure rise, 

temperature, a nd stream function have been studied for 
five typcs of wave form.s, namely sinusoidal. multisinu­
soidal, squarc, trapezoidal, and triangular. 

2. Mathematical FO I'mul ation 

We cons ider magnotohydrodynamic (MHD) flow of 
an electrically conducting Jeffrey fluid in an asymmet­
ric channel. The lower wa ll of the channel is main­
tained at temperature Tt while the uppe!' ".'? !! hus tem­
perature To , We assume that the fluid is subject to 
a <:0 11:;t1llIt tnlllsverse magnetic field B. A very :.omall 
magnetic Reynolds number is assumcd and hence the 
induced magnetic fie ld can be neglected. When the 
fluid moves into the magnetic field two major physicnl 
effects arise. The first one is that an electric field E is 
induced in the flow. We shall assume that there is no ex­
cess charge density and therefore, V'·E:= O. Neglect­
ing the induced magnetic field implies that V'xE = 0 
and therefore, the induced electric field is negligible. 
The second effect is dynamically in nature, i. e .. a 
Lorentz force (J x B), where J is the current density. 
Th is force acts o n the fluid and modifies its motion re­
sulting in the transfer of energy from the electromag­
netic field to the fluid. In the present study, the rellL­
tivistic effects are neglected and the current density J 
is g iven by Ohm 's law as 

J = <7(V X B). 
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Slip effects on the peristaltic flow of a Jeffrey fluid in an 
asymmetric channel under the effect of induced magnetic field 

S. Nadeem*' t and Safia Akram 

Dt{Xlrlmelll QJ Mathematics. Quaid-i-Azam Uni~trsiry 45)20, Islamabad 44000, PakiJtan 

SUMMARY 

In the present study, we investigated the effects of slip and induced magnetic field on the peristaltic fl ow 
of a leffrey fluid in an asymmetric channel. The governing two-dimensional equations for momentum, 
magnetic force function and energy are simplified by using the assumptions of long wavelength and low 
but finite Reynolds number. The reduced problem has been solved by Adomian decomposition method 
(ADrvt) and closed form solutions have been presented. Further, the exact solution of the proposed problem 
has also been computed and the mathematical comparison shows that both solutions are almost similar. 
The effects of pertinent parameters on the pressure rise per wavelength nre investigated using numerical 
integration. The expressions for pressure rise, friction force, velocity, temperature, magnetic force fu nction 
and the stream lines against various physical parameters of interest are shown graphically. Moreover. the 
behavior of different lcinds of wa~e shape are also discussed. Copyright C 200910hn Wiley & Sons, Lid. 
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1. INTRODUCTION 

A flow phenomena in which the fluid velocity indirectly contacts with a solid boundary having the 
same velocity as the boundary itself is known as no slip condition. However. in some situations, 
such as fluid flow past a permeable walls [I], slotted plates [21, rough and coated surfaces [3]. 
emu lsion , suspensions, foam, polymer solutions, gas and liquid flow in microdevices [4]. the 
traditional no slip condition does not hold valid and should be replaced by a partial slip boundary 
condition. The slip boundary condition was first discussed by Navier [5], in which the velocity 
is proportional to the shear stress at the boundary. After the initiation of Navier, a number of 
researchers have discussed the partial sJjp boundary condition for different kinds of fluids with 
differe nt geometries [6-9]. 

·Correspondeoce to: S. Nadeem, Department of Mathem.ties. Ql.laid·;-A7.:tm Univers ity 45320, bhunabad 44000, 
Pakistan. 
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In the present analysis. we have modeled the govenling equations of (I two dimensional hyperbolic 
tangent fluid model. Using the assumption of long wavelength and low Reynolds number, the gov­
erning equations of hyperbolic tangent fluid for an asymmetric channel have been solved using the 
regular perturbation method. 111e expression for pressure rise has been ca1cul:ued using numerical 
integrations. AI the end. various physical parameters have been shown pictorially. It is found thaI the 
norrow part or the channel requires a large pressure gradient, also in the narrow port the pressure 
grnriiellt decreases with the incrcuc in Wei~nbcrg number lVe and channel width d. 

Key lI"ords: Modeling or Hyperbolic Tangent Fluid Modcl; Asymmetric Channel: Analytical Solutions. 

1. Introduction 

Peristaltic transport is a well known process of a 
fluid transport which is induced by a progressive wave 
of area contraction or expansion along the length of 
distensible tube containing the fluid. It is used by many 
systems in the living body to propel or to mix the con­
tents of a tube . The peristalsis mechanism usually oc­
cur in urine transport from kidney to bladder, swal­
lowin,!! food through the esophagus. chyme motion in 
d,,:; ~, .... trointeSlinat tracl, vasomotiOn vr ~l lIall uiuuu 
vessels and movement of spermatozoa in the human 
reproductive tract. Therc al'e many engineenng pro­
cesses as well in which peristaltic pumps are used to 
handle a wide range of nuids particularly in chemical 
and pharmaceutical industries. It is also used in san­
itary nuid transport. blood pumps in heart lung ma­
chine, and transport of corrosive nuids, where the con­
tact of the nuid with the machinery parts is prohibited. 
Because most of the physiological fluids behave like a 
non-Newtonian fluid . therefore, some interesting smd­
ies dealing with the flows of non-Newtonian fluids are 
given in {I-IS]. 

Motivated by possible applications in industry and 
physiology and previous studies regarding the peri­
staltic flows of Non-Newtonian fluid models, we di s­
cussed the tangent hyperbolic fluid model. The gov­
erning equations of hyperbolic tangent fluid model for 
peristaltic fluili flow in a two dimensional asymmet-

ric channel has been modeled in the present paper. To 
the best of the authors knowledgc no attempt has been 
made to study the hyperbolic tangent fluid model for 
pelistaltic problems. The governing equaliom are reo 
duced using long wave length approximation and then 
the reduced problem has been solved by the regular 
perturbation method. The expression for pressure rise 
is computed numerically using mathematics software 
Mathematica. At the end, the graphical results are pre­
sented to discuss the physica l behaviour of various pa­
rameters of Inlerest. 

2. F luid Model 

For an incompressible fluid the balance of mnss and 
momentum are given by 

divV = 0, 

dV . S r p- =dlV +p, 
dt 

(1 ) 

(2) 

where p is the density, V is the velocity vector,S is 
the Cauchy stress tensor, f represents the specific body 
force and did! represents the material time derivative. 
The constitutive equation for hyperbolic tangent fluid 
is given by [\0-1 1] 

s--n+~ ~ 

< - - [ry. + (ryo + ry.) tanh(rY)"j y, (4) 
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1. Introduction 

ABSTRACT 

In this work. we have presented a peristaltic flow of a Williamson model in an asymmetric 
channel. The governing equ~tions of Williamson model in two dimension~1 J)tristaltic flow 
phenomena are constructed under long wave length and low Reynolds number approxima­
tions. A regul;H J)trlurbation expansion method Is used (0 obtain the ;malytical solution of 
the non-line.lr problem. The expressions for slre~m function. pressure gr~dient and pres­
sure rise have b('cn compuled. The pertinent features of various physical parameters have 
been discussed graphically. II is observed that. (the non-dimension~l Williamson parame­
ter) for large We . the curves of the pressure rise are nOI linear but for very small We it 
behave like a Newtonian fluid. 

C 2009 Elsevier B.V. All rights reserved. 

Since. the pioneer work done by Latham (1 J ' numerous researchers have discussed the peristaltic flows due its 
increasing importance·s. specially In physiology, biological systems and engineering (2-6]. These includes urine transport 
from kidney to bladder, movement of chyme in the gastrointestinal tract. transport of spermatozoa. in the ducts efferent 
of the male reproductive tracts and in the celVical canal. in movement of ovum in the female fallopian tube. In the vaso­
motion of small blood vessels and in biomedical systems including roller and finger pumps etc. In realistic prospective 
number of phenomenons such as food mixing and chyme movement in the intestine. flow of plasma. flow of blood. a 
Bingham fluid. flow of nuclear fuel slurries, flow of liquid metals and alloys, flow of mercury amalgams and lubrication 
with heavy oil and greases would not follow the Newtonian laws of viscosity. Therefore. for such kind of applications it 
would be more appropriate if the non-Newtonian behaviors of the fl uids are taken into account. Due to complexity of 
non-Newtonian fluids vario' ; researchers have taken different kinds of fluids. Some interesting studies deal ing different 
kinds of non-Newtonian fl uid models are given in Refs. (7-21]. Keeping in mind the applications of non-Newtonian fluid 
model and the non-linear nature of the governing equation. the aim of the present paper is to consider the constitutive 
equation of a fluid model known as Williamson model. To the best of the author's knowledge. the peristaltic flow of a 
Will iamson model has not been discussed by anyone. In the Williamson model. the apparent viscosity varies gradually 
between 1'0 at zero shear rate. and 11 ... as the shear rate tends to infinity (22]. The governing equations fo r two dimen­
sion flow are modeled and have been solved using regular perturbation fnr ;In asymmetric channel. It is found t!l,ll the 
solutions of the viscous fluid can be recovered from our analysis. The pertinent parameters have been discussed 
pictorially . 
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